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Abstract

Jefferson Lab experiment E03-008 aimed to measure the J/v photoproduc-
tion cross section at energies sub-threshold to a free nucleon. Prior data ex-
tended only to just above threshold; the closest-to-threshold measurements
come from Cornell and SLAC and provide data in the 9.3 to 21 GeV region.
For E03-008, a mixed real and quasi-real bremsstrahlung photon beam with
an endpoint energy of 5.76 GeV incident on a solid carbon target was used,
allowing measurement for the first time in the sub-threshold region. The
sub-threshold energy of the beam required momentum contributions from
the nucleon target to bring the energy of the reaction up to threshold, thus
providing an opportunity to probe higher order nucleon correlations within
the nucleus as well as exotic mechanisms that may enhance the cross section.
The aim of the analysis was to study the parametrization of the cross section
near threshold and comment on the predictions made by theoretical models
of the J/v photoproduction reaction mechanism. No J/1) events were ob-
served, a result which is consistent with predictions under the assumption
of quasi-free photoproduction, and places restictions on exotic mechanisms

that would strongly enhance quasi-free production.
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Chapter 1

Introduction

One of the main goals of nuclear physics is to understand just how a nucleus
differs from a loosely bound system of quasi-independent nucleons, as in ex-
periments it is often necessary to use a nuclear target instead of the preferred
free nucleon target due to the relative difficulty of producing a free nucleon.
However, spatially close nucleons correspond to rare high momentum com-
ponents of the single particle wave function and at these close distance scales
many interesting configurations can arise, producing contributions over and

above those from single-particle scattering.

One way to probe the high momentum components is to investigate reactions
on a nucleus that would be sub-threshold to reactions from a free nucleon,
thus relying on the intrinsic nucleon momentum to provide the extra energy
to bring the reaction to threshold. Omne of the cleanest such reactions is
the photoproduction of the J/v, since the charm content of the nucleon is
very small compared to that of the lighter quarks. In this case, the quark-
interchange mechanism is absent (unlike with light meson photoproduction

1



CHAPTER 1. INTRODUCTION 2

where the quark content can originate in the nucleon) so the reaction proceeds
via gluon exchange to conserve colour. Also, due to the heavy mass of the
charm quark (1.3 GeV), sub-threshold photons would be unable to excite
the higher charmonium states that decay to the J/1, leaving us with only
a single direct .J/1¢ photoproduction mechanism. The goal of this research
was to obtain the sub-threshold photoproduction cross section of the J/v via
experiment, therefore probing the production mechanisms at short distance

scales that could enhance the quasi-free production.

1.1 Overview of the Experiment

The data for this experiment was taken in November/December 2004 at the
Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Virginia,
USA. The experiment, "E03-008: Sub-threshold .J/¢ Photoproduction” ran
with a 5.7 GeV electron beam incident on a solid carbon target to produce
real photons via Bremsstrahlung. The aim was to photoproduce .J/¢ mesons
through an interaction with the carbon nucleons and detect the J/¢’s via
their decay to lepton pairs. Using photons of endpoint energy 5.7 GeV, we
obtained the first measurements for .J/1 photoproduction with sub-threshold

energies.

1.2 Structure of the Dissertation

In Chapter 2 we explore the photoproduction mechanism for the J/¢, and
look at the necessary considerations for probing the reaction at sub-threshold

energies. In Chapter 3 we examine the current data for near-threshold photo-
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production. Chapter 3 also includes a discussion of the .J/1 photoproduction
cross section models used by the previous experiments, and the method used

for modeling quasi-free production in this research.

In Chapter 4 we review the apparatus used for the experimental measure-
ment. We note the setup of the Jefferson Lab accelerator, and discuss the
spectrometers and their detector elements used for the measurements. Chap-
ter 5 describes the checks that were done as verification that the spectrometer
and analysis systems were functioning as they should, as well as the results of
the J/v¢ photoproduction data. Calibration measurements were also taken,
checking the spectrometer settings and resolutions and making sure we see
the expected peaks from known resonances. We also discuss the method used

for particle identification in the spectrometers.

Finally, Chapter 6 describes the various cross section models investigated,
and shows the predictions generated thereof. We discuss the outcomes of
these predictions in relation to the present experiment, and the constraints

drawn on the models as a result.



Chapter 2

J /1 Photoproduction

The J/1 meson is the first excited state of charmonium, a bound state of a
charm quark-antiquark pair. In the case of J/¢ photoproduction, a real (or
very low ¢* virtual) photon fluctuates into a charm-anticharm pair, which is
then brought on-shell through interaction with a nucleon. While the J/1) is
a common particle to observe experimentally, this interaction mechanism is

not well understood and is dependent on the energy of the incoming photon.

In the lab frame, the threshold energy for production of the J/v on a nucleon
is (m 4+ Myy)?* = 16.3 GeV?, where m is the nucleon mass and M,y is
the mass of the J/¢ (3.1 GeV). The invariant mass of the photon-nucleon
system is given by s = m? + 2mk. For s to be above the threshold value for

J /1 production, a photon threshold energy of ky, = 8.2 GeV is required.
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« L >« I 5

Figure 2.1: Characteristic length scales in J/v¢ photoproduction on a proton
near threshold. [1]

2.1 J/v¢ Photoproduction from a Nucleon

Above but near the photon energy threshold, .J/¢ production occurs in a
small interaction volume (Fig. 2.1) due to the large mass of the charm quark
(m. =~ 1.5 GeV). The longitudinal distance the photon-c¢ fluctuation travels

is given by [1]

2kiap
L —0.36 fm (2.1)

Cc

=

with a transverse size r| ~ m% ~ 0.13 fm. At threshold the minimum momen-
tum transfer required is large, tmm ~ 1.7 GeV?, so the available production
energy cannot be wasted. Thus the three valence quarks of the target must
interact coherently with the heavy c¢ quarks within the small impact distance
b~ mi ~ 0.13 fm and during their proper creation time m% for J/4 produc-

tion to take place. The effective proton radius also decreases with photon

energy (2, 3] reaching 77 ~ -1, at threshold.
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After the interaction with the nucleon, the ¢¢ pair evolves into a .J/v¢ within
the formation length /g, related to the reversed distance between low-energy

levels of the ¢¢ system, multiplied by the Lorentz factor [4, 5]:

12

2 FE
Iy [ J/P

=022 fm k 2.2
o — 277%] 0.22 fm k/GeV (2.2)

This length is approximately 1 fm, of the order of the size of a nucleon,
allowing for determination of the .J/1 cross section on a single nucleon rather

than on the nucleus as a whole.

2.2 Sub-threshold Photoproduction Kinemat-
ics

For photon energies below the threshold value of 8.2 GeV, the nucleon is
required to contribute the extra energy needed to bring the center of mass
energy squared s of the photon-nucleon system up to threshold. In the quasi-
free picture, for J/v photoproduction off a single nucleon in a nucleus, the
nucleon three-momentum P, must be anti-parallel to the photon direction z
to contribute to the invariant mass of the system. Thus, for a given photon
energy k

s=(k+m—Ey,)?—k*—P2—2k-P,. (2.3)

where F,, is the missing energy of the photon-nucleon system and must be
greater than zero. Clearly, the larger the value of F,,, the smaller the value of
s becomes at fixed P,,, so we have an upper bound on values of E,, that are
kinematically allowed for J/1 photoproduction. Furthermore, the minimum

nucleon momentum £, must increase as the photon energy k decreases, to
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keep the energy of the system above threshold.

For a photon energy of 8 GeV, just below threshold, the minimum nucleon
momentum required is just 0.05 GeV. When the photon energy is reduced
to 6 GeV, the minimum momentum required increases to 0.35 GeV, and
for 4 GeV photons, it is 1.15 GeV. For nucleon momenta larger than 0.35
GeV, this is the region where few-nucleon short-range correlations and other
effects are known to be important [6, 7]. This is well suited to the Electron
Beam Facility at Jefferson Lab with a maximum electron beam energy of 5.76
GeV at the time of this experiment, providing real and quasi-real photons
by Bremsstrahlung. The determination of the .J/v cross section in the 8-11
GeV region will be possible with the future Jefferson Lab 12 GeV upgrade
8, 9.

2.2.1 The High P, Region

As mentioned above, the high B, region, for nucleon momenta above 0.35
GeV, is where few-nucleon short-range correlations, hidden colour configura-
tions, and other short-range effects play a significant role, possibly enhancing
the yield compared to that predicted by a simple quasi-free model. In the
model employed by [1], this could correspond to contributions from 3-gluon
exchange, above the minimal 2-gluon exchange contribution for a .J/1 colour
singlet final state.

Another way to see the effect of short-range correlations is in the photon
thresholds for J/v production on other targets: for a deuteron at rest, the

photon threshold is 5.7 GeV, and 4.8 GeV for tritium or *He targets at rest.
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In the case of threshold charm production on a deuteron, all configurations
of the six valence quarks are involved at the short distance scale mi Thus
the second contribution comes from the coupling of the exchanged gluons
to colour-octet 3-quark clusters, revealing the ”hidden-colour” part of the
nuclear wave function [10, 11, 12]. This contribution is thought to be flatter
in its momentum distribution, as the two nucleons have to recombine, each at
the momentum transfer £ [13, 14]. This contribution could be important in
the sub-threshold region for J/1 production, since each of the two exchanged
gluons could have a lower momentum fraction than if they originate from the
same nucleon. In any case, two- and three-nucleon correlations in the carbon
nucleus are thus needed to kinematically permit J/¢) photoproduction at

photon energies below 6 GeV.

2.3 Relation to Sub-threshold Hadroproduc-
tion

The method of selecting particle production on a nucleus at energies that
would be sub-threshold to production from a free nucleon is not limited to
charmonium. It has been observed for antiproton (p) production in p-nucleus
(pA) and nucleus-nucleus (AA) collisions of various nuclei [15, 16, 17], and
kaon production from pA collisions [18], that production occurs at signifi-
cantly lower energies than would be kinematically possible for scattering off
a free nucleon. At these lower energies, the momentum required for a free
nucleon is around 850 MeV [16]. The experimental data can be compared

with model predictions calculated using internal nucleon momentum distri-
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butions; for pA collisions the predictions give excellent agreement with the
data. For AA collisions, however, the predictions underestimate the data by

about three orders of magnitude [19].

At least two qualitatively different scenarios are available for sub-threshold
P production [2]. In the first scenario, the projectile scatters off an area of
high energy density, or local "hot spot”. In this case the kinematic threshold
is lowered due to the high effective mass of the "hot spot”. In the second
scenario, however, the momentum is not transferred locally but rather accu-
mulated in an extended longitudinal region as the projectile travels through

the nucleus.

