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1. Introduction

In the context of the general relativity the spacetime is a dy-
namical object which has independent degrees of freedom and is
governed by dynamical equations, namely the Einstein field equa-
tions. This means that in general relativity the geometry is dynam-
ically determined. Therefore, the construction of a gauge theory of
gravity requires an action that does not consider a fixed space-time
background. An action for gravity fulfilling these conditions, albeit
only in odd-dimensional spacetime, d = 2n + 1, was proposed long
ago by Chamseddine [1,2], which is given by a Chern-Simons form
for the anti-de Sitter (AdS) algebra. Chern-Simons gravities have
been extensively studied; see, for instance, Refs. [3-12].

If Chern-Simons theories are to provide the appropriate gauge-
theory framework for the gravitational interaction, then these the-
ories must satisfy the correspondence principle, namely they must
be related to general relativity.

Studies in this direction have been carried out in Refs. [13-16]
(see also [17,18]). In these references it was found that standard,
five-dimensional GR (without a cosmological constant) emerges as
the ¢ — 0 limit of a CS theory for a certain Lie algebra Bs5. Here
£ is a length scale, a coupling constant that characterizes different
regimes within the theory. The B85 algebra, on the other hand, is
constructed from the AdS algebra and a particular semigroup by
means of the S-expansion procedure introduced in Ref. [19].

Black hole type solutions and the cosmological nature of the
corresponding fields equations satisfy the same property, namely,
that standard black-holes solutions and standard cosmological so-
lutions emerge as the £ — 0 limit of the black-holes and cos-
mological solutions of the Einstein—-Chern-Simons field equations
[14-16].
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The Einstein-Chern-Simons action was constructed using trans-
gression forms and a method, known as subspace separation pro-
cedure [20]. This procedure is based on the iterative use of the
Extended Cartan Homotopy Formula, and allows one to (i) system-
atically split the Lagrangian in order to appropriately reflect the
subspaces structure of the gauge algebra, and (ii) separate the La-
grangian in bulk and boundary contributions.

However the Hamiltonian analysis of Einstein Chern-Simons
gravity action as well as transgression forms is as far as we know
an open problem.

In Ref. [21] was studied the Hamiltonian formulation of the
Lanczos-Lovelock (LL) theory. The LL theory is the most general
theory of gravity in d dimensions which leads to second-order
field equations for the metric. The corresponding action, satisfying
the criteria of general covariance and second-order field equations
for d > 4 is a polynomial of degree [d/2] in the curvature, has
[(d —1)/2] free parameters, which are not fixed from first princi-
ples.

In Ref. [6] was shown, using the first order formalism, that
requiring the theory to have the maximum possible number of
degrees of freedom, fixes these parameters in terms of the gravita-
tional and the cosmological constants. In odd dimensions, the La-
grangian is a Chern-Simons forms for the AdS group. The vielbein
and the spin connection can be viewed as different components
of an (A)dS or Poincare connection, so that its local symmetry is
enlarged from Lorentz to (A)dS (or Poincare when A = 0).

The principal motivation of this work is, using the first order
formalism, find the Hamiltonian formalism for a Chern-Simons
theory leading to general relativity in a certain limit.

In the first-order approach, the independent dynamical vari-
ables are the vielbein (e?) and the spin connection (w®), which
obey first-order differential field equations. The standard second-
order form can be obtained if the torsion equations are solved for
the connection and eliminated in favor of the vielbein—this step,
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however, cannot be taken, in general, because the equations for
™ are not invertible for dimensions higher than four (for detail
see Ref. [6]). This means it is not possible to find a Hamiltonian
formulation of second order for a five-dimensional AdS as well as
B5 Chern-Simons theory.

The purpose of this work is to study (i) the Hamiltonian ac-
tion for transgressions field theory, (ii) the subspace separation
method in the context of Hamiltonian formalism, (iii) the Hamil-
tonian analysis of Einstein-Chern-Simons gravity, (iv) the relation
between the Hamiltonian action of general relativity of Refs. [22,
23] and the Hamiltonian action for Einstein-Chern-Simons gravity.

