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Abstract

This thesis is a collection of several papers at the interface between cosmology, particle
physics, and field theory. In the first half, we examine topics that are directly related
to inflation: axions, string theory, and non-minimally coupled fields. In particular,
we constrain the allowed parameter space of inflationary axion cosmology, identifying
a classic window and an anthropic window; we discuss inflation in string theory,
proving a no-go theorem for a class of string models; and we examine the quantum field
theory governing inflation driven by non-minimally coupled fields, which is relevant to
Higgs-inflation. In the second half, we examine other topics: oscillons, entanglement
entropy, and the Casimir effect. In particular, we compute the quantum decay of
oscillons, finding it to be dramatically different to the classical decay; we establish
finite contributions to the entanglement entropy between a pair of regions, including
a finite area law; and we compute the Casimir force in a closed geometry, finding an
attractive force and invalidating claims of repulsion.
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Chapter 1

Introduction

Cosmology and particle physics are closer today than ever before. This thesis is a
collection of several papers at the interface between cosmology, particle physics, and
field theory. In this opening chapter, we briefly introduce inflationary cosmology
and some directly related topics: axions, string theory, and non-minimally coupled
fields. We then move on to other topics: oscillons (which may also have cosmological
implications), entanglement entropy, and the Casimir effect.

1.1 Inflationary Cosmology

Precision data [1, 2, 3] has revealed that on large scales our universe is approximately
homogeneous, isotropic, and flat. Its properties are remarkably well described by
the so-called ACDM model in which general relativity is assumed and - 74% of the
universe is dark energy (A), ~ 22% is cold dark matter (CDM), ~ 4% is baryonic,
plus a small amount of cosmic microwave background radiation (CMB). However, the
universe is not perfectly homogeneous or isotropic. Instead there exists fluctuations
in the matter density distribution and CMB at the - 10-' level on large scales. These
fluctuations have been observed to be roughly scale-invariant, Gaussian, and of the
adiabatic type - though small deviations from this are allowed by the current data.

This leads to several important questions, which may have an answer in particle
physics, such as:

1. What caused the universe to be nearly homogeneous, isotropic, and flat?

2. What is the origin and nature of the ~ 10-5 density fluctuations?

3. What is the nature of dark matter?

4. What is the origin of all matter and the baryon asymmetry?

The first two of these questions have a beautiful framework in which they may
be addressed: inflation [4, 5, 6, 7]. This is the idea that a small patch of space
in the early universe underwent a period of exponential growth - an approximate de
Sitter phase. At the classical level this causes small departures from homogeneity and



isotropy to redshift away and drives the curvature towards zero. This also solves the
horizon problem - it allows the early universe to be causally connected (as opposed
to standard big bang cosmology) which is consistent with an approximately uniform
CMB temperature across the sky. At the quantum level de Sitter fluctuations in light
fields (including the metric) are established. These become density fluctuations in
the late time universe.

The amplitude of such fluctuations, such as tensor modes or scalar modes (adi-
abatic or isocurvature) are highly model dependent, but are subject to improving
observational constraints. For example, the amplitude of the tensor modes is pro-
portional to the energy density of the inflationary model; so a direct detection of
primordial gravity waves from inflation would probe the scale of inflation. On the
other hand, a non-detection places an upper bound on the energy density of inflation.
The (measured) amplitude of density fluctuations constrains a combination of the
energy density of inflation and its rate of change during inflation.

Axions: Other light scalar fields can give rise to other forms of fluctuations. A
particularly important example in particle physics is the QCD-axion [8, 9]; the leading
candidate to solve the so-called strong CP-problem of the Standard Model. If the
QCD-axion is present during inflation, then it establishes isocurvature fluctuations
whose amplitude depends both on the scale of inflation and on the so-called Peccei-
Quinn [10] scale that controls the axion's mass. Constraints on gravity waves and
isocurvature modes therefore together constrain both the energy scale of inflation and
the Peccei-Quinn scale of the axion. The constraints also depend substantially on the
fraction of today's universe that is in the form of axions. Since axions are electrically
neutral, stable, and very weakly interacting, they are a form of dark matter. Hence,
apart from the connections to questions 1 and 2, this topic is also intimately connected
to question 3 regarding the nature of dark matter. These constraints will be explored
in detail in chapter 2.

The simplest way to implement an inflationary phase is to assume some scalar field
# exists which carries significant vacuum energy. This is provided by some potential
function V(#). Consider the following action (signature - + + +)

S zd g [l z 1Z (00)2 _ V(O$)] (1.1S= d R 167rG 2

where 1Z is the Ricci scalar and G is Newton's constant. If the potential V includes
a region over which it is positive and suitably flat, then it acts like a cosmological
constant and can drive a de Sitter phase; this is the basic mechanism behind inflation.
This phase should not last forever though. The potential should have a minimum
about which # eventually oscillates, which is the end of inflation. The shape of the
potential determines the amplitude of fluctuations and its spectrum. In order for
inflation to really answer questions 1 or 2, we must identify the microphysical origin
of this field # and the potential V. How is it connected to fundamental physics and
what determines the details of the action including the gravity, kinetic, and potential
sectors? We turn now to consider the possible embedding of inflation in particle
physics.



String Theory: The leading candidate for a fundamental theory of quantum gravity
is string theory. In order for both string theory and inflation to be correct, one should
demonstrate explicitly that string theory offers a correct cosmological description of
the universe and incorporates inflation. On the face of it this task seems relatively
simple, since typical low energy string models include many scalar fields, which carry
potential energy functions - the so-called "landscape" of string theory. But are these
potential functions of the right shape to support inflation? We provide a pedagogical
discussion of inflation in the context of string models in chapters 3 and 4. Further, we
carry out a numerical search for inflation in a few simple string models in chapter 3,
finding no inflating models. We then establish a no-go theorem for a class of models
in chapter 4. This leads us to point out directions to make progress in the direction
of connecting string theory and cosmological inflation in the future.

Non-Minimal Coupling: An entirely different approach to searching for inflation
in string theory ("top-down approach") is to search for inflation models connected
to low energy physics, such as the Standard Model of particle physics ("bottom-up
approach"). In such an approach we would rely on the Higgs-boson to drive inflation.
Since the Standard Model Higgs-boson has the potential function V(#) - A(#$2 -v 2 )2,
with A - 0.1, it turns out that a phase of inflation can be realized, but the amplitude of
density fluctuations far exceeds the required 10-5 level. One can improve the situation
by including a non-minimal coupling between # and gravity, i.e., by including (#2 R

to the action (1.1). By taking 6 ~ 104 one can achieve the correct level of density
fluctuations [11, 12]. However, with such a large coupling, one may wonder whether
or not the quantum theory makes sense as an effective field theory. In chapter 5 we
address this issue in detail, as well as models in which an R2 term is added to the
action.

1.2 Other Topics

We now introduce some other topics. The first of which may well have some connec-
tions to cosmology that we briefly mention. The latter pair of topics do not directly
apply to cosmology, though some cosmological connections do exist in the literature.

Oscillons: Inflationary models, axion models, Higgs models, etc, involve scalar
fields evolving in some potential function that often supports coherently oscillating,
localized clumps, known as oscillons [13, 14, 15, 16]. Studied classically, oscillons are
known to be extremely long lived. They also arise from various initial states, such
as thermal states, phase transitions, and possibly at the end of inflation. If such
heavy clumps emerged in the early universe and then decayed, the decay products
would be produced out of thermal equilibrium, a necessary condition for baryogenesis.
Furthermore, oscillons may play some role during p/reheating of the universe at the
end of inflation. Such possibilities would shed some light on question 4 posed earlier.
However, these ideas have yet to be established. In fact a theory of oscillons in the
framework of particle physics is yet to be developed. Most notably, little is known
about the quantum mechanical stability of oscillons or the effects from coupling to
other fields. In chapter 6 we examine these questions. We find oscillons radiate



quantum mechanically through channels that are typically suppressed classically.
Entanglement Entropy: An inherently quantum mechanical property of a system

involving multiple degrees of freedom is entanglement. Consider a system that is not
in a product state. For example, a pair of spins in the pure state (11T)IT) +|I)|I)).
The subsystem of the first spin cannot be fully described without reference to the
second spin. If we ignore the second spin, by tracing over it, we lose knowledge of
the subsystem as captured by some density matrix p. One measure of the loss of
information is the entanglement entropy S - -Tr (p ln p). In a field theory in flat
space with d > 1, the entanglement entropy between a pair of regions typically scales
with the area of the dividing boundary, but with a diverging constant of proportion-
ality set by the cutoff on the field theory [17]. On the other hand, the entropy in
d = 1 is finite [18, 19]. An interesting issue is whether there exist finite contributions
to the entanglement entropy for d > 1. In chapter 7 we compute the entanglement
entropy for a massive scalar field theory in arbitrary dimensions, and demonstrate
that there are indeed finite contributions to the entropy which are cut-off independent
and possibly measurable.

Casimir Effect: In 1948 Casimir [20] predicted that there exists an attractive
force between a pair of parallel metallic plates in vacuum. This was experimentally
verified in 1997 [21]. In quantum field theory this is best understood as a one-loop
QED effect associated with the vacuum energy of the EM field defined on a space
with conducting boundary conditions (this should not be confused with the vacuum
energy of free space, which has no non-gravitational effects). When the divergent
energy is differentiated with respect to the distance between the plates a finite force
is obtained. Interestingly, the Casimir force is known to be strongly dependent on
geometry, so one could imagine a situation in which the force is repulsive. Such
claims abound in the literature in the context of closed geometries, such as a metallic
cube. However, there are various divergent contributions to the vacuum energy which
should be isolated and shown to be independent of distance in order to derive a finite
Casimir force. In chapter 8 we demonstrate that this is impossible for certain closed
geometries, such as a cube, but is possible for other closed geometries, such as a
piston. We compute the Casimir force on the piston and find it to be attractive.

1.3 Organization of Thesis

Chapters 2 - 8 of this thesis are a reproduction of the seven papers [22, 23, 24,
25, 26, 27, 28], respectively. Chapters 2 - 5 explicitly relate to inflation; chapter 2
discusses inflationary axion cosmology, chapters 3 and 4 discuss inflation in string
theory, and chapter 5 discusses inflation with non-minimally coupled fields. Chapters
6 - 8 are other field theory topics; chapter 6 discusses oscillons (this may well have
cosmological implications, though this is not fully developed here), chapter 7 discusses
entanglement entropy, and chapter 8 discusses the Casimir effect.

Let us clarify the contributions to the work in this thesis. In each paper, I per-
formed the detailed calculations, wrote at least the bulk of the manuscript, and was
the first author. The size of each collaboration varied from paper to paper: Ref. [22]



(chapter 2) was co-authored with Prof. Max Tegmark and Prof. Frank Wilczek; sub-
stantial guidance and input came from both. Ref. [23] (chapter 3) was co-authored
with Prof. Max Tegmark, Prof. Shamit Kachru, Jessie Shelton and Onur Ozcan; sub-
stantial guidance came from Prof. Max Tegmark, many suggestions from Prof. Shamit
Kachru, and initial calculations started by Onur Ozcan. Ref. [24] (chapter 4) was
co-authored with Prof. Shamit Kachru, Prof. Washington Taylor, and Prof. Max
Tegmark; the main result was a group effort. Ref. [25] (chapter 5) was sole-authored,
with substantial input and suggestions from Prof. Frank Wilczek and Andrea De Si-
mone. Ref. [26] (chapter 6) was sole-authored, with advice from Prof. Alan Guth.
Ref. [27] (chapter 7) was co-authored with Prof. Frank Wilczek; the results were a joint
effort. Ref. [28] (chapter 8) was co-authored with Prof. Robert Jaffe, Prof. Mehran
Kardar, and Antonello Scardicchio; the main results were a group effort.
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Chapter 2

Axion Cosmology and the Energy
Scale of Inflation

We survey observational constraints on the parameter space of inflation and axions
and map out two allowed windows: the classic window and the inflationary anthropic
window. The cosmology of the latter is particularly interesting; inflationary axion
cosmology predicts the existence of isocurvature fluctuations in the CMB, with an
amplitude that grows with both the energy scale of inflation and the fraction of dark
matter in axions. Statistical arguments favor a substantial value for the latter, and
so current bounds on isocurvature fluctuations imply tight constraints on inflation.
For example, an axion Peccei-Quinn scale of 1016 GeV excludes any inflation model
with energy scale > 3.8 x 1014 GeV (r > 2 x 10-9) at 95% confidence, and so implies
negligible gravitational waves from inflation, but suggests appreciable isocurvature
fluctuations.

2.1 Introduction

Early universe inflation and the QCD axion provide explanations for otherwise mys-
terious features of the universe. Here we argue that assuming both at once leads
to very significant constraints on their central parameters, and to highly falsifiable
predictions.

2.1.1 Energy Scale of Inflation

Inflation is the leading paradigm for early universe phenomenology [1, 2, 3]. Its
mechanism and the values of its central parameters are unknown, however. One
central parameter is the energy scale of inflation El, defined as the fourth root of
the inflationary potential energy density, evaluated when the modes that re-enter the
horizon today left the horizon during inflation. E, is subject to both theoretical and
observational constraints, as illustrated in Figs. 2-1 & 2-2.

A multitude of inflation models involving a broad range of energy scales have been
discussed in the literature, including chaotic inflation [4], brane inflation [5, 6] and



others [7]. However, very high Er has been argued to be theoretically problematic, at
least for single field slow-roll inflation, because it involves super-Planckian displace-
ments of the inflaton field 4 [8]. From Ref. [9] the region in which # moves at least
two Planck masses is E > 2.4 x 10" GeV. The intuition that high Er is problematic
seems borne out in many string theory models; an example is D-brane models [9].

Very low E has been argued to be theoretically problematic also. Naive con-
sideration of families of potential energy functions suggests that E, < 2 x 1016 GeV
(r < 0.01) is non-generic [10]. One of the most striking successes of high E, potentials
is that they can naturally predict n, ~ 0.96, and generic low-energy potentials fail
to make this prediction. Low Er potentials have the slow-roll parameter c exponen-
tially small, so that the observation n= 1 - 6c + 2, = 0.960 ± 0.013 [11] implies

7 = -0.02 i 0.0065, leaving us wondering why q is so small when it could just as
well have been of order -1. This problem is not alleviated by anthropic considera-
tions [12]. By using the observed value of density fluctuations, and setting e < 10-4
as the boundary, E < 6.7 x 10" GeV defines this problematic low-scale region. These
theoretical issues for inflation are indicated by the vertical regions in Fig. 2-1. Al-
though there are inflation models in the literature at energy scales both above and
below this naive window, the debate about whether they are generic continues.

With theory in limbo, we turn to observational guidance. High Er implies a large
amplitude for primordial gravitational waves (GWs). E, > 3.8 x 1016 GeV (r > 0.22)
is ruled out by WMAP5 plus BAO and SN data [11], as indicated by the orange
region of Fig. 2-2. Possible future searches for primordial GWs have rightly been a
focus of attention. In this chapter we emphasize the additional information that can
be learned from isocurvature fluctuations.

2.1.2 Axion Physics

The QCD Lagrangian accommodates a gauge invariant, Lorentz invariant, renormal-
izable term oc 0 E' -B", with 0 E [-7r, 7r], that manifestly breaks P and T symmetry.
Precision bounds on the electric dipole moment of the neutron constrain 101 < 10-10.
The striking smallness of this parameter, which the standard model leaves unex-
plained, defines the strong P and T problem (a.k.a. "CP problem"). After introduc-
ing a new asymptotic (or alternatively, classical) Peccei-Quinn (PQ) symmetry [13]
which is spontaneously broken, the effective 0 becomes a dynamical variable, and re-
laxes toward extremely small values. The consequent approximate Nambu-Goldstone
boson is the axion [14, 15].

The simplest axion models contain only one phenomenologically significant pa-
rameter: fa, the scale at which the PQ symmetry breaks. The zero temperature
Lagrangian for the complex field # = p e'o/vf is

-1 1 aP2 4 2 02-fa/)
L= fa (a0)2 + ( (p) 2 - 2A4 sin2 (0/2) - A(I#|2 -

(A ~ 78 MeV, p is irrelevant at low energies). Accelerator bounds require fa to be well
above the electroweak scale, and stellar astrophysics constraints place considerably
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Figure 2-1: Naive expectations for the energy scale of inflation El and the axion PQ
scale fa. For El > 2.4 x 101 GeV, the inflaton must undergo super-Planckian excur-
sions in field space (in single field models). For E, < 6.7 x 10" GeV, generic inflation
potentials fail to reproduce the observed nearly scale invariant power spectrum. For
fa > 2.4 x 1018 GeV, the PQ breaking scale is super-Planckian. For fa < 10" GeV

(and fa > TeV), the PQ breaking is in the "desert" of particle physics and non-trivial
to achieve in string theory. This leaves the region labeled "naive window".
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higher limits. Given that electroweak values for fa are ruled out, economy suggests
that fa could be associated with unification or Planck scales, rather than the "desert"
of particle physics or super-Planckian scales, as indicated by the horizontal regions
in Fig. 2-1. This intuition for fa seems borne out in string theory, where fa typically
lies at or just above the GUT scale, and much lower values are non-trivial to achieve
[16].1 Such high values of fa correspond to large contributions from axions to cold dark
matter (CDM). Indeed, it is only after selection effects are taken into account that the
ratio of axion density to entropy is small enough to be consistent with observations
[18, 19]. When these effects are included, one finds that the expected density of dark
matter in axions is close to the amount of dark matter actually observed [20].

2.1.3 Cosmological Observables, Summary

Quantum fluctuations in an effective inflaton field give rise to the standard adiabatic
fluctuations that have grown into our cosmologically observed large-scale structure.
If the PQ symmetry undergoes spontaneous symmetry breaking before the end of
inflation, quantum fluctuations in the consequent light axion field give rise to isocur-
vature fluctuations. The amplitude of the isocurvature fluctuations grows with E1 ,
so upper bounds on the amplitude of isocurvature fluctuations imply upper bounds
on E1 .

The purpose of this chapter is to delineate these bounds, extending earlier work
on this subject such as [17, 21, 22, 23, 24, 25]. The bounds depend sensitively on the
fraction Ra of CDM in the form of axions, which in turn depends not only on fa, but
also on the local initial misalignment angle O2 E [-7, w]. These constraints are shown
in Figs. 2-2, for different choices of the axion CDM fraction. We will estimate this
fraction using statistical arguments.

In Section 2.2 we calculate the production and late time abundance &a of axions
and the amplitude a, of isocurvature fluctuations, as well as reviewing the ampli-
tude Qt of primordial GWs. These three observables depend on two micro-physical
parameters: the PQ scale fa (or equivalently, the T = 0 axion mass ma) and the
energy scale of inflation Er (or equivalently, the Hubble scale of inflation Hr), and on
one "environmental" parameter: the misalignment angle 0i. We summarize the final
formulae here:

-a = A(02 + o()f (02)XF, (2.1)
8 (A/(m) 2

Ca =25 ((6TT) 0 o( 2 0i + or )f(0?) 2 x2 F2 , (2.2)

H 1  E2

Qt = = ,(2.3)
57 nai 5v5 mr-, -

'For example, in weakly coupled heterotic string theory, the model-independent axion has its PQ
scale given by fa = auve-pi/(27rv'_). A unified coupling au = 1/25 then gives fa 1.1 x 1016 GeV
[17, 16].



where

28(A ) 2/37/2.8 fa for fa < fa,

4.4 fa ) for fa > fa,

o = Y H Y (2.5)
27rfa 2 v/57r fampI

(definitions are given below).
The most recent observational bounds from WMAP5 combined with other data

are [11]
(a < 2.9 eV, aa < 0.072, Qt < 9.3 x 10-6, (2.6)

thereby constraining the two micro-physical parameters E, and fa.
These expressions for (a and aa only apply if the PQ symmetry undergoes sponta-

neous symmetry breaking before inflation and is not restored thereafter. This is true
if fa exceeds the Gibbons-Hawking temperature during inflation and the maximum
post-inflationary thermalization temperature, as we discuss in Section 2.2.3. Ineffi-
cient thermalization leads to constraints displayed in Fig. 2-2 (top), while efficient
thermalization leads to constraints displayed in Fig. 2-2 (bottom).

In Section 2.3, we present a statistical estimate for the axion abundance to place
additional constraints on out parameter space. In Section 2.4, we conclude by dis-
cussing the implications for inflationary model building and future prospects.

2.2 Axion Cosmology

In this section, we review the production of axions in the early universe, their abun-
dance in the late universe, and the amplitude of isocurvature fluctuations, following
Refs. [24, 17], and explain and derive eqs. (2.1)-(2.5). We focus on axion production
from the so called "vacuum misalignment" mechanism only. This provides the most
conservative constraints. Additional production mechanisms, such as cosmic string
decay, are subject to larger theoretical uncertainties (e.g., see [26]).

2.2.1 Onset of Axion Production

In an expanding flat FRW background at temperature T with Hubble parameter
H(T), the phase field 0 of broken PQ symmetry satisfies the equation of motion

+ 3 H(T)# - V2 V(0, T), (2.7)
a2  20

a fag

where dots indicate derivatives with respect to co-ordinate time. Here V(0, T) is the
temperature dependent potential induced by QCD instantons. At zero temperature,
V(0, 0) = A4(1 - cos 9), where A ~ 78 MeV sets the scale of the vacuum energy of



QCD.2 For small values of the axion field, the potential is approximately harmonic:

1
V(0, T) -ma(T)2fa 2 . (2.8)

2

The mass is temperature dependent, with high and low T limits given by

b ( ) for T > A,
ma(T) ~ ma(0) T ) r , (2.9)

for T < AQ,

where AQ - 200 MeV is the scale at which QCD becomes strongly coupled, b
0(10-2) depends on detailed QCD physics, and ma(0) is the zero temperature ax-
ion mass, related to the PQ scale fa and A by ma(0) - A2 /f 3 The temperature
dependence is illustrated in Fig. 2-3.

In the early universe, the axion field is effectively massless, and so the right hand
side of eq. (2.7) is negligible. Hence the zero mode of the axion field is essentially
frozen due to Hubble friction. When the temperature T drops below T.Sc, defined by

3H(T,c) ~ ma(Tosc), (2.10)

the axion field will begin to oscillate, producing axions. Since this occurs during the
radiation dominated era, we have4

1 gr2H(T)2 =g(T) T, (2.11)
3nP1 30

where fi, ~ 2.4 x 1018 GeV and g,(T), the effective number of relativistic degrees of
freedom, depends on whether Toc occurs before or after the QCD phase transition:

g,*(T.c) = 61.75 for T,> A. and g,(T,c) = 10.75 for T,c < AQ. Eqs. (2.9-2.11)

allow us to solve for Tosc in terms of fa:

0.36 A2/ 3A1/3 for fa 1 j/,
Tj n)po 1/2 (2.12)

0.55A (for fa > fa,

where fa, which reflects the break in eq. (2.9), is defined in eq. (2.16) below.

2A is set by AQ and quark masses: A2 = M,, z ma/md ~ 0.56.
3If there are N distinct vacua for 0, then we should replace fa by faiN here and throughout the

chapter. However, any N > 1 models are expected to have a large overabundance of energy density
from domain walls, unless inflation intervenes.

4We assume here that the universe before BBN is adequately described by conventional physics.
See Ref. [27] for other scenarios.
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2.2.2 Density of Axions

At the onset of production (when T = T,,c) the axion energy density is

1
pa (Tosc) ~_- ma(Tosc)2 fa( 2 )f(). (2.13)

2

Here (92) is the spatial average over our Hubble volume of the square of the initial
misalignment. In terms of its mean 9i and standard deviation o0-, (92) = 9?+oc. If the
axion field is established before (or during the early stages of) inflation, then spatial
variations in 9 are smoothed out over our Hubble volume (V 20/a 2 --> 0). Then O6 = (9)
in our Hubble volume is an angle drawn from a uniform distribution: 92 -[-7r, 7r], with
a small variance that we discuss in the next subsection. On the other hand, if the axion
field is established after inflation, then O2 = (9) = 0, with variance or = gr2 /3 due
to small scale variations. f(02) is a fudge factor acknowledging anharmonicity in the
axion potential; for 62 -> 0, f(02) -> 1. Finally, x is a dimensionless correction factor

due to temperature dependence during formation. In our numerics, we take AQ =

200 MeV, b = 0.018, and absorb all theoretical uncertainties into x. A conservative
value is x = 1/20 and a more moderate value is x = 1;' both values are reported in
Fig. 2.

By following the redshift as the universe expands from axion-formation to today,
we can convert this initial energy density into a prediction for the present density,
as illustrated in Fig. 2-3. Since we are focusing on the zero-mode, the axions form
a non-relativistic Bose-Einstein condensate. At late times (say today's temperature
TO), the axion energy per photon is

pa(TO) ma(To) Pa(T.c) s(To)

"y n(TO) mna(T..c) ny(To) s(T..c)'

where we have exploited the fact that entropy density s(T) in a comoving volume is
conserved. The entropy density is given by

27r2
s(T) = 9g (T) T, (2.15)

45

where g*s(T) is the effective number of relativistic degrees of freedom for s(T) [30].
Note that g*,(T.c) = g,(Tc), g*S(To) comes from photons and neutrinos: g*,(To) =

2+ x6x - =3.91, and ma(T) f ma(0). Since the number density of photons

n(To) =2((3)Ts/ir2 depends on temperature in the same way that the late time
axion energy density pa(TO) does, the quantity (a is a temperature-independent, or
equivalently time-independent, measure of the axion abundance. In contrast, the
commonly used quantities Qa and h 2Qa do not tell us anything fundamental about
our universe, since like T, they are effectively alternative time variables that evolve
as our universe expands. These different measures of axion density are related by
Qah2 ~ 0.0019 ( a/1 eV) (To/i K) 3 , which at the present epoch (To = 2.725 K) reduces

'See Refs. [28, 29] for precise estimates of axion abundance.



to Qah2 0 G/26eV (h is the dimensionless Hubble parameter).
Combining all this information yields eq. (2.1). Note that higher fa (for a fixed

value of (02)) corresponds to higher axion energy density, as seen in Fig. 2-3. The
reason for this is that higher fa corresponds to lower ma (0), so that the onset of
axion production, when 3H(T) has fallen to ma(T), occurs later. Hence there is
less redshifting of the axion energy density after production (furthermore, Pa (T.c) is
higher if fa < fa).

We locate the boundary between the low and high fa limits by equating the two
expressions for (a. They match when fa = fa, where

fa - 0.26 (A 2  . (2.16)

The observed total density of cold dark matter in our universe (cD ~ 2.9 eV implies

Ga < 2.9 eV [11].

2.2.3 Fluctuations from Inflation

During inflation, the universe undergoes an approximately de Sitter phase with Hub-
ble parameter HI. Quantum fluctuations during this phase induce several kinds of
cosmological fluctuations.

" Adiabatic density fluctuations are generated, with an approximately scale in-
variant spectrum. The measured amplitude is Q - 1.98 x 105 [11].6

" Primordial gravity waves are generated, with an approximately scale-invariant
spectrum whose amplitude is given in eq. (2.3). WMAP5 plus BAO and SN
data imply the bound: Qt < 9.3 x 10-6 (95%). Since Q is measured and Qt is
set by E1 , the tensor to scalar ratio r =(Q/Q)2 is often used to characterize
the scale of inflation. Using the same notation as [11], it is bounded by r < 0.22
(95%).

* Any other light scalar fields, such as the axion, are imprinted with fluctuations
during inflation, similarly to gravitons. The power spectrum of a canonically
normalized scalar field #, such as #i, in de Sitter space has a scale-invariant
spectrum (e.g., see [31])

(|6#a(k) ( 2 k3/2ir 2 . (2.17)

It is essentially a thermal spectrum at Gibbons-Hawking temperature TGH

HI/27. Fluctuations in the misalignment angle in k-space are scaled as uo =

oa/fa, per eq. (2.5). We write the corresponding fluctuations in real space as

O-a = Y H1 /27, where y = 0(1) is a dimensionless constant. Ref. [11] effectively
takes -y 1 and Ref. [22] argues that observations are sensitive to length scales

6Here Q = (3A(k = 0.002 Mpc-1) of Ref. [11].



corresponding to -y e 4, while in our figures we have taken a moderate value of
-y = 2. These fluctuations provide a lower bound on da and, as we discuss in
the next subsection, on isocurvature fluctuations.

In the preceding discussion, we assumed the existence of a light axion field during
inflation. This is true only if PQ symmetry is broken before inflation. Furthermore, if
PQ symmetry is restored after inflation, the fluctuations will be washed out. PQ sym-
metry can be restored either by the Gibbons-Hawking temperature during inflation,
or by the maximum thermalization temperature after inflation Tmaxi. To characterize
the maximum thermalization temperature, we use a dimensionless efficiency param-
eter eff defined as Tmax = ef E1 , with 0 < Eel < 1, with e, < 1 expected.

A robust criterion for the presence of the axion during inflation with fluctuations
that survive is

fa > Max{TGH,Tmax}.- (2.18)

If this condition is satisfied, inflationary expansion implies that 02 - [-Cr, r] is drawn
from a uniform distribution. By postulating that 02 is atypically small in our neigh-
borhood (i.e., in our Hubble volume) one can accommodate large fa. This defines
what we term the anthropic regime (see Fig. 2-2).

Alternatively, if fa < Max{TGH, Tmax}, then either there is no axion during inflation
or its effects are washed out after inflation. In this case 02 fluctuates throughout our
observable universe, with variance -r2 /3, and there are no appreciable axion-induced
isocurvature fluctuations. This defines what we term the classic regime (see Fig. 2-2).

2.2.4 Isocurvature Fluctuations

Fluctuations in the local equation of state 6(ni/s) :/ 0 at fixed total energy den-
sity 6p = 0 are known as isocurvature fluctuations. (In contrast, fluctuations with
6(ni/s) - 0 and 6p / 0 are known as adiabatic fluctuations.) Since the axion is es-
sentially massless in the early universe, at temperatures much greater than the QCD
phase transition (T > A), its energy density is entirely negligible at early times.
Hence, at such early times, fluctuations in the number density of axions (established
by de Sitter fluctuations during inflation) do not alter the energy density of the uni-
verse. Later, for temperatures below the QCD phase transition (T ,< AQ), the axion
acquires a mass and a significant energy density (see Fig. 2-3), but any such fluctu-
ations cannot alter the total energy density of the universe, by local conservation of
energy. In the early radiation dominated era, this means that fluctuations in the ax-
ion energy density are compensated by fluctuations in photons and other relativistic
fields. Hence, these are isocurvature fluctuations. 8

7The maximum thermalization temperature should not be confused with the reheating tempera-
ture, which can be somewhat lower [32]. The maximum thermalization temperature is the maximum
temperature of the thermal bath post-inflation, while the reheating temperature is the temperature
at the end of the reheating phase, i.e., at the beginning of the radiation era.

8Later, around the onset of the matter dominated era, these isocurvature fluctuations are con-
verted to adiabatic fluctuations, responsible for the familiar gravitational structures in our universe.



To quantify the amplitude of isocurvature fluctuations, it is useful to introduce
the fractional change in the number density to entropy density ratio:

J(ni/s) onj 6T
Si = r/ - - 3  . (2.19)

ni/s ni T

For adiabatic fluctuations, Si = 0. We assume that this is true for all species other
than the axion. Isocurvature fluctuations in the total energy density involve a sum
over all massive species and radiation:

6T
0 = 6pi = mana +( min +4p T . (2.20)

i7fa

These two equations will be used to obtain an expression for the corresponding tem-
perature fluctuations.

Initially the energy density of the axion field is a small fraction of the ambient
total density, so eq. (2.20) gives 6T/T < 6na/na, and Sa = 6na/n. Since na oC 02

(ignoring anharmonic effects), this implies

02 - (02)
Sa - (02) (2.21)

Assuming 60 0 0 - (0) is Gaussian distributed', we can calculate (S2) in terms of
0; = (0) and o ((60)2), as

2o(202 + o)
(S2) = . (2.22)

(Oi2 + oa22

Note that if 0 0 oj then (S2) = 2, while if 0 0 of then (S2) = 4o9/02.

The most important axion induced temperature fluctuations are those on the
largest scales. Such fluctuations enter the horizon well into the matter dominated
era, where pr can be ignored. This implies 0

(-7 ~ ) S (2.23)
T is 3(m '

where m is the total matter energy density per photon, whose measured value is
= 3.5 eV [11].
Following [11], we define aa to be the fractional contribution to the CMB temper-

ature power spectrum due to axion isocurvature:

((JT/T) 2)a a .i (2.24)
a((6T/T)2 t)

9This is a good assumption in the regime where the axions comprise a significant fraction of the
dark matter, i.e., T, > oj.

10Due to the Sachs-Wolfe effect, there is a 20% enhancement to (2.23), but we will not go into
those details here.



Using the relationship between Sa and 6T/T in eq. (2.23) and the preceding expression
for (S,2) we obtain

8 ((a/(m)2 o(26 + o)

a - 25 ((T/T)2 0 (2 ) (2.25)

COBE measured (and WMAP confirmed) the root-mean-square total temperature
fluctuations to be ((6T/T)t) ~ (1.1 x 105)2, averaged over the first few 1. Using
the expression for (a given in eq. (2.1) we can write the isocurvature fluctuations
as in eq. (2.2). This must be consistent with the latest observational bound aa <
0.072. Here we have used ao of Ref. [11], which assumes isocurvature fluctuations are
uncorrelated from curvature ones.

2.3 Direct and Statistical Constraints

It is conceivable that the axion abundance is negligible (but see the following sub-
section). This scenario (case (i)) requires 0' < o. By demanding aa < 0.072 (the
current isocurvature bound) and using eq. (2.2), we obtain the most conservative
bound, studied in Ref. [17], corresponding to the purple region marked "Any Ra" in
Fig. 2-2.

At the other extreme, if axions are the dominant form of dark matter in the
universe (case iii), then 0 o- . Again demanding aa < 0.072 in eq. (2.2), with 6O
determined from eq. (2.1) with (a = (CDM, the excluded region expands to include
the cyan region marked "Ra = 100%" in Fig. 2-2 (as well as the blue region marked
"Ra > 0.25%").

Each of these three regions are bifurcated by a line. In all three cases, the rightmost
part gives the most robust constraint, coming from a conservative value X = 1/20,
while the leftmost part extend the constraints using a more moderate (and more spec-
ulative) value x = 1. This comes from our uncertainty in the total axion abundance.

2.3.1 Statistics of a Two-Component Model

The viability of large fa axion cosmology depends on taking selection effects seriously,
since they produce a higher dark matter density ( than observed in most Hubble
volumes. In particular, the density of a typical galaxy scales as p ~ 6'. Taking into
account that denser galaxies have fewer stable solar systems due to close encounters
with other stars, etc., it has been found that typical stable solar systems in large fa
axion models reside in Hubble volumes where 6 is comparable to the observed value
[20].

Here we draw out a statistical implication for the predicted axion abundance,
if there is a second contributor to the dark matter density. Consider the hypothesis
that the total CDM (CDm) is comprised of axions (6a) and some other component, say
WIMPs (sw): CDM a ± W. The unknown separate axion and WIMP abundances
should be drawn from prior distributions determined by underlying micro-physical



theories. For axions in the large fa regime, above any inflation temperatures, this
scenario implies that the initial misalignment angle 63 is uniformly distributed. In the
regime where the axion abundance is non-negligible (' > o-'), but still sufficiently
small that we can ignore anharmonic effects (62 < 1), we have (a oc 0?. Since O6 is
uniformly distributed, it is simple to show that

P( ior( a) oc1 (2.26)

In contrast, we do not have a reliable prior distribution pri (sw) for the WIMP.
As discussed in Ref. [20], selection effects depend only on the sum (CDM = a + W,

so the total joint distribution for axions and WIMPs is

P((a, (w) OC Pprior ( a)prir ( )selec ( CDM) (2-27)

As demonstrated in Ref. [20], the observed value of CDM (CDM 0 2.9 eV is nicely
consistent with this distribution. Given this, we can focus on the remaining one-
dimensional distribution for the axion:

P ( a) C Pprior ( a)Ppro ( CDM ~ a -(2-28)

Unless p~( is sharply peaked at CDM, the axion prior (when integrated) disfavors
very small values of (a. For example, let us take the WIMP prior to be uniform. We
can then make a prediction for the axion abundance at, say, 95% confidence. Defining

(a implicitly through

p(&) d a = 0.05 (2.29)

and solving eq. (2.29) using eq. (2.26), we find a = (0.05)2 CDM = 0.25%CDM. This

says that it statistically unlikely - at the 95% level - for axions to comprise less than
0.25% of the CDM of the universe (case(ii)).

By setting (a = 0.25%(CDM, we rule out the blue region marked Ra > 0.25% in
Fig. 2-2 with high confidence. In other words, without assuming that axions comprise
all the CDM, we find that on statistical grounds axions must comprise at least a non-
negligible fraction of the universe's CDM, allowing us to extend the excluded region
in Fig. 2-2 further towards the upper left.

2.3.2 Additional Constraints

The preceding applies in the fa > Max{TGH, Tmax} regime, where the initial mis-
alignment angle O6 takes on a single constant value in our Hubble volume. For

fa < Max{TGH, Tx}, the misalignment angle varies on cosmologically small scales,
with average (02) =r 2/3. In this regime the isocurvature fluctuations are negligi-
ble. In this case, bounds arise from the requirement that the axion abundance is
not greater than the observed total CDM abundance: 6a (CDM d 2.9eV. Using
the upper expression for 6a in eq. (2.1), with 02 + o-2 - (92) = 2 /3, we find that



fa > 2.3 x 101" x- 6/ 7 GeV is ruled out. For the conservative value x = 1/20, this
excludes the upper part of the green region marked "Too much CDM" in Fig. 2-2,
and for the moderate value x = 1 this extends the exclusion to the lower part of the
green region."

Also, ma(0) > 103 peV is firmly ruled out (and ma(0) > I04 peV for some
analyzes), since in this regime the coupling of axions to matter is too large, af-
fecting the physics of stars, such as the cooling of red giants and the neutrino
flux from SN 1987A [33] (yellow region at bottom of Fig. 2-2.) Furthermore, the
ADMX search for axion dark matter in a microwave cavity detector has ruled out
axions comprising the bulk of the halo dark matter in the following mass window:
1.9 peV< ma(0) < 3.3peV (brown band in Fig. 2-2) for so-called KSVZ axions, and
the sub-window 1.98 peV< ma(0) < 2.17 peV for so-called DFSV axions [34, 35]. The
remaining white region is the allowed "classic window".

