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Abstract: We study Einstein’s gravity in AdS space coupled to nonlinear electrodynamics. Thermo-

dynamics in extended phase space of magnetically charged black holes is investigated. We compute

the metric and mass functions and their asymptotics, showing that black holes may have one or

two horizons. The metric function is regular, f (0) = 1, and corrections to the Reissner–Nordström

solution are in the order of O(r−3) when the Schwarzschild mass is zero. We prove that the first law

of black hole thermodynamics and the generalized Smarr relation hold. The magnetic potential and

vacuum polarization conjugated to coupling are computed and depicted. We calculate the Gibbs free

energy and the heat capacity showing that first-order and second-order phase transitions take place.

Keywords: gravity in AdS space; thermodynamics; black holes; phase transitions; Smarr relation

1. Introduction

Black hole thermodynamics has been of great interest in recent decades [1–3]. It was
understood that the black hole area corresponds to the entropy, and the temperature is
connected to surface gravity [4,5]. Later, researchers reached the conclusion that black
hole thermodynamic properties possess rich phase structures with critical phenomena
similar to ordinary thermodynamics. To formulate the first law of black hole thermody-
namics, including the VdP term, it was necessary to introduce a negative cosmological
constant as the positive pressure. As a result, one comes to Anti de Sitter (AdS) space.
Einstein’s gravity in AdS space is of interest because of a gauge duality description (the
holographic principle) [6] that possesses some applications in condensed matter physics.
The correspondence of quantum field theory to AdS gravity allows us to study the behavior
of quark–gluon plasma and other condensed matter phenomena. Hawking and Page [7]
studied phase transitions in the phase space of non-rotating uncharged Schwarzschild–AdS
black holes. Then, their work was extended to study more complicated backgrounds [8,9].
The first-order phase transitions were discovered in Refs. [10,11] for charged and non-
rotating Reissner–Nordström black holes in AdS spacetime. Such transitions show the
classical critical behavior which is similar to van der Waals liquid–gas phase transitions.
To formulate the first law of black hole thermodynamics, the cosmological constant has
to be variable [12–18]. But in Einstein–AdS gravity, the cosmological constant is a con-
stant parameter. Therefore, an alteration in the cosmological constant can be treated as
a consideration of black hole ensembles having different asymptotics. The cosmological
constant represents a vacuum energy which can be altered. Therefore, Λ can enter the
first law of black hole thermodynamics [19,20]. But if the cosmological constant is a real
constant, the Smarr relation does not hold [21], and neither does the first law of black hole
thermodynamics [13]. When Λ is included in the first law of black hole thermodynamics,
the black hole mass M has to be considered as enthalpy [13]. In this case, Λ corresponds to
positive pressure, P = −Λ/(8π) (Λ is negative for AdS space), and its conjugate variable
is the volume V = 4πr3

+/3, where r+ is the event horizon radius of a black hole [22–24].
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In this work, we investigate Einstein–AdS theory coupled to nonlinear electrodynamics
(NED) to smooth out singularities which are present in linear Maxwell electrodynamics.
For the weak-field limit, our NED is converted into Maxwell’s theory. Born—Infeld (BI)
electrodynamics [25] was the first form of NED without the singularities of point-like
charges, and it has finite electric self-energy. In weak fields, BI electrodynamics becomes
Maxwell’s electrodynamics. The black hole solutions in Einstein’s gravity coupled to
BI NED was studied in Refs. [26–31]. In quantum electrodynamics, loop corrections to
Maxwell’s electrodynamics, due to the virtual creation of electron–positron pairs, lead to
NED [32]. The one-parameter NED explored in this paper is a particular case of a more
general form of two-parameter NED [33]. Solutions obtained in this work are expressed
through elementary functions compared to solutions in [33] in the form of special functions.
Therefore, formulas for the Hawking temperature, EoS, heat capacity, and Gibbs free
energy are in the form of elementary functions. As a result, the analysis in this work is
more transparent.