This paper is organized as follows: In Sec. 2 the Hamiltonian
analysis of the five-dimensional Chern-Simons theory is briefly
reviewed. The Hamiltonian analysis of the transgressions form La-
grangians is considered in Sec. 3 where the Extended Cartan Ho-
motopy Formula is reviewed and used to find the triangle equation
in its Hamiltonian form. In Sec. 4 the subspace separation method
for Chern-Simons Hamiltonian is built and used to find the Hamil-
tonian for five-dimensional Einstein-Chern-Simons gravity. It is
then shown that the Hamiltonian for Einstein gravity of Refs. [22,
23] arises in the limit when the scale parameter | approaches zero.

2. Hamiltonian analysis of the five-dimensional Chern-Simons
theory

In this Section we briefly review of the Hamiltonian analysis of
Chern-Simons theory studied in Refs. [24-26].

2.1. (4 + 1)-dimensional case

The Chern-Simons action in 4 + 1 dimensions is given by

S= / Lcnsat
M

=/<[<A/\dA/\dA+%AAA/\AAdA
M

3
—|—§A/\A/\A/\A/\A>

3
=l(/d5X8MUp0A<Au8vApaaAk + EAMAuApaoAk

3
+ g/L\M/xu,txpf\(,,cn>,

where A = A;}Ta is the gauge connection field, T, are de gen-
erators of the corresponding gauge group, (---) denote the sym-
metrized trace and M is an orientable 5-dimensional manifold
on which the connection A is defined. If M has the topology
M =R x ¥ where R can be considered as the temporal line and
3 as a spatial section, then we can split the gauge field in time
and space components A, dx" = Adx® + Aidxi (i=1,2,3,4). The
action then takes the form

S =I</d5xeijklgabc
( AGFFG + A (F fdeAbA )) (1

where gqpc = (TqTpT¢). Defining for convenience

3 .
Ky = _st“’d Zabc FJj Fy. (2)

= kgl]klgabc (F fdeAbA ) )

we arrive to
S[A]= /d5x (Agz; - AgKa). 3)

Since the canonical momenta are given by

we find that the primary constraints are

</’a=nf(1)%0’
gp=T,—li~0 . (i=12),

and therefore the canonical Hamiltonian and the total Hamiltonian

are then given by
)= / d*xASK,.

He= / d4x (A‘,anf —

3. Hamiltonian analysis of transgression field theory

In this section we consider the Hamiltonian analysis of trans-
gression field theory introduced and studied in Refs. [27-30]. This
results allow us to find the Hamiltonian triangular equation. This
equation together with a method, known as subspace separation
method, will be used to obtain the Chern-Simons Hamiltonian for
the algebras so0(4, 2) and Bs.

3.1. (24 1)-dimensional case

The action for a 3-dimensional transgression gauge field theory
(TGFT) is given by

1
I(T3)[A,;\]=2k//dt((~)Ft), (4)

where ® = A — A, with A and A gauge connections, A; = A + t©,
Fr =dA; + AtA;, (---) denote the symmetrized trace and M is an
orientable 3-dimensional manifold on which the connection A is
defined. If M has the topology M =R x X where R can be consid-
ered as the temporal line and X as a spatial section, then we can
split the gauge field in time and space components

Apdx* = AdX® + Aidx' (i=1,2), (5)

introducing (5) into (4) we find

IP[A,, Ayl = f d3x(l</dts‘”" (OuF,))
Ix%
- / ExLP AL, A, (6)
Ix%
where the 3-dimensional TGFT Lagrangian is given by
1
LO1AL. AV zk/dta“”/’wﬂfgp)

0
1

—k / dte' gap[08 (F5)” + 2(AH)DIOY + 2(A)) 07
0
+BO[A,, Ayl 7
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with ggp = (TqTp), BP[A,, Ayl = 8i(— 2k[0 dts'fgabeﬂ(A by is a
boundary term and Df is the covariant derivatives for the At con-
nection.

From (7) we can see that when A =0 we obtain the 3-dimen-
sional Chern-Simons Lagrangian. If A = 0 we have Af = tA;,
0; = A; and therefore

LA, 0] = kel gap (A°FY + ALAD) = LI (AL, (8)

Using the definition of Hamiltonian we find
HO A, Al = -k / dteVga [00(FE)? +2(A5)°DI6M. (9)

From (9) we can see that when A =0 we obtain the 3-dimen-
sional Chern-Simons Hamiltonian of Refs. [25,26].