In Fig. 2-2 (top), corresponding to inefficient thermalization (elff r 0), the bound-
ary between the anthropic and classic regimes is fa = TGH = HI/27r. In Fig. 2-2
(bottom), corresponding to efficient thermalization (ef = 10-3, with eff = 10-, 1
indicated), the boundary between the two regimes is fa = T = effE 1 . Efficient
thermalization thus opens up a larger "classic window", but the "anthropic window"
is essentially unaltered.

2.3.3 Effect of Falling Density During Inflation

In our analysis, we have treated inflation as occurring at one rather well-defined Hub-
ble scale. Although this is a good approximation in some inflation models, there are
others giving an appreciable change in H between its value (say HI) when the modes
that are now re-entering our horizon left the horizon (55 or so e-foldings before the
end of inflation), and its value (say Hend) at the end of inflation. This is particularly
relevant to Fig. 2-2 (top), since it implies that the boundary between "anthropic" and
"classic" regimes is blurred, since TGH = H/27r is evolving. For high scale inflation, H
typically changes by an amount of order the number of e-foldings, i.e., 0(102), while
for low scale inflation models, H typically changes very little.

If we consider Hend < H1 , then the PQ symmetry can break during inflation.
The resulting cosmology could be quite interesting with axion dark matter varying
appreciably from one point in our Hubble volume to another, but is ruled out since
Q ~ 105 . If PQ breaking occurs very close to 55 or so e-foldings before the end of
inflation, then O can be smoothed out on today's cosmological scales and make the
analysis "anthropic". Otherwise, we expect the "classic" analysis to apply as usual,
providing a ruled out green region in Fig. 2-2. Hence, we expect such corrections to
the constraints to be reasonably minimal.

"If fa > Max{TGH, mx, there is another region ruled out with too much CDM (green region
above thick red line in Fig. 2-2.)



2.4 Discussion

We have surveyed observational constraints on the parameter space {El, fa} of infla-
tion and axions, finding that most of it is excluded, leaving only two allowed regions
that we term classic and anthropic windows. Part of the classic window fa ~ 10" -

1012 GeV will be intensely explored by the ongoing ADMX experiment. The region in-
dicated by the arrow to the horizontal brown lines in Fig. 2-2 to ma(0) = 10 peV is ex-
pected to be explored by the end of ADMX Phase II, and onwards to ma (0) = 100 peV
some years thereafter [361. In this window, comparatively little can be concluded
about the scale of inflation. From Fig. 2-2 (top), taking ma (0) = 100 peV and as-
suming (a > 0.25% CDM, we rule out 8.4 x 1013 GeV < E < 1.3 x 1015 GeV.12 From
Fig. 2-2 (bottom), the upper end of this ruled out region is reduced due to efficient
post-inflation thermalization. Although we can rule out a range of low scale inflation
models, these conclusions are not exceedingly strong.

On the other hand, a large fa axion has strong implications for inflation. According
to both Figs. 2-2 (top) & (bottom), if fa 1016 GeV then Er > 5.5 x 1014 GeV
(r > 9 x 10-9) is ruled out at 95% confidence for the conservative value X = 1/20,
and E > 2.6 x 1014 GeV (r > 4 x 10-0) is ruled out for the moderate value x = 1.
The geometric mean is E > 3.8 x 1014 GeV (r > 2 x 10-9), which is reported in
the abstract. This is incompatible with many models of inflation, including "classic"
models with a single slow-rolling scalar field in a generic potential. For example,
monomial potentials V oc OP predict r = 4p/Ne, where Ne is the number of e-foldings
of inflation from when it generated our horizon scale fluctuations to when it ended.
For such models, Ne around 50 or 60 is expected, so any reasonable p is ruled out,
including #2 chaotic inflation [4] and the stringy N-flation [37] and Monodromy [38]
models. The same is true for exponential potentials V oc exp(- /#$/fipi), which
predict r = 16p.

Evidently there is considerable tension between the theoretically appealing large fa
and high-scale inflation scenario (see Fig. 2-1) and the observational constraints (see
Fig. 2-2). Low-scale inflation may be emerging as favored from recent work in string
theory. If we consider the small subspace (see [39, 40, 41]) of presently constructed
string models that both inflate and agree with the observed values of Q and n,, we
are left with models that tend to be at rather small energies, typically r < 10~ for
D-brane models and various other scenarios such as modular inflation [42]. There are
also arguments for very low r in the simple KKLT framework discussed in Ref. [43].
This allows fa ~ 1016 GeV to be marginally consistent with present isocurvature
bounds. Although it is highly premature to conclude that very low energy scale is
a generic feature of string realizations of inflation, it is intriguing that many string
constructions have this feature. (See [37, 38] for interesting exceptions.)

The Planck satellite, CMBPol, and upcoming suborbital CMB experiments should
probe well beyond the current bound on GWs of r < 0.22, perhaps reaching r - 0.01.
This is indicated by an arrow toward the vertical dashed red line in Fig. 2-2. If gravity

12The quoted lower end of the ruled out region is the geometric mean of the conservative and
moderate (-scenarios.



waves are observed in this regime, then the PQ scale fa must be in the classic window.
Our considerations emphasize the fundamental importance of improving bounds

on isocurvature fluctuations. For example, an order of magnitude improvement to
a ~ 0.007 would push the isocurvature bounds to the diagonal dashed cyan line in
Fig. 2-2. (We have indicated the improvement for the case where axions comprise all
the CDM: (a =CDM.) Detection of isocurvature fluctuations in this regime has three
important implications:

1. It could be interpreted as evidence for the existence of the axion field, and
assuming this:

2. It would probe low inflation scales Er far beyond the scope of any foreseeable
GW measurements.

3. It would be evidence that we live in a highly atypical Hubble volume, i.e.,
{E1 , fa} must be in the anthropic window.

Isocurvature modes and tensor modes thus provide complementary constraints on
fundamental physics, making it fruitful to study dark matter and inflation in a unified
way.
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Chapter 3

Searching for Inflation in Simple
String Theory Models: An
Astrophysical Perspective

Attempts to connect string theory with astrophysical observation are hampered by a

jargon barrier, where an intimidating profusion of orientifolds, Kshler potentials, etc.
dissuades cosmologists from attempting to work out the astrophysical observables of

specific string theory solutions from the recent literature. We attempt to help bridge
this gap by giving a pedagogical exposition with detailed examples, aimed at astro-
physicists and high energy theorists alike, of how to compute predictions for familiar
cosmological parameters when starting with a 10-dimensional string theory action.
This is done by investigating inflation in string theory, since inflation is the dominant
paradigm for how early universe physics determines cosmological parameters.

We analyze three explicit string models from the recent literature, each contain-
ing an infinite number of "vacuum" solutions. Our numerical investigation of some
natural candidate inflatons, the so-called "moduli fields," fails to find inflation. We
also find in the simplest models that, after suitable field redefinitions, vast numbers of
these vacua differ only in an overall constant multiplying the effective inflaton poten-
tial, a difference which affects neither the potential's shape nor its ability to support
slow-roll inflation. This illustrates that even having an infinite number of vacua does
not guarantee having inflating ones. This may be an artifact of the simplicity of the
models that we study. Instead, more complicated string theory models appear to be
required, suggesting that identifying the inflating subset of the string landscape will
be challenging.

3.1 Introduction

String theory is currently the most popular candidate for a consistent theory of quan-
tum gravity, but the goal of confronting it with observation remains elusive. It is
sometimes said that testing string theory requires prohibitively high energy accelera-
tors, in order to probe the Planck scale predictions of the theory. There are non-trivial



tests of string theory at low energies, however, such as the requirement to have a so-
lution with the standard model of particle physics. Furthermore, it is plausible that
we can test string theory by turning to cosmology. The earliest moments of our uni-
verse involved extreme energies and the fingerprints of its birth are revealed today by
precision measurements of the cosmic microwave background [1] and the large-scale
structure of the universe [2, 3]. A highly non-trivial test of string theory then is
whether it can reproduce our cosmology. With inflation emerging as the paradigm of
early universe phenomena, string theory or any competing theory of quantum gravity
must be able to realize this. Moreover, merely producing many e-foldings of inflation
is not good enough: the details of inflation must give correct predictions for as many
as eight cosmological parameters which have been measured or constrained [4].

Although there have been substantial efforts in the string theory literature aimed
at identifying and counting long-lived potential energy minima (so-called vacua) [5,
6, 7, 8, 9, 10], the key cosmological observables depend also on the history of how
our spacetime region evolved to this minimum by slow-roll inflation and/or tunneling.
This chapter is aimed at discussing one of the simplest realizations of slow-roll inflation
from string theory, where the inflaton fields are the so-called moduli which, loosely
speaking, correspond to the size and shape of curled up extra dimensions (see Table
3.1) [11, 12]. An alternative scenario involves dynamical branes [13, 14, 15, 16, 17,
18, 19], with the most explicit models to date appearing in [20, 21]. Some other
possibilities include [22, 23]. For recent reviews of inflation in string theory, see
[24, 25, 26, 27].

This chapter is aimed at anyone who is intrigued by the possibility of connecting
string theory and cosmology. We hope that it is accessible to non-string theorists, and
have therefore tried hard to minimize string theory specific terminology and notation,
referring the interested reader to more technical references for further detail. Table
3.1 provides a "Stringlish to English" reference dictionary for the most central string
theory terms. Bridging the gap between string theory and observational astrophysics
is important for both fields: not only does it offer potential tests of string theory as
mentioned above, but it also offers an opportunity for cosmologists to move beyond
the tradition of putting in inflaton potentials by hand.

3.1.1 Can String Theory Describe Inflation?

Answering the question of whether inflation can be embedded in string theory is
very difficult. First of all, there is no known complete formulation of string theory,
so the theory is not fully understood. In particular there does not seem to be a

dynamical mechanism which selects the way in which the theory, which lives in 10
dimensions, should be compactified to 4 dimensions. Instead, there is apparently
a "landscape" of possible 4-dimensional effective physics theories. Each so-called
vacuum in the landscape corresponds to a stable or very long-lived configuration,
containing, amongst other things, gravity, scalar fields (the above-mentioned moduli),
and various potential energies. We would like to know if some of these vacua reproduce



Table 3.1: Dictionary of some basic string theory terminology.

Symbol Name I Approximate meaning

a'

1,

K10

a
bi

Regge parameter
String length
10-d gravitational strength

(Reduced) Planck mass
Dilaton
Axions
Geometric moduli

- Dilaton modulus

Kshler moduli
- Complex structure moduli
Complex moduli
Complex inflaton vector

Real inflaton vector

String coupling
p-form field strength

Flux

10-d string metric/Ricci scalar

4-d string metric/Ricci scalar

4-d Einstein metric/Ricci scalar

Metric on compact space

6-d volume of compact space
6-d torus

Kshler potential

Superpotential

Supergravity potential energy

Potential energy

First slow-roll parameter

Second slow-roll parameter

D(irichlet)p-brane

O(rientifold)p-plane

45~

Fp

f,

gio/Rio

g4/R4

9EIRE

g6

Vol
T6

K

W

V

Inverse string tension
= 27rV (in our convention)
= V/87rGio = 14/ v4 , gravitational strength in 10 dims

= 1/ /5 rG, mass scale of quantum gravity in 4 dims
Scalar field that rescales the strength of gravity
Pseudo-scalars that appear in the 4-d theory
Scalar fields describing g' and the size & shape of the
compact space
~ e0 (explicit form is model dependent)
Scalar fields that specify the size of the compact space
Scalar fields that specify the shape of the compact space
= ai + i bi
= ($1, ... , 4)), the complex moduli-vector that can evolve

during inflation
= (ai, bi, ..., an, bn), the real moduli-vector that can

evolve during inflation
= e*, the string loop expansion parameter
Generalized electromagnetic field strength carrying p-
indices
oc f F, (normally integer valued) equivalent to a gener-
alized electric or magnetic charge, but can arise purely
due to non-trivial topology
Metric/Ricci scalar in the fundamental 10-d action in
string frame
Metric/Ricci scalar in the effective 4-d action in string
frame
Metric/Ricci scalar in the effective 4-d action after a con-
formal transformation to Einstein frame
2nd block of gio = diag(g4 , g6), describing the geometry
of compact space

= f. d x/g6 (cs compact space)
A 6-d manifold that is Riemann flat, defined by periodic
identifications
Scalar function whose Hessian matrix is the metric on
moduli space
Scalar function that describes the interactions between
moduli set up by fluxes etc in a supersymmetric theory
in 4 dims
Potential energy function governing the fields ai, bi in 4
dims as set up by the supergravity formula in eq. (3.11)
= 4, V/47r, potential energy function in 4 dims in con-

ventional units
See eq. (3.18), quantifies the magnitude of the 1st deriva-
tives of V
See eq. (3.19), quantifies the minimum of the 2nd deriva-
tives of V
A (p + 1)-d object that contributes positive energy and
can source Fpq
A (p + 1)-d plane that can contribute negative energy; it
arises at fixed points in so-called orientifold models



our observed large and rather uniform patch of 3+1-dimensional spacetime. We
return below to the process by which this 4-dimensional picture emerges from the

10-dimensional picture. What is exciting is that these ingredients in 4 dimensions are

precisely those used in inflationary model building.
There are several difficulties that must be overcome to build reasonable 4 di-

mensional models. Firstly, it is difficult to stabilize the moduli. One reason this is

problematic is that one of the moduli corresponds to the size of the compact space.
If it were not stabilized then the field may roll to very large values and the "com-

pact space" would de-compactify. Furthermore, stabilizing all moduli is important
to reproduce our universe which exhibits (approximate) Poincar6 invariance, and a

notable absence of long-range fifth forces. Authors have discussed various ingredients

that may be included for such stabilization, e.g., non-perturbative effects that go by
names such as gluino condensation and instantons. A second difficulty arises due to

supersymmetry; most well-understood vacua have negative cosmological constants,
i. e., correspond to anti de Sitter spaces (we will discuss this issue in some detail later

on). One resolution of these problems was provided by KKLT [28], who included

non-perturbative phenomena for stabilization and broke supersymmetry to achieve a

4-dimensional solution with positive cosmological constant. (Earlier constructions of

de Sitter vacua in non-critical string theory appeared in [29]).
Within this framework (where non-perturbative corrections play an important

role, and a supersymmetry breaking sector is incorporated to generate positive vac-
uum energy) various plausible models of inflation using moduli fields have been sug-

gested in the literature: "N-flation" [30, 31], "K~ihler moduli inflation" [32, 33, 34],
"Inflating in a Better Racetrack" [35], and using brane moduli "KKLMMT" and re-

lated scenarios [19, 20, 21, 36]. These models, however, share a common property:
they are not entirely explicit constructions, though steady progress in that direction
has been made. This leads us to the obvious and important question: Can we realize

inflation explicitly and reliably in string theory?

3.1.2 Explicit String Theory Inflation

One of the difficulties with making fully explicit models of inflation has been that
most of the methods of moduli stabilization involve an interplay of classical effects in

the potential (which are easily computable), and quantum effects whose existence is
well established, but for which precise computations are often difficult.

However, recently, models which stabilize all moduli using classical effects alone

have been constructed. These manage to stabilize all moduli in a regime where all

approximations are parametrically under control [37, 38, 39, 40, 41]. These examples

are all explicit stable compactifications. They primarily achieve this stability by

using potential energy contributions from generalized electric and magnetic fields (so-

called fluxes; see Table 3.1) whose combined energy are minimized when the moduli

fields take some particular values. To borrow the language of quantum field theory,
the potential functions in these models are generated at "tree-level", and quantum

corrections are shown to be small. This stabilization of all moduli at tree-level is



what distinguishes these models from their earlier counterparts. 1

In this chapter, we take three such recently found models and analyze each from

the point of view of inflation. Specifically, we consider the models of DeWolfe,
Giryavets, Kachru, & Taylor (DGKT) [39], Villadoro & Zwirner (VZ) [40], and Ihl &
Wrase (IW) [41]. All of these arise in the string theory known as type IIA. Each of
these models possesses an infinite number of vacua, distinguished by fluxes.

We wish to examine whether the tree-level potential for moduli fields in these

models can support inflation. A well-known challenge for generating inflation within
string theory is that generic potentials will not be sufficiently flat, a point we will
expand on below. However, one might hope that when vast or infinite numbers of

vacua are available, some of them would by chance have sufficiently flat directions to

support inflationary slow-roll even if generic ones do not.2 One of our key findings
below is that in the case of the (simplest moduli in the simplest examples of) IIA flux
vacua that we study here, the distributions of the quantities relevant for inflation are
narrow enough that the large number of vacua does not help. Instead, the candidate
inflaton potentials have the same shape in many (sometimes all) of the vacua, differing
only in overall normalization. So, somewhat surprisingly, our search below does not
turn up a single vacuum supporting inflation.

We hasten to emphasize that since these models are in many ways the simplest
possible models in their class (involving the simplest compactification geometry, the

six-torus, in a crucial way), and since we focus on a simple subset of the moduli
(the "untwisted moduli") even in these models, our results should only be viewed as
a first pass through this class of models. It is possible (but by no means certain)
that more generic vacua in this class (based on compactification manifolds which
have more complicated geometry, or based on studies of other moduli) would yield
different results. More generally, flux potentials in other classes of vacua may well
have broader distributions of the relevant physical quantities for inflation, allowing
one to tune fluxes to achieve inflation. 3

The rest of this chapter is organized as follows. Section 3.2 is a basic review of
string compactification aimed at the non-specialist. Here we review the process of
moving from the 10-dimensional theory to the 4-dimensional theory in fairly simple
terms, showing how the 4-dimensional picture has the ingredients of inflation (gravity
as well as kinetic and potential energies for scalar fields). We then show how the
familiar slow-roll conditions for inflation become slightly generalized due to the non-

'It should be noted that the parametric control (which arises at very large values of fluxes)

comes with various features which are undesirable for phenomenology: the extra dimensions become
large at large flux values, the moduli masses become small, and the coupling constants become

extremely weak. So for real world model-building, one would place a cutoff on the flux values, and
lose parametric control. However, as simple and explicit examples of stable compactifications, these

examples provide a useful setting to address theoretical questions, like our question about explicit

computable models of moduli inflation.
2This of course depends on the extent to which the inflationary slow-roll parameters c and q vary

as the fluxes are changed: if they densely sample a wide range including E < 1, IT1| < 1, then flux
tuning can allow inflation, otherwise even large numbers of vacua may not help.

3Very concrete reasons to expect that the distributions are broader in JIB flux vacua are described
in §6.2 of [39], for instance.



standard kinetic terms from string theory. In Section 3.3, we present and analyze the
three explicit models analytically and numerically. We summarize our conclusions in
Section 3.4.

3.2 String Theory and Dimensional Reduction

In this Section we give a gentle introduction and review of the study of compactifica-
tion in string theory, with a focus on the ingredients that are relevant for the specific
models we will investigate in Section 3.3. Much more complete and technical reviews
are given in [5, 6, 7, 8, 9, 10], while a qualitative introductory review appears in [42].
We begin by mentioning the basic ingredients of type IIA string theory, with a focus
on fluxes.

3.2.1 Supergravity

String theory is believed to be a consistent theory of quantum gravity. One curious
feature of the theory is that this consistency suggests a special role for 10 dimensions,
where consistent string theories are in correspondence with the so-called "maximal

supergravities".i Furthermore, a remarkable feature of the theory is that its dynamics
in 10 dimensions can be derived, rather than guessed, by demanding consistency.

For comparison, consider the familiar case of a charged point particle moving in a
background curved space-time g., with a background electromagnetic field strength
F,,. There is no reasonable way to uniquely derive the dynamical equations governing
the time-evolution of g,, and F,,, from any consistency arguments about the behavior
of the point particle. However, in the case of the string, this is precisely what happens.

In this chapter, we will focus on what is known as the type IIA string theory. It
can be derived that part of the 10-dimensional action governing gravity and the field
strength of the string in this theory is [43]

S = 2 d'x V--g 1 0 + 4(Ot) -2 F, F" .vP) (3.1)(ft1 0J 4& ) 2

Here Rio is the 10-dimensional Ricci scalar, # is a scalar field known as the "dilaton",
and F,,, is a generalized electromagnetic field strength; it carries 3 indices (making
it a so-called 3-form) since it is sourced by the (1 + 1)-dimensional string, just like
the familiar electromagnetic field strength Fv carries 2 indices (a 2-form) since it
is sourced by a (0 + 1)-dimensional point particle. The overall pre-factor sets the

gravitational strength in 10 dimensions so = 8wGio. It is related to the so-called

Regge-parameter a' (units of length-squared) by 2r1 = (2r)7a'4 . The inverse of

the Regge-parameter is the string tension (= 1/2wa'); the tension of a string is an
absolute constant and is analogous to the mass of a particle. Furthermore, a' is

related to the string length by (in our convention) 1, = 27VI/a. Later we will see

4 Here we are referring to the A = 1 and N = 2 theories in 10-dimensions, where A is the number
of supersymmetries.



that it is convenient to measure a number of dimensionful quantities in units of is.

Table 3.1 provides a hopefully useful dictionary of key string theory notation and the
symbols used in this chapter, including a summary of the above.

Let us summarize: In eq. (3.1) we see that the 10-dimensional universe of string
theory contains gravity and a field strength F,,,, and that they appear in the same
way as gravity and electromagnetism do in 4 dimensions. We further note that there
exists the dilaton # which is non-minimally coupled to gravity. Because the coefficient
of F,,pFm"P is proportional to e-2 , one identifies g_ = as the string coupling; it is
the string loop expansion parameter analogous to e in electromagnetism.

Now we must mention some other features of string theory in 10 dimensions that
we did not include in eq. (3.1). First of all, it turns out that the 3-form F,,, (which
we will later denote simply F3, and which is often denoted H3 in the string literature)
is not the only field strength that appears in string theory. Rather, there are also
various other fields; various so-called p-forms with p indices, where p takes various
integer values, and whose interactions are also uniquely determined by consistency.
In addition, there are extended objects of various dimensionality in the theory known
as Dirichlet branes and orientifold planes, which are charged under these p-forms [44].
Also, there are fermions which give rise to a collection of terms to be added to eq. (3.1),
since we are describing a supersymmetric theory, but we have set their values to zero
here. We focus on cosmologies that have maximal space-time symmetry (Minkowski,
anti de Sitter, de Sitter) which means that the vacuum expectation values of the
fermion fields must vanish. Finally, what appears in eq. (3.1) is only the first term in
a perturbative expansion in powers of a' and g,. For length scales large compared to
the string length i and for small g, we can ignore such corrections; this is known as
the supergravity approximation.

3.2.2 Compactification and Fluxes

Calabi-Yau manifolds

Of most interest to us is what this theory predicts in 4 dimensions. Currently there
is no background independent formulation of string theory, so the compactification
of the 10-dimensional geometry to 4 large dimensions is specified by hand and is
not unique. The most commonly studied compact spaces are Calabi-Yau manifolds

(e.g., see [7, 43] for a technical definition). They are useful for at least two reasons:
Firstly, Calabi-Yau manifolds preserve some unbroken supersymmetry which allows
for better computational control. Secondly, and most importantly for us, Calabi-Yau
manifolds are spaces that possess a metric that is Ricci flat (has R,, = 0 like any
vacuum metric). This is very convenient in finding solutions to the 10-dimensional
equations of motion. The simplest example is that of the torus T', which is not only
Ricci flat, but also flat (with vanishing Rieniann tensor). In this chapter we will focus

on this space (T6), since this has been studied the most intensely in the literature. It
is also a very useful pedagogical device, and we will make some comments below on
the connection of our results to more general compactifications.



Orbifolds and Orientifolds

Although understanding them in detail is not central to following our examples below,
let us briefly mention orbifolding [45] and orientifolding [46, 47, 48], two technical
operations that string theorists perform on the compact space, since they occur in all

the models we will investigate. It often proves to be important to reduce the number

of points in a manifold by declaring some of them identical. In technical jargon,
one forms the quotient space with some finite symmetry group of the manifold, for

example T6 /Z,, where Z is the group of integers modulo p. The specific Z, symmetry
is model dependent. This defines a so-called orbifold. Certain toroidal orbifolds are
of interest since they are a special singular limit of some (non-toroidal) Calabi-Yau. 5

Also, by performing additional discrete operations one can form what is known as

an orientifold. It is related to forming unoriented strings out of oriented strings. It
will be important for us in what follows that at fixed points of the group action on
the internal manifold, in orientifold models, one gets so-called orientifold planes (or

O-planes). These O-planes provide a negative contribution to the vacuum energy (see
ahead to eq. (3.13)) and this is important for stabilization.

Both of these operations, orbifolding and orientifolding, serve the purpose of allow-
ing for chiral fermions and reducing the amount of supersymmetry in 4 dimensions.
For suitable choices of symmetry groups, there can however be a residual amount of
supersymmetry in 4 dimensions.6

Moduli

In general, there are scalar fields characterizing the size and shape of any compact
manifold: Kahler moduli (roughly specifying size) and complex structure moduli

(roughly specifying shape). Table 3.1 summarizes all fields whose dynamics we will
keep track of in 4 dimensions: besides gravity g,, we have "geometric" moduli: a
dilaton #, Kahler moduli (also known as "radions"), and complex structure moduli. In
addition, each of these geometric moduli are accompanied by a field that is generically
referred to as an "axion". The reason these are called axions is not important here, but
suffice it to say that they are all pseudo-scalars and some are coupled to a generalized
E -B term in the action, reminiscent of the axion of quantum chromodynamics (see,
e.g., [49, 50]). If we denote the various geometric moduli by bi (i = 1, 2, ...) and
the axions by ai, then these two degrees of freedom can be put into a complex pair
O' = ai + i bi. 7 We will see that this construction of forming a complex scalar is quite

useful.8 We will group all these complex fields into a single vector ?P, which will act
as our complex inflaton vector. When separated into its real components, we denote
this #; our real inflaton vector.

5 E.g., the orbifold T 4 /Z 2 is a limit of the Calabi-Yau K3.
6 For example, in commonly studied orientifolds of Calabi-Yau manifolds, the K = 2 theory in 10

dimensions becomes an K = 1 theory in 4 dimensions in type II string theory.
71n the string literature, there are many symbols used for the different moduli, such as T, U, v,

etc, but we will just use the common notation bi = ai + i bi for all moduli.
81n fact this construction is integral to K = 1 supersymmetric models, where such pairs are

unified in a chiral multiplet, a representation of the supersymmetry algebra.



Fluxes and Potential Energies

Strictly speaking, moduli are defined as those scalars that have vanishing potential.
Without including any extra ingredients (such as field strengths), the above mentioned
fields would indeed be massless and free. This is very problematic. For example, if
the radions are freely propagating fields then the size of the compact space could
take on any value, including unacceptably large values. Indeed, there are constraints
from 5-th force experiments showing that these fields must be stabilized with a large
effective mass (moderately large compared to the inverse millimeter scale to which
gravity has been tested, and huge compared to today's Hubble scale), i.e., that there
must be contributions to the potential energy density of the form mibi (where the
coefficients mi are large). Furthermore, we are interested in whether any of these
scalars could be the inflaton. Since a free field by definition is one that does not feel
a potential, it cannot possibly drive inflation.

However, an important feature of string theory is the existence of various field
strengths, and these induce interactions for the moduli. We have already introduced
the field strength F,,, hereafter abbreviated F3 . We will focus on what is known

as type IIA string theory in this chapter, in which there are also forms with even
numbers of indices, such as F2 and F4 , but more general forms F, occur in other
models. In our 3+1 large dimensions, Lorentz invariance prevents any cosmological
field strengths, however such restrictions do not apply to the components of F, in the
compact space. 9 Assuming p ; 6, then the fields satisfy

I F, = f,, (3.2)

where the integral is over some p-dimensional internal manifold of the compact space.
Such integrals appear when we compactify the theory. Here f, is an integer, cor-
responding to a generalized Dirac charge quantization condition. These quantized
integrals of the field strengths are known as 'fluxes'. They correspond to wrapped
field lines in the compact space. Such fields can be thought of as being sourced by
generalized electric and magnetic charges provided by the various branes of the theory
[7]. Note, however, that this is just an incomplete analogy, since the fluxes we are
referring to here thread topologically non-trivial internal submanifolds of the compact
space; therefore, Gauss' law does not require charges to source the flux. (There are,
however, other space-filling branes in the theory, which will appear in the models).
Since there is an energy cost associated with deformations of the compact space in
the presence of field strengths, these fluxes induce a potential energy V = V(4') for
the moduli. This potential is necessary for stabilization, and we will investigate if it
can also drive inflation.

To get an idea of the form that these energies will take, consider a generalized

'In the presence of field strengths in the compact space, the Ricci tensor on the compact space

is in general non-zero, and so the space is strictly no longer Calabi-Yau. However, when the moduli
masses are light compared to the inverse size of the compact space (the "Kaluza Klein scale") then
this back-reaction is small, and we can continue to treat the compact space as Calabi-Yau. This is
a property of the models we study.



electric field EP set up by a stationary source; a point source for E2 , a string for E3 ,
a membrane for E4 etc. If there are f, units of charge contained in a compact space
of size r, then the energy density is given roughly by (ignoring factors of l)

f 2

|Ep 12 ~ (3.3)

which reduces to the familiar result f2/r 4 for a point source. The total energy density
will involve a sum of such terms. eq. (3.12) below illustrates the form this takes when
expressed in a 4-dimensional action.

3.2.3 The 4-Dimensional Action and Slow-Roll

Here our aim is to move from the 10-dimensional theory to the 4-dimensional theory.

Integrating Out the Compact Space

To understand the 4-dimensional action, let us begin by focusing on the gravity
sector. For simplicity, we will assume that the 10-dimensional metric is in block

diagonal form: g'% = diag(g , ga), i.e., that it separates into a piece governing
the 4 large space-time dimensions and a piece governing the 6 compact dimensions.
Furthermore, let us assume that the Ricci scalar is independent of the compact co-
ordinates (the usual assumption in Kaluza-Klein models), so that we can integrate
over d6 x. This assumption is valid when one considers an (approximately) "unwarped
compactification," as we do in this chapter. The relevant piece in the action is the
first term in eq. (3.1), involving the 10-dimensional Ricci scalar Rio and the dilaton

(scalar field). This gives

d'% -Igio e2 0Rio J d -g4 Vol e-20Rio (3.4)

where Vol is the 6-dimensional volume of the compact space. The particular form of
Vol is model dependent, and the relationship between the 10-dimensional Ricci scalar
RIO and the 4-dimensional Ricci scalar R4 is also model dependent through the form
of the metric on the compact space. However, for this class of models it is true that

R = R 4 + func(compact space fields) (3.5)

Since both the volume Vol and the dilaton # are allowed to be dynamical, the action
in eq. (3.4) is evidently not in canonical form. In order to bring the action into
canonical form, we introduce the so-called Einstein metric g , which is defined via a

conformal transformation as
EVol e-2 +

9pv -_ 2 9v(3.6)
mP1 K2

where g is the 4-dimensional string metric - the metric in the "string frame" of
eq. (3.1). In this transformation we have introduced the (reduced) Planck mass



mp= 1/ 8irG ~ 2 x 1018 GeV, where G is the 4-dimensional Newton constant. The
gravity sector, written in terms of the corresponding Einstein Ricci scalar RE, then
appears in canonical form

2K J d% x-g10e- R10 = d -gE (16rG RE +.' (3.7)

and this is referred to as the "Einstein frame".
Let us clarify a feature of the conformal transformation. Recall that during in-

flation, both Vol and # may be dynamical, since they in fact depend on the inflaton
vector 4'. Well after inflation, we expect these fields to be stabilized at some fixed
values: (Vol) and (#). At such values we require that the conformal transformation
in eq. (3.6) be the identity transformation. This implies a relationship between K10,
(Vol), (#), and in,:

- (Vol) e-2 (037-n 2 .(3.8)P1 K2
10

Note that the Planck mass is defined in terms of the fields at their stabilized values,
so it is a constant. Since it is natural for (Vol) to be given in units of l and since
K l1 = /47r, one can in fact use this equation to determine the string length l, in
terms of the Planck length for any particular model.

Kinetic Energy

In general, the kinetic energy of the moduli is not in canonical form. Recall that the
moduli are a combination of not only the dilaton, but also the Kdhler and complex
structure moduli which describe the size and shape of the particular Calabi-Yau
compact space. An important property of every Calabi-Yau (related to the underlying
supersymmetry it preserves) is that there exists a scalar function K of the moduli,
known as the Kihler potential, whose Hessian matrix is the metric on moduli space:

K = K 2K(3.9)

where 47 is a generic name for a complex modulus (axion partnered with geometric
moduli), and barred variables denote the complex conjugate. Contracting space-time
derivates of the moduli with this metric gives the kinetic energy in the Einstein frame:

T = -dKi.,@II4@J. (3.10)

There is an implicit sum over all i, J. Since we shall deal with dimensionless Kshler
potentials, the factor of ?i4 is necessary on dimensional grounds. In the limit in
which we shall work, K does not depend on fluxes, which means that there is one
Kihler potential for each of the three models that we will investigate, applicable to
any vacuum in their respective landscapes. In other words, fluxes affect only the
potential energy, not the kinetic energy.



Potential Energy

In addition to the Kihler potential K, there exists another object which contains
information about the particular compactification. For supersymmetric compactifi-
cations, of the type we will focus on, this object is the so-called superpotential W.

W is a complex analytic function of the complex moduli /f and also depends on the

fluxes. If we turn on fluxes, then there are in general energies induced associated with

distortions of the compact space and displacements of the dilaton and axions. These
interactions are all contained in W. The potential energy term in the 4 dimensional
Lagrangian density is given by

V = e K(DiWKDj W - 31W12, (3.11)

which is sometimes referred to as the supergravity formula. Here DiW = BiW+WaiK
and Kz3 is the matrix inverse of K.. Again there is an implicit sum over all i, j. A
reader familiar with supersymmetry in 4 dimensions will recognize that these are the

so-called "F terms" and that there are no so-called "D terms".
In order to develop some intuition, we would like to get an idea of the typical

form of V. In eq. (3.3) we estimated the energy density established by a p-form field

strength, but must now take into account the integration over the compact space and
the conformal transformation. For a compact space of size r, the contribution to V

is given roughly by (ignoring factors of 1,)

2e24
AV ~ f3 for F3 ,

e 40
AV r6+2p for Fp03. (3.12)

We also mention an estimate for the contribution to V from N1 D6-branes and N2

06-planes

AV ~ Ni 0 for D6-branes,

e34P
AV r~' -N 2 9 for 06-planes. (3.13)

Note that the 06-plane makes a negative contribution.
In the models studied, when calculating the potential from the supergravity for-

mula V, we will for simplicity work in units where the string length 1, = 1. This must

be resealed in order to obtain the potential in Einstein frame V in conventional units:

O= "V. (3.14)
47r

(This comes from: inig = in P l5/41r = in/47r.) In Sections 3.3.2 - 3.3.5 we will

just refer to V, rather than V.



Putting it All Together

Altogether, the effective 4-dimensional action in the Einstein frame is a familiar sum
of a gravity term, kinetic energy, and potential energy, i.e.,

1__R fn2 K.i- af~
S = d~x -gE E - P13 . ,@080#3 - V(#)J. (3.15)[167rG

Keeping the kinetic term general, the Euler-Lagrange equations of motion for a flat
Friedmann-Robertson-Walker (FRW) universe g , diag(-1, a(t) 2 , a(t)2 ,a(t)2 ) are
in terms of K and its derivatives:

/i -+- 3 H$V + y k + K'jV-/| = 0, (3.16)

H 2  8G fmn-i Kj4'i_3 + V(b) , (3.17)

where H = it/a is the Hubble parameter and I = KnKjk,f, is the Christoffel symbol
on moduli space.

To investigate inflation, we must compute the slow-roll parameters. The first
slow-roll condition is that the kinetic energy in (3.17) should be small compared to
the potential energy when the acceleration term in (3.16) is negligible. The second
condition is that the acceleration is and remains small along the slow-roll direction
(quantified by differentiating and demanding self-consistency). These two conditions
define the two slow-roll parameters E and q and correspond to the requirements that
e < 1 and |r| < 1. We find that

K i ( _g g ab v a

y2 2V 2  (3.18)

,q min eigenvalue { . (3.19)

Here 77 (and c) is written in terms of the metric gab governing real scalar fields #a:
Ki8,itB09V = Oga8# #, with #2i-1 = a' and #2i b . Note that we can use

either V or V in the slow roll conditions, as V oc V (see eq. (3.14)). In regions where
inflation occurs, these three functions (V, e, q) can be used to predict several cosmo-
logical parameters, as detailed in Appendix D. A comparison between the theoretical
predictions and observational data provides a precision test of the model.

3.2.4 de Sitter Vacua

There are two good reasons to want de Sitter "vacua", namely that there are at
least two eras of our universe that are approximately de Sitter; during inflation,
which exhibits slow-roll, and at late times, which appears consistent with a positive
cosmological constant. This chapter is focussed on the former epoch. If we have a
region in moduli space that is de Sitter, namely a region in which the gradient of the



4-dimensional potential V (from eq. (3.15)) is zero with V > 0, we are a significant

step closer to realizing inflation. In such a region (which may be a single point) we
at least know that the first slow-roll parameter c = 0, although we may still face the

so-called r-problem [51] (for a recent discussion in the string theory context, see [52]).
Let us make some comments about supersymmetric vacua and anti de Sitter (AdS)

space. The condition for supersymmetry (SUSY) is that the covariant derivative of

the superpotential vanishes, i.e.,

DjW = &jW + WaK = 0 (3.20)

for all i. It is simple to show from eq. (3.11) that at any such SUSY point the

supergravity potential V is stationary. This constitutes some "vacuum" (stable or

unstable) of the theory. At such a point the potential is

Vsusy = -3e KIW|2, (3.21)

so we see it is necessarily non-positive. It may happen that W = 0, corresponding then

to Minkowski space. But what is much more common is for W # 0, corresponding
then to anti-de Sitter space.