The paper is structured as follows: In Section 2, we find the black hole solution in
Einstein–AdS gravity coupled to nonlinear electrodynamics. The metric and mass functions
and their asymptotics are obtained. We show that the black hole magnetic mass is finite.
Corrections to the Reissner–Nordström metric, when the cosmological constant vanishes,
are found. The first law of black hole thermodynamics and Smarr relation are formulated
in Section 3. The magnetic potential and a conjugate to coupling are computed and plotted.
In Section 4, to study the local stability, we calculate the heat capacity and investigate the
phase transitions. We compute the Gibbs free energy, critical temperatures, and pressures.
Phase transitions of the first and second order are investigated. Section 5 is devoted to
a summary.

The units with c = h̄ = 1 are employed.

2. Black Hole Solution in Einstein–AdS Theory

The Einstein’s gravity in AdS space is described by the action

I =
∫

d4x
√

−g

(

R − 2Λ

16πGN
+ L(F )

)

, (1)

where Λ = −3/l2 is the negative cosmological constant and l is the AdS radius. Here, we
employ the source of gravity to be NED with the Lagrangian [34,35]

L = − F
4π(1 + 2βF )2

. (2)

F = FµνFµν/4 = (B2 − E2)/2, and E and B being the electric and magnetic fields, respec-
tively. At the weak-field limit, Lagrangian (2) becomes Maxwell’s Lagrangian. Einstein’s
and field equations follow from action (1),

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν, (3)

∂µ

(√

−gLF Fµν
)

= 0, (4)

with LF = ∂L(F )/∂F . The energy–momentum tensor is given by

Tµν = FµρF
ρ

ν LF + gµνL(F ). (5)

We will study spherical symmetrical solutions of Einstein’s Equation (3) with the line
element squared

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2

(

dθ2 + sin2(θ)dφ2
)

. (6)
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Let us consider black holes as a magnetic monopole possessing the magnetic field
B = q/r2, and q is the magnetic charge. The metric function can be found as [36]

f (r) = 1 − 2m(r)GN

r
, (7)

where the mass function is given by

m(r) = m0 + 4π
∫

ρ(r)r2dr. (8)

The m0 is the Schwarzschild mass (an integration constant), and ρ is the total energy
density. From Equation (5), we find the magnetic energy density ρm. Then, the total energy
density is given by

ρ = ρm − 3

8πGN l2
, ρm =

q2r4

8π(r4 + q2β)2
. (9)

Making use of Equations (8) and (9), one obtains the mass function

m(r) = m0 +
q2g(r)

64
− r3

2GN l2
,

g(r) =
3
√

2
4
√

q2β
ln

r2 −
√

2 4
√

q2βr + q
√

β

r2 +
√

2 4
√

q2βr + q
√

β
− 8r3

r4 + q2β

− 6
√

2
4
√

q2β

(

arctan

(

1 −
√

2r
4
√

q2β

)

− arctan

(

1 +

√
2r

4
√

q2β

))

. (10)

By virtue of Equations (7) and (10), we obtain the metric function

f (r) = 1 − 2m0GN

r
− q2GN g(r)

32r
+

r2

l2
. (11)

Then, one finds the asymptotic as r → 0, when the Schwarzschild mass is zero
(m0 = 0),

f (r) = 1 +
r2

l2
− GNr6

7q2β2
+

2GNr10

11q4β3
+O(r14), (12)

From Equation (12), we obtain f (0) = 1, which is a necessary condition for regular
spacetime. When Λ = 0 (l → ∞) and as r → ∞ one finds from Equation (11)

f (r) = 1 − 2MGN

r
+

q2GN

r2
+O(r−3), (13)

were ADM mass is M = m0 + mm and the magnetic mass is given by

mm = 4π
∫

∞

0
ρm(r)r

2dr =
3
√

2πq3/2

32β1/4
≈ 0.417q3/2

β1/4
. (14)

Equation (13) shows that black holes have corrections to the Reissner–Nordström
solution in the order of O(r−3). In the limit β → 0 Equation (13) becomes the metric
function of Reissner–Nordström spacetime. The plot of metric function (11) is depicted in
Figure 1 at m0 = 0, GN = 1, q = 1, and l = 10.

