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Chapter 1

Introduction

Particle Physics deals with unraveling the fundamental nature of the universe.

This task may be performed in two ways; either theoretically or experimen-

tally [1]. On theoretical side, Standard Model of Particle Physics provides

the best mathematical formalism to investigate the fundamental issues of the

universe [2, 3]. Experimentally, scientists have been trying to uncover the

fundamental mysteries of the universe for several decades. Currently, there

are numerous high energy physics experiments which are producing huge

amounts of data needed for approaching feasible answers about the funda-

mental nature of the universe [4]. In this direction, an extremely important

discovery was made by two high energy physics groups at SLAC (Stanford

Linear Accelerator Center) and BNL (BrookHaven National Laboratory) in

1974 [5, 6]. They simultaneously discovered a new resonance composed of

a pair of charm quark and its anti-quark, called charmonium with quantum

numbers: JPC = 1−−. This state was given the name; J/ψ. After ten days,

its first excited state ψ(2S) was also discovered [7]. After that, a chain of
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discoveries started.

Due to the heavy mass of charm quark, the charmonium system can be

treated as a non-relativistic bound state [8]. Since the discovery of J/ψ,

many efforts have been made to understand the charmonium spectrum and its

properties. The charmonium properties can be investigated through detailed

analysis of different decay modes of charmonia. On this side, most of the

experiments were performed at electron positron colliders. The main advan-

tage of these experiments is the direct access of the states with JPC = 1−−.

Currently, an experiment is being performed at Beijing Electron-Positron

Collider II (BEPCII) using Beijing Spectrometer III (BESIII). This exper-

iment is providing huge amounts of charmonium data (at J/ψ and ψ(2S)

central mass values, etc.) which can be used for studying key properties of

charmonia. In this work, we have used 106 million ψ(2S) data accumulated

by BES III detector, to measure the branching fractions of ψ(2S) decays

into ΛΛ̄π+π−. This work provides more precise measurements of the branch-

ing ratios of ψ(2S) → ΛΛ̄π+π−, ψ(2S) → Ξ−Ξ̄+ and ψ(2S) → Σ∗+Σ̄∗− to

be (1.34 ± 0.05stat ± 0.24sys) × 10−4, (3.15 ± 0.35stat ± 0.55sys) × 10−5 and

(3.39±0.34stat±0.61sys)×10−5, respectively. The previously measured values

are (2.8± 0.5)× 10−4, (18± 6)× 10−5 and (11± 4)× 10−5, respectively.

Before going onto the details of the analysis work, in the following chapter, we

will highlight the important concepts of particle physics: Standard Model of

Particle Physics, charmonium spectroscopy and BESIII experimental setup.
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Chapter 2

Fundamental Concepts

It is known from the human history that the composition of universe has

always been a subject of great interest. It happened right from the discovery

of the atom that the theoretical studies and experimental observations have

allowed us to understand the fundamental nature of the universe in more

depth. It is now believed that all the matter we see around is made of leptons,

quarks and the gauge bosons [9]. The leptons and quarks are the constituents

of the composite particles and the gauge bosons are the mediating particles

of the fundamental forces [10]. The most successful model that provides the

understanding of the fundamental nature of matter is the Standard Model.

It has been developed as a framework for understanding the properties of

fundamental or elementary particles and their interactions[11]. The standard

model has been incredibly consistent with the experimental observations.
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2.1 Particle Phenomenology

2.1.1 Leptons

Leptons are fundamental particles in the standard model. They are spin

half particles (fermions) and cannot participate in strong interaction [12].

There are six leptons: electron (e−), muon (µ−), tauon (τ−), electron neu-

trino (νe), muon neutrino (νµ) and tauon neutrino (ντ ). First three particles

are charged while the rest are neutral. They are grouped in three generation.

Corresponding to leptons that carry negative charge, there exist anti-leptons

with opposite charge [13].

2.1.2 Quarks

The idea of quark was first introduced by Murray Gell-Mann and George

Zweig in 1964 [14]. They postulated that all the matter is composed of spin

1/2 particles, termed as quarks. There are six kind of quarks which are

characterized by their flavour and paired in three generations. The up (u)

and down (d) quarks, the most stable and lightest particles, belong to first

generation of quarks . Most of the matter in the universe is made up from the

particles belonging to first generation. The charm (c) and strange (s) quarks

belong to second while top (t) and bottom (b) ones belong to third generation.

Quarks in second and third generations are heavier and decay to the most

stable generation [15]. The quarks have fractional charge Q = +2/3e and Q

= -1/3e, where e is the fundamental electric charge. Greenberg postulated

that quarks have another quantum number, colour also known as colour
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charge, which keeps the quarks in the bound state [16]. Quarks interact via

strong, electromagnetic and weak interactions. The properties of quarks are

shown in the Table 2.1.

Table 2.1: Properties of quarks

Generation Quark Name Symbol Mass (GeV/c2) charge
First Generation

Down d ≈ 0.3 -1/3e
Up u ≈ 0.3 2/3e

Second Generation
Strange s ≈ 0.5 -1/3e
Charm c ≈ 1.5 2/3e

Third Generation
Bottom b ≈ 4.5 -1/3e

Top t ≈ 174 2/3e

In addition to quarks there are corresponding anti-quarks having same

mass but opposite charge.

2.1.3 Hadrons

Although no isolated quarks have been observed experimentally, instead their

evidences are found in the form of their bound states called hadrons. Only

three bound states of quarks exist, baryons, anti-baryons and the mesons.

According to constituent quark model, baryons and anti-baryons are the

bound states of three quarks and three anti-quarks respectively with half-

integral spin. Meson is the bound state of a quark and anti-quark [17].

Although quarks carry fractional charge, they combine in such a way that

hadrons have net integral charge and no colour charge. Our study involves

four mesons and two baryons in the final state and we discuss them briefly.
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2.1.4 Baryons

In the minimal quark model, the baryon (anti-baryon) is a bound state

of three quarks (anti-quarks). When baryon is formed in a particle reaction,

an anti-baryon is simultaneously created. This process is explained by using

a new quantum number called the baryon number B. Baryons are assigned

B = 1 whereas anti-baryons B = −1. Thus each quark (anti-quark) is

assigned to have +1
3
(−1

3
) as baryon number. The value of this quantum

number for all other particles is B = 0. It is conserved in all particle decays

and reactions.

Since the quarks are fermions, so the wave function of baryons must be

anti-symmetric under the exchange of any two quarks. In SU(3) represen-

tation, three flavours u, d, and s make ordinary baryons. With these three

flavours of quarks, the decomposition is:

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A

The subscripts on the right side show that decuplet is symmetric in flavour,

singlet is anti-symmetric and two octets have mixed symmetry [18]. The

ground state baryons are shown in Figures 2.1 and 2.2 [19, 20].

In the ground state multiplets, the SU(3) singlet state is forbidden by

Fermi Dirac statistics. The addition of fourth quark, the charm quark, ex-

tends the SU(3) symmetry to SU(4). However, due to heavy mass of charm

quark, SU(4) symmetry is strongly broken than SU(3) of the light quarks.

SU(4) multiplets made up of u, d, s, and c are shown in the Figure 2.3
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2.1.5 Mesons

Mesons are composed of a quark and anti-quark. As the quarks are spin half

particles, so the total spin S of the mesons is either 0 or 1 i.e. mesons have

integral spin. The total angular momentum J of the mesons is the vector

sum of spin S and its angular momentum L i.e. J = L + S. In contrast to

baryon number, there is no meson number associated with mesons [21, 22].

In SU(3) representation, there are nine possible states for the three light

quark flavours (u, d, and s). They are grouped into an octet and singlet

3⊗ 3 = 8⊕ 1

By including charm quark also the SU(3) representation can be extended to

SU(4). However the SU(4) symmetry is strongly broken due to heavy mass

of charm quark. Nevertheless, in SU(4) representation, sixteen mesons are

classified into a 15-plet and singlet.

4⊗ 4 = 15⊕ 1

Mesons are also classified in JPC multiplets. The states with angular momen-

tum L = 0 are pseudo-scalars with JPC = 0−+, and states with JPC = 1−−

are vector mesons. For L = 1 the states are scalars with JPC = 0++, the

axial vectors JPC = 1++ and JPC = 1+− and the tensors with JPC = 2++.

