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In this work we consider the construction of the Hamiltonian action for the transgressions field theory. 
The subspace separation method for Chern–Simons Hamiltonian is built and used to find the Hamiltonian 
for five-dimensional Einstein–Chern–Simons gravity. It is then shown that the Hamiltonian for Einstein 
gravity arises in the limit where the scale parameter l approaches zero.
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1. Introduction

In the context of the general relativity the spacetime is a dy-
namical object which has independent degrees of freedom and is 
governed by dynamical equations, namely the Einstein field equa-
tions. This means that in general relativity the geometry is dynam-
ically determined. Therefore, the construction of a gauge theory of 
gravity requires an action that does not consider a fixed space-time 
background. An action for gravity fulfilling these conditions, albeit 
only in odd-dimensional spacetime, d = 2n + 1, was proposed long 
ago by Chamseddine [1,2], which is given by a Chern–Simons form 
for the anti-de Sitter (AdS) algebra. Chern–Simons gravities have 
been extensively studied; see, for instance, Refs. [3–12].

If Chern–Simons theories are to provide the appropriate gauge-
theory framework for the gravitational interaction, then these the-
ories must satisfy the correspondence principle, namely they must 
be related to general relativity.

Studies in this direction have been carried out in Refs. [13–16]
(see also [17,18]). In these references it was found that standard, 
five-dimensional GR (without a cosmological constant) emerges as 
the � → 0 limit of a CS theory for a certain Lie algebra B5. Here 
� is a length scale, a coupling constant that characterizes different 
regimes within the theory. The B5 algebra, on the other hand, is 
constructed from the AdS algebra and a particular semigroup by 
means of the S-expansion procedure introduced in Ref. [19].

Black hole type solutions and the cosmological nature of the 
corresponding fields equations satisfy the same property, namely, 
that standard black-holes solutions and standard cosmological so-
lutions emerge as the � → 0 limit of the black-holes and cos-
mological solutions of the Einstein–Chern–Simons field equations 
[14–16].
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The Einstein–Chern–Simons action was constructed using trans-
gression forms and a method, known as subspace separation pro-
cedure [20]. This procedure is based on the iterative use of the 
Extended Cartan Homotopy Formula, and allows one to (i) system-
atically split the Lagrangian in order to appropriately reflect the 
subspaces structure of the gauge algebra, and (ii) separate the La-
grangian in bulk and boundary contributions.

However the Hamiltonian analysis of Einstein Chern–Simons
gravity action as well as transgression forms is as far as we know 
an open problem.

In Ref. [21] was studied the Hamiltonian formulation of the 
Lanczos–Lovelock (LL) theory. The LL theory is the most general 
theory of gravity in d dimensions which leads to second-order 
field equations for the metric. The corresponding action, satisfying 
the criteria of general covariance and second-order field equations 
for d > 4 is a polynomial of degree [d/2] in the curvature, has 
[(d − 1)/2] free parameters, which are not fixed from first princi-
ples.

In Ref. [6] was shown, using the first order formalism, that 
requiring the theory to have the maximum possible number of 
degrees of freedom, fixes these parameters in terms of the gravita-
tional and the cosmological constants. In odd dimensions, the La-
grangian is a Chern–Simons forms for the AdS group. The vielbein 
and the spin connection can be viewed as different components 
of an (A)dS or Poincare connection, so that its local symmetry is 
enlarged from Lorentz to (A)dS (or Poincare when � = 0).

The principal motivation of this work is, using the first order 
formalism, find the Hamiltonian formalism for a Chern–Simons
theory leading to general relativity in a certain limit.

In the first-order approach, the independent dynamical vari-
ables are the vielbein (ea) and the spin connection (ωab), which 
obey first-order differential field equations. The standard second-
order form can be obtained if the torsion equations are solved for 
the connection and eliminated in favor of the vielbein—this step, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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however, cannot be taken, in general, because the equations for 
ωab are not invertible for dimensions higher than four (for detail 
see Ref. [6]). This means it is not possible to find a Hamiltonian 
formulation of second order for a five-dimensional AdS as well as 
B5 Chern–Simons theory.

The purpose of this work is to study (i) the Hamiltonian ac-
tion for transgressions field theory, (ii) the subspace separation 
method in the context of Hamiltonian formalism, (iii) the Hamil-
tonian analysis of Einstein–Chern–Simons gravity, (iv) the relation 
between the Hamiltonian action of general relativity of Refs. [22,
23] and the Hamiltonian action for Einstein–Chern–Simons gravity.

This paper is organized as follows: In Sec. 2 the Hamiltonian 
analysis of the five-dimensional Chern–Simons theory is briefly 
reviewed. The Hamiltonian analysis of the transgressions form La-
grangians is considered in Sec. 3 where the Extended Cartan Ho-
motopy Formula is reviewed and used to find the triangle equation 
in its Hamiltonian form. In Sec. 4 the subspace separation method 
for Chern–Simons Hamiltonian is built and used to find the Hamil-
tonian for five-dimensional Einstein–Chern–Simons gravity. It is 
then shown that the Hamiltonian for Einstein gravity of Refs. [22,
23] arises in the limit when the scale parameter l approaches zero.

