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We propose new ADHM-like methods to compute the Coulomb branch instanton partition functions of
5D and 6D supersymmetric gauge theories, with certain exceptional gauge groups or exceptional matters.
We study G2 theories with n7 ≤ 3 matters in 7 and SOð7Þ theories with n8 ≤ 4 matters in the spinor
representation 8. We also study the elliptic genera of self-dual instanton strings of 6D SCFTs with
exceptional gauge groups or matters, including all non-Higgsable atomic SCFTs with rank 2 or 3 tensor
branches. Some of them are tested with topological vertex calculus. We also explore a D-brane-based
method to study instanton particles of 5D SOð7Þ and SOð8Þ gauge theories with matters in spinor
representations, which further tests our ADHM-like proposals.
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I. INTRODUCTION

Instantons are semiclassical representations of nonper-
turbative quantum phenomena. In Yang-Mills gauge the-
ories, instantons given by self-dual gauge fields on R4 play
important roles in various contexts. For gauge theories in
higher dimensions, d > 4, they can be solitonic objects
rather than vacuum tunneling, being particles in 5D and
strings in 6D.
Self-dual Yang-Mills instanton solutions have continu-

ous parameters, which form a moduli space. Understanding
the moduli space dynamics is often an important step
toward better understanding the physics of instantons. For
gauge theories with classical gauge groups, the self-dual
solutions and the moduli space dynamics can be described
by the ADHM formalism [1]. The ADHM formalism
provides gauge theories on the world volume of instantons
(1D for particles, 2D for strings), which at low energy
reduce to the nonlinear sigma models on the instanton
moduli space. In string theory, such gauge theories come
from open fundamental strings between Dp-Dðpþ 4Þ

branes. This is why only classical gauge groups admit
such constructions. Including matters to gauge theories also
affects the moduli space dynamics of instantons. Open
strings can engineer matters in the fundamental or rank 2
product representations. This gives the notion of “classical
matters,” whose inclusion to the instanton moduli space
dynamics still admits ADHM description. But matters in
other representations, like higher rank product representa-
tions or spinor representations of SOðNÞ, cannot be
engineered using open strings. We shall call them “excep-
tional matters.”
Yang-Mills instantons also play crucial roles in super-

symmetric gauge theories. Among others, in 4d N ¼ 2
theories, the Seiberg-Witten solution [2] in the Coulomb
branch acquires all order multi-instanton contributions. It
can be microscopically derived by computing the instanton
partition function [3] on R4 with the so-called Omega
deformation. The uplifts of this partition function to 5D
N ¼ 1 gauge theories on R4 × S1, and to 6D N ¼ ð1; 0Þ
gauge theories on R4 × T2, are also important observables
of 5D/6D superconformal field theories (SCFTs). The
computation of this partition function in [3] relies on the
ADHMmethod, applicable only to classical gauge theories.
However, exceptional gauge theories are also important in
various situations. For instance, one often uses various
ðp; qÞ 7-branes wrapped on 2-cycles to engineer 6D N ¼
ð1; 0Þ SCFTs, which admit exceptional gauge groups and
matters rather generically.
In this paper, we develop ADHM-like formalisms of

instantons for a small class of exceptional gauge groups or
matters, which can be used to study the instanton partition
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functions in the Coulomb phase. Namely, we provide
1D/2D gauge theories which we suggest to describe certain
aspects of exceptional instanton particles and strings. We
managed to find such formalisms for G2 theories with
matter hypermultiplets in 7 and for SOð7Þ theories with
exceptional matters in the spinor representation 8. We also
expect their 0D reductions to describe exceptional instan-
tons of 4D gauge theories, although we do not study them
here. In 5D, we can describe G2 theories with n7 ≤ 3
matters in 7 and SOð7Þ instantons with n8 ≤ 4matters in 8.
In 6D, gauge anomaly cancelations restrict our setup to
n7 ¼ 1 and n8 ¼ 2.
Our constructions have the following features. The cor-

rect instanton moduli space has Gr isometry for gauge
group Gr of rank r. However, our gauge theories realize
the symmetry only in a subgroup Hr with same rank.
We always take Hr to be a classical group, say Hr ¼
SUðrþ 1Þ. The moduli space ofGr instantons contains that
of Hr ⊂ Gr instantons as a subspace. Our 1D/2D gauge
theories only realize the latter correctly. Away from this
subspace, only the dimensions of moduli space agree. So,
we do not expect that our gauge theories capture the full
moduli space dynamics of the exceptionalGr instantons. In
the Coulomb branch, the instanton size and the Gr gauge
orbit parts of the moduli space are lifted to a set of isolated
points (which are nondegenerate after Omega deforma-
tion). We propose that our gauge theories correctly compute
the Coulomb branch observables of Gr instantons. In fact,
the supersymmetry (SUSY) partition functions of our
models in the Coulomb branch exhibit full Gr symmetry.
More precisely, since we turn on r Coulomb vacuum
expectation values (VEVs), we find that the Weyl sym-
metry of Hr enhances to that of Gr. Since the UV gauge
theory flows to the nonlinear sigma model on the moduli
space, this is a kind of IR symmetry enhancement.
Our ADHM-like descriptions are found based on trials-

and-errors. We start fromHr classical ADHM construction,
and add more world volume matters and interactions to
suit the physics. In particular, they are motivated by [4],
where 2D gauge theories were found for the instanton
strings of non-Higgsable 6D SUð3Þ gauge theories.
Although SUð3Þ is a classical group, 6D non-Higgsable
SUð3Þ gauge theory cannot be engineered by using just
D-branes. Rather, it is engineered by using mutually
nonlocal 7-branes wrapping a 2-cycle, in precisely the
same way as engineering exceptional gauge theories.
Incidentally, the naive ADHM description for SUð3Þ
instantons is sick, by having 2D gauge anomalies. The
correct gauge theories for the SUð3Þ instanton strings were
found in [4]. Its reduction to 1D provides a novel alternative
ADHM-like description for SUð3Þ instantons. The ADHM-
like descriptions of this paper extend these results, related

by Higgsings SOð7Þ ⟶
VEV of 8

G2 ⟶
VEV of 7

SUð3Þ.
In 6D,G2 and SOð7Þ theories with matters are somewhat

important, as they appear in the “atomic” constituents of 6D

SCFTs [5,6].1 Roughly speaking, in the list of atomic 6D
SCFTs, there are nine of them with rank 1 tensor branches.
They are constructed by putting F-theory on an elliptic
Calabi-Yau threefold, whose base is given by theOð−nÞ →
P1 bundle with n ¼ 1; 2;…; 8; 12 [7–9]. Also, there are
three more atomic SCFTs with higher rank tensor branches
called “32,” “322,” and “232” [10]. Constructing more
complicated 6D SCFTs is basically forming “quivers” of
these atoms [5,6,10]. The last three atomic SCFTs with
higher rank tensor branches contain G2 × SUð2Þ or
SOð7Þ × SUð2Þ gauge symmetries with half-hypermultip-
lets in ð7; 2Þ or ð8; 2Þ, respectively. See Sec. IV for a
summary. Our descriptions of G2 and SOð7Þ instantons
allow us to study the instanton strings of such SCFTs.
Collecting recent studies and new findings of this paper,
one now has 2D gauge theory methods to study the strings
of the following 6D atomic SCFTs: Oð−1Þ theory [11,12],
Oð−2Þ theory [13], Oð−3Þ theory [4], Oð−4Þ theory [14],
and all three higher rank theories (this paper). Quivers of
these 2D theories are also explored in [4,12,13,15]. Among
others, these gauge theories can be used to study the
elliptic genera of the strings. These elliptic genera were
also studied using other approaches, including the topo-
logical vertex methods [16] and the modular bootstraplike
approach [17–20].
We test the BPS spectra of our ADHM-like models using

various alternative approaches. Among others, in Sec. III,
we develop a D-brane-based approach to study exceptional
instanton particles in 5D gauge theories. This approach is
applicable toG2 instantons, and SOð7Þ or SOð8Þ instantons
with matters in spinor representations. For G2 and SOð7Þ
cases, the Witten indices computed from this approach test
our ADHM-like proposals. Also, a 5D description for the
circle compactified 232 SCFT [10] has been found in [16],
using 5-brane webs. This allows us to compute the BPS
spectrum of its strings using topological vertices. We do
this calculus in Sec. IV and find agreement with our new
gauge theories.
We leave a small technical remark on SOð7Þ instantons.

The canonical ADHM description for k SOð7Þ instantons
(without matters in 8) is given by an SpðkÞ gauge theory. Its
partition function is given by a contour integral [21,22],
yielding a complicated residue sum. Unlike SUðNÞ instan-
ton partition functions, in which case closed form expres-
sions for the residue sums are known [3], such expressions
have been unknown for SOðNÞ. In this paper, using our
alternative ADHM-like description, we find a closed form
residue sum expression for SOð7Þ.
The rest of this paper is organized as follows. In Sec. II,

we sketch the basic ideas. We then present the ADHM-like

1There are closely related but slightly different notions in the
literature, such as atomic SCFTs, “minimal” SCFTs, non-Higgs-
able clusters, and so on. We are not very careful about the
distinctions here.
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descriptions of instantons for SOð7Þ theories with matters
in 8 and G2 theories with matters in 7. In Sec. III, we
explore alternative D-brane descriptions to study certain
exceptional instanton particles and use them to test our
proposals. In Sec. IV, we construct the 2D gauge theories
for the strings of 6D atomic SCFTs with rank 2 or 3 tensor
branches, with G2 × SUð2Þ, G2 × SUð2Þ × fg, SUð2Þ ×
SOð7Þ × SUð2Þ gauge groups. We test the last one with
topological vertices. Section V concludes with various
remarks.

II. EXCEPTIONAL INSTANTON
PARTITION FUNCTIONS

Our proposal is based on the following ideas: (1) we are
interested in the Coulomb phase partition functions of
exceptional instantons, not in the symmetric phase. (2) In
the Coulomb phase, the instanton moduli space is lifted by
massive parameters, to saddle points lying within the
moduli space of instantons with classical subgroups.
(3) Thus, we only seek for a formalism to study the
massive fluctuations around the last saddle points, accom-
plished by extending ADHM formalisms for classical
instantons. We elaborate on these ideas in some detail.
A. Coulomb phase.— We are interested in the gauge

theory in the Coulomb branch. Suppose that the gauge
group Gr has rank r. We turn on nonzero VEV v of the
scalar in the vector multiplet, which breaks Gr to Uð1Þr. In
6D, vector multiplet does not contain scalars. In this case,
we consider the theory compactified on circle, with non-
zero holonomy playing the role of Coulomb VEV. In the
symmetric phase, instantons develop a moduli space, part
of which being gauge orientations and instanton sizes. In

the Coulomb phase, there appears nonzero potential on the
instanton moduli space, proportional to v2. This potential
lifts the size and orientation 0-modes. There are extra 4k
position moduli of k instantons on R4, which will also be
lifted in the Omega background. The moduli space is then
completely lifted to points. So, we expect that it suffices to
understand the quantum dynamics of instantons near these
points.
B. ADHM on a subspace.— The second idea is that one

can use the ADHM formalism of instantons when Gr is a
classical group. In d-dimensional gauge theory, the ADHM
formalism can be understood as a (d − 4)-dimensional
gauge theory living on the instanton solitons. For classical
Gr, the low energy moduli space of (d − 4)-dimensional
gauge theory is the instanton moduli space, so one expects
in IR to get nonlinear sigma models on the instanton moduli
space. When Gr is exceptional, no such formalisms are
known. However, it is often possible to find a classical
subgroup Hr ⊂ Gr of the given exceptional group Gr with
same rank. Then, we try to describe the (massive) quantum
fluctuations around the saddle points by expanding the Hr
ADHM formalism, adding more (d − 4)-dimensional
fields. This is where we need educated guesses, in the
spirit of model buildings. We want a subgroup Hr with
same rank as Gr, partly because we wish our formalism to
see allUð1Þr in the Coulomb phase. PossibleGr andHr are
given in Table I, when Hr is a simple group. To study
exceptional matters of SOð7Þ, we shall also consider H ¼
SUð4Þ for G ¼ SOð7Þ.
For example, consider the case with Hr¼N−1 ¼ SUðNÞ.

The SUðNÞ ADHM description of k instantons has UðkÞ
gauge symmetry and the following fields:

Chiral∶ ðq;ψÞ ∈ ðk;NÞ; ðq̃; ψ̃Þ ∈ ðk̄;NÞ; ða;ΨÞ; ðã; Ψ̃Þ ∈ ðadj; 1Þ
Vector ∼ Fermi∶ ðAμ; λ0Þ ∈ ðadj; 1Þ; ðλÞ ∈ ðadj; 1Þ: ð2:1Þ

The fields are organized into 2D N ¼ ð0; 2Þ supermultip-
lets, and we have shown the representations in UðkÞ×
SUðNÞ. Fields in a parenthesis denote bosonic/fermionic
ones in a multiplet, while (λ) denotes a Fermi multiplet.

These fields combine to N ¼ ð0; 4Þ vector multiplet
and hypermultiplets. The instanton moduli space is ob-
tained from the scalar fields, subject to the complex
ADHM constraint and the D-term constraint (real ADHM
constraint),

qq̃þ ½a; ã� ¼ 0; qq† − q̃†q̃þ ½a; a†� þ ½ã; ã†� ¼ 0;

ð2:2Þ

and after modding out by the UðkÞ gauge orbit. More
precisely, the nonlinear sigma model on the instanton
moduli space is obtained from the gauged linear sigma
model at low energy. This part is the standard ADHM
construction of SUðNÞ instantons. Now we should add
extra light fields, including more scalars to describe Gr

TABLE I. Possible choices of Hr for various Gr, when Hr is a
simple group.

Gr Hr Branching rules

G2 SUð3Þ 14 → 8 ⊕ 3 ⊕ 3̄, 7 → 3 ⊕ 3̄þ 1
F4 SOð9Þ 52 → 36 ⊕ 16, 26 → 1 ⊕ 9 ⊕ 16
E7 SUð8Þ 133 → 63 ⊕ 70, 56 → 28 ⊕ 28
E8 SUð9Þ 248 → 80 ⊕ 84 ⊕ 84
E8 SOð16Þ 248 → 120 ⊕ 128

SOð7Þ SUð4Þ 21 → 15 ⊕ 6, 8 → 4 ⊕ 4̄
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instantons’ extra moduli. d-dimensional vector multiplet in
Gr decomposes in Hr as

adjðGÞ → adjðHÞ⨁
i
RiðHÞ; ð2:3Þ

where RiðHÞ are suitable representations of Hr in Table I.
Vector multiplet in adjðHÞ induces the standard instanton
moduli, described in UV by the above ADHM description.
Vector multiplets in Ri introduce further moduli, whose
real dimension is 4kTðRiÞ. TðRÞ is the Dynkin index ofR.
WhenRi is a fundamental representation or rank 2 product
representations, we managed to find the extra fields. We are
technically motivated by the mathematical constructions of
[23], but will simply present them as our “ansatz” for the
UVuplift of these zero modes. From Table I, one finds that
Ri’s are product representations with ranks less than or
equal to 2 only for G2 ⊃ SUð3Þ and SOð7Þ ⊃ SUð4Þ. For
these, the adjoint representations of Gr decompose as

SUð3Þ ⊂G2∶ 14→ 8⊕ 3⊕ 3̄¼ 8⊕ 3⊕ antið3⊗ 3Þ
SUð4Þ ⊂ SOð7Þ∶ 21→ 15⊕ 6: ð2:4Þ

We shall present extra chiral and Fermi multiplets with
suitable interactions in the next subsections, which extends
the moduli space in

P
i 4kTðRiÞ new directions.

C. When it fails.— We made similar trials with other
exceptional gauge groups and matters, which failed. It may
be worthwhile to briefly report the reasons of failure. A
typical reason is that the UV theory has extra branch of
moduli space that does not belong to our instanton moduli
space at low energy. Namely, apart from the exceptional
instanton’s moduli space, one sometimes has extra branch
which cannot be lifted by supersymmetric potentials.
For instance, we tried to extend the ADHM construction

of H ¼ SUð8Þ; SUð9Þ to get those for G ¼ E7; E8. In these
cases, Ri’s are product representations of rank 4 and 3,
respectively. We made several trials to realize the extra
moduli with right dimensions, especially without unwanted
extra branches of moduli space which may spoil the
instanton calculus. We however failed to get the precise
descriptions, despite finding models which partly exhibit
the right physics of instantons and instanton strings. See
Sec. V for more discussions.
We also suspect that some choice of Hr ⊂ Gr may

miss certain small instanton saddle points. To clearly
understand this issue, we should find more examples than
we have now.
There are simpler examples in which our new formalism

fails. For instance, we consider our alternative SOð7Þ
ADHM (Sec. II A) and try to add zero modes from matters
in 7 (vector representation). Zero modes of 7 are well
known in the standard SOðNÞ ADHM, which form an
SpðkÞ fundamental Fermi multiplet. In our SUð4Þ ×UðkÞ
formalism, 7 is regarded as 7 → 6þ 1. We can ignore the

singlet if the gauge orientation of instantons is along
SUð4Þ. 6 is the rank 2 antisymmetric representation.
According to [23], and in D-brane engineerings, the
ADHM fields induced by matters in bulk antisymmetric
representation include scalars in rank 2 symmetric repre-
sentation of UðkÞ. This creates an extra branch of moduli
space which is unphysical in the instanton calculus, but is
present only in the UV uplifts. Even in ADHM models
engineered by string theory, there are often such extra
branches. In [22], the contributions from these branches are
factored out, mainly guided by string theory. However,
including this extra branch in our SOð7Þ ADHM-like
model, we find it difficult to properly identify and separate
the extra contributions. Similarly, we cannot do an ADHM-
like calculus for the 5D G2 N ¼ 1� theory.
Now, we explain examples that turn out to work.

A. SOð7Þ instantons and matters in 8

The adjoint representation of SOð7Þ decomposes in
SUð4Þ as 21 → 15þ 6. We first seek for an alternative
ADHM-like formalism of pure SOð7Þ instantons, extend-
ing SUð4Þ ADHM. We explain it as the quantum mechan-
ics of instanton particles in 5D N ¼ 1 Yang-Mills theory.
The quantum mechanics for k SUð4Þ instantons has

UðkÞ gauge symmetry. It has following fields: N ¼ ð0; 4Þ
UðkÞ vector multiplet, consisting of 1D reduction of 2D
gauge fields Aμ ¼ ðA0;φ ¼ A1Þ, and fermions λ0; λ; hyper-
multiplets with bosonic fields qi; q̃i in ðk; 4̄Þ þ ðk̄; 4Þ,
where i ¼ 1, 2, 3, 4; hypermultiplets with bosonic fields
a; ã in ðadj; 1Þ. In IR, one imposes

D ∼ qq† − q̃†q̃þ ½a; a†� þ ½ã; ã†� ¼ 0;

Jλ ∼ qq̃þ ½a; ã� ¼ 0 ð2:5Þ

by D-term or J-term potentials in theN ¼ ð0; 2Þ language.
See [4,24,25] for the notations and reviews. These con-
straints and modding out byUðkÞ gauge orbit eliminate 2k2

complex variables from 2k2 þ 8k components of q; q̃; a; ã.
So, one finds 8k complex moduli.
With extra vector multiplet fields in 6, there are extra

bosonic zero modes. A vector multiplet in rank 2 anti-
symmetric representation of SUðNÞ induces 2kTðanti2Þ ¼
kðN − 2Þ complex bosonic zero modes in k instanton
background. So, we should add extra fields in UV and
modify interactions, to get extra 2k complex bosonic modes
at N ¼ 4. We find that the following extra fields, taking the
forms of N ¼ ð0; 2Þ chiral or Fermi multiplets, yield the
right physics2 (only bosonic fields shown for the chiral
multiplets):

2Our motivation behind introducing this ansatz for the UV
theory is described below (2.2). All involved technical steps in
identifying extra zero modes are summarized in the Appendix.
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Chiral ϕi∶ ðk̄; 4̄ÞJ¼1
2

Chiral b; b̃∶ ðanti2; 1ÞJ¼1
2

Fermi λ̂∶ ðsym2; 1ÞJ¼0

Fermi λ̌∶ ðsym2; 1ÞJ¼−1: ð2:6Þ

sym2, anti2 denote rank 2 (anti)symmetric representations
of k, and the charge J in the subscript will be explained
shortly. We introduced extra 4kþ 2 · k

2−k
2

complex bosonic
fields. Using the extra Fermi fields λ̂, λ̌, we introduce the
following interactions. As noted in [4], the desired inter-
actions should be nonholomorphic in the chiral multiplet
fields, which is possible only with N ¼ ð0; 1Þ SUSY.
Therefore, we regard all these fields as (0,1) superfields,
as explained in [4], and turn on the following N ¼ ð0; 1Þ
superpotential:

Jð0;1Þ
λ̂

∼ ðϕiqi†ÞS þ ðba† þ b̃ã†ÞS;
Jð0;1Þ
λ̌

∼ ðϕiq̃iÞS þ ðb̃a − bãÞS: ð2:7Þ

The subscripts S denote symmetrization of the k × k
matrices. We want (2.7) to be the only source of breaking
(0,2) SUSY to (0,1) in the classical action. The D-term is
given by

D ∼ qq† − q̃†q̃ − ϕ†ϕþ ½a; a†� þ ½ã; ã†� − 2b†b − 2b̃†b̃:

ð2:8Þ

Then, since jJj2 appear in the bosonic potential for each J,
one imposes at low energy extra k2 þ k complex con-
straints from the new superpotentials. Collecting all, one
finds

3 ·4kþ2 ·k2þ2 ·
k2−k
2

−2k2−2 ·
k2þk
2

¼ 10k ð2:9Þ

complex bosonic zero modes. This agrees with the dimen-
sion 2kc2 of SOð7Þ instanton moduli space, where
c2ðSOð2N þ 1ÞÞ ¼ 2N − 1. The SUð4Þ ADHM quantum
mechanics with extra charged fields given by (2.6) is our
proposed ADHM-like formalism for SOð7Þ instantons.
We explain the symmetries of this model. All symmetries

we explain below are compatible with the superpotentials.
It first has SUð4Þ symmetry. There is also a Uð1ÞJ
symmetry, whose charges J we already listed above when
we introduced fields. There is also SUð2Þl, which rotates
a; ã and also b; b̃ as doublets. The charges and representa-
tions are summarized in Table II. This system has only
N ¼ ð0; 1Þ supersymmetry and SUð4Þ global symmetry in
UV. We assert that they enhance to (0,4) SUSY and SOð7Þ
in IR, when we compute the Coulomb branch partition
functions. SOð7Þ enhancement will be visible as SOð7Þ
character expansions of the partition functions. In the

context of SUSY enhancement, we claim that Uð1ÞJ
enhances to SUð2Þr × SUð2ÞR, where SOð4Þ ¼ SUð2Þr ×
SUð2Þl rotates the spatial R4 on which particles can move,
and SUð2ÞR is the 5D R-symmetry. J is identified as
J ¼ JrþJR

2
, where Jr, JR are the Cartans of SUð2Þr, SUð2ÞR.

One Cartan is not visible in UV. The index of our models
will agree with different computations whose settings
manifestly preserve (0,4) SUSY.
We study the moduli space, with and without 5D

Coulomb VEV. For technical reasons, let us just consider
the case with k ¼ 1. At k ¼ 1, the fields b; b̃ are absent, and
a; ã are free fields for the center-of-mass motion. First,
consider the symmetric phase at v ¼ 0. One should solve
the following equations:

jqij2 − jq̃ij2 − jϕij2 ¼ 0; qiq̃i ¼ 0;

ϕ†iqi ¼ 0; q̃iϕi ¼ 0: ð2:10Þ

At ϕi ¼ 0, this is the equation for the SUð4Þ instantons.
This subspace is the cone over SUð4Þ=Uð2Þ. Away from
ϕi ¼ 0, although the dimension of the moduli space is same
as the relative moduli space of an SOð7Þ instanton, the two
moduli spaces are different. The proper SOð7Þ instanton
moduli space is the cone over the SOð7Þ=ðSUð2Þ × SOð3ÞÞ
coset, whose metric is given by the homogeneous metric.
However, we find no SOð7Þ isometry on our moduli space.
In the Coulomb branch and with the Omega defor-

mation, the moduli space lifts to isolated points, on the
SUð4Þ ⊂ SOð7Þ instanton moduli space. To see this, we
expand the studies of [26]. The Coulomb VEV vi
(i ¼ 1;…; 4) satisfying

P
i vi ¼ 0 couples to the 1D fields

as follows. Let us denote by φ≡ A1 the scalar in the 1D
vector multiplet. v is a traceless diagonal matrix, with
eigenvalues vi. Nonzero v changes the coupling to φ as
follows:

jφqj2 þ jq̃φj2 þ jϕφj2
→ jφq − qvj2 þ jvq̃ − q̃φj2 þ jvϕþ ϕφj2: ð2:11Þ

This is because φ, v are scalars in the 1D vector multiplet of
UðkÞ × SUð4Þ, where v is a background field, and fields

TABLE II. Charges/representations of fields in our SOð7Þ
ADHM-like model.