Sub-threshold photoproduction of charmonium can help to identify the cor-
rect reaction mechanism. At and below the charm threshold the photon is
point-like and is therefore a clean probe of target substructure, effects due
to the shrinking size of a hadron probe near threshold are therefore elimi-
nated. Also, the ¢ pair is created locally within the proper time m%v so the
extended region scenario is not available as a reaction mechanism for this
process. A strong sub-threshold J/1) photoproduction signal, beyond that
predicted solely by the quasi-free model, would therefore be an indication of

the local "hot spot” scenario.



Chapter 3

Existing Data & Models Near
Threshold

Prior to E03-008, existing /v photoproduction data extended only from just
above threshold; there was no published data below 8.2 GeV photon energy,
and theoretical estimates showed variation over several orders of magnitude.
The closest-to-threshold measurements come from Cornell and SLAC and
provide data in the 9.3 to 21 GeV region. As with E03-008, these experiments

detected coincident lepton pairs as evidence of .J/1 decay.

3.1 Data

The SLAC data [20] detected J /1 particles via their decay to both ete™ and
wp pairs. A photon beam of between 13.5 and 21 GeV endpoint energy
was produced via Bremsstrahlung off a 5% radiator. They measured produc-
tion from both Hy and Dy targets, with the lepton pairs detected in magnetic

spectrometers. Their random background was typically 1% for electron pairs

10
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and 20-30% for muon pairs, and a background of Bethe-Heitler pairs was
negligible. There is also unpublished single arm data [21] from this experi-

ment, obtained from muon spectra after calculated background subtraction.

The data from Cornell [22] used a collimated photon beam with an energy of
between 9.3 and 11.8 GeV, incident on a 2.9 g/cm? beryllium target. ete™
pairs were detected in coincidence in a pair of lead-glass calorimeters. The
experiment had two sources of background, the Bethe-Heitler production of
wide-angle electron pairs, and misidentification of photons as charged par-
ticles. With the assumption that the production from beryllium is 9 times
greater than that from a nucleon, they obtained an elastic nucleon cross sec-
tion of 0.7 nb at E, = 11 GeV which appears to be flattening out towards
threshold. (It is worth noting that the Cornell data assumed a branching
ratio of 7% for J/¢— e*e~, whereas the SLAC and current data assume a

branching ratio of 6%.)

Sub-threshold charm photoproduction rates off various nuclei, including car-
bon, have also been calculated [23] assuming domination of the pQCD simple
photon-gluon fusion process. Their calculation gives a total cross section of
about 0.25 fb/nucleon for carbon with 5.5 GeV photons. However, their
cross-section for photoproduction on a free nucleon at 11 GeV is about a fac-
tor of five below the Cornell value. Assuming the Cornell data is correct, one
explanation for this is that the simple photon-gluon fusion mechanism may

become overshadowed by multiple gluon exchanges in the threshold region|[1].
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C C
C C

@ (b)

Figure 3.1: Two mechanisms for transferring most of the proton momentum
to the charm quark pair in .J/¢ photoproduction. The leading twist con-
tribution (a) dominates at high energies, but higher twist contributions (b)

become more important close to threshold.[1]

3.2 Theoretical Models

The experimental data is typically parameterised by the form 2 = Af(bt),
with various forms of f(bt) depending on different contributions. In the
leading-twist contribution, most of the proton momentum is transferred to
one valence quark which then interacts with the c¢ pair through the hard pro-
cess 7q — ccq (see Fig. 3.1a). Close to threshold however, this contribution
ceases to dominate and higher-twist contributions from two- and three-gluon
exchange become comparable (Fig. 3.1b)[3]. The higher-order contributions
may even become dominant near threshold since i) there are many more di-
agrams of higher-twist processes, ii) they allow the proton to have a small
transverse momentum component, and iii) the quantum numbers can match
those of a particular charmonium state without extra gluon emission if sev-

eral gluons couple to the quark pair.
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Figure 3.2: Slope parameter b from fits of the form Ae® to various J /v photo-

production experiments, as a function of W = \/s.

The experiments from SLAC and Cornell use a cross section of the form
Z—‘t’ = Ae® for fits to their data. Values of b from a combination of these
and other higher energy experiments are shown in Fig. 3.2; from the graph
one would expect reasonable values of b in the sub-threshold region to range
between 0 and 3. The value of b from Cornell is quoted as 1.254+0.2 GeV~2 at
a photon energy of 11 GeV (though, as pointed out by [24], the actual slope
of the data seems to be more like 1.5 GeV~2). However, the SLAC value, at
a 19 GeV photon energy, is given as 2.940.3 GeV~2, more than twice that

of Cornell. The difference between these two values makes it difficult to fit

the data from both experiments with a smooth curve.
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To take into account contributions from two- and three-gluon exchange, the
fraction of the proton momentum carried by the valence (interacting) quark

is given by Y e
2m J/p +

J/Y
— 1
x - (3.1)

where x — 1 at threshold. The momentum fraction carried by the spectator
partons thus goes to zero as x — 1. From QCD quark counting rules, the
behaviour of the cross section near z = 1 is given by (1 — z)?", where n is
the number of spectator quarks in the interaction[25]. Thus the cross section
for two gluon exchange - scattering on two quarks (yqq — ccqq) - takes the

form[1]:
dUQg

(1—2)? ,
F
dt

= Noy - F (1) — m2)? (32)

while for three gluon exchange (yqqq — ccqqq)

W0 — Ny F ()5 — ) (33
where the factor W is the relative weight of scattering from multiple
quarks, with R =~ m% ~ 1fm and M = 2m,. [26]. N, and N3, are co-
efficients normalizing the curves to the experimental data from SLAC and
Cornell. The (s —m]%)2 term comes from the spin-1 nature of gluon exchange,
and the coupling of the incoming photon to the ¢¢ pair [27]. The nucleon
form factors Fy, (t) and F3,(t) are not explicitly known, but parameterised

as a function of b and t¢.

Fig. 3.3 shows the total cross sections from the Cornell and SLAC data as a

function of incident photon energy. The curves are given by the above formu-

lae with both proton form factors parameterised by F?(t) = 13" according
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Figure 3.3: Total cross section for exclusive J/¢) photoproduction from a
proton as a function of photon energy. The steeper (flatter) curve is the

simple 2-gluon (3-gluon) model of [1], normalised to the data at 12 GeV.

to the experimental ¢ dependency of the cross section [22]. While both curves
drop off rapidly with photon energies approaching threshold, the combined
data appears to be flattening out below 12 GeV; a possible explanation is
a dominance of the 3-gluon process over the 2-gluon process near threshold,
because the weaker s dependence of the 3-gluon process enhances the cross-
section by a factor of (1 —z)~2[1]. However, as shown in [24], this flattening
may still be explained by 2-gluon exchange, since in their formalism a differ-

ent definition of x with a maximum value of about 0.8 is used, so the factor
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(1 — )% is not so greatly suppressed.

Ref. [24] writes the t-dependence of the nucleon two-gluon form factor as a

dipole form
t

F(t)=(1-—)7 (3.4)

m3,
with m3, ~ 1 GeV? providing a reasonably good fit to all data up to k = 100
GeV (similar parameterizations work well for Pomeron coupling with the
nucleon in the case of soft physics [28], though in that case the mass scale #

is close to the electromagnetic one). Using equation 3.5 for the dipole form

factor squared, a reasonable fit to the low energy data was found to be given

by

do 2.5
pria T nb/GeV? (3.5)

corresponding to the 3 gluon exchange model of [1].

In short, there are many uncertainties in extending the current above-threshold
cross section models to photon energies below 11 GeV. The various methods
and models used in the context of the present experiment are discussed in

chapter 6.

3.3 Quasi-free Modeling

For the simulations relating to this experiment, the following convolution
integral was used to model the quasi-free photoproduction of a J/¢ from a

heavy nucleus:

do = / o(k)dk / %awuﬂm,Em)S(Em,ﬁm)d3ﬁdemdt (3.6)
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similar to the model for the deuteron described in [1]. Here, s and momentum
transfer ¢ are functions of E,,, ﬁm, and photon energy k, and the integral
over P, and E,, is limited to the kinematically allowed region described in
section 2.2. ®(k) is the photon flux, which is given by a/k, where a is the
sum of half the target thickness in radiation lengths, and an effective quasi-
real electroproduction factor [29] of 0.02. doy(s,t)/dt is the cross section for
J /1 photoproduction from a free nucleon, assuming that the neutron and
proton cross sections are equal for simplicity. The carbon spectral function
[30] S(E, ﬁm) is defined as the probability of finding a nucleon of momentum

P,, and energy E,, in the nucleus. The flux term [31]

E. k-P
Pp Ey)=(1-—"2_>2"m
aLC( ) ( m km

) (3.7)

averages to about 1.7 for the kinematics of this experiment.

Using this model for quasi-free production, the only unknowns in the equation
are dog(s,t)/dt, and the carbon spectral function at high P, and E,,. Not
taken into account in the present analysis is the fact that the elementary
amplitude is far off shell (p* for the interacting nucleon is < m?), which may

lead to a suppression of the cross section.



Chapter 4

The Experiment

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is located
in Virginia, USA. The accelerator site is separate from the user facility and
requires special training and clearance for entrance. The site can be roughly
divided into two sections, the accelerator facility, and the experimental halls;
the accelerator produces the electron beamline and is controlled by the Ma-
chine Control Center (MCC), while the experimental halls are where the

actual experiments take place, monitored by shift workers.

There are 3 experimental halls, A, B and C, that are supplied by the beam.
Each hall is a different size and contains different types of detectors, allowing
3 different experiments to run simultaneously off the same beam. The MCC
also controls the energy and current of the beam entering the halls, and can

be set differently for each hall.

The beamline and halls are situated underground, the halls appearing from
above as small round hills. A building nearby contains the Hall A, B and C
18
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counting houses, which is where the specific experiments in their respective
halls are controlled. During the running of an experiment three people are
required to be on duty in the counting house at all times: a Shift Leader,
a Target Operator and a Third Person, made up of physicists and students.
The day is broken into three 8-hour shifts, and students are encouraged to

be on shift duty each day of their respective experiments.

The data for this experiment was taken in November/December 2004 in Hall
C. From previous above-threshold data the cross section was known to be
extremely small, so a clear and unambiguous signal was needed with a very
small background. The best way to measure this was to detect the e”et and
p~ i lepton pairs produced from J/1¢ decay (6% branching ratio each). The
pairs were detected in coincidence in the Hall C High Momentum and Short
Orbit Spectrometers (HMS and SOS) and their originating particles’ masses

were reconstructed from measurements of the leptons’ kinematics.