2. Hamiltonian analysis of the five-dimensional Chern–Simons
theory

In this Section we briefly review of the Hamiltonian analysis of 
Chern–Simons theory studied in Refs. [24–26].

2.1. (4 + 1)-dimensional case

The Chern–Simons action in 4 + 1 dimensions is given by

S =
∫
M

LChS4+1

= k

∫
M

〈
A ∧ dA ∧ dA + 3

2
A ∧ A ∧ A ∧ dA

+ 3

5
A ∧ A ∧ A ∧ A ∧ A

〉

= k

∫
M

d5xεμνρσλ

〈
Aμ∂ν Aρ∂σ Aλ + 3

2
Aμ Aν Aρ∂σ Aλ

+ 3

5
Aμ Aν Aρ Aσ Aλ

〉
,

where A = A a
μTa is the gauge connection field, Ta are de gen-

erators of the corresponding gauge group, 〈· · ·〉 denote the sym-
metrized trace and M is an orientable 5-dimensional manifold 
on which the connection A is defined. If M has the topology 
M = R × � where R can be considered as the temporal line and 
� as a spatial section, then we can split the gauge field in time 
and space components Aμdxμ = Adx0 + Aidxi (i = 1,2,3,4). The 
action then takes the form

S = k

∫
d5xεi jkl gabc

×
(

3

4
Aa

0 F b
i j F c

kl + Ȧa
i

(
F b

jk Ac
l − 1

4
f c
de Ab

j Ad
k Ae

l

))
, (1)

where gabc = 〈Ta Tb Tc〉. Defining for convenience

Ka = −3

4
kεi jkl gabc F b

i j F c
kl, (2)

li
a = kεi jkl gabc

(
F b

jk Ac
l − 1

f c
de Ab

j Ad
k Ae

l

)
,

4

we arrive to

S [A] =
∫

d5x
(

Ȧa
i li

a − Aa
0 Ka

)
. (3)

Since the canonical momenta are given by

�
μ
a = ∂Lcs2+1

∂ Ȧa
μ

,

we find that the primary constraints are

ϕa = �0
a ≈ 0,

φi
a = �i

a − li
a ≈ 0 , (i = 1,2) ,

and therefore the canonical Hamiltonian and the total Hamiltonian
are then given by

Hc =
∫

d4x
(

Ȧa
μ�

μ
a −L

)
=

∫
d4xAa

0 Ka.

3. Hamiltonian analysis of transgression field theory

In this section we consider the Hamiltonian analysis of trans-
gression field theory introduced and studied in Refs. [27–30]. This 
results allow us to find the Hamiltonian triangular equation. This 
equation together with a method, known as subspace separation 
method, will be used to obtain the Chern–Simons Hamiltonian for 
the algebras so(4, 2) and B5.

3.1. (2 + 1)-dimensional case

The action for a 3-dimensional transgression gauge field theory 
(TGFT) is given by

I(3)
T [A, Ā] = 2k

∫
M

1∫
0

dt〈�F t〉, (4)

where � = A − Ā, with A and Ā gauge connections, At = Ā + t�, 
Ft = dAt + At At , 〈· · ·〉 denote the symmetrized trace and M is an 
orientable 3-dimensional manifold on which the connection A is 
defined. If M has the topology M = R ×� where R can be consid-
ered as the temporal line and � as a spatial section, then we can 
split the gauge field in time and space components

Aμdxμ = Adx0 + Aidxi (i = 1,2) , (5)

introducing (5) into (4) we find

I(3)
T [Aμ, Āν ] =

∫
I×�

d3x(k

1∫
0

dtεμνρ〈θμF t
νρ〉)

=
∫

I×�

d3xL(3)
T [Aμ, Āν ], (6)

where the 3-dimensional TGFT Lagrangian is given by

L(3)
T [Aμ, Āν ] = k

1∫
0

dtεμνρ〈θμF t
νρ〉

= k

1∫
0

dtεi j gab[θa
0 (F t

i j)
b + 2(At

0)
a Dt

iθ
b
j + 2( Ȧt

i )
aθb

j ]

+B(3)[Aμ, Āν ], (7)
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with gab = 〈Ta Tb〉, B(3)[Aμ, Āμ] = ∂i(−2k 
∫ 1

0 dtεi j gabθ
a
j (At

0)
b) is a 

boundary term and Dt
i is the covariant derivatives for the At con-

nection.
From (7) we can see that when Ā = 0 we obtain the 3-dimen-

sional Chern–Simons Lagrangian. If Ā = 0 we have At
i = t Ai , 

θi = Ai and therefore

L(3)
T [Aμ,0] = kε i j gab(Aa F b

i j + Ȧa
i Ab

j ) = L(3)
CS [Aμ]. (8)

Using the definition of Hamiltonian we find

H(3)
T [Aμ, Āν ] = −k

1∫
0

dtεi j gab[θa
0 (F t

i j)
b + 2(At

0)
a Dt

iθ
b
j ]. (9)

From (9) we can see that when Ā = 0 we obtain the 3-dimen-
sional Chern–Simons Hamiltonian of Refs. [25,26].