3
HP 1AL, 0] = HGl ALl (10)
3.2. The 3-dimensional triangle equation

In the Lagrangian formalism the so called triangle equation is
given by [27-30]

(2n+1)[A A] (2n+1)[A A]
—kdQ®V[A, A, A), (11)

(2n+1)[A Al=

where L(TZ"H)[A,A] is a transgression form and « is a constant.
This equation can be read off as saying that a transgression form
“interpolating” between A and A may be written as the sum of
two transgressions which introduce an intermediate, ancillary one-
form A plus a total derivative. It is important to note here that A is
completely arbitrary, and may be chosen according to convenience.
From the triangle equation, and fixing the middle connection to
zero (A = 0), we can see

2n+1) (2n+1) (2n+1)
LF"01A, A1 = LG VIAT - 1G5V TAl
—kdQ®V[A, A,0]. (12)

Using a method, known as subspace separation method, the
equation (12) allows to construct the Chern-Simons Lagrangian
for the 9B algebra, from which emerges as | — 0 the standard
(2n + 1)-dimensional Lagrangian for general relativity.

In the case of the Hamiltonian formalism, triangular equa-
tion plays a similar role. The Hamiltonian triangular equation al-
lows obtaining the Chern-Simons Hamiltonian for algebra 8. This
Hamiltonian empties into the Hamiltonian for five-dimensional rel-
ativity in the limit [ — 0. This is not achievable in the case of the
Hamiltonian for AdS algebra.

Writing LV (A, A] = £P"V[A,, A, W@HD (where ¥20+D
is the volume form) and integrating for n =1 we have

LML, Al = LOUAN — LOMAL] —kdQ P[AL, AVl (13)
From (7) and (9) we can write

LO1AL, Al = POLA;, A, Ai, Al —HP (A, Ay

+BO[A,, Al (14)
where
1
PO[A;, Ar, Ai, Aj] :2kfdts"fgab(A§)“9b, (15)
0

so that (13) takes the form

HO[Ap, Apl = HOLAL] — HOAL] + PO [A;, Ar, Ar, Ail
+ PO[A;, Al — POLA;, Al +BP[AL, Al
(16)
which can be written as
HPO[Ap, Al = HSX[AL] — HOM AL + POLA;, Ay, Aj, Al
+BP[A,, A AM], (17)
where
PO[A;, A;, A, ;\i] =PO[A; A, A;, ;\i] + POA;, ;\i]
— PO[A;, Al (18)

and

BP[A,, A 1=B®[A,, A+ BP[A,] - BP[A,]
+QO[A,, Al (19)

with Q ®[A,, Al =kdQP[A,, Al

From here we can see that Eq. (17) is similar to Lagrangian tri-
angular equation except for the term P defined in equation (18).
Since this term depends on the speed and the Hamiltonian can not
dependent on it, it is convenient to analyze the aforementioned
term. In fact, from

1
POLA;, Ar, Ai, Al = 2k/dtgifgab[(}\§)“9§’ + r/i;?A? — tA?A%]
0
= ke' ggp[ATAD 4+ AT AP, (20)
we can see that P® is a boundary term
PO[AL Ar, A, Ai] = do (ke gy ATAD), (21)
so that the triangular equation (17) can be written as

3 3 3) 3 5 v
HO AL, Al = HOMAL] — HOMAL T+ BO[ALL ALl (22)
where B contains (21). This result can be extended to the case
where the intermediate connection A is nonzero. In this case (22)
takes the form

HO AL, A= HP (AL, Al —HP[A,, Ay
+BOA,, Ay, Al (23)

where the main difference with (22) resides in the fact that the
term P®), which appears in B®[A,,, Ay, A,], contains two terms
more than his counterpart (21).

The above results lead to show that the Hamiltonian transgres-
sion is the difference between two Chern-Simons Hamiltonians
term plus a boundary term. The boundary term appears due to
contributions of the Legendre transformation on the triangular La-
grangian equation. This result together to a method, known as
subspace separation method, allows to construct the Chern-Simons
Hamiltonian for an arbitrary Lie algebra.