4.1 Beam & Target

The Continuous Electron Beam Accelerator Facility (CEBAF) is the heart
of Jefferson Lab, and is responsible for producing a high intensity effectively
continuous-wave electron beam, with a maximum energy of 6 GeV at 100 pA
current, and greater than 75% polarization [32]. The continuous-wave nature
of the beam is essential for reducing accidental coincidences to an acceptable
level, especially in the context of the present experiment where rates are
expected to be low. CEBAF comprises two antiparallel superconducting

linear accelerators linked by nine recirculation beam lines for up to five passes.
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The tunnel containing the accelerator magnets is built 7.62 m under the
ground, and the magnets cooled by liquid helium from the refrigeration plant.
After the final orbit the beam enters the switchyard and is delivered to one

of the three experimental halls.

4.1.1 Beamline

The maximum energy of the beam at the time of data taking for this experi-
ment was 5.76 GeV due to accelerator limitations, with a typical current of 60
1A and integrated beam charge on target of 27 C during the production runs.
All components of the beamline from the extraction point at the switchyard
to the target are controlled by the MCC. Because of the high intensity and
small size of the beam, a raster is necessary to move the beam horizontally
and vertically to prevent damage to the target material by overheating. This

is achieved by the use of vertical and horizontal air-core magnets, also con-

trolled through the MCC.

To normalise the counts obtained for the experiment, it is necessary to know
the current of the incoming electron beam. There are four beam current
monitors along the beamline, three RF cavities (BCM1, 2 and 3) and a
paramagnetic current transformer (Unser monitor). The Unser, BCM1 and
BCM2 are located behind the raster, while BCM3 is situated just before the
target chamber. The RF cavities measure the relative beam current through

the power of the RF radiation coupled in the cavity.
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4.1.2 Target Chamber

The Hall C target chamber is an aluminium cylinder with an inner diameter
of 1.232 m, and a 6.35 cm thick wall, situated at the pivot axis of the two
Hall C spectrometers. There are openings in the left and right sides of the
chamber to accommodate the full angular range and acceptance of the two
spectrometers. The HMS opening is 20.32 cm tall and covered with a 0.04 cm
thick aluminium window. The window for the SOS is 0.02 cm thick, covering

an opening 12.7 cm tall.

The chamber is operated under vacuum, and the top plate of the cylinder
has openings for the vacuum pumps, cryotarget plumbing, as well as a tube
for the solid targets. There are also openings at the front and back of the

chamber, where the beam entrance and exit tubes are attached.

4.1.3 E03-008 Targets

The J/v production data for the experiment were taken using a 2.5 g/cm?
(in the beam direction) thick solid '2C target, corresponding to a 6% ra-
diation length. We had an effective real photon flux of 0.05 dk/k due to
Bremsstrahlung of the electron beam on the target (3%, assuming half the
real photons produced were usable), and from small-angle electroproduction
(2%). A narrow target width of 5 mm was chosen to minimise the number

of 7¥ photons converting to electrons/positrons as they leave the target.

After the production runs, a series of runs were done for verification purposes.

Liquid hydrogen was circulated through the cryotarget system for baryon
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Figure 4.1: Diagram of the Hall C spectrometers and their component detec-
tor parts. The Q and D refers to quadrupole and dipole magnets respectively;

the bar refers to a magnet of opposite polarity.

electroproduction at various spectrometer settings. A solid 3% beryllium
target was also used, for w and ¢ production. These runs are discussed in

more detail in Chapter 5.4.
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4.2 Hall C Spectrometer Setup

Hall C at Jefferson Lab houses two magnetic focusing spectrometers off the
target chamber, designed to detect particles in coincidence. The High Mo-
mentum Spectrometer (HMS) was set to detect positively charged leptons
et, ut of central momentum 3.5 GeV and central scattering angle 24°, while
the Short Orbit Spectrometer (SOS) detected the negatively charged leptons
e”, = at a central momentum of 1.7 GeV and angle 53°. Both spectrometers
are equipped with dipole and quadrupole magnets; the dipole magnets for
momentum selection via deflection of charged particles, and the quadrupoles
for focusing of the particles into the detector plane. In addition, both spec-
trometers can be moved around the experimental hall on rails, for different
angular settings. The dipole magnets in both spectrometers are angled up-
wards towards the detector hut, so that the momentum and angle measure-

ments are decoupled.

Both spectrometer arms are able to record the full kinematics of each de-
tected particle, using a stack of different detector elements housed in a large
concrete detector hut behind the magnets. A brief discussion of how each

detector element works is included here, for a more detailed account see Refs

33, 34, 35].

At the front end of each detector hut are two wire drift chambers consisting
of parallel gold-plated tungsten wires, spaced 1 cm apart and filled with a
mixture of argon, ethane and isopropyl alcohol. In a drift chamber, particles

traveling through the chamber ionise the gas, and the ionised electrons drift
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to the wires thus producing a signal. Measuring the time between wire signals
provides information on the location of the particle. By stacking a number
of drift chambers with wires in different orientations together, accurate mea-
surements of the particle’s momentum and trajectory can be obtained. In the
Hall C spectrometers, the resolution is better than 0.2%, and measurements
of the scattering angle can be made with an accuracy of between 1 and 3

mrad, resulting in an overall resolution on the di-lepton mass of 10 MeV.

Behind the drift chambers are two pairs of scintillation paddles. The paddles
are made out of PVT (polyvinyltoluene), a material that emits light when
traversed by energetic particles; this light is detected and converted into an
electronic signal by photomultiplier tubes attached to the ends of the pad-
dles. The scintillators provide a trigger for the data acquisition system, as
well as accurate time of flight measurements of the particles, used for back-

ground rejection and particle identification.

In between the two layers of scintillator paddles in each spectrometer is a
gas Cerenkov counter, which works by detecting the number of Cerenkov
photo electrons produced by a particle traveling through a gas chamber
when the particle’s velocity is greater than the speed of light in the gas
(8 =wv/c>1/n). Since the speed of light depends on n, the refractive index
of the gas, the threshold for Cerenkov radiation being produced can be tuned
by adjusting the gas type and pressure in the Cerenkov’s tank, allowing for
particle separation and identification. The Cerenkovs used in the HMS and

SOS differ in their construction and overall efficiencies, and are discussed in
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their relevant sections below.

Finally, a calorimeter measures the energy of a particle by the number of
photons produced when the particle moves through a large block of material
at the back of each spectrometer. For electrons and photons this is the total
energy as the Hall C calorimeters correspond to 16 of their radiation lengths.
For pions, however, there are not enough interaction lengths for the particles

to stop in the calorimeter, hence only a fraction of their energy is measured.

In the case of the Hall C spectrometers the calorimeters are made of four
layers of lead glass, so the photons are produced by the Cerenkov effect.
The calorimeter provides particle identification through the amount of en-
ergy deposited in each layer by the particle, compared to the particle’s total

momentum.

The interior of the spectrometers are maintained under vacuum from the
pivot at the target to the detector hut, to reduce multiple scattering within
and prevent resolution degradation as much as possible. At either end are
composite Mylar/Kevlar vacuum windows, thin enough to have a minimal
effect on the beam, yet strong enough to withstand the pressure resulting
from the vacuum. The radiation length of the Mylar used is 28.7 cm. The
density of the Kevlar is 0.75 g/cm?, with a tensile strength of 900 lbs/inch
and a radiation length of 55.2 cm. The same composite material is used for

the windows in both the HMS and SOS.
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The HMS entrance window (target end) is round, with a 26.67 cm diam-
eter. The exit window, located in the detector hut, is the largest window
in the hall, with a bolt-hole diameter of 101.6 cm. This window withstands

74 425 N.m~2 of pressure, protecting the detector elements from the vacuum.

The SOS entrance window is also round, with a diameter of 22.86 cm, slightly
smaller than the HMS entrance window. The exit window in the SOS, how-
ever, is rectangular, with dimensions of 102.87 by 16.51 ¢m. This is the
second largest window in the hall, withstanding a load of 17 275 N under
vacuum. A more in-depth discussion of the vacuum windows is described in

[36].

The coordinate system for both spectrometers is as follows: z is along the
beamline, down the central axis of each spectrometer. The z-axis points in
the dispersive direction, with downwards being positive. The y-axis is then

chosen to point left, to make the coordinate system right handed.

4.2.1 The High Momentum Spectrometer (HMS)

The HMS spectrometer is situated on the right side of Hall C when viewed
from above, and is 26 m in length. The HMS is the key to Hall C’s experi-
mental capabilities, with its wide central momentum range of 0.5 GeV to the

high value of 7.5 GeV from which it derives it’s name.

The HMS carriage can be rotated along rails to a forward angle of 12.5°, and

to a backwards angle of ~90°. The angular values are marked on the floor,
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and cameras are installed on the carriage to give a readout of the current
angular setting to the counting house. The HMS can be rotated remotely
from the counting house, using motors attached to the carriage. Table 4.1

summarises these specifications for the HMS.

At the front of the spectrometer, mounted to the front of the first quadrupole
is a collimator made of 6.3 cm thick 90% W, 10% Cu/Ni alloy. The collimator
is octagonal in shape, and used to restrict the background of the spectrom-
eter; the collimator cuts out multiple scattering from other elements in the
spectrometer, and while producing some small background of its own pro-
vides a single known source for background which is easier to cut out in the

data analysis.

HMS Magnets

The HMS magnets consist of three superconducting quadrupoles, labeled
1, Q2 and @3, followed by one superconducting dipole D. The magnets are
cryogenically cooled by circulating liquid helium. The power supplies for the
magnets are water cooled, and the total water flow needed for cooling all four
magnets is about 80 litres per minute. The temperatures of the magnets are
monitored at the rear of the spectrometer, and during runs are visible on the

HMS control screen in the Hall C counting house.

The quadrupole magnets are used for the transverse focusing of the beam,
and are made from iron. ) is 2.34 m long with an effective length of 1.89

m, an inner pole radius of 25 cm, and weighs 20 tons. ()2 and ()3 are iden-
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Table 4.1: HMS Specifications

Quantity Specification
Momentum

Maximum Central Momentum 7.5 GeV
Momentum Bite 18%
Momentum Resolution 0.1%
Acceptance

Solid Angle ~7 msr
Horizontal Acceptance +27.5 mrad
Vertical Acceptance +70 mrad
Useful Target Length 10 cm

Kinematic Flexibility
Momentum Range 0.5 — 7.5 GeV
Angular Range 12.5° — 90°
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tical, being 2.60 m in length (2.10 m effective length), and having an inner
radius of 35 cm. ()2 and (Y3 weigh 30 tons each. The dipole magnet is used
for selection of the central momentum of the spectrometer, which is set re-
motely from the counting house. The magnet separates particles of different
momenta in the dispersive (z) direction, bending particles of the correct mo-
menta up towards the detector hut. The HMS dipole magnet measures 5.99
m in length, 2.95 m wide, and 4.46 m in height. It has an effective length of
5.26 m and a bending radius of 12.06 m, which results in a 25° bending angle
at a central momentum on 4 GeV. The HMS dipole weighs in at a hefty 470

tons.