H(3)
T [Aμ,0] = H(3)

ChS[Aμ]. (10)

3.2. The 3-dimensional triangle equation

In the Lagrangian formalism the so called triangle equation is 
given by [27–30]

L(2n+1)
T [A, Ā] = L(2n+1)

T [A, Ã] − L(2n+1)
T [ Ā, Ã]

− κdQ (2n)[A, Ā, Ã], (11)

where L(2n+1)
T [A, Ā] is a transgression form and κ is a constant. 

This equation can be read off as saying that a transgression form 
“interpolating” between Ā and A may be written as the sum of 
two transgressions which introduce an intermediate, ancillary one-
form Ã plus a total derivative. It is important to note here that Ã is 
completely arbitrary, and may be chosen according to convenience. 
From the triangle equation, and fixing the middle connection to 
zero ( Ã = 0), we can see

L(2n+1)
T [A, Ā] = L(2n+1)

ChS [A] − L(2n+1)

ChS [ Ā]
− κdQ (2n)[A, Ā,0]. (12)

Using a method, known as subspace separation method, the 
equation (12) allows to construct the Chern–Simons Lagrangian 
for the B algebra, from which emerges as l → 0 the standard 
(2n + 1)-dimensional Lagrangian for general relativity.

In the case of the Hamiltonian formalism, triangular equa-
tion plays a similar role. The Hamiltonian triangular equation al-
lows obtaining the Chern–Simons Hamiltonian for algebra B. This 
Hamiltonian empties into the Hamiltonian for five-dimensional rel-
ativity in the limit l → 0. This is not achievable in the case of the 
Hamiltonian for AdS algebra.

Writing L(2n+1)
T [A, Ā] = L(2n+1)

T [Aμ, Āμ]ṽ(2n+1) (where ṽ(2n+1)

is the volume form) and integrating for n = 1 we have

L(3)
T [Aμ, Āν ] = L(3)

ChS[Aμ] −L(3)

ChS[ Āμ] − κdQ (2)[Aμ, Āν ]. (13)

From (7) and (9) we can write

L(3)
T [Aμ, Āμ] = P (3)[Ai, Āi, Ȧi,

˙̄Ai] −H(3)
T [Aμ, Āμ]

+ B(3)[Aμ, Āμ], (14)

where

P (3)[Ai, Āi, Ȧi,
˙̄Ai] = 2k

1∫
0

dtεi j gab( Ȧt
i )

aθb
j , (15)

so that (13) takes the form
H(3)
T [Aμ, Āμ] = H(3)

ChS[Aμ] −H(3)

ChS[ Āμ] + P (3)[Ai, Āi, Ȧi,
˙̄Ai]

+ P (3)[ Āi,
˙̄Ai] − P (3)[Ai, Ȧi] + B(3)[Aμ, Āμ],

(16)

which can be written as

H(3)
T [Aμ, Āμ] = H(3)

ChS[Aμ] −H(3)

ChS[ Āμ] + P̃ (3)[Ai, Āi, Ȧi,
˙̄Ai]

+B(3)[Aμ, Āμ], (17)

where

P̃ (3)[Ai, Āi, Ȧi,
˙̄Ai] = P (3)[Ai, Āi, Ȧi,

˙̄Ai] + P (3)[ Āi,
˙̄Ai]

− P (3)[Ai, Ȧi]. (18)

and

B(3)[Aμ, Āμ] = B(3)[Aμ, Āμ] + B(3)[ Āμ] − B(3)[Aμ]
+ Q (3)[Aμ, Āμ], (19)

with Q (3)[Aμ, Āμ] = κdQ (2)[Aμ, Āν ].
From here we can see that Eq. (17) is similar to Lagrangian tri-

angular equation except for the term P̃ (3) defined in equation (18). 
Since this term depends on the speed and the Hamiltonian can not 
dependent on it, it is convenient to analyze the aforementioned 
term. In fact, from

P̃ (3)[Ai, Āi, Ȧi,
˙̄Ai] = 2k

1∫
0

dtεi j gab[( Ȧt
i )

aθb
j + t ˙̄Aa

i Āb
j − t Ȧa

i Ab
j ]