According to Figure 1, when parameter β increases, the event horizon radius decreases.
In accordance with Figure 1, black holes can have one or two horizons.



Universe 2024, 10, 295 4 of 11

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r

f(
r)

 

 

β= 0.01

β= 0.03

β= 0.05

Figure 1. The function f (r) at m0 = 0, GN = 1, q = 1, and l = 10. Figure 1 shows that black holes

could have one or two horizons.

3. First Law of Black Hole Thermodynamics and Smarr Relation

The pressure in extended phase space thermodynamics is given by
P = −Λ/(8π) [8,13,15,37,38], and β represents the thermodynamic value. The black
hole mass M should be treated as the enthalpy, M = U + PV, where U is the internal
energy. Note that in general relativity, the ADM mass is a notion of total mass contained in
asymptotically flat spacetime, but AdS is not asymptotically flat space. In AdS space and in
extended phase space, the M is the enthalpy and is not ADM mass. For this case, instead of
ADM mass, one can consider the internal energy of a black hole, which is U = M − PV.
With the help of Euler’s dimensional analysis with GN = 1 [13,21], one finds that

M = 2S
∂M

∂S
− 2P

∂M

∂P
+ q

∂M

∂q
+ 2β

∂M

∂β
, (15)

and we do not consider rotational black holes. The so-called vacuum polarization is the
thermodynamic conjugate to coupling β [23] B = ∂M/∂β. The black hole entropy S,
volume V, and pressure P are given by

S = πr2
+, V =

4

3
πr3

+, P = − Λ

8π
=

3

8πl2
. (16)

From Equations (11) and (14) and equation f (r+) = 0, defining the event horizon
radius r+, we obtain

M(r+) =
r+

2GN
+

r3
+

2GN l2
− q2g(r+)

64
+

3
√

2πq3/2

32β1/4
. (17)

The Hawking temperature is defined by the relation

T =
f ′(r)|r=r+

4π
, (18)

where f ′(r) = ∂ f (r)/∂r. Making use of Equations (11) and (18), one obtains the
Hawking temperature

T(r+) =
1

4π

[

1

r+
+

3r+
l2

− q2r5
+

(r4
+ + q2β)2

]

. (19)
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At the limit β → 0, Equation (19) becomes the Hawking temperature of a Maxwell-
AdS black hole. With the help of Equations (16), (17), and (19), we obtain the first law of
black hole thermodynamics

dM = TdS + VdP + Φdq + Bdβ. (20)

Making use of Equations (17) and (20), one finds the magnetic potential Φ and the
vacuum polarization B as follows:

Φ =
∂M

∂q
=

qr7
+

4(r4
+ + q2β)2

− 3qg(r+)

128
+

9
√

2π
√

q

64β1/4
,

B =
∂M

∂β
=

q2r7
+

8β(r4
+ + q2β)2

− 3
√

2πq3/2

128β5/4
+

q2g(r+)

256
. (21)

The functions Φ and B versus r+ are depicted in Figure 2.
The left panel of Figure 2 shows that as r+ → ∞, the Φ goes to zero (Φ(∞) = 0),

and Φ is finite at r+ = 0. If the parameter β increases, the magnetic potential decreases.
In accordance with the right panel of Figure 2, the vacuum polarization is finite at r+ = 0,
and B becomes zero as r+ → ∞ (B(∞) = 0). If the coupling β increases, B(0) also increases.
By virtue of Equations (16), (19), and (21), we obtain the generalized Smarr relation

M = 2ST − 2PV + qΦ + 2βB. (22)

0 5 10
0

0.5

1

1.5
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2.5

r
+

Φ
(r

+
)

Subplot 1: m
0
=0, G

N
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Subplot 2: m
0
=0, G

N
=1, q=1
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 β= 0.03

β= 0.05

Figure 2. The functions Φ and B vs. r+ at q = 1. The solid curve in subplot 1 is for β = 0.01,

the dashed curve is for β = 0.03, and the dashed–dotted curve is for β = 0.05. It follows that the

magnetic potential Φ is finite at r+ = 0 and becomes zero as r+ → ∞. The function B in subplot 2

vanishes as r+ → ∞ and is finite at r+ = 0.