The ground state pseudo-scalars and vector mesons are shown in Figure 2.4
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Figure 2.3: “SU(4) multiplet of baryons composed of u, d, s and c quarks.
Figure(a) shows that 20-plet with an SU(3) octet and Figure(b) 20-plet with
SU(3) decuplet” [21].

Figure 2.4: “The weight diagram for the ground state pseudoscalar mesons
(a) and vector mesons (b) made of u, d, s and cquarks as a function of isospin
I, charm and hyper charge” [21].
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2.2 Fundamental Interactions

All the physical processes are based on four types of fundamental in-

teractions: electromagnetic, weak, strong and gravity. The standard model

describes all interactions except gravity. Leptons interact through only elec-

tromagnetic and weak forces. While quarks due to colour charge, interact in

all three ways i.e. through electromagnetic, weak and strong forces. Corre-

sponding to each interaction, there is a force carrier or mediator called gauge

boson e.g. photons W± and Zo. Electrically charged particles interact elec-

tromagnetically through exchange of photons. The weak force is mediated

by W± and Zo bosons. The strong force is mediated via exchange of gluons.

Electromagnetic and weak forces have been unified into electroweak force

which is studied in the framework of electroweak theory.

2.3 Symmetries and Conservation Laws

Symmetries play an important role in physics and are expressed by the invari-

ance of physical laws with respect to some group of transformations either

discrete or continuous [23]. If a system remain unchanged under a trans-

formation of one or more variables, the system is said to have a symmetry

under that transformation. Every symmetry of the nature is associated with

some conservation laws e.g. translational invariance in space leads towards

the conservation of linear momentum similarly the invariance under rotation

yields the law of conservation of angular momentum [24, 25, 26].
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2.3.1 Parity

Parity is an intrinsic property of all fundamental particles. In quantum

mechanics, this property is defined in terms of parity operator P, which is

related to orbital angular momentum L by the relation:

P = (−1)L+1

where L is restricted to integral values. Mathematically, this operator is

defined as the inversion of the spatial coordinates x→ −x. It is odd (-1), if

a wave function changes the sign under parity operation, and is even (+1),

if it remains unchanged. The parity operator is multiplicative i.e. parity of

a composite state is equal to the product of parities of its constituents. It is

conserved in strong and electromagnetic interactions. By convention, quarks

(fermions) have positive parity and anti-quarks (anti-fermions) have negative

parity [27, 28].

2.3.2 Charge Conjugation

The charge conjugation C, is an operation that changes the particles to anti-

particles. This operation reverses all the internal quantum numbers (charge,

baryon number, lepton number, strangeness and other flavours etc.) but the

mass, energy, momentum and spin remain unchanged. Like parity operator

charge conjugation too has got unit value with ± signature. For fermion-

antifermion bound state, the charge conjugation parity (C-parity) is defined
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as

C = (−1)L+S

where L and S are the orbital angular momentum and total spin respec-

tively. Except weak interactions, it is conserved in strong, electromagnetic

and gravitational interactions [29].

2.3.3 Isospin

The concept of isospin is similar to that of angular momentum. This appear

as a result of slight difference in the masses of proton and neutron. They

both form an isospin doublet with isospin quantum number I = 1/2, with

third component of isospin I3 having the values of 1/2 and -1/2 for proton

and neutron respectively. It is of great importance for the classification of

observed particle families. We can describe the isospin multiplets in analogy

with the angular momentum and spin multiplets. Similarly the pions (π+,

π− and πo) have isospin quantum numbers I = 1, thus the corresponding I3

values are 1, 0 and -1 for π+, π0 and π−respectively [30].

Table 2.2: The values of B, Y, Q and I and I3

involves in our work

Particles B Y Q I I3

π+ 0 0 1 1 1
π− 0 0 -1 1 -1
Λ 1 0 0 0 0
p 1 1 1 1/2 1/2

There are some other important quantum numbers conserved in strong

interactions like Hypercharge Y and electric charge Q, which are related by
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Gell-Mann-Nishijima relationship

Q = I3 +
Y

2

where

Y = B + S + C +B + T

In above expression, B is the baryon number, S is strangeness, C is charmness,

B is bottomness and T is the topness quantum numbers. The electric charge

is related to isospin by By convention, the flavour of quark has the same value

as its charge Q. The values of baryon numbers B, Hypercharge Y, charge Q

and Isospin I and third component of isospin I3 are listed in table for some

isospin multiplets involved in our work.

2.4 Charmonium

In November, 1974, the discovery of an unusual resonance opened a new

era in the field of high energy physics. This new resonance was discovered

independently by two different experimental groups at Brookhaven National

Laboratory (BNL) and Stanford Linear Accelerator (SLAC). At BNL, the

group led by Ting reported the observation of heavy particle in the mass

spectrum of of e+e− near the energy of 3.1GeV/c2. It was observed at 30GeV

in the following reaction:

p+Be→ e+ + e− + x
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[5]. The SLAC group led by B. Richter observed a very sharp peak at the

centre of mass energy of 3.1GeV/c2 in the following reaction:

e+e− → hadrons, e+e−andµ+µ−

[6]. The BNL group called this particle J whereas the SLAC group called

this particle ψ and thus known as J/ψ. Soon after the discovery of J/ψ, the

preliminary results were reported for the confirmation of newly discovered

particle in the e+e− annihilation experiments at Frascati [31]. Further it

was confirmed by DASP collaboration in the elastic scattering of e+e− at

DESY[32].

After the discovery, much theoretical efforts have been made for the in-

terpretation and decay properties of J/ψ resonance. The charmonium model

[33] - [42] interprets this resonance as the bound state of a new flavour of

quark, the charm quark and charm anti-quark (cc). The idea of charm quark

had already been introduced by S. L Galshow and Yasuo Hara in 1964 to

construct a symmetry between four quarks and four leptons [43, 44, 45] . M.

K. Gaillard and B. W. Lee suggested the mass of charm quark [46]. The

interpretation of J/ψ as a cc̄ bound state received a strong support from the

observation of charmed meson [47].

Further evidences for the interpretation of J/ψ as cc̄ bound state follows

from narrow widths which were determined to be < 100 KeV. For a state

which decays to hadrons by strong interaction, is expected to have width in

MeV. But J/ψ width is three times smaller than the expected width if it were

composed of uncharmed quark and antiquark [48]. The small width of J/ψ
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Figure 2.5: (a) “The narrow resonance peak of J/ψ in the invariant mass
distribution of e+e− produced in the reaction p + Be → e+ + e− + x at
BNL”[5].
(b) “The observation of J/ψ at 3.1GeV/c2 in the cross section of e+e− for
various decay channel, showing the sharp peak and narrow width of J/ψ
resonance” [6].
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Figure 2.6: “(a) OZI allowed and (b) suppressed process of charmonium.”
[48]

is attributed to OZI rule (Okubo, Zweig, Iizuka) [49, 50, 51]. The OZI rule

states that the strong decay processes, in which the initial quark pairs do not

appear as final quark pairs, are strongly suppressed. More simply this rule

tells that, the strong processes, described by Feynman diagrams containing

detached quark line are strongly suppressed as compared to the diagrams in

which quark line are connected [52]. Figure 2.6 (a) and (b) describe the OZI

allowed and suppressed decays of charmonium state respectively [53]. The

detached quark line in the initial and final states requires to be connected

through gluons. Since the decaying particle is a colour singlet vector meson,

two gluons are required for colour conservation while charge parity is odd

and demands exchange of three gluons. [54, 55].