= kεi j gab[ ˙̄Aa
i Ab

j + Āa
i Ȧb

j ], (20)

we can see that P̃ (3) is a boundary term

P̃ (3)[Ai, Āi, Ȧi,
˙̄Ai] = ∂0(kε

i j gab Āa
i Ab

j ), (21)

so that the triangular equation (17) can be written as

H(3)
T [Aμ, Āμ] = H(3)

ChS[Aμ] −H(3)

ChS[ Āμ] + B̃(3)[Aμ, Āμ], (22)

where B̃ contains (21). This result can be extended to the case 
where the intermediate connection Ã is nonzero. In this case (22)
takes the form

H(3)
T [Aμ, Āμ] = H(3)

T [Aμ, Ãμ] −H(3)
T [ Āμ, Ãμ]

+ B̃(3)[Aμ, Āμ, Ãμ], (23)

where the main difference with (22) resides in the fact that the 
term P̃ (3) , which appears in B̃(3)[Aμ, Āμ, Ãμ], contains two terms 
more than his counterpart (21).

The above results lead to show that the Hamiltonian transgres-
sion is the difference between two Chern–Simons Hamiltonians 
term plus a boundary term. The boundary term appears due to 
contributions of the Legendre transformation on the triangular La-
grangian equation. This result together to a method, known as 
subspace separation method, allows to construct the Chern–Simons
Hamiltonian for an arbitrary Lie algebra.

3.3. (4 + 1)-dimensional case

In the (4 + 1)-dimensional case the action is given by

I(5)
T [A, Ā] = 3k

∫ 1∫
dt〈�F t F t〉. (24)
M 0
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Following the procedure of the above section we find

I(5)
T [A, Ā] = 3

4
k

∫
I×�

d5x

1∫
0

dtεμνρσλ〈θμF t
νρ F t

σλ〉, (25)

so that

L(5)
T [Aμ, Āμ] = 3

4
k

1∫
0

dtεμνρσλ〈θμF t
νρ F t

σλ〉. (26)

Splitting the gauge field in time and space components
Aμdxμ = Adx0 + Aidxi (i = 1,2,3,4), we find

L(5)
T [Aμ, Āμ]

= 3

4
k

1∫
0

dtε0i jkl〈θ0 F t
i j F t

kl − θi F t
0 j F t

kl + θi F t
j0 F t

kl − θi F t
jk F t

0l

+ θi F t
jk F t

l0〉

= k

1∫
0

dtε0i jkl gabc(
3

4
θa

0 (F t
i j)

b(F t
kl)

c + 3(At
0)

a Dt
iθ

b
j (F t

kl)
c

+ 3( Ȧt
i )

aθb
j (F t

kl)
c) + B(5)[Aμ, Āμ], (27)

where gabc = 〈Ta Tb Tc〉 and B(5)[Aμ, Āμ] = ∂i(−3k 
∫ 1

0 dtεi jkl gabc ×
(At

0)
aθb

j (F t
kl)

c) is a boundary term.

From (27) we can see that when Ā = 0 we obtain the 
5-dimensional Chern–Simons Lagrangian.

L(5)
T [Aμ,0] = kε0i jkl gabc(

3

4
Aa

0(F t
i j)

b(F t
kl)

c

+ Ȧi
a
(

Ab
j F c

kl −
1

4
f c
de Ab

j Ad
k Ae

l

)

= L(5)

ChS[Aμ]. (28)

Using the definition of Hamiltonian we find

H(5)
T [Aμ, Āμ] = −k

1∫
0

dtε0i jkl gabc

× [3

4
θa

0 (F t
i j)

b(F t
kl)

c + 3(At
0)

a Dt
iθ

b
j (F t

kl)
c]. (29)

From (29) we can see that when Ā = 0 we obtain the 
5-dimensional Chern–Simons Hamiltonian

H(5)
T [Aμ,0] = H(5)

ChS[Aμ]. (30)

3.4. Five-dimensional triangular equation

From (11) we have that the 5-dimensional triangular equation 
is given by

L(5)
T [Aμ, Āμ] = L(5)

ChS[Aμ] −L(5)

ChS[ Āμ] − κdQ (4)[Aμ, Āμ]. (31)

From (27) and (29) we can see that

L(5)
T [Aμ, Āμ] = P (5)[Ai, Āi, Ȧi,

˙̄Ai] −H(5)
T [Aμ, Āμ]

+ B(5)[Aμ, Āμ], (32)

where
P (5)[Ai, Āi, Ȧi,
˙̄Ai] = k

1∫
0

dtεi jkl gabc3( Ȧt
i )

aθb
j (F t

kl)
c, (33)

so that (31) takes the form

H(5)
T [Aμ, Āμ] = H(5)

ChS[Aμ] −H(5)

ChS[ Āμ] + P̃ (5)[Ai, Āi, Ȧi,
˙̄Ai]

+ B(5)[Aμ, Āμ], (34)

where

P̃ (5)[Ai, Āi, Ȧi,
˙̄Ai] = P (5)[Ai, Āi, Ȧi,

˙̄Ai] + P (5)[ Āi,
˙̄Ai]