Fields UðkÞ SUð4Þ Uð1ÞJ SUð2Þl
ðqi; q̃iÞ ðk; k̄Þ ð4̄; 4Þ 1

2
1

ða; ãÞ adj 1 1
2

2
ðλ0; λÞ adj 1 ð0;−1Þ 1

ϕi k̄ 4̄ 1
2

1

ðb; b̃Þ anti2 1 1
2

2

ðλ̂; λ̌Þ sym2 1 ð0;−1Þ 1
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couple to them according to their representations in
UðkÞ × SUð4Þ. Note that the relative − signs for q; q̃
appear because they are in the bifundamental representa-
tions ðk; 4̄Þ or its conjugate, while relative þ sign for ϕ is
because it is in ðk̄; 4̄Þ. We set all complete square terms to
zero at energies lower than 1D gauge coupling. One should
also minimize the following D-term potential at k ¼ 1:

V ← ðjqj2 − jq̃j2 − jϕj2 − ξÞ2: ð2:12Þ

Here, since we have a UðkÞ gauge theory, we have turned
on a Fayet-Iliopoulos (FI) parameter, ξ, which we take to be
positive ξ > 0 for convenience. ξ can also be taken to be
negative, without changing the Coulomb phase partition
function, as we shall see below. However, physics is easier
to interpret with ξ > 0. So we set (at k ¼ 1)

viqi ¼ φqi; viq̃i ¼ φq̃i; viϕi ¼ −φϕi; ð2:13Þ

where i ¼ 1, 2, 3, 4 indices are not summed over, and

jqij2 − jq̃ij2 − jϕij2 ¼ ξ > 0: ð2:14Þ

Equation (2.13) is not eigenvector equation for the matrix
v, whose eigenvalues are φ for q; q̃ to be nonzero, and −φ
for ϕ to be nonzero. From (2.14), one should have qi ≠ 0,
which means that φ is set equal to one of the vi’s. Then one
can have nonzero qi at the saddle point, whose value is
tuned to meet (2.14). At generic values of vi ’s, one should
set ϕi ¼ 0, meaning that we are forced to stay in the SUð4Þ
instanton moduli space.3 So, in the Coulomb branch
calculus, ϕ provides massive degrees of freedom living
on the SUð4Þ instanton moduli space.
The Witten index of the quantum mechanics preserving

(0,4) SUSY is defined by

Zkðϵ1;2; viÞ ¼ Trk½ð−1ÞFe−ϵ1ðJ1þJRÞe−ϵ2ðJ2þJRÞe−viqie−maFa �;
ð2:15Þ

where trace is over states in the k instanton sector. J1, J2 are
the two Cartans of SOð4Þwhich rotate the spatialR4, where
they rotate mutually orthogonalR2 factors. They are related
to Jl;r by Jr ¼ J1þJ2

2
, Jl ¼ J1−J2

2
. JR is the Cartan of SUð2ÞR

coming from the 5D R-symmetry. Note that only the
combination Jr þ JR ¼ 2J appears, so our UV model
can fully detect them. qi are the r electric charges in
Uð1Þr ⊂ Gr, which is SOð7Þ here. Fa denote other flavor
symmetries, which is absent now but introduced for later
purpose. The measures are chosen to commute with two

Hermitian supercharges QA _α ¼ Qþ _−; Q− _þ. See, e.g., [22]
for the notations. These two supercharges are mutually
Hermitian conjugate, which wewrite asQ;Q†. They form a
pair of fermionic oscillators, pairing a set of bosonic and
fermionic states. Such a pair of states is not counted in the
index, as their contributions cancel due to the factor ð−1ÞF.
Such a Hilbert space interpretation will hold with as little as
(0,2) SUSY. In our UV (0,1) system, we abstractly interpret
the partition function as a SUSY path integral of the
Euclidean quantum field theory (QFT) on T2. 1
Hermitian SUSY in UV is enough to derive the formula
for Zk available in the literatures. Its path integral should
agree well with the index (2.15), possibly up to an overall
prefactor.
For gauge theories, this index can be evaluated by a

residue sum [22,27,28] (see also [29,30]). Note that [31]
also discussed the diagrammatic classification of Jeffrey-
Kirwan (JK)-residues (Res) in the 4D version of the SO
gauge theory. The formula was discussed in the context of
(0,2) theories, but it applies with one Hermitian super-
charge as well [4]. In our model, the contour integral takes
the following form4:

Zk ¼
1

k!

I Yk
I¼1

dϕI

2πi

·

Q
I≠J2 sinh

ϕIJ
2
·
Q

I;J2 sinh
2ϵþ−ϕIJ

2Q
k
I¼1

Q
4
i¼1 2 sinh

ϵþ�ðϕI−viÞ
2

·
Q

I;J2 sinh
ϵ1;2þϕIJ

2

×

Q
I≤Jð2 sinh ϕIþϕJ

2
· 2 sinh ϕIþϕJ−2ϵþ

2
ÞQ

I

Q
i 2 sinh

ϵþ−ϕI−vi
2

·
Q

I<J2 sinh
ϵ1;2−ϕI−ϕJ

2

:

ð2:16Þ

Here, ϕIJ ≡ ϕI − ϕJ, and 2 sinh factors with repeated signs
or subscripts (like � or ϵ1;2) are all multiplied. The SUð4Þ
chemical potentials satisfy

P
4
i¼1 vi ¼ 0. We also used

ϵ� ≡ ϵ1�ϵ2
2

. The integrand on the first line comes from
the SUð4Þ ADHM fields q; q̃; a; ã and UðkÞ vector multi-
plet fermions. The second line comes from the extra fields.
The integral can be performed as follows. The nonzero

residue contributing to Zk is called the JK-residue. To
define this, one first picks up an auxiliary vector η in the k-
dimensional charge space (“conjugate” to the integral
variables ϕI). Possible poles in the integrand are given
by hyperplanes of the form ρα · ϕþ � � � ¼ 0, where the
expression on the left-hand side comes from the argument
of the sinh factors 2 sinh ρα·ϕþ���

2
in the denominator of

(2.16). One can in general pick dð≥ kÞ charge vectors ρα,
α ¼ 1;…; d and hyperplanes to specify a pole. In our
systems, all relevant poles satisfy d ¼ k. With chosen η, JK-

3At this stage, q̃i can also be nonzero by solving the same
eigenvector equation as qi. However, as shown in the Appendix
of [26], the eigenvector equations for qi and q̃i become different
with nonzero Omega background parameter. Therefore, in the
fully Omega-deformed background, only qi is nonzero.

4The overall signs of Zk are fixed by requiring agreement with
the index for the SpðkÞ ADHM theory [21].
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Res may be nonzero only if η is spanned by the k charge
vectors ρ1; ρ2;…; ρk with positive coefficients. Here, the
choice η ¼ ð1;…; 1Þ simplifies the evaluation [22]. Since
the charges appearing in the denominator of the second line
are all negative in (2.16), one can show (combined with the
fact that charges on the first line take the form of eI or
eI − eJ) that JK-Res should always be zero by definition if
one of the charges from the second line is chosen in ρα. This
implies that the poles with nonzero residues are always
chosen from the first line only, which are already classified
in [3,22,32,33]. The pole locations for ϕI are classified by
the colored Young diagrams with k boxes, meaning a
collection of four Young diagrams Y ¼ ðY1;…; Y4Þ whose
box numbers sum to k. Let us denote by s ¼ ðm; nÞ the box
of a Young diagram Yi, which is the box on the m’th row

and n’th column of Yi. s running over possible k boxes
replaces I ¼ 1;…; k index of ϕI. We specify the pole
location associated with Y as ϕðsÞ. The result is
[3,22,32,33]

ϕðsÞ ¼ vi − ϵþ − ðn − 1Þϵ1 − ðm − 1Þϵ2;
s ¼ ðm; nÞ ∈ Yi ði ¼ 1;…; 4Þ: ð2:17Þ

(This corrects a typo in [22], exchanging m ↔ n.) Had
there been only the first line in (2.16), the residues were
computed in [22,32,33]. Plugging in ϕðsÞ into the second
line of (2.16), one obtains an extra factor for each residue.
The residue sum is given by

Zk ¼
X

Y⃗;jY⃗j¼k

Y4
i¼1

Y
s∈Yi

2 sinhðϕðsÞÞ · 2 sinhðϕðsÞ − ϵþÞQ
4
j¼1 2 sinh

EijðsÞ
2

· 2 sinh EijðsÞ−2ϵþ
2

· 2 sinh ϵþ−ϕðsÞ−vj
2

×
Y4
i≤j

Y
si;j∈Yi;j;si<sj

2 sinh ϕðsiÞþϕðsjÞ
2

· 2 sinh ϕðsiÞþϕðsjÞ−2ϵþ
2

2 sinh ϵ1;2−ϕðsiÞ−ϕðsjÞ
2

; ð2:18Þ

where

EijðsÞ ¼ vi − vj − ϵ1hiðsÞ þ ϵ2ðvjðsÞ þ 1Þ: ð2:19Þ

Here and below, si < sj means (i < j) or (i ¼ j and
mi < mj) or (i ¼ j and mi ¼ mj and ni < nj). hiðsÞ
denotes the distance from s to the right end of the dia-
gram Yi by moving right. vjðsÞ denotes the distance from s
to the bottom of the diagram Yj by moving down. See, e.g.,
[26]. Equation (2.18) is our proposal for the partition
function of k SOð7Þ instantons. This is quite novel for
the following reason. SOð7Þ instantons have standard

ADHM formulation, using SpðkÞ gauge theories for k
instantons. The pole classification is unknown for the
SpðkÞ index. On the other hand, (2.18) is an explicit
formula.
Before adding matters in 8, we first check that (2.18) is

indeed the correct SOð7Þ instanton partition function. We
checked the equivalence of (2.16), or (2.18), and the index
of SpðkÞADHM gauge theory [21,22], up to k ≤ 3 (turning
off all chemical potentials except ϵþ at k ¼ 3). Here we
explain the case with k ¼ 1 in detail, which is already
nontrivial. For the purpose of illustration, we directly start
from the contour integral. At k ¼ 1, one finds

�
2 sinh

ϵ1;2
2

�
Z1 ¼

I
dϕ

2 sinh ϵþQ
4
i¼1 2 sinh

ϵþ�ðϕ−viÞ
2

·
2 sinhϕ · 2 sinhðϕ − ϵþÞQ

4
i¼1 2 sinh

ϵþ−ϕ−vi
2

ð2:20Þ

from our model. Taking the residues at ϕ ¼ vi − ϵ, for η > 0, one finds

�
2 sinh

ϵ1;2
2

�
Z1 ¼

X4
i¼1

1Q
jð≠iÞ2 sinh

vij
2
· 2 sinh 2ϵþ−vij

2

·
2 sinhð2ϵþ − viÞQ
jð≠iÞ2 sinh

2ϵþ−vi−vj
2

: ð2:21Þ

This is a special case of (2.18). To check this result is correct, we study the SOð7Þ single instanton partition function
obtained from the standard Spð1Þ ADHM formalism [21,22],�

2 sinh
ϵ1;2
2

�
Zstandard
1 ¼ 1

2

I
dϕ

2 sinh ϵþ · 2 sinhðϵþ � ϕÞ · 2 sinhð�ϕÞQ
3
a¼1 2 sinh

ϵþ�ϕ�ua
2

· 2 sinh ϵþ�ϕ
2

: ð2:22Þ

Residues are taken at ϕ ¼ �ua − ϵþ and −ϵþ for η > 0, but the last residue is 0. ua and vi are related by
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v1 ¼
u1 þ u2 þ u3

2
; v2 ¼

u1 − u2 − u3
2

; v3 ¼
−u1 þ u2 − u3

2
; v4 ¼

−u1 − u2 þ u3
2

: ð2:23Þ

The residue sum is given by

�
2 sinh

ϵ1;2
2

�
Zstandard
1 ¼ 1

2

X3
a¼1

X
s¼�

2 cosh sua
2
· 2 cosh 2ϵþ−sua

2
· 2 sinhð�ðsua − ϵþÞÞ

2 sinhðsuaÞ · 2 sinhðϵþ − suaÞ
Q

bð≠aÞ2 sinh
sua�ub

2
· 2 sinh 2ϵþ−sua�ub

2

: ð2:24Þ

Despite very different looks, one can show (say, by using
computer) that

Z1ðviÞ ¼ Zstandard
1 ðuaÞ ð2:25Þ

after the identification (2.23). This identity and similar ones
at higher k’s imply that Zk exhibits SUð4Þ → SOð7Þ
enhancement, since Zstandard

k has manifest SOð7Þ Weyl
symmetry.
Now we discuss the inclusion of ADHM fields coming

from the hypermultiplet matters in 8. We continue to
study the instanton particles of 5D SYM. 8 decomposes
in SUð4Þ as

8 → 4þ 4̄: ð2:26Þ

In the original ADHM formalism of SOð7Þ instantons, it is
unclear how to UVuplift the fermion zero modes caused by
these hypermultiplets in the instanton background. One
may even feel it impossible, since the standard SOð7Þ
ADHM cannot see 4π rotations in Spinð7Þ. However,
viewing it as SUð4Þ instantons with certain extensions,
each hypermultiplet in 4 (or 4̄) induces a Fermi multiplet
which is fundamental (or antifundamental) in UðkÞ. So, in
our new description, we naturally guess that the effect of n8
hypermultiplets is adding n8 pairs of Fermi multiplets of
the following form:

Ψa; Ψ̃a∶ ðk; 1Þ þ ðk̄; 1Þ ða ¼ 1;…; n8Þ: ð2:27Þ

It has been known [34] that the 5D SOð7Þ SYM has a
UV completion to a 5D SCFT for n8 ≤ 4. Recently, it
was discussed that 5D SCFTs can exist till n8 ≤ 6 [35]. See
also [36]. Our construction provides good descriptions of
instantons for n8 ≤ 4. It will be easiest to explain this point
after we discuss the index below. The flavor symmetry for
Ψa; Ψ̃a may naively appear to be Uð2n8Þ. This is because
we do not have any superpotential for these Fermi fields.
They interact with other fields through gauge coupling
only, so that one can rotate Ψa; Ψ̃†

a with Uð2n8Þ. However,
these fermions can couple to 5D background bulk fields,
including the hypermultiplet fields in 8. (Even in ADHM
models based on D-brane engineerings, it sometimes
happens that the soliton quantum mechanics is ignorant

on the bulk symmetry, in a similar manner.) These
couplings will only preserve Uðn8Þ ⊂ Spðn8Þ. See the
beginning of the next subsection for this coupling to the
bulk fields.
Adding these fermions, our ADHM-like description can

be easily generalized. Namely, the extra Fermi fields are
given standard kinetic term, whose derivatives are cova-
riantized with 1D UðkÞ vector multiplet fields. Its Witten
index Zn8

k ðϵ1;2; vi; maÞ with a ¼ 1;…; n8 is defined with
extra factors e−maFa inserted in its definition, where Fa are
the Cartans of Spðn8Þ. The contour integral expression for
the Witten index takes the form of (2.16), with the
following extra integrand multiplied for the new Fermi
fields:

Yn8
a¼1

Yk
I¼1

2 sinh
ma þ ϕI

2
· 2 sinh

ma − ϕI

2
: ð2:28Þ

The extra factor (2.28) does not create new poles at finite ϕ,
but may create new poles at infinity ϕI → �∞. We first
discuss the last possibility.
Here, first note that ϕI originates from the eigenvalues

of the 1D UðkÞ vector multiplet fields, ϕ≡ φþ iAτ, where
Aτ is the vector potential on the Euclidean time. The
contour integrand Zone-loop comes from one-loop path
integral of 1D fields in the background of constant ϕI .
So VðϕÞ ∼ − logZone-loop is the one-loop potential energy
for ϕI. Before multiplying (2.28), the integrand of (2.16)
converges to zero at jϕIj → ∞ for any I, since there are
more bosonic fields than fermionic fields. More concretely,
consider the case with k ¼ 1. One obtains Zn8¼0

one-loop ∼ e−4jϕj,
implying that the linear potential VðϕÞ ¼ 4jϕj confines the
eigenvalues to ϕ ¼ 0. In other words, although ϕ classi-
cally develops a continuum to ϕ → �∞, one-loop effect
lifts this continuum by an attractive force. In ADHM
models with brane engineering, this can be visualized as
the instantons being attracted to the locations of 5D SCFTs
[22]. The UðkÞ vector multiplet fields are clearly extra
degrees of freedom that enter while making a UV com-
pletion of the nonlinear sigma model. If there is a
continuum created by ϕ, this represents states that do
not belong to 5D QFT. The confinement from VðϕÞ ¼ 4jϕj
signals that such obvious extra states may not be present in
the quantum system.
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Now, we extend these studies to n8 > 0. At k ¼ 1, one
obtains VðϕÞ ¼ ð4 − n8Þjϕj. So at n8 ≤ 3, the quantum
potential still confines the instanton. At n8 ¼ 4, ϕ generates
a flat direction. This branch has extra states which is an
artifact of UV completion, not belonging to the 5D QFT
Hilbert space. So strictly speaking, n8 ≤ 3 is the bound in
which our ADHM-like model is reliable. Fortunately, there
are well-developed empirical ways of factoring out such
extra states’ contribution to the index. So we believe that
our approach will be useful till n8 ¼ 4. At n8 ≥ 5, the
quantum potential is repulsive, and it is not clear whether

one can use this theory to study 5D QFT at all. (However,
see [37] for some progress.) In the contour integral like
(2.16) or its extension with (2.28), the absence of con-
tinuum means the absence of poles at infinity. This implies
that the choice of η in the JK-residue evaluation does not
change the final result [22,27]. This is the case for n8 ≤ 3.
For n8 ≤ 3, the pole classification that we explained

earlier for pure SOð7Þ instantons still holds, labeled by
SUð4Þ colored young diagrams. We only need to multiply
the value of (2.28) at the pole to the residue. The resulting
index is given by

Zk ¼
X

Y⃗;jY⃗j¼k

Y4
i¼1

Y
s∈Yi

2 sinhðϕðsÞÞ · 2 sinhðϕðsÞ − ϵþÞQ
4
j¼1 2 sinh

EijðsÞ
2

· 2 sinh EijðsÞ−2ϵþ
2

· 2 sinh ϵþ−ϕðsÞ−vj
2

×
Y4
i≤j

Y
si;j∈Yi;j;si<sj

2 sinh ϕðsiÞþϕðsjÞ
2

· 2 sinh ϕðsiÞþϕðsjÞ−2ϵþ
2

2 sinh ϵ1;2−ϕðsiÞ−ϕðsjÞ
2

·
Y4
i¼1

Y
s∈Yi

Yn8
a¼1

2 sinh
ma � ϕðsÞ

2
: ð2:29Þ

The partition functions (2.29) will be tested in Secs. III and IVat n8 ¼ 1, 2 using alternative descriptions, which include no
guess works but are more elaborate in calculations. For instance, the indices at k ¼ 1 divided by the center-of-mass factor
Ẑ1 ≡ ð2 sinh ϵ1;2

2
ÞZ1 are given by

Ẑn8¼1
1 ¼

Y
i<j

t2

ð1 − t2b�i b
�
j Þ

½χSpð1Þ2 f0ðvÞ þ f1ðvÞ�; ð2:30Þ

Ẑn8¼2
1 ¼

Y
i<j

t2

ð1 − t2b�i b
�
j Þ

½χSpð1Þ5 f0ðvÞ þ χSpð2Þ4 f1ðvÞ þ f2ðvÞ�; ð2:31Þ

Ẑn8¼3
1 ¼

Y
i<j

t2

ð1 − t2b�i b
�
j Þ

½χSpð3Þ140 f0ðvÞ þ χSpð3Þ14 f1ðvÞ þ χSpð3Þ6 f2ðvÞ þ f3ðvÞ�; ð2:32Þ

where

f0ðvÞ ¼ χSUð2Þ
9 þ χSUð2Þ

7 ðχSOð7Þ
7 þ 1Þ þ χSUð2Þ

5 ð−χSOð7Þ
35 þ χSOð7Þ

7 þ 1Þ
þ χSUð2Þ

3 ð−χSOð7Þ
35 þ χSOð7Þ

27 þ 1Þ þ χSOð7Þ
105 − χSOð7Þ

21 þ χSOð7Þ
7

f1ðvÞ ¼ −χSUð2Þ
8 χSOð7Þ

8 − χSUð2Þ
6 χSOð7Þ

8 þ χSUð2Þ
4 χSOð7Þ

112 − χSUð2Þ
2 χSOð7Þ

168

f2ðvÞ ¼ χSUð2Þ
7 χSOð7Þ

35 − χSUð2Þ
5 ðχSOð7Þ

7 − χSOð7Þ
35 þ χSOð7Þ

105 Þ − χSUð2Þ
3 ðχSOð7Þ

21 þ χSOð7Þ
27 − χSOð7Þ

35

− χSOð7Þ
77 þ χSOð7Þ

1680 þ 1Þ − χSOð7Þ
7 þ χSOð7Þ

21 þ χSOð7Þ
27 − χSOð7Þ

105 þ χSOð7Þ
189 þ χSOð7Þ

330

f3ðvÞ ¼ −χSOð7Þ
1120 χSUð2Þ

6 þ ðχSOð7Þ
48 − χSOð7Þ

1120 þ χSOð7Þ
512 ÞχSUð2Þ

4 − ðχSOð7Þ
1120 þ χSOð7Þ

448 ÞχSUð2Þ
2 : ð2:33Þ

Here t≡ e−ϵþ . χSUð2Þ
R is the character of diag½SUð2ÞR ×

SUð2Þr� in representation R, in the convention χSUð2Þ
2 ¼

tþ t−1. bi ≡ e−vi , and ð1 − t2b�i b
�
j Þ means that all four

factorswith different signs aremultiplied. The convention on
representations (e.g., primes) all follow [38]. The numerators
are invariant under SOð7Þ × Spðn8Þ Weyl symmetry, being
character sums. Since the denominators are products with all

possible � signs, they are also invariant under SOð7Þ Weyl
group which flips bi → b−1i . So Ẑn8

1 is invariant under the
Weyl group of SOð7Þ × Spðn8Þ.
We expect our quantum mechanics to work also at

n8 ¼ 4. Here, the 1D Coulomb branch with nonzero ϕI

has a continuum. There may appear extra contribution
from this continuum to the index [22], apart from (2.29).
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(For conceptual simplicity, we consider the problem at zero
FI parameter ξ ¼ 0.) The extra contribution from the 1D
Coulomb continuum is neutral in SOð7Þ × Spð4Þ. This is
because the extra states in the 1D Coulomb branch come
from the region with large ϕI, where allUðkÞ charged fields
acquire large masses. The charged fields are those which

see SOð7Þ × Spð4Þ. So the extra continuum does not see
these charges. Here we shall only test the SOð7Þ × Spð4Þ
symmetry enhancements at n8 ¼ 4. Sowe simply ignore the
extra contribution and show that (2.29) exhibits SOð7Þ×
Spð4Þ Weyl symmetry. The result at k ¼ 1, showing
SOð7Þ × Spð4Þ Weyl symmetry, is given by

Ẑn8¼4
1 ¼

Y
i<j

t2

ð1 − t2b�i b
�
j Þ

½χSpð4Þ42 f0ðvÞ þ χSpð4Þ48 f1ðvÞ þ χSpð4Þ27 f2ðvÞ þ χSpð4Þ8 f3ðvÞ þ f4ðvÞ�; ð2:34Þ

with f0;1;2;3ðvÞ given by (2.33), and

f4ðvÞ ¼ −χSUð2Þ
13 þ χSUð2Þ

11 ðχSOð7Þ
21 − χSOð7Þ

7 Þ þ χSUð2Þ
9 ðχSOð7Þ

7 − χSOð7Þ
21 − χSOð7Þ

27 þ χSOð7Þ
35 þ χSOð7Þ

105 − χSOð7Þ
189 − 1Þ

− χSUð2Þ
7 ð2χSOð7Þ

7 − 2χSOð7Þ
21 − 2χSOð7Þ

27 þ χSOð7Þ
35 þ χSOð7Þ

77 þ 2χSOð7Þ
105 − χSOð7Þ

1680 − χSOð7Þ
189 − χSOð7Þ

294

− χSOð7Þ
330 þ χSOð7Þ

378 − 1Þ − χSUð2Þ
5 ð−3χSOð7Þ

7 þ 3χSOð7Þ
21 þ 3χSOð7Þ

27 − χSOð7Þ
35 − 2χSOð7Þ

77 − 4χSOð7Þ
105

þ 2χSOð7Þ
1680 þ χSOð7Þ

182 þ 2χSOð7Þ
189 − χSOð7Þ

294 þ 2χSOð7Þ
330 − χSOð7Þ

378 − χSOð7Þ
616 − χSOð7Þ

693 þ χSOð7Þ
1617 þ 1Þ

− χSUð2Þ
3 ð3χSOð7Þ

7 − 4χSOð7Þ
21 − 4χSOð7Þ

27 þ 2χSOð7Þ
35 þ 3χSOð7Þ

77 þ 6χSOð7Þ
105 − 3χSOð7Þ

1680 − χSOð7Þ
182

− 2χSOð7Þ
189 − χSOð7Þ

294 − 4χSOð7Þ
330 þ χSOð7Þ

378 þ 2χSOð7Þ
616 þ 2χSOð7Þ

693 þ χSOð7Þ
819 − χSOð7Þ

825 − χSOð7Þ
1560 − 2Þ

þ ð4χSOð7Þ
7 − 4χSOð7Þ

21 − 5χSOð7Þ
27 þ 2χSOð7Þ

35 þ 4χSOð7Þ
77 þ 7χSOð7Þ

105 − 3χSOð7Þ
1680 − χSOð7Þ

182 − 3χSOð7Þ
189 − 5χSOð7Þ

330

þ 2χSOð7Þ
378 þ 2χSOð7Þ

616 þ 3χSOð7Þ
693 þ 2χSOð7Þ

819 − χSOð7Þ
1617 − χSOð7Þ

1911 − 1Þ: ð2:35Þ

Now we consider the instanton strings of 6D super-Yang-
Mills theories with SOð7Þ gauge group and matters in 8. The
number n8 of hypermultiplets cannot be arbitrary, due to
gauge anomalies [6,39]. Without matters in other representa-
tions, one should have n8 ¼ 2 [6]. Incidentally, the 6D
consistency requirement n8 ¼ 2 is also reflected in our
ADHM-like construction, uplifted to 2D for instanton strings.
This comes from 2d UðkÞ gauge anomaly cancelation. First,
consider the SUðkÞ anomaly, proportional toDR ¼ �2TðRÞ
for right-/left-moving fermions. From Dk ¼ 1, Dadj ¼ 2k,
Dsym2

¼ kþ 2, Danti2 ¼ k − 2, one obtains

− 2 · 2kþ 2 · 4 · 1þ 2 · 2kþ 4 · 1þ 2 · ðk − 2Þ
− 2 · ðkþ 2Þ − n8 · 2 · 1 ¼ 2ð2 − n8Þ: ð2:36Þ

These terms come from fermions in the multiplets ðλ0; λÞ,
ðq; q̃Þ, ða; ãÞ, ϕ, ðb; b̃Þ, ðλ̂; λ̌Þ, ðΨa; Ψ̃aÞ, respectively. The
SUðkÞ anomaly cancels only at n8 ¼ 2. The overall Uð1Þ
anomaly is proportional to the square of charges. The net
anomaly is given by

2 · 4k · 12 þ 4k · 12 þ 2 ·
k2 − k
2

· 22 − 2 ·
k2 þ k

2
· 22

− n8 · 2k · 12 ¼ 2kð2 − n8Þ: ð2:37Þ
This again cancels at n8 ¼ 2. So, our ADHM-like quiver
consistently uplifts to 2D at n8 ¼ 2.