Shortly after the discovery of J/ψ, SLAC group discovered another narrow

resonance, ψ(2S) at the centre of mass energy just below 3.7 GeV in the cross

section of e+e− → hadrons [7]. After that another resonance, ψ(3S)orψ′′ at

3.77 GeV, was found by DASP collaboration [56]. It was concluded that

these resonances are composite state of charm-anticharm quark also known

as charmonium.
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Figure 2.7: “OZI suppressed process of charmonium”.[48]

2.4.1 Charmonium Spectrum

Later on, more charmonium states were observed experientially, further con-

forming the existence of charm quark [57, 58, 59]. The observed charmonium

states are shown in Fig.2.8. The charmonium states or energy levels are de-

scribed with spectroscopic notation n2S+1LJ where L is the orbital angular

momentum, S is spin of the quark and anti-quark and J total angular mo-

mentum and ”n” represents the radial excitation number. Since quarks are

fermion (spin-1/2 particles), the total spin takes the values of 0 and 1, and

comes out four possible spin states of cc pair i.e into a singlet and a triplet

state [60]. The radial excitation of cc result in a spectrum having same values

of S, L and J corresponding to different radial excitation number ”n”. For

example for n=1 with L=0 and S =0 the state is represented as 11S0 which is

the lowest state and for n=2 with same L and S, the state is 21S0. Similarly

for n=1 with L=0 and S =1 the state is represented as 13S1 which is the

lowest state and for n=2 with same L and S, the state is 23S1.

The charmonium states can also be described in term of JPC , where P
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Figure 2.8: The charmonium and its related resonances and transitions be-
tween different states. The states are labelled with spectroscopic notation
n2S+1LJ , where n is the principal quantum number, S represents the spin
of the particle and S = 0, 1, L = S, P, D, ... denotes the orbital angular
momentum of L = 0, 1, 2, ..., and J is the total angular momentum. In
addition to this notation, parity (P ) and charge conjugation (C) are used
in the notation JPC . Dotted line shows the threshold for various charmed
meson [60].
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is the parity and C is the charge conjugation. For quark anti-quark bound

system the C = (−1)L+S and P = (−1)L+1. Therefore the 1S0 states have

JPC = 0−+ and 3S1 states have JPC = 1−−. The lowest energy states for

mesons with quark-antiquark pairs have spin S = 0 and negative parity are

called pseudo-scalar mesons, e.g. ηc(1S) and ηc(2S). For excited states of

mesons the quark spins are parallel, so if a state has zero orbital angular

momentum, then the total angular momentum of the particle is 1. Such

states are called vector mesons, e.g. J/ψ and ψ(2S).

More detailed descriptions and discussion about Charmonium can be

found in Ref.[61] and [62].

2.4.2 Production and decay mechanisms of charmo-

nium

Most of the charmonium spectroscopy was carried out in e+e− collision ex-

periments in which e+e− may annihilate through virtual photon and creats a

cc bound state, as shown in the Fig.2.9. As the vector mesons have quantum

e−

e+

c

c

γ

Figure 2.9: Feynman diagram for the production of cc in e+e− process[63].
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numbers JPC = 1−−, same as that of photon, they can be produced directly

in e+e− collisions, in which virtual photons are formed. The cc̄ bound states

can also be produced in e+e− collision in the initial state radiation (ISR) pro-

cesses in which, either the electron or positron radiates a photon and then

annihilate, thereby lowering the effective centre of mass energy. This is very

useful process for searching new vector mesons. In B meson decay, charmo-

nium state of any quantum number can be produced. The annihilation of pp

makes it possible to study the full charmonium spectrum [63].

The charmonium states can decay through electromagnetic or hadronic

processes involving the radiative transition or annihilation decays as shown in

Fig.2.10. The radiative transitions have mainly tow types: electromagnetic

and hadronic. Electromagnetic transitions involves the decay of charmonium

states to their low lying charmonium states by emitting photons. In hadronic

transitions, charmonium states are converted into lower states via emission of

lighter mesons. The annihilation decays are of two types: hadronic and elec-

tromagnetic. In hadronic annihilation of charmonium , the charm-anticharm

quark pair annihilate into three gluons which in turn produced hadrons. The

hadronic decay modes of ψ(2S) are strongly suppressed in accordance with

OZI rule. Due to this strong suppression, the probability electromagnetic de-

cays of ψ(2S) become comparable with that of hadronic decays [64]. That’s

why its leptonic decays have significant branching fraction. In electromag-

netic annihilation, the the hadrons are produced from the photons created

due to annihilation of charm-anticharm quark pair. The annihilation decays

are mainly divided into two or three body intermediate state decay processes.

Two body decays involve a meson pair or baryon anti-baryon pair. Three
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Figure 2.10: Charmonium decays via one photon, via three gluons and via
one photon and two gluons [64].
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body decay may involve three meson or a baryon anti-baryon pair accom-

panied by a meson. These decay modes provide excellent opportunities to

search for hybrids, study light hadron properties, investigate excited states,

search for glueballs, probe the possibility of the decay processes violating con-

servation laws such as lepton flavour number, isospin, C-Parity, strangeness,

etc. [65].
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Chapter 3

Experimental Setup

3.1 Beijing Electron Positron Collider II (BEPC

II)

1The upgraded Beijing Electron Positron Collider II is a two ring, multi

bunch collider with designed luminosity of 1033cm−2s−1 at center of mass

energy of 3.78 GeV. It is designed to operate in τ charm energy region

(
√
s = 2.0− 4.6GeV ) [66]. The two rings are used to store the electron and

positron beams separately. There are 93 bunches in each ring with bunch

spacing of 8ns. The electron and positron beam current is 0.91A and the

electron injection rate is 200mA/min and that of positron is 50 mA/min.

The electron positron beams collides head on at the interaction point with

horizontal crossing angle of ± 11 mrad [67].

The major components of collider are injection kickers, beam control op-

1“The material presented in this chapter has been taken from scholarly work whose
references are given. Author has no intention to own any material reported without
references”
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tics, RF cavities, beam pipes, vacuum system, superconducting quadruple

magnets, power supplies and beam instrumentation and control [68].

Figure 3.1: A sketch of Beijing Electron Positron Collide II (BEPC II). The
interaction point is shown with crossing a crossing angle of ±11mrad and
bunch spacing of 8ns.

3.2 The Beijing Spectrometer III (BES III)

The Beijing Spectrometer III, as shown in Fig.3.2, is a detector to perform

experiments at BEPC II. It consists of Main Drift Chamber (MDC), Time

of flight, Electromagnetic calorimeter and Muon identifier.
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Figure 3.2: Schematic diagram of BES III detector [68].

3.2.1 Main Drift Chamber (MDC)

Main Drift Chamber (MDC) is one of the most important and innermost

component of BES III detector. It is used to measure the momentum of

the charge particle and energy loss per unit length for particle identification.

In order to minimize the effect of multiple scattering, a Helium based gas

mixture (He−C3H8) in the ratio of 60:40 is chosen as working gas. The inner

and outer radius of MDC are 59 mm and 810 mm respectively. The polar

angle coverage of MDC is | cos θ |< 0.93. MDC has 43 cylindrical layer of

small drift cells that are coaxial with beam pipe. Aluminum and gold plated
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tungsten wire are used for the field shaping and for signals respectively. The

single wire resolution is better than 130µm in r-φ plane and the position

resolution in the z-direction (beam direction) at the vertex is expected to be

2mm. The expected transverse momentum resolution is 0.5% at 1GeV/c in

1T magnetic field [69]. Fig.3.3 shows the schematic view of MDC.

Figure 3.3: A schematic view of Main Drift Chamber of BES III [67].

3.2.2 Time of Flight System (TOF)

This system is used to measures the time of flight of charged particles for

their identification. It also plays an important role as fast triggers for charged
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particles and helps to suppress backgrounds from cosmic rays. TOF system

based on plastic scintillator bars and read out by fine mesh photo-tubes. It

consists of a barrel and two end caps. The barrel TOF covers the solid angle

| cos θ |< 0.83 and for end cap its value is 0.85 <| cos θ |< 0.95. The barrel

TOF has two layers having 88 scintillating bars. Each bar has a thickness of

50mm and is read out at each end by fine mesh photo-multiplier tubes(PMT).

Each single layer end cap TOF have 48 fan shaped counters. These end caps

TOF are located out sides MDC end caps. The expected time resolution for

TOF is 100ps.

3.2.3 Electromagnetic Calorimeter (EMC)

The EMC is comprised of 6240 CsI(TI) crystals, designed to measures the

energies and positions precisely. It consists of one barrel and two end cap

[71].

• The EMC barrel has inner radius of 940mm with angular coverage of

| cos θ |< 0.82.

• There are 44 crystal rings in the EMC barrel, each has 120 crystals.