− P (5)[Ai, Ȧi], (35)

and

B(5)[Aμ, Āμ] = B(5)[Aμ, Āμ] + B(5)[ Āμ] − B(5)[Aμ]
+ Q (5)[Aμ, Āμ], (36)

with Q (5)[Aμ, Āμ] = κdQ (4)[Aμ, Āμ].
From here we can see that the Eq. (34) is similar to Lagrangian

triangular equation except for the term, P̃ (5) , defined in equation 
(35). Since this term depends on the velocity and the Hamiltonian 
can not dependent on it, it is convenient to analyze the aforemen-
tioned term. In fact, from

P̃ (5)[Ai, Āi, Ȧi,
˙̄Ai] = ∂0[kεi jkl gabc( Āa

i Ab
j∂k Ac

l + Āa
i Ab

j∂k Āc
l

+ 1

4
f c
de Āa

i Ab
j Ād

k Āe
l + 1

4
f c
de Āa

i Ab
j Ad

k Ae
l )

+ 1

2
f c
de Āa

i Ab
j Ad

k Āe
l + 1

8
f c
de Āa

i Āb
j Ad

k Ae
l

− 1

8
f c
de Aa

i Ab
j Ād

k Āe
l )]

+ ∂i[kεi jkl gabc(
˙̄Aa

j Ab
k Ac

l − Ȧa
j Āb

k Ac
l )], (37)

we have that the triangular equation is given by

H(5)
T [Aμ, Āμ] = H(5)

ChS[Aμ] −H(5)

ChS[ Āμ] + B̃(5)[Aμ, Āμ], (38)

where B̃ contains (37).
This result together with a procedure, known as subspace sepa-

ration method, allows to construct the Chern–Simons Hamiltonian 
for the so(4, 2) and B5 Lie algebra.

3.5. (2n + 1)-dimensional case

The action for a (2n + 1)-dimensional transgression gauge field 
theory is given by

I(2n+1)
T [Aμ, Āμ] = (n + 1)k

∫
M

1∫
0

dt〈�Fn
t 〉. (39)

Following the same procedure of the above sections we find,

L(2n+1)
T [Aμ, Āμ] =

1∫
0

dt( Ȧt
i )

aLi
a − θa

0Ka − (At
0)

aNa

+ B(2n+1)[Aμ, Āμ], (40)

where
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Li
a = n(n + 1)

2n−1
kεi j1... j2n−1 gab1...bnθ

b1
j1

(F t
j2 j3

)b1 · · · (F t
j2n−2 j2n−1

)bn ,

(41)

Ka = − (n + 1)

2n
kεi j1... j2n−1 gab1...bn (F t

i j1
)b1 · · · (F t

j2n−2 j2n−1
)bn ,

(42)

Na = −n(n + 1)

2n−1
kεi j1... j2n−1 gab1...bn Dt

iθ
b1
j1

× (F t
j2 j3

)b2 · · · (F t
j2n−2 j2n−1

)bn , (43)

B(2n+1)[Aμ, Āμ] = ∂i(−3k

1∫
0

dtεi j1... j2n−1 gab1...bn ( Ȧt
0)

aθ
b1
j1

× (F t
j2 j3

)b1 · · · (F t
j2n−2 j2n−1

)bn , (44)

with εi j1... j2n−1 = ε0i j1... j2n−1 and gab1...bn = 〈Ta Tb1 · · · Tbn 〉. Using the 
definition of Hamiltonian we have

H(2n+1)
T [Aμ, Āμ] =

1∫
0

dt
(
θa

0Ka + (At
0)

aNa
)
. (45)

From (45) we can see that when Ā = 0 we find the (2n + 1)-
dimensional Chern–Simons Hamiltonian

H(2n+1)
CS [Aμ] = − k

2n
(n + 1)εi j1... j2n−1 gab1...bn Aa

0 F b1
i j1

· · · F bn
j2n−2 j2n−1

= H(2n+1)

ChS [Aμ]. (46)

I.e.,

H(2n+1)
T [Aμ,0] = H(2n+1)

ChS [Aμ]. (47)

3.6. The (2n + 1)-dimensional triangle equation

Following the procedure used in the above sections we have

L(2n+1)
T [Aμ, Āμ] = L(2n+1)

ChS [Aμ] −L(2n+1)

ChS [ Āμ]
− κdQ (2n)[Aμ, Āμ]. (48)

From (40) and (45) we have

L(2n+1)
T [Aμ, Āμ] = P (2n+1)[Ai, Āi, Ȧi,

˙̄Ai] −H(2n+1)
T [Aμ, Āμ]

+ B(2n+1)[Aμ, Āμ], (49)

where

P (2n+1)[Ai, Āi, Ȧi,
˙̄Ai] =

1∫
0

dt( Ȧt
i )

aLi
a, (50)

so that (48) takes the form

H(2n+1)
T [Aμ, Āμ] = H(2n+1)