4. Thermodynamics of Black Hole

The local stability of black holes can be investigated by analyzing the heat capacity
that is given by

Cq = T

(

∂S

∂T

)

q

=
T∂S/∂r+
∂T/∂r+

=
2πr+T

GN∂T/∂r+
. (23)

Making use of Equation (19), we depict the Hawking temperature in Figure 3.
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Figure 3. The functions T vs. r+ at q = 1 and l = 10. The solid curve is for β = 0.01, the dashed

curve is for β = 0.03, and the dashed–dotted curve is for β = 0.05. In some range of r+, the Hawking

temperature is negative where black holes do not exist. In the extremum of the Hawking temperature,

phase transitions take place.

In accordance with Equation (23), the heat capacity has a singularity when the Hawk-
ing temperature possesses an extremum. In this case, the black hole phase transition occurs.
From Equation (19), we obtain

∂T

∂r+
=

1

4π

[

− 1

r2
+

+
3

l2
− q2r4

+(5q2β − 3r4
+)

(r4
+ + q2β)3

]

. (24)

The heat capacity (23) is defined by Equations (19) and (24). In Figure 4, we depict the
heat capacity (23) versus r+.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5

0

5

10

15

20

r
+

C
q

 

 

 β=0.01

β=0.03

β=0.08

Figure 4. The functions Cq vs. r+ at q = 1 and l = 10. The solid curve is for β = 0.01, the dashed

curve is for β = 0.03, and the dashed–dotted curve is for β = 0.08. In points where second-order

phase transitions take place, the heat capacity diverges.

Figure 4 shows that second-order phase transitions in the canonical ensemble occur
where there are singularities of the heat capacity. Zeros of the heat capacity occur when
the Hawking temperature vanishes (see Equation (19)) and correspond to first-order phase
transitions. It follows from Equation (23) that the heat capacity is zero when the Hawking
temperature is zero. In Tables 1 and 2, we present approximate solutions for the heat
capacity of zero and infinity, respectively.
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Table 1. Cq = 0, q = 1, and l = 10.

β 0.01 0.03 0.05

r+ 0.2357 0.3611 0.4507

Table 2. Cq = ∞, q = 1, and l = 10.

β 0.01 0.03 0.05

r+ 0.3752 0.5097 0.5921

From Tables 1 and 2, we observe that for intervals 0.3752 > r+ > 0.2357 (β = 0.01),
0.5097 > r+ > 0.3611 (β = 0.03), and 0.5921r+ > 0.4507 (β = 0.05), the heat capacity
is positive. When the heat capacity is positive, a black hole is locally stable; otherwise,
it is unstable. It is worth noting that the Hawking temperature is negative in Figure 3,
and, therefore, in such parameters black holes do not exist. As a result, the example
presented in Figure 4 corresponds to a non-physical situation. It is worth noting that in
the canonical ensemble, the charge q, pressure, and β are fixed, and the Hessian matrix
has only one component, HM

S,S = ∂2M/∂S2. In addition, the Hessian matrix is a function

of the heat capacity Cq, HM
S,S = T/Cq. Therefore, if the heat capacity is positive, T > 0,

and HM
S,S > 0, one has the local thermal stability in the phase space [39,40]. It should be

stressed that to verify the local thermodynamic stability in extended phase space, one has
to consider the full Hessian matrix of the system. The stability requirement is HM

QA ,QB
≥ 0,

where QA = S, q, P, β. To find the region of thermodynamic stability, det [HM
QA ,QB

] > 0 is
required [39].