• The end caps have inner radius of 500mm and covers the polar angle

range 0.83 <| cos θ |< 0.93.

• Each endcap comprises of 6 rings that are split into two tapered half

cylinder.

The designed energy resolution electromagnetic calorimeter is σE/E =

2.5% at 1GeV and position resolution of σxy = 6mm/
√
E where E is in
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Table 3.1: Designed Parameters of BEPC II [68]

BEPC II parameters Designed Values
Center of mass energy region 2.0 - 4.6 GeV
Number of rings 2
Circumference 237.5
luminosity at 3.78GeV 1033cm−2s−1

Number of bunches in each ring 93
Relative energy spread 5.16× 10−4

Crossing angle ±11mrad
Beam current 2×0.91A
Electron injection rate 200 mA/min
Positron injection rate 50mA/min

Figure 3.4: Schematic view of Electromagnetic Calorimeter.
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GeV.The total weight of crystals is 25.6 tons.

3.2.4 Muon Identifier

The BES III muon identifier is made of resistive plate chambers (RPC). The

basic function of muon identifier is to differentiate muons from hadrons by

their hit patterns in the magnetic flux return yoke.

3.3 Super-conducting magnet

The BES III super-conducting solenoid magnet (SSM)of radius of 1.48m and

length of 3.52m, use Al stabilized NbTi/Cu conductor. Its coil has 920 turns

and is situated outside EMC. A stable magnetic field of 1.0 Tesla is achieved

by SSM.

3.4 Trigger System

The latest technology based BES III trigger system has expected trigger

rate of 4KHz. The trigger system consists of two level. Hardware trigger

level (Level 1) and software trigger level (L2). Information from different

sub-detector electronics is transported into sub-trigger system via optical

fiber to generate trigger condition. The trigger and other related conditions

are generated by using information from trigger signals of TOF, MDC and

Electromagnetic Calorimeter (EMC). Global trigger logic is employed by

Level 1 sub-triggers.
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3.5 Detector Control System

The Detector Control system (DCS)[70] is the most important system of

BES III. Its main task is to monitor and control the status of accelerator

and spectrometer. It also monitor the status of the sub-detectors, readout

electronics, the PC farms, the environmental conditions like temperature and

humidity and radiation level etc. The DCS consists of six subsystems:

• ”Temperature and Humidity (TH) Monitoring System”,

• ”Low-voltage (LV) Power Supply Monitoring system”,

• ”High-voltage (HV) Power Supply Monitoring and Control System”,

• ”VME Crates Monitoring and Control System”,

• ”Gas Control System”

• ”Safety interlocking (SI) System” among the detector system.

The DCS is organized into three layers

• ”Front End layer” (FEL)

• ”Local Control Layer” (LCL)

• ”Global Control Layer” (GCL)

Simple sensors, computerized devices and programmable logical controllers

(PLC) are used in the FEL to collect data. The FEL transported this data to

LCL. LCL offers monitory and control functions such as displaying, archiv-

ing and alert handling. ”In the GCL, the global control station (GCS) will
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accumulate the summary information from LCL and provide a uniform and

simple interface to operators for the overall monitoring and control of the

whole BES III experiment. All the information acquired by the LCS will

be stored in a database and published to Internet by the web server. The

GCL work in integrated mode during concurrent physics data taking while

local control station (LCS) can work either in stand-alone mode or integrated

mode according to requirement of different stages of experiment” [70].

3.6 Physics Studies at BES III

The Physics program at BES III provides an excellent opportunity to improve

the understanding of Standard Model processes and as well as physics beyond

the Standard Model. This program includes the study of light hadron spec-

troscopy, electroweak physics, QCD, τ -physics, Charm physics, properties of

charmed mesons and baryons, measurement of CKM and QCD parameters,

glueballs search, exotic and multi-quark states, search for new physics, etc.
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Table 3.2: Parameters of BES III. [68]

Subdetector Parameter Values
MDC

single wire resolution σ = 130µm
Number of rings 2
momentum resolution σp/p = 0.5%
dE/dx resolution σ(dE/dx) = 6%

TOF
Time resolution (σT )barrel = 100ps

(σT )endcap = 110ps
EMC

Energ resolution σE/E = 2.5%at 1GeV
position resolution 0.6cm

Muon Identifier
No. of layers(barrel) 9
No. of layers(endcap) 8
Cut-off momentum 0.4MeV/c

Super-Conducting Magnetic field 1.0T
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Chapter 4

Measurement of ψ(2S) decays

into ΛΛπ+π−

4.1 Introduction

The charmonium states J/ψ and its first excited state ψ(2S) are the non-

relativistic bound states of charm-anticharm (cc̄) quarks. These states pre-

dominantly decay to light hadrons either via annihilation into three gluons

or single photon. The annihilation of charmonium state is ideal to study

light hadron spectroscopy and their production mechanism. Since the dis-

covery of charmonium states, many experiments are being conducted in

different high energy physics labs. In this regard, huge data collected at

BES III, gives an excellent opportunity to access small branching fractions

and precise measurements of previously studied decay channels of J/ψ and

ψ(2S). The branching fraction of the decay channel ψ(2S) → ΛΛπ+π− has

already been measured in CLEO experiment using 3.08 × 106ψ(2S) events
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[77] . Our analysis is based upon 106× 106 ψ(2S) data sample, collected at

BES III. We report the improved branching fractions of ψ(2S)→ ΛΛ̄π+π−,

ψ(2S)→ Ξ−Ξ̄+ and ψ(2S)→ Σ∗+Σ̄∗− to be (1.34±0.05stat±0.24sys)×10−4,

(3.15±0.35stat±0.55sys)×10−5 and (3.39±0.34stat±0.61sys)×10−5, respec-

tively. The analysis is explained in following sections.

4.2 Data samples, software framework and

BOSS Version

4.2.1 Data Samples

This analysis is performed using the following data samples

• 1.06 × 108 ψ(2S) data events accumulated at BES III in April 2009

[72].

• 1.0× 105 Monte-Carlo sample.

• 1.06× 108 inclusive Monte Carlo sample.

4.2.2 Software framework and BOSS version

The Monte-Carlo simulation is used to determine the detection efficiency,

optimization of event selection and for the estimation of the possible back-

ground. A GEANT 4 based [73, 74] BES III Object Oriented Simulation

Tool (BOOST) is used for the simulation of the detector. It includes the

geometry and material descriptions of the BES III detector. This analysis is
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performed using BES III Offline Software System (BOSS)[75] which is based

upon Gaudi [76]. We used BOSS 6.5.5 for our analysis.

4.3 Event Selection

The decay mode ψ(2S) → ΛΛπ+π− is studied with the following selection

criteria.

4.3.1 Initial Event Selection

1. good charged track selection

• The charged tracks are reconstructed from MDC with good helix

fit.

• | Vz |< 15cm and | Vxy |< 10cm here | Vz | and | Vxy | are the

nearest distance to interaction point in z-direction and xy-plane.

• selection of charged tracks satisfying | cos θ |≤ 0.93 where θ is

the polar angle between the charged track direction and beam

direction.

• Each charged track is required to have transverse momentum sat-

isfying Pxy > 0.05

• There are two protons and four pions in the final state. So number

of good charged tracks satisfying the above criteria is required to

be six with net charge zero.

2. Particle Identification
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• The dE/dx and TOF(Endcap and Barrel) information is used to

identify proton and anti-proton.

• For identification of p/p, it is requred that Prob(p) > Prob(k) and

Prob(p) > Prob(π)

3. Vertex Fitting

• A vertex fit is performed to one proton and negative charged tracks

(π−) assuming that they are originated form the interaction point

• we reconstruct a candidate Λ from the combination of pπ−

• by comparing χ2 value, we select the right π− for Λ.

• for events more than one Λ candidate, the one with least χ2 is

chosen.

• same method is applied for Λ selection.

4. 4-C Kinematic Fit

• The 4-C kinematic fit is applied to all candidiates satisfying ψ(2S)→

ΛΛπ+π− hypothesis by imposing four momentum conservation.

Event with χ2
4C < 100 are selected.

The χ2
4C distributions, invariant mass distributions of pπ− and pπ+ after

initial event selection criteria are shown in Figures 4.1, 4.2 and 4.3 from

MC and 4.4, 4.5 and 4.6 from data.