The @)» and D magnets are set with polarities the same sign as the charged
particles set to be detected in the HMS detector hut (ie. positive for E03-
008), and the @); and Q)3 magnets are set to polarities of the opposite sign
(ie. negative for E03-008).

HMS Detector Elements

Drift Chambers

There are six planes making up the HMS drift chambers, labeled as follows:
X, Y, U, V, Y’ X’. The X and X’ wires measure particle position along the
dispersive direction, the Y and Y’ wires measure along the transverse direc-
tion, and the U and V wires are oriented at an angle of 15 degrees with respect
to the X planes. The wires are of two thicknesses: the 30 pm wire is held at

ground potential, and the thicker 60 pm wire holds a high negative potential.
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Table 4.2: Scintillator Dimensions in the HMS and SOS

Thickness (cm) Width (cm) Length (cm) Number

HMS X1 & X2 1.0 8.0 75.5 32
HMS Y1 & Y2 1.0 8.0 120.5 20
SOS X1 1.0 7.5 36.5 9
SOS Y1 1.0 4.5 63.5 9
SOS X2 1.0 7.5 36.5 16
SOS Y2 1.0 4.5 112.5 9

The drift chambers are filled with a mixture of argon (49.5%), ethane (49.5%)
and isopropyl alcohol (1% by weight). The gas bottles are kept behind the
gas shed outside the counting house. The gas shed holds the gas mixer which
electronically mixes the argon and ethane. The alcohol is added by bubbling
the gas through a refrigerated bubbler. Both the argon and ethane bottles
have regulators that read the gas pressure in the bottle and line. Gas log
books must be completed during each shift, to monitor the amount of gas
left in the bottles. The reading for the ethane however is by weight, since
the ethane in the bottle is in liquid form, and the bottle sits on a scale for

this purpose.

Scintillator Hodoscopes
Each pair of counters consists of two layers of scintillator paddles, S1X and
S1Y at the front, and S2X and S2Y behind the Cerenkov. The "X” layers

are oriented horizontally, for tracking along the z axis, with 32 scintillator
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units in each, and the ”Y” layers vertically, for tracking along the y axis,

with 20 units per layer.

The dimensions of the scintillators paddles are shown in table 4.2. The max-
imum emission wavelength of the scintillators is 408 nm. Each scintillator
paddle is attached to two photomultiplier tubes (PMT’s) - one on each end.
The HMS scintillators are covered with one layer of aluminium foil followed

by one layer of Tedlar PVF Film for light tightness.

Gas Cerenkov

The HMS Cerenkov is a large cylindrical tank of length 152.4 cm, and an
inner radius of 47.7 cm. The ends of the cylinder are 1 mm thick and made
of strong aluminium alloy sheeting. Two mirrors inside the tank focus the

light produced by Cerenkov radiation onto two 12.7 cm PMT’s.

The tank was filled with Freon-12 gas for E03-008. For positron identification,
the gas pressure in the Cerenkov was set so that the threshold momentum
for pions and heavier particles to produce Cerenkov light was higher than
the maximum accepted HMS momentum. Separating muons from pions was
trickier because of their similar masses, therefore the gas pressure in the HMS
Cerenkov was fine-tuned so that the pion momentum threshold was about
8% above the central HMS momentum - just below the maximum accepted
momentum. The muon momentum threshold was therefore 17% below the
central HMS momentum, and below the HMS minimum accepted momen-

tum. Thus muons traversing the HMS Cerenkov produced on average 2 to 4
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photoelectrons over the spectrometer acceptance, compared to around 10 for
(fully relativistic) positrons. Using a threshold of 1 photoelectron for trig-
gering, the muon identification efficiency was between 85 and 8% depending

on momentum.

Lead Glass Calorimeter

Four layers of leaded glass make up the HMS’s calorimeter, the last detector
element in the hut. Each layer consists of 13 blocks, with each block measur-
ing 10 x 10 x 70 cm. At least one PMT is attached to each block to measure

the amount of light produced.

4.2.2 The Short Orbit Spectrometer (SOS)

The 7.4 m Short Orbit Spectrometer sits on the opposite side of the hall to
the HMS. It too can be rotated along rails between forward and backward
angles of 14.5° and 168.4° respectively. The rotation can be controlled re-
motely from the counting house, with cameras giving readings of the angular
scale with 0.5° intervals. A limit switch prevents remote rotation of the SOS
to angles forward of 20°; in cases where such angles are required the spec-

trometer must be rotated manually within the hall.

The SOS collimator is attached to the vacuum can at the front of the SOS
quadrupole magnet, and made of the same W/Cu/Ni alloy as the HMS colli-
mator. It is also 6.35 cm thick and octagonal in shape, with the same purpose

of reducing the experimental background.
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Table 4.3: SOS Specifications

Quantity Specification
Momentum

Maximum Central Momentum 1.8 GeV
Momentum Bite 40%
Momentum Resolution 0.1%
Acceptance

Solid Angle ~9 msr
Horizontal Acceptance 460 mrad
Vertical Acceptance +40 mrad
Useful Target Length 4.4 cm

Kinematic Flexibility
Momentum Range 0.1 — 1.8 GeV
Angular Range 14.5° — 168.4°

The SOS specifications are given in Table 4.3. The SOS was designed for
a large solid angle and momentum acceptance with a short path length,
especially suitable for detecting particles with short lifetimes, such as pions

and kaons.

SOS Magnets

The SOS magnet configuration is Qg, D, D, one quadrupole magnet followed
by two dipoles with opposite polarity. These are standard resistive magnets,

and they and their power supplies are cooled via the Hall C Low Conductivity
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Water System. All three magnets are equipped with Hall probes to moni-
tor their respective magnetic fields. The power supplies are able to switch
their output polarities, so that detection of positively or negatively charged
particles in the SOS is possible. For E03-008, the polarity was set to detect

negatively charged particles.

The Qg magnet focuses in the non-bend (y) plane and defocuses in the bend
plane. The dipoles then focus in the bend plane; the first dipole, D, provides
an upward bend of 33°, while the second, D, bends the beam downward by

15°. This results in an overall upward bend to the beam of 18°.

SOS Detector Elements

The SOS detector hut is made of high density concrete, with walls 61 cm
thick on all sides to shield the detectors from high energy particles scattered
from the electron beam. The inside walls are lined with 5 cm thick lead-box
panels. The rear inside wall and the floor of the hut are lines with 5 cm steel

plates. The same discussions on how the HMS elements work applies here.

Drift Chambers
The SOS drift chambers also consist of six planes of sensing wires, with the
same momentum resolution of 0.2%. The chambers contain the same gas

mix as in the HMS: Argon and Ethane piped through an alcohol bubbler.

The SOS drift chamber planes, however, differ to those of the HMS. In the

SOS detector, particles pass through planes in the order U, U’ X, X', V,
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V’. The X and X’ planes are the same orientation as those in the HMS drift
chamber. The SOS U, U” and V, V’ planes however are oriented at 60° to

the X, X’ plane and to each other.

Scintillator Hodoscopes

The scintillators in the SOS are nearly identical to those in the HMS, the
only difference being in their number and dimensions. Table 4.2 shows a
comparison between the HMS and SOS scintillators. The SOS scintillators
differ in size between the two Y layers. The increase in length for the Y2

takes into account the acceptance flare in the dispersive direction.

Gas Cerenkov

As with the HMS Cerenkov the same differential technique was used to sep-
arate muons from pions, by calibrating the gas type and pressure in the
tank. The useful momentum acceptance of the SOS spectrometer was -10%
to +15% around the central momentum (during production runs) of 1.78
GeV, corresponding to momenta over the range P = 1.60 GeV to 2.04 GeV.
Setting the pion threshold at 2.00 GeV (so that pions essentially never fired
the Cerenkov), the muon threshold was 1.50 GeV - or 8 = 0.9976 - produc-
ing between 2 to 8 photoelectrons for muons, adequate for detection in the

experiment.

Using CyFy which has an index of refraction of around 1.0014, a gas pres-
sure of about 1.74 atmospheres was needed to achieve this threshold. The

standard SOS Cerenkov tank could not be pressurised, so a new device was
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required. It was decided to use the 1.6 GeV Cerenkov tank in storage at
SLAC which could be pumped to vacuum, rather than build a new tank
for the SOS Cerenkov mirrors, or modify the existing tank to hold pressure.
The SLAC Cerenkov tank’s acceptance was well matched to that of the SOS,
the only major change necessary was shortening the radiator length to 0.9
m so that the tank fitted in the SOS hut. A brief description of the SLAC

Cerenkov counter is given in Section IT D 2 of Ref. [37].

Lead Glass Calorimeter

The calorimeter in the SOS is similar to that of the HMS, comprised of four
layers of leaded glass blocks at the rear of the detector hut. In the SOS
calorimeter, there are 11 blocks per layer, measuring 10 x 10 x 70 cm each.
The blocks are also placed slightly asymmetrically to account for the flare
in the acceptance of the SOS; 5 of the 11 blocks per layer are placed below
the central line, while the remaining 6 blocks are above. Once again, the
calorimeter provides determination of particle ID through the amount of en-

ergy deposited in each layer by the particle compared to its total momentum.

4.2.3 Spectrometer settings

The aim of the experimental measurement was to detect .J/¢ mesons via
their decay to e”e™ and p~put pairs. The SOS was chosen to detect the
negatively charged particles, and the HMS the positively charged particles.
For all the J/v production runs the HMS central momentum was set at 3.5
GeV, and it’s angle was set to 24°. The SOS was set to a central momentum

of 1.7 GeV, and an angle of 53° for the production runs. The spectrometer
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Figure 4.2: Momentum vs angle distribution of lepton pairs from .J/1 decay.

(left) All generated pairs. (right) Lepton pairs detected in the HMS and SOS.

settings for all runs are shown in Table 4.4.

Through a Monte Carlo simulation the spectrometer settings were optimised
according to the highest coincidence rates for forward angle J/v¢’s. The
simulation produced a sample of J/1’s assuming a cross section model of the

form

do 2.5 9
~“__ =Y 4.1
o A= nb/GeV (4.1)

as described in section 3.5 and the spectral function of Benhar[30]. The decay
to lepton pairs was modeled to be asymmetric of the form 1 + cos?(0ca),
assuming s-channel helicity conservation. Fig. 4.2 shows the distribution
of all lepton pairs produced as well as pairs detected in the spectrometers.
The square boxes show the acceptance coverage of the SOS and HMS at
their momentum and angle settings for E03-008, chosen corresponding to

the kinematics producing the highest rates.