ChS [Aμ] −H(2n+1)

ChS [ Āμ]
+ P̃ (2n+1)[Ai, Āi, Ȧi,

˙̄Ai]
+ B(2n+1)[Aμ, Āμ] (51)

where,

P̃ (2n+1)[Ai, Āi, Ȧi,
˙̄Ai] = P (2n+1)[Ai, Āi, Ȧi,

˙̄Ai]
+ P (2n+1)[ Āi,

˙̄Ai]
− P (2n+1)[Ai, Ȧi]. (52)
This term is a boundary term, so that the triangular equation is 
finally given by

H(2n+1)
T [Aμ, Āμ] = H(2n+1)

ChS [Aμ] −H(2n+1)

ChS [ Āμ]
+ B̃(2n+1)[Aμ, Āμ], (53)

where

B̃(2n+1[Aμ, Āμ] = B(2n+1)[Aμ, Āμ] + B(2n+1)[ Āμ] − B(2n+1)[Aμ]
+ Q (2n+1)[Aμ, Āμ] + P̃ (2n+1)[Aμ, Āμ], (54)

with

Q (2n+1)[Aμ, Āμ]

= κ∂λ

(
n(n + 1)

1∫
0

dt

t∫
0

dsελμνρ1...ρ2n gabc1...cn−1θ
a
μ Āb

ν

× (F st
ρ1ρ2

)c1 · · · (F st
ρ2n−1ρ2n

)cn−1

)
. (55)

4. Hamiltonian analysis for Einstein gravity and AdS 
Chern–Simons gravity

4.1. Hamiltonian for five-dimensional general relativity

The action for five-dimensional Einstein gravity is given by

I(5)
EHC[e,ω] =

∫
M

εabcde Rabecedee, (56)

where M is an orientable 5-dimensional manifold. If M has the 
topology I ×�, then M can be foliated in four-dimensional Cauchy 
surfaces along I ∈ R, i.e., to carry out a separation (4 + 1). Since 
ea = ea

μdxμ and Rab = 1
2 Rab

μνdxμdxν we have

I(5)
EHC[eμ,ωμ] =

∫
I

dt

∫
�

d4x
1

2
εμνσρλεabcde Rab

μνec
σ ed

ρee
λ, (57)

so that

L(5)
EHC[eμ,ωμ] = 1

2
εμνσρλεabcde Rab

μνec
σ ed

ρee
λ. (58)

This allow us split the fields in time and space components,

L(5)
EHC[eμ,ωμ] = 1

2
ε0i jklεabcde(Rab

0ie
c

je
d

kee
l − Rab

i0ec
je

d
kee

l

+ 3Rab
i je

c
0ed

kee
l)

= ε0i jklεabcde[ėa
i ω

bc
je

d
kee

l + 3ωab
0∂ie

c
je

d
kee

l

+ 2ωa
f 0ω

f b
ie

c
je

d
kee

l + 3

2
Rab

i je
c

0ed
kee

l]
− ∂i(ε

0i jklεabcdeω
ab

0ec
je

d
kee

l). (59)

Considering that

ε0i jkl T a
i j = ε0i jkl(2∂ie

a
j + 2ωa

f ie
f

j), (60)

we find

L(5)
EHC[eμ,ωμ] = ε0i jklεabcde[ėa

iω
bc

je
d

kee
l + 3

2
ωab

0T c
i je

d
kee

l

+ 3
Rab

i je
c

0ed
kee

l]. (61)

2
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A direct calculation allows us to obtain the Hamiltonian density 
for Einstein’s gravity

H(5)
EHC[eμ,ωμ] = −3

2
ε0i jklεabcde[ωab

0T c
i je

d
kee

l + Rab
i je

c
0ed

kee
l].

(62)

This means that (62) is the Hamiltonian for the five-dimensional 
general relativity in the first order formalism.

4.2. Hamiltonian for five-dimensional AdS Chern–Simons gravity

To construct the AdS Chern–Simons Hamiltonian we use the so 
called subspace separation method [20]. This procedure is based 
on the triangle equation (38), and embodies the following steps:

i) Identify the relevant subspaces present in the so(4, 2) algebra, 
i.e., write g = V 1 ⊕ V 2, where

V 1 → {Pa}, V 2 → { Jab}. (63)

ii) Write the connections as a sum of pieces valued on every sub-
space, i.e.,

Aμ = 1

l
ea

μ Pa + 1

2
ωab

μ Jab, (64)

Āμ = 1

2
ωab

μ Jab, (65)

Ã = 0. (66)

iii) The triangle equation (38) leads to

H(5)

ChS[Aμ] = H(5)
T [Aμ, Āμ] +H(5)

ChS[ Āμ] − B̃(5)[Aμ, Āμ]. (67)

To calculate the terms present in (67) we use the following in-
formation:

• The non-vanishing components of the invariant tensor for five-
dimensional AdS algebra are

〈 Jab Jcd Pe〉 = 4

3
εabcde.