As a basic test of our 2D gauge theories, we study
the ’t Hooft anomalies of global symmetries. The full 2D
symmetry is expected to be SOð7Þ × Spð2Þ × SUð2Þl×
SUð2Þr × SUð2ÞR. From our UV description, we can only
study SUð4Þ ×Uð2Þ × SUð2Þl ×Uð1ÞJ. There is an alter-
nativeway of computing the anomalies on the strings, using
anomaly inflow [4,40]. By comparing two calculations, we
shall provide a test of our gauge theories.
Using the inflow method, the 2D anomaly can be

computed as follows. We first compute the anomaly
polynomial 8-form of the 6D SCFTwith a tensor multiplet,
SOð7Þ vector multiplet, and half-hypermultiplets in 1

2
ð8; 4Þ

of SOð7Þ × Spð2Þ. The anomaly polynomial in the tensor
branch consists of one-loop contribution Ione-loop, coming
from massless tensor/vector/hyper-multiplets, and the
classical Green-Schwarz contribution IGS [41,42]. The
two contributions should partly cancel for the terms
containing SOð7Þ gauge fields [43,44]. Ione-loop is given by

Ione-loop ¼ −
3

32
½TrðF2

SOð7ÞÞ�2 þ
1

16
TrðF2

SOð7ÞÞ½2tr4ðF2
Spð2ÞÞ

− 20c2ðRÞ − p1ðTÞ� þ � � �

¼ −
3

2

�
1

4
TrðF2

SOð7ÞÞ þ
1

12
ð20c2ðRÞ þ p1ðTÞ

− 2tr4ðF2
Spð2ÞÞÞ

�
2

þ � � � ; ð2:38Þ
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where � � � denote terms independent of the SOð7Þ field
strength FSOð7Þ. Following [44], we use the notation
Tr≡ 1

h∨ tradj, and tradjðF4Þ ¼ −trfundðF4Þ þ 3ðTrðF2ÞÞ2,
tr8ðF4Þ ¼ − 1

2
trfundðF4Þ þ 3

8
ðtrðF2ÞÞ2, tr8ðF2Þ ¼ TrðF2Þ,

tradjðF2Þ ¼ 5TrðF2Þ for SOð7Þ. To cancel the one-loop
SOð7Þ anomaly, one should have the following Green-
Schwarz 8-form [44]:

IGS ¼
3

2
I2;

I ≡ 1

4
TrðF2

SOð7ÞÞ þ
1

12
ð20c2ðRÞ þ p1ðTÞ − 2tr4ðF2

Spð2ÞÞÞ:
ð2:39Þ

This takes the form of IGS ¼ 1
2
ΩijIiIj with i, j running over

just 1, so that I1 ¼ I and Ω11 ¼ 3. Ω11 may be fixed from
the fact that it comes from Oð−3Þ → P1 geometry in F-
theory, with self-intersection number of P1 being 3.
Knowing Ii appearing in IGS ¼ 1

2
ΩijIiIj, one can deter-

mine the 2D anomaly 4-form on the strings, from inflow.
The formula is [4,40]

I4 ¼ −Ωijki

�
Ij þ

1

2
kjχðT4Þ

�
; ð2:40Þ

where ki is the string number in the i’th gauge group (or i’th
tensor multiplet). We decomposed the 6D tangent bundle T
to T2 × T4, along/normal to the strings. From this formula,
one finds

I4 ¼ −
3

2
k2χðT4Þ

− 3k

�
1

4
TrðF2

SOð7ÞÞ þ
5

3
c2ðRÞ þ

p1ðTÞ
12

−
1

6
tr4ðF2

Spð2ÞÞ
�

ð2:41Þ
for the SOð7Þ instanton strings at n8 ¼ 2, with topological
number k.
Now, we compute I4 from our gauge theory. A chiral

fermion’s anomaly 4-form is given by

I4 ¼ �
�
1

2
trðF2Þ þ p1ðT2Þ

24

�
; ð2:42Þ

where � signs are for left-/right-moving fermions, respec-
tively, in our convention. F collectively denotes all back-
ground gauge fields for the global symmetries acting on the
fermion. Here it is for SUð4Þ ×Uð1ÞJ × SUð2Þl ×Uð2ÞF.
We can only study the anomalies of the symmetries
surviving in UV and check the consistency with
(2.41). Fermi and vector multiplets have left-moving
fermions, while chiral multiplets have right-moving fer-
mions. Each multiplet contributes to terms of the form
(2.42) with a suitable sign. First, contributions from fields
neutral in SUð4Þ ×Uð2Þ are already computed in [4],

ðλ0; λÞ þ ða; ãÞ∶ k2ðc2ðrÞ − c2ðlÞÞ

λ̂; λ̌∶ ðk2 þ kÞ
�
F2
R

8
þ c2ðrÞ

2
þ p1ðT2Þ

24

�

b; b̃∶ − ðk2 − kÞ
�
F2
R

8
þ c2ðlÞ

2
þ p1ðT2Þ

24

�
:

ð2:43Þ

R is the Uð1Þ Cartan of SUð2ÞR. Here and later, we shall

often use expressions like c2ðrÞ, c2ðRÞ ¼ F2
R
4

assuming
symmetry enhancement, but only the Uð1ÞJ part is to be
kept in UV. Namely, one first keeps the Cartan parts of the
field strengths for Jr, JR. Then they are all replaced by J and
its field strength FJ. We present the results using c2ðRÞ and
c2ðrÞ since this may suggest possible patterns of IR
symmetry enhancement. (See also [4].) The fields charged
under SUð4Þ ×Uð2Þ contribute to I4 as follows:

q; q̃;ϕ∶ − 3k

�
1

4
TrðF2

SUð4ÞÞ þ 4 ·
F2
R

8
þ 4 ·

p1ðT2Þ
24

�

Ψa; Ψ̃a∶ 2k

�
1

2
tr2ðF2

Uð2ÞÞ þ 2 ·
p1ðT2Þ
24

�
: ð2:44Þ

Adding all, and using p1ðTÞ ¼ p1ðT2Þ − 2c2ðlÞ − 2c2ðrÞ,
one obtains

I4 ¼
3

2
k2ðc2ðrÞ − c2ðlÞÞ

− 3k

�
1

4
TrðF2

SUð4ÞÞ þ
5

3
·
F2
R

4
þ p1ðTÞ

12
−
1

3
tr2ðF2

Uð2ÞÞ
�
:

ð2:45Þ

Here and below, we shall frequently use the fact that TrðF2Þ
remains the same after restricting F to a subalgebra if a long
root of the original algebra is kept, so that unit instanton
charge 1

4

R
TrðF2Þ remains the same [44]. Here it applies to

SUð4Þ ⊂ SOð7Þ. As for Uð2Þ ⊂ Spð2Þ, or more generally
UðnÞ ⊂ SpðnÞ, the embedding is such that tr2n → 2trn.
Taking these into account, (2.45) agrees with (2.41) upon
restricting (2.41) to SUð4Þ, Uð2Þ, SUð2Þr × SUð2ÞR → J,
and using χðT4Þ ¼ c2ðlÞ − c2ðrÞ. Their mixed anomalies
with UðkÞ also vanish.
One can study the elliptic genera Zk of k instanton

strings, whose spatial direction wraps S1. The definition is
almost identical to (2.15), except that there is another factor
e2πiτP inside the trace, where P is the left-moving momen-
tum on S1. The basic formula is given in [29,30]. The result
is obtained by simply replacing all 2 sinh functions in

(2.16), (2.28), (2.29) by 2 sinh z
2
→ iθ1ðτj z

2πiÞ
ηðτÞ ≡ θðzÞ. For

instance, at k ¼ 1, one obtains
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Z1ðτ; ϵ1;2; vi; maÞ

¼ 1

θðϵ1;2Þ
X4
i¼1

θð4ϵþ − 2viÞ
Q

2
a¼1 θðma � ðvi − ϵþÞÞQ

jð≠iÞθðvijÞθð2ϵþ − vijÞθð2ϵþ − vi − vjÞ
;

ð2:46Þ

where vij ≡ vi − vj. Some tests of these formulas will be
given in Sec. IV B.

B. G2 instantons and matters in 7

With a hypermultiplet in 8, one can Higgs SOð7Þ to G2.
Decomposing the scalar to 8 → 7 ⊕ 1 in G2, 1 is given
VEV and decouples in IR. 7 is eaten up by the broken
part of the SOð7Þ gauge fields, since 21 → 14 ⊕ 7. The
matter consists of two half hypermultiplets, forming a
doublet of flavor symmetry Spð1ÞF. The scalar can be
written as ½ΦAa�ðs1;s2;s3Þ, where A ¼ 1, 2 is the doublet index
of SUð2ÞR R-symmetry, a ¼ 1, 2 is that of Spð1ÞF, and
s1;2;3 ¼ � 1

2
labels the components of 8. It satisfies the

reality condition ðΦ�ÞAaðs1;s2;s3Þ ¼ ϵABϵabðΦBbÞðs1;s2;s3Þ. Let
us take ΦAa ≡ ½ΦAa�ðþ;þ;þÞ þ ½ΦAa�ð−;−;−Þ, satisfying
ðΦ�ÞAa ¼ ϵABϵabΦBb. One takes ΦAa ¼ ϵAaΦ, with a pure
imaginary VEV Φ. This preserves a diagonal subgroup of
SUð2ÞR × Spð1ÞF, which is the SUð2ÞR symmetry after
Higgsing. At general n8, we give VEV to the last hyper-
multiplet scalar, a ¼ n8. One should lock the chemical
potentials as

mlast − ϵþ � v4 ¼ 0; ð2:47Þ

with both signs, not to rotate the scalar VEV. So, we should
take mlast − ϵþ ¼ 0, v4 ¼ 0. The former condition turns off
the Spð1Þ ⊂ Spðn8Þ chemical potential mlast, and the latter
reduces the rank of gauge group by 1. As the index is
invariant under the RG flow triggered by the scalar VEV,
one can get the IR G2 index by constraining the
SOð7Þ index.
In our SUð4Þ formalism, the bulk scalars are written as

Qi; Q̃
i, where i ¼ 1, 2, 3, 4. Giving VEV to 1 amounts to

turning on Q4 ¼ Q̃4 ¼ M ≠ 0 (real), where we take the

unbroken SUð3Þ ⊂ G2 to be labeled by i ¼ 1, 2, 3. In 1D,
the background fields couple to the 1D fields as

JΨlast
∼Qiq̃i; JΨ̃last

∼ Q̃iqi: ð2:48Þ

The second potential jJΨ̃last
j2 ∼M2jq4j2 gives mass to q4,

while the first one gives mass to q̃4.5 The SUð4Þ ADHM
fields reduce to the SUð3Þ ADHM fields at low energy.
Among the extra fields, ϕi with i ¼ 1, 2, 3, 4 decomposes
into ϕi with i ¼ 1, 2, 3 in ðk̄; 3̄Þ, and ϕ4 in ðk̄; 1Þ. If n8 ≥ 2,
one still has n7 ¼ n8 − 1 pairs of Fermi multiplets Ψa; Ψ̃a

left in ðk; 1Þ þ ðk̄; 1Þ, a ¼ 1;…; n7. To summarize, one
first has the SUð3Þ ADHM fields,

Aμ; λ0; λ∶ N ¼ ð0; 4Þ UðkÞ vector multiplet

qi; q̃i∶ ðk; 3̄Þ þ ðk̄; 3Þ ði ¼ 1; 2; 3Þ
a; ã∶ ðadj; 1Þ: ð2:49Þ

In addition, one has

ϕi;ϕ4∶ Chiral in ðk̄; 3̄ÞJ¼1
2
þ ðk̄; 1ÞJ¼1

2

b; b̃∶ Chiral in ðanti2; 1ÞJ¼1
2

λ̂∶ Fermi in ðsym2; 1ÞJ¼0

λ̌∶ Fermi in ðsym2; 1ÞJ¼−1: ð2:50Þ

For n7 ≤ 3 hypermultiplet matters in representation 7, there
are extra Fermi multiplets,

Ψa; Ψ̃a∶ ðk; 1Þ þ ðk̄; 1Þ; a ¼ 1;…; n7: ð2:51Þ

The N ¼ ð0; 1Þ action follows from a construction similar
to SOð7Þ in Sec. II A.
The index Zk for k G2 instantons can either be obtained

from the Witten index of the above gauge theory, or by
taking the Higgsing condition of the SOð7Þ index,
mn8 ¼ ϵþ, v4 ¼ 0. It may be more illustrative to write
both the contour integral expression and the residue sum.
The contour integral expression for the index is given by

Zk ¼
1

k!

I Yk
I¼1

dϕI

2πi
·

Q
I≠J2 sinh

ϕIJ
2
·
Q

I;J2 sinh
2ϵþ−ϕIJ

2Q
k
I¼1

Q
3
i¼1 2 sinh

ϵþ�ðϕI−viÞ
2

·
Q

I;J2 sinh
ϵ1;2þϕIJ

2

×

Q
I≤Jð2 sinh ϕIþϕJ

2
· 2 sinh ϕIþϕJ−2ϵþ

2
ÞQ

Ið
Q

3
i¼1 2 sinh

ϵþ−ϕI−vi
2

· 2 sinh ϵþ−ϕI
2

Þ ·QI<J2 sinh
ϵ1;2−ϕI−ϕJ

2

·
Yk
I¼1

Yn7
a¼1

2 sinh
ma � ϕI

2
: ð2:52Þ

The residue sum, labeled by SUð3Þ colored Young diagrams, is given by

5One may more generally take JΨ ∼ αQiq̃i þ βQ̃iϕi, compatible with UðkÞ × SUð4Þ. However, with SUð4Þ broken to SUð3Þ, q̃4 and
ϕ4 have same charges in unbroken symmetries, and α, β does not affect the IR physics.
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Zk ¼
X

Y⃗;jY⃗j¼k

Y3
i¼1

Y
s∈Yi

2 sinhðϕðsÞÞ · 2 sinhðϵþ − ϕðsÞÞQ
3
j¼1 ð2 sinh EijðsÞ

2
· 2 sinh EijðsÞ−2ϵþ

2
· 2 sinh ϵþ−ϕðsÞ−vj

2
Þ · 2 sinh ϵþ−ϕðsÞ

2

·
Y3
i≤j

Y
si;j∈Yi;j;si<sj

2 sinh ϕðsiÞþϕðsjÞ
2

· 2 sinh ϕðsiÞþϕðsjÞ−2ϵþ
2

2 sinh ϵ1;2−ϕðsiÞ−ϕðsjÞ
2

·
Y3
i¼1

Y
s∈Yi

Yn7
a¼1

2 sinh
ma � ϕðsÞ

2
; ð2:53Þ

where ϕðsÞ and EijðsÞ are defined in (2.17) and (2.19).
We first study the case with n7 ¼ 0. We can test the results against known G2 instanton partition functions of [45]. We

tested (2.53) till k ≤ 3. First, at k ¼ 1, it will be illustrative to make a basic presentation, directly from the contour integral.
Equation (2.52) at k ¼ 1 is given by

�
2 sinh

ϵ1;2
2

�
Z1 ¼

I
dϕ

2 sinh ϵþ · 2 sinhϕ · 2 sinhðϕ − ϵþÞQ
3
i¼1 ð2 sinh ϵþ�ðϕ−viÞ

2
· 2 sinh ϵþ−ϕ−vi

2
Þ · 2 sinh ϵþ−ϕ

2

: ð2:54Þ

At η > 0, the poles are chosen at ϕ ¼ vi − ϵþ, i ¼ 1, 2, 3. So, one obtains

�
2 sinh

ϵ1;2
2

�
Z1 ¼

X3
i¼1

2 sinhðvi − 2ϵþÞQ
jð≠iÞð2 sinh vij

2
· 2 sinh 2ϵþ−vij

2
· 2 sinh 2ϵþþvj

2
Þ · 2 sinh vi−2ϵþ

2

; ð2:55Þ

where we used v1 þ v2 þ v3 ¼ 0. Each residue only exhibits Weyl symmetry of SUð3Þ, given by 3! permutations of v1, v2,
v3. However, the sum of three residues exhibits enhanced Weyl symmetry of G2, the dihedral group D6 of order 12. The
extra transformation generating full D6 is vi → −vi for all i ¼ 1, 2, 3, SUð3Þ charge conjugation. One can show that Z1 is
given by

�
2 sinh

ϵ1;2
2

�
Z1 ¼

t3ð1þ t2Þð1þ t2χG2

7 ðvÞ þ t4ÞQ
i<jð1 − t2evijÞð1 − t2e−vijÞ ¼ t3

X∞
n¼0

χG2

ð0;nÞðvÞt2n; ð2:56Þ

where t≡ e−ϵþ . χG2

7 ¼ 1þ χSUð3Þ
3 þ χSUð3Þ

3̄
¼ 1þP

3
i¼1ðevi þ e−viÞ is the character of 7. χG2

ð0;nÞ is the character of the irrep
ð0; nÞ of G2, which is the n’th symmetric product of the adjoint representation 14. (2.56) is known as the correct G2

instanton partition function at k ¼ 1 [45].
At k ¼ 2, Z2 can be rearranged into (where t ¼ e−ϵþ , u ¼ e−ϵ−)

�Y2
n¼1

2 sinh
nϵ1;2
2

�
Z2 ¼

t24Q
i<jð1 − t2e�vijÞð1 − t3u�1

2e�vijÞ

�
χSUð2Þ
20 þ

X18
n¼1

χSUð2Þ
n gnðvi; uÞ

�
; ð2:57Þ

where SUð2Þ is still diag½SUð2Þr × SUð2ÞR�, and gnðvi; uÞ’s are given by

g18 ¼ χG2

7 þ 1; g17 ¼ χSUð2Þl
2 ðχG2

7 þ 1Þ; g16 ¼ χG2

7 þ χG2

27 þ 1; g15 ¼ χSUð2Þl
2 ð3χG2

7 þ 1Þ;
g14 ¼ χSUð2Þl

3 ðχG2

7 þ 1Þ þ 2χG2

7 þ χG2

27 þ 1; g13 ¼ χSUð2Þl
2 ðχG2

7 þ χG2

14 þ χG2

27 − χG2

64 þ 2Þ;
g12 ¼ χSUð2Þl

3 ðχG2

7 þ χG2

14 − χG2

64 þ 2Þ þ 2χG2

7 þ 2χG2

14 − 2χG2

64 þ 2

g11 ¼ χSUð2Þl
4 þ χSUð2Þl

2 ð2χG2

7 − χG2

64 − χG2

189 þ 1Þ
g10 ¼ χSUð2Þl

3 ðχG2

7 − χG2

14 − χG2

77 Þ þ 3χG2

7 − χG2

14 − χG2

64 − 2χG2

77 þ χG2

182 − χG2

189 þ 1

g9 ¼ χSUð2Þl
4 ðχG2

7 − χG2

14 Þ þ χSUð2Þl
2 ð3χG2

7 − χG2

14 − χG2

64 − 3χG2

77 þ χG2

182 þ 1Þ
g8 ¼ χSUð2Þl

3 ðχG2

77 − χG2

14 Þ þ 2χG2

7 − χG2

64 − χG2

77 þ χG2

182 − χG2

189 þ χG2

378 þ 1
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g7 ¼ χSUð2Þl
4 ðχG2

77 − χG2

7 Þ þ χSUð2Þl
2 ð2χG2

7 − χG2

64 þ 2χG2

182 − χG2

286 þ χG2

448 þ 1Þ
g6 ¼ χSUð2Þl

3 ðχG2

77 þ χG2

182 − χG2

64 þ χG2

189 þ 1Þ þ χG2

7 þ χG2

14 þ χG2

27 − χG2

64 þ χG2

182 − χG2

286 þ χG2

378 þ χG2

448 þ 1

g5 ¼ χSUð2Þl
4 ðχG2

77 − 2χG2

7 − χG2

14 − 1Þ
þ χSUð2Þl

2 ð−χG2

7 þ 2χG2

14 þ χG2

27 − 2χG2

64 þ 2χG2

77 þ χG2

182 þ χG2

189 − χG2

286 þ χG2

378 þ 2Þ ðcontinuedÞ
g4 ¼ −χSUð2Þl

5 χG2

7 þ χSUð2Þl
3 ð2χG2

77 − χG2

7 þ χG2

14 − χG2

27 − 2χG2

64 þ χG2

182 − χG2

286 þ 1Þ
þ 2χG2

14 þ χG2

27 − χG2

64 þ χG2

77 þ χG2

182 − χG2

273 − 2χG2

286 þ χG2

448 þ 1

g3 ¼ −χSUð2Þl
4 ðχG2

7 þ χG2

27 þ χG2

64 Þ þ χSUð2Þl
2 ðχG2

7 − χG2

14 þ χG2

182 − χG2

189 − χG2

286 − χG2

729Þ
g2 ¼ −χSUð2Þl

5 ðχG2

7 þ χG2

14 þ 1Þ þ χSUð2Þl
3 ðχG2

64 − 4χG2

14 − 2χG2

77 þ χG2

182 − χG2

189 − χG2

448 − 2Þ
þ 2χG2

7 − 2χG2

14 þ 2χG2

64 − 3χG2

77 − χG2

273 − χG2

729 − 1

g1 ¼ χSUð2Þl
4 ð2χG2

7 − 2χG2

14 − χG2

27 þ χG2

64 − 2χG2

77 − 1Þ
þ χSUð2Þl

2 ð2χG2

7 − 3χG2

14 þ 2χG2

64 − 4χG2

77 þ χG2

182 − χG2

273 − χG2

448 − 1Þ: ð2:58Þ

As the numerator is manifestly arranged intoG2 characters, it shows enhancedG2 Weyl symmetry. The denominator is also
invariant under the extra generator vi → −vi of D6, being invariant under G2 Weyl symmetry. One can also check the
agreement with the known G2 partition function at k ¼ 2. For the simplicity of comparison, let us turn off all vi ¼ 0 and
ϵ− ¼ 0. Then, (2.57) becomes�

2 sinh
ϵ1;2
2

�
Z2 ¼

t7

ð1 − tÞ14ð1þ tÞ8ð1þ tþ t2Þ7 ½1þ tþ 10t2 þ 31t3 þ 75t4 þ 180t5 þ 385t6

þ637t7 þ 975t8 þ 1360t9 þ 1614t10 þ 1666t11 þ 1614t12 þ � � � þ t22�; ð2:59Þ

where the omitted terms � � � can be restored by the t → t−1 Weyl symmetry of SUð2Þ (i.e., the coefficients of tp and t22−p are
same on the numerator). The overall t7 factor is like a zero point energy factor and is needed to have this Weyl symmetry.
Apart from this factor, (2.59) agrees with Eq. (9.5) of [46] after correcting a typo there, as noted in [45].
At k ¼ 3, we only show the simplified form of (2.53) at vi ¼ 0, ϵ− ¼ 0, which is�

2 sinh
ϵ1;2
2

�
Z3 ¼

t11

ð1 − tÞ22ð1þ tÞ14ð1þ t2Þ7ð1þ tþ t2Þ9 ½1þ tþ 11t2 þ 34t3 þ 124t4 þ 352t5

þ1055t6 þ 2657t7 þ 6584t8 þ 14635t9 þ 31194t10 þ 61229t11 þ 114367t12

þ198932t13 þ 329172t14 þ 511194t15 þ 755093t16 þ 1051845t17þ 1394817t18

þ1749632t19 þ 2091341t20 þ 2368619t21 þ 2557449t22 þ 2619060t23

þ2557449t24 þ � � � þ t46�; ð2:60Þ

where � � � can again be restored by noting that coefficients of
tp and t46−p are sameon the numerator. Apart from the overall
t11 factor which guaranteesWeyl symmetry, this again agrees
with Eq. (4.16) of [45]. Although we did comparisons till
k ¼ 3, one can in principle continue to test for higher k’s
whether our (2.53) agrees with the results of [45].
Now, as for the indices at n7 ≥ 1, these observables have

not been computed or studied in the literature, to the best of
our knowledge. Here we simply note that, making expan-
sions of the indices in t ¼ e−ϵþ , one observes that the
coefficients are characters of G2 × Spðn7Þ. At least, at
k ¼ 1, this does not need independent calculations, since

we already illustrated the symmetry enhancement of
SOð7Þ × Spðn8Þ in the previous subsection. Also, when-
ever we provide concrete tests of some SOð7Þ results in
Secs. III and IV, this implies similar tests of theG2 results at
n7 ¼ n8 − 1 by Higgsing.
At n7 ¼ 1, 6D SCFT exists with G2 gauge group. This

can be obtained from 6D SOð7Þ theory at n8 ¼ 2 by
Higgsing. Our 2D gauge theories on G2 instantons can also
be uplifted to 2D gauge theories. As in the previous
subsection, this gauge theory is free of UðkÞ gauge
anomaly. The 2D anomaly of G2 × Spðn7Þ × SUð2ÞR ×
SUð2Þr × SUð2Þl global symmetries, computed from
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anomaly inflow, is also compatible with the SUð3Þ ×
Uðn7Þ × Uð1ÞJ × SUð2Þl anomalies of our 2D gauge
theories. To see this, one first restricts FSOð7Þ → FG2

which leaves TrðF2Þ invariant, tr4ðF2
Spð2ÞÞ → tr2ðF2

Spð1ÞÞ þ
tr2ðF2

Spð1Þ0 Þ, and note that c2ðRÞ ¼ 1
4
TrðF2

RÞ ¼ 1
2
trfundðF2

RÞ
[44]. Since we lock Spð1Þ0 and SUð2ÞR during Higgsing,
one identifies FSpð1Þ0 ¼ FR. Then, both anomaly 4-forms
(2.41), (2.45) reduce to

I4 ¼ −
3

2
k2χðT4Þ

− 3k

�
1

4
TrðF2

G2
Þ þ 4

3
c2ðRÞ þ

p1ðTÞ
12

−
1

6
tr2ðF2

Spð1ÞÞ
�
;

ð2:61Þ

with restrictions to UV symmetry understood for gauge
theory anomalies. So the inflow anomaly and 2D gauge
theory anomaly continue to agree with each other.
The elliptic genera for the strings can be computed

similarly. One takes the formulas (2.52) or (2.53), and

replace 2 sinh z
2
→ iθ1ðτj z

2πiÞ
ηðτÞ ≡ θðzÞ for all 2 sinh functions.