Making use of Equation (19) we obtain the black hole equation of state (EoS)

P =
T

2r+
− 1

8πr2
+

+
q2r4

+

8π(r4
+ + 16q2β)2

. (25)

As β → 0, Equation (25) becomes EoS of charged Maxwell-AdS black hole [37]. If the
specific volume is defined as v = 2lPr+ (lP =

√
GN = 1) [37], Equation (25) is similar to the

van der Waals EoS. Replacing v = 2lPr+ into Equation (25) one finds

P =
T

v
− 1

2πv2
+

2q2v4

π(v4 + 16q2β)2
. (26)

The plot of P versus v is depicted in Figure 5 for q = 1 and T = 0.05.
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Figure 5. The functions P vs. v at T = 0.05. The solid curve is for β = 0.01, the dashed curve is for

β = 0.03, and the dashed–dotted curve is for β = 0.05.
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For some values of specific volume v, the pressure becomes negative (non-physical).
The inflection points (critical points) can be found by equations ∂P/∂v = 0, ∂2P/∂v2 = 0.
From Equation (26), we obtain

∂P

∂v
= − T

v2
+

1

πv3
+

8q2v3(a − v4)

π(a + v4)3
,

∂P

∂v2
=

2T

v3
− 3

πv4
+

8q2v2[3a2 − 16av4 + 5v8]

π(a + v4)4
, (27)

where a = 16q2β. Then, from equations ∂P/∂v = ∂2P/∂v2 = 0, we find the equation for
critical points

−(a + v4
c )

4 + 16q2v6
c (a2 − v8

c ) + 8q2v6
c [3a2 − 16av4

c + 5v8
c ] = 0. (28)

By virtue of Equation (27), one obtains the critical temperature and pressure

Tc =
1

πvc
+

8q2v5
c (a − v4

c )

π(a + v4
c )

3
,

Pc =
1

2πv2
c
+

2q4v4
c (5a − 3v4

c )

π(a + v4
c )

3
. (29)

There are no analytical solutions to Equation (28) for critical points. The approximate
solutions to Equation (28) and critical temperatures and pressures are given in Table 3.
We present only solutions for critical values of the specific volume when Tc and Pc are
positive values.

Table 3. Critical values of the specific volume, temperatures, and pressures at q = 1.

β 0.04 0.05 0.06 0.07 0.08 0.09 0.1

vc 4.8731 4.8664 4.8597 4.8529 4.8461 4.8391 4.8321

Tc 0.0434 0.0434 0.0435 0.0435 0.0435 0.0435 0.0436

Pc 0.0033 0.0033 0.0033 0.0033 0.0034 0.0034 0.0034

At the critical values, P − v diagrams for some parameters look like van der Waals
liquid diagrams possessing inflection points. For small coupling β, we obtain from
Equations (28) and (29) that

v2
c = 24q2 +O(β), Tc =

1

3
√

6qπ
+O(β), Pc =

1

96q2π
+O(β). (30)

From Equation (30), one finds the critical ratio

ρc =
vcPc

Tc
=

3

8
+O(β). (31)

The value ρc = 3/8 corresponds to the van der Waals fluid. When M is treated as the
chemical enthalpy, the Gibbs free energy is given by

G = M − TS. (32)

With the help of Equations (17), (19), and (32) we find

G =
r+
4

− 2πr3
+P

3
− q2g(r+)

64
+

3
√

2πq3/2

32β1/4
+

q2r7
+

4(r4
+ + q2β)2

. (33)
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The critical ’swallowtail’ behavior with first-order phase transitions between small
and large black holes is shown in subplots 1 and 2 for P < Pc. In this case, one has the multi-
valuedness of the Gibbs free energy, and it is continuous but not differentiable. Subplot 3 is
for the case of the critical point with the second-order phase transition at Pc ≈ 0.003. This
case is similar to liquid–gas phase transitions. We have here a kink for the second-order
phase transition. Subplot 4 corresponds to non-critical behavior of the Gibbs free energy
for P > Pc. For this case, there is a smooth behavior of the Gibbs free energy.

The plot of G versus T is depicted in Figure 6 for β = 0.01 and q = 1.
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Figure 6. The functions G vs. T at β = 0.01 for P = 0.0005, P = 0.001, P = 0.003, and P = 0.005.