3.3. (4+ 1)-dimensional case

In the (4 + 1)-dimensional case the action is given by

1
I(TS)[A,A]:31(//dt(®Fth). (24)
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Following the procedure of the above section we find

1

IP[A, Al = / d>x / dte P (0, ' L), (25)
IxX% 0
so that
1
(5) A 3 VPO A t gt
£71Aw, Al =2k | dee (OuFL,FL ). (26)

Splitting the gauge field in time and space components
Aydx# = Adx® + Aidx' (i=1,2,3,4), we find

LA, Ayl

.Mw

1
k / dee® (0 F{;Fiy — 6iF§ iy + 0iF i Fly — 6iF Gy
0

t
+9iijFlo)
1

= / dee M gy (0 200 (I (FR)° +3(AQ)"Dj0] (Fip)©
0
+3(ADOP(FR)©) + BO[Ay. Ayl (27)

where ggpe = (ToTpTc) and B® [Au, AM] = 0;(—3k f01 dteliMg . x
(Ag)“&?(F,ﬁ,)C) is a boundary term.

From (27) we can see that when A = 0 we obtain the
5-dimensional Chern-Simons Lagrangian.

LAy, 0] = ke"“k’gabc( AG(FLY (Flp©
b b b ad
+ A (AjFlfl_ ngeAjAkAle)

= LOM AL (28)

Using the definition of Hamiltonian we find

(5)[AM’AM]__k/dt80uklg b

><[ 90(F P (F© + 3(ADDIOY (Fip©1. (29)

From (29) we can see that when A = 0 we obtain the
5-dimensional Chern-Simons Hamiltonian

H (A, 01 = HOL[ALL. (30)

3.4. Five-dimensional triangular equation

From (11) we have that the 5-dimensional triangular equation
is given by

LML, A = LETAN — LOMAL] — kdQ P[A,, ALl (31)
From (27) and (29) we can see that
LOTAL, Al = POLA;, Ar, A, Al —H (A, Al
+BO[AL, Ayl (32)

where

POLA;, A, Ai, Al =k / dte"™ gap 3(AD 07 (F©, (33)

so that (31) takes the form

HO[Ap, Apl = HOLAL] — HOLAL] + PO[A;, Ar, Aj, Al
+B(5)[Aﬂ, AM], (34)

where

POLA;, A, Ai, Ail + POA;, Al

— PO[A;, Ayl (35)

POA;, A, Aj, ;\i] =

and

BO[A,, A 1=B®[A,, Ayl +BP[A,] - BO[A,]
+ QAL Aul, (36)

with Q ®[A,, Ay l=kdQP[A,, Ayl

From here we can see that the Eq. (34) is similar to Lagrangian
triangular equation except for the term, P, defined in equation
(35). Since this term depends on the velocity and the Hamiltonian
can not dependent on it, it is convenient to analyze the aforemen-
tioned term. In fact, from

POA;. Aj, Ai, Ail = dolke™ gapc (AL AL A + AL AL Af
1 - -= 1 -
+ 5 FRATATARAT + 4 fEATATALAD)
1 ¢ saabgadze . 1 oc 7azb 4d
+ EfgeA?AjAkAf + gfgeA?AjAkAle
1 bzdz
— S I A A ALA]
+ ilke ™M gapc (ATAPAT — AYAL AT (37)
we have that the triangular equation is given by

HO[Ap, Apl = HOMAL] — HO AL+ BO[A, Ayl (38)

where B contains (37).

This result together with a procedure, known as subspace sepa-
ration method, allows to construct the Chern-Simons Hamiltonian
for the so(4,2) and B5 Lie algebra.

3.5. (2n + 1)-dimensional case
The action for a (2n + 1)-dimensional transgression gauge field
theory is given by
1
19MV1A,, Ayl = (n+1)k//dt<®F';). (39)
M 0
Following the same procedure of the above sections we find,
1
LA, Ayl = / dt(AHLL — 081C — (AL N
0

+ B D[A,, Ayl (40)

where
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n(n+])

i n— bn
[':1 on—1 Igl“ 2 1gab1 bne (F1213) (FJZn 2J2n— 1) ’
(41)
(n +1)
Ka = AL kel '8ab.. b"(FUl) ' (F]2n 20— 1)bn’
(42)
nn+1) ..
Ny = _Tkglllmjzn—lgab ngfll
t b
X (szla) e (Fj2n—212n—1) ’ (43)
1
BPMDIA, Ayl =3,~(—3k/dte"jl"'h"*lgablmbn (Ap) 0}
0
by
X (FG )0 (Fly g O (44)
with glit-jan-1 = gOif1-jan-1 and 8aby..by = (TaTp, -+~ Tp,). Using the
definition of Hamiltonian we have
1
HEV[A,, Ayl = / dt (03/Ca + (AL)NG) . (45)
0