In fact it is known that any vacuum that is supersymmetric (in supergravity, su-

perstring theory, M-theory, etc) is necessarily non de Sitter. But it may be the case

that in such a model, a non-SUSY minimum in the space of scalar field expectation
values is de Sitter (spontaneously broken SUSY). Achieving this is not easy, as de-

scribed by various 'no-go theorems'. In particular, under mild assumptions on the

nature of the compact space (namely that it is non-singular etc.), one can show that

inclusion of fluxes alone does not allow one to find any de Sitter vacua [53, 54].

There are, however, other structures besides fluxes in string theory, e..g, D-branes
and O-planes. In [55] it is shown that the argument of [54] may be extended to

include most forms of D-branes, but it cannot be extended to include O-planes. The

energies associated with such structures were described in eqn. (3.13). Recent work
has shown that the realization of de Sitter vacua is possible with such ingredients,
as in the constructions of [29]. However, we do not find any de Sitter vacua in the
simple IIA models we study.

Given that we are considering models with AdS vacua, what is the implication
for inflation? Suppose that the inflaton eventually settles down to some such AdS
vacuum. There the potential has a (negative) value that we will call the 'cosmological
constant'. This may well compromise any chance to obtain many e-folds of inflation,
which requires V > 0. However, we can imagine a priori a scenario where this is not

catastrophic for inflation: We will see later that we have fluxes that can be used to

dial the cosmological constant toward zero. Hence the depth of AdS space can be

tuned very small. Furthermore, well away from the SUSY vacuum there are regions

in moduli space were the potential is large and positive. Then, as long as V during

inflation is much greater than the depth of the AdS minimum, it is plausible that

inflation could be realized.
At the end of inflation one should in principle enter the radiation era. Normally



this occurs through the decay of the inflaton to various fields including the standard
model particles. However, the standard model is not contained in the models that we
investigate, so this is an issue that we do not tackle. Furthermore, we do not address

the late-time problem of the smallness of the (positive) cosmological constant. (A
popular explanation of the smallness of the cosmological constant appeals to the
existence of exponentially many vacua realizing different vacuum energies, see [56]).

3.3 Type IIA Models

Here we investigate the cosmology of three explicit models. Many choices of compact-
ification are possible. However, the torus is flat and is perhaps the most well studied

compact manifold in the literature, so we will focus on (orbifolds and orientifolds
of) this. We will investigate the resulting inflation picture for three explicit models:
DGKT [391, VZ [40], and IW [41]. In this Section we use units 1, = 1.

3.3.1 Diagonal Torus Models

For clarity, let us describe the properties of the Kahler potential and the slow-roll
conditions in more detail for a particular class of examples. The first two torus
models to be discussed have the property that the Kshler potential is the logarithm
of a product of moduli. Writing

i a + ibi (3.22)

for all modulil0 , we have

K = - ln b" + const (3.23)

where ni are 0(1) integers (e.g., in the VZ model described below, there are 7 moduli
(i = 1, ... , 7) with ni = 1). The kinetic energy for such models is then

- 2 n- (aa) 2 + (9,bj) 2
T=-mP1 4 b?2 (3.24)

In this case, the equations of motion for the moduli are

0 = 6i + 3Hbi +  + 2b V (3.25)
bi mn- ni abi

di by 1 2b2 &V?
0 = ii + 3Hdi - 2 + _ . (3.26)

bi m ni (a3

'0More precisely, we study all moduli that arise from metric deformations of the torus, the dilaton,
and their superpartners. We neglect so-called "twisted moduli" or "blow-up modes" originating from

singularities of the orbifold group action, though we briefly discuss them in Section 3.3.5.



The first slow-roll parameter for inflation then takes the form

e = - -- - + (.)2 (3.27)
V2.ni 9ai Obi

It is important to take note of the form of the K~ihler potential; it is independent
of all axions (general fact). Hence if we shift an axion by a constant, it has no effect
on the kinetic energy. Also, if we rescale 4'j by a real number, the kinetic energy is
also unchanged. In short,

ai h diai + ci, bi -* dibi (3.28)

leaves the kinetic energy unchanged for any constants ci, di C R. In turn, the form of
the slow-roll parameters E and r are unaffected. These shift and scaling symmetries
allow one to eliminate some flux parameters that appear in the superpotential. In

the first model, we will see that these symmetries allow all fluxes to be absorbed into
an overall multiplicative factor, while in the second and third models we will have
one additional non-trivial flux parameter to dial. There will in general be ambiguities
associated with positive/negative values of the fluxes that one should keep careful
track of.

In order to emphasize that the Lagrangian in 4 dimensions is reminiscent of that
in standard inflation, let us perform a field redefinition for the simple case where we
ignore the axions and focus on V(bi). By defining

#i -= 7nP2 log bi (3.29)

the kinetic energy is put in canonical form and the action in eq. (3.15) becomes

S = Jd g R ,a -v (eIi1. (3.30)
167rG .2

Note that the argument of V is now an exponential. The first slow-roll parameter
then takes the canonical form for multi-field inflation:

e 1 =.V1 (3.31)
2 V 2

We point out that this is only true when ignoring the axions and relies upon the

assumed simple form of the Kdhler potential.

3.3.2 The Model of DeWolfe, Giryavets, Kachru, and Taylor
(DGKT)

In May 2005, DeWolfe et.al [39] (DGKT) found an explicit infinite class of stable vacua

in type IIA string theory. In their model they found that all moduli are stabilized



by including the 3-form, 4-form (and less importantly the 2-form) fluxes of type IIA,
and also including a 0-form flux. The 0-form flux plays the role of a mass-term in
the theory. Its presence induces several extra pieces into the action, which can only
be derived from so-called M-theory. This framework is known as "massive type IIA
supergravity".

Starting from the torus, they built the orbifold T 6 /Z 3 and projected it to the
orientifold T 6 /Z'. In addition, they introduced a static (6 + 1)-dimensional plane
that carries charge (an 06-plane), for the purpose of satisfying a constraint known
as a tadpole condition. We will focus here on reporting the salient features of the
geometry after these technical operations have been performed; the reader is referred
to the original paper [39 for details.

The torus of DGKT takes on essentially the simplest possible form (we will see

more complexity in the later models of VZ and IW). The orbifolding and orientifolding
act to reduce the number of degrees of freedom of the metric on the compact space

to just 3. Here we neglect the moduli which arise at the orbifold fixed points (the
so-called "blow up modes" or "twisted sector" moduli).11 These 3 are the (untwisted)
Ksihler moduli of the theory. There are no complex structure structure moduli left.

The metric on the compact space and the volume are given by:

3

(ds 2 )6 _ 7 [(dx) 2 + (dy') 2] , (3.32)

f 1
Vol ] dV/ = 717273 = bib 2b3. (3.33)

Here the elements of the metric are called ' i. The volume is proportional to the
determinant of the square root of the metric (717}273), the factor of 1/8V/5 comes
from performing the peculiar integration over T 6 /Z2, but is not important for us.
What is important is the identification of the good Kihler co-ordinates bi, b2, b3
whose product is the volume12 (up to a prefactor, they are just the components of
the metric).

Let us summarize the moduli of this model. As mentioned, all complex structure
moduli are projected out by the orientifolding, leaving 4 moduli: 3 Kshler moduli

= a. + ibi, i = 1, 2, 3 and an axio-dilaton l4= a4 + ib4 (b4 = e-V7EI/v/2).13 We
note that the axio-dilaton appears in the compactification, not through an explicit
appearance in the compact metric, but through its direct appearance in the action,
as discussed in Section 3.2.

The Kshler potential takes on the form promised in Section 3.3.1, namely the
logarithm of the product of geometric moduli. All that is left is to specify the values

"We will briefly discuss the proper inclusion of the blow-up modes in 3.3.5. They alter the

discussion in various important ways, but do not at first sight seem to change our conclusions.

1In the DGKT paper: Vol = K bib 2b3 , with K = 81. By rescaling b, --> r- 1/ 3 bi, i = 1, 2,3 we
obtain eq. (3.33) and r is eliminated.

13The canonical model-independent axion is ( 2a 4.



of ni and the constant. One finds that

K -= -In (32 b b2 b3 b4). (3.34)

The superpotential is set by the interactions: DGKT turned on fluxes coming
from F3 , F2, F4 , and a zero form F0 , a so-called mass term, as well as an F6 . By
studying the work of Grimm and Louis [37] they find

W = + 'i - 2 3 -2h f34, (3.35)

the flux integers f6, f4,i, fo, f3 arising from F6, F4 , F, F3 , respectively. We have
turned F2 off, as all results are qualitatively similar, although it is simple to include.

As mentioned, DGKT are able to satisfy the "tadpole condition" by including an

06-plane. In order to so, the following relationship between two of the flux integers
must hold:

fAf3 -2. (3.36)

At this point there are several flux integers in the problem. However, we can

simplify the problem greatly by exploiting the shift and scaling symmetries that we

discussed in Section 3.3.1. Let us perform the following transformations of our fields:

1 |f4,1 f4,2 f4,3|1,i (i =1,2,3),

1f4,i fol
1 f4,1 f4,2 f4,31 + f(3.37)

f3| |fo| 2V f3

which leaves the form of the kinetic terms invariant. In terms of these new variables,
the superpotential becomes

I f4,1 f4.2 f4,31 fh i fo/(A8W = I' - #1W #b b2 7P3 -2f 4,(3.38)

where the 'hat' fluxes are just the signs of the fluxes, e.g., fo = fo/Ifol. This has a
very interesting form: apart from an overall multiplicative factor, the superpotential
is independent of the magnitude of the fluxes (although their sign will be important).

We now have all the tools we need; the Kihler potential and the superpotential.
Using these, we can compute the 4-dimensional potential V using the supergravity

formula (3.11). Focusing on the symmetric case, i.e., #1 =V'2 = 3, we find

V = fl [2(3 ai + 2 4 a4 )2 - 46 a3(3ai + 2 V a4)

+ 2a, + 6bi + 4b4- 126 a, bi + 6 al bi + 6 a, bl
+ bi - 8 / bib4]/(32 bl b) (3.39)



where IfA 1 2 f3I 4

" | If4,1f4,2f4,3|13/2

is an overall multiplicative scale that depends on the fluxes. Note that since fo and f3
are tightly constrained by the tadpole condition (3.36), Vflux is bounded from above

and approaches 0 as f4,1f4,2f4,3 - oo. Also, 6 fof4,1f4,2f4,3 = +1, delineates
two independent families of V. The more general result, without simplifying to the

symmetrical case, is given in Appendix A eq. (3.80).
Here we make a parenthetical comment: One can perform direct dimensional

reduction from the 10-dimensional action without using the Kshler potential or su-

perpotential. In the DGKT paper this is done explicitly with the axions (at, a4 ) set
to their SUSY values. Having set the axions to their SUSY values, the natural (and

perhaps most intuitive) co-ordinates are then the original fields: dilaton # and radions
bi. They find

32 24 1 3 e44 f 2 e44 e-2
V = -- +_i - f b + - 2 , (3.41)

4 Vol2 ± 4 = ' Vols 4 Vol Vol3 /2'

where the first 3 terms come from fluxes: 3-form, 4-form, and 0-form, respectively,
and the final term comes from the 06-plane. The first 3 terms take on the form

we indicated in eq. (3.12) for p-forms. The final term carries a minus sign, since

06-planes carry negative tension, as we indicated in eq. (3.13). This term is crucial
to achieve stability. In this form it is not clear that the fluxes scale out, however.

By rewriting this in terms of the variables bi, b4 = e-v'VI/v2', and then scaling
according to eq. (3.37), it is simple to show that one recovers a simpler version of
(3.39), one with a- and a4 set to zero.

We plot V in Fig. 3-1. In order to discuss the properties of this potential, let us

begin by discussing its supersymmetric properties. The SUSY vacuum lies at

ai = 0, bi ~ 1.29, a4 = 0, b4 ~ 1.22. (3.42)

For 6 = -1, this has a corresponding positive definite mass matrix and is clearly
stable. However, for 6 = +1 the mass matrix has negative eigenvalues and so is tachy-

onic, as reported by DGKT. Nevertheless, it is stable as it satisfies the Breitenlohner-
Freedman bound [57] which states that tachyonic vacua can be stable if the cosmo-
logical constant is large and negative. In Fig. 3-1 (top), we set the axions to zero and
plot V as a a function of b1 and b4 in the vicinity of the SUSY vacuum. We see that

with respect to these two co-ordinates, the potential has a regular stable minimum.

Note also, that with ai = a4 = 0 then the values of the potential in (3.39) for 6 = ±1
coincide. In Fig. 3-1 (bottom), we plot V with b1 and b4 fixed at their SUSY values,
and allow ai and a4 to vary. We have plotted the case 6 = +1 as its behavior is the

most interesting.
Now, let us investigate the potential further away from the SUSY point. We find

that in the 6 = +I case (tachyonic), there is a second stationary point of the potential.
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Figure 3-1: Top: The potential V = V(bi, b4 ) with axions at their SUSY values:
a1 = a4 = 0. Bottom: The potential V = V(ai, a4 ) with 6 = +1 and geometric
moduli at their SUSY values: bi ~ 1.291, b4 ~ 1.217.
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It is non-supersymmetric, and lies at:

a 1  ± t0.577, bi ? 1.15, a4 % -F0.54 4 , b4 ~ 1.09. (3.43)

Given these two stationary points of V (one SUSY, one non-SUSY) we choose to plot
V as a function of A, where A is a parameter that linearly interpolates between these
two points. With the SUSY point denoted by a vector of moduli @ and the other

(non-SUSY) stationary point denoted by a vector $)i,stat, we form the interpolating
vector:

(A) = (1 - A)4'j,susy + AV-,stat (3.44)

so that A = 0 is the SUSY vacuum and A = 1 is the second stationary point. We plot
this in Fig. 3-2 (top). Also, in Fig. 3-2 (bottom), we plot V as a function of b4 with all
other moduli at their SUSY values. As already stated, b4 e 1.217 is the SUSY point

(a minimum with respect to b4) and this exists on the left hand side of the figure with
the potential much lower than shown. However, the interesting feature is that for
b4 ~ 7.912 there exists a local maximum (with V > 0) with respect to this modulus
(but not stationary with respect to the other moduli) and then V approaches zero
from above as b4 -> o. There is quite similar behavior when one plots V versus the
radial modulus, with the dilaton fixed.

Let us recapitulate the salient features of this class of vacua. We have come to an
important realization: the potential V is of the form V = Vflx(fi) func(@i), where f2
are flux integers and func(@V) is some function of the (rescaled) moduli, independent
of fluxes. Hence, apart from the overall multiplicative scale (which is proportional
to the cosmological constant) all vacua look the same. This means that the slow-
roll parameters E and r are independent of the fluxes. So for this model inflation is

realized by all or none of the flux vacua.
Of course we wish to know if the potential is sufficiently flat in some region to

exhibit slow-roll. Here we see a general barrier to this. Note that the potential is a
polynomial in {aj, bi, 1/bi}. Naively, this may look as if it allows for inflation due to
some form of power law potential, e.g., the potential is quadratic in a4, so this may
look like Linde's ~ #2 "chaotic inflation" [58, 59]. However, by inspecting the form
of eq. (3.27), we see that this is not at all the case. The factor of b' in the summand
changes the picture significantly. It means that the typical contribution to C is not
O(#- 2 ) but 0(1), and cannot be tuned small by taking # large, as in chaotic inflation.
In fact, an extensive numerical search of moduli space (detailed below) suggests that
E > 1 whenever V > 0 (of course 6 -+ 0 at the stationary point(s) of the potential,
but V < 0 there). With the axions set to zero, it is simple to analytically prove
the non-existence of inflation. With axions non-zero, we produced vast tables of c

supporting this result. We will give a representative plot of e in the upcoming VZ
model (see Fig. 3-4).
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Figure 3-2: Top: We plot V = V(A) by interpolating between the two stationary
points of the potential, which exists for the 'lower case'. A = 0 corresponds to the
(tachyonic) SUSY vacuum and A - 1 corresponds to a local (non-SUSY) minimum.

Bottom: We plot V = V(b 4), focusing on large b4 , with all other moduli fixed at their

SUSY values.



3.3.3 The Model of Villadoro and Zwirner (VZ)

In March 2005, Villadoro and Zwirner (VZ) [40] constructed a class of orientifold
compactifications based on toroidal orbifolds, where the dilaton and all the moduli
associated with the torus are stabilized through the inclusion of p-form field strength
fluxes (as discussed earlier) and other sorts of fluxes, simply referred to as general
fluxes. Their model is strongly motivated by the work of Derendinger et al. [38]. In

particular, VZ include what are known as Scherk-Schwarz geometrical fluxes14 which
provides a large class of vacua. With many fluxes in the model, there are a number
of Bianchi identities and tadpole constraints that the fluxes must satisfy. This is
achieved by including D6-branes and 06-planes. The interested reader is referred to
the original paper [40] for details.

As originally studied by Derendinger et. al. [38] the orbifold is T6 /Z 2 . A further

Z2 projection is performed to obtain an 06 orientifold. This particular orientifold

permits 6 degrees of freedom in the metric on the compact space. The torus takes
the form T6 = T2 x T2 x T2 and possesses a diagonal metric. Then, without loss of
generality, the 6-dimensional metric can be parameterized by 6 variables 'Y7 and 3i
(i=1,2,3) as follows:

3

(ds2 )6 = ((4#)(dzi )2 + (74i #i) (dy' )2) (3.45)

Vol = j d6X = 71727-2= bib 2b3. (3.46)

The form of the volume explains the choice in decomposing the metric as above,
namely that the product of the 7yj is proportional to the volume, as it was for DGKT.

In turn, we again identify 3 good Kihler co-ordinates bi, b2 , b3 . The Oi, on the other
hand, are related to the complex structure and axio-dilaton moduli.

Let us now provide the full list of moduli (again ignoring "blow-up modes").
In this case there are seven complex moduli that survive the orientifold projection:
3 Kdhler moduli 4@i = ai + ibi, i = 1, 2, 3, an axio-dilaton 04 = a4 + ib4 (b4 =

e-PVVol//1#2 #33), and 3 complex structure moduli ) = ai + ibi, i = 5, 6, 7 (b =

e-\Vol V/2/3/31 etc).

The Kihler potential takes on an extremely simple form: in the notation of Section

3.3.1 it has all 7 ni = 1. Explicitly, it is15

K = - In (b1 b2 b3 b4 b5 b6 b7) (3.47)

By way of comparison to the DGKT model, it is as though b4 -+ b4 b5 b6 b7, in order
to accommodate the 3 complex structure moduli that appear here.

1
4 Geometric flux here refers to a particular kind of topologically non-trivial alteration of the

metric on the compact space which yields a contribution to the scalar potential analogous to the

contributions from the p-form fluxes.
"We follow the convention of Ref. [40] where an overall factor of 27 was removed from the argument

of the logarithm, since it can be simply reabsorbed into W.



The superpotential incorporates geometric flux, in addition to the familiar p-form

flux, and satisfies the 'tadpole condition' with D-branes. The superpotential, as
derived in [38], is given by:

W = fm - fl12(01 + '2 + # 3 ) + f222 71 2 '3

+ f 1 22 (4'l 2+14'3+ ?2403) - fill4

+ f '12 #4 (b1 + ?/ 2 + ?/3) - f114(V)5 + P6 +$7)

+ f124 (1' 6 + 7) + 02 (b 5 + 7) + 03 (5 + 0 6))
- flu3(0105 + 02 6 + 03 7 ) (3.48)

Here we have designated the fluxes by fijk, which correspond to different choices of p-
form and geometric flux wrapped on various cycles of the torus. There are constraints
that the fluxes fijk must satisfy, namely

f124(fI24 - f113) - 0, ffi 2 (f124 - f113) 0. (3.49)

VZ find a family of SUSY vacua by choosing the following parameterization of
fluxes:

3P2 Pi
fml= -15pi, f12 = , f122 = - ,

q 1q23P2 2P 2p,

f114 = 2P2 13fl = f124= 61. (3.50)
q3  qiq 3

We note that the fijk are actually non-integer. Here we do not record the conditions
that Pi, P2, q 2, q q3 must satisfy, but refer the reader to [401. We do note that

{qi, q2, q3} E R+. What is important is that this designates an infinite family of vacua
with fluxes parameterized by the set of five parameters pi, P2, qi, q2, q3. So we have
started with a superpotential with 9 fluxes: fm,.. ., f124, one has been eliminated by
the conditions (3.49) (f3 = f124), three have been eliminated by demanding that the

SUSY condition (3.20) be satisfied for each 4'i, leaving five independent parameters.
For this family of vacua it is rather straightforward to show that we can scale out

the fluxes q, q2, q3 by making the following rescaling of our fields:

0iqi 0i (i = 1, 2, 3), 04 -+ q2 04,

-+ q3 Oi (i = 5, 6,7). (3.51)

This leaves only pi and P2 of which we can scale out one of them, leaving only their

ratio as a tunable parameter
s = (3.52)

P2

(P2 = 0 can be handled separately).
Now let us focus on the symmetric case, in which 01 = 02 = b3 and $/ = 46 = 07,



and keep track of the fields 4'1, V4, 05. We find that W is simplified to

W -15p1 - 9p 2 b1 + 3p12 -3p2@b

+ 2P2(44 + 3)5) - 6 p1@1(#4 + 3@5). (3.53)

We note that since W only depends on a linear combination of $ 4 and 05, namely

4 + 305 , the potential V only depends on the same linear combination of the corre-
sponding axions, namely &4 = a4 + 3a 5.

By using (3.11), it is a straightforward matter to obtain the potential. The result
is a rather long expression that we report in Appendix B eq. (3.81). The leading
prefactor

2

Vfux 3 3 (3.54)
q1 q2 q3

is an overall multiplicative scale that depends on the fluxes. At fixed s there exists

a family of solutions for P1, P2, 1, q2, q3 for which V., -> 0 parametrically. However,
one should note the explicit appearance of s = pi/P2 in the potential, which controls
its shape. We mention that without loss of generality we can focus on s non-negative,
since s -> -s and ai -+ -ai leaves V unchanged.

By solving the equations DjW = 0, one can show that the SUSY vacuum lies at:

ai = a4 + 3a 5 = 0, bi = b4 = b5 = , (3.55)

for all s. We note that this (AdS) SUSY vacuum is tachyonic but stable, as is satisfies
the Breitenlohner-Freedman bound [57]. The potential here takes on the value

- 4Vl32V15
Vsusy = -Va. (1 + 15s 2 ) . (3.56)

125

Now, an important special case is when pi = P2 (s = 1), since as VZ describe, this
provides this = 1 supergravity theory with an interpretation in terms of an K = 4
supergravity theory with extended (gauged) symmetry. This may be of some interest
[60]. In this case, the potential in eq. (3.81) may be simplified to

V = Vfl(36d6 + 108b2&4 + 144&4&4 + 1280&3/3

+ 108b d& + 144&2&2 + 144&4b2d2 + 144b 2&2

+ 432b5d1 + 256054d1/3 + 36bi + 48bi + 48bibi
- 432b2b2 - 576b2b 4 b5 + 102400/81)/(b b b). (3.57)

with dI a - 1/3 and d4 = a4 + 3a5 + 4/3. In addition to the SUSY vacua, we find



three additional AdS vacua given by

1
ai a4 + 3a5- -, b1 ~ 1.38, b4 = b5 ~ 1.26

3
1

ai = a4 + 3a 5 = - bi 1 1.38, b4 ~~ 2.87, b5 _ 0.958
3

2
ai 1, a4 + 3a 5 = -4, bi = b4 = b 5 = (3.58)

v3

In Fig. 3-3 (top) we plot V as a function of ai and a4 with other parameters fixed

at their SUSY values. We see that V is relatively flat along each axis, while V is
steep along diagonals.

Now, this potential contains one modulus that is not stabilized. One linear combi-

nation of the axions is left exactly massless at the SUSY vacuum. We we will return

to this later in the discussion. This is a result of the fact that the superpotential
in eq. (3.53) only depends on the combination a4 + 3 a5 . A plot of V as a function
of a4 and a5 , with all other moduli fixed at their SUSY values, is given in Fig. 3-3

(bottom). We see the flat 'valley'. The existence of such a flat direction certainly

seems useful from the point of view of inflation, however one should recall that this

flat direction emanates from an AdS vacuum.
For slow-roll it is again evident that this is very difficult, due to the argument

presented at the end of Section 3.3.2, namely that the characteristic value of 6 in these

types of tree-level toroidal models is 0(1). However, it is important to investigate

the effect of our tunable parameter s. To get a flavor of its effect, in Fig. 3-4 (top) we

plot e = C(ai) for 2 < s < 20. We see that c > 1 in this region. Indeed our numerical

studies indicate (detailed below) that there is no inflating region anywhere in moduli

space. Again this is based on the results of vast tables of c over moduli space. For

a more conventional representation, in Fig. 3-4 (bottom) we plot c as a function of a

pair of moduli, namely ai and bi, with s = 1. Here E is large in all regions in which

V > 0. (c -- o as V -> 0 and c -- 0 at the AdS minimum). The plot displays a dip

in E as ai -> -1, b1 -+ 0. At this point we find e -> 4.

3.3.4 The Model of Ihl and Wrase (1W)

In the previous two models, the Kiihler potential took on the form of eq. (3.23),
which we referred to as diagonal torus models. It followed from this that the first

slow-roll parameter took on the form as given in eq. (3.27). For potentials V that

were rational in the moduli, this meant that 6 = 0(1) was quite natural. We would

like then to investigate more complicated models in which this does not occur. In

April 2006 Ihl and Wrase [411 obtained an explicit example of this nature. Their

work is strongly motivated by the work of DGKT. Indeed they also consider massive

type IIA supergravity. However, unlike the DGKT model, we find that one tunable

parameter remains in the potential, as we found in the VZ model.
The orientifold is T6 /Z 4 . Unlike the torii of DGKT and VZ, this orientifold does

not permit the decomposition of T6 to T2 x T2 x T2 with identical T2s. Instead the T2 s
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Figure 3-3: Top: The potential V =V(al, a4) with a5 -= 0 and other moduli taking on
their SUSY values. Bottom: The potential V = V(a4 , a5 )with other moduli taking
on their SUSY values.
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must have different metrics. The interested reader is referred to the original paper
[411 for details.

The metric on the compact space is somewhat more complicated than our previous

models. When expressed in terms of the most useful co-ordinates (those that are

readily related to Kdhler and complex structure moduli) the metric on the compact

space is non-diagonal. Here there are 4 independent degrees of freedom that appear

explicitly in the metric. Denoting them as usual by 7y, the metric is given by

3 2

(ds2 )C = [(dx4 2 + (dy4) 2 ] + 2 y74 dx' dX2 + dy' Y2 _ cj dx' dy3)1 (3.59)
i=1ij=1

Vol = dz/g= U2Y3(Y72 - 2y)/4
JT6/Z4

b3(bib 2 - b /2), (3.60)

where ei is the Levi-Civita symbol defined by E12 = -E21 = 1, El = 22 0. The
form of the volume requires a little explanation: The square-root of the determinant

of the metric is easily shown to be 73(7Y72 - 272), and indeed Vol is proportional to

this. There is also a factor of U2, which is related to the canonical complex structure
moduli. It is known as a 'pure type' contribution that is in some sense hidden in

the metric. The interested reader is referred to footnote 11 of the IW paper for

clarification. Again we have written the volume in terms of some bi that are good

Kdhler co-ordinates.16 Note that the volume is not simply a product of the Kdhler

co-ordinates.
In summary, after the orientifolding there remains one complex structure modulus

U2 . In total we have 4 Kdhler moduli 4i = ai + ibi, i = 1, . . . , 4 and 2 other moduli

which mix the axio-dilaton and the complex structure modulus: @s = a5 + ib5 (b5 =

e-OvVol/V/U ) and 06 = a6 + ib6 (b6 = 2 VU2e-OVVi).' 7 (We again ignore the

"blow-up modes").
Here the Kshler potential does not take the form of the previous 2 models, i.e., it

is not of the form of a logarithm of a product of geometric moduli and so is not quite
of the form discussed in Section 3.3.1. There is a modification due to the non-trivial
form of the volume, namely Vol = b3(bb 2 - b2/2). The Kihler potential is

K - ln (2 b3(b1 b2 - b2/2)b2 b ) (3.61)

- see eq. (3.23) for comparison.
The ingredients for the superpotential are just the same as the DGKT model. A

0-form, 3-form, 4-form (and an unimportant 2-form) are included. The superpotential

16In the IW paper: Vol = Kb3 (blb 2 - b2/2). By rescaling bi -* ,-1/ 36b, i = 1, 2, 3, 4 we obtain

eq. (3.60) and n is eliminated.
"7 The canonical axions are (5 = 2a5 and (6 = 2a 6 .



is a simple modification of the DGKT model, namely

W = + _ - A )3(g)1 7_2 -- 4/2) - 2 f3(@5 + 6), (3.62)

which is to be compared to eq. (3.35). We note that there is one additional flux

component: f4,4, which is due to the presence of a 4th Kdhler modulus 4 .
Furthermore, just as in the DGKT model, an 06-plane is introduced in order to

satisfy the tadpole condition. This occurs in precisely the same way as before (see
eq. (3.36)), i.e., fo f3 = -2.

Again let us exploit all existing shift and scaling symmetries. We perform the
following transformations on our fields:

'2 f4,3| 4i (i = 1, 2, 3),
1f4,iI fo|

_ 1f4,31

1 f4,1 f4,2 f4,31 1 f6

If31 Ifo| 2V f3'

1 1f4,1 f4,2 f4,31
06 --+ 1 6 (-63

1f3| Ifo|
which was chosen in such a way as to leave the kinetic terms invariant. This allows
one to rewrite the superpotential as

W |fol

Vo 3( 1P2 - 4/2) -2f3(15 + o)). (3.64)

Here there exists one combination of the fluxes that does not scale out:

t = f4'4 (3.65)
%/|f4,1 f4,21

This is a result of the non-trivial ("intersection") form for the volume, which puts $4

on a different footing from the other Kihler moduli.
We turn now to the 4-dimensional potential V. In the presence of all axions, the

result is somewhat complicated: see Appendix C eq. (3.82). Here we note that a

consistent solution is found with all (shifted) axions vanishing, and so we will focus

on this case: ai = ... = a6 = 0. Also note that 05 and #6 are treated on equal

footing. Inspired by this fact, we will concentrate on the case05 = 46. This sets



U2 = 1/2, as reported in the IW paper. We also make a final set of multiplicative
transformations by +1, namely: bi -> f4,1 bi, b2 -- f4,1 b2 , b4 - f4,4 b4, which still

preserves the form of the kinetic energy. We find

V , = [2 2(b 2+ b 2+ b 2) + 2612b b2 + 16 b - 16 V2 b1 b2 ba b

+ 8 bab b5+ 2 b b b - 2 b1 b2 b b + b b 42 + 4(b1+6 12b2)b4 t

+ (b + 2 b1 b2 ) t2 ]/(2 b3 (bi b2 - b /2)b4), (3.66)

where
|fo15/2|f3|4

V I o1/21f1 (3.67)
V" |I f4,1 f4,2 f4,3 3/2

as we defined it for the DGKT model. Note however, that this is not the only
piece that depends on the magnitude of the fluxes, since the flux parameter t also

appears in (3.66). So there is one combination of the fluxes that describes the shape

of the potential. We have defined 612 f4,if4,2 = +1 which delineates two families

of potentials. We should also keep track of the physical constraints that the area
of the third torus and the compact volume Vol are both positive, so b3 > 0 and

b1b2 - b2/2 > 0.
All stationary points are AdS (even the non-SUSY ones). The interested reader

is referred to the IW paper [41] for a detailed description of the locations of these
stationary points. Here we begin by noting that when 612= +1 and t = 0, there is a

SUSY AdS minimum, which coincides with that of the DGKT model:

b1 = b2= b3 ? 1.29, b4 = 0, b5 ~ 0.609. (3.68)

(compare to eq. (3.42) with renaming of variables; b5 of IW replaced by b4/2 of

DGKT.)
Since the Khhler potential is not simply the logarithm of a product of moduli, C

is not given by eq. (3.27). Instead we revert to eq. (3.18). We emphasize that the

particular transformations we have performed on the $2 have left the form of K'3VIV

unchanged. With this in mind, we find the following:

1 4 aV V OV aV 6 b 2 V 2 + \ 2
S\ M&i - + + E 2L+ , 7(3.69)

v2 zj~ aj o9aj Obi o9bj = 2 aaj o9bi

where
bi b2 /2 0 b1b4

M b/2 by 0 b2b4  (3.70)
- 0 0 b3 0

b1b4  b2 b4  0 b1b2 +b /2

and V given in terms of our rescaled variables, i.e., by eq. (3.66) for the simple

vanishing axion case, and by eq. (3.82) for the general non-vanishing axion case. In

Fig. 3-5 we give a representative plot of a piece of moduli space. We see significant

variation as we change the flux parameter from t = 1 in (top) to t = 10 in (bottom).
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In this plot we have ensured that b4 has remained in the physical region given by
bib 2 - b2/2 > 0. We note that the potential becomes singular at this boundary; this
follows again from the non-trivial form of Vol. Our numerical investigations into the
slow-roll parameter E have again yielded c > 1 whenever V > 0, although we have
not investigated the full moduli space - we did not include all axions in our search.

3.3.5 Comments on Blow-up Modes

In the three models that we have investigated, we have ignored a class of moduli known
as "twisted moduli" or "blow-up modes". Recall that apart from the dilaton, the
geometric moduli describe the size and shape of the compact space, i.e., its geometry.
These are the Kshler and complex structure moduli. For a smooth compact space,
this is fully general. However, the models investigated here are not smooth; they
are all orbifolds, which have fixed points. These fixed points correspond to conical
singularities. In the large volume limit, these conical singularities are 'blown-up' and
smoothed out. The effective 4-dimensional description then captures this aspect of
the geometry by a modulus for each fixed point; the so called blow-up modes.

These blow-up modes can be included in the analysis in a straightforward fashion
through the use of the Kihler potential K and superpotential W. Let us give an
explicit example; the DGKT model. Here there are 9 fixed points, and so there are 9
blow-up modes. We call these: 4'i = ai + i bi for i = 5, ... , 13. The expression for the
volume in eq. (3.33) is modified to

13

Vol = bib 2b3 - 1b. (3.71)
i=5

The Kdhler potential (3.34) and the superpotential (3.35) are modified to

K = -log 32 (bib 2b - 5Zb b , (3.72)

A 3 hi 13 f, o 0 23-113

W= 6+ ( 413 2 f3 V4. (3.73)

In principle we could now explore this larger moduli space for inflation. However, it is
numerically difficult; we have moved from 4 complex moduli (axio-dilation plus three
Kihler moduli) to 13 complex moduli through the addition of 9 complex blow-up
modes. Instead of a full investigation into the effects of dynamical blow-up modes,
we shall freeze the blow-up modes at some vacuum expectation value (vev). Such a
vev is explicitly found in the DGKT paper. We then explore the effect of a non-zero
vev for the blow-up modes on the original moduli. Suppose the bi are frozen in at
some value, which we characterize as: B = 1 b . With B taken as a constant,
our Kdhler potential becomes:

K = - log [32 (bib 2b3 - B) bj] . (3.74)



Also, since we are treating the blow-up modes as constants, the superpotential is,
for all intents and purposes, unchanged from its value in eq. (3.35). This is because
we can always shift the real part (axion) of 04 to eliminate any constants. We perform

the same scalings as before in eqns. (3.37), with an extra shift on V4 to eliminate any

constants, giving eq. (3.38). Under such field redefinitions we introduce B, defined
such that: (bib 2b3 - B) --+ (bib 2 b - B).

Let us focus on the case in which the axions are vanishing and bi = b2 = b3,

leaving 2 moduli: b1 and b4 . We find the potential:

V = V b (6 b +4b + 2b6 - 8vfb b4

+ A (12V2b - 6bi + (45a -6) /b1 + 4vf66bb4/b)

+ B2 (6+4 5b/bi + 6/b) ] /[32(bi - B)b4], (3.75)

where 6.a f1f2+f 2f3+f31, o5b f6±oi-f 2 +f 3 ), and V, is given in eq. (3.40). There

are physical constraints: 0 < B < b3. Note that the presence of the B parameter

breaks the scaling of the model that occurs in the absence of blow-up modes, i.e.,
scaling only occurs in the B --+ 0 limit. This is because the nonvanishing blow-up

modes introduce a non-trivial intersection form, as we encountered previously in the

IW model, which prevents the flux parameters from being scaled out completely.

However, several flux parameters can still be eliminated for finite B. Note that in the

limit B -+ 0 this potential gives precisely the potential in eq. (3.39) with ai = a4 = 0.
Our numerical investigation into V of eq. (3.75) has again yielded no inflating

region, despite the presence of the tunable parameter B.

3.4 Discussion and Conclusions

We have presented an explicit investigation into three explicit string models. Al-

though this represents only a rather small part of the landscape, this acts as a starting

point for further investigation into moduli driven inflation. The non-string theorist
should note that despite the inherent complexity of string theory, M-theory etc, it

is possible to strip down the physics in 4 dimensions to familiar territory. eq. (3.15)
gives a familiar 4-dimensional action for n scalar fields minimally coupled to gravity.

We note, however, that the kinetic energy is in general non-canonical since Kg3 is

typically not equal to 6 j. and furthermore the geometric moduli and axions appear in

the action differently.18 We have proceeded in the usual fashion to check for inflation

by examining the slow-roll conditions (3.18)-(3.19).
We have not found inflation in any of the specific models presented. In the absence

of blow-up modes, the DGKT, VZ and IW models involved 8, 14 and 12 real-valued

inflaton fields, respectively, making a full numerical exploration of the inflaton po-

tential V(#) (which can also be flux dependent) computationally challenging. We

18If we ignore the axions and focus on a certain class of simple models, we can perform field
redefinitions to obtain a canonical action, as given in eq. (3.30).



have therefore performed as comprehensive a search as feasible given our available
resources:

" For the DGKT model we derived an analytic expression for the 8-dimensional

potential V(#), finding V(#) to be flux independent (up to an overall scale),
and searched the 8-dimensional moduli space for vacua, finding one AdS vacuum
in addition to the known SUSY vacuum from [39].

" For the VZ model, we derived an analytic expression for the 14-dimensional po-

tential V(4), finding that V(#) depended on the fluxes via a single parameter

s (up to an overall scale). We found the potential to be invariant under permu-

tation of two triplets of complex moduli, and searched the full 6-dimensional

subspace corresponding to '1 = 02 = #3 , V) = = V)7 for vacua for the cases
s C- {0, 1/2, 1, 2, 5, oo}, finding three new AdS vacua in addition to the known
SUSY vacuum from [40].