5. Summary

Magnetic black hole solutions in Einstein–AdS gravity coupled to NED have been
obtained. We found the metric and mass functions and their asymptotics. Corrections to
the Reissner–Nordström solution were obtained when the cosmological constant is zero.
If the Schwarzschild mass is zero (m0 = 0) the asymptotic of the metric function as r → 0
is f (r) = 1 +O(r2) with the de Sitter core. The magnetic mass of a black hole is found to
be finite. By plotting the metric function, we observe that black holes can have one or two
horizons, and when coupling β increases, the event horizon radius decreases. We have
studied black hole thermodynamics in an extended phase space in Einstein–AdS gravity
coupled to NED. The thermodynamic quantity (so-called vacuum polarization) conjugated
to coupling β, and thermodynamic potential, conjugated to magnetic charge, were obtained
and plotted. We have proved that the first law of black hole thermodynamics and the
generalized Smarr relation take place. We have analyzed first-order and second-order
phase transitions by computing the heat capacity and Gibbs free energy. It was shown
that the critical ratio is ρc = 3/8 +O(β) with 3/8 being the critical ratio for the van der
Waals liquid. The black hole thermodynamics of our model is similar to the van der Waals
liquid–gas thermodynamics. We leave the study of the global structure of the spacetime
by presenting the Penrose diagram for further reference. It is also interesting to study
thermodynamic behavior of modified gravity f (R) coupled to NED presented in this paper.
Thermodynamics for pure f (R)-gravity was studied in Refs. [41–47]. We leave this for
further investigation.



Universe 2024, 10, 295 10 of 11

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in

the article.

Conflicts of Interest: The author declares no conflicts of interest

References

1. Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170.

[CrossRef]

2. Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [CrossRef]

[PubMed]

3. Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rept. Prog. Phys. 2010 73, 046901. [CrossRef]

4. Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [CrossRef]

5. Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [CrossRef]

6. Maldacena, J.M. The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999, 38, 1113–1133.

[CrossRef]

7. Hawking, S.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [CrossRef]

8. Cvetic, M.; Gubser, S.S. Phases of R charged black holes, spinning branes and strongly coupled gauge theories. J. High Energy

Phys. 1999, 9904, 024. [CrossRef]

9. Cvetic, M.; Gubser, S. Thermodynamic stability and phases of general spinning branes. J. High Energy Phys. 1999, 9907, 010.

[CrossRef]

10. Chamblin, A.; Emparan, R.; Johnson, C.; Myers, R. Charged AdS black holes and catastrophic holography. Phys. Rev. D

1999, 60, 064018. [CrossRef]

11. Chamblin, A.; Emparan, R.; Johnson, C.; Myers, R. Holography, thermodynamics and fluctuations of charged AdS black holes.

Phys. Rev. D 1999, 60, 104026. [CrossRef]

12. Caldarelli, M.M.; Cognola, G.; Klemm, D. Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Class.

Quant. Grav. 2000, 17, 399–420. [CrossRef]

13. Kastor, D.; Ray, S.; Traschen, J. Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav. 2009, 26, 195011. [CrossRef]

14. Dolan, B. The cosmological constant and the black hole equation of state. Class. Quant. Grav. 2011, 28, 125020. [CrossRef]

15. Dolan, B.P. Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 2011, 28, 235017. [CrossRef]

16. Dolan, B.P. Compressibility of rotating black holes. Phys. Rev. D 2011, 84, 127503. [CrossRef]

17. Cvetic, M.; Gibbons, G.; Kubiznak, D.; Pope, C. Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume.

Phys. Rev. D 2011, 84, 024037. [CrossRef]

18. Lu, H.; Pang, Y.; Pope, C.N.; Vazquez-Poritz, J.F. AdS and Lifshitz Black Holes in Conformal and Einstein-Weyl Gravities. Phys.