The G2 symmetry of this elliptic genus at k ¼ 1 is
systematically discussed in [19].
At n7 ¼ 1, one has a pair Ψ; Ψ̃ of Fermi multiplets. One

can again investigate the effect of bulk Higgsing G2 →
SUð3Þ. In the bulk, one decomposes 7 → 3þ 3̄þ 1, where
scalar in 1 assumes VEV and breaks G2 into SUð3Þ. The
other hypermultiplet fields are eaten up by vector multiplets
for the broken symmetry. The constant VEV of the bulk
scalar≡Q in 1 will behave as a background field in 1D/2D
ADHM-like models. With foresight on the SUð3Þ instan-
tons studied in [4], we propose that the coupling of the
background bulk field Q to the G2 ADHM-like gauge
theory is given by

JΨ ∼Qϕ; JΨ̃ ∼Qϵijkqiϕjq
†
k; ð2:62Þ

where ϕ≡ ϕ4. The N ¼ ð0; 1Þ superpotential JΨ̃ is com-
patible with symmetries, but at this stage it may not be
obvious why we should turn it on in this way. Ψ and the
chiral multiplet ϕ become massive due to JΨ and decouple
at low energy. However, Ψ̃ does not decouple at low energy,
since it does not acquire mass. In fact, the remaining system

(including Ψ̃, which was called ζ in [4]) with the above
cubic superpotential was studied in [4], which showed
various nontrivial physics of the SUð3Þ instanton strings. In
1D, this provides a novel alternative ADHM-like descrip-
tion for SUð3Þ instanton particles. In 2D, this is (by now)
the uniquely known SUð3Þ ADHM construction of instan-
ton strings without matters. All models presented so far in
this paper, for SOð7Þ and G2 instantons, were initially
constructed by guessing the un-Higgsing procedures
from SUð3Þ. See [4] for further discussions on the last
SUð3Þ model.

III. EXCEPTIONAL INSTANTONS
FROM D-BRANES

A. Brane setup and quantum mechanics

In this section, we test some indices of the previous
section, using 5-brane webs for the 5D N ¼ 1 gauge
theories with SOðNÞ gauge groups and matters in spinor
representations [47]. A type IIB 5-brane web on x5, x6

plane consists of ðp; qÞ 5-branes stretched along lines
with slope q=p: e.g., D5-branes (1,0) along x5 and NS5-
branes (0,1) along x6 directions. They occupy x0;…; x4

directions for the 5D QFT. SOðNÞ gauge theories are
realized by 5-brane webs with orientifold 5-planes. An
NS5-brane crossing the O5-plane bends to a suitable ðp; 1Þ-
brane and changes the types of O5 across NS5. An SOð2NÞ
theory is engineered by suspending N D5-branes between
two NS5-branes, also with an O5−, as shown in Fig. 1(a).
SOð2N þ 1Þ theory is realized by N D5-branes and anfO5

−-plane, which is an O5− with a half D5. See Fig. 1(b).
Dashed-dotted line is a monodromy cut to have ðp; qÞ
5-branes at right angles with properly quantized charges
[47]. In these constructions, instanton particles are D1-
branes stretched between two NS5-branes, as shown in
Fig. 2. In this setting, a 5D hypermultiplet in the spinor
representation is introduced as follows [47]. One introduces
another NS5-brane as shown in Fig. 3. D10-branes sus-
pended between NS51 and NS52 are the particles obtained
by quantizing the hypermultiplet in the SOðNÞ spinor
representation. (See [47] for the chirality of the SOð2NÞ
spinor.) The mass of this field is proportional to the distance
between NS51 and NS52. To introduce two hypermultiplets
in the spinor representation, one puts another NS5-brane on
the right side, as shown in Fig. 4. Note that for SOðNÞ

(a) (b)

FIG. 1. Brane realizations of (a) SOð2NÞ and (b) SOð2N þ 1Þ gauge theories.
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gauge theory with N ≤ 6, NS51- and NS52-branes do not
intersect. For N ¼ 7, 8, NS51 and NS52 are parallel to each
other. In the last cases, there are extra continua of D10
branes, orthogonally suspended between these parallel
NS5-branes, which can escape to infinity and do not
belong to 5D QFT. In Sec. III B, we discuss this extra
sector in more detail. When N ≥ 9, NS51 and NS52 meet at
a certain point. In this case, we do not know how to use this
setting to study the 5D QFT. So, in the rest of this paper, we
focus on SOðNÞ QFTs with N ≤ 8.
We discuss the quantum mechanical gauge theory, with

given numbers of SOðNÞ instantons k and hypermultiplet
particles na. Their Witten indices will be used to test some
results of Sec. II. In Sec. II, we did not fix the numbers of
hypermultiplet particles, but instead had chemical poten-
tials ma for Spðn8Þ. Expanding the indices of Sec. II in
e−ma , the coefficients will be the indices with fixed k; na,
studied in this section.
We start from the case with one hypermultiplet, and

consider the quantum mechanics of the D1 and D10 branes.
We first explain the symmetries. There is SOð4Þ ∼
SUð2Þl × SUð2Þr rotating x1;…; x4 and SOð3Þ ∼ SUð2ÞR
rotating x7, x8, x9. The quantum mechanics preserves four
real SUSY Q̄ _αA, where _α and A are doublet indices of

SUð2Þr and SUð2ÞR. It can be regarded as the 1D reduction
of 2D N ¼ ð0; 4Þ SUSY. There are symmetries associated
with D-branes and orientifolds. For r D1’s and N D5’s on
various O5-planes, the symmetries are given as follows:

Branes O5þ O5− fO5
þ fO5

−

N D5 SpðNÞ SOð2NÞ SpðNÞ SOð2N þ 1Þ
r D1 Oð2rÞ SpðrÞ Oð2rÞ SpðrÞ

Here r is a half-integer r ¼ n=2 forO5þ, fO5
þ. So,D1 and

D10 in Fig. 3 have SpðkÞ ×OðnÞ gauge symmetry, while
D5’s induce SOð2NÞ or SOð2N þ 1Þ global symmetry.
The quantum mechanical “fields” are derived from

open strings. They are shown in Figs. 5 and 6 for
SOð2NÞ and SOð2N þ 1Þ. The formal “SOð1Þ” in
Fig. 6(a) comes from the half D5-brane on fO5

−, on the
left side of NS51 in Fig. 3. The Lagrangian of this system
preservingN ¼ ð0; 4Þ supersymmetry can be written down
in a canonical manner. We focus on the bosonic part here.
Along the strategy of [24], we first construct the
Lagrangian in N ¼ ð0; 2Þ formalism, specifying the two
possible types of superpotentials E and J for each Fermi
multiplet [25]. Our (0,4) multiplets decompose to (0,2)
multiplets as follows:

(a) (b)

FIG. 3. Hypermultiplet in the spinor representation of (a) SOð2NÞ and (b) SOð2N þ 1Þ.

(a) (b)

FIG. 4. Two hypermultipets in the spinor representations of (a) SOð2NÞ and (b) SOð2N þ 1Þ.

(a) (b)

FIG. 2. Instantons of (a) SOð2NÞ and (b) SOð2N þ 1Þ theories.
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VectorðAt;φ; λ _αAÞ → vector VðAt;φ; λ
_12; λ_21Þ þ Fermi λðλ_11; λ_22Þ

VectorðÂt; φ̂; λ̂
_αAÞ → vector V̂ðÂt; φ̂; λ̂

_12; λ̂
_21Þ þ Fermi λ̂ðλ̂_11; λ̂_22Þ

Hyperðaα _β; χAαÞ → chiral Bðac_1; χ2cÞ þ chiral B̃†ðac_2; χ1cÞ
Hyperðâα _β; χ̂AαÞ → chiral Cðφc_1; ξ

2
cÞ þ chiral C̃†ðφc_2; ξ

1
cÞ

Hyperðq _α;ψAÞ → chiral qðq_1;ψ
2Þ þ chiral q̃†ðq_2;ψ

1Þ
Twisted hyperðΦA;Ψ _αÞ → chiral ΦðΦ1;Ψ2Þ þ chiral Φ̃†ðΦ2;Ψ1Þ

FermiðΛlÞ; ðΛÞ; ðΞαÞ → FermiðΛlÞ; ðΛÞ; ðΞαÞ: ð3:1Þ

The scalars in rank 2 symmetric or antisymmetric repre-
sentations are real. It decomposes to two (0,2) chiral
multiplets whose scalars are complexified as ac _β ¼ a1_β þ
ia2_β and likewise âc _β.
In (0,2) theories, one can turn on two types of hol-

omorphic “superpotentials” for each Fermi multipletΨ, JΨ,
and EΨ. The (0,2) supersymmetry demands the super-
potentials to satisfy X

ν∈Fermi

EνJν ¼ 0: ð3:2Þ

We first consider the SOð2NÞ theory, in which case E and J
for Fermi multiplets are given by

Jλ ¼
ffiffiffi
2

p
ðqq̃þ ½B; B̃�Þ Eλ ¼ −

ffiffiffi
2

p
Φ̃Φ

Jλ̂ ¼
ffiffiffi
2

p
½C; C̃� Eλ̂ ¼

ffiffiffi
2

p
ΦΦ̃

JΞ1
¼

ffiffiffi
2

p
ðΦ̃ C̃−B̃ Φ̃Þ EΞ1

¼
ffiffiffi
2

p
ðCΦ −ΦBÞ

JΞ2
¼ −

ffiffiffi
2

p
ðΦ̃C − BΦ̃Þ EΞ2

¼
ffiffiffi
2

p
ðC̃Φ −ΦB̃Þ

JΛl
¼

ffiffiffi
2

p
q̃ Φ̃ EΛl

¼
ffiffiffi
2

p
Φq: ð3:3Þ

(a)

… …

…

…

…

…

…

…

…

…

…

…

(b)

FIG. 5. (a) 1D quiver and (b) matters for SOð2NÞ (bold/dashed lines for hyper/Fermi).
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The first two lines, for (0,4) gauginos of SpðkÞ ×OðnÞ,
are required by demanding (0,4) SUSY enhancement
[24]. Namely, gaugino fields’ J and E acquire contribu-
tions only from hypermultiplets and twisted hypermul-
tiplets, respectively. But with the first two lines only,
(3.2) is not met. The next three lines are fixed (up to sign
choices) by demanding (3.2) to hold, as illustrated in [24]
in different models. D-terms are given by

DSpðkÞ ¼ qq† − q̃†q̃þ ½B;B†� − ½B̃†; B̃� −Φ†Φþ Φ̃Φ̃†

DOðnÞ ¼ ½C;C†� − ½C̃†; C̃� þΦΦ† − Φ̃†Φ̃: ð3:4Þ

With these superpotentials and D-terms, the bosonic
potential energy is given by [24,25]

V ¼
X

G∈gauge

1

2
D2

G þ
X

ν∈Fermi

ðjEνj2 þ jJνj2Þ: ð3:5Þ

One can show that (3.5) exhibits enhanced SOð4Þ ¼
SUð2Þr × SUð2ÞR R-symmetry,

V ¼ 1

2
ðq _αðσmÞ _α _βq† _β þ ðσmÞ _α _β½aα _α; a†α _β�Þ2

þ 1

2
ððσmÞ _α _β½âα _α; â†α _β�Þ2

þ 1

2
ðΦAðσmÞABΦ†BÞ2 þ 1

2
ðΦ†Aðσ̄mÞABΦBÞ2 þ jΦAq _αj2

þ jâα _βΦA −ΦAaα _βj2 þ jΦ†Aâα _β − aα _βΦ
†Aj2: ð3:6Þ

Since SOð4Þ is the N ¼ ð0; 4Þ R-symmetry, this is a
strong indication that the classical action indeed has (0,4)
SUSY. We content ourselves with this observation, rather
than checking (0,4) SUSY of the full action. The fields in
the last expression satisfy the pseudoreality condition of
SpðkÞ, q̃T ¼ Λq, Φ̃T ¼ ΦðΛ−1ÞT , where Λ is the SpðkÞ
skew-symmetric matrix.
One can repeat the analysis for the SOð2N þ 1Þ quiver.

One point to note here is that there is no superpotential for
the Fermi multiplet Λ. So, despite the presence of 2N þ 2
OðnÞ fundamental Fermi multiplets Λl, Λ, their flavor
symmetry is SOð2N þ 1Þ, as we expect from 5D bulk.
When there are two 5D hypermultiplets in the spinor

representation of SOðNÞ, we can consider a sector with n1
and n2 particles and k instantons. The 1D quivers and fields
are shown in Figs. 7 and 8. The Lagrangians can be

(a)

(b)

…

…

…

…

…

…

…

…

…

…

…

…

…

…

FIG. 6. (a) 1D quiver and (b) matters for SOð2N þ 1Þ.
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constructed by following the completely same procedures,
which we do not present here.

B. The instanton partition functions

We shall compute the Witten indices of the quantum
mechanics presented in the previous subsection. They
count BPS states preserving Q ¼ −Q̄1_2 and Q† ¼ Q̄2_1,
and is defined by

ZQM ¼ Tr½ð−1ÞFe−βfQ;Q†ge−2ϵþðJrþJRÞe−2ϵ−Jle−viqie−z·F�:
ð3:7Þ

Jl, Jr, and JR are Cartans of SOð4Þ ¼ SUð2Þl × SUð2Þr
and SUð2ÞR, respectively, while qi are the SOðNÞ electric
charges. F, z denote other charges and their chemical
potentials.
We compute (3.7) using the contour integral formula of

[11,22,27]. The zero modes in the path integral appear as
the contour integral variables. They are the eigenvalues of
the scalar φ and Aτ in the vector multiplet. ForOðnÞ, the flat
connections on S1 have two disconnected sectors OðnÞ�.
U ¼ eRϕ ≡ eRðφþiAτÞ, where R is the radius of the temporal
circle, is given by

Uþ
Oð2nÞ ¼ diagðeiϕ1σ2 ; eiϕ2σ2 ;…; eiϕnσ2Þ; U−

Oð2nÞ ¼ diagðeiϕ1σ2 ; eiϕ2σ2 ;…; eiϕn−1σ2 ; σ3Þ
Uþ

Oð2nþ1Þ ¼ diagðeiϕ1σ2 ; eiϕ2σ2 ;…; eiϕnσ2 ; 1Þ; U−
Oð2nþ1Þ ¼ diagðeiϕ1σ2 ; eiϕ2σ2 ;…; eiϕnσ2 ;−1Þ

USpðkÞ ¼ diagðeiϕ1σ2 ; eiϕ2σ2 ;…; eiϕkσ2Þ: ð3:8Þ

(a)

(b)
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…
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…

…

…

…

…

…

FIG. 7. The 1D quiver (a) and matters (b) for 5D SOð2NÞ theory with two hypermultiplets.
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σi are Pauli matrices, “diag”mean block-diagonal matrices,
and detðU�Þ ¼ �1. The integrand acquires contributions
from various multiplets. A chiral multiplet Φ and a Fermi
multiplet Ψ contribute as

ZΦ ¼
Y
ρ∈RΦ

1

2 sinhðρðϕÞþ2JϵþþFz
2

Þ
;

ZΨ ¼
Y
ρ∈RΨ

2 sinh

�
ρðϕÞ þ 2Jϵþ þ Fz

2

�
; ð3:9Þ

respectively. ρ runs over the weights of SpðkÞ, OðnÞ in
the representation RΦ, RΨ, and J are defined by J ¼
Jr þ JR. F collectively denotes the remaining charges.
A (0,2) vector multiplet V contributes similarly as
ZV ¼ Q

α∈root 2 sinh
αðϕÞ
2
, where we used the formula for

a Fermi multiplet at J ¼ 0, F ¼ 0. Collecting all, the
Witten index is given by

Z ¼ 1

jWj
I

dϕ
2πi

Zone-loop; Zone-loop ≡
Y
V

ZV

Y
Φ
ZΦ

Y
Ψ
ZΨ:

ð3:10Þ

The OðnÞ holonomy has two discrete sectors. The Witten
index is given by [48]

Z ¼ Zþ þ Z−

2
: ð3:11Þ

The Weyl factors jWj of Oð2nÞ�, Oð2nþ 1Þ�, SpðkÞ are
given by [48]

(a)

(b)
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FIG. 8. The 1D quiver (a) and matters (b) for 5D SOð2N þ 1Þ theory with two hypermultiplets.
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jWOð2nÞþ j ¼
1

2n−1n!
; jWOð2nÞ− j ¼

1

2n−1ðn − 1Þ! ; jWOð2nþ1Þþ j ¼ jWOð2nþ1Þ− j ¼
1

2nn!
; jWSpðkÞj ¼

1

2kk!
:

ð3:12Þ

For SOðNÞ with odd N, one can show that Zone-loop ¼ 0 in
Oð2nÞ− and Oð2nþ 1Þþ sectors, since the fermionic zero
modes from Λ [in table Fig. 6(b)] provide factors of 0’s.
Let us call Zk;n the index of the SpðkÞ ×OðnÞ quiver.

Being a multiparticle index, it acquires contribution from n
hypermultiplet particles either bound or unbound to k
instantons. Also, as we shall explain in more detail below,
Zk;n for n ≥ 2 also contains a spurious contribution from
particles not belonging to the 5D QFT. To explain these
structures clearly, we first discuss the indices Z0;n before
considering the instanton partition functions at k ≠ 0. At
n ¼ 1, k ¼ 0, the Oð1Þ indices do not contain integrals.
The results are given by

ZSOð2NÞ
0;1 ¼ 1

2

� Q
N
l¼1 2 sinh

vl
2

2 sinh ϵ1
2
· 2 sinh ϵ2

2

þ
Q

N
l¼1 2 cosh

vl
2

2 sinh ϵ1
2
· 2 sinh ϵ2

2

�

ZSOð2Nþ1Þ
0;1 ¼

Q
N
l¼1 2 cosh

vl
2

2 sinh ϵ1
2
· 2 sinh ϵ2

2

: ð3:13Þ

The overall factors ð2 sinh ϵ1
2
· 2 sinh ϵ2

2
Þ−1 in (3.13) come

from the center-of-mass motion on R4. The remaining
factor is the character of the SOð2NÞ chiral spinorQ

N
l¼1

2 sinh
vl
2
þ
Q

N
l¼1

2 cosh
vl
2

2
and that of SOð2N þ 1Þ spinorQ

N
l¼1 2 cosh

vl
2
, respectively. They are the perturbative

partition functions of matters in SOðNÞ in spinor repre-
sentations. Next, Z0;2 is given by

ZSOð2NÞ
0;2 ¼ 1

2

�I
dχ
2πi

2 sinh ϵþ ·
Q

N
l¼1 2 sinhðvl�χ

2
Þ

2 sinhðϵ1;2
2
Þ · 2 sinhðϵ1;2�2χ

2
Þ

þ 2 cosh ϵþ ·
Q

N
l¼1 2 sinh vl

2 cosh ϵ1;2
2
· ð2 sinh ϵ1;2

2
Þ2

�

ZSOð2Nþ1Þ
0;2 ¼ 1

2

I
dχ
2πi

×
2 sinh ϵþ ·

Q
N
l¼1 2 sinhðvl�χ

2
Þ · 2 sinhð� χ

2
Þ

2 sinhðϵ1;2
2
Þ · 2 sinhðϵ1;2�2χ

2
Þ

:

ð3:14Þ

For SOð2N þ 1Þ and the first term of SOð2NÞ index, one
should evaluate JK-Res. With the choice η > 0, one keeps
the residues at χ ¼ − ϵ1;2

2
and χ ¼ − ϵ1;2

2
þ πi.6 For N ≤ 6,

one obtains

ZSOðNÞ
0;2 ¼ ZSOðNÞ

0;1 ðϵ�; vlÞ2 þ ZSOðNÞ
0;1 ð2ϵ�; 2vlÞ

2
; ð3:15Þ

while for N ¼ 7, 8, one obtains

ZSOðNÞ
0;2 ¼ ZSOðNÞ

0;1 ðϵ�; vlÞ2þZSOðNÞ
0;1 ð2ϵ�;2vlÞ

2
−
1

2
·
2coshϵþ
2sinh ϵ1;2

2

:

ð3:16Þ

Equation (3.15) and the first term of (3.16) are the indices
of two noninteracting identical particles, whose single

particle index is given by ZSOðNÞ
0;1 . There are no bound

states formed by these perturbative hypermultiplet par-
ticles, as expected. The second term of (3.16) requires more
explanations, which we now turn to.
The second term of (3.16) comes from extra states in the

brane system that do not belong to the 5D QFT. In
particular, the fractional coefficient in the fugacity expan-
sion implies that it comes from a sector which has a
continuum unlifted by our massive deformations. In fact,
following the arguments presented between (2.28) and
(2.29), one finds that the linear one-loop potential from
(3.14) vanishes for N ¼ 7, 8, implying continua.
Physically, this comes from a D10-brane moving away
from 5D QFT, suspended between two parallel 5-branes as
in Fig. 9. Although we are not aware of fully logical
arguments, it has been empirically observed that the last
term − 1

2

2 cosh ϵþ
2 sinh

ϵ1;2
2

is the contribution from the escaping

particle for strings suspended between parallel 5-branes;
e.g., see Eq. (3.62) of [22]. See also [49–51] for related
results. The suspended string of Fig. 9 carries the same
spacetime and R-symmetry quantum numbers as a 5D
vector multiplet particles, since the configuration of Fig. 9
is locally dual to a fundamental string suspended between
two D5-branes (a 5D vector W-boson). Indeed, the chemi-
cal potential dependence ∼ 2 cosh ϵþ

2 sinh
ϵ1;2
2

is precisely that of a 5D

W-boson and its superpartners. Such extra states start to
appear at n ≥ 2, since at n ¼ 1, one only has fractional D10
stuck to O5.

FIG. 9. D10-brane escaping the 5D QFT.

6For OðnÞ and SpðkÞ gauge theories, the choice of η does not
affect the results due to Weyl symmetry [22].
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Collecting all, we expect that the partition function at
k ¼ 0 is given by

X∞
n¼0

e−nmZSOðNÞ
0;n ¼ Zpert ≡ PE½e−mZSOðNÞ

0;1 � ð3:17Þ

for N ≤ 6, while for N ¼ 7, 8 we expect that it is
given by

X∞
n¼0

e−nmZSOðNÞ
0;n ¼ ZpertZextra

¼ PE½e−mZSOðNÞ
0;1 � PE

�
−
1

2
e−2m

2 cosh ϵþ
2 sinh ϵ1;2

2

�
:

ð3:18Þ

Here, Z0;0 ≡ 1 by definition, and PE½fðx; y; � � �Þ�≡
exp ½P∞

n¼1
1
n fðnx; ny; � � �Þ� is the multi-particle index for

the single particle index f.
The full partition function would factorize as

X∞
k;n¼0

qke−nmZSOðNÞ
k;n

¼ Zinstðq; ϵ1;2; mÞZpertðϵ1;2; mÞZextraðϵ1;2; mÞ: ð3:19Þ

Expanding ZinstðqÞ ¼
P∞

k¼0 Zkqk where Z0 ≡ 1, (3.19)
implies at given qk order that

X∞
n¼0

e−nmZk;n ¼ ZkZpertZextra: ð3:20Þ

When there are two 5D hypermultiplets as in Fig. 4, the full
partition function is

Zð2Þ ¼
X∞

k;n1;n2¼0

qke−n1m1−n2m2Zk1;n1;n2 ; ð3:21Þ

where Zk;n1;n2 is the index for k D1, n1 D10, and n2 D100.
m1;2 are the Spð2Þ flavor chemical potentials. The con-
tributions from perturbative and extra degrees of freedom in
this case are

Zð2Þ
pertðϵ1;2; m1;2Þ ¼ Zpertðϵ1;2; m1ÞZpertðϵ1;2; m2Þ

Zð2Þ
extraðϵ1;2; m1;2Þ ¼ Zextraðϵ1;2; m1ÞZextraðϵ1;2; m2Þ; ð3:22Þ

where Zpert and Zextra take the same forms as in (3.18).
Although our methods apply well to both SOð8Þ and

SOð7Þ, we only study the cases with SOð7Þ in this paper.
We start from the case with one hypermultiplet field. From
the field contents of Fig. 6, Zone-loop for k instantons and
2nð¼ evenÞ hypermultiplet particles is given by

½Zone-loop�SOð7Þ
k;2n ¼ 1

2kk!

ð2 sinh ϵþÞk ·
Q

k
i¼1 2 sinhðϵþ � ϕiÞ2 sinhð�ϕiÞ ·

Q
i>j2 sinhð2ϵþ�ϕi�ϕj

2
Þ2 sinhð�ϕi�ϕj

2
Þ

ð2 sinhðϵ1;2
2
ÞÞk ·Qi>j2 sinhðϵ1;2�ϕi�ϕj

2
Þ ·Qk

i¼1

Q
3
l¼1 2 sinhðϵþ�ϕi�vl

2
Þ ·Qk

i¼1 2 sinhðϵþ�ϕi
2

Þ

·
1

2nn!