* For the IW model, we derived an analytic expression for the 12-dimensional po-

tential V(4), finding that V(#) depended on the fluxes via a single parameter t

(up to an overall scale). We searched the 6-dimensional subspace corresponding
to vanishing axions, finding no new vacua in addition to the five AdS vacua
reported by [41] for various flux sign combinations.

We performed this search for vacua using the numerical packages Mathematica19 and

Singular 20 to algebraically solve (using Gr6bner bases) the set of high order coupled
polynomial equations that follow from setting VV = 0.

We then performed a numerical investigation of the slow-roll conditions, evaluating
slow roll parameters for the three models on a multi-dimensional grid (of dimension

8, 6, and 6,21 respectively), involving of order 109 grid points each, and found E > 1
for all grid points where V > 0. Although we cannot claim to have a proof of the

non-existence of inflation in these models, as the moduli space is rather large and the

potentials V are rather complicated, we do suspect this to be true. We also performed

a partial investigation into the consequences of (frozen) blow-up modes, as described

in Section 3.3.5, again finding no inflation.
In the type of models presented we have identified at least three obstacles to re-

alizing inflation: the vacua are AdS, there is a logarithmic Kdhler potential K, and

suitable field redefinitions allow one to scale many of the fluxes out of the potential.

None of these features forbid a realization of inflation. Each is probably a reflec-

tion of the simple starting point we took, studying models closely based on toroidal

compactification and focussing on the moduli of the underlying torus. It is certainly

known that each of these three points may be avoided in other regions of the land-

scape. Nevertheless, our result does underscore that slow-roll inflation may be a rare

and delicate phenomenon in the landscape. We will now discuss each of the three

obstacles in turn.

19 http://www.wolfram.com
2 0http://www.singular.uni-kl.de
2 11n fact we did a little more than this: In the IW model we did not fully include the axions,

which would be a 12 dimensional space, but did so partially.



3.4.1 The Potential Energy Challenge

As we discussed earlier in Section 3.2.4 it is somewhat difficult to realize de Sitter

vacua with V > 0 in string theory. If we break supersymmetry, then existing analyses

suggest that such vacua are rare, but plentiful in absolute number. Let us truncate

our discussion here to supersymmetric vacua, which we know must not be de Sitter.

A good starting point would be Minkowki vacua which are allowed. Again focusing

on toroidal orientifolds in type IIA string theory, a detailed investigation is given in

[61), in which a host of fluxes are included. In addition to the geometric fluxes that

we have described, they turn on so-called non-geometric fluxes [62], and additionally
turn on fluxes associated with S-duality (strong - weak coupling duality). In this

framework, although they are non-generic, Minkowski vacua are explicitly found (see

also [63]). This may be a good starting point for considering inflation models where

the inflaton eventually settles down to zero energy density. However, the Minkowski

vacua given in [61] are not under good perturbative control. In other words, it is

expected that there are large a/ and g, (loop) corrections to the potential. This is in

contrast to the models we have investigated in this chapter. In each case we could

dial the fluxes in a particular fashion so that all quantum corrections were small.

This justifies the supergravity treatment and makes the results of our investigation
particularly informative.

3.4.2 The Kinetic Energy Challenge

Let us turn to the form of the kinetic energy, which is governed by the Kihler potential

K. As we have pointed out several times, in supergravity models this is typically

logarithmic. The Hessian matrix of K determines the form of the kinetic terms. The

tree-level form of this for the diagonal torus model is given in eq. (3.24). At the level

of supergravity (i.e., ignoring quantum corrections) this form is rather generic for

non-torus models also [64]. So for instance, this kind of metric on moduli space will

generically occur for the volume modulus b. Let us write this form as:

T - -8, 1(log b)a"(log b) (3.76)

(suppressing factors of fn). Although we shall not go through the explicit details
here, this is fairly simple to show from the fact that in performing the dimensional

reduction from 10 to 4 dimensions, we pick up factors of the volume modulus. In

order to move to the Einstein frame, we must then compute the transformation of

the Ricci scalar, which is a contraction of the Riemann tensor. Since the mixed

derivative terms of the Riemann tensor are proportional to the Christoffel symbols,
and since the Christoffel symbols essentially perform logarithmic derivatives of the

metric, the result in (3.76) follows.
For models involving fluxes etc., it is rather generic that the potential V be given

(at large volume) by some rational function of b (or more generally of the full set of

Kihler moduli). We have given several explicit examples of this in this chapter. Let



us drastically simplify the form by writing

V ~j( ci b-ki (3.77)
i

where the ki are positive integers and the ci are some coefficients.22 We note that by
defining 4 = log b, the kinetic energy is in canonical form and V ~ Ej cie-kio. (This

property was alluded to earlier in eq. (3.30)). Of course exponentials have slow-roll

parameters 6 ~ r/ k2 , which are not generically small for positive integers k. A

recent discussion of how one can perhaps construct working models by fine-tuning

similar potentials with several terms appears in [66]. We point out that in [66], only

the volume modulus is considered and other moduli are treated as fixed; we have

seen explicit examples in our models where although one partial derivative of the

potential may be small, another one will often be large, hence making 6 large and

spoiling inflation.

a' Corrections

Let us comment now on the effect that a' corrections have. According to [67], in type

IIB string theory there exists an a' correction to the Kshler potential from an O(R4 )

term in the 10-dimensional action. In units where 27ra' = 1, the piece coming from

the volume modulus is found to be

K = -2ln [(2b)3/2 + (3.78)

where = -((3)xe-34/2/4 with x the Euler characteristic of the Calabi-Yau. The

dilaton 4, and hence (, is assumed to be fixed. Although we are considering IIA

orientifolds (which are not directly related to IIB models, because of the flux), let

us imagine the effects of a similar correction in our context. Our models have x
which is of 0(1 - 100) - although the torus has vanishing x, the fixed points of the

orbifold group action introduce blow-up modes that generate non-trivial x. However,
in the regime where our classical analysis is trustworthy (and by choosing sufficiently
large fluxes we can make it arbitrarily reliable [39]), we can neglect this effect. One

could imagine that for more general Calabi-Yau's x, and hence the ( correction, is
sometimes large.

It is known that such a term can indeed be important for inflation, see e.g. [68].
For b3/2 > , this correction is irrelevant and we return to the previous analysis. For

b3/ 2 < , however, this changes the situation considerably. In this case, one finds

that the kinetic term for b is modified to, roughly

1
T ~-- (,b) 2. (3.79)

2 2Locality in the extra dimensions allows one to prove that any contribution to the Einstein-

frame potential should fall at least as quickly as 1/r6 at large radius r for the extra dimensions

(as described on e.g. page 12 of [65]). This puts a bound on the Ikil, and explains why we have

disallowed contributions which grow at large radius.



So the inverse of the metric on moduli space is KJ ~- (d. The inclusion of a' cor-

rections into the Kahler potential also induces corrections to the potential V through
the supergravity formula. However, let us again assume the form for V as given in

eq. (3.77) for the purposes of illustration. We find that generically E ~ r ~ k2 /b3 /2 ,

which is large in the assumed regime b3/2 <. Ref. [68] shows that even in the setups

containing non-perturbative corrections, e.g., race-track etc, this a' correction usu-

ally makes achieving inflation harder or impossible. Of course this entire discussion

should be viewed with caution: in the regime where the (-correction has a significant

effect, one would have to carefully justify any analysis which neglects additional a'
corrections.

Approximate Kiihler Potentials

One further comment on the form of the kinetic energy comes from "inflation in su-

pergravity" treatments, e.g., [69]. There it is often assumed that the Kahler potential
takes on the minimal form: K = #*# (giving Ki. = 6). This form does not liter-

ally occur in any string compactifications that we are aware of. It can appear as an

approximate Kshler potential in models where one fixes the moduli of the compact-
ification manifold and expands the Kihler potential for brane position moduli (or,
sometimes, axions) in a Taylor expansion. So we believe that realizing inflation in

these scenarios should be taken with a grain of salt, subject to justifying the appear-

ance of the relevant K, for the relevant range of field space, in a model with fixed

moduli.

3.4.3 The Challenge of Fluxes Scaling Out

Turning to the issue of scaling out fluxes, although this occurs in the DGKT model if

one neglects blow-up modes and focuses on untwisted moduli, it did not occur in full

in the other VZ and IW models. In the DGKT model, neglecting the blow-up modes,
every member of the infinite set of vacua was identical from the point of view of the

slow-roll conditions, and there was large, but not complete, degeneracy in the other
models. Degeneracy is reduced in the presence of blow-up modes. In general though,
the ability to exploit scaling and shift symmetries reduces the freedom allowed in
dialing the shape of a potential in the landscape. Much like the relation whereby

unbroken supersymmetry generically implies AdS vacua, or the simple geometric ar-

guments which determine the logarithmic form of the Kdhler potential, this all points

to the idea that the landscape, although extremely large, has structure. On the other

hand, the relatively simple form of flux potentials for toroidal moduli, which is be-

hind the existence of some of these scaling symmetries, would not persist in generic

Calabi-Yau models. Therefore, it is reasonable to postulate that the degeneracy we

found may be an artifact of the particular simple models we have examined.



3.4.4 Outlook

Alternatively, it could be that the type of construction discussed in the introduc-

tion, where inflation is realized through a combination of ingredients, including non-

perturbative corrections to the superpotential, is more promising. For example, let us

make a comment on the N-flation idea [30, 31], which requires N massless axions at

the perturbative level, whose mass is then generated by non-perturbative effects. We

have seen one flat direction of the axions in the untwisted modes of the VZ model, and

the papers [39, 30, 31] discuss how one can have N > 1 for more complicated compact

spaces. However, various model building assumptions made in [30, 31] can certainly

be questioned, and an explicit realization of this class of scenarios is important to

unravel.
In summary, our work should be viewed as a starting point for a much more gen-

eral study into inflation driven by computable flux potentials. One obvious next step

would be to study a similar class of problems in more general Calabi-Yau manifolds,
rather than orbifolds of the torus. The more complicated structure of the internal

geometry should translate into richer flux potentials, which could solve some of the

problems we found in the toroidal models. Another approach could be to develop sta-

tistical arguments along the lines of [70] to quantify how generically or non-generically

one expects to find inflation in flux vacua.



3.5 Appendix: Potential Functions and Inflation-
ary Predictions

3.5.1 DGKT Potential

In the DGKT setup, there are 4 complex pairs of moduli: ai, bi..., a4, b4. Using

the Kdhler potential of eq. (3.34) and the superpotential of eq. (3.38) we find the
following 4-dimensional potential:

V = V.X[ 2(al+ a2 + a3 + 2 2 a 4 )2 - 46 1 a 2 a3 (a1+ a2 + a3 + 2 v/ a4)

+ 2 a 2 a + 2 +b b +b ) + 4 b2 -46(a 2 a3 b + a1 a3 bj+ai a2 b2)

+ 2 + aabi + a a b ++ a, j b

+ 2 b2 b 2 - 8 2 b1 b2 b3 b4]/(32b1b2 b3 b ), (3.80)

with Vux given in (3.40) and 6 =fof4,1f4,2f4,3 = i1. The slow-roll parameter E is
given by (3.27) with ni = n2 = n3 = 1, n4 = 4.

3.5.2 VZ Potential

In the VZ setup, there are 7 complex pairs of moduli: a1, bi, ... , a7 , b7 . Let us focus
on the symmetric case a1 = a2 =a 3 , b1 = b2 = b3, a5 = a6 - a7, b5  b6 = b7.
Using the Kiihler potential of eq. (3.47) and the superpotential of eq. (3.53) in the
symmetric case, we find the following 4-dimensional potential:

V = Vflx [ 36a6 - 72sa +36s 2a4 + 108b2 a4 + 144s&4a4 + 216a4 - 144sb2a! + 144sa3

- 144s2 6 4 a, - 485 4 a + 108bial - 360s2 a, + 144s2 4al + 48s2b al
+ 144s&4b2 a2 + 216b 2 a +144s 2b2a2 + 432s2b2a2 + 480s&4a2 + 324a2

- 72sb4a1 - 96s&2ai - 144sb2a 1 - 96s 2&4 b2a 1 - 96sb2a1 - 288sb2ai

+ 1080sai + 720s2 54 ai - 144&4ai + 36bi + 12s 2 bi + 900s2 + 16a4 + 48s2&|bl
± 144s&4 b2 + 108b2 + 48s2 b2b2 + 16b2 - 432s 2b2b2 + 48b2 - 240s&4

+ 48s2b3b4 - 48b3b4 + 144s2b3b5 - 144b b - 576s2b b4b5 ]/(b3b 4b 3), (3.81)

with Vx given in (3.54), a4 = a4 + 3a 5 , and s = p1/p2. The slow-roll parameter c is

given by (3.27) with ni = ... = n7 = 1.

3.5.3 1W Potential

In the IW setup, there are 6 complex pairs of moduli: a1 , bi,..., a6 , b6. Using the

Kihler potential of eq. (3.61) and the superpotential of eq. (3.64), we find the following



4-dimensional potential:

V Vfl. [ a2 a4 /2 + ba4 /2 - 2a 1 a2 a a - 2a1 a2b2a2 + 2b1 b2b2a2 + a2b2a2 + b2b2a2

+ 26a 2a3 a4 + 2aibib2a4 + 2630aia4 + 2630bia4 + 2630aia3a4

+ A/6 3oa3a5 a2 + 4V"6 3oa3a6az - 4a2b1b b4a4 - 4a1 b2b b4a4

- Aa 2a3b1b4a4 - 4a1a b2b4a4 + 46a3b2b4a4 + 4 3oa 3b1b4a4 + a bj /2

+ b2b4/2 + 2a2 + 2a2 + 2a2a2a2 + 2a2 + 16a2 + 16a| + 2a2a2b2 + 2b2

+ 2a a b + 2a blb - 46aia3b2 + 2b2 + 2alalb 3 + 2alb b3 + 2albib3

+ 2b2 b b + 2b2 + 2a 1 a2a2 b + 2a1 a2b2b2 - 2b1 b2b2b2 - 26a2a3b2

- 2a b1b2b2 + 8b2 + 8b2 - 46aia a3 + 4aia 3 + 8V/aia 5 + 8V'2a 3a5

+ 8x-a 1 a 6 + 8V'a 3a6 + 32a 5a6 + 4V4b3b2b 5 - 8Vb 1 b2b3 bs ± AVb 3 bb 6

- 8Vbib2b3b6 + 2612b2 + 4612aia 2 + 46 12a2a3 + 8v/2a 2a5612 + 8V5612a 2a 6

- 4630aia 2a2 - 4630a2a3b2 - 4630aia2b2 - 2630aia3b2 - 4630a2a 2 a 3

- 8V263oaia 2a 3a5 - 8V630a1a 2a 3a 6 + (2 3oa3a4 -± 4aia 4 - 4a 3a4

+ 8-a 5 a4 + 8va 6a4 + 4612a2a4 - 2630a3b2a 4 - 4 30aia 2a3a4

+ 463oa3b1b2a4 + 4b1b4 + 4612b2b4 - 4630a2a 3b1 b4 - 4630a1a3b2b4)t

+ (2a + b 2 + 2bib2)t 2]/[2 (bib2 - bl/2)b3 bibj], (3.82)

with VlU. given in (3.67), t given in (3.65), 6 fof4,1f4,2f4,3 = +1, 612 = f4,1f4,2 =

+1, 630 = f4,3fo= +1. The slow-roll parameter E is given by (3.69).

3.5.4 Cosmological Parameters from Slow-Roll Inflation

The mathematical prescription in this Section allows one to compute cosmological
parameters corresponding to an arbitrary string potential without understanding the
derivation or interpretation of the results.

Suppose from some string model we are given a potential energy function V of
some complex scalar fields Vi in the Einstein frame (see eq. (3.15)) and a Kshler
potential K. For example, V may be given by the supergravity formula in eq. (3.11)
complemented by the rescaling eq. (3.14). We then compute the following slow-roll
parameters:

K" (_ g--. ab V
K617 gab 6 3V2 21V2 (3.83)

77 min eigenvalue { V bc }, (3.84)

where q (and e) is written in terms of the metric gab governing real scalar fields #a:
KigOj "#z' = lgabO #48& #b, with #2i-1 = Re[0'] and #2i = Im[Oi].

The universe inflates until a time te when the slow-roll conditions (C < 1, ly| < 1)



are no longer satisfied. The number of e-foldings from time t to te is defined by

N = dt H. (3.85)
te

All the cosmological parameters defined below are a function of N. A good value to

use is 55 (see [71]), with a reasonable range being 50 < N < 60.
According to inflation, several cosmological parameters can be computed as fol-

lows:

Q = (3.86)

1507r 2 ?i4I'

n.= 1-NInQS= 1- 6c+ 2T/7 (3.87)

as =-02v in Q, (3.88)

Qt= mw2mn-' r 16e, (3.89)

nt _ONQ2 P -2c, (s(3.90)

which corresponds to the amplitude, spectral index, and running of spectral index

of scalar fluctuations, and the amplitude and spectral index of tensor fluctuations,
respectively. The expressions giving Qt and nt have general validity. In contrast, the

expressions for Q,, n, and a, are good approximations for the most studied cases of

multi-field inflation in the literature, where the walls of the multi-dimensional gorge

in which the inflaton slowly rolls are much steeper than the roll direction, but do

not hold more generally. The expression for Q, always provides a lower limit on the

correct value.
The predictions for these cosmological parameters can be directly compared with

with observation. The most recent constraints from combining WMAP (Wilkinson

Microwave Anisotropy Probe) microwave background data with SDSS (Sloan Digital
Sky Survey) galaxy clustering data are [2]

Q = 1.9450:0" x 10-5, (3.91)

n = 0.953+80, (3.92)

as = -0.040802, (3.93)

r < 0.30 (95%), (3.94)

nt + 1 = 0.9861+02. (3.95)
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Chapter 4

Inflationary Constraints on Type
IIA String Theory

We prove that inflation is forbidden in the most well understood class of semi-realistic
type IIA string compactifications: Calabi-Yau compactifications with only standard
NS-NS 3-form flux, R-R fluxes, D6-branes and 06-planes at large volume and small
string coupling. With these ingredients, the first slow-roll parameter satisfies E > 2

whenever V > 0, ruling out both inflation (including brane/anti-brane inflation)
and de Sitter vacua in this limit. Our proof is based on the dependence of the 4-
dimensional potential on the volume and dilaton moduli in the presence of fluxes and
branes. We also describe broader classes of IIA models which may include cosmologies
with inflation and/or de Sitter vacua. The inclusion of extra ingredients, such as
NS 5-branes and geometric or non-geometric NS-NS fluxes, evades the assumptions
used in deriving the no-go theorem. We focus on NS 5-branes and outline how such
ingredients may prove fruitful for cosmology, but we do not provide an explicit model.
We contrast the results of our IIA analysis with the rather different situation in IIB.

4.1 Introduction

Our desire to understand the large-scale properties of our Universe is one -of the
motivations for studying fundamental microphysical theories such as string theory.
Indeed, observing the early Universe may be our most promising path toward con-
fronting string theory with data. The leading paradigm for explaining the large-scale
isotropy, homogeneity, and flatness of the Universe, as well as its O(10-) seed fluctu-
ations, is cosmological inflation [1, 2, 3, 4]. Specifically, by assuming that there exist
one or more scalar fields that undergo slow rolling in the early Universe in a potential
energy function of just the right shape, one can explain these large-scale properties
and predict the numerical values of as many as eight cosmological parameters, many
of which have now been accurately measured [5, 6, 7]. The leading candidate for a
fundamental microphysical theory is string theory, and so we would like to know how
generically string theory can accommodate such potential energy functions.

It is rather well known that the conditions for inflation do not arise easily in



string theory, or in other words, that a generic point in field space may not be

expected to satisfy the slow-roll conditions [8, 9, 10]. In part this is because of

issues like the r problem (essentially, that the potential varies too quickly), which

also complicate attempts to build inflationary models in quantum field theory and

supergravity theories. There are, however, three reasons to suspect a priori that

string theory can accommodate inflation: Firstly, the potential energy is typically

a function of hundreds of fields, which means that there is a large field space to

explore. Secondly, there are an exponentially large number of infinite families of

potential energy functions, parameterized by typically hundreds of discrete fluxes in

the compact space [11, 12, 13, 14, 15]. Thirdly, there are at least many millions

of different topologies, such as Calabi-Yau manifolds, that in general give rise to

qualitatively different physical theories in 4 dimensions. It is reasonable to suspect

that occasionally in this vast space of possibilities, the conditions for inflation are

satisfied.
For this reason, the past few years have seen intense investigation into the possi-

bility of inflation driven by closed string moduli [16, 17, 18, 19, 20], axions [21, 22, 23,
24, 25], or brane positions [26, 27, 28, 29, 30, 31, 32, 33] in the extra dimensions. In

the most intensely studied case of JIB string compactifications on Calabi-Yau orien-

tifolds, the conclusion at this point is that one can probably build working models, at

the cost of fine-tuning the relevant potentials. Some of these models could even have

interesting observable signatures [34, 35]. Reviews of this general subject appear in

[36, 37, 38, 39, 40].
One feature of the existing constructions is that they are implicit, relying at some

point on either non-compact models of regions of the compactification space, or on

the ability to perform tunes which (though seemingly possible based on detailed the-

oretical considerations) are not performed explicitly. One would ideally like to build

simpler models, where all of the calculations are performed in a completely explicit

and reliable way. Commonly, compactifications suffer from unstabilized moduli in the

low energy description, or the calculations stabilizing moduli apply in a regime that,
while apparently numerically controlled, is not under parametric control.1

In some limits of string theory, however, we now have explicit examples of stabi-

lized models with parametric control of the moduli potential. The best understood

case occurs in massive IIA string theory; namely IIA string theory with R-R 0-form

flux, compactified on a Calabi-Yau orientifold. The 10-dimensional massive IIA su-

pergravity action was suggested in [41]. The compactification of this theory on a

Calabi-Yau orientifold was performed in a 4-dimensional supergravity formalism in

[42] and the stabilization was obtained in [43].2 The 10-dimensional description of

these compactifications was further studied in [45]. Since these models carry at most

N = 1 supersymmetry in 4 dimensions, and gauge groups and chiral matter can be

'This in particular applies in any class of stabilized compactifications where the number of choices

of fluxes, branes, etc., while perhaps very large, is finite. In such models, there is perforce a limit

on how small g, can be, namely the smallest g, obtained in the finite list. Of course if the finite

number is sufficiently large, the smallest attainable coupling may be quite small, so this may not be

a serious limitation.
2With additional ingredients (geometric flux) stabilization was achieved in [44].



incorporated in this context, we consider them to be at least semi-realistic.
An investigation of cosmology in these IIA compactifications was initiated in

Ref. [46] by considering some specific simple examples and showing that inflation
could not occur in these examples. In the present work we extend that study. We
use a simple scaling analysis of various terms which appear in the low-energy 4-
dimensional potential to rule out inflation and de Sitter vacua at large volume and
weak coupling in all IIA Calabi-Yau models with conventional fluxes, D-branes, and

O-planes. This means that inflation imposes the constraint that our Universe is not
in this portion of the landscape. We emphasize that the derivation of this no-go result
is only valid in the large volume limit and can be evaded by various other structures
including NS 5-branes as well as geometric and non-geometric NS-NS fluxes, indi-
cating that IIA compactifications containing these ingredients may be a good place
to look for string models with inflation and/or de Sitter vacua. Indeed, as we were

completing this work we received a copy of [47], in which more explicit IIA de Sitter
models are constructed by using geometric NS-NS fluxes, 5-branes, and various other
ingredients.

The structure of this chapter is as follows: In Section 4.2 we summarize the IIA
supergravity theory in 10 dimensions and outline the dimensional reduction to 4
dimensions. We explain the key step in the analysis of the chapter, which involves
considering 2-dimensional slices in the full moduli space parameterized by the volume
and dilaton moduli of the compactification. The behavior of the four (space-time)
dimensional potential on these 2-dimensional slices of moduli space allows us to place
a lower bound on the slow-roll parameter E. In Section 4.3 we compute the scaling of
the various terms appearing in the 4-dimensional potential energy function V in terms
of the two model-independent moduli. We prove that both inflation and de Sitter
vacua are forbidden at large volume and weak string coupling when standard fluxes,
D6-branes, and 06-planes are included; the slow-roll parameter is bounded below in
this case by E > -7 whenever V > 0. In Section 4.4 we describe some additional
ingredients such as NS 5-branes, geometric fluxes and non-geometric NS-NS fluxes
which can be included in type IIA and which lead to terms in the 4-dimensional
potential with scaling properties allowing us to evade the no-go theorem. In Section
4.5 we discuss the type IIB theory. We show how the structure of the IB theory
differs from the IIA theory from the point of view taken in this chapter and discuss
the connection of our IIA results with previous work on inflation in JIB models. We
discuss our results in Section 3.4. More details regarding the kinetic energy and
potential energy are provided in Appendix 4.7.

4.2 Type IIA Compactifications

We investigate large volume and small string coupling compactifications where it
is valid to perform computations using supergravity. We study the 10-dimensional
type IIA supergravity theory, where we include conventional NS-NS and R-R field



strengths, as well as D6-branes and 06-planes:

J= d1 xV_ e-20 (R + 4(0,$) 2 _ |Hs|2 22  |FI|

- I'66 d 7 1/-_e-O + 246 d 7kV"-_-ge - (4.1)
J 6 f 6

where R is the 10-dimensional Ricci scalar, # is the scalar dilaton field, H3 is the
NS-NS 3-form field strength that is sourced by strings, F are the R-R p-form field
strengths (p = 0, 2, 4, 6) that are sourced by branes, r,2 = 87rGi 0 is the gravitational
strength in 10-dimensions, and p6 (-2p6) is the D6-brane (06-plane) charge and
tension. We have set all fermions to zero as we are interested in solutions with
maximal space-time symmetry. There are also Chern-Simons contributions to the
action. These are essentially topological, and are independent of the dilaton as well
as the overall scale of the metric (in string frame). We expect that as in [43] the
contribution to the action from the Chern-Simons terms will vanish on-shell,3 so
that we need not consider it further here. Although there are some subtle questions
regarding the definition of orientifolds in these massive IIA backgrounds and whether

these backgrounds can be described in a weak coupling string expansion [48, 49), these
compactifications seem to be described adequately in the 4-dimensional supergravity
formalism of [42], corresponding to the 10-dimensional massive supergravity analysis
when the sources are uniformly distributed in the compactification space.

4.2.1 Compactification

We now perform a Kaluza-Klein compactification of this theory from 10 dimensions
to 4 dimensions. Let us first focus on the gravity sector. Assuming that we can
neglect any dependence of the Ricci scalar on the compact space coordinates, we can
integrate over the compact space, giving

d10  -gio e-2 R J dx-g4 Vol e~2'R (4.2)

where Vol is the 6-dimensional volume of the compact space. The volume, dilaton,
and all the other fields that describe the size and shape of the compact space are
scalar fields in the 4-dimensional description, known as moduli. In addition to kinetic
energy terms, the remaining terms in the supergravity action, when reduced to 4
dimensions, describe a potential function V which depends on the moduli and fluxes
in any given model.

The key observation of this chapter is that by studying the dependence of the

potential energy function V on only two of the moduli, we can learn a great deal

about the structure of the potential relevant for the possibility of inflation. We define

3More precisely, integrating out the 4-dimensional non-dynamical field dC 3 as a Lagrange multi-

plier gives an equation which must be satisfied by the axions, but the Chern-Simons terms do not

otherwise affect the 4-dimensional potential.



the volume modulus of the compact space p and the dilaton modulus T by4

p = (Vol), 3 IT =e NVof. (4.3)

While V depends on all moduli, we can explore the behavior of this function on the
whole moduli space by considering 2-dimensional slices of the moduli space where all
moduli other than T and p are fixed. By showing that V has a large gradient in the
r-p plane on every slice wherever V is positive, we will be able to rule out inflation
on the entire moduli space, regardless of which fields we would like to identify as the
inflaton.

In order to bring the gravity sector into canonical form, we perform a conformal
transformation on the metric to the so-called Einstein frame:

9A = _-p (4.4)p2

where fe, = 1/ 87rG ~ 2 x 1018 GeV is the (reduced) Planck mass and G is the 4-
dimensional Newton constant. By re-expressing R in terms of a 4-dimensional Ricci
scalar and performing the conformal transformation, one finds that the gravity sector
is canonical and that the fields p and r carry kinetic energy that is diagonal. Although
p and r do not have canonical kinetic energies, they are related to fields which do:

p 2 n,, In p, T=- 2 mei ln r. (4.5)

Altogether we obtain the effective Lagrangian in 4 dimensions in the Einstein frame

E 1 RE - 1(p 2+1) 2 V (4-6)

where the Ricci scalar RE and all derivatives are defined with respect to the Einstein
metric. The dots indicate further kinetic energy terms from all the other fields of the
theory associated with the compactification (<j): the so-called Kshler moduli, com-
plex structure moduli, and axionss. The important point is that their contributions
will always be positive. More details are provided in Appendix 4.7.1. All contribu-
tions from the field strengths and D-branes & O-planes from eq. (4.1) are described
by some potential energy function V.

4.2.2 The Slow-Roll Condition

From this action we can derive the slow-roll conditions on the potential V for inflation.
In order to write down the conditions in detail we would need to know the precise

4Note that we have defined the volume modulus in the string frame, since this definition relates
to the Kshler moduli in the IIA theory. This differs from the conventional definition of Kdhler
moduli in analogous JIB orientifolds, where the Einstein frame metric is used in defining the chiral
multiplets.

5The axions arise from zero-modes of the various gauge fields.



form of the kinetic energy with respect to all the moduli. This can be done cleanly

in the 4-dimensional supergravity formalism, as mentioned in Appendix 4.7.1. The

important point here is that the first slow-roll parameter c involves partial derivatives

of the potential with respect to each direction in field space, and that the contribution

from p3, , 42 is non-negative. In fact it is roughly the square of the gradient of In V.

The contributions from A and T thus give the following lower bound:

f2 8lnV 2 ln V 2

2 K (4.7)

A necessary condition for inflation is e < 1 with V > 0. We will now prove that this

condition is impossible to satisfy in this IIA framework, at large volume and weak

coupling where our calculations apply.

4.3 No-Go Theorem

Having discussed the gravity and kinetic energy sector of the theory, let us now

describe the form of the potential energy function V. By using the bound on 6 we

will then prove that inflation is forbidden for any Calabi-Yau compactification of

type IIA string theory in the large volume and small string coupling limit, when only

conventional NS-NS and R-R field strengths, D6-branes and 06-planes are included.

4.3.1 Potential Energy

The potential energy arises from the dimensional reduction of the terms in (4.1) as-

sociated with the various field strengths H3 & F, (p = 0, 2, 4, 6) and the D6-branes &

06-planes. Let us focus on some field strength F,. Such a field can have a nonvanish-

ing integral over any closed p-dimensional internal manifold (homology cycle) of the

compact space, and must satisfy a generalized Dirac charge quantization condition:

Fp oc f,, (4.8)

where fE is an integer associated with number of flux quanta of F, through each

p-dimensional cycle E. By choosing different values for fE over a basis set of p-cycles,
one obtains a landscape of possible allowed potential energy functions V.

The energy arising from a p-form flux F, comes from a term in (4.1) proportional

to |FI 2 ; since the p-form transforms as a covariant p-tensor (i.e., has p lower indices),
we contract with p factors of g V, so that

|F,12 OC pP (4.9)

in the string frame. By including the appropriate factors of the volume and dila-

ton from the compactification and performing the conformal transformation to the



Einstein frame, we have the following contributions to V:

V3 oc p- T-2 for H3,
V oc pa-7- 4  for F,. (4.10)

We also need the contribution from D6-branes and 06-planes. In the Einstein frame
they scale as

VD6 oc T 3  for D6-branes,

VO6 cC -T- 3  for 06-planes, (4.11)

where we have indicated that 06-planes provide a negative contribution, while all
others are positive.

Altogether, we have the following expression for the scalar potential in 4-dimensions

V V 3 +Z V,+VD6 +V 0 6

P

A3 (#) + E A,(#i) AD6(q5) A 0 6 (q5)

Spp- 3 T 4  (4.12)

Here we have written the various coefficients as A3 (2 0), which in general are com-
plicated functions of all the other fields of the theory #j, namely the remaining set
of Kihler moduli, complex structure moduli, and axions. The coefficients Aj also
depend on the choice of flux integers fE. This means that V is in general a function
of hundreds of fields, for each of the exponentially large number of infinite families of
possible flux combinations on each of the many available Calabi-Yau manifolds. We
have simply described its dependence on two of the fields: p and r. An alternative
proof of eq. (4.12) from the perspective of the 4-dimensional supergravity formalism
is given in Appendix 4.7.2. As discussed in Ref. [43] this potential ensures that there
exist special points in field space which stabilize all the geometric moduli and many
axions. We are interested, however, in exploring the full moduli space in search of
inflation.

4.3.2 Proof of No-Go Theorem

We find that for any potential of the class we have constructed so far, inflation is
impossible anywhere in the moduli space. The proof of this result is quite simple.
The key is to observe that the potential in eq. (4.12) satisfies

8V V
-p - 3 = 9V+ZpV

Op Orp

> 9V, (4.13)

where the inequality comes from the fact that all V 0 (A, 0) and p 0. Now,
assuming we are in a region where V > 0, which is necessary for inflation, we can



divide both sides by V and rewrite this inequality in terms of # and i as

mpi o9 (lnV + 3\V2 (9lnV > * (4.14)
2 ( p or)( l

This implies that it is impossible for both terms in eq. (4.7) to be simultaneously

small. Specifically, comparing this inequality with eq. (4.7), we see that V2E/ifn
is the distance to the origin on the plane spanned by (a In V/ 13, a 1n V/fl, while a

sloped band around the origin is forbidden, implying the existence of a lower bound

on c. By minimizing e subject to the constraint (4.14), we find the bound on the

slow-roll parameter c to be

E > -7 whenever V > 0. (4.15)
- 13

Hence both inflation and de Sitter vacua are forbidden everywhere in field space.

Indeed in any vacuum BV//p = V/Or = 0, so eq. (4.13) implies V = -(EpV)/9.

By assuming V > 0 for at least one of p = 2, 4, or 6, then Minkowski vacua are for-

bidden also. 6 This type of relation was used in [43] to show that vacua in a specific

IIA compactification must be anti-de Sitter, and in [50] to rule out a simple F-term

uplift of this model; here we have shown that this relation holds very generally in IIA

compactifications, and furthermore rules out inflation anywhere on moduli space for

potentials containing only terms of the form (4.12). For stabilized compactifications,
the implication is that the field vector always undergoes fast rolling from a region

with V > 0 towards an anti-de Sitter vacuum.
The no-go theorem we have derived here can be interpreted as defining a necessary

condition for inflation in IIA models: In order to inflate, a HA compactification must

contain some additional structure beyond that considered so far which gives a term in

the potential V whose scaling leads to a term on the RHS of (4.13) with a coefficient

less than 9 if positive or greater than 9 if negative. In the next section we turn to a

discussion of specific types of structure which can realize this necessary condition for

inflation.

4.4 Evading the No-Go Theorem

In the analysis which led to the preceding no-go theorem for inflation in IIA com-

pactifications, we allowed a specific set of ingredients in the IIA models considered.

Following [43], we included NS-NS 3-form flux, R-R fluxes, D6-branes and 06-planes,
which are sufficient to stabilize all geometric moduli. Because D6-branes and anti-

D6-branes give terms to V which scale in the same way, this no-go theorem rules

out brane-antibrane inflation as well as inflationary models using other moduli as

6We almost certainly need V, > 0 for at least one of p = 2, 4, or 6 in order to be in the large

volume and small string coupling limit, since the 3-form, 0-form, and number of D6/06 planes are

tightly constrained by a tadpole condition.



the inflaton. Corrections to 10-dimensional supergravity which arise at small com-
pactification volume may evade our no-go result, so one approach to finding a IIA
compactification with inflation is to include finite volume corrections to the Kshler
potential. There are also other structures we can include in a compactification be-
sides those already mentioned which can evade the no-go result. In this section we
consider other possibilities which give rise to terms in the potential V which have
scaling coefficients violating (4.13). This may give some guidance for where to look
to find IIA compactifications with inflation and/or de Sitter vacua. Note that many
of the structures suggested go beyond the range of compactifications which are so far
well understood in string theory.

4.4.1 Various Ingredients

One obvious possibility is to include Dp-branes and Op-planes of dimensionality other
than p = 6. The scaling of the resulting contributions to V are as follows

VDp oc p T_ for Dp-branes,

V cC -p - T for Op-planes. (4.16)

In these cases, the right hand of eq. (4.13) is (12 - p/2)VDP/Op, so the no-go theorem
applies to Dp-branes with p K; 6 and Op-planes with p > 6, but is evaded otherwise.
Since the branes must extend in all non-compact directions of space-time' in IIA we
can only consider p = 4, 8. Wrapping such a brane, however, would either require
a compactification with non-trivial first homology class H1 or finite 7r1, or perhaps
require the use of so-called coisotropic 8-branes [51, 52]. These branes carry charge
and so would generate additional tadpoles which would need to be cancelled, as well
as potentially breaking supersymmetry. Compactifications with branes of this type
have not been studied extensively in the string theory literature, but it would be
interesting to investigate this range of possibilities further.

Another possibility is to include more general NS-NS fluxes, such as geometric
fluxes a la Scherk and Schwarz [53] or non-geometric fluxes [54]. Geometric fluxes
parameterize a "twisting" away from Calabi-Yau topology, generalizing the notion of a
twisted torus [53, 551. These fluxes are associated with a metric with curvature on the
compact space. Geometric fluxes arise under T-duality or mirror symmetry when an
NS-NS 3-form H has a single index in a dualized direction [56]. Further T-dualities
generate non-geometric fluxes, described in [57] through the sequence T : Habc --+

fba -+ Qab -+ Rabe, where f parameterize geometric fluxes, Q are locally geometric
but globally non-geometric fluxes which can in some cases be realized in the language
of "T-folds" [58, 59], and R parameterize fluxes associated with compactifications
which are apparently not even locally geometric. These general NS-NS fluxes and the
associated compactifications are still poorly understood. From the T-duality picture,
however, it is straightforward to determine the scalings of these 3 types of fluxes.