From (45) we can see that when A =0 we find the (2n+ 1)-
dimensional Chern-Simons Hamiltonian

HE VLA = o ot DT gy, ASEE - F
2n+1
=Hays'(Aul. (46)
Le.,
H V1AL, 01 = HGSTV TA]. (47)

3.6. The (2n + 1)-dimensional triangle equation

Following the procedure used in the above sections we have

L7 VA Al = L5 1A = £6571Au]
—kdQ @V [A,, Ayl (48)

From (40) and (45) we have

LA, Ayl =PV A Ay A A — HE V(AL A

+BDAL AL (49)
where
1
PRHIA AL AL ;\,-] :fdt(AlF)“Lf], (50)
0

so that (48) takes the form

(2n+1)[AM’ A,u,] _ H(2n+])[AM] _ HQ”"I‘D[AM]

Chs Chs
+ PCTV[A;, Aj, Ar, Al
+BHD[A,, Ayl (51)

where,
PAYVIA; Ar Ap Al = P@TVA A Ay, Al
+ P4, Aj]
— P14 Ay (52)

This term is a boundary term, so that the triangular equation is
finally given by

H(Tzn+l)[All«’ ;‘u] _ H(C%H)[AM] _ H%H)[Au]
+B@V[A,, Ayl (53)

where

B+ [Au. AM] — B(ZH_H)[AM, AM] + B(ZH'H)[;\M] _ B(2”+1)[AM]
+ Q@A AL+ PCHDA, AL (54)
with

QDA Ayl
t

1
=Kd, <n(n+1)/dt/dssw"/’l“"’z"gabc]mcn19;1;\?)
0 0

(thlpZ)Cl (Ff)th 1pZn)Cn1>' (55)

4. Hamiltonian analysis for Einstein gravity and AdS
Chern-Simons gravity

4.1. Hamiltonian for five-dimensional general relativity

The action for five-dimensional Einstein gravity is given by

I9)-[e, w] = / Eabede R %€, (56)
M

where M is an orientable 5-dimensional manifold. If M has the

topology I x ¥, then M can be foliated in four-dimensional Cauchy

surfaces along I € R, i.e., to carry out a separation (4 + 1). Since
e =e",dx* and R = %R"bwdx“dx” we have

1
IéH)C[eM’wM]=/dt/d4xiSﬂmp}\gabcdeRabuvecaed,oeex, (57)
1 x
so that

1
EHC[eM’(‘)M] = Eglw Phe bcdeR uv€ Uedpe (58)

This allow us split the fields in time and space components,

5) 1O'kl ab _c . .d _e ab_ _c .d e
Lenclen, wul= o e abcde (R™ g€ je“ke®s — R%jpec jeke’

+3R%;;e e e?)

— SOijkl a, bc

Eabede €90 jedre’| + 3™ odie€ jedye’

3
b d b d
-I-Zwafowf ie€je e’ + ERG ije“oe’ke’]

— 316 g gpge ™ geC jelye?)). (59)
Considering that
eOMTE = 0 20,6 + 20 i ), (60)
we find

. 3
0ijkl sa . bc ,d e ab rc, . ,d e
EHC[evaa)pL] =& eapege[€” 1™ ke’ + 50) oT"ije ke’

3
+ ERabijeCOedkeel]- (61)
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A direct calculation allows us to obtain the Hamiltonian density
for Einstein’s gravity
(5) 3 0ijikl ab _Tc. ,d e ab. c ,d e
Hepelew, ou] 2—58 Eabede[@w™ 0T jje"e" | + R™jje"pe" et ].
(62)
This means that (62) is the Hamiltonian for the five-dimensional
general relativity in the first order formalism.