Rev. D 2012, 86, 044011. [CrossRef]

19. Gibbons, G.W.; Kallosh, R.; Kol, B. Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett.

1996, 77, 4992–4995. [CrossRef] [PubMed]

20. Creighton, J.; Mann, R.B. Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D 1995, 52, 4569–4587.

[CrossRef]

21. Smarr, L. Mass formula for Kerr black holes. Phys. Rev. Lett. 1973, 30, 71–73. [CrossRef]

22. Kubiznak, D.; Mann, R.B. Black hole chemistry. Can. J. Phys. 2015, 93, 999–1002. [CrossRef]

23. Kubiznak, D.; Mann, R.B.; Teo, M. Black hole chemistry: Thermodynamics with Lambda. Class. Quant. Grav. 2017, 34, 063001.

[CrossRef]

24. Gunasekaran, S.; Mann, R.B.; Kubiznak, D. Extended phase space thermodynamics for charged and rotating black holes and

Born—Infeld vacuum polarization. J. High Energy Phys. 2012, 1211, 110. [CrossRef]

25. Born, M.; Infeld, L. Foundations of the new field theory. Proc. Royal Soc. 1934, 144, 425–451. [CrossRef]

26. Cataldo, M.; Garcia, A. Three dimensional black hole coupled to the Born–Infeld electrodynamics. Phys. Lett. B 1999, 456, 28–33.

[CrossRef]

27. Cai, R.G.; Pang, D.W.; Wang, A. Born–Infeld black holes in AdS spaces. Phys. Rev. D 2004, 70, 124034. [CrossRef]

28. Kruglov, S.I. Born—Infeld-type electrodynamics and magnetic black holes. Ann. Phys. 2017, 383, 550–559. [CrossRef]

29. Yang, K.; Gu, B.M.; Wei, S.W.; Liu, Y.X. Born—Infeld black holes in 4D Einstein—Gauss—Bonnet gravity. Eur. Phys. J. C 2020, 80, 662.

[CrossRef]

30. Zhang, C.-M.; Zhang, M.; Zou, D.-C. Joule—Thomson expansion of Born—Infeld AdS black holes in consistent 4D Einstein–

Gauss–Bonnet gravity. Mod. Phys. Lett. A 2022, 37, 2250063. [CrossRef]

31. Yerra, P.K.; Bhamidipati, C. Topology of Born–Infeld AdS black holes in 4D novel Einstein–Gauss–Bonnet gravity. Phys. Lett. B

2022, 835, 137591. [CrossRef]

32. Heisenberg, W.; Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 1936, 98, 714–732. [CrossRef]

33. Kruglov, S.I. Magnetic black hole thermodynamics in an extended phase space with nonlinear electrodynamics. Entropy 2024, 26, 261.

[CrossRef] [PubMed]

http://doi.org/10.1007/BF01645742
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://www.ncbi.nlm.nih.gov/pubmed/10060248
http://dx.doi.org/10.1088/0034-4885/73/4/046901
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1088/1126-6708/1999/04/024
http://dx.doi.org/10.1088/1126-6708/1999/07/010
http://dx.doi.org/10.1103/PhysRevD.60.064018
http://dx.doi.org/10.1103/PhysRevD.60.104026
http://dx.doi.org/10.1088/0264-9381/17/2/310
http://dx.doi.org/10.1088/0264-9381/26/19/195011
http://dx.doi.org/10.1088/0264-9381/28/12/125020
http://dx.doi.org/10.1088/0264-9381/28/23/235017
http://dx.doi.org/10.1103/PhysRevD.84.127503
http://dx.doi.org/10.1103/PhysRevD.84.024037
http://dx.doi.org/10.1103/PhysRevD.86.044011
http://dx.doi.org/10.1103/PhysRevLett.77.4992
http://www.ncbi.nlm.nih.gov/pubmed/10062688
http://dx.doi.org/10.1103/PhysRevD.52.4569
http://dx.doi.org/10.1103/PhysRevLett.30.71
http://dx.doi.org/10.1139/cjp-2014-0465
http://dx.doi.org/10.1088/1361-6382/aa5c69
http://dx.doi.org/10.1007/JHEP11(2012)110
http://dx.doi.org/10.1038/1321004b0
http://dx.doi.org/10.1016/S0370-2693(99)00441-4
http://dx.doi.org/10.1103/PhysRevD.70.124034
http://dx.doi.org/10.1016/j.aop.2017.06.008
http://dx.doi.org/10.1140/epjc/s10052-020-8246-6
http://dx.doi.org/10.1142/S0217732322500638
http://dx.doi.org/10.1016/j.physletb.2022.137591
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.3390/e26030261
http://www.ncbi.nlm.nih.gov/pubmed/38539772