7 Otherwise they would describe localized excitations in an asymptotic vacuum not including these
branes.



Each T-duality inverts the size of a dimension of the compactification, replacing a
factor of p- 1 in the scaling with p, so we have

Vf oc ±p-T- 2  for geometric (f) flux,
VQ oc ±p T- 2  for Q flux,
VR Oc -p 3 T 2  for R flux. (4.17)

Applying the linear operator of eq. (4.13) to each of these terms gives a right hand side
of 7 V, 5V, and 3 VR, respectively. So although our no-go theorem applies when such
terms are negative, it is evaded if any of these contributions are positive. Among
these fluxes, the best understood are geometric fluxes, which are realized in many
simple compactifications such as twisted tori [44, 53, 55]. Compactification on spaces
with these fluxes (and other ingredients) is studied in the forthcoming paper by
Silverstein [47], where it is shown that de Sitter vacua can indeed be realized in such
backgrounds. This is a promising place to look for string inflation models. Note,
however, that general NS-NS fluxes cannot in general be taken to the large volume
limit. For example, fluxes of the Q type involve a T-duality inverting the radius of a
circle in a fiber when a circle in the base is traversed. Thus, somewhere the size of
the fiber must be sub-string scale. This makes solutions of the naive 4-dimensional
supergravity theory associated with flux compactifications such as those found in [60]
subject to corrections from winding modes and also to uncontrolled string theoretic
corrections if curvatures become large.

Another possible ingredient which can be added to the IIA compactification mod-
els are NS 5-branes; these are the magnetic duals of the string. Such objects are
non-perturbative and carry tension in 10 dimensions that scales as g- e- 24 While
they backreact more significantly than D-branes and so are not as simple to describe
at the supergravity level, their presence can be captured by adding a term of the form

-pS d6( g e-20 (4.18)

to the action of eq. (4.1). The compactification and conformal transformation yields
a new term that scales as

VNS5 oP 2 T-2 (4.19)

yielding a right hand side of eq. (4.13) of 8VNS5 , hence evading the no-go theorem.
To satisfy tadpole cancellation, one would probably wish to add metastable pairs of
separated NS 5-branes and anti-NS 5-branes, wrapping distinct isolated curves in the
same homology class. Such configurations have been a focus of study in the dual IIB
theory in recent works, starting with [61].

4.4.2 An Illustration

In this section we illustrate how the above ingredients may be useful from the point of
view of building de Sitter vacua and inflation. We focus the discussion on NS 5-branes,
which appear particularly promising. We will not attempt an explicit construction,



since that would take us beyond the scope of this work. Our goal is only to show
that simple, available ingredients in the IIA theory have energy densities which scale
with the volume and dilaton moduli in a way which suffices to overcome our no-go
theorem, which was based purely on scalings of energy densities. This should act as
a guide to model building, but should be taken in the heuristic spirit it is offered.

Using the potential of eq. (4.12) and adding to it a (necessarily) positive term
from NS 5-branes wrapping 2-cycles, we obtain 8

_A 3 (#$i) A,(#$2) _ Ac6(q5) ANS5Q7 i
V = + 1: S A06 + . (4.20)

prT2 P pp-sy 73 p 2T 2

Let us now streamline V and focus on the most important features of this setup;
we set A2 = Ac = 0, and expect the remaining coefficients to scale with fluxes and
numbers of planes and branes as

A3 ~ hi, Ao ~ f2, A4 ~ f A0 6 'N 0 6 , ANS5 ~ g(w)NNS5, (4.21)

where we have introduced a function g of the modulus w associated with the 2-cycle
wrapped by each NS 5-brane.

There is a tadpole constraint that the charge on the 06-plane must be balanced
by the fluxes from H3 and F, i.e., h3 fo - -No,. We use this to eliminate h3 . Now
since it has no effect on the kinetic energy, let us rescale our fields as: p -> p f4/fol
and T -> T fofj|/No. Then we have

B3(#_) B,(#$i) _ Bo___ _)_BNS5

V = V, .B3(0i) + + B 0 6 (q5) ± BNS5 (0i) (4.22)
372 P pp-ar4 T3 p 2 T 2

with V1/fl= NO,/If3fsj|, and

B 3 - 1, BO - 1, B 4 ~ 1, B0 6 ~1, BNS5 ~. c(w) g(w)NNS 5  f 4 |/N 4 .23)

So the shape of the potential is essentially controlled by the parameter c.
Let us make some comments on the value of c which determines the contribution

of the NS 5-brane. In the large f4 flux limit of [43], c is parametrically larger than
all other contributions, including that from the 3-form flux to which we compare:
The NS 5-brane contribution has the same scaling with T, but scales more slowly
to zero as p -- oo. Therefore, one would expect that one needs small NNS5 to push
V up without causing a runaway to infinite volume. As we will see, we need c to
be fined tuned and 0(1). An analogous situation occurs in JIB string theory with
compactifications involving anti-D3 branes and non-perturbative volume stabilization.
There the presence of strong warping allows one to construct states where the anti-D3
energy density is exponentially suppressed, naturally providing a small coefficient to
the perturbation of the energy density [62]. This plays an important role in de Sitter

8We have set AD6= 0 as it adds little to the analysis.



constructions in that context [63], and one might expect an analogous mechanism
(involving large warping or a very small cycle) could similarly dynamically explain
a small g(w) to compensate large f4 in the IIA context. We could also imagine a
compactification where No6 is very large to achieve the same result.

In any case, by treating c as a continuous parameter and ignoring the dynamics
of all other moduli, we can obtain a meta-stable de Sitter vacuum. We set (f-, = 1)
B3 = 1/4, Bo = 1/4, B4 = 3/8, Bo, = 2, and stabilize p by satisfying &V/&p = 0.
In Figure 4-1 we plot V = V(f) of eq. (4.22) for different choices of BNS5 = c. We
find that there are critical values of c: for a Minkowski vacuum cM ? 2.205 and for
a point of inflection cr 0 2.280. For c < cm an anti-de Sitter vacuum exists, for
cm < c < c, a de Sitter vacuum exists, and for c > c, no vacuum exists. For c close to
C+ we expect the de Sitter vacuum lifetime to be long, as in the KKLT meta-stable
vacuum of type JIB [63].

If one could realize such a construction explicitly in a controlled regime of the IIA
theory, then we anticipate that the opportunities to realize inflation will be greatly
enhanced. For example, the local maximum in Figure 4-1 may be useful since E --+ 0
there. It will often suffer, however, from the so-called q problem; the second slow-roll
parameter (which measures the second derivative of the potential) will typically be
large and negative. It is possible that, for example, by moving in another transverse
direction at the hill-top one could build some form of hybrid-inflation. We do note
that by choosing c = c1 we would immediately solve the q problem and have inflection-
point-inflation as advocated in [64]. In this situation, however, inflation would finish
with two difficulties; runaway moduli and little to no reheating. A different approach
is to simply fix the volume and the dilaton at a de Sitter (or Minkowski) minimum
with high mass and strictly use other lighter moduli to drive inflation in transverse
directions. Scenarios such as N-flation may be possible here [22].

4.5 Type IB Compactifications

In this section we discuss the relationship between the results we have derived here
for IIA string theory and previous work on inflation in type IIB string theory. Al-
though the type IIA and IIB string theories are related through T-duality, this duality
acts in a complicated way on many of the ingredients used in constructing flux com-
pactifications. The basic JIB flux compactifications of [65] (see also [66, 67, 68])
involve H-flux, F3-flux, D3-branes and 03-planes. T-duality/mirror symmetry on
such compactifications transforms the NS-NS H-flux into a complicated combination
of H-flux, geometric flux and non-geometric flux which generically violates the restric-
tions needed in the no-go theorem we have proven here. Conversely, the backgrounds
which we have proven here cannot include inflation are T-dual/mirror to complicated
IIB backgrounds with geometric and non-geometric fluxes. Furthermore, the volume
modulus used in our analysis is dual to a complex structure modulus in the JIB theory
which is difficult to disentangle from the other moduli, so that proving the analogous
no-go theorem in JIB, on the exotic class of backgrounds where it is relevant, would
be quite difficult without recourse to duality.



V/Vit,,

Figure 4-1: The potential V(f)/V, with (fin, = 1) B 3 = 1/4, Bo = 1/4, B4 =

3/8, B06 = 2, and p satisfying OVIap = 0. From bottom to top, the curves correspond
to the following choices of c: 2.183 (anti-de Sitter), 2.205 (Minkowski), 2.227 (de
Sitter), and 2.280 (inflection), respectively.



Despite these complications, we can easily explain why standard IIB flux vacua
behave so differently with respect to potential constructions of de Sitter space and
inflation as seen through the methods of this chapter. For IIB flux vacua, the basic
ingredients of H-flux, F 3-flux, D3-branes and 03-planes give contributions to the
4-dimensional potential which scale as

e24 e4* e3* e3*
6' 6' 6' 6

P 6 P 6 P 6 P 6(.4

respectively.9 Thus, the scaling equation (4.13) is not the appropriate equation for
gaining useful information about the cosmological structure. Instead, we simply have

-p 'v07P = 6V($, p) . (4.25)'a p

This shows immediately that any classical vacuum must have V = 0, as is well known
from the tree-level no-scale structure of this class of models [65]. When the dilaton
and complex structure moduli are chosen to fix V = 0 then there is a classical flat
direction. When such moduli cannot be chosen then the (positive) potential causes a
runaway to large volume. In such a simple setting, one can show that e > 3 whenever
V > 0, but this should not be viewed as a serious obstacle to realizing inflation or de
Sitter vacua. This is because the classical flat directions along which V = 0V/Op = 0
can be lifted by including quantum contributions (or other fluxes etc) to the potential,
and then the naive bound on c is irrelevant. Typically, non-perturbative corrections
to the superpotential are included to stabilize the Kshler moduli. This should be
contrasted with the classical stabilization in IIA.10

In this general IIB setting, starting with the no-scale vacuum and including various
corrections to achieve de Sitter, many inflationary models have been proposed. The
basic strategy, starting with [29], has usually been to stabilize the dilaton and volume
moduli at a high scale, and inflate at a lower energy scale. Then, the dilaton and
volume contributions to E (which were the focus of our no-go theorem in the IIA
context) are simply absent. The most explicit models to date appear in [31], though
one should consult the reviews [36, 37, 38, 39, 40] for a much more extensive list of
approaches and references.

4.6 Discussion

In this chapter we have demonstrated that a large class of flux compactifications
of type IIA string theory cannot give rise to inflation in the regime of moduli space
where we have parametric control of the potential. This result applies to large-volume,
weak coupling compactifications on arbitrary Calabi-Yau spaces with NS-NS 3-form

9This p scales as Vol'/ 3 defined in the string frame, as in Section II, and should not be confused
with the p modulus of e.g. [65], which scales as Vol 21 3 defined in the Einstein frame.

' 0Note that in the absence of fluxes, branes and orientifolds, mirror symmetry relates supersym-
metric IIA and JIB compactifications. In this case V = 0 exactly.
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flux, general R-R fluxes, D6-branes and 06-planes. These ingredients are arguably
the most well understood in IA compactifications. The no-go theorem of Section
4.3 applies in particular to the T 6 /Z1 orientifold model of Ref. [43] and the T 6 /Z 4

orientifold model of Ref. [69], and explains the numerical results of Ref. [46] which
suggested that inflation is impossible in these models. The no-go theorem we have
derived here, however, applies to all other Calabi-Yau compactifications of this general
type as well. So the simplest part of the IIA flux compactification landscape does not
inflate. This implies the following constraint: the portions of the landscape that are
possibly relevant to phenomenology will necessarily involve interplay of more diverse
ingredients, as has also been found in the JIB theory.

We emphasize that while our derivation has only involved two moduli (the volume
p and the dilaton T) we are not assuming that either of those moduli necessarily play
the role of the inflaton. Instead, inflation by any modulus (or brane/anti-brane) is
always spoiled due to the fast-roll of p and/or T. This follows because a necessary
condition for slow-roll inflation is that the potential be flat in every direction in
field space, as quantified by e. In fact because the first slow-roll parameter is so large
E ;> 2, there can never be many e-foldings, even ruling out so-called fast-roll inflation
[70]. We point out that this result is slightly non-trivial because it requires analyzing
both p and T, as in eq. (4.13), and cannot be proven by focussing on only one of them.

A simple corollary of our result is that no parametrically controlled de Sitter
vacua exist in such models. We emphasize, though, that proving the non-existence
of inflation is a much stronger statement than proving the non-existence of de Sitter
vacua. In particular we can imagine a priori a scenario where, although the vacuum
is anti-de Sitter (or Minkowski) or there is no vacuum at all, inflation is still realized
somewhere in a region where V > 0. We find, however, that this does not occur. It is
intriguing that the proof of the non-existence of inflation is so closely related to that
of the non-existence of de Sitter. This suggests that there may be a close connection
between building de Sitter vacua and realizing inflation.

Our result can be interpreted as giving a necessary condition for inflation in IIA
models. To have inflation, some additional structure must be added which gives rise
to a potential term in 4 dimensions with scaling such that -pV/Dp -3rBV/Tr = aV
with a coefficient a < 9 for a positive contribution and a > 9 for a negative contribu-
tion. We described various ingredients which give rise to such terms; compactifications
including these ingredients may be promising places to look for inflationary models.
Some of these ingredients take us outside the range of string compactifications which
are understood from a perturbative/supergravity point of view. Among the possi-
bilities which evade the assumptions made in deriving the no-go theorem are other
NS-NS fluxes, such as geometric and non-geometric fluxes. It is currently difficult
to construct models with such generic fluxes in a regime that is under control, but
progress in this direction has been made in [47], where IIA de Sitter vacua are found
using a specific set of geometrical fluxes and other ingredients. Another promising
direction which we have indicated here (also incorporated in [47]) is to include NS
5-branes and anti-NS 5-branes on 2-cycles in the Calabi-Yau. More work is needed to
find explicit models where these branes are stabilized in a regime allowing de Sitter
vacua and inflation, but this does not seem to be impossible or ruled out by any

101



obvious considerations. In addition to the mechanisms we have discussed, there are
probably other structures (e.g., D-terms [71, 72]) which violate the conditions of the
no-go theorem.

Including any of these ingredients does not guarantee that inflation will be realized.
It may be the case that a slightly more general no-go theorem for inflation exists with
certain combinations of additional ingredients. This may follow from studying other
moduli, since any field can ruin inflation by fast-rolling. It may also be that with
more work an elegant realization of inflation and de Sitter vacua can be found in type
IIA string theory. This deserves further investigation.
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4.7 Appendix: 4-Dimensional K= 1 Supergravity

It was shown in [42] that with the ingredients used in Section 4.3, the dimensional
reduction of massive IIA supergravity can be described in the language of a 4-
dimensional K = 1 supergravity theory in terms of a Kshler potential and super-
potential.

4.7.1 Kinetic Energy from Kiihler Potential

The authors of Ref. [42] showed that in the large volume limit the Kshler potential
is given by K = KK + KQ where

KK _ pi In ( KabcVaVbV , (4.26)

KQ =-2 2 l, In (2 m(CZ)Re(CgA) - 2Re(CZk)Im(Cgk)) (4.27)

Here v" are the Kshler moduli, Kabc are the triple-intersection form constants, the set
of Z and g are the co-ordinates in some basis of a holomorphic 3-form that describes
the complex structure moduli, and C is the "compensator" which incorporates the
dilaton. If the set of complex moduli is denoted , then the kinetic energy is given
by

T = -KjOy@'8l@- (4.28)

with corresponding first slow-roll parameter

E = i 2 V3 .(4.29)

Let us focus on the Kshler contribution. We write the Kshler moduli as #b
aa + iv , so the kinetic energy is given by

T=1 82 KKT K _ _4gay K aappVb gapb)
4&a~b(aO19A b + Diaa&iab). (4.30)

Now we change coordinates from Va to {p, ,a} as follows:

va a, with aasc77 = 6, (4.31)

so Vol= p3 . Then using 8,i(Kabc7a,7/Y) = 0, we obtain:

TK --bc a y( ) b

+ Kacd 'Yd 7bef i ~ 4Kabc! a aaaab (4.32)
1 6 p2 fti

By switching from p to ,3, we see that the first term is precisely the kinetic energy
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for p. The remaining kinetic energy terms for -,a and aa are block diagonal (there are
no cross terms involving (,p ("" etc), and this has an important consequence: We
know that in the physical region the total kinetic energy must be positive, so each of
the above 3 terms must be positive. Hence, TK _ -(g) 2 /2 + positive.

For the complex structure/dilaton sector the procedure is similar, although more
subtle. In (4.27) the expression for KQ is not a completely explicit function of the
moduli; although Re(CZk) and Re(Cgk) are explicitly half of the complex structure
moduli, Im(CZk) and Im(Cgk) are only functions of the remaining complex structure
moduli. Nevertheless, the kinetic term is again block diagonal. To see this, note
that the compensator C, and hence all moduli in this sector, are proportional to T.

Furthermore, the Z and g are constrained to the surface: KQ = -2fn,' ln(r 2 ). This
is analogous to the Kshler sector. Without going through the details here, we find
T -= -(f) 2/2+positive. In fact we know this must be true from the 10-dimensional
point of view; the dilaton modulus is inherited directly from 10 dimensions, and so
cannot possibly give rise to mixed kinetic terms with the complex structure moduli
in 4 dimensions.

4.7.2 Potential Energy from Superpotential

From [42] the superpotential in the IIA theory is given by W = WK + WQ where

WK f -+ f4ata + f2a Nabc - fObtatbtc (433)
2 6

WQ = (IhX - hk k) + 2i (IARe(Cg) - hkRe(CZk)). (4.34)

We will not explain all the details of this here; the interested reader is pointed to
Refs. [42, 43]. For our present purposes it suffices to note that Im(ta) = V" oc p and
Im(WQ) oc r. Hence, the superpotential is cubic in p and linear in T.

From the supergravity formula for the Einstein frame potential

V = eK-ni DWKt5DjW - 3 f-2) (4.35)
Pi

we easily infer the dependence on p and r. Firstly, since the constraints on Tha and
complex structure imply that K -rn ln(8p3'r 4), the pre-factor scales as

eK/,-n, -3 -4 (4.36)

Also, the scaling contributions from the parenthesis in eq. (4.35), which is roughly

IW|2, can be easily determined. By analyticity, only terms of the form pPr4q can
appear where p + q is even. This leaves only the following 7 possible scalings:
T 2 ,P 6  4 p 2 1 P37, pr. By multiplying by the pre-factor, we see that the first 6 terms
are precisely those that arise from H3 , FO, F2, F4 , F6 , and D6/06, respectively. The
7th term (pT) is new, but cancels between the two terms inside the parenthesis of
eq. (4.35). Hence we obtain the form of the potential given in eq. (4.12).

104



Bibliography

[1] A. Guth, "The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems," Phys. Rev. D, 23, 347 (1981).

[2] A. D. Linde, "A New Inflationary Universe Scenario: A Possible Solution of the
Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,"
Phys. Lett. B, 108, 389 (1982).

[3] A. Albrecht and P. J. Steinhardt, "Reheating an Inflationary Universe,"
Phys. Rev. Lett., 48, 1220 (1982)

[4] A. D. Linde, "Chaotic Inflation," Phys. Lett. B, 129, 177 (1983)

[5] M. Tegmark, "What does inflation really predict?," JCAP 0504 (2005) 001
[arXiv:astro-ph/0410281].

[6] D. N. Spergel et al., "Wilkinson Microwave Anisotropy Probe (WMAP) Three
Year Results: Implications for Cosmology", Astroph. J. Supp., 170, 377 (2007)
[arXiv:astro-ph/0603449].

[7] M. Tegmark et al., " Cosmological Constraints from the SDSS Luminous Red
Galaxies," Phys. Rev. D74, 123507 (2006) [ arXiv:astro-ph/0608632].

[8] S. Hellerman, N. Kaloper, and L. Susskind, "String Theory and Quintessence,"
(2001) [arXiv:hep-th/0104180].

[9] W. Fischler, A. Kashani-Poor, R. McNees, and S. Paban, "The Acceleration of
the Universe, a Challenge for String Theory," (2001) [arXiv:hep-th/0104181].

[10] R. Brustein and S.P. de Alwis, "Inflationary cosmology in the central region
of string / M theory moduli space," Phys. Rev. D68 (2003) 023517 [arXiv:hep-
th/0205042].

[11] E. Silverstein, "TASI/PiTP/ISS lectures on moduli and microphysics,"

[arXiv:hep-th/0405068].

[12] M. Grana, "Flux compactifications in string theory: A comprehensive review,"
Phys. Rept. 423 (2006) 91 [arXiv:hep-th/0509003].

[13] M. Douglas and S. Kachru, "Flux compactification," Rev. Mod. Phys. 79 (2007)
733 [arXiv:hep-th/0610102].

105



[14] R. Bousso, "Precision cosmology and the landscape," [arXiv:hep-th/0610211].

[15] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, "Four-dimensional string
compactifications with D-branes, orientifolds and fluxes," Phys. Rept. 445 (2007)
1 [arXiv:hep-th/0610327].

[16] P. Binetruy and M.K. Gaillard, "Candidates for the Inflaton Field in Superstring
Models," Phys. Rev. D34 (1986) 3069.

[17] T. Banks, M. Berkooz, S. Shenker, G. Moore and P. Steinhardt, "Modular cos-
mology," Phys. Rev. D52 (1995) 3548 [arXiv:hep-th/9503114].

[18] J. Conlon and F. Quevedo, "Kahler moduli inflation," JHEP 0601 (2006) 146
[arXiv:hep-th/0509012].

[19] J.R. Bond, L. Kofman, S. Prokushkin and P. Vaudrevange, "Roulette inflation
with Kahler moduli and their axions," Phys. Rev. D75 (2007) 123511 [arXiv:hep-
th/0612197].

[20] J. Blanco-Pillado et al, "Racetrack inflation," JHEP 0411 (2004) 063 [arXiv:hep-
th/0406230].

[21] J. Kim, H. Nilles and M. Peloso, "Completing natural inflation," JCAP 0501
(2005) 0501 [arXiv:hep-ph/0409138].

[22] S. Dimopoulos, S. Kachru, J. McGreevy and J. Wacker, "N-flation," [arXiv:hep-
th/0507205].

[23] R. Easther and L. McAllister, "Random matrices and the spectrum of N-flation,"
JCAP 0605 (2006) 018 [arXiv:hep-th/0512102].

[24] R. Kallosh, N. Sivanandam and M. Soroush, "Axion inflation and gravity waves
in string theory," [arXiv:0710.3249].

[25] T.W. Grimm, "Axion inflation in type II string theory," [arXiv:0710.3883].

[26] G. Dvali and S.H. Tye, "Brane inflation," Phys. Lett. B450 (1999) 72 [arXiv:hep-
ph/9812483].

[27] G. Shiu and S.H. Tye, "Some aspects of brane inflation," Phys. Lett. B516
(2001) 421 [arXiv:hep-th/0106274].

[28] C. Burgess et al, "Brane/anti-brane inflation in orbifold and orientifold models,"
JHEP 0203 (2002) 052 [arXiv:hep-th/0111025].

[29] S. Kachru et al, "Towards inflation in string theory," JCAP 0310 (2003) 013
[arXiv:hep-th/0308055].

[30] E. Silverstein and D. Tong, "Scalar speed limits and cosmology: Acceleration
from D-cceleration," Phys. Rev. D70 (2004) 103505 [arXiv:hep-th/0310221].

106



[31] D. Baumann, A. Dymarsky, I. Klebanov and L. McAllister, "Towards an explicit
model of D-brane inflation," [arXiv:0706.0360].

[32] K. Becker, M. Becker, and A. Krause, "M-Theory Inflation from Multi M5-Brane
Dynamics," Nucl.Phys. B715 (2005) 349-371, [arXiv:hep-th/0501130v4].

[33] A. Krause and E. Pajer, "Chasing Brane Inflation in String-Theory,"

[arXiv:0705.4682v2 [hep-th]].

[34] J. Polchinski, "Introduction to cosmic F- and D-strings," [arXiv:hep-th/0412244].

[35] M. Alishahiha, E. Silverstein and D. Tong, "DBI in the sky," Phys. Rev. D70
(2004) 123505 [arXiv:hep-th/0404084].

[36] S. H. Tye, "Brane inflation: String theory viewed from the cosmos," [arXiv:hep-
th/0610221].

[37] J. Cline, "String Cosmology," [arXiv:hep-th/0612129].

[38] R. Kallosh, "On inflation in string theory," [arXiv:hep-th/0702059].

[39] C.P. Burgess, "Lectures on cosmic inflation and its potential stringy realiza-
tions," [arXiv:0708.2865].

[40] L. McAllister and E. Silverstein, "String cosmology: A review,"
[arXiv:0710.2951].

[41] L. J. Romans, "Massive K 2A Supergravity in Ten-Dimensions,"
Phys. Lett. B169 (1986) 374.

[42] T. Grimm and J. Louis, "The Effective Action of Type IIA Calabi-Yau Orien-
tifolds," Nucl.Phys. B718 (2005) 153-202 [arXiv:hep-th/0412277].

[43] 0. DeWolfe, A. Giryavets, S. Kachru, W. Taylor, "Type IIA Moduli Stabiliza-
tion," JHEP 0507, (2005) [arXiv:hep-th/0505160].

[44] G. Villadoro and F. Zwirner, "N =1 Effective Potential from Dual Type-IIA
D6/06 Orientifolds with General Fluxes," JHEP 0506 (2005) 047 [arXiv:hep-
th/0503169].

[45] B. S. Acharya, F. Benini, and R. Valandro, "Fixing Moduli in Exact Type IIA
Flux Vacua," JHEP 0702 018 (2007), [arXiv:hep-th/0607223v2].

[46] M. P. Hertzberg, M. Tegmark, S. Kachru, J. Shelton, 0. Ozcan, "Searching
for Inflation in Simple String Theory Models," Phys. Rev. D 76, 103521 (2007)

[arXiv:0709.0002 [astro-ph]].

[47] E. Silverstein, "Simple de Sitter Solutions," to appear.

[48] G. Moore, private communication.

107



[49] T. Banks and K. van den Broek, "Massive IIA flux compactifications and U-
dualities," JHEP 0703 068 (2007) [arXiv:hep-th/0611185].

[50] R. Kallosh and M. Soroush, "Issues in IIA uplifting," JHEP 0706 041 (2007)
[arXiv:hep-th/0612057].

[51] A. Font, L.E. Ibanez and F. Marchesano, "Coisotropic D8-branes and model-
building," JHEP 0609 080 (2006) [arXiv:hep-th/0607219].

[52] A. Kapustin and T. Orlov, "Remarks on A branes, mirror symmetry, and the
Fukaya category," J. Geom. Phys. 48 (2003) 84 [arXiv:hep-th/0109098].

[53] J. Scherk and J. H. Schwarz, "How To Get Masses From Extra Dimensions,"
Nucl. Phys. B 153 61 (1979).

[54] B. Wecht, "Lectures on Nongeometric Flux Compactifications," [arXiv:0708.3984
[hep-th]].

[55] N. Kaloper and R. C. Myers, "The O(dd) story of massive supergravity," JHEP
9905 010 (1999) [arXiv:hep-th/9901045].

[56] S. Kachru, M. Schulz, P. Tripathy and S. Trivedi, "New supersymmetric string
compactifications," JHEP 0303 (2003) 061 [arXiv:hep-th/0211182].

[57] J. Shelton, W. Taylor, and B. Wecht, "Nongeometric Flux Compactifications,"
JHEP 0510 085 (2005), [arXiv:hep-th/0508133v4].

[58] A. Dabholkar and C. Hull, "Duality twists, orbifolds, and fluxes," JHEP 0309
054 (2003) [arXiv:hep-th/0210209].

[59] C. M. Hull, "A geometry for non-geometric string backgrounds," JHEP 0510
065 (2005) [arXiv:hep-th/0406102].

[60] J. Shelton, W. Taylor and B. Wecht, "Generalized flux vacua," JHEP 0702 095
(2007) [arXiv:hep-th/0607015].

[61] M. Aganagic, C. Beem, J. Seo and C. Vafa, "Geometrically induced metastability
and holography," [arXiv:hep-th/0610249].

[62] S. Kachru, J. Pearson and H. Verlinde, "Brane/flux annihilation and the string
dual of a nonsupersymmetric field theory," JHEP 0206 (2002) 021 [arXiv:hep-
th/0112197].

[63] S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, "de Sitter Vacua in String
Theory," Phys. Rev. D68 (2003) 046005, [arXiv:hep-th/0301240].

[64] N. Itzhaki and E. D. Kovetz, "Inflection Point Inflation and Time Dependent
Potentials in String Theory," JHEP 10 (2007) 054, [arXiv:0708.2798].

108



[65] S. Giddings, S. Kachru and J. Polchinski, "Hierarchies from Fluxes in String
Compactifications," Phys. Rev. D66 (2002) 106006 [arXiv:hep-th/0105097].

[66] K. Becker and M. Becker, "M theory on eight manifolds," Nucl. Phys. B477
(1996) 155 [arXiv:hep-th/9605053].

[67] S. Gukov, C. Vafa and E. Witten, "CFTs from Calabi-Yau fourfolds," Nuel.
Phys. B584 (2000) 69 [arXiv:hep-th/9906070].

[68] K. Dasgupta, G. Rajesh and S. Sethi, "M theory, orientifolds, and G-flux," JHEP
9908 (1999) 023 [arXiv:hep-th/9908088].

[69] M. Ihl and T. Wrase, "Towards a Realistic Type IIA T 6 /Z 4 Orientifold Model
with Background Fluxes, Part 1: Moduli Stabilization," JHEP 0607 027 (2006),
[arXiv:hep-th/0604087].

[70] A. Linde, "Fast-Roll Inflation," JHEP11 (2001) 052.

[71] M. Ihl, D. Robbins, and T. Wrase, "Toroidal Orientifolds in IIA with General
NS-NS Fluxes," JHEP 08 043 (2007), [arXiv:0705.3410 [hep-th]].

[72] D. Robbins and T. Wrase, "D-Terms from Generalized NS-NS Fluxes in Type
II," [arXiv:0709.2186 [hep-th]].

109



Chapter 5

On Inflation with Non-minimal
Coupling

A simple realization of inflation consists of adding the following operators to the
Einstein-Hilbert action: (8#)2, A&, and (#2R, with ( a large non-minimal coupling.
Recently there has been much discussion as to whether such theories make sense
quantum mechanically and if the inflaton # can also be the Standard Model Higgs.
In this chapter we answer these questions. Firstly, for a single scalar #, we show
that the quantum field theory is well behaved in the pure gravity and kinetic sectors,
since the quantum generated corrections are small. However, the theory likely breaks
down due to scattering provided by the self-interacting potential. Secondly, we show
that the theory changes for multiple scalars q with non-minimal coupling 0$ q7,
since this introduces qualitatively new interactions which manifestly generate large
quantum corrections even in the gravity and kinetic sectors, spoiling the theory for
energies > #p/(. Since the Higgs doublet of the Standard Model includes the Higgs
boson and 3 Goldstone bosons, it falls into the latter category and therefore its va-
lidity is manifestly spoiled. We show that these conclusions hold in both the Jordan
and Einstein frames and describe an intuitive analogy in the form of the pion La-
grangian. We also examine the recent claim that curvature-squared inflation models
fail quantum mechanically. Our work appears to go beyond the recent discussions.

5.1 Introduction

Cosmological inflation is our leading theory of the very early universe [1, 2, 3, 4],
although its underlying microphysics is still unknown. Slow-roll inflation occurs in
many models constructed over the years, with a scattering of model-dependent pre-
dictions. Models of inflation are quite UV sensitive since it may have occurred at
extremely high energy scales, far higher than that which we can probe at colliders,
and since some models involve super-Planckian excursions in field space. This sug-
gests that top-down approaches may be required to make progress, although progress
in that direction has not been easy (e.g., see [5]). On the other hand, it is interesting
to explore simple models to see what we might learn and if we can connect inflation
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to low energy physics.
One approach is to focus on dimension 4 Lagrangians, which allows the inclusion of

the operators ((8#) 2 , A04, and (#2R in addition to the Einstein Hilbert term finR (by
"dimension 4" we mean that each operator has a dimensionless coefficient, although
gravity modifies the power counting since every term is an infinite tower of operators
if we expand around flat space). The (#2R term is in fact required to exist for an
interacting scalar field in curved space. By taking the non-minimal coupling ( to be
large, a phase of inflation takes place, as originally discussed in [6] with constraints
discussed in [7, 8, 9, 10].

A large dimensionless coupling is unusual from the perspective of particle physics,
leading to much recent debate as to whether such models make sense quantum me-
chanically [6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. In
this work we show that for a single scalar field # the model is well behaved quantum
mechanically in the pure gravity and kinetic sectors, since these do not generate large
quantum corrections. However, the self-interacting potential does likely cause the the-
ory to fail. For a vector of fields # carrying an O(N) symmetry the theory manifestly
generates large quantum corrections in the gravity and kinetic sectors and breaks
down at high scales relevant to inflation. As far as we aware, this difference between
the single field and multi-field case has not been fully appreciated in the literature.
So multi-field models of non-minimal inflation are manifestly ruled out (including
the Standard Model Higgs), while single field models of non-minimal inflation are
also problematic, in the sense that the Einstein frame potential is non-polynomial
and therefore these models likely fail due to high energy scattering processes. This
presents a challenge to them having a UV completion. We also examine curvature-
squared models and show that their scalar-tensor formulation is perturbatively well
behaved in the gravity, kinetic, and potential sectors; this contradicts the claims of
Ref. [17].

Our chapter is organized as follows: in Section 5.2 we briefly review the class of
non-minimal models, in Section 5.3 we discuss the quantum corrections, in Section
5.4 we discuss the pion analogy, in Section 5.5 we discuss curvature-squared models,
and finally we conclude in Section 5.6.

5.2 Non-minimally Coupled Models

Consider a vector of scalar fields # with an O(N) symmetry, non-minimally coupled to
gravity. It is permissible to introduce the following operators into the action: 05. -89,
A(# - #)2, and (# - #R, where the last term represents a non-minimal coupling of the
field to gravity. Adding these to the usual Einstein-Hilbert term, we have the action

Jdh/ [ P )f($)R -2s # - V ) (5.1)

where f() = I+ O- & /b and V() = (j- q)2. Since we have a new parameter
(, which is essentially unconstrained by observation, this allows the self-coupling
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parameter to be non-negligible, such as A = 0(10-1), and yet we can achieve the
correct amplitude of density fluctuations by making ( very large: ( = 0(10'). This
was the original motivation of Ref. [6] for introducing such models, since it appeared'
that embedding the inflaton into the matter sector of the theory would be easier. By
contrast compare to minimal A#4 inflation, with A = 0(10-12), which is evidently
radiatively unstable if # carries appreciable couplings to other fields.

One may either study the theory in this original Jordan frame, or switch to the
Einstein frame by defining a new metric g = (#)ggy. The corresponding Einstein
frame potential is

V(3) A(0- 2

VE() 25) -- 2. (5.2)
f(0)2  1+

In the Einstein frame, although the gravity sector is simple, the kinetic sector for #
is not. Ignoring total derivatives, we find the Einstein frame action to be

S--zrdx E9~- ~~ ~q # (#~~E ( ) (5.3)
2 P 2 f (#) fin f (0)2

The first term of the kinetic sector comes from the simple conformal rescaling and
the second term comes from transforming the Ricci scalar.

In the classical dynamics we can assume that only a single component of the
# vector is rolling during inflation since all transverse modes will be frozen due to
Hubble friction. Assuming only one component is active (call it #), the kinetic energy
sector can be made canonical. Let us make this explicit. We introduce a new field o,
defined through the integral

/* 1 6 (202
0- =sign() j+ .2 (5.4)sinO o f (0) -Pf (0)2

In terms of o- both the gravity and kinetic sectors are minimal, but the potential
VE(o-) is somewhat complicated, but monotonic and well behaved.

It is simple to see from eq. (5.2) that when # >> fip/V/ (corresponding to o >>
ripi) the potential VE approaches a constant; this is the regime in which the effective
Planck mass runs in the original Jordan frame. In this regime the flatness of the
potential ensures that a phase of slow-roll inflation takes place. Inflation ends when
S~ #e -- fnp/ . For details on the inflationary predictions we point the reader to
Refs. [6, 11].

5.3 Quantum Corrections

Various attempts have been made at addressing whether quantum corrections spoil
the validity of these non-minimal models of inflation due to the (#2 R term; see
[6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 281. In each of these
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Figure 5-1: Tree-level scattering 2# -+ 2#. Diagrams 1-3: In Jordan frame it is due
to graviton exchange through t, u, and s-channels. Diagram 4: In Einstein frame it
is due to a single 4-point vertex.

works, the conclusion (either positive or negative) came independent of the number
of scalars # . Here we will show that the answer is in fact two-fold: for single field
models the the gravity and kinetic sectors do not generate large quantum corrections,
instead it is the potential V(#) that causes the theory to enter a regime in which
standard perturbation theory likely breaks down. For multiple field models, we show
that the theory manifestly generates large quantum corrections in the gravity and
kinetic sectors and breaks down in the regime relevant for inflation.

5.3.1 Single Field

Most descriptions of non-minimal models have focussed on just a single field #, even
for cases where # represents the Higgs. For example, in [18] it is explicitly assumed
that all quantum issues require only a single field analysis (and it is concluded in [18]
that the quantum field theory is highly unnatural and breaks down). In this case it
is subtle as to whether the effective field theory makes sense. Let us go through the
analysis first in the Jordan frame and then the Einstein frame. We begin by examining
the gravity and kinetic sectors (as was the focus of Ref. [17]) before addressing the
potential V in the next section.