4.3.2 Final Event Selection

After initial event selection, the final event selection is listed below
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Figure 4.1: Distribution of χ2
4C after initial event selection.
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Figure 4.2: Invariant mass distribution of pπ− for Λ after initial event selec-
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Figure 4.3: Invariant mass distribution of pπ+ for Λ after initial event selec-
tion.
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Figure 4.4: Distribution of χ2
4C after initial event selection.
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Figure 4.5: Invariant mass distribution of pπ− for Λ after initial event selec-
tion.
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Figure 4.6: Invariant mass distribution of pπ+ for Λ after initial event selec-
tion.
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1. Mass Window cut

• Λ and Λ mass constriants:

• The final pπ− invariant mass distribution is obtained after apply-

ing the mass constraints |Mpπ+ −MΛ |< 0.005GeV/c2

• The final pπ+ invariant mass distribution is obtained after apply-

ing the mass constraints |Mpπ− −MΛ |< 0.005GeV/c2

2. χ2 cuts for primary and secondary fits

• To improve the resolution of Λ/Λ, primary and secondary vertex

fits are used successfully and to supress the backgound χ2 < 1000

for primary vertex fit χ2 < 500 for secondary vertex fits are used.

• the decay lengths (DL) for reconstructed Λ and Λ, DLΛ/Λ >

0.005m is used for selection of events.

After applying above event selection criteria, and following mass cut

the plots of invariant mass distributions of π−Λ and π+Λ(Fig. 4.7),

π+Λ and π−Λ(Fig. 4.8) and ΛΛ and π+π−(Fig. 4.9) are shown.

(a) |Mpπ+ −MΛ |< 0.005GeV/c2

(b) |Mpπ− −MΛ |< 0.005GeV/c2

(c) DLΛ/Λ > 0.005m

(d) χ2 < 1000

(e) χ2 < 500
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Figure 4.7: Invariant mass distribution of π−Λ (left) and π+Λ(right) after
initial selection criteria.
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Figure 4.10: Invariant mass distribution of pπ− for Λ after final event selec-
tion.
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Figure 4.11: Invariant mass distribution of pπ+ for Λ after final event selec-
tion.
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Figure 4.12: χ2
4C distribution after final event selection.
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3. reject Ξ− and Ξ
+

:

The invariant mass distribution of π−Λ and π+Λ in data is shown figure

4.7. The Ξ− and Ξ
+

signals are clear near 1.321GeV/c2. Σ∗− and Σ
∗+

peaks are also clear. These background events contributions are from

ψ(2S) → Ξ−Ξ+. We apply the mass constraint of | Mπ−Λ −MΞ− |>

0.013GeV/c2 and |Mπ+Λ −MΞ
− |> 0.013GeV/c2.

4. reject Σ∗+ and Σ
∗−

:

The invariant mass distributions of π+Λ and π−Λ are shown in Fig.

4.8, Σ∗+ and Σ
∗−

signals are clear, To reject this events we use mass

constraints of | Mπ+Λ −MΣ∗+ |> 0.09GeV/c2 and | Mπ−Λ −MΣ
∗+ |>

0.09GeV/c2.

5. reject J/ψ

J/ψ peak is clear in the invariant mass distribution of ΛΛ, the J/ψ

events candidates are from ψ(2S) → J/ψπ+π− , J/ψ → ΛΛ, so the

events around J/ψ paek are rejected by using the cut |M(ΛΛ)−MJ/ψ |>

0.009GeV/c2

6. π+π− mass constriant:

The invariant mass distribution of π+π− is shown in the Fig.4.9 which

shows a clear signal of ρ0. These background events are from the

ψ(2S) → Λρ0Λ. In order the eliminate these background events we

apply the the following mass cut of |Mπ+π− −Mρ0 |> 0.009GeV/c2.
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Figure 4.13: Optimization of χ2
4C and Λ/Λ cuts.

4.4 Optimization

In order to suppress the background and to increase the ratio of signal to

square root of signal plus background i.e. S√
S+B

, we optimized the mass

cut for Λ and Λ and χ2
4C for 4C fit from Monte-Carlo and Data, here S

represents the signal and S + B represents signal plus background. For Λ

and Λ candidates selection, a mass constraint of 5MeV/c2 and χ2
4C < 100

are chosen, by optimizing S√
S+B

as shown in Figure 4.13.

4.5 Background Study

After final event selection for the invariant mass distributions, we investigate

the possible background events that may affect our expected signal region.

We study the possible background events using 106M ψ(2S) Inclusive MC

samples and as well 100 thousand MC sample for each decay channel with

the same final states mentioned in PDG(2010). The background events from

inclusive Monte-Carlo topology analysis are listed in the Table. 4.1
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Table 4.1: MC topology

No. Decay chain final States NEvt

1 ψ(2S)→ ΛΣ∗−π+ ppπ+π+π−π− 226
Λ→ pπ+, Σ∗− → Λπ−,Λ→ pπ−

2 ψ(2S)→ Σ
∗+

Λπ− ppπ+π+π−π− 229
Λ→ pπ−, Σ∗+ → Λπ+,Λ→ pπ+

3 ψ(2S)→ Λρ0Λ ppπ+π+π−π−, 89
Λ→ pπ+, ρ0 → π+π−,Λ→ pπ−

4 ψ(2S)→ J/ψπ+π−, J/ψ → ΛΛ, ppπ+π+π−π−, 56
Λ→ pπ+, Λ→ pπ+

5 ψ(2S)→ pΛK∗− ppπ+π+π−π− 16
Λ→ pπ−, K∗− → K0π−, K0 → K0

S

K0
S → π+π−

6 ψ(2S)→ ΛpK∗+, ppπ+π+π−π− 16
Λ→ pπ−, K∗+ → K0π+, K0 → K0

S

K0
S → π+π−

7 ψ(2S)→ ωΛΛ, ppπ+π+π−π− 11
ω → π−π+,Λ→ pπ−,Λ→ pπ+

K0
S → π+π−

8 ψ(2S)→ Σ
∗+

Σ∗−,Σ
∗+ → Λπ+, ppπ+π+π−π− 5

Σ∗− → Λπ−,Λ→ pπ−,Λ→ pπ+

K0
S → π+π−

9 ψ(2S)→ π+π−J/ψ ppπ+π+π−π− 3
J/ψ → pπ−pπ+

10 ψ(2S)→ π+π−J/ψ ppπ+π+π−π− 3
J/ψ → ∆++pπ−,∆++ → pπ+
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4.6 Detection Efficiency

The Monte-Carlo sample is used to estimate the the detection efficiency. The

number of Λ events are obtained after applying the final event selection and

all the mass constraints. The invariant mass distributions of pπ− and pπ+

are shown in the Fig. 4.10 and 4.11. The number of events selected for Λ

and Λ are NΛ = 6548 ± 81 and NΛ = 6546 ± 81. So the average number of

observed events are Nobs = 6547± 81. The efficiency is calculated using the

formula

ε =
Nobs

Ngenerated

× 100%

where Ngenerated = 100000. Thus the detection efficiency is determined to be

6.55%

4.7 Fit Results

Based on the above event selection criteria and mass cuts listed above, the

events for the decay process ψ(2S)→ ΛΛπ+π− excluding intermediate reso-

nances, are selected. The invariant mass distributions of Λ and Λ are shown

in figure:4.14. The Gaussian function is used to describe signal events and

first order Chebychev polynomial for background events. The mass resolu-

tion is obtained with Monte-Carlo simulation. The mass resolution for Λ and

Λ is shown in Fig.4.15 and its value is σ = 0.0012GeV/c2.

The number of events observed for Λ and Λ are NΛ = 373 ± 20 and

NΛ = 390 ± 21 respectively. The average number of signal events using the

unconstrained averaging method are Nobs = 381± 14.