Table 4.4: E03-008 Run Summary

Run Number Target Purpose Osos (°) Psos (GeV) Ogys (°) Prus (GeV)
51917-52086 6% C  J/v¢ production 53 1.69 24 3.5
52087-52089 - Cosmic rays - - - -
52090-52099  LH2  Data checks 53 1.69 13 3.5
52100-52104 LH2 Data checks 40 1.69 13 3.5
52105-52124 LH2 Data checks 27 1.69 13 3.5
52128-52131 LH2  Data checks 27 1.69 13 2.5
52133-52138 LH2  Data checks 27 1.00 13 2.5
52148-52153 3% Be w — e et 25 0.9 11 1.95

LINHNTHHIXH HHL 7 H4LdVHO

8¢



CHAPTER 4. THE EXPERIMENT 39

4.3 Data Acquisition System

The trigger for the experiment was a coincidence between the pretriggers (or
singles triggers) from each of the spectrometers. Both single arm pretriggers
(HMS and SOS) were the requirement of a signal in three out of the four
scintillator planes. These pretrigger signals are passed to the coincidence
electronics, a programmable 8LM logic module that determines which kind
of data acquisition (DAQ) trigger to produce. The module would not pro-
duce a DAQ trigger if the DAQ system was not ready to accept an event.
The timing between the spectrometer pretriggers were adjusted to allow a

coincidence window of 58 ns.

The valid signal is then passed to the trigger supervisor module, which con-
trols the DAQ by sending gates to the ADC and TDC (analog-to-digital and
time-to-digital conversion) modules, located in FastBus crates. The trigger
supervisor also provides any prescaling necessary, though coincidence events
were not prescaled. When the ADC/TDC module receives a gate, the hit in-
formation is stored in the module buffer memory until read out by the DAQ

system.

The computers responsible for the data acquisition run CODA (CEBAF On-
line Data Acquisition) software, responsible for controlling the runs and the
live analysis of the information obtained from the detectors for each event
[38]. The CODA event builder collects the readouts from the detectors in
the two spectrometers and combines the data into a single event which gets

written to disk, and backed up later to magnetic tape. This is then converted
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into a data ntuple which is used in the experimental data analysis.

4.4 Experimental Backgrounds

The main source of experimental backgrounds for e~e™ pairs is photopro-
duction of two mesons, one decaying with an e~ and the other with an e* in
their final states, which trigger in coincidence in the spectrometers. Or, an
electron scatters within the detector producing a meson which has an e in

its final state.

The second contribution to the e”et background is wide angle Bethe-Heitler
pair production by high energy photons. Without good mass resolution
this would have been the dominant background, such as in previous experi-
ments [20, 22|. However, at the expected resolution of this experiment, from
simulations of pair production using the formulae of [39, 40] and a monte
carlo model of the detectors, the background of e~e™ Bethe-Heitler pairs was
expected to be less than 10% of the J/v signal within 30 of the J/v mass

peak.

Finally, p, w and n production may produce a very small background of e~e*

pairs, though the branching ratios of these is of the order of 1077,

The background for the p~pt spectrum was expected to be somewhat larger
than that for e~e™ pairs, since the Hall C spectrometers are less efficient at
separating muons from pions, than they are for electrons (see section 5.2.3).

Thus we expect backgrounds where pions are mis-identified as muons in the
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detector. A second source is muons resulting from pion decays, with the

correct kinematics to make it through the detector.



Chapter 5

Data Analysis

The analysis of the data was done using the ROOT Object-Oriented analysis
framework [41] designed specifically for analysis of the large data sets attained
in high energy physics experiments. This section describes the method of
particle identification necessary in selecting the interesting events from the
pool of data. It also covers the consistency and calibration checks done to
ensure the detector elements and data acquisition systems were functioning
correctly throughout the running of the experiment. Table 5.1 shows the
variable names of some important quantities in the data ntuple used in the

analysis.

5.1 Data Consistency Checks

5.1.1 Run List

The experimental data is taken in a series of runs to break up the large data

sets that result into discrete, easier to manage files. Each run is typically

42
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Table 5.1: Variables in the Data ntuple

Variable name

Description

cointime

hsdelta

ssdelta

hsshtrk
ssshtrk
hcer_npe
scer_npe

ssxfp

hpvec0
hpvecx
hpvecy
hpvecz
spvec(,X,y,z
hshlle
hshl2e
hshl3e
hshl4e
sshll,2,3,4e

Coincidence Time - the time between the detection of parti-
cles in the detectors, started by the SOS trigger and stopped
by the HMS trigger

Deviation of the particle momentum from the HMS central
momentum, ’%

Deviation of the particle momentum from the SOS central
momentum, ’%

Ratio of HMS calorimeter energy to particle momentum, F/p
Ratio of SOS calorimeter energy to particle momentum, E/p
Number of photo electrons produced in the HMS Cerenkov
Number of photo electrons produced in the SOS Cerenkov

x value in the SOS focal plane (cm) (positive x in the positive
dispersion direction)

HMS particle energy

HMS particle momentum in the z— (dispersion) direction
HMS particle momentum in the y—direction

HMS particle momentum in the z— (beam) direction

As for hpvec0,x,y,z

Energy deposited in HMS calorimeter layer 1

Energy deposited in HMS calorimeter layer 2

Energy deposited in HMS calorimeter layer 3

Energy deposited in HMS calorimeter layer 4

As for hshll,2,3,4e
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Figure 5.1: E/p peak positions for electrons per run

about an hour long; about 20 minutes into the run a series of online data
checks are done by one of the shift workers in the counting house (usually
the 3rd person), and if these checks show inconsistencies in the data the run
is terminated, and a new run is started. These runs are discarded in the final

analysis, as the data is unreliable.

A run also gets terminated if a magnet crashes or the high voltage power
supply trips, the beam current drops, or any other component of the beamline
or spectrometer encounters a problem. These runs are not discarded entirely,
as most of the data is still good. Rather, the run is replayed through the
event builder, stopping just before the end, so the good data can still be used

in the analysis.
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5.1.2 Energy vs Momentum Ratio in the Calorimeter

One of the quantities measured and saved in the data ntuple is the ratio of
the summed energy deposited in the four layers of the calorimeter, to the
particle’s momentum. This is important for particle identification as an elec-
tron (positron) has low mass, so the energy it deposits into the calorimeter is
roughly equal to its momentum at these extreme relativistic energies. That
is, E./p. =~ 1, where E, is the energy deposited by the electron (positron)
into the calorimeter. A pion is heavier, however, giving E, /p, ~ 0.25 (again,
E, is the energy deposited by the pion into the calorimeter). To ensure that
the calorimeter was functioning correctly it is necessary to check that the

data for electrons and pions reflect this property.

Fig. 5.1 shows the peak positions of detected electrons in the SOS calorimeter
against run number, for the runs described in the section above. The data
was obtained by extracting those events in each run in which an electron was
detected, filling a histogram with the corresponding FE./p. value, and fitting
a gaussian to find the mean. The figure shows the peak positions centered
round 1 (£2%), showing that the calorimeter was indeed working correctly
to detect electrons. The error bars in Fig. 5.1 are the statistical error result-
ing from the fit; those points with extremely large error bars are because of

minimal data in that run.

Another important calorimeter check is to determine whether the E./p. peak
value is dependent on the position of the particle detected in the calorimeter.

As shown in Fig. 5.2, the density of all particles incident on the calorimeter
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is symmetric about the y-axis but not about the x-axis. Fig. 5.3 shows the
E./p. peak positions for all runs against their position on the x-axis of the
calorimeter (the fits for each x-slice of this plot are shown in Appendix A).
The error bars on this plot come from the error in the mean positions de-
termined by the fit; for most points the error bars are too small to be seen.
The last point’s error bars are large due to the low statistics in that bin.
There is a slight dependence on x position, as can be seen. However, since
the deviation from 1 is at most 5% either way it was agreed that this effect

could be ignored.
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Figure 5.2: Electron density on the SOS calorimeter.

5.1.3 Cerenkov

The Cerenkov counters in the HMS and SOS were used to separate lepton
pairs from pions in the detectors. While pions do not produce photo electrons

from Cerenkov radiation, for the detector settings discussed above electrons
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Figure 5.4: Number of photo-electrons (npe) produced in the HMS (a) and
SOS (b) Cerenkov counters.

do. Fig. 5.4 shows the number of photo electrons produced from positrons
and electrons in the HMS and SOS respectively. The large peaks in the
zero photo electron bin of the histograms are from the electronic noise of the

detectors.
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run.

5.1.4 Tracking Efficiencies

The tracking efficiency per run is calculated by selecting events during the
run with good scintillator triggers and good electron/positron identification
(according to values preset in the online analysis code). The tracking effi-
ciency is then defined as the number of good events with a particle track
calculated, divided by the total number of good events determined from the
experimental triggers. It is important that the efficiency be greater than 90%
to ensure one is not losing valuable events. Fig. 5.5 shows the HMS (red)
and SOS (blue) tracking efficiencies for all good runs in the experiment. For
most of those runs the efficiencies were greater than 90%; those runs with
efficiencies lower than 90% are a result of low beam current, or a magnet

tripping near the end of the run.
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Figure 5.6: Coincidence rates for (a) all coincidences, and (b) electron-hadron

coincidences.

5.1.5 Coincidence Rates

The total number of coincidences for each run was determined by counting
the number of events in the coincidence ntuple that satisfied the cut on
coincidence time (see section 5.2.4). This number was corrected for dead
times and efficiencies of the detectors, and the coincidence rate was then
found by dividing by the average beam current for the run. It is important
that the coincidence rates are constant over the running of the experiment.

The rates for all coincidences, and e, h* coincidences are shown in Fig. 5.6.

5.2 Particle Identification and Event Selec-
tion

The most important part of data analysis is in extracting the relevant events
from the background of particles detected. Each different detector element

adds its own information about the detected particle, and accurate identi-
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fication of the particle can be achieved when all these are used together in
the analysis. The interesting events are extracted by filtering through the
entire ntuple with a specified set of cuts on the different variables shown in

Table 5.1.

5.2.1 e, h" Identification

Since separating electrons from hadrons are the Hall C spectrometers’ de-
signed duties, the detectors have excellent capabilities for identification of
these particles. To identify electrons from negatively charged pions in the

SOS, the following cuts are required on the data:

1. The particle’s momentum deviation from the central momentum was
within the standard range: 15% below and 25% above (—15 < ssdelta <
25). This range is constant for all experiments, based on the known

acceptance of the SOS.