In the Jordan frame we must examine the consequences of the #21R operator. Let
us expand around flat space. We decompose the metric as

h
9pv = TI + f , (5.5)

m~1

here h,, are metric perturbations with mass dimension 1. The Ricci scalar has an
expansion around flat space that goes as R - Zh/Finl + .... To leading order in the
Planck mass, this gives the following dimension 5 operator in the Jordan frame action

#2 Dh. (5.6)
mPl

It is tempting to declare that this implies the theory has a cutoff at A = fnpi/ , but
is this correct? To answer this, let us consider the scattering process: 2# -+ 2#.
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At tree-level this proceeds via a single exchange of a graviton, giving the following
leading order contribution to the matrix element (we assume massless # particles)

Mc2# - 2#) ~ - (5.7)
Pl

This appears to confirm that the cutoff is indeed A = but this conclusion is
premature. Let us explain why. The index c on M stands for "channel"; there are
s, t, and u-channels, which all scale similarly (Fig. 5-1 diagrams 1-3). When we sum
over all 3 channels to get M 0 tt and put the external particles on-shell, an amusing
thing happens: they cancel. So the leading term in powers of ( vanishes [29, 30]. The
first non-zero piece is

Mtot(2# -+ 2#) ~- (5.8)
Pi

which shows that the true cutoff is A = r-t. Hence, according to 2 -> 2 tree-level
scattering the theory only fails at Planckian energies.

What about in the Einstein frame? To address this question we need to focus on
the kinetic sector, which we presented earlier in eq. (5.3). By expanding for small q,
we have the following contributions

(04)2 + -2 02(00)2 +... (5.9)
P

The second term appears to represent a dimension 6 interaction term with cutoff
A = fnp,/(. We can compute 2# -+ 2# scattering at tree-level using this single 4-
point vertex (Fig. 5-1 diagram 4). We find the scaling M ~ 2 E 2/f2, but when the
external particles are put on-shell we find that the result is zero. This is also true
at arbitrary loop order (see Fig. 5-2 for the I-loop diagrams) and for any scattering
process (despite the power counting estimates of Ref. [17]). The reason for this was
alluded to earlier: in this single field case, we can perform a field redefinition to o-
(eq. (5.4)) which carries canonical kinetic energy. Hence the kinetic sector is that
of a free theory, modulo its minimal coupling to gravity, giving the correct cutoff
A = mei. Hence scattering amplitudes generated from purely the gravity and kinetic
sectors allow the theory to be well defined up to Planckian energies. This shows that
naive power counting can be misleading.

5.3.2 The Potential

Next we examine the potential V. This potential seems particularly strange in the
Einstein frame, where it takes the following form

A#(o-)4 A A ( 2

VE) 2 ( 4 2 0. +. .. (5.10)
+ n4 

P

m,
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J\f\f~J\J\A~

Figure 5-2: One-loop scattering 2# -- 2#. Diagrams 1-9 (left block): In Jordan frame
it is due to graviton exchange. Diagrams 10-12 (right block): In Einstein frame it
is due to a 4-point vertex. Top row: t-channel, middle row: u-channel, bottom row:
s-channel.
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In this case it would seem that the theory breaks down for A mi-/- . It is impor-
tant to compute the quantum corrections. Recall the general form for the one-loop
quantum corrected potential [31]

1
V l )o = Vci(a) + 642 (Xc"(u)) 2 ln(V''(u)) +l .... (5.11)

Since the full potential is slowly varying it is simple to check that the corrections
are always small, especially for small A. Since the one-loop quantum corrections are
small, there is some naive hope that this theory may make sense; this appears to be
the philosophy advocated in recent studies of Higgs-inflation. On the other hand, one
might take the point of view that by simply expanding around small a, the theory
fails when the dimension 6 term is comparable to the dimension 4 term [18]. The
breakdown of this theory would appear in many-particle hard scattering processes.

The behavior of a scalar field theory with a slowly varying non-polynomial poten-
tial is considered an open problem in field theory. However, a perturbative analysis
suggests that the theory fails at A ~ fn,/. Note that this conclusion arises only
if one studies scattering amplitudes involving vertices provided by the potential V.
In particular, this necessarily requires scattering amplitudes to involve powers of A.
Such factors of A were not included in Ref. [17], who focussed exclusively on the grav-
ity and kinetic sectors. Hence, the scattering estimates provided in Ref. [17] do not
apply in the case of a singlet scalar, since they arise exclusively from the gravity and
kinetic sectors alone (as we analyzed in the previous section). However, by including
corrections from the potential, the theory likely fails at ~r /

To say it differently, the Einstein frame Lagrangian acquires a shift symmetry
o -+ u + co in the A --* 0 limit, which protects scattering amplitudes from becoming
large. This also occurs in the Jordan frame, though the symmetry is nonlinearly
realized. However, finite A breaks the symmetry and likely compromises the theory.

5.3.3 Multiple Fields

In the case of N-fields, the story is rather different. Here we can just focus on the
gravity and kinetic sectors to understand that the effective theory breaks down. Let
us begin the discussion again in the Jordan frame. Expanding the metric around flat
space as before, we have the set of dimension 5 interactions

_ .# I - 1h (5.12)

Consider particles #1 and 02. Lets compute the tree-level scattering process 1+#2 -+

#1 + #2 due to the exchange of one graviton. The scattering matrix scales as earlier

Mc(#1 + #2 -4 #1 + #2) ~- 2 . (5.13)
Pl

But unlike the case of identical particles, this process only occurs through a single
channel - the t-channel (Fig. 5-1 diagram 1). Hence there is no cancellation. This
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means that the theory does become strongly coupled at A = ?in-/ . Furthermore,
the probability for a pair of different particles to scatter off each other grows without
bound, violating unitarity (as noted in Refs. [17, 32]).

In the Einstein frame the kinetic sector takes the following form for small #

#- + (# + (5.14)
Pi

It is impossible to perform a field re-definition to bring this into canonical form. The
second term introduces cross terms between the different fields: 02

1 0#142 &#2 /02 -
As in the Jordan frame, this allows for #1 + #2 -+ #1 + #2 scattering to take place
at tree-level through a simplified vertex with M ~ ( 2E 2/7i4. This confirms that the
theory is strongly interacting at A = fep/ .

But what if we focus purely on the scattering of identical particles 2#1 -+ 21?
Then at tree-level we seem fine, due to the cancellation among the 3 channels. How-
ever, the strong coupling between #1 and #2 ensures that quantum corrections from #2
particles running in the loop are large and do not cancel among channels. In Fig. 5-2
we have included all 1PI one-loop diagrams in the Jordan frame (9 diagrams in the
left block) and Einstein frame (3 diagrams in the right block). If only a single field
#1 is present then cancellation occurs from summing the 9 diagrams in Jordan frame,
or summing the 3 diagrams in Einstein frame. When 02 is included it only appears
in the loop in the 3rd column of diagrams in the Jordan frame, and in all 3 diagrams
in the Einstein frame but with a truncated vertex rule. This prevents cancellation
among the diagrams.

Note that the breakdown of the theory at A = min,/ is due to scalar fields running
in a loop, not gravitons. Hence this represents a breakdown of the matter sector, not
a quantum-gravity effect per se. In order to eliminate the ensuing divergences, we
require the introduction of new operators into the classical Lagrangian:

C1 * C2 -* - -* *
A(000 ' -(8,# -A,#)(Y# -"#), (5.15)

with A = i,/( and the ci cannot be much smaller than O(47r)- 2 without fine tuning.
In addition, the quantum field theory will also generate corrections to the potential,
such as 61A2( . ')3/A2 and 52A2 (o . q))4 /A4 . Note the factor of A2 here, which arises
because the potential is protected by a shift symmetry in the A -+ 0 limit.

How do such operators affect the inflationary model? Lets focus on the end of
inflation where # ~ / Here the kinetic and potential terms in the classical
Lagrangian are comparable, with value V - (j0#)2 .A The new dimension 8
operators would be - c A2 fdI; parametrically larger than the included operators by a
factor c A (2, destroying the theory for > 1. This is relevant to the Standard Model
Higgs which is comprised of multiple scalars.
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5.4 An Analogy - the Pion Lagrangian

If this distinction between the behavior of a single scalar field theory compared to a
multiple scalar field theory seems strange, let us recall a familiar case where the same
is true.

Consider the Lagrangian of the u-model

E = - 1#00#00+ # A#n - (#n~n)2 (5.16)
2 2 4

where n is summed over n = 1, 2, ... , N, N + 1, with the first N components forming
a vector # and the last component #N+1 a scalar. After spontaneous symmetry
breaking, it is useful to use fields that make it manifest that the potential only depends
on the length of #n, which we call o-(x) = E # n(x)2 , and the Goldstone bosons,
which we call ((x). Following Ref. [33] the original Lagrangian can be recast as

L = (1-)2 -2U2- + U2 _A . (5.17)
2 + 2 2 4

At low energies, the massive field o- will relax to its minimum at (-) = p/v. By
defining F = 2(o) and introducing properly normalized Goldstone bosons F(x)
F ((x), the low energy Lagrangian for the Goldstone bosons is

1 8ii - 82
L=_1 a--7- (5-18)

2 (1 + 7- /F2)2

For 3 pions it is well known that this theory breaks down for energies much larger than
F, which can be confirmed by computing scattering amplitudes. A rough estimate
for the breakdown of the quantum theory is A = 47rF, where the 47r comes from loop
integrals.

The 2 -+ 2 tree-level scattering process has the matrix element

A4 (7ra + 7rb -- rc + 7rd)

= 4F 2 [6 ab6cd-PaPb - PcPd) + 6 ac6 bd(PaPc + PbPd) + 6 adbc(PaPd + PbPc)] (5.19)

which is non-zero whenever some of the a, b, c, d are different (scaling as ~ E2/F2),
but is zero if a = b = c = d and the 7r's are put on-shell (p2 = 0). The latter is
the case for a single field. The same is true for loop corrections. As earlier, what
is special about the N = 1 case is that the Lagrangian (5.18) is really a free field
theory in disguise (which can be made manifest through a field redefinition), but it
is unambiguously an interacting field theory for N > 1.

On the other hand, even for N = 1, if we explicitly break the global symmetry,
then the (pseudo)-Goldstone bosons acquire a mass and a potential V. This potential
is non-polynomial and likely causes the theory to fail for E > F.
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5.5 Curvature-Squared Models

Let us now turn to another type of non-standard model for inflation, which comes
from the inclusion of curvature-squared terms in the action [34]

S=Jd4x -g [1i 1R+(-R2], (5.20)

with 1 = (108) to achieve the correct amplitude of density fluctuations. Although
we consider this model to be ad hoc and not necessarily "natural", it is still worthwhile
to discuss whether this theory makes sensible inflationary predictions or not.

Since ( > 1 we again should ask if scattering amplitudes becoming large at
energies well below in,. In particular, by expanding around flat space, the curvature-
squared term introduces the following dimension 6 and 7 operators into the action

( h)2, (Dh) 2h, (5.21)
Pi Pl

respectively. The former modifies the graviton propagator at high energies. The
latter introduces a 3-point vertex, which can be used to construct tree-level graviton-
graviton scattering processes. In particular, each of the t, u, and s-channels scale to
leading order as

(2E6
r % _1 ( 2 E( 5 .2 2 )M c (2 hyV -+-- 2 hyv) ~ - 6, 5.2P1

suggesting that the theory violates unitarity above the cutoff A = fie /( 1/ 3 , as claimed
recently in [17] and criticized on that basis. However, as was the case in Section 5.3.1,
if we sum over all diagrams, then this piece vanishes. Instead, the leading non-zero
piece scales as M.t (E/ip,1 )2 . (Note that there is also a 4-point graviton vertex
and that the correction to the graviton propagator is important here). So according
to the tree-level analysis of 2 -+ 2 scattering, the correct cutoff is A = fer.

It is not obvious how to compute all quantum corrections to this theory in the
Jordan frame, since it is a higher derivative theory due to the 7Z2 term. It has been
argued in the literature that it is best to define the quantum theory in the frame
in which the degrees of freedom are manifest, which is the Einstein frame. Ref. [17]
claimed that this theory fails equally in any frame, including the Einstein frame. So
lets re-write the action as a scalar-tensor theory. This involves a canonical gravity
sector, a canonical kinetic sector for some scalar o-, and a potential VE(0-) which
exhibits 0(1) variations on Au- ~fi,. It can be shown that this gives

S Jdx -gE [ i RE - 2 62 exp(- ./fi) . (5.23)

This action seems rather innocuous, but according to Ref. [17] this theory still has
a cutoff at A = ffr/(1/ 3 . We begin by explaining how one could arrive at this
conclusion by a naive power counting estimate. We then explain why this is incorrect
and why the correct answer is A = fep.
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Let us expand the potential about its minimum at a = 0: VE(a) - aiU2 +... We24(

see that the field o has a mass-squared of m, = /(12 (). This non-zero mass will
obviously play an important role in computing low energy scattering amplitudes. For
instance, consider the I-loop scattering process involving 2 -- 2 graviton scattering
due to a running in a loop. We use 4 insertions of the following 3-point interaction
term from the kinetic sector

h (O)2. (5.24)
m~l

This gives rise to the following contribution to the matrix element

M(2h ~1 4*h~~ ql~q2 q2 *q3 q3 ,q4 q4 *q5.5M (2 hl t ->+ 2 h,,,) ~.)f1 d q (q 2* -" Tn2) .q2-T2 q2- )( 2 (5.25)

This loop integral can be estimated using, for instance, dimensional regularization. Its
scaling depends critically on the energy scale. For input energy E < m,, the denom-
inator can be approximated as m,. If one were to then approximate the numerator
with the high energy behavior, the finite part would be estimated as

M(2h --+ 2h,,)- ~1  _i 4E12 (5.26)

If this scaling were correct up to arbitrarily high energies, then indeed the theory
would have a cutoff at A = i,/( 1/ 3 . However, this scaling is invalid at high energies.
Instead, for E >> m, the matrix element scales as

M(2 h, -+ 2 h/,) f4 , (5.27)
P1

indicating that the correct cutoff is A = ffip. A similar argument for the cutoff goes
through for any scattering process, including tree-level or arbitrary loop level.

Hence, if low energy scattering amplitudes are taken at face value, they naively
suggest that the theory has a cutoff at ffi,/ 1 / 3 . However, a full calculation at the
appropriate energy scale reveals that the correct cutoff of the scalar-tensor theory
defined by (5.23) is fi,. This means that the effective field theory upon which the
inflationary predictions are based makes sense.

5.6 Conclusions

Treated classically, a singlet scalar # with non-minimal coupling to gravity (# 2 R and
> 1 can drive a phase of slow-roll inflation. By examining the gravity and kinetic

sectors alone, as in Ref. [17], it is tempting to declare that such theories become
strongly interacting at mep/(, which would spoil the model. Such a conclusion arises
from power counting estimates of scattering processes in the Jordan frame without
summing all diagrams to check for any possible cancellations. Here we have shown
that cancellations do occur in the single field case, giving a Planckian cutoff. However,
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the potential sector is problematic: the Einstein frame potential is non-polynomial,
varying on scales Zo ~ fei/ . Although its Coleman-Weinberg quantum corrections
[31] are small and the behavior of such a theory is considered an open problem in field
theory, it is doubtful if high energy scattering amplitudes could be well behaved and
if there is any sensible UV completion of the theory. This suggests that the theory
likely fails.

On the other hand, these power counting estimates in the gravity and kinetic
sectors do apply in the multi-field case: a vector of fields # is problematic as 4, +# -

#c+#d scattering becomes strong at energies E > fni,/ relevant to inflation (as noted
in [17, 32]) and large quantum corrections are generated. This requires new physics to
intervene or that something peculiar happens in the RG flow that rescues the theory,
such as flow to a UV fixed point. But the latter scenario seems rather unlikely. Our
conclusions were shown to be true in both the Jordan and Einstein frames.

So if the Standard Model Higgs were a gauge singlet, then Higgs-inflation would
be well behaved in the pure gravity and kinetic sectors, requiring a detailed analysis
of the potential sector to draw conclusions about the quantum theory. However,
since it is comprised of 4 real scalars in a complex doublet, it falls into the multi-field
category and fails even at the level of tree-level scattering due to graviton exchange;
breaking down due to Goldstone bosons. Explicitly identifying this difference between
the single field case and the multi-field case was previously missed by us [151 and
others. Similarly, this may spoil other attempts to embed inflation into particle
physics models with multiple scalar fields [351, unless the underlying UV theory carries
an appropriate structure.

We also examined curvature-squared models (7Z2 [34] with ( > 1 (although we
consider such models to be ad hoc). They were recently criticized in Ref. [17] for
failing to even make sense at scales E > fer/(1/3. Again there exists cancellation
among tree-level diagrams, suggesting a Planckian cutoff. Furthermore, by formulat-
ing the quantum theory as a scalar-tensor theory in the Einstein frame (which makes
the degrees of freedom manifest) we showed that the inflationary theory is well be-
haved. In this case, all scattering processes, whether they arise from the gravity or
kinetic or potential sectors, satisfy unitarity bounds and generate very small quantum
corrections for energies below fni.

121



Bibliography

[1] A. Guth, "The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems", Phys. Rev. D, 23, 347 (1981).

[2] A. D. Linde, "A New Inflationary Universe Scenario: A Possible Solution of the
Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems",
Phys. Lett. B, 108, 389 (1982).

[3] A. Albrecht and P. J. Steinhardt, "Reheating an Inflationary Universe",
Phys. Rev. Lett., 48, 1220 (1982)

[4] A. D. Linde, "Chaotic Inflation", Phys. Lett. B, 129, 177 (1983)

[5] D. Baumann, A. Dymarsky, I. R. Klebanov, L. McAllister and P. J. Steinhardt,
"A Delicate Universe," Phys. Rev. Lett. 99 (2007) 141601 [arXiv:0705.3837 [hep-
th]].

[6] D. S. Salopek, J. R. Bond and J. M. Bardeen, "Designing Density Fluctuation
Spectra in Inflation," Phys. Rev. D 40, 1753 (1989).

[7] R. Fakir and W. G. Unruh, "Improvement on cosmological chaotic inflation
through nonminimal coupling," Phys. Rev. D 41, 1783 (1990).

[8] D. I. Kaiser, "Primordial spectral indices from generalized Einstein theories,"
Phys. Rev. D 52 (1995) 4295 [arXiv:astro-ph/9408044].

[9] E. Komatsu and T. Futamase, "Complete constraints on a nonminimally coupled
chaotic inflationary scenario from the cosmic microwave background," Phys. Rev.
D 59 (1999) 064029 [arXiv:astro-ph/9901127].

[10] K. Nozari and S. D. Sadatian, "Non-Minimal Inflation after WMAP3," Mod.
Phys. Lett. A 23 (2008) 2933 [arXiv:0710.0058 [astro-ph]].

[11] F. L. Bezrukov and M. Shaposhnikov, "The Standard Model Higgs boson as the
inflaton," Phys. Lett. B 659, 703 (2008) [arXiv:0710.3755 [hep-th]].

[12] A. 0. Barvinsky, A. Y. Kamenshchik and A. A. Starobinsky, "Inflation sce-
nario via the Standard Model Higgs boson and LHC," JCAP 0811 (2008) 021

[arXiv:0809.2104 [hep-ph]].

122



[13] F. Bezrukov, D. Gorbunov and M. Shaposhnikov, "On initial conditions for the
Hot Big Bang," arXiv:0812.3622 [hep-ph].

[14] J. Garcia-Bellido, D. G. Figueroa and J. Rubio, "Preheating in the Standard
Model with the Higgs-Inflaton coupled to gravity," arXiv:0812.4624 [hep-ph].

[15] A. De Simone, M. P. Hertzberg and F. Wilczek, Phys. Lett. B 678 (2009) 1
[arXiv:0812.4946 [hep-ph]].

[16] F. L. Bezrukov, A. Magnin and M. Shaposhnikov, "Standard Model Higgs boson
mass from inflation," arXiv:0812.4950 [hep-ph].

[17] C. P. Burgess, H. M. Lee and M. Trott, "Power-counting and the Validity of the
Classical Approximation During Inflation," arXiv:0902.4465 [hep-ph].

[18] J. L. F. Barbon and J. R. Espinosa, "On the Naturalness of Higgs Inflation,"
arXiv:0903.0355 [hep-ph].

[19] F. Bezrukov and M. Shaposhnikov, "Standard Model Higgs boson mass from
inflation: two loop analysis," JHEP 0907 (2009) 089 [arXiv:0904.1537 [hep-ph]].

[20] A. 0. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky and
C. Steinwachs, "Asymptotic freedom in inflationary cosmology with a non-
minimally coupled Higgs field," JCAP 0912 (2009) 003 [arXiv:0904.1698 [hep-
ph]].

[21] T. E. Clark, B. Liu, S. T. Love and T. ter Veldhuis, "The Standard Model
Higgs Boson-Inflaton and Dark Matter," Phys. Rev. D 80 (2009) 075019
[arXiv:0906.5595 [hep-ph]].

[22] R. N. Lerner and J. McDonald, "Gauge singlet scalar as inflaton and thermal
relic dark matter," Phys. Rev. D 80, 123507 (2009) [arXiv:0909.0520 [hep-ph]].

[23] A. 0. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky and
C. F. Steinwachs, "Higgs boson, renormalization group, and cosmology,"
arXiv:0910.1041 [hep-ph].

[24] D. G. Figueroa, "Preheating the Universe from the Standard Model Higgs,"
arXiv:0911.1465 [hep-ph].

[25] N. Okada, M. U. Rehman and Q. Shafi, "Running Standard Model Inflation And
Type I Seesaw," arXiv:0911.5073 [hep-ph].

[26] M. B. Einhorn and D. R. T. Jones, "Inflation with Non-minimal Gravitational
Couplings and Supergravity," arXiv:0912.2718 [hep-ph].

[27] R. N. Lerner and J. McDonald, "Higgs Inflation and Naturalness,"
arXiv:0912.5463 [hep-ph].

123



[28] A. Mazumdar and J. Rocher, "Particle physics models of inflation and curvaton
scenarios," arXiv:1001.0993 [hep-ph].

[29] S. R. Huggins and D. J. Toms "One-graviton exchange interaction of non-
minimally coupled scalar fields," Class. Quantum Grav. 4 (1987) 1509-1513.

[30] S. R. Huggins, "Cross sections from tree-level gravitational scattering from a
non-minimally coupled scalar field," Class. Quantum Grav. 4 (1987) 1515-1523.

[31] S. Coleman "Aspects of Symmetry", Selected Erice Lectures, Cambridge Uni-
versity Press (1985).

[32] M. Atkins and X. Calmet, "On the unitarity of linearized General Relativity
coupled to matter," arXiv:1002.0003 [hep-th].

[33] S. Weinberg, "The Quantum Theory of Fields", Volume 2 Modern Applications,
Cambridge University Press (1996).

[34] A. A. Starobinsky, "A new type of isotropic cosmological models without singu-
larity," Phys. Lett. B 91 (1980) 99.

[35] M. P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, "Inflationary Con-
straints on Type IIA String Theory," JHEP 0712 (2007) 095 [arXiv:0711.2512
[hep-th]].

124



Chapter 6

Quantum Radiation of Oscillons

Many classical scalar field theories possess remarkable solutions: coherently oscillat-
ing, localized clumps, known as oscillons. In many cases, the decay rate of classical
small amplitude oscillons is known to be exponentially suppressed and so they are
extremely long lived. In this work we compute the decay rate of quantized oscillons.
We find it to be a power law in the amplitude and couplings of the theory. Therefore,
the quantum decay rate is very different to the classical decay rate and is often dom-
inant. We show that essentially all oscillons eventually decay by producing outgoing
radiation. In single field theories the outgoing radiation has typically linear growth,
while if the oscillon is coupled to other bosons the outgoing radiation can have ex-
ponential growth. The latter is a form of parametric resonance: explosive energy
transfer from a localized clump into daughter fields. This may lead to interesting
phenomenology in the early universe. Our results are obtained from a perturbative
analysis, a non-perturbative Floquet analysis, and numerics.

6.1 Introduction

Although there is no direct evidence yet, there are good reasons to think that scalar
fields are plentiful in nature, such as the Higgs boson, axion, inflaton, p/reheating
fields, moduli, squarks, sleptons, etc. In recent years, there has been increasing in-
terest in certain kinds of long lived structures that scalar fields can support. In
particular, under fairly broad conditions, if a massive scalar field # possesses a non-
linear self-interacting potential, such as #3 + . .. or -#' + . . ., then it can support
coherently oscillating localized clumps, known as oscillons. Due to their oscillations
in time and localization in space, they are time-dependent solitons.

Remarkably, oscillons have a long lifetime, i.e., they may live for very many os-
cillations, despite the absence of any internal conserved charges. Related objects are
Q-balls [1], which do carry a conserved charge. If the field # is promoted to a com-
plex scalar carrying a U(1) global symmetry # -+ ezaq#, then oscillons correspond to
oscillatory radial motion in the complex # plane, while Q-balls correspond to circular
motion in the complex #-plane. Since oscillons do not require the U(1) symmetry for
their existence (in fact they are typically comprised of only a real scalar, as we will
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assume), then oscillons appear much more generically than Q-balls.
As classical solutions of nonlinear equations of motion, oscillons (related to "quasi-

breathers") possess an asymptotic expansion which is exactly periodic in time and
localized in space, characterized by a small parameter e. In a seminal paper Segur
and Kruskal [2] showed that the asymptotic expansion is not an exact solution of
the equations of motion and in fact misses an exponentially small radiating tail,
which they computed. They showed that oscillons decay into outgoing radiation at
an exponentially suppressed rate - exp(-b/e), where b = 0(1) is model dependent.
Although their work was in 1 spatial dimension, similar results have been obtained
in 2 and 3 spatial dimensions [3]. Furthermore, various long lived oscillons have
been found in different contexts, including the standard model [4, 5, 6], abelian-
Higgs models [7], axion models [8], in an expanding universe [9, 101, during phase
transitions [11, 12, 13, 14], domain walls [15], gravitational systems [16, 17, 18] (called
"oscillatons"), large +#6 models [19], in other dimensions [20], etc, showing that
oscillons are generic and robust.

In almost all cases, investigations into oscillons have thus far been at the classical
level. There is a good reason for this approximation: the mass of an oscillon M.,c
is typically much greater than the mass of the individual particles mo. This means
that the spectrum is almost continuous and classical. But does this imply that every
property of the oscillon, including its lifetime, is adequately described by the clas-
sical theory? To focus the discussion, suppose a scalar field # in d + 1 dimensional
Minkowski space-time has a potential of the form

V(#)=jm22 +m #3 + m- 4 + . . (6.1)
2 3! 4!

Since we will keep explicit track of h in this chapter, it has to be understood that m
here has units T-1 ; the quanta have mass m = hm, and {A2, A4 } have units h-1 .
It is known that for A - 5A2 - A4 > 0 such a theory possesses classical oscillons
that are characterized by a small dimensionless parameter e and have a mass given
by Mc ', Tl(e) = "-l(e), where l(E) = E2-d in the standard expansion that we will
describe in Section 6.2, but can scale differently in other models (e.g., see [18]). So if
A h < (e), then Msc > me.

In such a regime we expect that various properties of the oscillon are well de-
scribed classically, such as its size and shape. In this work we examine whether the
same is true for the oscillon lifetime. We find that although the oscillon lifetime is
exponentially long lived classically, it has a power law lifetime in the quantum theory
controlled by the "effective h" - in the above case this is A 2h or A4 h.

In this chapter we treat the oscillon as a classical space-time dependent back-
ground, as defined by the 6 expansion, and quantize field/s in this background. We
go to leading order in h in the quantum theory. We find that oscillon's decay through
the emission of radiation with wavenumbers k 0 0(m). We show that the decay is a
power law in 6 and the couplings, and we explain why this is exponentially suppressed
classically. Our analysis is done for both single field theories, where the emitted ra-
diation typically grows at a linear rate corresponding to 3 # -+ 2 # or 4 4 -+ 2#
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annihilation processes, and for multi-field theories, where the emitted radiation often
grows at an exponential rate corresponding to # -+ 2 x decay or 2 # -+ 2 x annihi-
lation processess. We calculate the quantum decay rates in several models, which is
supported by numerical investigations, but our work is also qualitative and of general
validity. We also comment on collapse instabilities for k = O(c m) modes, whose
existence is model dependent.

The outline of this chapter is as follows: In Section 6.2 we start with a review
of classical oscillons and describe their exponentially suppressed decay in Section
6.3. In Section 6.4 we outline the semi-classical quantization of oscillons and derive
the decay rate of oscillons in Section 6.5. Having started with single field models,
we move on to examine the effects of coupling to other fields in Section 6.6. In
Section 6.7 we discuss when the decay products grow linearly in time and when it
is exponential. Here we demonstrate that coupled fields can achieve (depending on
parameters) explosive energy transfer, which may have some cosmological relevance.
We comment on collapse instabilities in Section 6.8 and conclude in Section 6.9.

6.2 Classical Oscillons

In this section we review the asymptotic expansion for a single field oscillon, valid
in 1, 2, and 3 dimensions. We then explain why the oscillon slowly radiates at an
exponentially suppressed rate.

Consider a single scalar field # in d + 1 dimensional Minkowski space-time (signa-
ture + - - . . .) with classical action

S = Jd0+ _ )2 - -m22 - V(#) , (6.2)

where VI(#) is a nonlinear interaction potential. Here m has units T-1 . For simplicity
we measure time in units of 1/m, so without loss of generality, we set m = 1 from
now on in the chapter, unless otherwise stated. The classical equation of motion is

-V2# + # + V,(#) = 0. (6.3)

In this chapter we will focus on the following types of interaction potentials

V(#) - 30 + 4+. (6.4)

where A - A - A4 > 0 is assumed. This includes the cases (i) A3 > 0 and A4 > 0,
which will occur for a generic symmetry breaking potential, and (ii) A3 = 0 and
A4 < 0, which is relevant to examples such as the axion. In case (ii) higher order
terms in the potential, such as +#6 are needed for stabilization. Note that in both
cases the interaction term causes the total potential to be reduced from the pure #2
parabola. This occurs for # < 0 in the #3 case, and for 1#| > 0 in the #4 case. It
is straightforward to check that a ball rolling in such a potential will oscillate at a
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frequency lower than m = 1. If the field # has spatial structure, then one can imagine
a situation in which the gradient term in eq. (6.3) balances the nonlinear terms, and
a localized structure oscillates at such a low frequency - this is the oscillon.

Naively, this low frequency oscillation cannot couple to normal dispersive modes in
the system and should be stable. Higher harmonics are generated by the nonlinearity,
but resonances can be cancelled order by order in a small amplitude expansion. Let us
briefly explain how this works - more detailed descriptions can be found in Refs. [21,
22].

In order to find periodic and spatially localized solutions, it is useful to rescale
time t and lengths x = |x| to

T = t -1 - C 2, p = xC, (6.5)

with 0 < c < 1 a small dimensionless parameter. Here we search for spherically
symmetric solutions. The equation of motion (6.3) becomes

(1 e2)ao _ E2 (Opp# + d- 10) +# +V#) = 0 (6.6)

To obtain an oscillon solution, the field # is expanded as an asymptotic series in
powers of e as

00

(p, r) = Z E" n(p, T). (6.7)
n=1

The set of n depends on V(#). For V ~ A3 43 ; n = 1, 2, 3, .. ., and for V ~ -|A 4 | #4;
n = 1, 3, 5 . Upon substitution of the series into eq. (6.6), the leading term must
satisfy

Trr#1 + #1 = 0, (6.8)

with solution #1 = f(p) cos T, where f(p) is some spatial profile. Sincer = t V1 - e2
the fundamental frequency of oscillation is evidently w =V1 - C2 < 1.

The next order terms in the expansion must not be resonantly driven by #1, or
the solution would not be periodic. By writing down the equations for #2 and #3 and
demanding that the driving terms are non-resonant, we establish an ODE for f(p).
Extracting the A dependence by defining f(p) 4f(p)/VA-, the ODE is found to be

d - 1 ~ ~
Oppf + Opf - f + 2f3 =0. (6.9)

p

This ODE possesses a localized solution for d = 1, 2, 3. In d = 1 the solution is
known analytically f(p) = sech p, but is only known numerically in d = 2 and d = 3.
(For d = 2, 3 there are infinitely many solutions, of which we take the fundamental
solution). We plot f(p) in Figure 6-1. Altogether this gives the leading order term
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-4 -2 0 2 4
Radius p

Figure 6-1: Leading order oscillon profile f(p) in d = 1 (blue), d = 2 (red), and d = 3
(green) dimensions. We allow p to take on both positive and negative values here,
i.e., a 1-d slice through the origin.
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for the oscillon

#-.c(p, r) = f(p) COS r+ E #6q (p, T), (6.10)
n>1

where higher order terms can be obtained in a similar manner. At any finite order in
6 this provides a periodic and spatially localized oscillon. By integrating the oscillon's
energy density over all space, the total mass of the oscillon is found to scale to leading
order in 6 as M0osc - m2-d/A.

6.3 Classical Radiation

In 1987 Segur and Kruskal [2] found that the above asymptotic expansion is not exact,
as it misses an exponentially small radiating tail. They computed this using matched
expansions between the inner core of the oscillon and infinity, involving some detailed
analysis. Here we describe the physical origin of this classical radiation in simple
terms.

The existence of outgoing radiation is ultimately tied to the fact that the oscillon
expansion in not an exact solution of the equations of motion, it is only an asymptotic
expansion which is correct order by order in 6, but not beyond all orders. Consider
the oscillon expansion, truncated to order N, i.e.,

N

#.c (x, t) = n #n(x, t). (6.11)
n=1

Lets substitute this back into the equation of motion. This will involve many har-
monics. By construction the fundamental mode cos r = cos(w t) will cancel, since the
spatial structure was organized in order to avoid such a resonance. However, we do
obtain remainders including higher harmonics. This leads to the following remainder

J(x, t) = j(X) cos(i W t) + . . . , (6.12)

where for d = 1 we have

j(X) = CNEN+ 2sechN+ 2(XE) (6.13)

where we have included only the coefficient of the next harmonic, with some coefficient
CN. ii = 2 for asymmetric potentials and A = 3 for symmetric potentials.

Let us now decompose a solution of the equations of motion 0,bi into an oscillon
piece and a correction 6

#,o0(X, t) = #c0c(x, t) + 6(x, t) (6.14)

with 6 taking us from the oscillon expansion to the nearest solution. We find that
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the remainder J(x, t) acts as a source for the correction 6

S- V 2 6 + 6 = -J(x, t) (6.15)

where we have ignored non-linear terms (62 etc) and a parametric driving term
V"(#e~c)6 (although such a term will be important in the quantum theory). The
solution in the far distance regime is obtained by standard means

/dk do J ,ie(k-x-w1)
6(x, t) Jd 1 _(_2+k21i. (6.16)

cos(kraaX + -Yc~ s _kcosxw± atcj(krad), (6.17)
-X(d-1)/2 05S(Wradt)j~ka)1(.7

as x - oo (-y is a phase), suggesting that there is a radiation tail with an amplitude
determined by the Fourier transform of the spatial structure of the source, evaluated
at krad. The kinematics of (6.16) says that the radiation tail has frequency and
wavenumber:

Wrad = F W, krad = - 1, (6.18)

where w - 1 - e2 is the fundamental frequency of the oscillon. This is the so-called
"quasi-breather" which is used to match onto a radiating oscillon [3].

Let us now evaluate j(k). In d - 1 we find

j(k) = CNk N1sech +.r . . (6.19)

So for k = O(e) the remainder is a power law in c, but for k = 0(1), the prefactor
is 0(1) with a sech function evaluated in its tail. For k = 0(1), which is the case
for k = krad, we note that the source is comparable to the Fourier transform of the
oscillon itself, i.e.,

j(k) ~ #.c.(k) (6.20)

Lets now compute the spatial Fourier transform of the oscillon. Taking only the
leading order piece from eq. (6.10) at t = 0 we have

#fsc (k) =4ee dX A ikx. (6.21)

For d = 1 we have f(p) = sech p, allowing us to compute the Fourier transform
analytically:

47 7rk
#-s (k) = sech . (6.22)

S (2 )

For k > e this is exponentially small. The same is true in d = 2 and d = 3 which can
be computed numerically. We can summarize the behavior for d = 1, 2, 3 for k > e
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by the following scaling

#sc (k) ~ exp --- , (6.23)
vAX (c k)(d-1)/2 ex E )

where the constant in the argument of the exponential is dimensional dependent:
ci = r/2, c2 ~ 1.1, and c3 ~ 0.6.1 If we evaluate this at the relevant mode k = krad

v/n2- 1, the Fourier amplitude is exponentially small as 6 -+ 0.
Hence the longevity of the oscillon is due to the fact that the spatial structure

is dominated by small k = 0() wavenumbers, while any outgoing radiation occurs
through k = 0(1) wavenumbers, whose amplitude is suppressed. The rate at which
energy is lost scales as

dE 1 b
dt ~,c c(krad ) ~ exp , (6.24)

where b - 2 cd v/n2 - 1 is an 0(1) number.
Now the energy of an oscillon scales as E-c. 1/(A ed-2), so the decay rate Fd

|E-: dE0.c/dt| scales as Fd - c-1 exp(-b/c). The constant of proportionality in Id

is non-trivial to obtain. The reason is the following: at any finite order in the E
expansion, the corresponding terms in the equations of motion are made to vanish
due to the spatial structure of the solution. However, there is always a residual
piece left over which is 0(e0) in k-space, multiplied by #0 c(k). The limit of this
residual piece as we go to higher and higher order encodes the constant, but we do
not pursue that here. Alternate methods for obtaining this constant can be found
in the literature, such as [2, 3, 23, 24, 25], (see also [26, 27]). A special case is Sine-
Gordon in 1-d where the remainder J vanishes as N -+ oo, so the constant vanishes
in this case.

What we have obtained in (6.24) is the leading 6 scaling: it is from h = 2 for
asymmetric potentials and from i = 3 for symmetric potentials. The form of the
radiation in eq. (6.24) agrees with the scaling found by Segur and Kruskal [2] in
d = 1 and generalized to other d. Our methodology of computing a spatial Fourier
transform and evaluating it a wavenumber determined by kinematics is general and
should apply to various other oscillon models, such as multi-field.

6.4 Quantization

The preceding discussion explains why a classical oscillon can live for an exceptionally
long time. This does, however, require the oscillon to be placed in the right initial
conditions for this to occur. Some investigation has gone into the stability/instability
of classical oscillons under arbitrary initial conditions, e.g., [28, 29]. Here our focus is
on a sharply defined question, free from the ambiguity of initial conditions: If a single

'The constant Cd is in fact the first simple pole of f(p) along the imaginary p-axis; see Ref. [3]
for comparison.
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oscillon, as defined by the e expansion, is present - what is its lifetime? There is a
sharp answer in the classical theory - exponential, and now we address the question
in the quantum theory.