45



2
GeV/c­

πInvarient Mass of p

1.1 1.105 1.11 1.115 1.12 1.125 1.13

E
v

e
n

ts
 /

 (
 0

.0
0

1
2

 )

0

20

40

60

80

100

120

140

160

180

Λ

 0.000073±mean =  1.115889 

 11±nbkg =  84 

 20±nsig =  373 

 0.000070±sigma =  0.001249 

Λ

2
GeV/c+πpInvarient Mass of 

1.1 1.105 1.11 1.115 1.12 1.125 1.13

E
v

e
n

ts
 /

 (
 0

.0
0

1
2

 )

0

20

40

60

80

100

120

140

160

Λ

 0.000078±mean =  1.115839 

 10±nbkg =  66 

 21±nsig =  390 

 0.000067±sigma =  0.001399 

Λ

Figure 4.14: Invariant mass distribution of Λ (left) and Λ (right). The signal
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Figure 4.15: Invariant mass distribution of Λ (left) and Λ (right). The Monte-
Carlo signal is fitted with Gaussian function for mass resoultion.
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4.8 Determination of Branching Fraction

The branching fraction B of the decay process ψ(2S)→ ΛΛπ+π− excluding

intermediate resonances, is determined using the formula

B(ψ(2S)→ ΛΛπ+π−) =
Nobs

Nψ(2S) × εMC × (B(Λ→pπ))2

Here

B(Λ→pπ) = (63.9± 0.5)% = (63.9± 0.5)× 10−2

Both above values are taken from PDG 2010 and Nψ(2S) = 106M REFER-

ENCE. The MC efficiency is εMC = (6.55±0.08)%. By substituting all these

value, we get

B(ψ(2S)→ ΛΛπ+π−) = (1.34± 0.05)× 10−4

The error is statistical only. Now after including systematic errors, given in

Table. 4.2, the branching fraction estimated to be

B(ψ(2S)→ ΛΛπ+π−) = (1.34± 0.05stat ± 0.24sys)× 10−4
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4.9 Intermediate Resonances

The decay process ψ(2S) → ΛΛπ+π− has some intermediate states. The

invariant mass distributions of π−Λ, π+Λ, π+Λ and π−Λ as shown in Figures

4.7 and 4.8, which clearly indicate the existence of Ξ−, Ξ
+

, Σ∗−, Σ
∗+

, Σ∗+

and Σ
∗−

signals. These figures show that there are intermediate resonances

i.e. ψ(2S)→ Σ∗+Σ
∗−

, ψ(2S)→ Ξ−Ξ
+

etc.
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Figure 4.16: Invariant mass distribution of π−Λ (left) and π+Λ(right).
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Figure 4.17: Invariant mass distribution of π−Λ (left) and π+Λ (right).
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4.10 Analysis of ψ(2S)→ Σ∗+Σ
∗−

The decay chain of this process is ψ(2S) → Σ∗+Σ
∗−

where Σ∗+ → π+Λ,

Λ → pπ− and Σ
∗− → π−Λ, Λ → pπ+. There are six charged tracks in

the final state i.e. one proton, one anti-proton, two π+ and two π−. To

perform the analysis, we have generated 100 thousand Monte-Carlo sample

for the decay process, using J2BB2 generator. Since there are also six charge

tracks in the final state, therefore candidate events are selected according to

selection criteria mentioned in section 4.3. At first, we have reconstructed

Λ and Λ candidates by applying vertex fits, thereby selecting the right π+

and π− which are coming from Σ∗+ and Σ
∗−

. After applying vertex fit, we

reconstruct Σ∗+ and Σ
∗−

candidates by imposing 4C kinematic fitting from

the combination of Λπ+ and Λπ−. The events with χ2
4C < 100 are selected

for final events selection. For invariant mass distribution plots of Λπ+ and

Λπ−, we used following mass constraints:

• |Mpπ− −MΛ |< 0.005GeV/c2

• |Mpπ+ −MΛ |< 0.005GeV/c2

• |M(π−Λ) −MΞ− |> 0.013GeV/c2

• |M(π+Λ) −MΞ+ |> 0.013GeV/c2

• |M(π+Λ) −MΣ∗+ |< 0.09GeV/c2 for Σ
∗−

• |M(π−Λ) −MΣ
∗− |< 0.09GeV/c2 for Σ∗+

• |M(ΛΛ) −MJ/ψ |> 0.008GeV/c2
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• | DecayLengthΛ |> 0.005m

• | DecayLengthΛ |> 0.005m
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Figure 4.18: Invariant mass distribution of Λπ+.

)
2

 (GeV/cΛ
­

πMass distribution of 

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

E
v
e
n

ts

0

500

1000

1500

2000

2500

*­

Σ
Entries  12577

MC

*­

Σ

Figure 4.19: Invariant mass distribution of Λπ−.

The mass resolutions are determined with single Gaussian fit to Monte-Carlo.
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Figure 4.20: Invariant mass distribution of Λπ+.
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Figure 4.21: Invariant mass distribution of Λπ−.
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4.10.1 Fit Results

After final event selection,the Invariant mass distributions of Λπ+ and Λπ−

are fitted with Gaussian function and third order ChebyChev background

polynomial. The blue line represents the model fitting to data points, green

line represents the Gaussian fitting and red dashed line shows the third order

Chebychev background polynomial. The Figures 4.22 and 4.23 show the fit

results.

4.10.2 Determination of Branching Fraction

The branching fraction B can be determined using the formula

B(ψ(2S)→ Σ∗+Σ
∗−

) =
Nobs

Nψ(2S) × εMC × (B(Σ→Λπ))2(B(Λ→pπ))2

Here

B(Σ→Λπ) = (87.0± 1.5)% = (87.0± 1.5)× 10−2

and

B(Λ→pπ) = (63.9± 0.5)% = (63.9± 0.5)× 10−2

The branching fraction of intermediate state are taken from [21] and total

number of ψ(2S) is Nψ(2S) = 106M [72].

From fit results, the number of observed events are Nobs = 154 ± 22 for

Σ∗+ and Nobs = 130± 18 for Σ
∗−

, So the average number of signal events is

140± 14. By Substituting all these values, we get

B(ψ(2S)→ Σ∗+Σ
∗−

) = (3.39± 0.34)× 10−5
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Here error is statistical one. By including systematic errors, given in Table.4.3,

the branching fraction is determined to be

B(ψ(2S)→ Σ∗+Σ
∗−

) = (3.39± 0.34stat ± 0.61sys)× 10−5
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4.11 Analysis of ψ(2S)→ Ξ−Ξ
+

To study the intermediate resonances of Ξ− and Ξ
+

, we have generated 100

thousand Monte-Carlo sample of the decay process ψ(2S) → Ξ−Ξ
+

using

PHSP generator. In this decay process ψ(2S) → Ξ−Ξ
+

followed by Ξ− →

Λπ− and Ξ
+ → Λπ+ and Λ→ pπ− and Λ→ pπ+

4.11.1 Event Selection

This decay process involves six charged tracks in the final state, so initial

selection criteria is same as mentioned in the section 4.3. In order to eliminate

the background events, we apply some mass constraints within 3σ. For the

invariant mass distribution plots of Λπ+ and Λπ−, we use the following mass

constraints.

• |Mpπ− −MΛ |< 0.005GeV/c2

• |Mpπ+ −MΛ |< 0.005GeV/c2

• |M(π−Λ) −MΞ− |< 0.013GeV/c2 for Ξ
+

• |M(π+Λ) −MΞ+ |< 0.013GeV/c2 for Ξ−

• |M(π+Λ) −MΣ∗+ |> 0.09GeV/c2

• |M(π−Λ) −MΣ
∗− |> 0.09GeV/c2

• |M(ΛΛ) −MJ/ψ |> 0.008GeV/c2

• |Mη −Mπ+π− |> 0.009GeV/c2
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• | DecayLengthΛ |> 0.005m

• | DecayLengthΛ |> 0.005m

The Λπ− and Λπ+ candidate events have been selected after 4-C kine-

matic fitting, candidates with χ2
4C < 100 are selected for final event selection.