2. The number of photoelectrons produced in the SOS Cerenkov counter

was required to be greater than 2. (scer_npe > 2)

3. The particle was required to deposit at least 70% of its momentum in

the SOS lead-glass calorimeter. (ssshtrk > 0.7)

4. The = position of the particle at the SOS focal plane was required
to be greater than -20. (ssxzfp > —20) This is another standard cut
for all SOS experiments, derived from the acceptance function of the

spectrometer.

In the HMS, a further cut is made for positive hadron (such as 7=, p* or

K1) identification. The particles’ momenta were required to be within 10%
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of the HMS central momentum (|hsdelta] < 10). Again, this is a standard

cut for all experiments and is based on the HMS acceptance function.

5.2.2 ¢, et Identification

For separation of positrons in the HMS from the background of positive pions,

two more cuts were made in addition to the above e~, h™ cuts:

1. The number of photoelectrons produced in the HMS Cerenkov counter

was required to be greater than 3. (hcer_npe > 3)

2. The particle was required to deposit at least 90% of it’s momentum in

the lead-glass calorimeter. (hsshtrk > 0.9)

These effectively extract the detected positrons for use in the reconstruction
of the J/v, reducing contamination in the spectrometers while still keeping

the efficiency of e™, et pairs to greater than 90%.

5.2.3 -, u" Identification

Hall C at JLab is especially good at separating positrons and electrons from
the background of pions, however the spectrometers are not optimised for
muon identification. While, at the energies of this experiment, electrons
shower well in the various detector elements, muons and pions have rela-
tively similar masses and both lose energy from ionisation, so the calorime-
ters cannot accurately distinguish between them. Differentiation of muons
from pions was therefore done mainly with the Cerenkov detectors in the
spectrometers (see section 4.2). Additionally, a number of cuts were made

on the calorimeter variables, separating muons from the lighter electrons and



CHAPTER 5. DATA ANALYSIS 52

positrons by setting a maximum on the amount of energy deposited in each
of the four calorimeter layers. Together the cuts produced an overall muon

pair efficiency of 80%, and were:

1. The number of photoelectrons produced in the HMS Cerenkov counter

was required to be greater than 1. (hcer_npe > 1)

2. The number of photoelectrons produced in the SOS Cerenkov counter

was required to be greater than 2. (scer_npe > 2)

3. The particle was required to deposit only between 4 and 12% of its
momentum in the first three calorimeter layers in both the HMS and

SOS. (0.04 < hshile(2e,3e) < 0.12 and 0.04 < sshlle(2e,3e) < 0.12)

4. The particle was required to deposit only between 4 and 15% of its
momentum in the final calorimeter layer, in both the HMS and SOS.
(0.04 < hshl4de < 0.15 and 0.04 < sshlde < 0.15)

5.2.4 Coincidence Time

Finally, to ensure that the particles detected in the HMS and SOS originate
from the same event in the target, a cut on coincidence time is made. Be-
cause of the differences in length between the HMS and SOS, the particles do
not arrive in the spectrometers’ detectors at the same time. The coincidence
time is defined by the difference in the trigger time of the two spectrome-
ters, tsos — tums, and is measured in nanoseconds. The actual value of this
quantity depends on the specifics of the experiment: the time difference ex-
pected for di-lepton pairs in the Hall C spectrometers is 58 ns (the difference

between e”, et and p~, ut pairs is negligible). A more useful quantity is
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0t, the actual di-lepton coincidence time relative to the expected di-lepton
coincidence time. In the analysis of the data, events were rejected if their
coincidence time differed by more than 1.5 ns to the expected (|0t| < 1.5 ns,

shown as the vertical dashed lines in Fig. 5.7 below).

Fig. 5.7 shows the coincidence time histograms for the .J/1 production runs of
the experiment. Fig. 5.7a shows the coincidence time spectra for all detected
particles (ie no particle identification cuts); Figs. 5.7b, ¢ and d show the
coincidence time spectra for e=, h*, e7,e’, and u~, u™ coincidences respec-
tively. The background events on the plots are the accidental coincidences,
the coincident detection of particles that did not originate from the same
event but are most often from multiple scattering inside the spectrometer.
The histogram in Fig. 5.7b has two peaks, the peak at -3 ns is from e, p*
coincidences, while the smaller peak near zero is from e, 7" coincidences.
Since pions and protons have different masses, there is a difference in the

times of flight of these two particles, thus producing the two peaks.

We see only a single e, e™ coincidence in Fig. 5.7c¢ within the cut region,
and there are no coincidences in the e, h* or accidentals region. Since the
branching ratios for e, et and p~, u™ decays are equal we would expect the
same number of coincidences in the =, u™ coincidence time spectrum. How-
ever, since the detectors are not as tuned for muon identification as they are
for electron/positron identification most of the coincidences in Fig. 5.7d are

probably muons coming from pion decays, or pions misidentified as muons.
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5.3 J/i¢» Reconstruction

Once the cuts described in section 5.2 were used to select coincident lep-
tons from the background, the invariant mass M;-;+ of the lepton pair was

calculated using the following formulae:

E- = [mi- + P]
Ey = VImi + Pi]

Mi-iv = V(B +Ep2)?— (P - Pi)? (5.1)

where m;- and my;+ are the masses of the leptons detected in the SOS and
HMS respectively, and 1_D>lf, l_D)H are their 3-momenta. The invariant mass
spectra from the J/v production runs are shown in Fig. 5.8. Fig. 5.8a shows
the mass spectrum for all detected events, Fig. 5.8b for e™, 7+ coincidences,

and Figs. 5.8c and d for the di-lepton coincidences.

Figs. 5.8a and b show a smooth, continuous spectrum over the range 2.5
< M-+ < 3.5 GeV, showing good phase space coverage of the spectrom-
eters and good acceptance at the J/v mass of 3.097 GeV. There is only
a single count in 5.8¢, the e, e’ mass spectrum, however. While this is
a true coincidence (as seen from the corresponding coincidence time graph
Fig. 5.7¢), the mass of the event is 2.71 £ 0.01 GeV, more than 40 ¢ from the
J/1 mass. As such, this event is background, either an electron-pion event
(with the pion mis-identified as a positron) or a wide-angle pair conversion

of a Bremsstrahlung photon.

The 1, ut mass spectrum shown in Figs. 5.8d has too only a single event,
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at an invariant mass of 2.87 + 0.01 GeV, more than 30 ¢ away. Once again,
this event is background; most likely an accidental coincidence, but possibly
another pair conversion, particle misidentification, or the decay of a pion to

a muon pair.

The absence of a peak at the J/¢ mass has some important implications
for the data analysis, namely in that an actual value for the sub-threshold
J /1 cross section cannot be obtained. This null result is no less important,
however: we are able to investigate different models for the free nucleon cross
section, and various methods of extrapolating the carbon spectral function
to high values of missing momentum and energy, and compare their predic-
tions to the observation of this experiment. It will be seen that the results
are consistent with predictions of the quasi-free production mechanism, and
therefore place limits on exotic mechanisms that may strongly enhance the

sub-threshold cross sections.

5.4 Calibration Runs

After the J/v photoproduction runs, the target and spectrometer settings
were changed, as shown in Table 4.4, to check the spectrometer settings and
resolutions and make sure we see the expected peaks from known interactions.
A liquid Hydrogen (LH2) target was first used for the production of nucleon
resonances from electron-proton scattering. After the LH2 runs the target

was changed to beryllium, to detect leptons resulting from w decay.
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5.4.1 Hydrogen Target Runs
ki = (E, Ez) kp= (Elvlgf)

q = (Va(j)

pi = (my, 0) pr = (E,, py)

Figure 5.9: The one-photon exchange diagram of the resonance electropro-
duction process, where, for example, k; is the four-momentum vector of the

incoming electron composed of energy E and momentum EZ

For the first set of calibration runs the target was switched to LH2 circulated
in a loop in the target chamber. The aim of these runs was to identify nu-
cleon resonances via deep inelastic scattering of an electron off a proton. The
Feynman diagram for this process is shown in Fig. 5.4.1, and the variables
used to define the kinematic quantities used in the analysis are summarised
in table 5.2. k is used to denote the four-momentum of the electron, p for the
four-momentum of the proton, and q for the four-momentum of the virtual
photon. The reaction is kinematically complete: the four-momenta of the
incident electron and target proton are known, and both the scattered elec-
tron and proton’s positions and four-momenta are detected, the electron in
the SOS, and the proton in the HMS. The resonant state is labeled by mass
W, and X describes any particle(s) resulting from the decay of this state that
is (are) not detected in either the HMS or SOS. For an extensive analysis of

these resonant processes, see Ref. [42, 43, 44].

The analysis of the hydrogen target runs is done by reconstructing the mass
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Table 5.2: Variable Quantities in Hydrogen Target Analysis

Variable Lab Frame Value Description

k; (E, k) four-momentum of the incident electron
kg (E', ky) four-momentum of the scattered electron
D (my,0) four-momentum of the target proton

Dy (B, pi) four-momentum of the scattered proton
q (v, pf) four-momentum transferred to the target

of, and thus identifying, the missing particles; these correspond to particular
resonances of the nucleon which are well known. Since the full kinematics
of the incident and scattered protons and electrons are known, the energy of
the missing particle(s) can be calculated as Ex = F — E' + m, — £ where
E and E' are the initial and final electron energies, m, is the mass of the
proton, and E], is the final proton energy. The missing momentum is given
by Px = k; — ky — py. Thus the mass squared of the missing particle(s) can
be found by

My = EX — | Px|* (5.2)

Kinematic Settings

The runs on the LH2 target that were used in the analysis were taken at three
different kinematic settings, summarised in Table 5.3. The first kinematic
setting has all but the HMS spectrometer angle set to the same values as
used during the J/v¢ production runs, with just the SOS spectrometer angle

changing for the other two settings.
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Table 5.3: Run Settings for LH2 Target

Run Number Beam  Ppuys Ouwvs Psos  Osos QF A%
Energy  (GeV) (°) (GeV) (%) (GeV)
(GeV)

52093 - 52098 5.77 3.5 13 1.69 53 7.76 0.88

52101 - 52104 5.77 3.5 13 1.69 40 4.56 2.0

52107 - 52124 5.77 3.5 13 1.69 28 2.26 2.5

The approximate four momentum transferred from the incident electron to
the proton for each setting can be calculated using the SOS detector settings
using

Q*= —¢* =2EFE'(1 — cos 0,) (5.3)

since E can be taken as the electron beam energy, and 6, as the SOS angular
setting. Furthermore, the invariant mass of the resonant state can be found

using this calculated Q? by

W=+(qg+p?= \/mg + 2myy — Q2 (5.4)

With all three settings, the data cover a range of Q? and W values, resulting
in 5 different observed missing mass peaks, giving greater confidence that the

spectrometers and analysis programs were working correctly.
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Figure 5.10: Coincidence spectra for the hydrogen target runs (ns), with
a) 0s0s=53°, b) 0505=40°, ¢) 0505=28°. The peaks on the left are from
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coincidences.