A semi-classical (leading h) description involves treating the oscillon #$sc =#C0 c(t, r)
as a classical background and quantizing fields in this background. In this section,
only the field # itself is present to be quantized, but in Section 6.6 we will introduce
a second field x to quantize. Let's write

#(x, t) = #e0c (x, t) + #(x, t), (6.25)

where # is a quantum field satisfying canonical commutation relations. At any finite
order in the e expansion, #0,c is an exact periodic solution of the equations of motion,
as discussed in Section 6.2. Perturbing around a solution allows us to write down the
following equation of motion for # in the Heisenberg picture

- V2q + q + @(#es)q = 0, (6.26)

where V(#0) JV(#0 c). We have neglected higher order terms in #, since we are
only interested in a leading order h analysis. This is the theory of a free quantum
scalar field with a space-time dependent mass. The ground state of this theory is
given by an infinite sum of I-loop vacuum diagrams, coming from N = 0, 1,2, ....
insertions of the external field 4. The NI = 0 diagram corresponds to the ordinary
zero point energy of a free field, while the Ne > 1 diagrams correspond to production
of # quanta from the background source.

For small e, the oscillon is wide, with k-modes concentrated around k = O(e) < 1,
which suggests it is more convenient to perform the analysis in k-space. So let's take
the Fourier transform:

#k + Wk #k + I(276)d (k - k')k/ = 0, (6.27)

where w 2 k2 + 1. Here we used the convolution theorem on the final term. Now if the
background was homogeneous, then each #k would decouple. This makes the solution
rather straightforward, as is the situation during cosmological inflation, for instance.
In that case each #k is proportional to a single time independent annihilation operator
dk times a mode functionVk (t) that satisfies the classical equation of motion, plus
hermitian conjugate. But due to the inhomogeneity in #5, the k-modes are coupled,
and the solution in the background of an oscillon is non-trivial.

Nevertheless a formal solution of the Heisenberg equations of motion can be ob-
tained. The key is to integrate over all annihilation operators:

j(t) = aqvqk(t) + h.c. (6.28)

Upon substitution, each mode function vqk (t) must satisfy the classical equation of
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motion

dk
+qk ± Wk J (D(k - k)Vqk' = 0. (6.29)

We see that we have a matrix of time dependent mode functions Vqk(t) to solve for.
We choose initial conditions such that # is initially in its unperturbed vacuum state.
This requires the following initial values of the mode functions:

Vqk (0) = 1 (2w)d 6d (q -k), (6.30)

Vqk (0) -iWkVqk(O). (6.31)

The local energy density u and total energy E in # at time t can be defined by
the unperturbed Hamiltonian, giving

h J ddq ddk ddk'
u(x, t) = (2-F)d (27z)d (2x)d eik'k)x*[(6qki* , + wwk IVqkVqk,] , (6.32)

E (t ) = hf ( 2d qa 2d [Iiq12 + Whx2 IVk1] (6.33)

(wk,- k -k' + 1), where the second equation is easily obtained from the first by
integrating over x. Initially the total energy is E(0) f ddkjhwk 6 d(O); the usual

(infinite) zero point energy of the vacuum. The energy corresponding to # production
is contained in the time evolution of E(t). As we will explain, radiation comes from
specific wavenumbers that are 0(1), and are connected to tree-level processes of the
underlying microphysical theory. This makes it straightforward to extract the correct
finite result for the produced radiation energy, despite the zero point energy being
UV divergent.

To solve the system numerically we operate in a box of volume V = Ld and
discretize the system as follows

d / k =2 , ni E Z (6.34)

6d(q - k) V (2x - (6.35)
(27F)d

The discretized equations of motion represent an infinite set of coupled oscillators.
They have a periodic mass as driven by the background oscillon and as such are
amenable to a generalized Floquet analysis of coupled oscillators. We use the Floquet
theory to solve for the late time behavior, as discussed in Section 6.7.1.

It is interesting to compare this to a classical stability analysis. Here one should
explore all initial conditions that span the complete space of perturbations. To do
this, we can write 60k -+ vqk where q is merely an index that specifies the choice of
initial condition. To span all initial conditions, choose vqk(0) oc 6(q - k), as in the
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standard Floquet theory. But this is precisely what we have done to solve the quantum
problem. Hence a classical stability analysis over all initial conditions involves the
same computation as solving the quantum problem for a fixed initial condition - the
ground state.

6.5 Quantum Radiation

Perhaps the most interesting oscillons are those that are stable against instabilities
that would appear in a classical simulation; such instabilities typically arise from
k = 0(c) modes of the oscillon, and will be discussed in Section 6.8. Classically,
these oscillons appear to be extremely stable. In this Section we calculate and explain
why the oscillon lifetime is shortened in the quantum theory due to k = 0(1) modes,
depending on the size of the effective h.

In order to make progress, we will solve the mode functions perturbatively. Al-
though our methodology is general, we will demonstrate this with a model that makes
the computation the easiest. Lets consider the potential

V(#) = 4# + 5+ ... (6.36)

The -A #4 term ensures that classical oscillons exist in the form given earlier (eq. (6.10)).
The A5 #5 will be quite important in the quantum decay, but it does not effect the
leading order term in the oscillon expansion. It can be verified that for this potential
the oscillon has the form

0 (x, t) = #,(x) cos(Wt) + 0(E3 ) (6.37)

where #e(x) = 4ef(xE)/vr/ (note #, ~ E). A5 only enters the expansion at 0(E4 )
(generating even harmonics).

Lets perform an expansion in powers of A5 , i.e.,

Vq = vO) + A5 v +1 ) + A + V 2 ) .. (6.38)

with each term Vq implicitly an expansion in powers of c, with c assumed small. We
have suppressed the second index on vq, which would be k in momentum space or x
in position space, since both representations will be informative. In position space at
zeroth order in A5 , we have

0) - V2 v ( + V - [A#2(x) cos2(wt) + 0(64) ] 2 (6.39)

The first term on the RHS is sometimes responsible for collapse instabilities, as we
shall discuss in Section 6.8, but only for wavenumbers k = O(E). The existence of such
instabilities are highly model dependent and are not the focus of this section. Instead
here we focus on k = 0(1) which is relevant for outgoing radiation. The second term
on the RHS, which is 0(c 4 ), is indeed relevant to the production of radiation, but it
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will be superseded by radiation at 0(e0) that will enter when we examine o . For
now we only need to conclude from eq. (6.39) that o0 is equal to the solution of the
free-theory plus 0(e 2) corrections. In k-space this means we take the unperturbed
mode functions

ok (t) = e (27)dd(q - k) + 0(62), (6.40)

which match the initial conditions mentioned earlier in eqs. (6.30, 6.31). Note that
an integral over q recovers the standard mode functions that occur in a free theory.

At next order in A5 we have

i) - V2V( + o() = 3 #(x) coss(Wt)vqx (6.41)

Fourier transforming to k-space and inserting voq gives

(1) = -@4'W(q k) ei(DW")t + e-(+wey] (6.42)
Vq Wkq 3!239/ 2 Wk

where 4e(k) is the Fourier transform of #'(x) and cD 3w. Here we have ignored
terms on the RHS with frequency w ± w which cannot generate a resonance. The
first term included does generate a resonance at wq ~ Wka ~~ /2. This is the equation
of a forced oscillator whose solution can be readily obtained. By imposing the initial
conditions v( (0) = v (0) = 0 we find

v() (t) =- e(q k) S(CD, og, Wk) (6.43)
3!23. 2Wk

where

S( , qWk) (±W C )t + ( JWq C )t W

(1 e-iwkt (I + L e iWkt
Wk ) k ) -(6.44)

-CD2 + (Wk - wq ) 2  _C2 + (Wk + wq ) 2

Lets now insert our solution for Vqk into the expression for the energy density
u(x, t) (eq. (6.32)). This includes terms scaling as Vo vo which is the usual zero point

energy. Another term scales as A5 v vY which is non-resonant. Then there are two

important terms: A2 Vk ( and A2 Vqk V .2) It can be shown that the second term here
provides the same contribution as the first term. (In the case of a homogeneous pump
field the mode functions are often written in terms of Bogoliubov coefficients, which
make this fact manifest. A similar argument goes through in our more complicated
inhomogeneous case.) Given this, we will not write out the explicit solution for

o here. Finally, we shall use the fact that only terms near resonance contributeqk
significantly to the integral, and further we shall make simplifications using Wq
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Wk ~ L/2 whenever we can; however, this must not be done in singular denominators
or in the arguments of oscillating functions.

Altogether at leading order in A5 and 6 we find the following expression for the
change in the energy density from the zero point:

A2h dq ddk ddk'
oU(x, t) - (3!)227 ] (21r)d (2x)d (2)d cos((k' - k) - x) V)E(q - k)#*(q - k')

[1 + cos(t(wk' - Wk)) - cos(t(wk + wq - )) - cos(t(wk' + wq - CD)(6.45)
(Wk +Wq- ) (WkI + Wq ()I

For the 1-dimensional case we have evaluated this numerically; the results are
plotted in Fig. (6-2). As the figure shows the energy density initially grows in the
core of the oscillon before reaching a maximum (around ou ~ 10-7 in the figure for
the parameters chosen). This occurs at each point in space and so the net effect is of
continual growth in ou by spreading out. This has a simple interpretation: #-particles
are being produced from the core of the oscillon and moving outwards. We will show
using scattering theory that this is connected to the annihilation process 3 # -+ 2 #.

Let us turn now to the total energy output (after subtracting the zero point)
JE(t). This comes from integrating eq. (6.45) over x, giving

__ _ da q ddk 1 - cos(t(wk +w -- 1q
JE(t) = 2 (q - k)|2)2 (6.46)

(3!)226 D (2,r~ (2d I (Wk -+ Wq - 2 '

This may be further simplified by recognizing that |0e(q - k) 2 is non-negative and
sharply spiked around q - k ~ 0 for small e (as we discussed in Section 6.3) and so
it acts like a 6-function, i.e.,

|@e(q - k)| 2 ~ @dV)E(k)|2] (27r)d6d(q - k), (6.47)

where we have intoduced the integral prefactor to ensure that the integration of
10,(q - k) 2 over all k gives the correct value when we replace it by the 6-function.
This quantity has a nice interpretation when re-written as an integral over position
space. Since 0,(k) is the Fourier transform of #3(x), we can write

I 2d kIE(k) 2 23 ddx U3(x), (6.48)

where ue(x) ~ # (x)/2 is the oscillon's local energy density. Inserting this into (6.46)
gives

A2 h f ddx u3(x) f ddk 1 - cos(t(2wk -- C))6E(t) = (6.49)
(3!)223 D J(27r)d (2wk - C)2

This integral can be done explicitly for times t > 1. To do this we write ddk
dQ dk kd-1. The angular integration is trivial f dQ = 2 7rd/ 2/l'(d/2). Now write dk =
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Figure 6-2: Energy density 6u(x, t) (in units of h). Each curve is at a different time
interval: blue is t = 10, red is t = 25, green is t = 50, orange is t = 75, and cyan is
t = 100. Here d = 1, = 0.05, and A5/A 3
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dwkwk/k. The integral over dwk is in the domain m =1 < wk < o, but for late
times t we can extend it to the whole domain -00 < Wk< oo, since only the region

Wk ~ C/2 = 3w/2 ~ 3m/2 = 3/2 contributes significantly. In the integrand, we
also replace k by its resonant value corresponding to radiation krad which satisfies

Wk = /k2 ± m 2 = 3 w/2. The remaining integral to perform is

j dWk cos(t(2Wk -)) - 7_ t (6.50)
_ (2wk - ) 2  2

Hence the energy output

A2h wd/ 2+ 1kd-2
6E(t) = 5 a d dXu3(X) t (6.51)

(3!)224 F(f)(27)d

increases linearly with time. So the oscillon must lose energy at this rate. The decay
rate is Fd = |Ej: dE.c/dt and using Eo,c f d x u;(x) we obtain

Ah 21 d/2+1k d-2 f d dan3(X
Fd(3 -+ 2) -- 'd' ) (6.52)

(3!)224 F(f)(27r)d f ddX U(X)

as our final result for the decay rate. We have labelled this "3 # -+ 2 #" annihilation
for a reason we now explain.

Its useful to connect this result to ordinary perturbation theory for a gas of inco-
herent particles. The differential transition rate for a single annihilation of Ni # -+ 2 #
in a box of volume VO, evaluated on threshold for non-relativistic initial particles of
mass m, is given by (e.g., see [30])

dFi= V N 2 D D (653)
Ni!(2m)Ni M("p f d 2 f 6E53

(D = d+1). To connect to the previous calculation we choose Ni = 3 since the relevant
interaction is provided by 3 # -* 2 # annihilation at tree-level due to the interaction
term AV = A5 #5. This gives |M12 = A2. Performing the integration over phase
space (including division by 2 since the final 2 particles are indistinguishable) gives
the result

A2h 7d/2+lkd-2 y-2
F1 (3#-+2#) - 3 (2d 2Ff (6.54)3!24 IF(fl)(2-r) d 2Ef

The inverse of this is the time taken for a given triplet of #'s to annihilate. For a
box of No particles the total rate for an annihilation to occur is F1 multiplied by the
number of indistinguishable ways we can choose a triplet, i.e.,

tot(3 # -+ 2o#)= ( F1(3# - 2#) (6.55)

N 3

~ IF1 (3 # -+ 2 #) (6.56)
3!

for Np 1 (the semi-classical regime). Since each process produces a pair of particles
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Figure 6-3: Feynman diagrams for the process 4# -+ 2 #. Evaluated on threshold,
the first diagram is iA2/4 (x 6 crossing symmetries), the second diagram -iA2/8 (x 4
crossing symmetries), and the third diagram is -iA 6 .

of total energy 2Ef, the total energy output is

6E(t) = 2EfF-'(3 4 -+ 2 #) t. (6.57)

Together with (6.54) this recovers the result in eq. (6.51) precisely, as long as we make
the replacement

N -+ dx u (x). (6.58)

Hence to leading order in A5 and c we find that decay rates computed using tree-
level scattering theory recover the result computed from solving the mode functions for
a coherent background oscillon. The important connection is provided by eq. (6.58)
to account for the spatial structure of the oscillon.

Given this connection, the generalization of our result to arbitrary interactions is
relatively straightforward. Consider the more general interaction potential

V(#) = #33 + 40 + #o5 + #0 + ... (6.59)3  4  5  6!

As mentioned earlier, a requirement for the existence of small amplitude oscillons is

- A4 > 0; this in fact is the only requirement on the couplings [25]. If either A3 or
A5 are non-zero, then the leading order radiation arises from 3 # -+ 2 # annihilation, as
we computed previously for the A3 = 0 case. This again gives the result of eq. (6.52),
with the generalization of the A2 prefactor being replaced by the square of the matrix
element for all such tree-level scattering diagrams, i.e.,

A -+ |M(3# -+ 2 #)1 2  (6.60)

This includes the important case in d = 3 with A3 > 0, A4 > 0 and A5 = A6 = ... 0,
which is a renormalizable field theory. For brevity, we have not drawn the many
relevant diagrams here, but in Fig. 6-3 we draw the diagrams that are relevant to the
next example.

Now consider a purely symmetric potential with A3 = A5 = 0 and A4 < 0 and
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A6 > 0. In this case, the leading order annihilation process is 4 # - 2 #, so we
must choose Ni = 4 in eq. (6.53). By summing the diagrams of Fig. 6-3 we find
|M(4 # -+ 2 #)2 (A 2 A6 )2 . Altogether we obtain the following result

(A 2 _ A6 )2 h7a/2+1k d-2 f d dXU4(X
Fd (4 -+ 2 #) = 4 -)

2  d ()(6.61)
(4!)225 F(4)(27r)d f dX u, (x)

In this case the kinematical requirement on kad for resonance is Wk = k2d -+ m2

2 w. Note this rate vanishes if and only if A6 = A4, which is true for the Sine-
Gordon potential VSGQ(#) = (1 - cos(vAX$))/A. In fact it can be proven that in

(1+1)-dimensions every # number changing process vanishes on threshold for the
Sine-Gordon potential.

Lets discuss the scaling of our results (6.52) and (6.61). Recall that #.c, ~ e/A,
SO U E 6 2/A. Thus (depending on the relative size of couplings) the decay rates scale
as

Fd(3# -- 2#) E4Ah/A2, or E4A6h/A 2  (6.62)

F #-- 2q#) - e6 A4 h, or c66 h/A 3  (6.63)

(We also find that in the large +A6 #6 model of Ref. [19] the scaling is Fd - A3h/A 6 .)
Hence the quantum mechanical decay rate is a power law in the parameters 6, Aj.
Such quantum decay rates will only be smaller than the corresponding classical decay
rate (6.24) if the "effective h" (such as A h) is extremely small, as we are comparing
it to an exponentially small quantity in exp(-b/c). Unlike collapse instabilities that
we will mention in Section 6.8, it is almost impossible to avoid this radiation by
changing dimensionality, parameter space, or field theory (the only known exception
is the Sine-Gordon model in d = 1).

One may wonder why the classical analysis failed to describe this decay rate accu-
rately given that the oscillon can be full of many quanta, say No ~ Mosc/m0, with an
almost continuous spectrum. Let us explain the resolution. For N > 1 the quantum
corrections to the oscillon's bulk properties are small. For example, the quantum
correction to the oscillon's width, amplitude, total mass, etc, should be small, since
the classical values are large. In k-space we can say that these properties are gov-
erned by k = 0(e) modes, which carry a large amplitude. However, the radiation is
quite different; it is governed by k = 0(1) modes, which are exponentially small in
the classical oscillon, but are not exponentially small in the quantum oscillon due to
zero point fluctuations. Another way to phrase this is to consider the commutation
relation

r (k)r(k') = f(k')(k) + ih (2 7r)dod(k - k'). (6.64)

For k = 0(e) the classical value of the LHS and its counterpart on the RHS are both
large, so the h correction is negligible. But for k = 0(1) the classical values are small,
so the quantum corrections are important.

An interesting issue is the behavior of the growth at late times. In the case of a
homogeneous background pump field (for example, as is relevant during p/reheating
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at the end of inflation, e.g., see [31, 32, 33]) it is known that the linear growth is really
the initial phase of exponential growth. So is the same true for spatially localized
oscillons? Here we claim that for sufficiently small amplitude oscillons, the answer is
no, the linear growth rate is correct even at late times, although this can change for
sufficiently large amplitude oscillons where our perturbative analysis breaks down.
We have confirmed the linear growth for small amplitude oscillons in 2 ways: (i)
by expanding Vqk to higher order in the coupling and (ii) by solving the full mode
function equations (6.29) numerically. The reason for this result is subtle and will be
discussed in detail in Section 6.7; we will demonstrate that whether the growth is in
the linear regime or exponential regime depends critically on the oscillon's amplitude,
width, and couplings.

6.6 Coupling to Other Fields

Most fields in nature interact considerably with others. It is important to know what
is the fate of a #-oscillon that is coupled to other fields. Let's couple # to another
scalar X and consider the following Lagrangian

1 120_ 1 122 1 2 1
C = -(9#)2-2 2 _ ,(0) + _(1X)2 - M X - -gi m#O - - 92 #2X2 (6.65)

2 2 2 2 x 2 2

The last two terms represent interactions between the 2 fields, with gi coupling pa-
rameters. The interaction term gi #X 2 allows the following tree-level decay process
to occur in vacuo: # - X + X, if the following mass condition is met: m > 2 mX.
Assuming this condition is met, we are led to ask: Will the #-oscillon decay into X?
If so, will the growth in X be linear or exponential? Otherwise, if m < 2 mx, or if

gi = 0, g2 # 0, we can focus on annihilations: # + 4 -+ X + X, etc.
One could approach the issue of multiple fields by evolving the full #, X system

under the classical equations of motion. In fact by scanning the mass ratio of # and

X one can find interesting oscillons involving an interplay of both fields - one finds
that the 2:1 mass ratio is of particular importance (as was the case for the SU(2)
oscillon [4]). Although this is an interesting topic, here we would like to focus on the
effects on the #-oscillon due to the introduction of X, initially in its vacuum state.
At the classical level X will remain zero forever, so this is trivial. We will return to
the issue of the classical evolution for non-trivial initial conditions for X in the next
Section. For now we focus on placing X in its quantum vacuum state with a classical
background #.c,.

We use the same formalism as we developed in Section 6.4. We make the replace-
ments # -+ m = 1 -+ mX in eq. (6.27), giving the following Heisenberg equation of

motion for i in k-space

Xk + Wk Xk +1 dl -kk' =06, (6-66)

where w k2 + m and < g1 43.c(x, t) + g2#i(x, t). We write j in terms of its
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mode functions Vqk as before

Xk (2)d aq Vqk (t) + h.c. (6.67)

For brevity, lets focus on leading order in c behavior, coming from <D ~ gi #E(x) cos(Wt)
(although later we will also mention the important case of g1 = 0 with D = 920 # (X) cos 2 (Wt)).
This gives the following mode function equations

Vqk + WVqk 1 Cos(Wt) J (2 )d E(k - k)Vqk' = 0- (6.68)

For small coupling gi we expect the solutions of the mode equations to be small
deformation of planes waves. To capture this, lets expand the mode functions in
powers of gi (analogously to the earlier expansion in Section 6.5)

qk -V(0) (1) V 2 (2) (.9
V qkq + qk +g91 vqk .(.9

At leading order O(gO), we have i)+ 2 (0) 0, whose desired solution is the
unperturbed mode functions

(0)i Wkt
o0 (t) = k (27)d6d(q - k), (6.70)

V2 Wk

as earlier. At next order we have the following forced oscillator equation

U 2( + 12 = -#0(q - k) i(w+Wq)t + ei w4)], (6.71)
Vk kqk 2V 2 W.k e17(7)

The solution with boundary conditions v (0) =o (0) 0 is

q -0 k) k 0)0i

V(t) = - k)S(w, w, k) (6.72)

where S was defined in eq. (6.44). Hence we obtain the same expressions for the
energy density ou and 6E as in eqs. (6.45, 6.46) upon making the replacements

5 e (q - k) -+ #10,(q - k), -+(6.73)

Evaluating this we find results that are qualitatively similar to before: the x field is
produced in the core of the oscillon and spreads out, and the energy grows linearly
in time.

Following through a similar calculation to before in the small 6 limit, by identifying
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|#e(q - k) as proportional to a 6-function, i.e.,

(q - k)2 2 d XU(X)(2 7r)dd(q - k), (6.74)

allows us to evaluate the decay rate at leading order in gi, which is connected to the
decay process # -+ X + x. We also carry though the calculation at leading order
in 92 (including next order in gi), which is connected to the annihilation process
# + # - x + X. We find the results

g 2h 7d/2+1kd-2
] (10#- 2 X) = r , (6.75)

22 F(4)(27)d

S(g2 2) 2 h 7d/2+1k- 2  ddXU(X)
]Fd(2 # 2 X) =g 2h 1kAf (6.76)

23 F(f)(27)d f ddXU(X)

In (6.75) the kinematical requirement on krad is W d = k 2 M2 (w/2)2 and in (6.76)
the requirement is w= k,2ad + m = w2 . So these decays only occur for sufficiently
light x. Here FJd(1# - 2 X) coincides with the perturbative decay rate of # and

Pd(2 # - 2 X) is a generalization of the annihilation rate F = n (ov) applied to a gas
of non-relativistic particles with variable density. As an application, we expect this
result to be relevant to the bosonic SU(2) oscillon [4]. Since it exists at the 2:1 mass
ratio (mH 2mw), it prevents Higgs decaying into W-bosons, but it should allow the
quantum mechanical annihilation of Higgs into relativistic W-bosons.

6.7 Exponential vs Linear Growth

So far we have worked to leading order in the couplings and c, this has resulted in a
constant decay rate of the oscillon into quanta of # in the single field case or quanta
of x in the two field case. These quanta have an energy that grows linearly in time,
see eq. (6.51). However, one may question whether this result applies at late times.
In the case of a homogeneous background pump field, it is always the case that the
growth is exponential at late times if the daughter field is bosonic. This is due to a
build up in the occupancy number in certain k-modes, leading to rapid growth for
fields satisfying Bose-Einstein statistics.

6.7.1 Floquet Analysis

Such exponential growth is obtained by fully solving the mode functions non-perturbatively
[31]. Since the background is periodic, the mode functions satisfy a form of Hill's equa-
tion, albeit with infinitely many coupled oscillators due to the spatial structure of the
oscillon. There is a large literature on resonance from homogeneous backgrounds,
particularly relevant to inflation, but rarely are inhomogeneous backgrounds studied
as we do here.

The late time behavior is controlled by Floquet exponents p. To make this precise,
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consider the discrete (matrix) version of the mode function equations

Wqk = Zqk (6-77)

Zqk = 1 Qkk (t)Wqki (6.78)
k'

where
1

Qkk'(t) - W -- okki <b(k - k', t) (6.79)

is a matrix in k-space, with period T = 27r/w. Here we have labelled the mode
functions w instead of v, since we will impose slightly different initial conditions on
w. In particular consider the following pair of (matrix) initial conditions

(i) Wqk (0) = 6 qk, Zqk(0) = 0, (6.80)

(ii) Wqk(0) = 0, Zqk(0) = 6qk (6.81)

Let N be the number of q, k values in our discretization. Lets organize this information
into a 2N x 2N matrix M(t), whose upper left quadrant is wqk with IC (i), upper
right quadrant is Zqk with IC (i), lower left quadrant is Wqk with IC (ii), and lower
right quadrant is zqk with IC (ii). So initially we have M(0) = 1 2N,2N- Numerically,
we evolve this through one period, giving the matrix M(T). After n oscillations, we
have M(nT) = M(T)". Hence the matrix M(T) controls the behavior of the system.
To obtain the result for the initial conditions of (6.30, 6.31) we multiply M(nT) onto
the following diagonal matrix

'Vok, 0

0 V4~ . (6.82)
V kg

The existence of exponential growth is governed by the eigenvalues of M(T), with
some corresponding eigenvector {Wk, Zk}. Following the standard Floquet theory, we
write the eigenvalues as exp(pT), where yu are the Floquet exponents, which are in
general complex. Note that although we have phrased this in the context of solving
the quantum problem, it is also a classical stability analysis, as we mentioned at the
end of Section 6.4.

6.7.2 Results

We have carried out the numerical analysis for different models, but would like to
report on the results for the jgI#X 2 theory with 1 g1 , e(x) cos(wt) in d = 1. The
numerical results for the maximum value of the real part of pmax as a function of gi
is given in Fig. 6-4 (top panel, red curve). As the figure reveals, there is a critical
value of the coupling g* ~ 0.2v)A governing the existence of exponential growth. For
gi > g* exponential growth occurs, but for gi < g* it does not; in the latter regime
all Floquet exponents are imaginary. This is reflected in the evolution of the energy
6E(t), which we have plotted in Fig. 6-4 (lower panel). The lower (orange) curve is
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Coupling gi/4

0 20 40 60 80 100
Time t

Figure 6-4: Top panel: the maximum value of the real part of the Floquet exponent

ymax as a function of coupling gi/VX for e = 0.05. Lower (red) curve is for an oscillon

pump pmax and higher (blue-dashed) curve is for a homogeneous pump ph,max. Lower
panel: total energy output 6E (x A/g') as a function of time for gi/v" = 0.1 (orange)
and gi/V = 0.3 (green).
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for gi = g*/2 and the upper (green) curve is for gi = 3g*/2. Hence for sufficiently
small couplings the perturbative analysis is correct - the growth is indeed linear at
late times, but for moderate to large couplings the perturbative analysis breaks down
- the growth is exponential at late times.

How can we understand this behavior? The answer resides in examining the struc-
ture of the corresponding eigenvector. For gi > g*, we have numerically computed
the eigenvector {Wk, Zk}max corresponding to the maximum Floquet exponent. It is
useful to represent this vector in position space, where it is some wave-packet. The
real part of the (unnormalized) eigenvector is plotted in blue in Fig. 6-5 (top panel).
In red we have also indicated the shape of the oscillon. We find that the shape of the
wave-packet which carries pmax is approximately described by the function

Xmax(x) - #e (x) cos(krad x) (6.83)

where krad is the wavenumber we identified in the perturbative analysis (w = k2 +
m = w/2). Notice that the shape of this is independent of the coupling gi. Such a
result cannot make sense at arbitrarily small values of gi. At sufficiently small gi all
eigenvectors of the Floquet matrix M(T) should be small deformations of plane waves,
since we are then almost solving the Klein-Gordon equation. In particular, this means
there should not be any localized wave-packet eigenvectors of the Floquet matrix. If
the eigenvectors are spatially delocalized, they cannot grow exponentially, since there
is nothing available to pump the wave at large distances from the oscillon. This
explains why all p are imaginary at sufficiently small gi. Conversely, at sufficiently
large gi, some solutions can exist that are 0(1) deviations from plane-waves, namely
the wave-packet of Fig. 6-5. Clearly then it is inapplicable to treat this as a small
perturbation from a plane wave. This explains why exponential growth can occur at
sufficiently large coupling.

With this understanding, let's postdict the critical value of the coupling in this
model. If we ignore the spatial structure and treat the background oscillon as homo-
geneous with amplitude E(0), then x's mode functions satisfy a Mathieu equation,
whose properties are well known (let's call their Floquet exponents ph). In the regime
of narrow resonance, the first instability band (connected to <5 -* x + x decay) has a
maximum growth rate ph,max g1#o(0)/2 (plotted as the blue-dashed curve in Fig. 6-
4). On the other hand, the spatial structure of the oscillon means that modes that are
produced in the core of the oscillon will try to "escape" at a rate set by the inverse
of the oscillon's width. Let's define an escape rate as p.e,= 1/(2R,c), where Rsc is
the oscillon's radius. The critical gi can be estimated by the condition

yh,max Pesc. (6.84)

To achieve exponential growth, we require ph,max p / esc in order for there to be
sufficient time for growth to occur in the core of the oscillon before escaping, allowing
Bose-Einstein statistics to be effective. Using E(0) = 4c/VX and 1/Rc_ ~ E, gives
g* ~ N/4, in good agreement with the full numerical result. This reasoning can
be extended to other scenarios. For gi = 0, we can focus on annihilation driven
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Figure 6-5: Top panel:

gi > g* (blue) and the
classical evolution, with

-100 -50 0 50 100 150
Position x

The x wave-packet which exhibits exponential growth for
#-oscillon (red). Lower panel: The fields at t = 80 after
gi = 0.8V'X, c = 0.05, and mX = 0.3.
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by ig2402 X 2 . In this case, study of the Mathieu equation reveals ph,m ax 92 qe(0)/8,

leading to g* A/(4 e). Since A and 91,2 are independent parameters, the regime gi,2 >

91,2 is allowed (and easily satisfied for A h < 1, as required for massive oscillons).
If the parameters are in the regime of exponential growth it is interesting to note

that substantial parametric resonance can occur from an inhomogeneous clump of
energy established by oscillons. This is a form of parametric resonance - explosive
energy transfer from a localized clump to a daughter field. Of course this cannot
continue indefinitely, since the oscillon has only a finite amount of energy to transfer.
Using the initial conditions of Fig. 6-5 (top panel) we have evolved the full coupled
{#, X} system under the classical equations of motion. We find that exponential
growth in X occurs initially and eventually this results in the destruction of the #-
oscillon as seen in Figure 6-5 (lower panel).

Finally, we return to the single field oscillon. In the A5 #5 model we originally
discussed, the resulting (generalized) Mathieu equation reveals h,max A5 , 3(0)3 ,
leading to A* ~ A3/2/6 2. However, in our expansion we implicitly assumed A5 was
0(1) w.r.t c and therefore we should never enter the regime A5 > A*. Similarly, con-
sider the classic -A #4 model. The resulting (generalized) Mathieu equation reveals

ph,max - A2 0E(0) 4 ~ e4. Comparing this to p,,, - E we see that it is impossible to
obtain exponential growth for small e. (This can change for the wide flat-top oscillons
of Ref. [19].) As far as we are aware, this is the first explanation of the stability of
small amplitude oscillons against exponential growth of short wavelength perturba-
tions. This fact was previously only seen empirically. It is quite interesting that at
sufficiently small amplitude, or couplings, the oscillon is stable against exponential
growth in perturbations and yet it still has modes that grow linearly with time. This
occurs in the limit of degenerate eigenvalues of M(T). These modes seem relatively
rare and harmless classically, but they must be integrated over in the quantum theory,
resulting in steady decay.

6.8 Collapse Instabilities

Some oscillons are unstable to perturbations with wavelengths comparable to the size
of the oscillon (k = 0(e)). Although this is not the focus of our work, we would like to
briefly discuss this phenomenon for completeness. These instabilities are so prominent
that they often appear in classical simulations starting from initial conditions away
from the "perfect oscillon profile", given by the expansion eq. (6.10).

Using the numerical method of the previous Section we have found that for k =

0(e) there are exponentially growing modes in d = 3, but not in d = 1, for the
-A #4 theory. Since the corresponding wavelengths are comparable to the size of
the oscillon, these instabilities are easily seen in numerical simulations starting from
arbitrary initial conditions; an example is displayed in Figure 6-6 for the V ~ -A # 4
potential in d = 3. In the simulation, we find that the field is growing in the core
of the oscillon and we also find that it is spatially collapsing. The existence of this
instability is well known in the literature.

To feel more confident that this is the correct behavior of the quantum theory, let
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0 50 100 150
Time t

Figure 6-6: Field at center of oscillon over time for V = -# 4/4! in d 3. We choose
6 = 0.05 and set up initial conditions with #(0,p) = 1.03e#1(O,p), i.e., an initial
profile 3% higher than the preferred oscillon profile; this clearly causes an instability
by t ~ 150.
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us turn now to address this problem in a different approximation. At some level we
should consider the oscillon as a collection of #-particles in the full quantum theory
[34]. Since these "collapse" or "self-focussing" type of instabilities occur at small
wavenumbers k = O(c), perhaps we can interpret this as resulting from the interaction
of non-relativistic particles. The leading interaction is 2 # -- 2 # scattering. Lets
consider V = -LA3 #3 + IA 4 q4 + .... At tree-level this scattering process occurs due
to 4 diagrams: s, t, and u-channels generated by 2 insertions of the # 3 vertex and a
single contact term from the #4 vertex. The matrix element is easily computed in the
non-relativistic limit iM(2# -+ 2#) -i (A2 - A4 ) . This can be recast in position
space as a two particle potential V(ri, r 2 ) by taking the inverse Fourier transform
and multiplying by h2 /4 due to our normalization convention. This gives

V(ri, r 2 ) - A2 - A4  6d(r1 - r 2). (6.85)

(The s, t, and u-channels actually produce a type of Yukawa potential if the full
relativistic M is used, but this shouldn't modify our conclusions.) This is a short
range force and is attractive if and only if 5A2.- A4 > 0, which is a condition for the
existence of oscillons. (This condition also emerges in the classical small e expansion).
In the non-relativistic regime, the wavefunction for Ne particles making up an oscillon
will be governed by the Schr6dinger equation

h 2 N 0

2m = V2 +( V(ri, r) V)$N = EN, VNg (6-86)
i=1 i<j

with the above potential V. It is known that a 6-function potential permits unbounded
solutions for d > 2 (d = 2 is marginal, being only a logarithmic divergence, but d > 3
is a power law). A localized gas of 4-particles, such as the oscillon, would be expected
to be unstable to radial collapse under these conditions. Hence, we expect d > 2 to
be unstable (with d = 2 marginal). For d = 3 a collapse time of ~ 1/(A h C2) is naively
expected.

There is evidence in the literature [22, 19] that oscillon stability is controlled by the
derivative of the oscillon's mass M.,c w.r.t amplitude #,a. If the derivative is positive

(negative), then the oscillon appears to be stable (unstable) to collapse. Since the
canonical small amplitude oscillon satisfies M,c ~ #2-d, we obtain a consistent result.
However, this leading order behavior must break down at some point for sufficiently
large amplitudes and can be affected by the inclusion of higher order terms in the
potential. In fact it is known that beyond a critical amplitude no collapse instability
exists in 3-d [22, 19] (also see the Q-ball literature [35, 36, 37]). Collapse in 3-d is also
absent in other field theories, such as the SU(2) sector of the standard model [4, 5]
and any model where #, - e2 instead of the canonical #, ~ c (e.g., see [18]).

In summary, the collapse of an oscillon is highly model dependent and can be
avoided by operating in the appropriate number of dimensions, parameter space, or
field theory. However, the radiation we computed in the previous sections is unavoid-
able.
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6.9 Conclusions

We have found that even though an oscillon can have a mass that is much greater
than the mass of the individual quanta, the classical decay can be very different
to the quantum decay (this point does not appear to have been appreciated in the
literature, for instance see the concluding sections of Refs. [5, 6]). The radiation of
both classical and quantum oscillons can be understood in terms of forced oscillator
equations, see eqs. (6.15, 6.41). We derived the frequency and wavenumber of the
outgoing radiation, which were both 0(1) in natural units. Since a classical oscillon
has a spread which is 0(1/c) in position space, it has a spread which is 0(c) in k-space.
Its Fourier modes are therefore exponentially small at the radiating wavenumber and
hence such radiation is exponentially suppressed. In the quantum theory, there simply
cannot be modes whose amplitudes are exponentially suppressed. Instead, zero-point
fluctuations ensure that all modes have at least 0(h) amplitude-squared due to the
uncertainty principle.

We derived a formula for the quantum lifetime of an oscillon 1/(A h EP). The
power p is model dependent: p = 4 in the #3 + ... theory (or -#4 + 05 + .. .), and

p = 6 in the -# 4 + #6 +... theory. Through a Floquet analysis, we explained why
the growth of perturbations of small amplitude oscillons is linear in time, as opposed
to exponential. The dimensionless A h controls the magnitude of the decay rate, as
it should for a leading order in h analysis. For example, the Standard Model Higgs
potential has A h - (mH/vEW) 2 - 0.1 (mH/100 GeV) 2 and so this is not very small.

On the other hand, the effective h of the QCD axion potential is A h ~ (AQGD/fa) 4 ~

10-48 (1010 GeV/fa) 4 and so oscillons formed from axions, called "axitons" in [8], are
governed by classical decay (ignoring coupling to other fields).