• The connection At
μ and the tensors �μ and F t

μν are given by

�μ = 1

l
ea

μ Pa, (68)

At
μ = t

l
ea

μ Pa + 1

2
ωab

μ Jab, (69)

F t
μν = t

l
T a[μν] Pa +

(
1

2
Rab[μν] + t2

l2
ea[μea

ν]
)

Jab. (70)

These results allow us to calculate the Hamiltonian present in 
the triangle equation and therefore

H(AdS5)

ChS [eμ,ωμ]

= −kεi jklεabcde

(
1

4l
ea

0 Rbc
i j Rde

kl + 1

l3
ea

0 Rbc
i je

d
kee

l

+ 1

l5
ea

0eb
ie

c
je

d
kee

l + 1

2l
ωab

0 Rcd
i j T

e
kl + 1

l3
ωab

0T c
i je

d
kee

l

)
.

From this Hamiltonian it is apparent that neither the l → ∞
nor the l → 0 limit yields the Hamiltonian for general relativity.
5. Hamiltonian for five-dimensional Einstein–Chern–Simons
gravity

5.1. Lagrangian Einstein–Chern–Simons gravity

In Ref. [13] was shown that the standard, five-dimensional gen-
eral relativity can be obtained from Chern–Simons gravity theory 
for a certain Lie algebra B [13], whose generators { Jab, Pa, Zab, Za}
satisfy the commutation relations given in Eq. (7) of Ref. [14]. This 
algebra was obtained from the anti de Sitter (AdS) algebra and a 
particular semigroup S by means of the S-expansion procedure in-
troduced in Ref. [19].

The Chern–Simons Lagrangian for the B algebra, is built from 
the one-form gauge connection

A = 1

2
ωab Jab + 1

l
ea Pa + 1

2
kab Zab + 1

l
ha Za, (71)

and the two-form curvature

F = 1

2
Rab Jab + 1

l
T a Pa + 1

2

(
Dωkab + 1

l2
eaeb

)
Zab

+ 1

l

(
Dωha + ka

beb
)

Za. (72)

Following the dual procedure of S-expansion developed in 
Ref. [19] we find the five-dimensional Chern–Simons Lagrangian 
for the B algebra is given by

L(5)

EChS = α1l2εabcdeea Rbc Rde

+ α3εabcde

(
2

3
Rabecedee + 2l2kab Rcd T e + l2 Rab Rcdhe

)

+ dB(4)

EChS, (73)

where the surface term B(4)

EChS is given by

B(4)

EChS

= α1l2εabcdeeaωbc
(

2

3
dωde + 1

2
ωd

f ω
f e

)

+ α3εabcde

[
l2

(
haωbc + kabec

)(
2

3
dωde + 1

2
ωd

f ω
f e

)

+ l2kabωcd
(

2

3
dee + 1

2
ωd

f ee
)

+ 1

6
eaebecωde

]
,

(74)

and where α1, α3 are parameters of the theory, l is a coupling 
constant, Rab = dωab +ωa

cω
cb corresponds to the curvature 2-form 

in the first-order formalism related to the 1-form spin connection, 
and ea , ha and kab are others gauge fields presents in the theory.

The Lagrangian (73) shows that standard, five-dimensional Gen-
eral Relativity emerges as the l → 0 limit of a Chern–Simons the-
ory for the generalized Poincaré algebra B. Here l is a length scale, 
a coupling constant that characterizes different regimes within the 
theory.

5.2. Hamiltonian for Einstein–Chern–Simons gravity

Now we will find the Hamiltonian for Einstein–Chern–Simons
gravity, which is a Chern–Simons form for the so called B algebra. 
Following the procedure of the above subsection, we have:

i) The relevant subspace of the B algebra can be identify in the 
following form: g = V 1 ⊕ V 2 ⊕ V 3 ⊕ V 4, where

V 1 → {Pa}, V 2 → { Jab}, V 3 → {Za}, V 4 → {Zab}. (75)
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ii) The connections Aμ , Āμ , Ā1
μ , Ā2

μ and Ãμ are:

Aμ = 1

l
ea

μ Pa + 1

2
ωab

μ Jab + 1

l
ha

μ Za + 1

2
K ab

μ Zab, (76)

Ā1
μ = 1

l
ea

μ Pa + 1

2
ωab

μ Jab, (77)

Ā2
μ = 1

2
ωab

μ Jab, (78)

. Ãμ = 0. (79)

iii) So that the triangle equation leads to,

H(5)
CS [Aμ] = H(5)

T [Aμ, Ā1
μ] +H(5)

T [ Ā2
μ, Ãμ] +H(5)

T [ Ā1
μ, Ā2

μ]
− B̃(5)[Aμ, Āμ, Ā1

μ, Ā2]. (80)

To calculate the terms present in (80) we use the following in-
formation.