ð2 sinh ϵþÞn ·
Q

I>J2 sinhð2ϵþ�χI�χJ
2

Þ ·QI>J2 sinhð�χI�χJ
2

Þ
ð2 sinhðϵ1;2

2
ÞÞn ·Qn

I¼1 2 sinhðϵ1;2�2χI
2

Þ ·QI>J2 sinhðϵ1;2�χI�χJ
2

Þ

·
Yn
I¼1

Y3
l¼1

2 sinh

��χI þ vl
2

�
·
Yn
I¼1

2 sinh

�
χI
2

�
·

Q
k
i¼1

Q
n
I¼1 2 sinhðϵ−�ϕi�χI

2
ÞQ

k
i¼1

Q
n
I¼1 2 sinhð−ϵþ�ϕi�χI

2
Þ ; ð3:23Þ

while Zone-loop for k instantons and 2nþ 1 hypermultiplet particles is given by

½Zone-loop�SOð7Þ
k;2nþ1 ¼

1

2kk!

ð2 sinh ϵþÞk ·
Q

k
i¼1 2 sinhðϵþ � ϕiÞ2 sinhð�ϕiÞ ·

Q
i>j2 sinhð2ϵþ�ϕi�ϕj

2
Þ2 sinhð�ϕi�ϕj

2
Þ

ð2 sinhðϵ1;2
2
ÞÞk ·Qi>j2 sinhðϵ1;2�ϕi�ϕj

2
Þ ·Qk

i¼1

Q
3
l¼1 2 sinhðϵþ�ϕi�vl

2
Þ ·Qk

i¼1 2 sinhðϵþ�ϕi
2

Þ

·
1

2nn!

ð2 sinh ϵþÞn ·
Q

I>J2 sinhð2ϵþ�χI�χJ
2

Þ ·QI>J2 sinhð�χI�χJ
2

Þ
ð2 sinhðϵ1;2

2
ÞÞnþ1 ·

Q
n
I¼1 2 sinhðϵ1;2�2χI

2
Þ ·QI>J2 sinhðϵ1;2�χI�χJ

2
ÞQn

I¼1 2 coshðϵ1;2�χI
2

Þ

·
Yn
I¼1

Y3
l¼1

2 sinh

��χI þ vl
2

�
·
Yn
I¼1

2 sinh

�
χI
2

�
·
Yn
I¼1

2 cosh

�
2ϵþ � χI

2

�
·
Yn
I¼1

2 cosh

�
χI
2

�Y3
l¼1

2 cosh

�
vl
2

�

·

Q
k
i¼1

Q
n
I¼1 2 sinhðϵ−�ϕi�χI

2
Þ ·Qk

i¼1 2 coshðϵ−�ϕi
2

ÞQ
k
i¼1

Q
n
I¼1 2 sinhð−ϵþ�ϕi�χI

2
Þ ·Qk

i¼1 2 coshð−ϵþ�ϕi
2

Þ : ð3:24Þ

i;j¼1;…;k areSpðkÞ indices, I;J¼1;…;n areOð2nÞorOð2nþ1Þ indices, and l¼1, 2, 3 areSOð7Þ indices. Equations (3.23)
and (3.24) are computed on either OðnÞþ or OðnÞ− sector, where χI are eigenvalues of logU� given by (3.8).
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The partition function at k ¼ 1, n ¼ 0 is given by

ZSOð7Þ
1;0 ¼

I
dϕ
2πi

1

2
·

2 sinh ϵþ · 2 sinhðϵþ � ϕÞ · 2 sinhð�ϕÞ
2 sinhðϵ1;2

2
Þ ·Q3

l¼1 2 sinhðϵþ�ϕ�vl
2

Þ · 2 sinhðϵþ�ϕ
2

Þ : ð3:25Þ

Poles chosen at η > 0 are ϕ ¼ −ϵþ, ϕ ¼ −ϵþ � vl, but the residue from ϕ ¼ −ϵþ vanishes. Collecting the residues, one
obtains

ZSOð7Þ
1;0 ¼ t

ð1 − tuÞð1 − t=uÞ
Y
i<j

t4

ð1 − t2b�i b
�
j Þ

ðχSUð2Þ
9 þ χSUð2Þ

7 ðχSOð7Þ
7 þ 1Þ

þ χSUð2Þ
5 ð−χSOð7Þ

35 þ χSOð7Þ
7 þ 1Þ þ χSUð2Þ

3 ð−χSOð7Þ
35 þ χ27 þ 1Þ þ χSOð7Þ

105 − χSOð7Þ
21 þ χSOð7Þ

7 Þ

¼ t
ð1 − tuÞð1 − t=uÞ

X∞
p¼0

χð0;p;0ÞðvlÞt2pþ4; ð3:26Þ

where t ¼ e−ϵþ and u ¼ e−ϵ− . Here χR is the character of SOð7Þ representation R. This is simply the well-known one-
instanton partition function of SOð7Þ gauge theory. E.g., see [52] for the above character expansion form.

Next, consider the sector at k ¼ 1, n ¼ 1. ZSOð7Þ
1;1 is given by

ZSOð7Þ
1;1 ¼

I
dϕ
2πi

½Zone-loop�SOð7Þ
1;0

Q
3
l¼1 2 coshðvl2Þ
2 sinhðϵ1;2

2
Þ ·

2 coshðϵ−�ϕ
2

Þ
2 coshð−ϵþ�ϕ

2
Þ : ð3:27Þ

Poles chosen at η > 0 with nonzero residues are at ϕ ¼ −ϵþ � vl. As we explained around (3.20), Z
SOð7Þ
1;1 has contributions

from Zpert at n ¼ 1. Let us call the proper contribution to the instanton partition function ẐSOð7Þ
k;n . From (3.20), one obtains

ẐSOð7Þ
1;1 ¼ ZSOð7Þ

1;1 − ZSOð7Þ
1;0 ZSOð7Þ

0;1 : ð3:28Þ

Hat denotes the instanton partition function at level ðk; nÞ, while Zk;n is simply the Witten index of our SpðkÞ ×OðnÞ
quantum mechanics. From this formula, one obtains

ẐSOð7Þ
1;1 ¼ t

ð1 − tu�1Þ
Y
i<j

t4

ð1 − t2b�i b
�
j Þ

ð−χSUð2Þ
8 χSOð7Þ

8 − χSUð2Þ
6 χSUð2Þ

8 þ χSUð2Þ
4 χSOð7Þ

112 − χSUð2Þ
2 χSOð7Þ

168 Þ

¼ −
t

ð1 − tu�1Þ
X∞
p¼0

χð0;p;1Þt2pþ5; ð3:29Þ

where
P∞

p¼0 χð0;p;1Þt
2pþ5 ¼ χ8ðvlÞ þ χ112ðvlÞt2 þ χ720ðvlÞt4 þ � � �. Then consider the sector at k ¼ 1, n ¼ 2. ZSOð7Þ

1;2 is
given by the Spð1Þ ×Oð2Þ contour integral,

ZSOð7Þ
1;2 ¼

I
dϕdχ
ð2πiÞ2 ½Zone-loop�SOð7Þ

1;0 ·
1

2
·
2 sinh ϵþ ·

Q
3
l¼1 2 sinhð�χþvl

2
Þ · 2 sinhð�χ

2
Þ

2 sinhðϵ1;2
2
Þ · 2 sinhðϵ1;2�2χ

2
Þ

·
2 sinhðϵ−�ϕ�χ

2
Þ

2 sinhð−ϵþ�ϕ�χ
2

Þ : ð3:30Þ

Taking η ¼ ð1; 1þ ϵÞ for small positive ϵ [22], the poles at ðϕ; χÞ ¼ ð−ϵþ � vl;−
ϵ1;2
2
½þπi�Þ, ð−ϵþ � vl;�vlÞ,

ðϵþ � vl;∓ vlÞ, ð0½þπi�; ϵþ þ ½πi�Þ, ðϵ1;2
2
½þπi�;− ϵ2;1

2
½þπi�Þ, ð3ϵþ�ϵ−

2
;− ϵ1;2

2
½þπi�Þ are chosen. ½þπi� means that there are

two cases with and without þπi addition. Subtracting the contribution from ZpertZextra in (3.20), the instanton partition

function ẐSOð7Þ
1;2 at this order is given by Ẑ1;2 ¼ Z1;2 − Ẑ1;1Z0;1 − Z1;0Z0;2. One finds after computations that

ẐSOð7Þ
1;2 ¼ ZSOð7Þ

1;0 : ð3:31Þ
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For n ≥ 3, we find Ẑ1;n ¼ 0. We checked this exactly for n ¼ 3. For n ¼ 4, to save time, we plugged in random numbers in

the chemical potentials and checked that ẐSOð7Þ
1;4 is very small. (Below, we present an argument for this phenomenon.)

Collecting all the computations at n ¼ 0, 1, 2, one obtains

Zk¼1 ¼ em½Z1;0 þ e−mẐ1;1 þ e−2mẐ1;2�

¼ t
ð1 − tu�1Þ

Y
i<j

t4

ð1 − t2b�i b
�
j Þ

½−χSUð2Þ
8 χSOð7Þ

8 − χSUð2Þ
6 χSOð7Þ

8 þ χSUð2Þ
4 χSOð7Þ

112 − χSUð2Þ
2 χSOð7Þ

168

þ ðχSUð2Þ
9 þ χSUð2Þ

7 ðχSOð7Þ
7 þ 1Þ þ χSUð2Þ

5 ð−χSOð7Þ
35 þ χSOð7Þ

7 þ 1Þ
þ χSUð2Þ

3 ð−χSOð7Þ
35 þ χ27 þ 1Þ þ χSOð7Þ

105 − χSOð7Þ
21 þ χSOð7Þ

7 Þðem þ e−mÞ�: ð3:32Þ

Here we multiplied an overall factor em, like the “‘zero point
energy” factor, to have the expected Weyl symmetry m →
−m of the Spð1Þ flavor symmetry. Noting that em þ e−m ¼
χSpð1Þ2 , (3.32) completely agrees with (2.30), supporting our
ADHM-like proposals of section II at n8 ¼ 1.
Here we discuss more about the maximal value of n with

ẐSOð7Þ
k;n ≠ 0, at given k. Note that

Zinstðq; ϵ1;2; v; mÞ ¼ e−ε0
X∞
k¼0

X∞
n¼0

qke−nmẐSOð7Þ
k;n ðϵ1;2; vÞ;

ð3:33Þ
refining the previous definition by the zero point energylike
factor. Note that m is the flavor chemical potential for the
5D hypermultiplet. Since a hypermultiplet only adds
fermion zero modes on the instanton moduli space, the
rotation parameter m acts only on these fermions. So,
unlike the chemical potentials vi, ϵ1;2 which act on non-
compact zero modes, the coefficient Zk of Zinst at given qk

order should not have any poles in m. Since Zk admits

fugacity expansions, this implies that Zk is a finite poly-
nomial in em and e−m. So the sum over n should truncate to
0 ≤ n ≤ nmax for some finite nmax, also with a suitable m-
dependent ε0 to ensure the Weyl symmetry of Spð1Þ. One
can also naturally infer the value of nmax. To see this, note
that a 5D hypermultiplet in the spinor representation
induces kDð8Þ ¼ 2kTð8Þ ¼ 2k complex fermion zero
modes on the moduli space, where we used 2T ¼ 2N−2

for SOð2N þ 1Þ spinor representation. Quantizing them
into 2k pairs of fermionic harmonic oscillators, each
oscillator raises/lowers the particle number n by 1. This
means that the charge difference between the lowest and
highest states is 2k, implying nmax ¼ 2k. Then Spð1ÞWeyl
symmetry implies n → −n symmetry, demanding ε0 ¼
−km and Ẑk;2k−n ¼ Ẑk;n. These completely agree with
our empirical findings around (3.31). Below, we shall
proceed with these properties assumed.
One can study the case with k ¼ 2 in the same manner.

We computed it at vl ¼ ϵ− ¼ 0 due to computational
complications. We simply report the following results:

ZSOð7Þ
2;0 ¼ t10

ð1 − tÞ20ð1þ tÞ10ð1þ tþ t2Þ9 ð1þ tþ 15t2 þ 48t3 þ 152t4 þ 446t5 þ 1126t6 þ 2374t7

þ 4674t8 þ 8184t9 þ 12680t10 þ 17816t11 þ 22957t12 þ 26449t13 þ 27622t14 þ � � � þ t28Þ

ẐSOð7Þ
2;1 ¼ −

8t11

ð1 − tÞ20ð1þ tÞ10ð1þ tþ t2Þ9 ð1þ 3tþ 17t2 þ 62t3 þ 183t4 þ 477t5 þ 1109t6 þ 2206t7

þ 3921t8 þ 6285t9 þ 9004t10 þ 11543t11 þ 13459t12 þ 14194t13 þ � � � þ t26Þ

ẐSOð7Þ
2;2 ¼ t10

ð1 − tÞ20ð1þ tÞ10ð1þ tþ t2Þ9 ð1þ 3tþ 45t2 þ 176t3 þ 647t4 þ 2087t5 þ 5560t6 þ 12639t7

þ 25923t8 þ 46880t9 þ 74843t10 þ 107589t11 þ 139877t12 þ 162758t13 þ 170752t14 þ � � � þ t28Þ: ð3:34Þ

Here, theomitted terms in � � � canbe restored from the fact that
coefficients of tp and t28−p are same in the numerator of Z2;0

and also from similar reflection symmetries in Ẑ2;1, Ẑ2;2.
Assuming Ẑk;n ¼ 0 for n > 4 and Ẑ2;n ¼ Ẑ2;4−n, as dis-
cussed in the previous paragraph, one can compute the full

two instanton partition function for SOð7Þ gauge theory at
n8 ¼ 1,

Zk¼2 ¼ e2m
X4
n¼0

e−nmẐk¼2;n: ð3:35Þ
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Wehave checked that this completely agreeswithour indexof
Sec. II.
Next, we consider the instanton quantum mechanics of

5D SOð7Þ gauge theory with two hypermultiplets. From
Fig. 8, the contour integrand Zone-loop of k instantons with
n1 and n2 hypermultiplet particles is given by

½Zone-loop�SOð7Þ
k;n1;n2

ðϕi; χI; χ0I0 Þ

¼ ½Zone-loop�SOð7Þ
k;n1

ðϕi; χIÞ · ½Zone-loop�SOð7Þ
k;n2

ðϕi; χ0I0 Þ
½Zone-loop�SOð7Þ

k;0 ðϕiÞ
;

ð3:36Þ

where ½Zone-loop�SOð7Þ
k;n is given by (3.23) and (3.24). Here

i ¼ 1;…; k is the SpðkÞ index, I ¼ 1;…; n1 and I0 ¼
1;…; n2 are Oðn1Þ and Oðn2Þ indices, respectively. We
summarize the results of our calculations as follows:

ZSOð7Þ
1;0;0 ¼ ẐSOð7Þ

1;0;2 ¼ ẐSOð7Þ
1;2;0 ¼ ZSOð7Þ

1;0

ẐSOð7Þ
1;1;0 ¼ ẐSOð7Þ

1;0;1 ¼ ẐSOð7Þ
1;1;2 ¼ ẐSOð7Þ

1;2;1 ¼ ẐSOð7Þ
1;1

ẐSOð7Þ
1;1;1 ¼ t

ð1 − tu�1Þ
Y
i<j

t4

ð1 − t2b�i b
�
j Þ

× ½χSUð2Þ
9 þ χSUð2Þ

7 ðχSOð7Þ
35 þ χSOð7Þ

7 þ 1Þ
þ χSUð2Þ

5 ð−χSOð7Þ
105 þ 1Þ þ χSUð2Þ

3 ð−χSOð7Þ
1680 þ χSOð7Þ

77

− χSOð7Þ
21 Þ þ χSOð7Þ

330 þ χSOð7Þ
189 þ χSOð7Þ

27 �; ð3:37Þ

where ZSOð7Þ
1;0 and ZSOð7Þ

1;1 are given by (3.26), (3.29). With
the data shown in (3.37), one can compute Zk¼1 for the
SOð7Þ at n8 ¼ 2, using the fermion zero mode structures
and Spð2Þ Weyl symmetry, extending the discussions for
n8 ¼ 1 in the paragraph containing (3.33). Namely, at k
instanton sector, there are 2k fermion zero modes which
rotate in m1 and m2, respectively. This means that
ðn1Þmax ¼ ðn2Þmax ¼ 2k, with zero point energy factor
e−ε0 ¼ ekðm1þm2Þ from Weyl symmetry. Weyl symmetry
also requires Ẑk;n1;n2 ¼ Ẑk;2k−n1;n2 ¼ Ẑk;n1;2k−n2 . (Our cal-
culus on the second line of (3.37), relating Ẑ1;1;2, Ẑ1;2;1 to
other coefficients, partially reconfirms this general argu-
ment.) With these structures and (3.37), one finds

Z1 ¼ em1þm2 ½ZSOð7Þ
1;0 þ ðe−m1 þ e−m2ÞẐSOð7Þ

1;1

þ ðe−2m1 þ e−2m2ÞZSOð7Þ
1;0 þ e−m1−m2ẐSOð7Þ

1;1;1

þ ðe−2m1−m2 þ e−m1−2m2ÞẐSOð7Þ
1;1 þ e−2m1−2m2ZSOð7Þ

1;0 �
¼ χSpð2Þ4 ẐSOð7Þ

1;1 þ χSpð2Þ5 ZSOð7Þ
1;0 þ ðẐSOð7Þ

1;1;1 − ZSOð7Þ
1;0 Þ;

ð3:38Þ

where χSpð2Þ4 ¼ P
�ðe�m1 þ e�m2Þ, χSpð2Þ5 ¼ 1þP

�;� e�m1�m2 . This completely agrees with (2.31).

As explained in Sec. II, one can Higgs the SOð7Þ
gauge theory with a matter hypermultiplet in 8, to pure
G2 Yang-Mills theory by giving VEV to the hypermultiplet.
In the index, this amounts to setting mn8 ¼ ϵþ, v4 ¼ 0. See
Sec. II B. Since we have provided concrete tests of SOð7Þ
instanton partition functions of Sec. II using our D-brane-
based methods, Higgsing both sides do not yield any
further significant information or tests. Namely, calcula-
tions in this section at n8 ¼ 1, 2 already tested our G2

instanton calculus of Sec. II at n7 ¼ 0, 1. Therefore, we
shall not repeat the analysis of Higgsings to G2 in our
D-brane-based formalism.

IV. STRINGS OF NON-HIGGSABLE 6D SCFTS

In this section, we study the strings of non-Higgsable 6D
SCFTs containing G2 theories or SOð7Þ theories with
matters in 8. In particular, we shall construct the 2D gauge
theories for the strings of 6D atomic SCFTs with two- and
three-dimensional tensor branches [10].
We first briefly review the “atomic classification”

[5,6,10] of 6D N ¼ ð1; 0Þ SCFTs. This is based on
F-theory engineering of 6D SCFTs, on elliptic Calabi-
Yau threefold (CY3). Elliptic CY3 admits a T2 fibration
over a 4D base B, which is noncompact and singular. The
singular point on B hosts 6D degrees of freedom which
decouple from 10D bulk at low energy. In 6D QFT,
resolving this singularity corresponds to going to the tensor
branch. Namely, there is a 6D supermultiplet called tensor
multiplet, consisting of a self-dual 2-form potential Bμν

(whose field strength H ¼ dBþ � � � satisfies H ¼ ⋆6H), a
real scalar Φ, and fermions. Giving VEV to Φ, one goes
into the tensor branch. Geometrically, the singularity of B is
resolved into a collection of intersecting 2-cycles P1.
Associated with the i’th P1, there is a tensor multiplet
Bi, Φi, and sometimes a non-Abelian vector multiplet Ai

with simple gauge group Gi. The VEV of Φi is propor-
tional to the volume of the i’th P1. Depending on how
the 2-cycles intersect, the vector multiplets form a sort
of quiver possibly with charged hypermultiplet matters.
Geometrically, the vector and hypermultiplets are deter-
mined by how the T2 fiber degenerates on B. Equivalently,
they depend on the 7-branes wrapping B. With a given
resolution of the singularity on B, there are families of
theories related to others by Higgsings. The classification
of [5,6,10] proceeds by first identifying possible non-
Higgsable theories and then considering possible “un-
Higgsings.”
Non-Higgsable theories are constructed by first taking a

finite set of “quiver nodes” and connecting them with
certain rules. Technically, the nodes are connected by
suitably gauging the E-string theory and identifying them
with the gauge groups of the quiver nodes. See [5] for the
detailed rules. Roughly speaking, the possible quiver nodes
are given in Tables III and IV. More precisely, the SCFTs at
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n ¼ 1 and n ¼ 2 play different roles: see [5,6] for the
precise ways of using the SCFTs in Tables III and IV. The
SCFTs in Table III are called “minimal SCFTs” in [14].
Here, the numbers on the first rows denote the negative of
the self-intersection numbers of P1. Thus, in Table IV, there
are two or three 2-cycles (tensor multiplets).
We are interested in the self-dual strings, which are

charged under Bi
μν with equal electric and magnetic

charges. If a node has gauge symmetry, the string is identified
as an instanton string soliton. See, e.g., [4] and references
therein for a review. In this section, we are interested in
the strings of the SCFTs given in Table IV. Since they involve
G2 gauge group with matters in 7 or SOð7Þ gauge group
with matters in 8, the gauge theories on these strings
will be constructed using our gauge theories of Sec. II as
ingredients.

A. 2,3,2: SUð2Þ × SOð7Þ × SUð2Þ gauge group

Since this QFT has three factors of simple gauge groups,
one can assign three topological numbers k1, k2, k3 for the
instanton strings in SUð2Þ1, SOð7Þ, SUð2Þ2. To construct
the 2D quiver for these strings, we proceed in steps. We first
consider the case in which two of the three gauge
symmetries are ungauged in 6D, when only one of k1,
k2, k3 is nonzero. They are instanton strings of either SUð2Þ
or SOð7Þ gauge theory with certain matters. After identi-
fying three ADHM(-like) gauge theories, we then consider
the case with all k1, k2, k3 nonzero and form a quiver of the
three ADHM(-like) theories.
We first consider the case with k1 ¼ k3 ¼ 0, when

SUð2Þ1 × SUð2Þ2 is ungauged. Then SUð2Þ2 ∼ Spð1Þ2
becomes a flavor symmetry rotating the hypermultiplets,
which in the strict ungauging limit enlarges to Spð2Þ. This
is because the matters in 1

2
ð2; 8; 1Þ þ 1

2
ð1; 8; 2Þ will arrange

into 1
2
ð8; 4Þ of SOð7Þ × Spð2Þ in the ungauging limit. This

theory was discussed in Sec. II A, the 6D SOð7Þ theory at
n8 ¼ 2. So as the ADHM-like description, we take this

theory with Uðk2Þ gauge symmetry and reduced SUð4Þ ×
Uð2Þ ⊂ SOð7Þ × Spð2Þ global symmetry. Note that in
Sec. II, our 2D gauge theory can have Uð4Þ global
symmetry rotating four Fermi multiplets, but it reduced
to Uð2Þ after coupling to the 5D/6D background fields,
especially the hypermultiplet scalar VEV. So, the relevant
global symmetry of this model (as describing higher
dimensional QFT’s soliton) depends on the bulk informa-
tion. Here, since we shall use this model for the strings of
the non-Higgsable 2,3,2 SCFT, with SUð2Þ2 gauged, one
cannot turn on such a background hypermultiplet field.
Instead, SUð2Þ2 ⊂ Uð4Þ global symmetry will remain in
2D after 6D gauging. Four Fermi fields are divided into two
pairs, and we can rotate them only within a pair.
We also consider the limit in which SOð7Þ × SUð2Þ2 is

ungauged, and consider k1 instanton strings in SUð2Þ1. The
matter 1

2
ð1; 8; 2Þ will not affect the ADHM construction

since it is neutral in SUð2Þ1. 12 ð2; 8; 1Þ will reduce to four
fundamental hypermultiplets in SUð2Þ. Its ADHM con-
struction is well known. The 2D (0,4) field contents are
given as follows:

ðAμ; λ0; λÞ∶ vector mutiplet in ðadj; 1Þ
q _α ¼ ðq; q̃†Þ∶ hypermultiplet in ðk; 2̄Þ
aα_β ∼ ða; ã†Þ∶ hypermultiplet in ðadj; 1Þ

Ψa∶ Fermi multiplet in ðk; 1Þ; ð4:1Þ

where a ¼ 1;…; 4. We showed the representations of
Uðk1Þ × SUð2Þ. As for the hypermultiplets, we have only
shown the scalar components. α; _α ¼ 1, 2 are the doublet
indices for SUð2Þl and SUð2Þr. Although 2̄ ∼ 2 for SUð2Þ,
we put bar since the ADHM construction classically has
Uð2Þ symmetry as a default. This is the UV quiver
description for the SUð2Þ instanton string at n2 ¼ 4.
This quiver classically has Uðk1Þ gauge symmetry and
Uð2Þ ×Uð4ÞF global symmetries. Uðk1Þ is anomaly free
[12]. The overall Uð1ÞG ⊂ Uð2Þ and Uð1ÞF ⊂ Uð4ÞF has
mixed anomaly with Uð1Þ ⊂ Uðk1Þ, and only Gþ F is
free of mixed anomaly [12]. Moreover, considering all
fields in this ADHM quiver, Gþ F can be eaten up by
Uð1Þ ⊂ Uðk1Þ. This implies that Uðk1Þ gauge-invariant
observables will not see G, F. So, this system only has
SUð2Þ × SUð4ÞF symmetry [12]. In the IR, this enhances to
SUð2Þ × SOð7ÞF. This is in contrast to the SUð2Þ theory at
n2 ¼ 4 in lower dimensions, in which caseUð4ÞF enhances

TABLE III. Symmetries/matters of SCFTs with rank 1 tensor
branches.

n 1 2 3 4 5 6 7 8 12

Gauge symmetry � � � � � � SUð3Þ SOð8Þ F4 E6 E7 E7 E8

Global symmetry E8 SOð5ÞR � � � � � � � � � � � � � � � � � � � � �
Matter � � � � � � � � � � � � 1

2
56 � � � � � �

TABLE IV. Non-Higgsable atomic SCFTs with higher rank tensor branches.