CHAPTER 5. DATA ANALYSIS 62

Coincidence Time Windows

The coincidence time windows for the LH2 runs differ from those of the
J/1 and omega production runs since different particles are being detected
which have different times of flight; Fig. 5.10 shows the coincidence time
spectra for each of the different kinematic settings. Three different coin-
cidences are possible, between electron and proton, pion, or kaon, since a
positive pion or kaon resulting from the decay of the nucleon resonance can

also be detected in the HMS.

Only two coincidence time peaks are visible separated by about 2.5 ns, due
to the differences in time of flight for the positive hadrons in the HMS (2.5 ns
is the expected time of flight difference for protons and pions at pHMS = 3.5
GeV). e7, pT coincidences form one clear peak(left), while e=, 7% or e=, Kt
coincidences lie on top of each other in the coincidence time spectrum (right).
The time of flight was normalised for a straight cut on pions in the online
analysis code, this is the reason for the proton peak dependance on HMS
momentum. The slight dependance of the second peak on HMS momentum

is a result of the kaon coincidences in the peak.

Particle Identification Cuts

The standard cuts for electrons in the SOS, as described in section 5.2.1,
were applied to select electrons from the background of negative pions. For
particle identification in the HMS, a different set of cuts on the were used to

select positive hadrons from the detected events:
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1. The particle’s momentum was required to be within 10% on either side
of the HMS central momentum for the event to be physical. (—10 <
hsdelta < 10)

2. The number of photoelectrons produced in the HMS Cerenkov counter
was required to be less than 1, since hadrons do not fire the Cerenkov.

(hcer_npe < 1)

3. A large portion of a hadron’s momentum in contained in its mass, so
it was required that the particle deposits less than 70% of it’s total

momentum in the lead-glass calorimeter. (hsshirk < 0.7)

Note that these cuts do not identify the different types of hadron from each
other; the events recorded during the runs could be from electron-proton,
electron-pion, or electron-kaon coincidences. The importance of this shall be
seen in the missing mass analysis as the peaks from the resonance decays
shift depending on which final particle mass is used in the calculation of M%.
In addition to the above cuts, cuts on the different coincidence time peaks
were made, thus selecting protons, or pions and kaons. Since this was not
the main analysis of the experiment we were not concerned with making a
momentum-dependant cut along the proton peak; straight cuts, in addition
to the particle identification cuts, were sufficient to exclude enough accidental

coincidences for the analysis.

Missing Mass Peak fits

The missing mass squared (M%) for each event of each run was calculated

using equation 5.2. The large peaks visible above the multipion background
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Figure 5.12: M3% (GeV) calculated using pion mass, with a) 6505=40°, b)

95052280.

correspond to undetected particles from the decay of a resonance. The posi-

tions of each peak are obtained through a gaussian fit to the data; these fits

can be seen in the figures in Appendix B. Fig 5.11 shows the M?% spectra for

the 0sos = 53° and 40° data assuming the hadron detected in the HMS has

the mass of a proton, and cutting on the proton coincidence time peak. A

clear peak at the  mass squared value of 0.3 GeV? is visible for both 0505

settings. Also, at fgog = 40°, the w peak near 0.616 GeV? is clear. The

results of the fits to these peaks are shown in Table 5.4.
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Figure 5.13: M% (GeV) calculated using kaon mass, with a) 0s05=40°, b)
‘9505:280.

If we place our coincidence time cut round the pion/kaon peak instead, we
obtain the M#% spectra for detection of these particles in the HMS. Using
the 7 mass in the calculation of M%, the spectra are shown for fso5 = 40°
and 28° in Fig. 5.12. At both 0oy settings a large peak near 0.9 GeV? is
seen; this peak corresponds to an undetected neutron. A smaller peak round
1.3 GeV? is also visible at both 0505 settings; this is the peak from the A
particle, shifted up from the A mass squared of 1.243 GeV? as a result of

using the 7" mass to calculate M%.

Using, instead, the kaon mass in the calculation of M%, with a cut on the
pion coincidence time peak, the spectra for the 0spos = 40° and 28° data
are shown in Fig. 5.13. In this case, the A peak comes out in exactly the
right place, while the neutron peak is shifted lower than its true value. In
the fsps = 28° spectrum a small X° peak is also visible at M% = 1.417
GeV?2. The results of the peak fits using the 7 and kaon masses are shown

in Tables 5.5 and 5.6 respectively.
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Table 5.4: M% calculated using the proton mass

Particle M)Z( from PDG M)Z( (9505 = 530) M)Z( (9505 = 400)

n 0.299 0.3015 £ 0.0021  0.3074 £ 0.0023
w 0.616 - 0.6141 £ 0.0019

Table 5.5: M?% calculated using the pion mass

Particle Peak M)Z( from PDG M)Z( (9505 = 400) M)Z( (9505 = 280)

neutron 0.8828 0.8844 £+ 0.0005  0.8911 4 0.0003
A 1.243 1.356 £ 0.006 1.334 £ 0.002

Table 5.6: M?% calculated using the kaon mass

Particle Peak M% from PDG  M3% (fsos = 40°) M% (0505 = 28°)

neutron 0.8828 0.8003 £ 0.0007  0.8279 £ 0.0003
A 1.243 1.245 £ 0.003 1.246 £ 0.001
by 1.416 - 1.417 £ 0.003
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As a further check, the accidental and multi-pion backgrounds were sub-
tracted from the data, which was then corrected for spectrometer acceptances
and radiative effects to produce differential cross sections. These measured
cross sections were then compared to the simulated cross section with good
agreement [45], giving confidence that the spectrometer acceptances, target

and beam calculations were well understood.

5.4.2 w Photoproduction

The last five runs of the experiment were optimised for w and p photopro-
duction off a 3% beryllium target. The same particle identification cuts as
for the J/4 analysis (section 5.2) were used to detect electrons and positrons
from omega decay in the SOS and HMS respectively. The SOS was set to a
central momentum of 0.9 GeV with angle 25°, while the HMS was set to a

central momentum of 1.95 GeV and angle 11° (as shown in Table 4.4).

Fig. 5.14 shows the invariant mass spectrum of electron-positron coincidences
from the decay of low mass vector mesons. Despite the very small branching
ratios for w — e7, et and p — e, e, a clear peak at 785 MeV with a full
width of 8 MeV corresponding to the w is seen above a 140 MeV-wide p peak.
Furthermore, the number of predicted w events from a Monte Carlo simu-
lation agreed with the number of observed events in the data. As a check
on the reliability of the simulations with respect to the J/1 results, the w

Monte Carlo was kept as similar as possible to the J/¢) Monte Carlo.

The results of the LH2 and Be runs indicate that the spectrometers’ detector
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systems were indeed functioning correctly during the experiment, and the
Monte Carlo simulations with the Bremsstrahlung spectrum and spectrom-
eter acceptances were well modeled. This indicates that, had J/i¢ mesons
been produced during the production runs according to our assumed cross

section, we would have detected and seen them in the final analysis.
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Chapter 6

J/1 Cross Section Analysis

Many experiments in nuclear and particle physics measure the cross section
of a physical process by searching for events resulting from that particular
process. In most cases the events are observed, and the cross section is deter-
mined as proportional to the number of those relevant events over the total

running of the experiment.

In some experiments, however, the expected events are not observed. E03-
008 was one such experiment: it was expected that a peak in the e”e™ mass
spectrum at the J/v mass of 3.1 GeV would be seen; as the results in Fig. 5.8
show, no J/v¢ events were detected. From the calibration runs it was deter-
mined that the detectors and data acquisition systems were working correctly,
and our analysis codes were correct. So what, then, does this mean for the

results of this experiment?

The lack of e"et and p~pu™ events in the production runs does not neces-

sarily mean that the J/v¢ photoproduction process does not exist for a real

70
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nucleus. For J/i¢ production to occur a number of contributions are re-
quired (see Chapter 2.1): the photon has to fluctuate into a ¢¢ pair within
the formation length of a nucleon; the nucleon has to contribute the neces-
sary momentum to reach the invariant mass of the J/v; the J/¢ must decay
into lepton pairs at the right momenta to be detected in the spectrometers;
the list goes on, each of which can be the necessary culprit in preventing
detection. Rather, then, the absence of dilepton events in the mass spectrum
implies that the sub-threshold .J/i¢ photoproduction process is not seen at

the level of sensitivity attained in E03-008.

Cross sections are typically quoted for particular photon energy (see Fig. 3.3).
In this experiment, however, there is a folding of the internal momentum of
the nucleons in the nucleus with the real photon energy (the real photon was
not a monochromatic photon beam but a secondary bremsstrahlung beam),
meaning that a simple upper limit value for the cross section cannot be
extracted. Instead, we look at the count predictions various models give
when under the same running conditions as the experiment. Here we can
impose an upper limit on the number of counts predicted, based on our 87%

confidence level observation of less than 2 counts (see appendix C).

6.1 J/¢Y Acceptance

In any experiment the distribution of data obtained during the production
runs does not map directly to the final data rate. For example, if the de-
tectors covered only 20% of the total kinematics (and assuming the detector

efficiencies were step functions) then the measured data rate for the experi-
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ment would need to be multiplied by a factor of 5. This, of course, assumes
that the process being measured is isotropic; if there was some angular or
momentum dependence to the process however, the weighting factors would

have to be considered proportionately.

For a fixed angle and momentum setting, the HMS and SOS spectrometers
detect particles in a limited range around the central values. As the particles’
kinematics deviate from these central values, the probability of detecting the
particle decreases due to a variety of factors: hitting the collimator, scattering
off internal detector elements, or missing important triggers. However, this
detector efficiency is not necessarily symmetric about the central momentum
and angle values. The consideration of the detector efficiencies combined
with the geometric acceptances mentioned above give the total probability,

or acceptance, for the process being measured.

To obtain the .J/1¢ acceptance for this experiment, we ran a Monte Carlo
simulation creating particles of the J/1¢ mass over a range of four-momenta
P from 3.6 to 5.0 GeV and angle 6 from 0° to 8°. The simulated J/v’s
were then decayed into lepton pairs with a 50% relative branching ratio to
e~et and p~pt pairs, and a 1 4 cos? ¢y dependance on the center of mass
angle [46]. The ranges for P and 6 were chosen such that the lepton pairs
resulting from the decay were within the correct kinematic range to make
it into the spectrometers. The resulting set of four-momentum vectors of
the lepton pairs were then run through the Jefferson Lab Hall C in-house

detector simulation package [47], accurately modeling the acceptance of the
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HMS and SOS spectrometers at the same kinematic settings as for E03-008.