• The non-vanishing components of the invariant tensor for five-
dimensional B algebra are given by

〈 Jab Jcd Pe〉 = α1
4l3

3
εabcde, (81)

〈 Jab Jcd Ze〉 = α3
4l3

3
εabcde, (82)

〈 Jab Zcd Pe〉 = α3
4l3

3
εabcde. (83)

• The connection At
μ and the tensors �μ and F t

μν are given by

�μ(Aμ, Ā1
μ) = 1

l
ha

μ Za + 1

2
kab

μ Zab,

At
μ(Aμ, Ā1

μ) = 1

l
ea

μ Pa + 1

2
ωab

μ Jab

+ t

(
1

l
ha

μ Za + 1

2
kab

μ Zab

)
,

F t
μν(Aμ, Ā1

μ) = 1

l
T a[μν] Pa + 1

2
Rab[μν]

+ 2t

l

(
D[μha

ν] + ka
b[μeb

ν]
)

Za

+
(

t D[μkab
ν] + 1

l2
ea[μea

ν]
)

Zab,

�μ( Ā2
μ,0) = 1

2
ωab

μ Jab,

At
μ( Ā2

μ,0) = t

2
ωab

μ Jab,

F t
μν( Ā2

μ,0) = 1

2
∂[μωab

ν] Jab + t2

2
ωa

c [μωcb
ν] Jab,

�μ( Ā1
μ, Ā2

μ) = 1

l
ea

μ Pa,

At
μ( Ā1

μ, Ā2
μ) = t

l
ea

μ Pa + 1

2
ωab

μ Jab,

F t
μν( Ā1

μ, Ā2
μ) = t

l
T a[μν] Pa + 1

2
Rab[μν] Jab + t2

l2
ea[μeb

ν] Zab.

These results allow us to calculate the Hamiltonian present in 
the triangle equation and therefore,
H(B5)
CS [eμ,ωμ,hμ,kμ]

= −kε i jklεabcde

[
α1l2

4
(ea

0 Rbc
i j Rde

kl + 2ωab
0 Rcd

i j T
e

kl)

+ α3(ea
0 Rbc

i je
d

kee
l + ωab

0T c
i je

d
kee

l + l2ea
0 Rbc

i j Dkkde
l

+ l2ωab
0T c

i j Dkkde
l + l2ωab

0 Rcd
i j Dkhe

l + l2ωab
0 Rcd

i jk
e

f ke f
l

+ l2

2
kab

0 Rcd
i j T

e
kl + l2

2
ha

0 Rbc
i j Rde

kl)

]
. (84)

From (84) we can see that in the limit l → 0 we obtain the 
Hamiltonian for the five-dimensional general relativity in the first 
order formalism shown in (62),

H(B5)
CS [eμ,ωμ]
= −kα3ε

i jklεabcde[ea
0 Rbc

i je
d

kee
l + ωab

0T c
i je

d
kee

l]. (85)

Studies of the first order Hamiltonian formalism, for 4-dimen-
sional Einstein gravity can be found in Refs. [22,23], which coincide 
with (85) by reducing the dimension from five to four.

6. Concluding remarks

In this work the Hamiltonian analysis of the transgressions 
gauge fields theory was considered. The extended Cartan homo-
topy formula was reviewed and used to find the triangle equation 
in its Hamiltonian form.

The triangle equation leads to show that the Hamiltonian trans-
gression is the difference between two Chern–Simons Hamiltoni-
ans term plus a boundary term. The boundary term appears due 
to contributions of the Legendre transformation on the triangular 
Lagrangian equation.

This result together to a method, known as subspace separation 
method, allows to construct the Chern–Simons Hamiltonian for the 
so(4, 2) and B5 algebras.

Finally it was found that (i) from the Chern–Simons Hamilto-
nian for the so(4, 2) algebra it is apparent that neither the l → ∞
nor the l → 0 limit yields the Hamiltonian for general relativity. 
(ii) From the Chern–Simons Hamiltonian for the B5 algebra we 
can see that the Hamiltonian for five-dimensional general relativity 
may indeed emerge when the scale parameter l approaches zero.

Studies of the first order Hamiltonian formalism, for 4-dimen-
sional Einstein gravity can be found in Refs. [22,23], which coincide 
with (85) by reducing the dimension from five to four.

It could be interesting to find a connection between the re-
sults obtained in this work (first-order formalism) with those of 
Teitelboim and Zanelli found in Ref. [21] (second-order formalism). 
The standard second-order form could be obtained if the torsion 
equations are solved for the connection and eliminated in favor
of the vielbein. However, this is not possible in our case because 
the equations for ωab are not invertible for dimensions higher than 
four (for detail see Ref. [6]).
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