Base 3,2 3,2,2 2,3,2

Gauge symmetry G2 × SUð2Þ G2 × SUð2Þ × fg SUð2Þ × SOð7Þ × SUð2Þ
Matter 1

2
ð7þ 1; 2Þ 1

2
ð7þ 1; 2Þ 1

2
ð2; 8; 1Þ þ 1

2
ð1; 8; 2Þ
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to SOð8Þ. The SOð7ÞF symmetry of this model was noticed
in [6,53]. Replacing k1 by k3, one can also obtain the
ADHM gauge theory when SUð2Þ1 × SOð7Þ is ungauged
in 6D.
Now when all k1, k2, k3 are nonzero, one can form a

quiver of the above three ADHM(-like) theories. We shall
add more 2D matters to account for the zero modes coming
from 6D hypermultiplets and introduce extra potentials.
Between adjacent SUð2Þ1 × SOð7Þ or SOð7Þ × SUð2Þ2
pair of nodes, one has bifundamental hypermultiplet in
1
2
ð8; 2Þ. Since we seek for a 2D UV description seeing

SUð2Þ × SUð4Þ subgroup only, this hypermultiplet is in
ð2; 4̄Þ bifundamental representation of the latter. Usually in
D-brane models with bifundamental matters, the induced
(0,4) matters on the Uðk1Þ ×Uðk2Þ ADHM construction of
instantons are as follows:

ΦA ¼ ðΦ; Φ̃†Þ∶ twisted hypermultiplet in ðk1; k̄2Þ
Ψα ¼ ðΨ1;Ψ2Þ∶ two Fermi multiplet fields in ðk1; k̄2Þ

ð4:2Þ
and

Ψa∶ Fermi multiplets in ðk1; 4̄Þ of Uðk1Þ × SUð4Þ
ða ¼ 1;…; 4Þ

Ψi∶ Fermi multiplets in ðk̄2; 2Þ of Uðk2Þ × SUð2Þ
ði ¼ 1; 2Þ: ð4:3Þ

See, e.g., [12,15] for the details. Although our construction
is not guided by D-brane models, we advocate the same
field contents as our natural ansatz. The fields Ψa with
a ¼ 1;…; 4 are not new, but come from the last line of
(4.1). This is natural because the 6D SUð4Þ ⊂ SOð7Þ gauge
symmetry is obtained by gauging the global symmetry in
the setting of (4.1). Also,Ψi with i ¼ 1, 2 can also be found
in the ADHM-like quiver in Sec. II. Namely, in Sec. II, we
had four Fermi multiplet fields in k2 representation of
Uðk2Þ, at n8 ¼ 2. Ψi of (4.3) is obtained by taking two of
these four. (The other two will be associated with the
SOð7Þ × SUð2Þ2 pair.) The bifundamental fields in (4.2)
are new and link the two ADHM(-like) gauge nodes.
Similarly, between the second and third nodes, bifunda-
mental fields of the form of (4.2), replacing k1 → k3, are
added. The remaining Fermi fields in the second and third
nodes take the form of (4.3), with k1 → k3. The flavor
symmetry of these Fermi multiplets in an ADHM node is
locked with the 6D gauge symmetry of the adjacent ADHM
node. The resulting quiver is shown schematically
in Fig. 10.
In the previous paragraph, and in Fig. 10, we locked

some 6D flavor symmetries of an ADHM theory with
6D gauge symmetries of adjacent ADHM theories. This
has to be justified by writing down the interactions which
lock the symmetries as claimed. Now we explain such

superpotentials. In the (0,2) off-shell description [24] of
(0,4) theories, one can introduce interactions by two kinds
of superpotentials JΨ, EΨ given for each Fermi multiplet.
There are some constraints on JΨ’s and EΨ’s to be met,
either for (0,2) SUSY or for (0,4) enhancement of the
classical action. These conditions are all mentioned in
Sec. III, when we discussed models with manifest (0,4)
SUSY. In our current ADHM-like models, some part of the
matters and interactions inevitably break manifest (0,4)
SUSY. However, most of the fields still take the form of
(0,4) multiplets, so that we find it is convenient to turn on
classical interactions in two steps. We first turn on
manifestly (0,4) supersymmetric classical interactions for
the fields shown in Fig. 10 with black lines/nodes. Then we
rephrase these interactions in N ¼ ð0; 1Þ language, after
which we turn on further (0,1) interactions for the fields
shown as red lines in Fig. 10. We find that securing the
partial (0,4) SUSY structure plays important roles for the
correct physics, e.g., yielding the right multiparticle struc-
tures of the elliptic genus, etc.
In (0,4) gauge theories, one has two types of hyper-

multiplets: hypermultiplet whose scalars form a doublet of
SUð2Þr and twisted hypermultiplet whose scalars form
a doublet of SUð2ÞR. These two multiplets contribute
differently to the J, E superpotentials for the fermions in
the (0,4) vector multiplet. Namely, in the (0,2) formalism
of [24], a (0,4) vector multiplet decomposes into a (0,2)
vector multiplet Aμ; λ0 and an adjoint Fermi multiplet λ
(plus auxiliary field). A hypermultiplet field ðΦ _αÞR ¼
ðΦ; Φ̃†ÞR in the representation R of the gauge group
contributes Jλa ¼ΦR½Ta

R�Φ̃R. A twisted hypermultiplet
ðΦAÞR¼ðΦ;Φ̃†ÞR contributes to Eλa ¼ ΦR½Ta

R�Φ̃R. This
is the requirement of (0,4) supersymmetry. (In our

FIG. 10. 2D quiver for the strings of 6D 2,3,2 SCFT. Black
lines are fields taking the form of N ¼ ð0; 4Þ multiplets, being
either hypermultiplet/twisted hypermultiplet (bold line) or Fermi
multiplet (dashed). Red lines are N ¼ ð0; 2Þ chiral(bold)/Fermi
(dashed) multiplets. All the named (0,2) superfields are described
in Table II and Eqs. (4.4) and (4.5).
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normalization of Sec. III, one has
ffiffiffi
2

p
factors multiplied.)

However, from the (0,2) SUSY, they should satisfyP
Ψ JΨEΨ ¼ 0. To meet this condition, one has to turn

on extra potentials for the Fermi multiplets shown as black
lines in Fig. 10. This is in complete parallel with the results
shown in Sec. III. Let us name the fields in Fig. 10 with
black lines/nodes as follows. The ADHM fields within an
ADHM node are named as follows:

Node 1∶ q1; q̃1 ∈ ðk1; 2̄1Þ þ ðk̄1; 21Þ; a; ã ∈ adj1

Node 2∶ q2; q̃2 ∈ ðk2; 4̄Þ þ ðk̄2; 4Þ; a; ã ∈ adj2

Node 3∶ q3; q̃3 ∈ ðk3; 2̄3Þ þ ðk̄3; 23Þ; a; ã ∈ adj3;

ð4:4Þ

while the fields linking the adjacent nodes are named as

Link 1–2∶ Φ12; Φ̃12 ∈ ðk1; k̄2Þ þ ðk̄1;k2Þ; Ψ12; Ψ̃12 ∈ ðk1; k̄2Þ þ ðk̄1;k2Þ
ψ12; ψ̃12 ∈ ðk1; 4̄Þ þ ðk̄2; 21Þ

Link 2–3∶ Φ23; Φ̃23 ∈ ðk2; k̄3Þ þ ðk̄2;k3Þ; Ψ23; Ψ̃23 ∈ ðk2; k̄3Þ þ ðk̄2;k3Þ
ψ23; ψ̃23 ∈ ðk2; 2̄3Þ þ ðk̄3; 4Þ: ð4:5Þ

Here, notations like 21, 23 mean representations of SUð2Þ on the first (leftmost) and the third (rightmost) nodes,
respectively. Then, using the results of [54], Eqs. (3.3) and (3.4), we find the following superpotentials after mapping our
fields with those in Table 4 of [54]:

Nodes∶ Jλi ¼
ffiffiffi
2

p
ðqiq̃i þ ½ai; ãi�Þ ðfor i ¼ 1; 2; 3Þ; Eλ1 ¼

ffiffiffi
2

p
Φ12Φ̃12;

Eλ2 ¼
ffiffiffi
2

p
ðΦ23Φ̃23 − Φ̃12Φ12Þ; Eλ3 ¼ −

ffiffiffi
2

p
Φ̃23Φ23

Links∶ EΨi−1;i
¼

ffiffiffi
2

p
ðΦi−1;iai − ai−1Φi−1;iÞ; JΨi−1;i

¼
ffiffiffi
2

p
ðãiΦ̃i−1;i − Φ̃i−1;iãi−1Þ;

EΨ̃i−1;i
¼

ffiffiffi
2

p
ðãi−1Φi−1;i −Φi−1;iãiÞ; JΨ̃i−1;i

¼
ffiffiffi
2

p
ðaiΦ̃i−1;i − Φ̃i−1;iai−1Þ;

Eψ i−1;1
¼

ffiffiffi
2

p
Φi−1;iqi; Jψ i−1;i

¼
ffiffiffi
2

p
q̃iΦ̃i−1;i

Eψ̃ i−1;1
¼

ffiffiffi
2

p
q̃i−1Φi−1;i; Jψ̃ i−1;i

¼ −
ffiffiffi
2

p
Φ̃i−1;iqi−1 ðfor i ¼ 2; 3Þ: ð4:6Þ

(We correct overall normalization of [54] by
ffiffiffi
2

p
factors.)

These are part of the interactions, and we shall add more
interactions later preserving less SUSY. Only with the
interactions shown above, one can check the (0,4) SUSY
of the classical action, for instance, in the bosonic potential
[24,54]. The rearrangement of the potential energy with
SUð2Þr × SUð2ÞR symmetry can be made similar to
Eq. (3.6) of [54]. In particular, the flavor symmetries which
rotate Fermi multiplets are locked by these interactions as
shown in Fig. 10.
We now proceed to write down all the interactions

preserving only (0,1) symmetry, for the red fields asso-
ciated with the middle “3” node. This will basically be the
same as the interactions explained in Sec. II A, for SOð7Þ
instanton strings at n8 ≠ 0. However, before doing that, we
should rephrase the previous (0,4) interactions in the (0,1)
superfield language. In (0,2) superfield, one has a pair of
complex superspace coordinates θ, θ̄. EΨ appears as the top
component ∼θθ̄EΨðΦÞ of the Fermi multiplet [25]. On the
other hand, JΨ appears as a term in the Lagrangian, of the
form

R
dθΨJΨ þ H:c: However, since (0,1) supersymmetry

only has one real superspace coordinate θ, there is no
separate notion of EΨ. There can be superpotentials

R
dθðΨJð0;1ÞΨ − H:c:Þ, where Jð0;1ÞΨ can be any nonholomor-

phic function of the scalars. To realize JΨ and EΨ in the
previous paragraph, one writes

X
Ψ

Z
dθ½ΨðJΨðΦÞ þ ĒΨðΦ̄ÞÞ − H:c:�: ð4:7Þ

One finds the correct bosonic potential
P

Ψ jJΨ þ ĒΨj2 ¼P
Ψ ðjJΨj2 þ jEΨj2Þ, using

P
Ψ JΨEΨ ¼ 0 of (4.6).

The Yukawa couplings associated with JΨ and EΨ ∼P
Ψ Ψð∂JΨ∂ϕi ψ i þ ∂Ē

∂ϕ̄i
ψ iÞ are also correctly reproduced. Now

with (4.6) rewritten as Jð0;1ÞΨ ¼ JΨ þ ĒΨ, we add further
interactions for λ̂, λ̌ on the middle node, as given by (2.7).
With these potentials, one can show that the moduli

space is that of each ADHM-like quiver, at Φi−1;i ¼ 0,
Φ̃i−1;i ¼ 0. In particular, no extra branch is formed
by Φi−1;i; Φ̃i−1;i.
One can compute the 2D anomalies from our gauge

theory and compare with the result known from anomaly
inflow. The 6D one-loop anomaly 8-form in the tensor
branch is given by
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Ione-loop ¼ −
3

32
½TrðF2

SOð7ÞÞ�2 −
1

16
½TrðF2

SUð2Þ1Þ�2 −
1

16
½TrðF2

SUð2Þ2Þ�2

þ 1

16
TrðF2

SOð7ÞÞ½TrðF2
SUð2Þ1Þ þ TrðF2

SUð2Þ2Þ� −
1

16
p1ðTÞTrðF2

SOð7ÞÞ

−
1

4
c2ðRÞ½5TrðF2

SOð7ÞÞ þ 2TrðF2
SUð2Þ1Þ þ 2TrðF2

SUð2Þ2Þ� þ � � � : ð4:8Þ

We only showed the terms containing SUð2Þ1 × SOð7Þ × SUð2Þ2 gauge fields. This can be written as
Ione-loop ¼ − 1

2
ΩijIiIj þ � � �, with i, j ¼ 1, 2, 3, where

Ωij ¼

0
B@

2 −1 0

−1 3 −1
0 −1 2

1
CA; Ii ¼

0
BB@

1
4
TrðF2

SUð2Þ1Þ þ
11
4
c2ðRÞ þ 1

16
p1ðTÞ

1
4
TrðF2

SOð7ÞÞ þ 7
2
c2ðRÞ þ 1

8
p1ðTÞ

1
4
TrðF2

SUð2Þ2Þ þ
11
4
c2ðRÞ þ 1

16
p1ðTÞ

1
CCA: ð4:9Þ

Using (2.40), one finds the following anomaly 4-form I4:

I4 ¼
�
k1k2 þ k2k3 − k21 −

3

2
k22 − k23

�
χðT4Þ þ k2ðI1 þ I3 − 3I2Þ þ k1ðI2 − 2I1Þ þ k3ðI2 − 2I3Þ ð4:10Þ

on the instanton strings with string numbers ki ¼ ðk1; k2; k3Þ.
We now compute the anomaly from our gauge theory. We first compute the anomalies of three ADHM quivers IðiÞ4 (i ¼ 1,

2, 3), restricting them according to the symmetry locking rules. We then compute the anomalies Ibif4 of mattersΦi−1;i; Φ̃i−1;i.

The net anomaly is I4 ¼
P

3
i¼1 I

ðiÞ
4 þ Ibif4 . Using (2.41), one first finds

Ið2Þ4 ¼ −
3

2
k22χðT4Þ − k2

�
3

4
TrðF2

SOð7ÞÞ þ 5c2ðRÞ þ
p1ðTÞ
4

−
1

4
ðTrðF2

SUð2Þ1Þ þ TrðF2
SUð2Þ2ÞÞ

�
; ð4:11Þ

where we replaced tr4ðF2
Spð2ÞÞ → tr2ðF2

SUð2Þ1Þ þ tr2ðF2
SUð2Þ2Þ ¼

1
2
½TrðF2

SUð2Þ1Þ þ TrðF2
SUð2Þ2Þ�. As in Sec. II A, FSOð7Þ is

restricted to SUð4Þ in our UV gauge theory, and fields in c2ðRÞ, c2ðrÞ are also restricted to FJ. I
ð1Þ
4 and Ið3Þ4 can be computed

from the known anomaly polynomial for the instanton strings of 6D SUð2Þ theory at n2 ¼ 4. The result is Eq. (5.19) of [4]
at N ¼ 2, with k replaced by k1 or k3,

Ið1Þ4 ¼ −k21χðT4Þ −
k1
2
TrðF2

SUð2Þ1Þ þ
k1
4
TrðF2

SOð7ÞÞ − 2k1c2ðRÞ; Ið3Þ4 ¼ ðk1; SUð2Þ1 → k3; SUð2Þ2Þ: ð4:12Þ

Here we replaced F ¼ SUð4Þ of [4] by SOð7Þ, assuming symmetry enhancement. Finally, Ibif4 is also computed in [4],
Eq. (3.58), which for our model is

Ibif4 ¼ ðk1k2 þ k2k3ÞχðT4Þ: ð4:13Þ

One finds that I4 ¼
P

3
i¼1 I

ðiÞ
4 þ Ibif4 agrees with (4.10), providing a check of our gauge theory.

The elliptic genus of this gauge theory is given by (note again the definition θðzÞ≡ iθ1ðτj z
2πiÞ

ηðτÞ )

Zk1;k2;k3 ¼
I Yk1

I1¼1

Q
4
i¼1 θðvi − uI1Þ

θðϵþ � uI1 � νÞ ·
Q

I1≠J1θðuI1J1Þ
Q

I1;J1θð2ϵþ þ uI1J1ÞQk1
I1;J1¼1 θðϵ1;2 þ uI1J1Þ

· ð1 → 3; ν → ν̃Þ

·
Yk2
I2¼1

θðv� uI2Þθðṽ� uI2ÞQ
4
i¼1 θðϵþ � ðuI2 − viÞÞθðϵþ − uI2 − viÞ

·

Q
I2≠J2θðuI2J2Þ

Q
I2;J2θð2ϵþ þ uI2J2ÞQk2

I2;J2¼1 θðϵ1;2 þ uI2J2Þ

·

Q
I2≤J2θðuI2 þ uJ2ÞθðuI2 þ uJ2 − 2ϵþÞQ

I2<J2θðϵ1;2 − uI2 − uJ2Þ

·
Yk1
I1¼1

Yk2
I2¼1

θðϵ− � ðuI1 − uI2ÞÞ
θð−ϵþ � ðuI1 − uI2ÞÞ

·
Yk2
I2¼1

Yk3
I3¼1

θðϵ− � ðuI2 − uI3ÞÞ
θð−ϵþ � ðuI2 − uI3ÞÞ

: ð4:14Þ
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vi (with
P

i vi ¼ 0) is the SUð4Þ ⊂ SOð7Þ chemical
potential, �ν and �ν̃ are the chemical potentials for 6D
SUð2Þ2. The contour integral is given with suitable weight
[30], including the Uðk1Þ × Uðk2Þ ×Uðk3Þ Weyl factor.
The contour integral is again given by the JK-residues [30].
We again choose η1 ¼ ð1;…; 1Þ, η2 ¼ ð1;…; 1Þ,
η3 ¼ ð1;…; 1Þ. Then, similar to the residue choices made
in Sec. II, one can show that the residues are labeled by

three sets of colored Young diagrams, ðYð1Þ
1 ; Yð1Þ

2 Þ with k1
boxes for uI1, ðYð2Þ

1 ;…; Yð2Þ
4 Þ with k2 boxes for uI2, and

ðYð3Þ
1 ; Yð3Þ

2 Þ with k3 boxes for uI3. The residues all come
from the poles at

uI1∶ ϵþ þ uI1 � ν ¼ 0; ϵ1;2 þ uI1J1 ¼ 0

uI2∶ ϵþ þ uI2 − vi ¼ 0; ϵ1;2 þ uI2J2 ¼ 0

uI3∶ ϵþ þ uI3 � ν̃ ¼ 0; ϵ1;2 þ uI3J3 ¼ 0; ð4:15Þ

coming from the first, second, and third lines of (4.14),
respectively. The residue sum is given by

Zk1;k2;k3 ¼
X

Yð1;2;3Þ
jYðaÞj¼ka

Y2
i¼1

� Y
s1∈Yð1Þi

Q
4
l¼1 θðvl − ϕðs1ÞÞQ

2
j¼1 θðEijðs1ÞÞθðEijðs1Þ − 2ϵþÞ

�
×
Y2
i¼1

ð1 → 3Þ

×
Y4
i¼1

� Y
s2∈Yð2Þi

θð2ϕðs2ÞÞθð2ϕðs2Þ − 2ϵþÞ · θðv� ϕðs2ÞÞθðṽ� ϕðs2ÞÞQ
4
j¼1 θðEijðs2ÞÞθðEijðs2Þ − 2ϵþÞθðϵþ − ϕðs2Þ − vjÞ

×
Y

s2∈Yð2Þi

Y4
j≥i

Y
s̃2∈Yð2Þj
s2<s̃2

θðϕðs2Þ þ ϕðs̃2ÞÞθðϕðs2Þ þ ϕðs̃2Þ − 2ϵþÞ
θðϵ1;2 − ϕðs2Þ − ϕðs̃2ÞÞ

×
Y2
j¼1

Y
s1∈Yð1Þj

θð−ϵ− � ðϕðs1Þ − ϕðs2ÞÞÞ
θð−ϵþ � ðϕðs1Þ − ϕðs2ÞÞÞ

×
Y2
j¼1

Y
s3∈Yð3Þj

θð−ϵ− � ðϕðs2Þ − ϕðs3ÞÞÞ
θð−ϵþ � ðϕðs2Þ − ϕðs3ÞÞÞ

�
; ð4:16Þ

where sa (for a ¼ 1, 2, 3) labels the ka boxes in the a’th
colored Young diagram, and ðvð1ÞÞ1;2 ¼ �ν, ðvð3ÞÞ1;2 ¼
�ν̃. ϕðsaÞ and EijðsaÞ are defined as

EijðsaÞ ¼ vðaÞi − vðaÞj − ϵ1hiðsaÞ þ ϵ2ðvjðsaÞ þ 1Þ;
ð4:17Þ

ϕðsaÞ ¼ vðaÞi − ϵþ − ðna − 1Þϵ1 − ðma − 1Þϵ2 ð4:18Þ

for sa ¼ ðma; naÞ ∈ YðaÞ
i .

It is important to note that Φi−1;i; Φ̃i−1;i do not provide
extra JK-Res, for the following reason. For instance,
suppose that we take the “pole” from θð−ϵþ þ uI1 −
uI2Þ−1 on the fourth line, at −ϵþ þ uI1 − uI2 ¼ 0 to
determine uI1 , with uI2 determined from (4.15). Suppose
that uI2 is determined by ϵþ þ uI2 − vi ¼ 0. Then on the
first line of (4.14), a Fermi multiplet contribution θðvi −
uI1Þ vanishes at the pole, because uI1 − vi ¼ ð−ϵþþ
uI1 − uI2Þ þ ðϵþ þ uI2 − viÞ ¼ 0. On the other hand, sup-
pose that uI2 is determined by one of ϵ1;2 þ uI2 − uJ2 ¼ 0,
with uJ2 determined by other equations. Then, from
Ψ12; Ψ̃12’s contributions θðϵ− � ðuI1 − uJ2ÞÞ on the fourth
line, one again finds that one of the two θ factors vanishes
at the pole location. Therefore, one finds that the residue
vanishes due to the vanishing determinant from certain

Fermi multiplet. This idea turns out to hold most generally,
so that one can show that the fourth line of (4.14) never
provides a pole with nonzero JK-residue. Based on these
observations, one can make a recursive proof of this
statement, similar to that made for the 5DN ¼ 1� instanton
partition function in [22]. Note that the symmetry locking
provided by the (0,4) potentials (4.6) played crucial roles
for the vanishing of these residues.

B. Tests from 5D descriptions

In this subsection, we test the elliptic genera of Sec. IVA,
using a recently proposed 5D description for the 6D 2,3,2
SCFT compactified on S1 [16]. The description is available
when the elliptic CY3 in F-theory admits an orbifold
description of the form ½B × T2�=Γ with a discrete group
Γ. One can dualize F-theory to M-theory on same CY3. The
small S1 limit (together with suitably scaling other massive
parameters) on the F-theory side corresponds to the large
T2 limit on the M-theory dual. There may be fixed points of
Γ on T2, as it decompactifies intoR2. Near each fixed point,
there exists an interacting 5D SCFTs. So, in this 5D limit,
one obtains factors of decoupled 5D SCFTs. The 6D
Kaluza-Klein (KK) momentum degrees of freedom can
be restored by locking certain global symmetries of these
5D SCFTs and gauging it, so that the instanton quantum
number of this 5D gauge theory provides the 6D KK
momentum. See [16,55–57] for the details.
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If a 6D SCFT admits a 6D gauge theory description, an
obvious 5D limit is given by the 5D gauge theory with same
gauge group. This is obtained by a scaling limit with 6D
tensor multiplet scalar VEV, v ¼ hΦi → ∞. Namely, v ¼
g−26D and Rv ¼ g−25D are the 6D and 5D inverse gauge
couplings, respectively, where R is the circle radius. If
one takes R→0, v → ∞ with g−25D kept fixed, one often gets
a 5D SCFT with a relevant deformation made by g−25D ≠ 0

[57]. The 5D factorization limit described in the previous
paragraph takes different scaling limit of massive param-
eters when taking R → 0. The latter 5D limit scales other
massive parameters like the holonomies of gauge fields on
S1. From the viewpoint of former 5D limit, the latter 5D
limit keeps a different slice of 5D states, which contains
states with nonzero KK momenta from the former view-
point. For our 2,3,2 SCFT, the new 5D limit consists of
three 5D SCFTs. The three 5D SCFTs admit IIB 5-brane
web engineerings, given by Fig. 11 [16]. Each factor in
Fig. 11(a) is a non-Lagrangian theory, in that it does not
admit a relevant deformation to 5D Yang-Mills theory.
(Figure 11(a) is related to that in [16] by a flop transition.)
To have states with general KK momenta, one locks the
three SUð2Þg flavor symmetries associated with gauge sym-
metries on the blue-colored parallel 5-branes of Fig. 11 and
gauge it. The relations between6Dparameters and theKähler
parameters of 5-brane web are shown below Fig. 11, which
will be (empirically) justified. Reference [16] also discusses
the gauging of SUð2Þg in the brane web context as trivalent
gluing, with some prescriptions for computations. But here
we shall only discuss computations in the factorization limit.
We want to test our elliptic genera (4.14) and (4.16)

using this 5D description. The test will be made in the 5D
factorization limit in which SUð2Þg is ungauged, as in

Fig. 11 with semi-infinite blue lines. In some sectors with
special values of k1, k2, k3, the BPS spectrum of the brane
configuration is well known, so our elliptic genera in these
sectors will be tested against known results. More generi-
cally, we shall do topological vertex calculus. Technically,
identifying the parameters of 6D gauge theory (and our
elliptic genus) and those in the 5-brane web is not
straightforward. The relations between the two sets of
parameters are often determined empirically in the liter-
ature. We follow the strategy of [16] which studied the 5D
description of 6D gauge theories. [16] used the guidance
from 6D affine gauge symmetry structure to partly deter-
mine the relations between 5D/Dd parameters, and then
empirically fixed the rest. In our problem, we shall use the
affine SOð7Þ symmetry to partly determine the relation and
then focus on well-known subsectors to fix the rest.
We first determine the parameter relation that can be

inferred from SOð7Þ group theory. To this end, we focus on
the part of web diagrams of Fig. 11 associated with the
Kähler parameters ð1Þ ¼ ð5Þ, ð6Þ ¼ ð10Þ, (12) and the blue
5-branes. Considering how the associated four faces are
connected to others (after SUð2Þg gauging), it is natural to
conceive that the four Kähler parameters are fugacities for
the affine SOð7Þ symmetry. This is somewhat similar to the
identifications of 6D SUð3Þ, SOð8Þ, E6;7;8 fugacities in
[16], using their affine Dynkin diagrams. For SOð7Þ, the
affine Dynkin diagram is given by Fig. 12, where e1, e2, e3
are orthonormal vectors. We call the fugacities correspond-
ing to the simple roots as ðt1; t2; t3; t4Þ ↔ ðα1; α0; α3; α2Þ.
From the expressions of the roots in Fig. 12, one obtains

t1 ¼
z21
z22
; t2 ¼

q
z21z

2
2

; t3 ¼ z23; t4 ¼
z22
z23

; ð4:19Þ

FIG. 11. The 5-brane webs for the 6D 2,3,2 SCFT in a 5D limit. (1)–(12) are the Kähler parameters in terms of our fugacities. v; u; ṽ
are tensor VEVs for SUð2Þ1 × SOð7Þ × SUð2Þ2.