The results of the Monte Carlo represent a calculation of the proportion of
J/1’s decaying to lepton pairs that made it through the detector as a function
of J/v momentum and angle, and are shown in Table 6.1. It is clear from the
table that for J/¢ momenta between 4 and 4.5 GeV, and with very forward

angles (0 < 4°) the detector efficiency is greater than 1 x 1074

6.2 J/i¢ Cross Section Model Predictions

As discussed in section 3.3, using the following integral to model quasi-free

J /1) photoproduction from a heavy nucleus

do = / o(k)dk / WaLC(Pm,Em)S(Em,ﬁm)d3ﬁdemdt (6.1)

we are left with the free nucleon cross section dog(s,t)/dt and the carbon
spectral function S(E,,, P,,) of Benhar [30] at high P, and E,, as our two
unknowns. Beyond P,, = 0.6 GeV there is insufficient data to constrain the
function, so we apply four different choices to extend the spectral function
above this value. First, two extrapolations of the nucleon momentum prob-
ability distribution integrated over F,, were made, hereafter referred to as
“high” or “low” depending on whether they are higher or lower at large P,,
(as discussed in [6], the “high” extrapolation is more like an upper bound
and will thus probably overestimate the yields). Then, two choices are used

for the E,, distribution: either “freeze” the value to that of Benhar et al. at

P,, = 0.8 GeV [30], or shift the distribution by \/m? + P2 — v/m? 4 0.82,
(where P, is in units of GeV).



Table 6.1: Probability (x107*) of detecting a .J/1 with momentum P and angle 6.

Q
T
I
3
e
=
2
Lab
0570 §
P(GeV) 0—-0.8° 0.8-1.6° 1.6—2.4° 24-3.2° 3.2—4.0° 4.0-4.8° 4.8-5.6° 5.6—6.4° 6.4-7.2° 7.2-8.0° a
3.60 - 3.74 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 g
5]
3.74 - 3.88 | 0.000 0.000 0.020 0.040 0.000 0.020 0.040 0.000 0.000 0.000 ;
3.88 - 4.02 0.780 0.581 0.840 0.762 0.441 0.300 0.240 0.080 0.000 0.000 Ci}
4.02 - 4.16 3.448 3.177 2.760 2.420 1.722 1.020 0.420 0.260 0.120 0.000 g
4.16 - 4.30 6.170 5.804 5.166 4.468 1.860 0.979 0.440 0.020 0.000 0.000 132>
4.30 - 4.44 | 4.780 4.402 3.943 3.379 2.434 0.919 0.480 0.120 0.020 0.000 D;
)-<
4.44 - 4.58 1.900 2.223 2.262 2.101 1.643 1.299 0.740 0.160 0.040 0.000 %
4.58 - 4.72 0.080 0.260 0.519 0.638 0.821 0.481 0.260 0.160 0.000 0.000
4.72 - 4.86 0.000 0.000 0.040 0.040 0.060 0.020 0.020 0.000 0.000 0.000
4.86 - 5.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Following the discussion in section 3.2, we used three different models for the

free nucleon cross section:

dO'(]

L. E = Aebt (62)
dO'(] 1
dog (1—x)°

2mMJ/,¢,+M2

where z = 7% and A and b are free parameters. Model I uses

s—m?
the form factor from the SLAC [20] and Cornell [22] fits, and models II and
IIT use the dipole form factor of [24] in the three- and two-gluon exchange

models of [1] respectively.

To test the validity of each of the models, the number of counts predicted
by each model was calculated as a function of the ¢-slope parameter b within
the range 0 to 3 GeV~2. The relative rate for the experiment was calculated
for a total of four days of production running on a beam current of 80 uA,

taking into account the specifics of target radiation length and thickness and

weighted by the Bremsstrahlung distribution % and a 12% branching ratio
(6% each for J/ip— ete” and pTp~). This was then scaled by the detec-
tion probability given in the acceptance table above, and used to standardise
the predictions made by the models to the conditions of the experiment. A
was calculated for each value of b such that the curves would agree with the
Cornell cross section measurement of 0.7 nb at an incident photon energy of

k=11 GeV [22].
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Figure 6.1: The number of predicted counts for the conditions of the present
experiment as a function of b for: a) Model I; b) Model II; and ¢) Model III,
where the models are defined in Equations 6.2, 6.3, and 6.4, respectively. On
each panel, the solid (long dashed) curves use the “high” extrapolation of the
spectral function with (without) the E,, shift for P,, > 0.8 GeV described in
the text. The medium dashed (short dashed) are the corresponding curves
with the “low” extrapolation. The hatched band at 2 counts indicates the
87% confidence level corresponding to our experimental observation of no

events.

Figs. 6.1a, b and ¢ show the number of events expected for this experiment
as predicted by models I, II, and III respectively, for the four high-P,, ex-
trapolations of the spectral function. For all three models, shifting the E,,
distributions for P,, > 0.8 results in a difference in the predicted rates of
about a factor of two. The predicted rates for model III are lower than for
models I and II because of the stronger s dependence due to the extra fac-
tor of (1 — z)?. The sensitivity to the various extrapolations of the spectral
function is also largest for model III, because on average higher values of P,

are probed.
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The restriction placed on the models was that they had to predict fewer than
the 2 counts allowed by the 87% confidence level on the experiment (see ap-
pendix C), over all values of b, shown by the hashed lines in Fig. 6.1. As
can be seen in the plots, all combinations of the three models satisfy this
requirement. However, it may be possible that something like the “hot spot”
scenario discussed in section 2.3 could occur, resulting in predictions greater
than two counts, especially for models I and II. This could correspond, in
the quasi-free picture, to considerably lower values of F,, than in the Benhar

spectral function used above.

As mentioned in section 3.1, we can use the calculations of charm (c¢) pho-
toproduction rates by Braun and Vlahovic [23] as a guide. Assuming dom-
ination of the pQCD simple photon-gluon fusion process, their calculation
predicts a total cross section of about 0.25 fb/nucleon for carbon with 5.5
GeV photons, corresponding to approximately 0.02 events under our experi-

mental conditions, similar to our predictions using Model III.



Chapter 7

Conclusion

E03:008 aimed to measure the cross section for sub-threshold J/v photopro-
duction on a solid carbon target. No .J/1¢ events were observed, consistent
with predictions of quasi-free production using three elementary models for
free nucleon cross section, and reasonable extrapolations for the high missing
momentum and energy spectral function distributions in carbon. Due to the
non-observation of J/1’s, extensive consistency checks were done using lig-
uid hydrogen and beryllium targets to ensure the detectors and Monte Carlo
simulators were functioning correctly. The checks showed nucleon resonances
from electron-proton scattering as well as leptonic decays from w photopro-
duction, evidencing the experimental apparatus was functioning and config-
ured correctly and analytic procedures were robust, and thus giving a high

level of confidence that the null result was real.

It was seen that the predictions given by the models did vary slightly amongst
themselves, and the rates were also sensitive to the different extrapolation

methods for the spectral function. All models, however, satisfied the re-
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quirement of predictions in line with our 87% confidence level observation
of less than 2 counts. The non-observation of .J/1) photoproduction seems
to indicate that unusual high momentum components in the nucleus are un-
likely. Therefore, for a given set of assumptions on the choice of carbon
spectral function, and the parametrization of the free nucleon cross section
near threshold, upper limits could be set on exotic mechanisms such as gluon
exchange to two different nucleons, hidden colour configurations, “hot spot”

scenarios, etc, that may enhance the sub-threshold cross sections.

For further analysis of the .J/¢ photoproduction cross section and inter-
pretation of the present experiment’s results it will be important to have
well-characterised spectral functions and precision measurements of the free
nucleon cross section in the 8-11 GeV region. This will be possible with the
11 GeV upgrade at Jefferson Lab, and an experiment is already planned [9] to
provide definitive measurements of .J/1 photoproduction on hydrogen in the
near threshold region. This experiment will place further constraints on the
photoproduction models and provide better knowledge of the A-dependence
of the photoproduction cross section. With this future experiment the pro-
posal authors expect a factor of three improvement on the determination of
the J/i-nucleon total scattering cross section, a fundamental quantity that
is calculable in specific models. Furthermore, this will be measured at a
center-of-mass energy of 5 GeV, in the range of interest for studies of the
quark-gluon plasma and of importance in the interpretation of J/1 suppres-

sion in heavy ion collisions.
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E/P Peak Positions on

Calorimeter
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Figure A.1: Electron E/p peaks over all runs for different positions on the

x-axis of the SOS calorimeter
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LH2 Missing Mass Fits
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Figure B.1: M#% calculated with proton mass. Fit to n peak.
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Figure B.3: M% calculated with proton mass. Fit to w peak.
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Figure B.4: M#% calculated with pion mass. Fit to N peak.
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Figure B.5: M#% calculated with pion mass. Fit to A peak.
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Figure B.6: M?% calculated with kaon mass. Fit to N peak.
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Figure B.7: M% calculated with kaon mass. Fit to A peak.
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Appendix C

Count Limits

Since no J/¢ events were observed during the period of running of the ex-
periment, we can write the probability that the reaction rate A is less than

some given rate Ao as [34]:
Ao
prob(\ < \g) = / TeMd\=1—e T (C.1)
0

where the probability is normalised by the period T. This probability is also
known as the confidence level (CL) for this process having a rate less than

Ao. We can thus write the rate g as:
1
Ao = —7 In(1 — CL) (C.2)

Multiplying both sides by T, we obtain an expression for the maximum num-
ber of counts allowed by model predictions for this experiment. Thus, as-

suming an upper limit of 2 counts, we obtain a confidence level of 87%:

counts = TA\g =2 = —In(1 —CL) = CL =87% (C.3)
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Appendix D

Publications

The results of Jefferson Lab experiment E03-008 have been published in the

following paper:

1. Search for Sub-threshold Photoproduction of J/Psi Mesons, Phys. Rev.
C 79, (2009). P. Bosted, J. Dunne, C.A. Lee et. al.

The following publications arise from experiments at Jefferson Lab on which

the author of this dissertation is a co-author (nee Gray):

1. Measurement of Nuclear Transparency for the A(e, ¢ 77) Reaction,

Phys. Rev. Lett. 99, (2007). B. Clasie et. al.

2. Scaling Study of the Pion Electroproduction Cross Sections and the
Pion Form Factor, Phys. Rev. C' 78, (2008). T. Horn et. al.

3. New Measurements of the EMC Effect in Very Light Nuclei, in prepa-
ration for Phys. Rev. Lett. J. Seely et. al.
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