Universe 2024, 10, 295 11 of 11

34. Kruglov, S.I. Magnetized black holes and nonlinear electrodynamics. Int. J. Mod. Phys. A 2017, 32, 1750147. [CrossRef]

35. Kruglov, S.I. Inflation of universe due to nonlinear electrodynamics. Int. J. Mod. Phys. A 2017, 32, 1750071. [CrossRef]

36. Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005.

[CrossRef]

37. Kubiznak, D.; Mann, R.B. P-V criticality of charged AdS black holes. J. High Energy Phys. 2012, 7, 033. [CrossRef]

38. Cong, W.; Kubiznak, D.; Mann, R.B.; Visser, M. Holographic CFT Phase Transitions and Criticality for Charged AdS Black Holes.

J. High Energy Phys. 2022, 8, 174. [CrossRef]

39. Gubser, S.S.; Mitra, I. The evolution of unstable black holes in anti-de Sitter space. J. High Energy Phys. 2001, 8, 018. [CrossRef]

40. Hendi, S.H.; Dehghani, A. Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massive

gravity. Eur. Phys. J. C 2019, 79, 227. [CrossRef]

41. Akbar, M.; Cai, R.G. Thermodynamic Behavior of Field Equations for F(R) Gravity. Phys. Lett. B 2007, 648, 243. [CrossRef]

42. Bamba, K.; Geng, C.Q. Thermodynamics in F(R) gravity with phantom crossing. Phys. Lett. B 2009, 679, 282. [CrossRef]

43. Man, J.; Cheng, H. Thermodynamic quantities of a black hole with an F(R) global monopole. Phys. Rev. D 2013, 87, 044002.

[CrossRef]

44. Soroushfar, S.; Saffari, R.; Kamvar, N. Thermodynamic geometry of black holes in f (R) gravity. Eur. Phys. J. C 2016, 76, 476.

[CrossRef]

45. Zheng, Y.; Yang, R.J. Horizon thermodynamics in f (R) theory. Eur. Phys. J. C 2018, 78, 682. [CrossRef]

46. Fang, X.; He, X.; Jing, J. Consistency between dynamical and thermodynamical stabilities for perfect fluid in f(R) theories. Eur.

Phys. J. C 2018, 78, 623. [CrossRef]

47. Hendi, S.H.; Ramezani-Arani, R.; Rahimi, E. Thermal stability of a special class of black hole solutions in F(R) gravity. Eur. Phys.

J. C 2019, 79, 472. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0217751X17501470
http://dx.doi.org/10.1142/S0217751X17500713
http://dx.doi.org/10.1103/PhysRevD.63.044005
http://dx.doi.org/10.1007/JHEP07(2012)033
http://dx.doi.org/10.1007/JHEP08(2022)174
http://dx.doi.org/10.1088/1126-6708/2001/08/018
http://dx.doi.org/10.1140/epjc/s10052-019-6743-2
http://dx.doi.org/10.1016/j.physletb.2007.03.005
http://dx.doi.org/10.1016/j.physletb.2009.07.039
http://dx.doi.org/10.1103/PhysRevD.87.044002
http://dx.doi.org/10.1140/epjc/s10052-016-4311-6
http://dx.doi.org/10.1140/epjc/s10052-018-6167-4
http://dx.doi.org/10.1140/epjc/s10052-018-6053-0
http://dx.doi.org/10.1140/epjc/s10052-019-6972-4

	Introduction
	Black Hole Solution in Einstein–AdS Theory
	First Law of Black Hole Thermodynamics and Smarr Relation
	Thermodynamics of Black Hole
	Summary
	References