6D STRINGS AND EXCEPTIONAL INSTANTONS PHYS. REV. D 103, 025012 (2021)

025012-31



where we used the fact that the KK momentum fugacity
q≡ e2πiτ is associated with α0 in the affine Lie algebra.
The root relation α1 þ 2α2 þ 2α3 þ α0 ¼ 0 is reflected in
the above parametrization as t1t2t23t

2
4 ¼ q. z1, z2, z3 are the

fugacities of SOð7Þ rotating three orthogonal 2-planes.
More precisely, the characters of 7 and 8 are given in these
parameters by

χ8 ¼ z1z2z3 þ
z1z2
z3

þ z2z3
z1

þ z3z1
z2

þ ðinverse of all four termsÞ
χ7 ¼ 1þ z21 þ z22 þ z23 þ ðinverse of all three termsÞ:

ð4:20Þ
The SUð4Þ fugacity basis yi ¼ e−vi (i ¼ 1, 2, 3) that we
have been using is related to z1;2;3 by z21 ¼ y2y3, z22 ¼ y3y1,
z23 ¼ y1y2, so that the characters are given by

χ8 ¼ y1 þ y2 þ y3 þ
1

y1y2y3
þ ðinverse of all four termsÞ

χ7 ¼ 1þ y1y2 þ y2y3 þ y3y1 þ ðinverse of all three termsÞ:
ð4:21Þ

t1;2;3;4 are given in terms of y1;2;3, q by

t1 ¼
y2
y1

¼ ð6Þ ¼ ð10Þ; t2 ¼
q

y1y2y23
¼ ð1Þ ¼ ð5Þ;

t3 ¼ y1y2 ¼ ð12Þ; t4 ¼
y3
y2

: ð4:22Þ

t4 is roughly the Kähler parameter for the blue line in
Fig. 11, which is sent to zero in the factorization limit, with

t1;2;3 fixed. This limit requires q ∼ y23 → 0with fixed y1, y2.
To fully specify this 5D limit, we still have to specify the
scaling of other parameters in q → 0. The remaining
parameters are two SUð2Þ inverse gauge couplings (or
tensor VEVs) which we call e−v, e−ṽ in this subsection, two
SUð2Þ fugacities w; w̃ (related to ν; ν̃ of Sec. IVA by
w ¼ e−ν, w̃ ¼ e−ν̃), SOð7Þ inverse gauge coupling e−u. All
the scaling rules except that of e−u will be determined
below by considering an SUð2Þ subsector. The scaling of
e−u will then be determined next by considering the SOð7Þ
subsector, at which stage we shall already make some tests
of our elliptic genera. Then we consider more general
sectors for further tests.
SUð2Þ subsector: We first study the limit in which SOð7Þ

is ungauged, or equivalently, when k2 ¼ 0. The limit
u → ∞ should yield two 6D SUð2Þ theories at n2 ¼ 4,
decoupled to each other. So, in this limit, the brane web of
Fig. 11 (with SUð2Þg gauged) should factorize into two.
The natural identification of u → ∞ in the web is to take
the distance between the parallel blue lines to infinity.
[Assuming the identification of Kähler parameters in
Fig. 11, the distance between two blue lines is proportional
to ð11Þ ¼ ð2Þð3Þ2ð4Þ ¼ ð7Þð8Þ2ð9Þ ∝ e−2u.] The string sus-
pended between the two parallel blue lines is infinitely
heavy in this limit. So the 5D description suggests that the
6D SUð2Þ theory at n2 ¼ 4 is given by Uð1Þgð⊂ SUð2ÞgÞ
gauging of three factors, where two of them take the form
of Fig. 13(a) and one takes the form of Fig. 13(b). Upon a
suitable SLð2;ZÞ transformation, Fig. 13(a) is the standard
5-brane web for the 5D N ¼ 1 pure SUð2Þ theory.
Similarly, Fig. 13(b) describes the 5D “SUð1Þ theory.”
The SUð1Þ theory simply refers to the brane configuration
of Fig. 13(b), not containing an interacting 5D SCFT. This
sector will be void. So we shall take a suitable 5D scaling
limit of the elliptic genera of 6D SUð2Þ theory at n2 ¼ 4
and find the parameter map which exhibits two copies of
5D pure SUð2Þ theories.
The 5D SUð2Þ theory’s BPS spectrum can be computed

from its instanton partition function [3]. It contains two
fugacities,Q for the instanton number, andW for the SUð2Þ
electric charge in the Coulomb branch. It also contains
Omega deformation parameters ϵ1;2. Here, we only con-
sider the unrefined single particle spectrum, defined as
follows. The partition function ZSUð2ÞðQ;W; ϵ1;2Þ is written

FIG. 12. Affine Dynkin diagram of SOð7Þ.

(a) (b)

FIG. 13. Ingredients of the 5D description of 6D SUð2Þ theory at n2 ¼ 4.
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as ZSUð2Þ ¼ exp ½P∞
n¼1

1
n fðQn;Wn; nϵ1;2Þ�, where f is the

single particle index. Then one considers the limit

lim
ϵ1;2→0

��
2 sinh

ϵ1;2
2

�
fðQ;W; ϵ1;2Þ

�

≡ frelðQ;WÞ ¼
X∞
k¼0

X∞
n¼0

QkW2nNk;n: ð4:23Þ

The subscript “rel” denotes the relative degrees of freedom
of the bound states, as we divided the contribution

1
4 sinh

ϵ1
2
sinh

ϵ2
2

from the center-of-mass degrees of freedom.

We list some known coefficients Nk;n in Table V. The states
at k ¼ 0, n ¼ 1 come from the perturbative partition
function, from a massive 5D vector multiplet of W-boson.
Wewould like to identify two copies of Table V, by taking a
5D scaling limit of the elliptic genus for the instanton
strings of 6D SUð2Þ theory at n2 ¼ 4. The elliptic genus
can be obtained as a special case of (4.16) at k2 ¼ k3 ¼ 0.
After some trial-and-errors, we find it useful to expand

the 6D index as

frelðv; q; w; y1;2;3Þ

¼
X∞
n¼0

e−nvfnðq; w; y1;2;3Þ

¼
X∞
n¼0

X∞
p¼0

X∞
m¼0

e−nv
�

q
w2y3

�
p
�
wy

−1
2

3

�
m
Nn;p;mðy1;2;3Þ;

ð4:24Þ
where frel is defined in the completely same manner as
(4.23). w is exponential of the SUð2Þ Coulomb VEV and
yi ≡ e−vi . We take the scaling limit q ∼ y23 ∼ w4 → 0, with
v; y1; y2 fixed. Note that q ∼ y23 is compatible with the
scaling rules we already found, based on affine SOð7Þ

structure. The nonzero terms in this limit are listed in
Tables VI–IX for n ≤ 4. All terms except N1;0;1 are finite in

this limit. The two terms in N1;0;1 ∼ y
−1
2

3 are divergent in the
scaling limit. This implies the following situation. Suppose
that we reduce q ∼ y23 ∼ w4, maintaining their ratios finite.
Reducing q physically means reducing the radius R of S1.
When e−vwy−13 ¼ 1 or e−vwðy1y2y3Þ−1 ¼ 1, the two terms
in N1;0;1 become 1, respectively. This means that the two
states labeled by these terms become massless, causing a
phase transition. Each term contributes þ1 to the index,
implying that N1;0;1 comes from two hypermultiplets.
Massless hypermultiplets cause flop phase transitions.
Since the hypermultiplet’s central charge changes sign
after the transition, one should get evw−1y3ð1þ y1y2Þ after
the two phase transitions. As we further reduce q ∼ y23 ∼ w4

to zero after the phase transitions, these two terms vanish,
and we are left with the remaining finite numbers in the
tables. One can then show that the remaining numbers in
the tables are two copies of Table V. Namely, one finds

frel → −2e−v
�
1þQW2

y1y2

�
− 4e−2v

QW2

y1y2

− 6e−3v
�
QW2

y1y2
þ
�
QW2

y1y2

�
2
�

− e−4v
�
8
QW2

y1y2
þ 32

�
QW2

y1y2

�
2

þ 8

�
QW2

y1y2

�
3
�
− � � �

− 2
W2e−v

y2

�
1þ y2

y1

�
− 4

�
W2e−v

y2

�
2

·
y2
y1

− 6

�
W2e−v

y2

�
3
�
y2
y1

þ y22
y21

�

−
�
W2e−v

y2

�
4
�
8
y2
y1

þ 32
y22
y21

þ 8
y32
y31

�
− � � � ; ð4:25Þ

TABLE V. BPS spectrum of 5D N ¼ 1 pure SUð2Þ theory.
knn 1 2 3 4 5 6 7

0 −2 0 0 0 0 0 0
1 −2 −4 −6 −8 −10 −12 −14
2 0 0 −6 −32 −110 −288 −644
3 0 0 0 −8 −110 −756 −3556
4 0 0 0 0 −10 −288 −3556

TABLE VI. N1;p;m in the scaling limit.

pnm 0 1 2 3

0 −2 y
−1
2

3 ð1þ 1
y1y2

Þ −2ð 1y1 þ 1
y2
Þ 0

1 0 0 − 2
y1y2

0

2 0 0 0 0
3 0 0 0 0

TABLE VII. N2;p;m in the limit.

pnm 0 1 2 3 4 5

0 0 0 0 0 − 4
y1y2

0

1 0 0 − 4
y1y2

0 0 0

2 0 0 0 0 0 0
3 0 0 0 0 0 0

TABLE VIII. N3;p;m in the limit.

pnm 0 1 2 3 4 5 6

0 0 0 0 0 0 0 − 6
y1y2

ð 1y1 þ 1
y2
Þ

1 0 0 − 6
y1y2

0 0 0 0

2 0 0 0 0 − 6
y2
1
y2
2

0 0

3 0 0 0 0 0 0 0
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where Q≡ q
w2y3

, W ≡ wy
−1
2

3 . The first two lines yield a 5D

pure SUð2Þ index, with the identification of Kähler
parameters

Q1 ¼
QW2

y1y2
¼ q

y1y2y23
ð≡t2Þ; W2

1 ¼ e−v: ð4:26Þ

The last two lines yield another copy of 5D SUð2Þ index,
with parameters

Q2 ¼
y2
y1

ð≡t1Þ; W2
2 ¼

W2e−v

y2
¼ w2e−v

y2y3
: ð4:27Þ

Note that the identifications of Q1, Q2 are consistent with
our previous findings based on affine SOð7Þ structure. This
identifies the parameters (2), (7) of Fig. 11 and similarly
(4), (9).
SOð7Þ subsector: We now consider another subsector

with k1 ¼ k3 ¼ 0, k2 ≠ 0. We start from the elliptic genus
of the SOð7Þ instanton strings at n8 ¼ 2, studied in Sec. II.
In the 5D scaling limit, e.g., at k2 ¼ 1, we found the
following exact factorization:

frel ¼ −U
�

1þQ2

W2W̃2ð1 −Q2Þ2
þ ð2 → 1Þ

�

− 2U2

�
3Q2

2 þ 4Q3
2 þ 3Q4

2

ðW2W̃2Þ2ð1 −Q2Þ4ð1 −Q2
2Þ2

þ ð2 → 1Þ
�

− U3

�
Q3

2ð27þ 70Q2 þ 119Q2
2 þ 119Q3

2 þ 70Q4
2 þ 27Q5

2Þ
ðW2W̃2Þ3ð1 −Q2Þ8ð1 −Q3

2Þ2
þ ð2 → 1Þ

�
þ � � � ; ð4:28Þ

where U≡ e−u−
vþṽ
2 q−

1
2y1y2y23. So frel decomposes into two

factors. To have such a factorization, one should scale
e−u → ∞ so that e−uq−1=2y23 ∼ e−uq1=2 is finite, which
guarantees that U is finite. Here, one can show that each
factor takes the form of the instanton partition function for
the 5D Ẽ1 SCFT, upon identifying UðQ1=2

i WiW̃iÞ−1 as the
instanton number fugacity and Qi as the electric charge
fugacity (Coulomb VEV), for i ¼ 1, 2, respectively. To
understand this from the brane web description, we take the
5D factorization limit q ∼ y23 → 0, and also consider the
limit v; ṽ → ∞ to realize the sector with k1 ¼ k3 ¼ 0. One
finds that Fig. 11(b) decomposes into two SUð1Þ theories
in this limit since ð11Þ → 0, thus void. Each factor of
Fig. 11(a) becomes the left side of Fig. 14, since ð2Þ; ð4Þ;
ð7Þ; ð9Þ → 0. After an SLð2;ZÞ transformation, it becomes
the right side of Fig. 14. This is the standard brane
configuration for the 5D Ẽ1 theory [58]. It is the 5D

Uð2Þ theory at Chern-Simons level 1. From these studies,
one can identify the Kähler parameters (3), (8) of Fig. 11.
Note that in (4.28), the leading term at U1 order is U

WiW̃i

(with i ¼ 1, 2) for the two 5D Ẽ1 factors. This is the Kähler
parameter for the bottom horizontal line on the right side of
Fig. 14, since the leading BPS states come from the strings
stretched along this line. So one finds ð3Þ ¼ U

W1W̃1
¼

e−u y1y2y23ffiffi
q

p , ð8Þ ¼ U
W2W̃2

¼ e−u
y1y22y

3
3

ww̃
ffiffi
q

p , which were already

shown in Fig. 11. Once we know (3) and (8), one can
determine (11) from the gluing condition ð11Þ ¼
ð2Þð3Þ2ð4Þ ¼ ð7Þð8Þ2ð9Þ, again already shown in Fig. 11.
Thus, we fixed all Kähler parameters of Fig. 11 in terms of
our 6D fugacities.
We have in fact made a nontrivial test of our elliptic

genera of Sec. II, for the SOð7Þ instanton strings at n8 ¼ 2,
using the 5-brane web description, from (4.28). Although
apparently we tested the elliptic genera in a 5D factorizing
limit, this is different from the tests made in Sec. III. This is
because the “5D limit” here scales other massive param-
eters and keeps a different slice of BPS states in its zero
momentum sector. Indeed, using the original 6D variables,
(4.28) is a nontrivial series in Q1 ¼ q

y1y2y23
∼ q, acquiring

contributions from the 6D KK tower. So, this provides an
independent nontrivial test of our results in Sec. II.
More general sectors: We shall continue to study

the scaling limit of the elliptic genera for more general

TABLE IX. N4;p;m in the limit.

pnm 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 − 1
y1y2

ð 8y2
1

þ 8
y2
2

þ 32
y1y2

Þ
1 0 0 − 8

y1y2
0 0 0 0 0 0

2 0 0 0 0 − 32
y2
1
y2
2

0 0 0 0

3 0 0 0 0 0 0 − 8
y3
1
y3
2

0 0

FIG. 14. Brane web for the 5D Ẽ1 SCFT.

KIM, KIM, KIM, LEE, and PARK PHYS. REV. D 103, 025012 (2021)

025012-34



winding sectors at ðk1; k2; k3Þ ¼ ð1; 1; 0Þ; ð1; 2; 0Þ;
ð1; 1; 1Þ; ð1; 2; 1Þ.
In the first three sectors, Fig. 11(b) factorizes to two

“5D SUð1Þ” factors which are void, as these sectors are
realized by ð4Þ; ð9Þ; ð11Þ → 0 for ðk1; k2; k3Þ ¼ ð1; 1; 0Þ;
ð1; 2; 0Þ and ð11Þ → 0 for ðk1; k2; k3Þ ¼ ð1; 1; 1Þ. So, we

expect the factorization of the single particle index
into two identical pieces, each representing a non-
Lagrangian 5D SCFT engineered by Fig. 11(a) in a
particular limit. In all cases, we find exact factoriza-
tions of frel into two functions of identical form as
follows:

ð1; 1; 0Þ∶ frel ¼ e−v−u
y1y2y23ffiffiffi

q
p ·

ð1þ q=y1y2y23Þ2
ð1 − q=y1y2y23Þ2

þ e−v−u
wy1y2y23
w̃

ffiffiffi
q

p ·
ð1þ y2=y1Þ2
ð1 − y2=y1Þ2

ð1; 2; 0Þ∶ frel ¼ e−v−2u
y21y

2
2y

4
3

q
·
−10ðq=y1y2y23Þ2ð1þ q=y1y2y23Þ

ð1 − q=y1y2y23Þ6

þ e−v−2u
y21y

3
2y

5
3

w̃2q
·
−10ðy2=y1Þ2ð1þ y2=y1Þ

ð1 − y2=y1Þ6

ð1; 1; 1Þ∶ frel ¼ e−v−u−ṽ
y1y2y23ffiffiffi

q
p ð1þ q=y1y2y23Þ3

ð1 − q=y1y2y23Þ2
þ e−v−u−ṽ

ww̃y1y3ffiffiffi
q

p ð1þ y2=y1Þ3
ð1 − y2=y1Þ2

: ð4:29Þ

Each term is a product of the prefactor ð2Þk1ð3Þk2ð4Þk3 or
ð7Þk1ð8Þk2ð9Þk3 and a function of Kähler parameter ð1Þ ¼
ð5Þ or ð6Þ ¼ ð10Þ, respectively. To test these results,
extracted from the elliptic genera in Sec. IVA, we shall
independently do the topological vertex calculus for the 5D
SCFT of Fig. 11(a).
The topological vertex [59] computes all genus topo-

logical string amplitudes, which is equivalent to the
logarithm of the 5D Nekrasov partition function on
Omega-deformed R4 × S1 [60]. Here we refer to [49,50]
for its detailed description. We select an orientation of
every edge in the 5-brane web. Each internal edge is
associated with a Young diagram. We also assign an empty
Young diagram to every external edge. The 5D partition
function is given by a sum over all combinations of Young
diagrams. The summand is a product of factors coming
from every edge and vertex. We turn off ϵþ ¼ 0 to simplify
the formulas. When all three edges are outgoing from a
given vertex, the vertex factor is given by (where u ¼ e−ϵ− ,
kμk2 ¼ P

i μ
2
i )

CλμνðuÞ ¼ u
kμk2þkνk2−kμtk2

2

Y
s∈ν

ð1 − ulνðsÞþaνðsÞþ1Þ−1

·
X
η

sλt=ηðu−ρu−νÞsμ=ηðu−ρu−νtÞ: ð4:30Þ

λ, μ, ν are Young diagrams associated to the edges. For
an incoming edge, the assigned Young diagram should
be transposed. The skew-Schur function sλ=ηðxÞ depends
on a possibly infinite vector x, which in above is
u−ρu−ν ≡ ðu1

2
−ν1 ; u

3
2
−ν2 ; u

5
2
−ν3 ; � � �Þ. The functions lνðsÞ

and aνðsÞ are defined by lνðsÞ ¼ νi − j and
aνðsÞ ¼ νtj − i, where i, j represent the horizontal and
vertical positions of the box s from the upper-left corner
of ν. It is known that CλμνðuÞ is invariant under the cyclic
permutation of λ, μ, ν using Schur function identities
[59]. An internal edge glues a pair of vertices by
multiplying the edge factor and summing over the
assigned Young diagram. Denoting its Kähler parameter
by Q, the edge factor is given by

ð4:31Þ

where fνðuÞ ¼ ð−1Þjνjukνtk2−kνk2
2 and n ¼ detðu1; v1Þ. Applying these rules, one obtains the following partition function of

5D SCFT engineered from the brane web of Fig. 11(a)
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ð4:32Þ

Q1;…; Q10 are identified with the Kähler parameters in Fig. 11(a) as

Q1 ¼ Q3 ¼ α; Q4 ¼ Q6 ¼ β; Q7 ¼ γ; Q8 ¼ Q10 ¼ δ; Q2 ¼ α2β; Q5 ¼ βγ; Q9 ¼ βδ2; ð4:33Þ

where ðα; β; γ; δÞ ¼ ðe−v; q
y1y2y23

; e−u
y1y2y23ffiffi

q
p ; e−ṽÞ or ðw2e−v

y2y3
; y2y1 ; e

−u y1y22y
3
3

ww̃
ffiffi
q

p ; w̃
2e−ṽ
y2y3

Þ, respectively. To derive the single particle

spectrum of ðk1; k2; k3Þ sector, we perform the sum (4.32) over Young diagrams until jν1j þ 2jν2j þ jν3j ≤ k1,
jν5j þ jν7j ≤ k2, jν8j þ 2jν9j þ jν10j ≤ k3 and take the Plethystic logarithm. To compare with (4.29), we further multiply
−ð2 sinh ϵ−

2
Þ2 on it and take the limit ϵ− → 0. After these manipulations, one obtains

ð1; 1; 0Þ∶ ftop ¼ αγ · ð1þ 4β þ 8β2 þ 12β3 þ 16β4 þ 20β5 þOðβ6ÞÞ
ð1; 2; 0Þ∶ ftop ¼ αγ2 · ð−10β2 − 70β3 − 270β4 − 770β5 þOðβ6ÞÞ
ð1; 1; 1Þ∶ ftop ¼ αγδ · ð1þ 5β þ 12β2 þ 20β3 þ 28β4 þ 36β5 þOðβ6ÞÞ: ð4:34Þ

These agree with frel in (4.29), testing our elliptic genera in Sec. IVA.
We finally consider the (1,2,1) sector. frel in the factorization limit is given by

frel ¼ e−v−2u−ṽ
y21y

2
2y

4
3

q
·

�
−2y1y2

ð1 − y1y2Þ2
þ
�
−2kðk4 þ 4k3 þ 30k2 þ 4kþ 1Þ

ðk − 1Þ6
�����

k¼y2
y1

þ
�
−2kðk4 þ 4k3 þ 30k2 þ 4kþ 1Þ

ðk − 1Þ6
�����

k¼ q

y1y2y
2
3

þ ð−2Þ
�
: ð4:35Þ

The common prefactor e−v−2u−ṽy21y
2
2y

4
3=q is ð2Þð3Þ2ð4Þ ¼

ð7Þð8Þ2ð9Þ ¼ ð11Þ. The first term agrees with the one
instanton partition function of 5D pure SUð2Þ gauge theory,
if we identify

ffiffiffiffiffiffiffiffiffi
y1y2

p
as the fugacity of the SUð2Þ electric

charge. It belongs to the 5D E1 SCFT of Fig. 11(b). The
next two terms take the same functional form, respecting
the Z2 symmetry of the two factors. To test this function,
we performed the topological vertex calculus for (4.32). We
first sum over all Young diagrams with jν1j þ 2jν2j þ
jν3j ≤ 1, jν5j þ jν7j ≤ 2, jν8j þ 2jν9j þ jν10j ≤ 1 and take
the Plethystic logarithm. We then subtract the extra factor
αγ2δð2 sinh ϵ−

2
Þ−2 that arises because the strings can pro-

pagate along the parallel 5-branes [49,50]. Dividing out
the center-of-mass factor −ð2 sinh ϵ−

2
Þ−2 and turning off

ϵ− → 0, the topological string partition function becomes

ð1; 2; 1Þ∶ ftop ¼ αγ2δ · ð−2β − 20β2 − 150β3 − 648β4

− 2010β5 þOðβ6ÞÞ: ð4:36Þ

It agrees with the second and third terms of frel in (4.35).
The final (−2) comes from the perturbative SUð2Þg vector
multiplet. Again, this result gives a nontrivial independent
test of our elliptic genera in Sec. IVA.