The invariant mass distributions for Ξ− and Ξ
+

are shown in the Figure: 4.25

The number of signal events for Ξ− and Ξ
+

from Monte-Carlo after final

event selection is given are given NΞ− = 2920 ± 54 and N
Ξ
+ = 2895 ± 54,

so the average number for ψ(2S) → Ξ−Ξ
+

is N
Ξ−Ξ

+ = 2907± 54. Thus the

average efficiency is

ε = 2.91%

4.11.2 Fit Results

After final event selection, the invariant mass distributions of Λπ− for Ξ−

and Λπ+ for Ξ
+

are shown in Figures 4.26 and 4.27. Here the invariant mass

distributions are fitted with Gaussian function with first order Chebychev

background polynomial. The blue line represents the model fitting to data

points, green line shows the Gaussian fitting and red dashed line represents

the background polynomial. The number of observed events are Nobs =

41.8 ± 6.5 for Ξ− and Nobs = 42.4 ± 6.5 for Ξ
+

, so the average number of

observed signal events, using unconstrained method is Nobs = 40± 4.
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+
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4.11.3 Determination of Branching Fraction

The branching fraction B can be determined using the formula:

B(ψ(2S)→ Ξ−Ξ
+

) =
Nobs

Nψ(2S) × εMC × (B(Ξ→Λπ))2(B(Λ→pπ))2

Here

B(Ξ→Λπ) = (99.887± 0.035)% = (99.887± 0.035)× 10−2

and

B(Λ→pπ) = (63.9± 0.5)% = (63.9± 0.5)× 10−2

. The values of branching fraction for intermediate state are taken from [21]

and total number of ψ(2S) is Nψ(2S) = 106M [72]. In order to determine the

efficiency εMC , 100 thousand MC sample of the decay mode ψ(2S)→ Ξ−Ξ
+

are generated using J2BB1 generator. using the formula

εMC =
Nselected

Ngenerated

× 100% = (2.90%

So, by substituting all these values, we get

B(ψ(2S)→ Ξ−Ξ
+

) = (3.15± 0.35)× 10−5

the error is statistical only.
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4.12 Systematic Error Analysis

In this section the systematic error analysis is presented. The systematic

errors in our study are mainly arises from total number of ψ(2S) events,

charged track detection efficiency, particle identification, vertex fit, 4C kine-

matic fit and uncertainty of the intermediate resonance branching fraction.

We estimate all these errors, but the errors due to vertex and 4C kinematic

fits are discussed in detail.

4.12.1 Charged track detection efficiency

The systematic error for charge track detection is found to be 1% per charge

track. Since there are six charge tracks in our analysis, the systematic un-

certainty dueMDC charge track detection efficiency is taken as is 6%.

4.12.2 Particle identification(PID)

The uncertainty due to particle identification is determined to be 1%. We

identify only proton and anti-proton so uncetianty due to particle identifica-

tion is 2%.

4.12.3 Λ/Λ Reconstruction efficiency

We reconstruct Λ and Λ by applying primary and secondary vertex fits. So

for estimating the Λ and Λ reconstruction efficieny, we use the decay process

ψ(2S) → Ξ−Ξ
+

. After comparing the relative efficiency of MC and data,

we estimate the systematic uncertainty of primary/secondary vertex for Λ is

4%.
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4.12.4 4-C kinematic fit

The systematic error from four constraint kinematic fit is performed using by

the analysis of the decay process J/ψ → Ξ−Ξ
+

where Ξ− → Λπ−, Ξ
+ → Λπ+,

Λ → pπ− and Λ → pπ+. This decay process also involves six charge tracks

in the final state. By comparing the relative efficiencies of Monte-Carlo and

data, the systematic error for 4C kinematic fit is estimated as 15.8%. The

detailed analysis is described in Appendix A

4.12.5 Branching fraction uncertainties of intermedi-

ate resonances

The systematic uncertainty from the branching fraction of intermediate res-

onances was calculated from the uncertainties in these branching fractions.

According to PDG 2010 the branching fraction of Λ, Ξ and Σ are

B(Λ→ pπ−) = (63.9± 0.5)%

B(Σ→ Λπ) = (87.0± 1.5)%

B(Ξ→ Λπ) = (99.887± 0.035)%

So uncertainty due to [B(Λ→ pπ−)]2 is calculated to be 1.56% uncertainties

in the branching fraction of ψ(2S)→ ΛΛπ+π−.

For the analysis of ψ(2S) → Ξ−Ξ
+

, the uncertainty arising from the

uncertainties in the branching fractions of Ξ→ Λπ and Λ→ pπ so the total

uncertainty from [B = Ξ → Λπ]2 and [B(Λ → pπ−)]2 is 0.07% and 1.56%
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Table 4.2: Systematic uncertainties for ψ(2S)→ ΛΛπ+π−

Source of uncertainty Uncertainty%
Charge track detection efficiency 6
Particle identification 2
Vertx fit 4
4-C kinematic fit 15.8
Intermediate resonance branching fraction 1.56
Total number of ψ(2S) 0.81

Total = 17.57

Table 4.3: Systematic uncertainties for ψ(2S)→ Σ∗+Σ
∗−

Source of uncertainty Uncertainty%
Charge track detection efficiency 6
Particle identification 2
Vertx fit 4
4-C kinematic fit 15.8
Intermediate resonance branching fraction 3.76
Total number of ψ(2S) 0.81

Total = 17.90

respectively. so the combined effect is evaluated to be 1.6%

For the analysis of ψ(2S) → Σ∗+Σ
∗−

, the uncertainties from [B = Σ →

Λπ]2 and [B(Λ → pπ−)]2 are 3.4% and 1.56% respectively. The combined

effect is computed to be 3.76%.

4.12.6 Total number of ψ(2S) data events

The branching fraction for these decay channel is estimated using 106× 106

data events. The total number of ψ(2S) determined by counting the inclusive

hadronic events are 106.41× (1.00±0.81)×106 as desribed in [72]. So 0.81%

is taken as the source systematic uncertainty in the total number of ψ(2S)

data events.
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Table 4.4: Systematic uncertainties for ψ(2S)→ Ξ−Ξ
+

Source of uncertainty Uncertainty%
Charge track detection efficiency 6
Particle identification 2
Vertx fit 4
4-C kinematic fit 15.8
Intermediate resonance branching fraction 1.60
Total number of ψ(2S) 0.81

Total = 17.57
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Chapter 5

Summary and Conclusion

The basic concepts of Standard Model of Particle Physics, charmonium spec-

troscopy and BESIII experimental setup have been reviewed. The main high-

lights of the analysis are as:

• Monte-Carlo simulation of the signal and background decay channels

was carried out using PHSP and J2BB2 generator.

• The detection efficiencies and mass resolutions for the signal decay

channels and in some cases for background channels, were determined

by fitting the relevant invariant mass distributions with single Gaussian

function.

• The background analysis was carried out by using 106M ψ(2S) Inclu-

sive Monte-Carlo sample.

• Fit results were used to determine the branching fractions of the decay

channels to be
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ψ(2S)→ ΛΛπ+π− = (1.34± 0.05stat ± 0.24sys)× 10−4

ψ(2S)→ Σ∗+Σ
∗−

= (3.39± 0.34stat ± 0.61sys)× 10−5

ψ(2S)→ Ξ−Ξ
+

= (3.15± 0.35stat ± 0.55sys)× 10−5

We can conclude this work as:

• Our results are extremely precise as compared to previously measured

branching fractions as is clear from the Table.5.1

Table 5.1: The branching fraction of the decay processes and comparison
between our results and PDG valus

decay channel Our Measurement PDG Values

ψ(2S)→ ΛΛπ+π− (1.34± 0.05stat ± 0.24sys)× 10−4 (2.8± 0.5)× 10−4

ψ(2S)→ Σ∗+Σ
∗−

(3.39± 0.34stat ± 0.61sys)× 10−5 (11± 4)× 10−5

ψ(2S)→ Ξ−Ξ
+

(3.15± 0.35stat ± 0.55sys)× 10−5 (18± 6)× 10−5
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Appendix A

Systematic Error Analysis for

4C Kinematic fit

To estimate the systematic error for 4C kinematic fit, we use the decay pro-

cess J/ψ → Ξ−Ξ
+

, where Ξ− → Λπ−, Λ → pπ− and Ξ
+ → Λπ+, Λ → pπ+.