4.2. Hamiltonian for five-dimensional AdS Chern-Simons gravity

To construct the AdS Chern-Simons Hamiltonian we use the so
called subspace separation method [20]. This procedure is based
on the triangle equation (38), and embodies the following steps:

i) Identify the relevant subspaces present in the so(4, 2) algebra,
i.e., write g =V ® V,, where

Vi—{Pa}, Vo— {Jap} (63)
ii) Write the connections as a sum of pieces valued on every sub-
space, i.e.,
1 1
A= e uPa+ Ewabujab, (64)
- 1
A= 50" Jab, (65)
A=0. (66)

iii) The triangle equation (38) leads to
HONAL = HO (A, Apl +HOMAL] — BO[AL, Ayl (67)

To calculate the terms present in (67) we use the following in-
formation:

e The non-vanishing components of the invariant tensor for five-
dimensional AdS algebra are

4
(JabJcdPe) = §8abcde~

e The connection Aj, and the tensors ©,, and Fj,, are given by

1
Ou = Tea“Pa’ (68)
t t a T
AMZYB ;LPa"'rECU wlabs (69)
¢ t a 1 ab tz a a
FIW = IT vl Pa + ER [uv] + 176 (e vy ) Jab- (70)

These results allow us to calculate the Hamiltonian present in
the triangle equation and therefore

(AdSs)

Heps (e wpl

kl b d b d
= —keM gqpcde <4—l€“oR R+ FeoR™ e ke’

1 1 1
+ l—seaoebiecjedkeez + ZwaboRCdijTekz + ﬁwabOTCijedkeel) :

From this Hamiltonian it is apparent that neither the | — oo
nor the [ — 0 limit yields the Hamiltonian for general relativity.

5. Hamiltonian for five-dimensional Einstein-Chern-Simons
gravity

5.1. Lagrangian Einstein—Chern-Simons gravity

In Ref. [13] was shown that the standard, five-dimensional gen-
eral relativity can be obtained from Chern-Simons gravity theory
for a certain Lie algebra 8 [13], whose generators {Jap, Pa, Zab, Za}
satisfy the commutation relations given in Eq. (7) of Ref. [14]. This
algebra was obtained from the anti de Sitter (AdS) algebra and a
particular semigroup S by means of the S-expansion procedure in-
troduced in Ref. [19].

The Chern-Simons Lagrangian for the B algebra, is built from
the one-form gauge connection

1 1 1 1
A= Jap+ 76 Pat SK Zap + 71" Za, (71)
and the two-form curvature

1 1 1 1
F= ER‘“’jab + TT”PG +5 (Dwk“b + ﬁeaeb> Zab

1
+1 (tha +k“beb> Za. (72)

Following the dual procedure of S-expansion developed in
Ref. [19] we find the five-dimensional Chern-Simons Lagrangian
for the 95 algebra is given by

L3

2 apbc pde
EChS = a1l €apcde€” R™ R

2
+ A3E0bcde (5 Rabecedee + 2[2kab Rche + 12 RabRcdhe>
(4)
+dBphs (73)

4 . .
where the surface term Bl(-:C)hS is given by

@
B EChS

2 1
— 2 a, bcf 4y de 1 d_ fe
= a1l°8gpcdee’ @ <3da) + za)fa) )
2 (pa, bc aboc\ (24 de , 1 4 fe
+ a3&apcde | | (h w” +kPe ) §da) + waw

2 1 1

2p,ab, .cd e d e a,b_c, .de

+ k" (gde +§wfe)+€eeea) ]
(74)

and where o, o3 are parameters of the theory, | is a coupling
constant, R? = dw®™ + w%w® corresponds to the curvature 2-form
in the first-order formalism related to the 1-form spin connection,
and e?, h® and k® are others gauge fields presents in the theory.

The Lagrangian (73) shows that standard, five-dimensional Gen-
eral Relativity emerges as the [ — 0 limit of a Chern-Simons the-
ory for the generalized Poincaré algebra 2. Here [ is a length scale,
a coupling constant that characterizes different regimes within the
theory.

5.2. Hamiltonian for Einstein-Chern-Simons gravity

Now we will find the Hamiltonian for Einstein-Chern-Simons
gravity, which is a Chern-Simons form for the so called 9% algebra.
Following the procedure of the above subsection, we have:

i) The relevant subspace of the ‘B algebra can be identify in the
following form: g=V1 ® V, & V3 & V4, where

Vi— {Pa}, Vo= {Ja}, V3= {Za}, Va— {Zap}. (75)
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ii) The connections A, Ay, ;\}L, ;\i and A, are:

1 1 1 1
Ay = Teaupa + Ewabujab + Thalizﬂ + EKabMZﬂb’ (76)
al Yo p 1 o 77
M_TEM a+5(1) wlab> (77)
- 1
Aft = Ewabu.lab, (78)
A, =0. (79)

iii) So that the triangle equation leads to,
HE Al = HY (A, AL T+ HY AL, Ayl + HY (AL A2 ]
—B®[AL Ay Ay, A% (80)

To calculate the terms present in (80) we use the following in-
formation.

e The non-vanishing components of the invariant tensor for five-
dimensional B algebra are given by

453

(JabJcd Pe) =a]?8abcdea (81)
453

(JabJcaZe) =a3?8abcdey (82)
45

(JabZcdPe) = a3 ?Sabcd@ (83)

e The connection AEL and the tensors ©,, and F!, are given by

v

. 1 1
Ou(Au. Ay) = Th““za + 51<‘1”,Lza,,,

1
ea;LPa + —wabujab

- 1
t 1

!

1 1
+t (Thaﬂza + Ekabuzab) )

_ 1 1
Fltw(Aw A}L) = TTa[;w]Pa + ERab[ﬂwl

2t
l

1
+ (tD[MkabU] + l_zea[ueav]> Zab,

+ (Dmh“w + kabmeva) Zq

- 1
Ou(A%,0) = Ew“bujab,

- t
A (A7 0) = 0 i Jap,
t (a2 1 ab t? a cb
F,w(A ,0)= Ea“‘w viJab + Ew c[uw viJab,

- 1
Ou(A,, A7) = Teaﬂpa,

- - t 1

A (A AL = 1 Pa+ S0 ap,

t a1l 32 t a 1 ab tz a b
FMV(A ’AM):YT [;w]Pa‘f‘ER [;w]]ab+l—29 (€ v]Zab'
These results allow us to calculate the Hamiltonian present in

the triangle equation and therefore,

B
7'L(cs 5)[eu’ pshykyd
ijkl 0“12 a_ pbc. pde ab pcd e
= —ke" eapcde e (€%oR iRk + 2™ oR“;iT® 1)

+ a3 (eaoRchedkeel + a)aboTC,‘jedkeel + lzeaoRbCijDkkdel

+ lzwabOTcijDkkdel + lzwaboRchthel + lzwaboRCd,‘jkefkef[
I I
+ 5kaboRCdijTekl + Ethbcindekz)} . (84)

From (84) we can see that in the limit [ — 0 we obtain the
Hamiltonian for the five-dimensional general relativity in the first
order formalism shown in (62),

B
7"(cs 5)[%’ om
— —k ijkl a Rbc,, d e ab T d e 85
= —ka3e"  eqpege[e”o R jje k") + w0 T jje" ke ). (85)

Studies of the first order Hamiltonian formalism, for 4-dimen-
sional Einstein gravity can be found in Refs. [22,23], which coincide
with (85) by reducing the dimension from five to four.

6. Concluding remarks

In this work the Hamiltonian analysis of the transgressions
gauge fields theory was considered. The extended Cartan homo-
topy formula was reviewed and used to find the triangle equation
in its Hamiltonian form.

The triangle equation leads to show that the Hamiltonian trans-
gression is the difference between two Chern-Simons Hamiltoni-
ans term plus a boundary term. The boundary term appears due
to contributions of the Legendre transformation on the triangular
Lagrangian equation.

This result together to a method, known as subspace separation
method, allows to construct the Chern-Simons Hamiltonian for the
s50(4,2) and Bs algebras.

Finally it was found that (i) from the Chern-Simons Hamilto-
nian for the so(4, 2) algebra it is apparent that neither the [ - oo
nor the | — 0 limit yields the Hamiltonian for general relativity.
(ii) From the Chern-Simons Hamiltonian for the 85 algebra we
can see that the Hamiltonian for five-dimensional general relativity
may indeed emerge when the scale parameter | approaches zero.

Studies of the first order Hamiltonian formalism, for 4-dimen-
sional Einstein gravity can be found in Refs. [22,23], which coincide
with (85) by reducing the dimension from five to four.

It could be interesting to find a connection between the re-
sults obtained in this work (first-order formalism) with those of
Teitelboim and Zanelli found in Ref. [21] (second-order formalism).
The standard second-order form could be obtained if the torsion
equations are solved for the connection and eliminated in favor
of the vielbein. However, this is not possible in our case because
the equations for w® are not invertible for dimensions higher than
four (for detail see Ref. [6]).
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