C. 3,2 and 3,2,2: G2 × SUð2Þ gauge group

We construct 2D quivers for the strings of other 6D
SCFTs in IV. The tests we can provide about them are
weak (e.g., anomalies). We keep the presentations
rather brief.
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3,2,2 SCFT strings: The strategy is similar to that of
Sec. IVA. We first consider the limits in which all except
one gauge symmetry are ungauged in 6D and take three
factors of ADHM(-like) quivers. We then combine these
quivers by locking certain symmetries and introducing
bifundamental matters of the form of (4.2). To be more
precise, we have no 6D gauge group associated with the “2”
node on the right. Although the notion of ungauging is
absent for this node, we can still take the tensor VEV
associated with this node to infinity. Whenever a node has a
6D gauge group, its inverse coupling is proportional to the
tensor VEV hΦi, so taking hΦi → ∞ ungauges the
symmetry.
If one takes all tensor VEVs to infinity except the 3 node,

one obtains the 6D G2 theory at n7 ¼ 1. This is because the
6D matter in 1

2
ð7; 2Þ behaves like one full hypermultiplet in

7, while 1
2
ð1; 2Þ is neutral in G2 and invisible in the gauge

dynamics. So, with a G2 theory at n7 ¼ 1, its k1 G2

instanton strings are described by the 2D Uðk1Þ gauge
theory explained in Sec. II B, with fields given by (2.49),
(2.50), (2.51) at n7 ¼ 1. The ungauged SUð2Þ ∼ Spð1Þ acts
as the flavor symmetry of the 6D hypermultiplet. In the
ADHM-like quiver at general n7, one may have as big as
Uð2n7Þ flavor symmetry which rotates Fermi multiplets.
But the coupling to bulk fields only allowed Uðn7Þ part,
which we further expected to enhance to Spðn7Þ. This is
similar to the flavor symmetries of SOð7Þ ADHM-like
theory at n8 ≠ 0. In the current context, again like the 2,3,2
quiver, we should couple the system to different bulk fields.
At n7 ¼ 1, one can classically have as big as Uð2n7Þ →
Uð2Þ flavor symmetry. We restrict it to SUð2Þwhich rotates
Ψ; Ψ̃† of (2.51) as a doublet. Also, as explained in Sec. II B,
only SUð3Þ ⊂ G2 is visible in this quiver. More formally, it
will be convenient to regard the fields qi; q̃i;ϕi;ϕ4 as
transforming in SUð3Þ × SUð1Þ ⊂ SUð4Þ.
When G2 is ungauged and the tensor VEV for the right 2

node is sent to infinity, we have 6D SUð2Þ theory at n2 ¼ 4.
Its ADHM quiver is explained around (4.1). In this limit,
G2 is enhanced to SOð7Þ flavor symmetry rotating the four
hypermultiplets in 8 of SOð7Þ, but only SUð4Þ ⊂ SOð7Þ is
visible in the UVADHM, as explained in Sec. IVA. SOð7Þ
will later be broken to G2 by gauging. In our ADHM-like
quiver, which only sees SUð3Þ ⊂ G2, SUð4Þ will be broken
to SUð3Þ × SUð1Þ, locked with the G2 ADHM of the
previous paragraph.
We finally ungauge G2 × SUð2Þ, leaving one tensor

VEV for the right 2 node finite. One then obtains the 6D
N ¼ ð2; 0Þ SCFT of A1 type, geometrically engineered on

the Oð−2Þ → P1 base with no associated gauge group.
Although the strings of this SCFT in the tensor branch lack
the instanton string interpretation, one still knows the UV
2D gauge theory description [13]. For k strings, this is a
UðkÞ gauge theory. The 2D fields are given by

ðAμ; λ0; λÞ∶ vector mutiplet in ðadj; 0Þ
q _α ¼ ðq; q̃†Þ∶ hypermultiplet in ðk;−1Þ
aα _β ∼ ða; ã†Þ∶ hypermultiplet in ðadj; 0Þ

Ψa∶ Fermi multiplet in ðk; 0Þ; ð4:37Þ

where a ¼ 1, 2. We showed the representation and charge
of the classical symmetry UðkÞ ×Uð1Þ, where one should
further restrict Uð1Þ → SUð1Þ due to mixed anomaly. This
formally takes the form of the ADHM instanton strings of
“6D SUð1Þ theory” with two charged quarks. The SUð2ÞF
flavor symmetry which rotates Ψa is identified with the
enlarged R-symmetry group of the 6D (2,0) theory.
Namely, we expect that SUð2ÞR of 6D (1,0) SCFTenhances
to SOð5ÞR. In the tensor branch, this is broken to
SOð4Þ ∼ SUð2ÞR × SUð2ÞL, where the latter SUð2ÞL is
realized as SUð2ÞF in the 2D quiver. The 6D A1 (2,0) theory
and the above 2D gauge theory admit D-brane engineer-
ings. Using D2-D6-NS5, one can use either of Fig. 15(a), in
IIA or massive IIA string theory [61,62].
Before fully combining the three ADHM(-like) quivers,

we note that the combination of two 2 nodes (with G2

ungauged) is dictated by a D-brane setting. This is given by
the brane configuration of Fig. 15(b) in the massive IIA
theory. The 2D quiver is given by Fig. 16 at k1 ¼ 0. The
quiver and the brane system only has manifest SUð3Þ ×
SUð2Þ × Uð1Þ symmetry, where the last Uð1Þ is a combi-
nation of three overall Uð1Þ’s in Uð3Þ ×Uð2Þ ×Uð1Þ

(a) (b)

FIG. 15. Brane configurations for (a) 6D (2,0) SCFT of type A1, (b) 6D 3,2,2 SCFT in the limit with ungauged G2.

FIG. 16. 2D quiver for the strings of 6D 3,2,2 SCFT.
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which survive the mixed anomaly cancellation with
Uðk2Þ ×Uðk3Þ. More precisely, taking the overall Uð1Þ
generators Qi for SUðiÞ, i ¼ 1, 2, 3, only Q1 þQ2 þQ3 is
free of the mixed anomaly. (This Uð1Þ is not shown in
Fig. 16, as it will be irrelevant generally at k1; k2; k3 ≠ 0.)
One can see that the 2D quiver exhibits SUð3Þ ×Uð1Þ →
SOð7Þ symmetry enhancement, say by studying the elliptic
genera. This should be the case since one has 6D SUð2Þ
theory at n2 ¼ 4. Just to be sure, we tested the SOð7Þ
enhancement of the elliptic genus at k2 ¼ k3 ¼ 1.
Now we keep k1 ≠ 0, withG2 gauged. In our UV gauged

linear sigma model, we can only see SUð3Þ ⊂ G2, which
we lock with the SUð3Þ symmetry of the quiver in the
previous paragraph. The resulting Uðk1Þ ×Uðk2Þ ×Uðk3Þ
quiver is given by Fig. 16. The potentials can be written
down in a similar manner as the 2,3,2 quiver of Sec. IVA.
We skip the details here.
As a small test of our quiver, we compute the 2D

anomalies. We first compute it from inflow. The Green-
Schwarz part of the 6D anomaly 8-form is given by IGS ¼
1
2
ΩijIiIj with

Ii ¼

0
BB@

1
4
TrðF2

G2
Þ þ α1c2ðRÞ þ α2p1ðTÞ

1
4
TrðF2

SUð2ÞÞ þ β1c2ðRÞ þ β2p1ðTÞ
γ1c2ðRÞ þ γ2p1ðTÞ

1
CCA;

Ωij ¼

0
B@

3 −1 0

−1 2 −1
0 −1 2

1
CA; ð4:38Þ

where ðα1; β1; γ1Þ ¼ ð17
7
; 23
7
; 15
7
Þ, ðα2; β2; γ2Þ ¼ ð 3

28
; 1
14
; 1
28
Þ.

We explain how to get this result. Reference [44] uses two
methods to compute IGS. One is applicable when all nodes
have gauge symmetries. In this case, one demands that IGS
cancels all terms in Ione-loop containing dynamical fields.
This is the method we used so far in this paper. When some
nodes do not have gauge symmetries, this method alone
cannot completely determine IGS. We use the following
strategy to compute (4.38). Firstly, we compute the one-
loop anomaly containing the dynamical G2 × SUð2Þ gauge
fields and demand that this part is completely canceled by
I1, I2 part of IGS [43]. Then one obtains Ii of the form
(4.38), where the six coefficients α1;2; β1;2; γ1;2 are con-
strained only by the following four equations:

3α1 − β1 ¼ 4; 3α2 − β2 ¼
1

4
;

2β1 − α1 − γ1 ¼ 2; 2β2 − α2 − γ2 ¼ 0: ð4:39Þ

To further constrain them, we consider the limit in which
two tensor VEVs are sent to infinity so thatG2 × SUð2Þ are
ungauged. In this limit, we can use the known expression
for IGS for the A1 (2,0) theory in the tensor branch [43,44],

IGS ¼
1

2
Ω
�
1

2
ðc2ðRÞ − c2ðLÞÞ

�
2

; Ω ¼ 2; ð4:40Þ

with enhanced SUð2ÞR × SUð2ÞL ¼ SOð4Þ ⊂ SOð5Þ R-
symmetry. After taking this limit, we can set 1

4
TrðF2

SUð2ÞÞ ¼
c2ðLÞ by identifying the ungauged SUð2Þ with SUð2ÞL.
To take this limit, consider the vector kinetic terms pro-
portional to Lv ∼ΩijΦiTrðF2

jÞ≡ΦiTrðF2
i Þ. We keep

Φ3 ¼ 2Φ3 −Φ2 finite, while taking Φ1 ¼ 3Φ1 −Φ2 and
Φ2 ¼ 2Φ2 −Φ1 −Φ3 to þ∞, to ungauge G2 × SUð2Þ. To
properly do so, note that the kinetic terms for Φi are
proportional to Lt ∼ Ωij∂μΦi∂μΦj. This is diagonalized by
taking, say, Φ3 ¼ aþ χ, Φ2 ¼ 2a, Φ1 ¼ bþ 2a

3
, since

Lt ∼ 14
3
ð∂aÞ2 þ 3ð∂bÞ2 þ 2ð∂χÞ2. So one holds the scalars

a, b very large and fixed, unaffected by the dynamical χ and
its superpartner. More precisely, a, b can be hold fixed,
given by infinite constant plus a finite background function
given by the background gauge fields. χ is a dynamical
scalar associated with the right 2 node with normalization
Ω ¼ 2. In this parametrization χ, a, b of tensor multiplet
scalars, one can similarly show that the superpartners Ha,
Hb of a, b can be consistently taken to be fixed background
functions, unaffected by dynamical χ and its superpartner
Hχ . Now, consider the equation of motion for Hχ. The
coupling between Bχ and the dynamical/background vector
fields is given by

ΩijBi ∧ Ij → BχΩ3iIi ¼ Bχ ∧ ð2I3 − I2Þ: ð4:41Þ

We used ΩijBj ¼ ð� � � ;−Bχ þ � � � ; 2BχÞ, where � � � depend
on Ba, Bb, so that it depends on Bχ as Ωi3Bχ . From the
equation of motion for Bχ, one obtains

d⋆Hχ ¼ ðΩ33Þ−1Ω3iIi ¼ I3 −
1

2
I2: ð4:42Þ

By comparing this with (4.40), one obtains I3 − 1
2
I2 ¼

c2ðRÞ−c2ðLÞ
2

with c2ðLÞ ¼ 1
4
TrðF2

SUð2ÞÞ. This leads to two

more equations for α1;2; β1;2; γ1;2,

2γ1 − β1 ¼ 1; 2γ2 − β2 ¼ 0: ð4:43Þ

The unique solution of (4.39), (4.43) is the one stated right
below (4.38).7

7In fact, expanding the arguments of this paragraph, one can
compute IGS if one knows the Green-Schwarz anomalies of all
individual rank 1 nodes before combining them. The general rule
is as follows [44]. Suppose that IðiÞGS ¼ 1

2
ΩiiðIiÞ2single (no sum of i)

when only i’th node is kept. Then defining Ii ≡ ðΩiiÞ−1ðIiÞsingle
(no sum of i), one finds IGS ¼ 1

2
ðΩ−1ÞijIiIj. Ii that we computed

in (4.9) and (4.38) are given by Ii ¼ ðΩ−1ÞijIj.
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This leads to the anomaly 4-form on the strings from
inflow, (2.40), given by

I4 ¼
�
k1k2 þ k2k3 −

3

2
k21 − k22 − k23

�
χðT4Þ þ k1ðI2 − 3I1Þ

þ k2ðI1 þ I3 − 2I2Þ þ k3ðI2 − 2I3Þ: ð4:44Þ

This is computed from our 2D gauge theory as follows. We

again decompose the anomaly into contributions Ið1Þ4 from

the G2 ADHM-like quiver, Ið2Þ4 from the middle 2 node (6D

SUð2Þ theory at n2 ¼ 4), Ið3Þ4 from the right 2 node, and

Ibif4 ¼ ðk1k2 þ k2k3ÞχðT4Þ. Ið1Þ4 and Ið2Þ4 are given by (2.61)

and (4.12) replacing FSOð7Þ → FG2
. Ið3Þ4 is given by

Eq. (5.21) of [4] at N ¼ 1,

Ið3Þ4 ¼−
k3
2
TrðF2

SUð1ÞÞþ
k3
4
TrðF2

SUð2ÞÞ− k3c2ðRÞ− k2χðT4Þ;
ð4:45Þ

where one should set FSUð1Þ ¼ 0. Adding
P

3
i¼1 I

ðiÞ
4 þ Ibif4 ,

one precisely reproduces (4.44).
3,2 SCFT strings: This SCFT can be obtained from the

previous 3,2,2 SCFT by taking the tensor VEVof the right
2 node to infinity. The corresponding 2D quiver for its
strings can be obtained from our previous quiver for the
3,2,2 model, by taking k3 ¼ 0. All the discussions made for
the 3,2,2 string quivers apply here as well.

V. CONCLUSION AND REMARKS

In this paper, we first proposed 1D ADHM-like gauge
theories for Yang-Mills instantons for 5D SOð7Þ theories
with n8 ≤ 4 matters in spinor representation and for G2

theories with n7 ≤ 3 matters in 7. At n8 ¼ 2 for SOð7Þ and
at n7 ¼ 1 for G2, where anomaly-free 6D gauge theories
exist, our gauge theories uplift to 2D for instanton strings.
These ADHM strings can be used to construct the 2D
quivers for the atomic non-Higgsable 6D SCFTs of
Table IV. These gauge theories do not describe the
symmetric phase physics of instantons, but we propose
them to compute the Coulomb phase partition functions
correctly. Although the world volumes of instantons host
N ¼ ð0; 4Þ SUSY (or its 1D reduction), our gauge theories
are made of N ¼ ð0; 2Þ supermultiplets, and some of their
interactions only exhibit N ¼ ð0; 1Þ SUSY. We expect
various symmetry enhancements in 1D/2D.
We tested our 1D/2D gauge theories by computing their

Witten indices or elliptic genera using various other
methods. First, for 5D G2 theory without matters,
n7 ¼ 0, we used the results of [45], which uses 3D
Coulomb branch techniques. We tested our results for
instanton numbers k ≤ 3, but the comparisons can in
principle be made for arbitrary high k’s. In Sec. III, we

developed another D-brane-based method to study the
instantons of 5D SOð7Þ theories at n8 ¼ 1, 2 and related
G2 theories at n7 ¼ 0, 1. This method provides a much
more elaborate computational procedure, which however
does not require guesswork. We used this method to
successfully test our results for n8 ¼ 2 at k ¼ 1 and for
n8 ¼ 1 at k ¼ 1, 2. Finally, we used the 5-brane web
description of [16] to test the SOð7Þ instanton strings at
n8 ¼ 2 and also the strings of the 6D 2,3,2 SCFT of
Table IV. All the methods that we used to test our results
exhibit manifest (0,4) SUSY. So the agreements of our
indices with these alternative calculus are indirect signals
that our systems exhibit (0,4) SUSY enhancement.
As we alluded to at the beginning of Sec. II, we have

made similar trials to construct ADHM-like gauge theories
with other gauge groups, e.g., some of them in Table I. For
technical reasons, we focused on the E7 case, using a
formalism which only sees manifest SUð8Þ ⊂ E7. We
managed to build a model which exhibits the correct
anomaly polynomial 4-form for E7 instanton strings, which
also “closely” (but not precisely) reproduces the one-
instanton Hilbert series of the E7 instanton particle. For
instance, keeping t ¼ e−ϵþ fugacity only and multiplying
the center-of-mass factor 2 sinh ϵ1;2

2
, the correct Hilbert

series [46] and the index of our trial gauge theory are
given as follows (up to 0-point energy factor):

ẐE7

k¼1 ¼ 1þ 133t2 þ 7371t4 þ 238602t6 þ 5248750t8

þ 85709988t10 þ 1101296924t12

þ 11604306012t14 þ 103402141164t16

þ 797856027500t18 þ 5431803835220t20 þ � � � ;
Ẑtrial
k¼1 ¼ 1þ 133t2 þ 7300t4 þ 234689t6 þ 5143821t8

þ 83863116t10 þ 1077066537t12

þ 11349844981t14 þ 101164274246t16

þ 780860775912t18 þ 5317874678676t20 þ � � � :
ð5:1Þ

The coefficient of t2n for the correct result ẐE7

k¼1 is the n’th
symmetric product of the E7 adjoint representation 133.
The index Ẑtrial

k¼1 is close to ẐE7

k¼1 at low orders in t (e.g.,
exact at t2), but slightly deviates and converges to ≈ −
1.928% error asymptotically at large orders. We think this
failure provides helpful lessons on our ADHM-like trials
and possible subtle points (some stated at the beginning
of Sec. II).
First of all, the gauge theory we constructed which yields

Ẑtrial
k¼1 has two branches of moduli spaces. The first branch

has the SUð8Þ instanton moduli space as a subspace and has
the right complex dimension 2kc2ðE7Þ ¼ 36k for E7

instantons. The second branch meets the first one at a
point, the small instanton singularity, and arises from the
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extra matters we added to the SUð8Þ ADHM. We find that
the second branch cannot be eliminated (with given extra
matters) by turning on N ¼ ð0; 1Þ potentials. We suspect
that there may be a contribution to Ẑtrial

k¼1 from the second
branch, which spoils the results. Since we are doing a UV
computation in which two branches are not separated, we
do not know how/whether one can separate the contribu-
tions from two branches. Certainly, this may be one reason
for the deviation. In case this is the dominant reason for the
deviation, there should be large enough contributions from
massless fermions on the second branch, as Ẑtrial

k¼1 is always
no greater than ẐE7

k¼1.
Second, there is another reason why we suspect the

deviation happens. To explain this, note that 133 at t2 order
is correctly reproduced in our trial gauge theory. From the
branching rule 133 → 63 ⊕ 70, two different contributions
make this to happen. 63 is nothing but the t2 order contri-
bution from the SUð8Þ ADHM fields. 70 comes from
gauge-invariant operators of the SUð8Þ ADHM fields and
extra fields we added. The next order t4 contains the irrep.
7371 of E7, which is rank 2 symmetric product of 133. We
are missing some states in Ẑtrial

k¼1, which is 70 ⊕ 1, the rank
4 antisymmetric representation, and a singlet of SUð8Þ. If
we blindly take the operators in our trial gauge theory
which successfully reproduced 133, and take rank 2 sym-
metric product of them, we find that the representation
70 ⊕ 1 is missing due to the compositeness of 70 that
appeared at t2 order. This is like the quarks of QCD
accounting for the plethora of gauge-invariant mesons at
low energy, with less microscopic degrees of freedom,
while quarks manifest themselves at high energy. So it
appears that we should add more extra fields to make up for
these missing states. We have found several possible com-
binations of extra supermultiplets which one may add to the
SUð8Þ ADHM, satisfying very strong constraints of the
correct 2D anomaly. But we have not managed yet to
construct the model which exhibits the right Hilbert series
of (5.1).
Finally, while restricting to SUð8Þ ⊂ E7 subset of moduli

space, we deleted one simple root so that we lost extra
possibility of embedding SUð2Þ single instanton. Note that
the deleted root has same length as the roots kept in SUð8Þ,
so that we might have lost extra small instanton saddle
points residing in the deleted SUð2Þ. This may be related to
the observations in the previous paragraph. In any case, if
the basic idea of this paper is applicable to other excep-
tional instantons, we have many strong constraints which
may eventually guide us to the correct ADHM-like models.
We hope to come back to this problem in the future.
One important spirit of our construction is to take

advantage of symmetry enhancements of gauge theories
after RG flow. One is the enhancement of global symmetries
from a classical group to an exceptional one. Another is the
SUSYenhancement toN ¼ ð0; 4Þ. Allowing less number of
SUSY in UV provides more room to engineer the desired

system. Being in 1D or 2D, we can have as little as one
Hermitian SUSY in UV, the minimal number which admits
any computation relying on SUSY. Still the requirement of
using gauge theories puts some constraints. However, we are
not fully aware of whether we have overlooked the possibil-
ities of subtler supermultiplets or more general interactions,
even within gauge theory.
It may also be interesting to further study the physics of

exceptional instanton strings from recent 4D N ¼ 1 gauge
theory descriptions forN ¼ 2 SCFTs, by suitably reducing
them to 2D [63,64]. Many aspects of these constructions
are different from ours. For instance, different symmetries
are manifest in UV, so it may be helpful to compare the two
approaches.
Some of our 1D/2D gauge theories are not tested with

their Witten indices and elliptic genera, simply because we
have not thoroughly thought about alternative approaches.
The recent engineering of 5D SCFTs (e.g., see [36,57]) will
allow more geometric/brane realizations. We may be able to
test our models relying on these developments, perhaps
using topological vertices. Also, for studying 6D strings,
one can use the topological string approach (e.g., see [14]
and references therein) or the modular bootstrap like
approach [17–19].
The strategy of this paper was just to write down UV

models and test them empirically when data from alternative
descriptions are available. It will be nice to have a more
conceptual understandings of the ADHM-likemodels, either
from string theory or by other means. Here we feel that,
compared to the simple Young diagram sums for the indices
and elliptic genera, the microscopic explanations in terms of
N ¼ ð0; 1Þ UV gauge theories look less elegant, although
practically useful and flexible. In particular, at least at the
moment, it is hard for us to imagine a viable string theory
engineering of our gauge theories. It is not clear to uswhether
we aremakingUVuplifts intrinsically beyond the territory of
string theory, orwhether there are nicer reformulationswhich
may allow string theory embeddings.
Finally, it will be interesting to see if our ADHM-like

gauge theories can be used to study other observables in the
Coulomb branch. For instance, study of the Wilson loops or
other defect operators will be interesting. See, e.g., [65–68]
and references therein. As many of these constructions rely
on D-brane settings, one should see if employing similar
prescriptions without D-brane engineering will work (as we
did for the partition function in this paper).
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APPENDIX: COMMENTS ON EXTRA
INSTANTON MODULI

The basic idea of this paper is to apply the ADHM
construction associated with a subgroup H of the gauge
group G for describing the G instantons. Let us implement
this idea to the case with H ¼ SUð4Þ and G ¼ SOð7Þ,
where the SOð7Þ adjoint representation (21) comprises the
SUð4Þ adjoint (15) and antisymmetric (6) representations.
We need to consider the additional moduli induced from the
SU(4) antisymmetric vector multiplet, on top of the
standard ADHM moduli originated from the SU(4) adjoint
vector multiplet.
The k-instanton zero modes associated with 5D/6DN ¼

1 supermultiplets are captured in their equivariant indices.
We summarize some useful results here. First, for SUðNÞ
representations N and N̄, the hypermultiplet indices are

IndhðNÞ ¼ þ cosh m
2

2 sinh ϵ1
2
2 sinh ϵ2

2

ChðEÞ;

IndhðN̄Þ ¼ þ cosh m
2

2 sinh ϵ1
2
2 sinh ϵ2

2

ChðE�Þ; ðA1Þ

where ChðVÞ denotes the Chern character of a vector
bundle V. E and E� are the universal bundle and its complex
conjugate, whose equivariant Chern characters are [3]

ChðEÞ ¼ χSUð4Þ
4 ðv1;2;3;4Þ − ðeþϵþ þ e−ϵþ − eþϵ− − e−ϵ−Þ

· χUðkÞ
k ðϕ1;…;kÞ; ðA2Þ

ChðE�Þ ¼ χSUð4Þ
4̄

ðv1;2;3;4Þ − ðeþϵþ þ e−ϵþ − eþϵ− − e−ϵ−Þ
· χUðkÞ

k̄
ðϕ1;…;kÞ: ðA3Þ

Second, for a general tensor product representation of N
and N̄, it was suggested in [23] that the equivariant index

for a hypermultiplet can be computed by taking the tensor
product of ChðEÞ and its complex conjugate ChðE�Þ. For
instance, the indices for SUðNÞ adjoint and antisymmetric
hypermultiplets are, respectively, written as [3,23]

IndhðadjÞ ¼ þ coshm
2

2 sinh ϵ1
2
2 sinh ϵ2

2

ChðEÞChðEÞ

IndhðantiÞ ¼ þ coshm
2

2 sinh ϵ1
2
2 sinh ϵ2

2

ChðEÞ2 − ChðEÞjx→2x

2
;

ðA4Þ

where ChðEÞjx→2x means all chemical potentials appearing
in ChðEÞ have to be doubled. Finally, the equivariant index
for an adjoint vector multiplet is given by

IndvðadjÞ ¼ −
cosh ϵþ

2

2 sinh ϵ1
2
2 sinh ϵ2

2

ChðEÞChðEÞ; ðA5Þ

in which the overall negative sign reflects the opposite
chirality of the gaugino with respect to hypermultiplet
fermions.
Let us now extend the vector multiplet index (A5) to

other representations as we do with hypermultiplets in
(A4). Specifically, the index for an antisymmetric vector
multiplet would be

IndvðantiÞ ¼ −
cosh ϵþ

2

2 sinh ϵ1
2
2 sinh ϵ2

2

ChðEÞ2 − ChðEÞjx→2x

2
:

ðA6Þ

Inserting (A2)–(A6), the equivariant index IndvðantiÞ can
be written as

IndvðantiÞ ¼ eþϵþ · χUðkÞ
k̄

χSUð4Þ
4̄

þ eþϵþðeþϵ− þ e−ϵ−Þ
· χUðkÞ

anti
− e−ϵþðeþϵþ þ e−ϵþÞ · χUðkÞ

sym ðA7Þ

up toUðkÞ independent terms that correspond to the 5D/6D
perturbative zero modes. It consists of kðkþ 3Þ bosonic
terms and kðkþ 1Þ fermionic terms, which we treat as our
ansatz (2.6) for the UV resolution of 4k extra real bosonic
zero modes of the instantons.
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