We have generated 100,000 Monte-Carlo sample of this decay channel using

PHSP generator. There are six charged tracks in the final state, so we use the

initial event selection criteria described in the section (4.3). For the selection

of candidate events, the all charge tracks are required to pass through vertex

fit, after that 4C kinematic fit is performed. The Λ/Λ candidate are selected

by comparing the least mass difference, thereby selecting the right π+ and

π−. Finally Ξ− and Ξ
+

candidate are selected by the combination of Λπ−

and Λπ+ respectively. The invariant mass distributions of Λπ− and Λπ+ are

obtained after applying the following mass constraints:

• |Mpπ− −MΛ |< 0.005GeV/c2
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• |Mpπ+ −MΛ |< 0.005GeV/c2

• |M(π−Λ) −MΞ− |< 0.013GeV/c2 for Ξ
+

• |M(π+Λ) −MΞ+ |< 0.013GeV/c2 for Ξ−

• |M(π+Λ) −MΣ∗+ |> 0.09GeV/c2

• |M(π−Λ) −MΣ
∗− |> 0.09GeV/c2

• |M(ΛΛ) −MJ/ψ |> 0.008GeV/c2

• |Mπ+π− −Mη |> 0.009GeV/c2

The systematic error is estimated by comparing the relative efficiencies of

Monte-Carlo and data by imposing the condition of 4C kinematic fit and

without kinematic fit. The efficiency of 4C kinematic fit is defined as

ε =
NΞ−(With4Cfit)

NΞ−(Without4Cfit)

where NΞ−(With4Cfit) and NΞ−(Without4Cfit) are the number of Ξ−

events with 4C fit and without 4C fit respectively. The invariant mass distri-

butions of Λπ− and Λπ+ with and without 4C kinematic fit from Monte-Carlo

(Figures A.1 and A.2) and from data (Figures A.3 and A.4)respectively. The

number of signal events are obtained by fitting the signal with Gaussian func-

tion and first order Chebychev backgroud polnomial. The relative efficiencies

of 4C kinematic fit for MC (717±94
740±28

× 100% = (96.89± 16.09)%) and for data

are (433±21
531±24

×100% = (81.54±7.64)%). By comparing the relative efficiencies

of MC and DATA, the systematic error due to 4C kinematic fit is estimated

to be (15.84)%.
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Figure A.1: Invariant mass distribution of Λπ− with 4C kinematic fit from
Monte-Carlo.
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Figure A.2: Invariant mass distribution of Λπ+ with out 4C kinematic fit
from Monte-Carlo.

69



 with 4C kinematic fit
2

 GeV/cΛ ­πInvariant Mass of

1.26 1.28 1.3 1.32 1.34 1.36 1.38

E
v

e
n

ts
 /

 (
 0

.0
0

6
 )

0

50

100

150

200

250

300

(Data)
­

Ξ

 0.00019±mean =  1.32158 

 5.0±nbkg =  19.5 

 21±nsig =  433 

 0.00014±sigma =  0.00383 

(Data)
­

Ξ

Figure A.3: Invariant mass distribution of Λπ− with 4C kinematic fit from
Data.
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Figure A.4: Invariant mass distribution of Λπ+ with out 4C kinematic fit
from Data.
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Appendix B

Λ/Λ reconstruction efficiency

In the analysis of ψ(2S) → ΛΛπ+π−, the candidate events of Λ and Λ have

been reconstructed by applying primary and second vertex fit. We select the

best candidate event for Λ and Λ on the basis of least χ2 values. In order to

get pure signal, χ2 < 1000 and χ2 < 500 is used for primary and secondary

vertex fits respectively. In order to determine the reconstruction efficiency

we use the decay process J/ψ → Ξ−Ξ
+

, where Ξ− → Λπ−, Λ → pπ− and

Ξ
+ → Λπ+, Λ→ pπ+. The vertex fit efficiency is defined as

ε1stand2ndvertexfit =
N2

N1

where N2 are the events for pπ− and pπ+ passing through primary and sec-

ond verteces and N1 are the events for pπ− and pπ+ reconstructed without

primary and secondary verteces. Figures B.1 and B.2 show the statistics of

events obtained with and without vertex fit for MC, respectively, and figures

B.3 and B.4 shows the same statistics for Data. Here the invariant mass
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Figure B.1: Invariant mass distribution of Λπ− with vertex fit from Monte-
Carlo.

 without vertex fit
2

 GeV/cΛ ­πInvariant Mass of

1.26 1.28 1.3 1.32 1.34 1.36 1.38

E
v

e
n

ts
 /

 (
 0

.0
0

6
 )

0

50

100

150

200

250

300

350

400

450

(MC)
­

Ξ

 0.00015±mean =  1.32121 

 8.7±nbkg =  55.2 

 28±nsig =  740 

 0.00012±sigma =  0.00398 

(MC)
­

Ξ

Figure B.2: Invariant mass distribution of Λπ+ without vertex fit from
Monte-Carlo.

72



 with vertex fit
2

 GeV/cΛ ­πInvariant Mass of

1.26 1.28 1.3 1.32 1.34 1.36 1.38

E
v

e
n

ts
 /

 (
 0

.0
0

6
 )

0

20

40

60

80

100

120

140

160

180

(Data)
­

Ξ

 0.0014±mean =  1.3200 

 11±nbkg =  76 

 19±nsig =  328 

 0.00029±sigma =  0.00503 

(Data)
­

Ξ

Figure B.3: Invariant mass distribution of Λπ− with vertex fit from Data.
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Figure B.4: Invariant mass distribution of Λπ+ without vertex fit from Data.
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distributions are fitted with Gaussian function and first order Chebychev

background polynaomial for number of signal events. From the statistics

shown in the figures, the relative efficiency of vertex fit with primary and

secondary vertex for MC signal is

553± 24

740± 28
× 100% = (74.72±)%

and the relative efficiency of vertex fit with primary and secondary vertex

for Data is

328± 19

531± 24
× 100% = (61.77±)%

By comparing the relative efficiency of MC and Data, the systematic error

due to primary and secondary vertex fit for Λ and Λ is 17.33%. So the

systematic error for Λ/Λ for primary/secondary vertex fit is estimated to be

4%.
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Appendix C

Inclusive Monte-Carlo

Background Study

The possible background events that may contribute to the signal region, are

studied using 106 M Inclusive Monte-Carlo sample. From this study, it is

found that main background is from the decay channels for which invariant

mass plots are shown as below:
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Figure C.1: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ π−π+J/ψ where J/ψ → p̄π−pπ+.
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Figure C.2: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ π−π+J/ψ where J/ψ → ∆++π−p̄ and ∆++ → pπ+.
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Figure C.3: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ J/ψπ+π− where J/ψ → ΛΛ̄ and Λ→ pπ−, λ̄→ p̄π+.
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Figure C.4: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ pΛ̄K∗− where Λ̄→ p̄π+ and K∗− → K̄oπ

−, K̄o → Ko
s → π−π+.
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Figure C.5: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ Λp̄K∗+ where Λ→ pπ− and K∗+ → Koπ

+, Ko → Ko
s → π−π+.
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Figure C.6: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ Λρ0Λ, Λ→ pπ+, ρ0 → π+π−,Λ→ pπ−.
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Figure C.7: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ ΛΣ∗−π+, Λ→ pπ+, Σ∗− → Λπ−,Λ→ pπ−.
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Figure C.8: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ Σ

∗+
Λπ−, Λ→ pπ−, Σ∗+ → Λπ+,Λ→ pπ+.
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Figure C.9: Invariant mass distribution of pπ− from Inclusive MC sample for
ψ(2S)→ π−J/ψπ+,J/ψ → ∆

++
pπ+,∆

++ → pπ−.
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Figure C.10: Invariant mass distribution of pπ− from Inclusive MC sample
for ψ(2S)→ π+π−J/ψ, J/ψ → pπ−pπ+.
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Figure C.11: Invariant mass distribution of pπ− from Inclusive MC sample
for ψ(2S)→ π+π−J/ψ, J/ψ → ∆++pπ−,∆++ → pπ+.
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Figure C.12: Invariant mass distribution of pπ− from Inclusive MC sample
for ψ(2S)→ Σ

∗+
Σ∗−, Σ

∗+ → Λπ+, Σ∗− → Λπ−,Λ→ pπ−, Λ→ pπ+.
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Figure C.13: Invariant mass distribution of pπ− from Inclusive MC sample
for ψ(2S)→ ωΛΛ, Λ→ pπ−, ω → π+π−,Λ→ pπ+.
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