We further considered the fate of an oscillon that is coupled to a second scalar X
and found it to either decay or annihilate with a growth in X that can be exponentially
fast, depending on parameters. Since oscillons may form substantially in the early
universe.[10, 11] this may give rise to interesting phenomenology. At the very least,
it presents a plausible cosmological scenario in which a parametric pump field exists
that is qualitatively different to the homogeneous oscillations of the inflaton during
p/reheating. This is a form of parametric resonance: explosive transfer of energy
from a localized clump into bosonic daughter fields. We expect decay into fermions
to be quite different (for discussion in the context of Q-balls, see [38]). This may have
some cosmological relevance.

It appears that if a field has a perturbative decay channel, then the oscillon will
eventually decay through it. This is important because we expect most fields in nature
to be perturbatively unstable, including the inflaton, p/reheating fields, Higgs, and
most fields beyond the standard model. A good exception is dark matter. This
conclusion may seem surprising given that the oscillon is a bound state of particles
with a finite binding energy [34]. However, oscillons are formed from fields whose
particle number is not conserved. One could imagine a situation in which in is only
slightly greater than 2 mx, and in this case the oscillon's binding energy may prevent
direct decays into X's, but this requires fine tuning and will not forbid 2 # -* 2X or
3 # -> 2 # or 4 # -+ 2 # annihilations.
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We conclude that in many scenarios an individual oscillon's lifetime will be shorter
than the age of the universe at the time of production (this may prevent individual
oscillons from having cosmological significance in such cases). Exceptions include the
GUT era [11], inflation [131, and axitons produced at the QCD phase transition [8].
An interesting question for further study is whether oscillons can form and then decay,
and then form again repeatedly, like subcritical bubbles in hot water. It is not implau-
sible that such a process could continue over long time scales for cosmic temperatures
of order the field's mass; similar to the production and disappearance of unstable
particles in a relativistic plasma. This may modify cosmological thermalization.
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Chapter 7

Finite Contributions to
Entanglement Entropy

We show that for a massive scalar field in its ground state the entanglement entropy
between the interior and exterior of a spatial domain of arbitrary shape receives a finite
contribution that is proportional to the area of the dividing boundary. For systems
involving local boundary constraints we demonstrate that there are also subleading
finite contributions to the area term: for a field confined to a waveguide in 3+1
dimensions we identify terms proportional to the waveguide's cross sectional area,
perimeter length, and curvature. We carry out related calculations for massless fields
and comment on the kinds of systems in which these finite contributions may be
measurable.

7.1 Introduction

For observations confined to a subsystem A, entanglement entropy is a measure of

one's ignorance of the full system due to entanglement between the degrees of freedom
in the subsystem and its complement B. It is defined by the von Neumann formula S =
-TrA (pA npA), where PA BTrp is the reduced density matrix of the subsystem A.
This object plays a role in various contexts, including quantum field theory, condensed
matter, quantum computing, and black holes.

The entanglement entropy in d+1-dimensional systems typically obeys an area
law S ~ Ad_1/6d- 1 for d > 2, where Ad_1 is the d- 1-dimensional area of the dividing
boundary between the subsystem and its complement. However, the constant of
proportionality is divergent, since it blows up with the UV cutoff e of the field theory
[1]. By contrast, the entanglement entropy of 1+1-dimensional systems is finite, since
the c dependence is only logarithmic. For example, the entanglement entropy between
a pair of half spaces of a 1+1-dimensional CFT at correlation length ( was shown

to be S = c/6 ln (, where c is the central charge of the CFT [2, 3]. This begs the

question whether there are finite contributions to the entanglement entropy in d > 2
dimensions.

In this chapter we demonstrate that there are indeed. For a free scalar field in
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d+1-dimensions at finite correlation length ( (i.e., mass y = 1/i), we show that in
addition to the divergent terms, such as S Ad_1/ 6 d-1, there is also a finite area law
contribution

AS = a In- , for d odd,
_ d - i

AS Y d-1 for d even, (7.1)

where y (-1)d' [6 (4r)2' ((d-1)/2)!]-i for d odd and -yd (-)d/2[ 2 (2-)(d- 2)/2 (d-
1)!!]-1 for d even. Using heat kernel methods, we exhibit further finite power law cor-
rections for a waveguide geometry through the imposition of boundary conditions; see
Fig. 7-1 left panel. This setup allows us to formulate the entropy as an expansion in
terms of the geometric properties of the waveguide's cross section. Also, we consider
a massless field and compute finite terms for the interval in a waveguide; see Fig. 7-1
right panel.

7.2 Heat Kernel Method

A powerful way to compute the von Neumann entropy, which involves the logarithm
of the reduced density matrix, is to use the following identity: S = -TrA(pA n PA)

- ln Trp"I=1, known as the "replica trick". Consider, for example, a system in 1
spatial dimension. The quantity Trp" is a trace over an n-sheeted Riemann surface
with cut along the subsystem of interest A. If the subsystem A is a half space, then
as explained in Ref. [2] TrpA is proportional to the partition function Z6 on a space
of deficit angle 6 = 27r(1 - n). Hence the entropy can be recast as

= 27r- + 1 In Z6  (7.2)
d6 16=0*

In this chapter we consider the waveguide geometry of Fig. 7-1 left panel. For
this geometry we formulate a Euclidean field theory on the space 0 x MAd-1, where
CS is a 2-dimensional cone of radius R (infrared cutoff) and deficit angle 6, and

MAd-1 is the (d - 1)-dimensional cross section of the waveguide. The cone's radius

corresponds to the physical region in space we are tracing over, and the angular
direction is associated with a geometric temperature (imaginary time) direction in
the Euclidean path integral. Let Z6 be the partition function for a field in its ground
state defined on this space. Considering a free field theory, the partition function can
be automatically evaluated since the path integral is Gaussian. For a field of inverse
mass (, the partition function is

In Zj = In det (-A + 2), (7.3)
2

where A is the Laplacian satisfying the appropriate boundary conditions on CQ x

Md-.
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Now lets introduce the heat kernel for the Laplacian operator ((t) -- tr (et').
The trace is defined by imposing Dirichlet or Neumann boundary conditions on the

waveguide BMdl and imposing Dirichlet boundary conditions on the cone DCJ. This
allows us to rewrite the partition function Zj and hence the entropy S in terms of
the heat kernel as follows:

S - f dt (27dr + I ((t)e-,/C2  (7.4)
2 0 t d6 IJ=0

Since the manifold for the Euclidean field theory of the waveguide is separable
into a direct product C x MAd-1, so too is the heat kernel

((t) = (6 t) (d-_1(W). (7.5)

This simplifies the problem into obtaining expansions of two separate heat kernels.
One is an expansion for the 2-dimensional cone (j(t) and the other is an expansion
for the (d - 1)-dimensional cross section of the waveguide (d_1(t). The heat kernel
for the cone has the following form [6]

(6M=1 (27r 27 - J)(76
(s(t)=z (-76 6 + . .. (7.6)

12 27- 6 27r

where the dots represent terms that are either annihilated by the 27 j + 1 operator,
or are vanishing in the R -- oc limit. In either case it is only the piece here that

contributes. This gives the following general expression for the entanglement entropy
of a waveguide in d spatial dimensions traced over half-space:

S = 1 j0 dt_(te- (7.7)
12 J t

Hence the entropy is determined by the geometry of the cross section of the waveguide
through its heat kernel (d_1(1).

7.3 Waveguide Cross Section

The heat kernel for a closed domain satisfying either Dirichlet (q = -1) or Neumann

(T = +1) boundary conditions in dimensions 0, 1, and 2 has the following small t
expansion [4]:

a
2/ t 2

(2 = + + x (7.8)
47t 8 vwt
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h-I

Figure 7-1: Waveguide geometry in d = 3. Left: Region A is a half space at finite
correlation length . Right: Region A is an interval of length L at criticality.
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Here a is the cross sectional length of a 2-dimensional waveguide. Also, A, P, and

x is the cross sectional area, perimeter, and curvature of a 3-dimensional waveguide,
respectively.1 The curvature term for an arbitrary piecewise smooth 2-dimensional
cross section is given by

X - 1 j+ K(y)dy, (7.9)
24 ( w7 127r

where ai is the interior angle of any sharp corners and i(7Y) is the curvature of any
smooth pieces. For example, x = 1/6 for any smooth shape (such as a circle) and

X = (n - 1)/(n - 2)/6 for any n-sided polygonal (so X = 1/4 for a square). The
curvature term differs from that in Ref. [5] where the curvature piece was argued to
be proportional to the number of corners in an arbitrary shape. The result of Ref. [5]
is only correct for a square cross section.

7.4 Regularization and Finite Terms

If we were to directly insert the above expansion into eq. (7.7) for the entanglement
entropy we would encounter a problem. Integrating from t = 0+ is associated with
arbitrarily short distance physics. As is well known this gives rise to a divergence
in any number of dimensions that cannot be renormalized away; logarithmic in 1
dimension, linear in 2 dimensions, and quadratic in 3 dimensions [1]. Of course
such a divergence may be regulated. For instance, we could impose a hard cutoff on
the t integral and integrate from t = tc = E2 to t = 00, and find terms that only
diverge in the c -+ 0 limit. Another procedure is to use Pauli-Villars regularization
by subtracting off terms with p = 1/ replaced by A etc and taking A large. This
is perhaps more appealing as it respects the underlying geometry. However, either
approach obtains divergent terms depending on c or A, whose coefficients depend on
the choice of regularization.

However by returning to eq. (7.7) it is easy to identify finite dependence of the
entropy on the inverse correlation length y = 1/i. In general, the leading order
behavior of the heat kernel as t -> 0 is

(d_1(t) = t-1/2 + (7.10)

where a = Adl/(4-)(d- 1 )/ 2 is a constant. Inserting this into eq. (7.7) reveals that the

integrand has the leading order behavior ~ 1/t(d+1)/2; giving a divergence of order
d - 1 as t -- 0+ with respect to a cutoff, say E, defined through tc = E2 (implicitly the
d - 1 = 0 case means a logarithmic divergence). But this can be regulated by taking

some number of partial derivatives of the entropy with respect to the correlation
length (, as this pulls down factors of t from the exponential exp(-t/ 2 ). In particular

'This expansion is also of use in computations of the Casimir effect between two partitions in a

waveguide, see Refs. [7, 8].
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by taking

k - Floor d+1 (7.11)
12

(k =1 for d = 1, k = 1 for d = 2, k = 2 for d = 3, etc) derivatives of S with respect
to ( 2 gives a manifestly finite integral. Hence a dimensionless finite quantity we can
define is

Se (-(-2)k k -7.1')

Using eqs. (7.7) and (7.8) and integrating t in the domain t E (0, oo), it is straight-
forward to obtain

1
S = - for d = 1,

S = 1 a + -- + ... for d = 2,
24 24

S = + + A + . . . for d = 3. (7.13)
487r w2 192 ( 12

For d = 1 this result is exact [2, 3]. For d > 2 this expansion is only valid in the
domain a > , where a is a typical cross sectional length; see the appendix for
exact results in d = 2 and a square cross section in d = 3. Note that by doing the
appropriate number of anti-derivatives (1 for d = 2, 1 for d = 2, and 2 for d = 3) it
is straightforward to obtain contributions to the entropy.

7.5 General Geometries

Although the sub-leading terms in eq. (7.13) are specific to a waveguide geometry,
the leading terms have a meaning for arbitrary geometries. In particular, for any
boundary in 1 dimension we pick up a contribution of 1/12 to S , as is well known [9].
For any closed geometry in 2 dimensions, the leading contribution is S = P/(24(),
where P is the perimeter length. While for any closed geometry in 3 dimensions, the
leading contribution is Sg = A/(487 2). By integrating up these results, we recover
the d = 1, 2, 3 cases that we reported in eq. (7.1). Furthermore, using the heat kernel
in arbitrary dimensions (7.10) we recover the general result for arbitrary dimensions.

This general result differs from estimates made in Section 7 of Ref. [13], where
the corresponding term in the entropy was not found. Numerically we have checked
this law for the case of the sphere and the cylinder, finding excellent agreement. In
fact our numerics indicates that the area term is the only polynomial contribution to

Se for large A/( 2 . We can understand this as follows: in the regime ( < a, where
a is a typical length scale of curvature of the boundary, the correlations required
to feel the curvature are exponentially suppressed. By contrast, if the boundary
were to contain a sharp corner, there is expected to be power law corrections. (For
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related discussion, see [14, 15]). We have numerically verified this for the square. For
smooth geometries, though, local boundary constraints appear to be required for the
existence of subleading corrections since they modify the spectrum - as we found for
the waveguide.

7.6 Experimental Realization

Measurement of this entanglement requires externally changing the correlation length
in such a way that the microphysics is unaffected. One could imagine achieving this
for magnetic systems, by operating below the critical temperature. In the absence
of external fields, there exist massless modes, but for an externally applied B-field <

acquires a mass y = 1/( that is adjustable. By operating in the regime: 6 2 < « 2 < A
(where c is the inter-spin spacing) the area law should be an adequate description and
can be numerically quite large; this can be contrasted with the 1-dimensional case
Se = 1/12, which is small.

7.7 Criticality - Interval

The previous expansion requires the system to be away from criticality. Let us turn
now to the critical case ( -- o). To define a finite entropy we must have a length
scale, which now comes from an interval of length L; see Fig. 7-1 right panel. In this
case we can define the following finite quantity:

dS
SL EE L . (7.14)

dL

The small t heat kernel expansion of eq. (7.6) is insufficient here because we must
know the form of (6(t) for not only t ,< L2 , but also t > L 2 where t is large.

In general the full form of (s(t) is unknown. However, we do not need (s(t) for
arbitrary 6, we only need the specific limit indicated in eq. (7.4). There are powerful
tools developed to obtain this, often in E space rather than t space, which we follow.
The derivative of the entanglement entropy can be written in terms of an object
defined for 2d conformal field theories known as the c-function C; specifically it is the
inverse Laplace transform of -!(27r + 1) (5(t)|1-o. By convolving with the transverse
density of states we have

SL = dS C (L S) Pd-1( ). (7.15)

The c-function C has been studied closely, see Refs. [10, 11, 12]. It is known that

C(0) = 1/3 and it is monotonically decreasing. Using the heat kernel expansion (7.8),
we can inverse Laplace transform to obtain a density of states expansion for Pd-(8).
The quantity SL is then expressible in terms of a few integrals of C, which have been
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computed numerically. We find

1
SL = I for d = 1,3

SL =k 1 - +-+. for d = 2
L 6
A 1 7k1 P x

SL k2  + + -+ .. . for d = 3. (7.16)
L2  4 L 3

Here ki dx C(x) and k2  A dx x C(x). The numerical values are: ki
0.039 and k2 ~ 0.0098. For d > 2 this expansion is valid in the domain a >> L;

analogous to the previous expansion which was valid in the domain a > (.

7.8 Discussion

We have shown that arbitrary shaped domains have a finite area term, given by
eq. (7.1). A cutoff independent quantity comes from taking k = Floor[(d + 1)/2]

derivatives of S with respect to --2. This cutoff independent quantity can be defined
for a single domain A. This is unlike the strong subadditivity proposal, requiring
2 subsystems of interest A and A', and forming SAuA, + SAA' - SA- SA' For a

waveguide geometry we used our construction to obtain an asymptotic expansion of

the entropy for small correlation length to cross section width ratio. For arbitrary
smooth manifolds the leading order area law should be applicable, large, and perhaps
measurable. It would be of interest to extend these results to other fields, such as
fermions, and to interacting field theories.
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7.9 Appendix: Some Exact Results

In d = 2 and for a square cross section of width a in d = 3, (d-1(t) is known exactly.
The result for Se is found to be

S = a coth(a/ ) + for d = 2
24 24'

S = 48a2 1 + 2 a 'f,mK (2fn,ma/ )
487 1 n,m

+ r± a coth(a/() + a csch(a/() + for d = 3
48 ( 48

where fam = mn2 + m 2 , the primed summation means {n, m} E Z2/{0, 0}, and K1
is the modified Bessel function of the second kind of order 1. For a >> we recover
eq. (7.13) plus exponentially small corrections. (Note that for the square A = a2,
P = 4a, X = 1/4.)
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Chapter 8

Casimir Forces in a Piston
Geometry at Zero and Finite
Temperatures

We study Casimir forces on the partition in a closed box (piston) with perfect metallic
boundary conditions. Related closed geometries have generated interest as candidates
for a repulsive force. By using an optical path expansion we solve exactly the case of
a piston with a rectangular cross section, and find that the force always attracts the
partition to the nearest base. For arbitrary cross sections, we can use an expansion for
the density of states to compute the force in the limit of small height to width ratios.
The corrections to the force between parallel plates are found to have interesting
dependence on the shape of the cross section. Finally, for temperatures in the range
of experimental interest we compute finite temperature corrections to the force (again
assuming perfect boundaries).

8.1 Introduction

A striking macroscopic manifestation of quantum electrodynamics is the attraction of
neutral metals. In 1948 Casimir predicted that such a force results from the modifica-
tion of the ground state energy of the photon field due to the presence of conducting
boundary conditions [1]. The energy spectrum is modified in a fashion that depends
on the separation between the plates, a. While the zero-point energy is itself infinite,
its variation with a gives rise to a finite force. High precision measurements, following
the pioneering work of Lamoreaux in 1997 [2], have renewed interest in this subject.
A review of experimental attempts to measure the force prior to 1997, and the many

improvements since then, can be found in Ref. [3]. As one example, we note experi-
ments by Mohideen et al. [4], using an atomic force microscope, which have confirmed

Casimir's prediction from 100nm to several pm, to a few percent accuracy. Forces at
these scales are relevant to operation of micro-electromechanical systems (MEMS),
such as the actuator constructed by Chan et al. [5] to control the frequency of oscil-
lation of a nanodevice. They also appear as an undesirable background in precision
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experiments such as those that test gravity at the sub-millimeter scale [6].
An undesirable aspect of the Casimir attraction is that it can cause the collapse

of a device, a phenomenon known as "stiction" [7]. This has motivated the search for

circumstances where the attractive force can be reduced, or even made repulsive [8].
The Casimir force, of course, depends sensitively on shape, as evidenced from com-

parison of known geometries from parallel plates, to the sphere opposite a plane [91,
the cylinder opposite a plane [10], eccentric cylinders [11], the hyperboloid opposite

a plane [12], a grating [13], a corrugated plane [14]. The possibility of a repulsive

Casimir force between perfect metals can be traced to a computation of energy of a

spherical shell by Boyer [15], who found that the finite part of this energy is opposite
in sign to that for parallel plates. This term can be regarded as a positive pressure
favoring an increased radius for the sphere, if it were the only consequence of changing
the radius. The same sign is obtained for a square in 2-dimensions and a cube in 3
dimensions [16, 17]. For a parallelepiped with a square base of width b and height a,
the finite part of the Casimir energy is positive for aspect ratios of 0.408 < a/b < 3.48.
This would again imply a repulsive force in this regime if there were no other energy

contributions accompanying deformations at a fixed aspect ratio. Of course, it is im-

possible to change the size of a material sphere (or cube) without changing its surface
area, and other contributions to its cohesive energy. For example, a spherical shell

cut into two equal hemispheres which are then separated has superficial resemblance

to the Boyer calculation. However the cut changes the geometry, and it can in fact

be shown[18] that the two hemispheres attract.
The piston geometry, first considered by Cavalcanti [19] (in 2 dimensions) and

further considered in Refs. [20, 21] (in 3 dimensions), is closely related to the paral-

lelepiped discussed above.' As depicted in Fig. 8-1, we examine a piston of height

h, with a movable partition at a distance a from the lower base. The simplest case

is that of a rectangular base, but this can be generalized to arbitrary cross sections.
This set-up is experimentally realizable, and does not require any deformations of the
materials as the partition is moved. The force resulting from rigid displacements of

this piece is perfectly well defined, and free from various ambiguities due to cut-offs

and divergences that will be discussed later. In particular, we indeed find the finite
part of the energy can be "repulsive" if only one of the boxes adjoining the partition

is considered, while if both compartments are included, the net force on the partition
is attractive (in the sense that it is pulled to the closest base).

This chapter expands on a previous brief publication of our results [20], and is

organized as follows. Section 8.2 introduces the technical tools preliminary to the cal-
culations, and includes sections on cutoffs and divergences, the optical path approach,
and on the decomposition of the electromagnetic (EM) field into two scalar field

(transverse magnetic and transverse electric) with Dirichlet and Neumann boundary

conditions (respectively). Details of the computation for pistons of rectangular cross

section are presented in Section 8.3, and the origin of the cancellations leading to a

net attractive force on the partition is discussed in some detail. Interestingly, it is

possible to provide results that are asymptotically exact in the limit of small sepa-

'The piston geometry was earlier mentioned in Ref. [22].
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rations for cross sections of arbitrary shape. As discussed in Section 8.4, there is an

interesting dependence on the shape in this limit, related to the resolution with which
the cross section is viewed. Finally, in Section 8.5 we present new results pertaining to
corrections to the Casimir force at finite temperatures in such closed geometries (for

perfect metals). We conclude with a brief summary (Section 8.6), and an Appendix.

8.2 Preliminaries

Before embarking on the calculation of the force on the partition, we introduce some
relevant concepts in this Section. Subsection 8.2.1 discusses the general structure
of the divergences appearing in the calculation of zero-point energies, and indirectly
justifies our focus on the piston geometry. The optical path approach, which is our

computational method of choice is reviewed in Sec. 8.2.2. Another important aspect
of the piston geometry is that it enables the decomposition of the EM field into
Dirichlet and Neumann scalar fields, as presented in Sec. 8.2.3.

8.2.1 Cutoff Dependence

Let us consider an empty cavity made of perfectly conducting material. The Casimir

energy of the EM field is a sum over the zero point energies of all modes compared
to the energies in the absence of the material Ec(A) = E(A) - Eo(A) = } E hWm -

1 EA hw , and is divergent if the upper limit A is taken to infinity. In a physical
realization, the upper cutoff is roughly the plasma frequency of the metal, as it

separates the modes that are reflected and those that are transmitted and are hence

unaffected by the presence of the metallic boundaries. Based on general results for
the density of states in a cavity [231, we know E(A) has an asymptotic form, with
a leading term proportional to the volume V of the cavity and the fourth power
of A and sub-leading terms proportional to its surface area S, a length L which is
related to the average curvature of the walls (in a cavity with edges but otherwise
flat, like a parallelepiped, it is the total length of the edges) proportional to A3 and
A2 respectively, and so forth. For example in the case of a scalar field with Dirichlet
boundary conditions, we find

E(A) = 3
2 VA4 - SA3 + LA 2 + ... + , (8.1)

27r2 87r 327r

where "..." denote lower order cutoff dependences, 2 and E is the important finite

part in the limit of A -+ oc. The EM field also enjoys a similar expansion, although
some terms may be absent.

Although the volume term is cancelled by an identical term in E0 , this is not

obviously the case for the other divergent terms (surface area, perimeter, and so on).
The energy of an isolated cavity is therefore dependent on the physical properties of

2 For general geometries, there are also linear and logarithmic terms in A, but for the class of

geometries examined in this chapter (pistons) there are no further terms in A.
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the metal. A determination of the stresses in a single closed cavity requires detailed

considerations of the metal, and its extrapolation to the perfectly conducting limit

will be problematic [24]. It is tempting to ignore these cutoff dependent terms, and to

remove them in analogy to the renormalization of ultraviolet divergences in quantum

field theories. This is unjustified as there are no boundary counter-terms to cancel

them, see Ref. [25]. If however, we are interested in the force between rigid bodies,
then any surface, perimeter, etc. terms are independent of the distance between them,
and a well defined (finite) force exists in the perfect conductor limit.

While the piston geometry considered in this chapter is closely related to the

parallelepiped cavities considered in the literature, it does not suffer from problems
associated with changes in shape. The overall volume, surface, and perimeter contri-

butions are all unchanged as the height of the partition is varied, and the force acting

on it is finite and well defined. The same observations led Cavalcanti [19] to consider a
rectangular (2-dimensional) piston. He found that the force on the partition, though

weakened relative to parallel lines, is attractive.

8.2.2 Optical Approach

The Casimir energy can be expressed as a sum over contributions of optical paths [26],
and much intuition into the problem is gained by classifying the corresponding paths.
For generic geometries this approach yields only an approximation to the exact result

that ignores diffraction. Fortunately, it is exact for rectilinear geometries if reflections

from edges and corners are properly included.
Consider a free scalar field in spatial domain D obeying some prescribed boundary

conditions (Dirichlet or Neumann) on the boundary B = OD. The Casimir energy is

defined as the sum over the zero point energies, E = Z ihw, where w are the eigen-
frequencies in D (we refrain from subtracting E0 for the moment). This expression
needs to be regularized, as explained in the previous section, by some cutoff A. We
choose to implement this by a smoothing function SA(k) - e-k/A, and thus examine
E(A) = E>k 2hw(k)e-k/A.

The Casimir energy can be expressed in terms of the spectral Green's function
G(x, x', k) which satisfies the Helmholtz equation in D with a point source,

(V' 2 + k2 )G(x', x, k) = -6 3 (x' - x) , (8.2)

and subject to the same boundary conditions on B as the field. The Casimir energy of

a scalar field is then given by the integral over space and wavenumber of the imaginary
part of G, in the coincidence limit x' -+ x [25] (h = c 1), as

E(A) = - j dk k2-k/^ dx G(x, x, k). (8.3)
7 0 'D

The knowledge of the Helmholtz Greens function at coincident points allows us to

calculate the Casimir energy of the configuration.
It is convenient to introduce a fictitious time t and a corresponding space-time

propagator, G(x', x, t), defined as the Fourier transform of G(x', x, k). The propagator
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G(t) can be expressed as the functional integral of a free quantum particle of mass

m = 1/2 with appropriate phases associated with paths that reflect off the boundaries.
In the optical approach, the path integral is approximated as a sum over classical

paths of exp[iSp,(x', x, t)], weighted by the Van Vleck determinant D,(x', x, t) [27].
Here S, (x', x, t) is the classical action of a path p, from x to x' in time t, composed of

straight segments and undergoing r reflections at the walls. For rectilinear geometries,
like the parallelepiped that we will discuss, this is exact and effectively generalizes
the method of images to the Helmholtz equation.

For definiteness consider a scalar field satisfying either Dirichlet or Neumann
boundary conditions, introducing a parameter q, which is -1 for the Dirichlet and

+1 for the Neumann case. The Green's function is then given by

G(x', x, k) = eikp, (x',x), (8.4)
P47rl,(X' X)

where 1Pr is the length of the path from x to x' along pr. There is a phase fac-

tor #(pr, n) = Trns+nc with n, and nc the number of surface and corner reflections,
respectively. Note that reflections from an edge do not contribute to the phase.

Since paths without reflections or with only one reflection can have zero length,
they require a frequency cutoff A, implemented by the smoothing function SA(k) =
e-k/A. Then the x and k integrals can be exchanged, the k integral performed and

the Casimir energy written as

E1(A) =12 S q(pri ) f A4 (3 - (lPr (x)A) 2 )
27r J dx (1 + (lPr(x)A) 2 ) 3  (8.5)

The limit A -+ oo can be taken in each term of the sum, unless a path has zero

length, which can occur only for cases with r = 0 or r = 1. After isolating these two

contributions, we set
E7(A) = Eo(A) + E1 (A, 77) + Eg. (8.6)

The zero reflection path has exactly zero length, and contributes the energy
Eo(A) = NVA4 , where V is the volume of the space. This is a constant and therefore
does not contribute to the Casimir force. The one reflection paths (energy E1 (A, ,))
generate cutoff dependent terms, but generically, also cutoff-independent terms. We
will show however that such one reflection terms do not contribute to the force when
specialized to the piston geometry.

For paths undergoing multiple reflections r > 1, the length 1p, is always finite, and

we can safely send A -> oo in eq. (8.5), resulting in the simpler and cutoff independent
contribution

Enj= 2r2 E #(Pr,) f dx1 (8.7)
Pr>1

This is a finite contribution to the energy in the limit A --+ o. The derivative of E.,
gives the finite force between the rigid bodies.
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8.2.3 Electromagnetic Field Modes

In the previous section we defined the optical approach for a scalar field. Although a
similar definition can be made for the electromagnetic field in an arbitrary geometry,
the Helmholtz equation becomes matrix-valued, complicating the treatment even in
a semiclassical approximation. However, in the piston geometry, with arbitrary cross

section, the EM field can be separated into transverse magnetic (TM) and transverse
electric (TE) modes, that satisfy Dirichlet and Neumann boundary conditions.

At the surface of an ideal conductor, the E and B fields satisfy the boundary
conditions, E x n = 0 and B -n = 0, where n is the normal vector at the surface.
The normal modes of the piston consist of a TM set, which satisfy

Ex =4(y,z)cos(n-Fx/a), n=0,1,2, -.. , (8.8)

where 0 vanishes on the boundaries of the domain, and therefore satisfies Dirichlet
conditions on the 2-dimensional boundary; and a TE set, with

B 4 = (y, z) sin (nrx/a) , n = 1, 2, 3,... , (8.9)

where # satisfies Neumann boundary conditions. The other components of E and B
can be computed from Maxwell's equations, and are easily shown to obey conducting
boundary conditions. There is, however, one important exception: the TE mode
built from the trivial Neumann solution, # = constant, does not satisfy conducting
boundary conditions unless the constant (and all components of E and B) are zero.
We must ensure that the corresponding set of modes in eq. (8.9) are not included in
the Casimir summation.

Equations (8.8) and (8.9) enable us to list the spectrum of the electromagnetic
field. Denote the spectra of the TM modes as the set Q(N & Ds) C R. Here N,
indicates that the component on the interval satisfies Neumann boundary conditions,
and Ds indicates that the component on the cross section satisfies Dirichlet boundary
conditions. Similarly, we denote the spectra of the TE modes as Q(DI & Ns) in a
similar notation. However, as explained above, we must remove Q(D 1 ), which are the
frequencies with # constant. Hence, the electromagnetic spectra is the set

Qc = Q(N 1 0 Ds) U Q(D 1 0 Ns) \ Q(D 1 ). (8.10)

Note that Q(DI) = {x/a, 2ir/a, ... } is the set of eigenfrequencies in 1-dimension.

The Dirichlet and Neumann spectra on the interval are identical except for the n = 0
mode (see eqs. (8.8) and (8.9)), but the energy of this mode is independent of a and
does not contribute to the Casimir force. So we may replace N, -+ D, in the TM

spectrum and D, -+ N, in the TE spectrum, with the result

Qc ~ Q(D 1 0 Ds) U Q(N 1 0 Ns) \ Q(D 1 ), (8.11)

where the notation ~ indicates equality up to terms independent of a. Thus, the
EM spectrum is the union of Dirichlet and Neumann spectra in the 3-dimensional
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domain, D, except that the Dirichlet spectrum on the interval must be taken out.

8.3 Rectangular Piston

8.3.1 Derivation

The piston geometry is depicted in Fig. 8-1. The domain D consists of the whole

parallelepiped, the union of Regions I and II. Only the partition, located a distance
a from the base and h - a from the top, is free to move. We study the scalar field
for both Dirichlet and Neumann boundary conditions and the electromagnetic field.
According to eq. (8.11), the EM Casimir energy arises from the sum of the Dirichlet
and Neumann energies in 3 dimensions minus the Dirichlet Casimir energy in one
dimension, E = hA2 /27r - ((2)/(4ira) - ((2)/(47(h - a)) (a standard result). In total,
then, the EM Casimir force on the partition is

((2) ((2)
Fc = FD FN + -8 -2)

4xa2  4w(h - a) 2

where the final term vanishes if we take h -+ o.
Let us initially focus on Region I, the parallelepiped of size a x b x c, below the

partition. The optical energy receives contributions from the sum over all closed paths

p, in domain DI: Each path is composed of straight segments with equal angles of
incidence and reflection when bouncing off the walls. There are four distinct classes
of paths: E,, from periodic orbits reflecting off faces (e.g. paths (c), (d), (i));
E.,per from aperiodic tours off faces (e.g. paths (a), (e), (f)); Eedge, from closed paths
involving reflections off edges (e.g. paths (b), (g)); and Enr, from closed paths with
reflections off corners (e.g. path (h)). To each path p,, we associate a vector 1P,
pointed along the initial heading of the path, and of length 1, = lp,.

First we consider the periodic orbits, which are paths that involve an even number
of reflections off faces, with r = {0, 2, 4, .. .} (e.g. paths (c), (d), (i)). As the central
point is varied throughout DI, the length 1p, of each periodic path remains fixed,
making the integration trivial, i.e. ID dex -) abc = V. We index the paths by

integers n, ml, so 1P = (2na, 2mb, 21c), with inl = (2na)2 + (2mb) 2 + (21c) 2 .
The n = m = I = 0 term gives E0 = 'VA 4 (see eq. (8.5) with 1p, = 0), while all

others are evaluated using eq. (8.7), giving:

3 abc
EI(A) = VA 4 

-a3c Z3(a, b, c; 4) (8.13)Per 272  5 2 7 ~2 Za bC;4

= 3 VA 4 ((4) A + F(b, c) + O(e-2,/a) , as a -> 0 (8.14)
27r2 167r2 as

where Zd(al, ... , ad; s) is the Epstein zeta function defined in the Appendix (eq. (8.50)),
and F(b, c) does not depend on a and hence does not contribute to the force on the
piston. In eq. (8.14) g = min(b, c), and A = bc is the area of the base. The leading
cutoff independent piece as a -+ 0 is the Casimir energy for parallel plates, coming
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h (d)

Y(e)W

b

Figure 8-1: The 3-dimensional piston of size h x b x c. A partition at height a separates
it into Region I and Region II. A selection of representative paths are given in (a)-(i).
Several of these paths (namely, (a,b,c,d,h,i)) have start and end points that actually
coincide, but we have slightly separated them for clarity.
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from orbits that reflect off both the base and partition, see paths (c), (d), etc. in
Fig. 8-1. To extract this behavior we have used

Zd(al, ... ,ad; s) = 8 +± - , (8.15)
ai al

in the regime ai < a 2,..., ad (see Appendix).
We next consider the contribution of the aperiodic orbits that involve an odd

number of reflections off faces, with r = {1, 3, 5,.. .}. Examples in the figure include

paths (a), (e), and (f). For each such path, when we vary the point of integration
over D, one of the Cartesian components of the length vector 1, changes and the

other two components are fixed. For example, only the x component varies for those
paths that undergo an odd number of reflections off walls parallel to the yz-plane
and an even number of reflections off walls parallel to both the xy and xz-planes.
The x-component 1P, increases by 2a each time that the number of reflections off the
yz-planes increases, so that 1P, (2a(n - 1) + 2((x), 2bm, 2cl), where ((x) = x or

((x) = a - x depending on the direction of the path. The summation over n and
the x-integral fa dx together combine to form an integral over x from -00 to +oo.

So we introduce lp,(x) = V(2x)2 + (2bm)2 + (2cl) 2 in terms of which the integration
over the fixed components y and z is trivial f dydz = bc, and the x-integration is
elementary. The above example singled out the x-component. To include all such
paths, the analysis must be repeated for the other two components under the cyclic
interchange of a, b, and c. Employing eq. (8.5) for {n, m} = {0, 0} and eq. (8.7) for

{n, m} # {0, 0} we obtain,

Eper (A) 4-SA abZ 2(a, b; 3) + acZ2 (a, c; 3) + bcZ 2 (b, c; 3)) (8.16)
87r 647r

-
2 SA3 _ (( 3 ) P + T(b, c) + O(e-2r)/a, as a --+ 0 (8.17)

8w 64w a2

where T does not depend on a, S = 2(ab + ac + bc) = aP + 2A is the total surface
area, and P = 2b + 2c is the perimeter of the base. The leading cutoff independent
piece as a -+ 0 comes from paths that reflect once off a side wall and off both the
base and partition, see paths (e), (f), etc. in Fig. 8-1.

Next we calculate the contribution of even reflection paths which intersect an
edge of Region I. Examples include (b) and (g) in Fig. 8-1. In this case it is only the
component of 1, parallel to the edge that remains fixed, while the other 2 components
vary as the point of origin varies over DI. For example, suppose the reflecting edge is
parallel to the z-axis. Then the z-integration is trivial, f dz = c, and the path vector
is a function of x and y given by 1p, = (2a(n - 1) + 2((x), 2b(m - 1) + 2 4'(y), 2cl),
where ((x) = x or ((x) = a - x, @ (y) = y or $ (y) = b - y, depending on the quadrant
that 1Pr lies in: up or down in x, right or left in y, respectively. In this case we can
replace both the summations over n and m and the double integral over x and y by
an integral over the whole xy-plane. This integral is most easily performed in polar
co-ordinates, using a path length that may be written as lp,(r) = f(2an)2 + (2r)2 .
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The contribution to the Casimir energy is found to be

Eg(A) LA2 _( 2) _ + - + - (8.18)
32-w 16wF ( a b c/

where L = 4(a+b+c) = 4a+2P is the total perimeter length. The cutoff independent
piece ~ 1/a comes from paths that reflect once off a side edge and off both the base
and partition, see path (g), etc. in Fig. 8-1.

Finally, we consider the paths which reflect off a corner (Enr). In this case, as

the integration variable moves throughout its domain, all components of the distance
vector 1P. vary. Hence, we can incorporate all such paths by extending our integral
over all space in x, y and z. This leaves no dependence on the geometry of the

parallelepiped (i.e., it is independent of a, b, and c), and only contributes a constant
that is of no interest, which we ignore.

Adding together all these contributions, we obtain the Casimir energy of a scalar
field in Region I as

3 1 ~+
E4(A) = VA 4 + -SA3 + LA2 + E' (8.19)

R 272  8w 32wr

where k' gives the cutoff independent piece, from eqs. (8.13), (8.16), and (8.18).
We note that the cutoff dependent terms agree with the leading terms obtained by
integrating Balian and Bloch's asymptotic expansion of the density of states [23].

We obtain the Casimir energy for the entire piston by adding to eq. (8.19) the
analogous expression for Region II obtained by the replacements: a -- h-a, V -* hA,
S -+ hP + 4A, and L -- 4h + 4P. It is easy to see that after including Region II

the sum of all cutoff dependent terms is independent of partition height a. Therefore
the force on the partition is well defined and finite in the limit A -+ oo. Also, of
course, the contribution to the Casimir energy from the region outside the piston is
independent of a and can be ignored entirely. The force on the partition is given by
the partial derivative with respect to a of the cutoff independent terms as

Fn = a (,(a, b, c) +E5,(h - a, b, c)) , (8.20)

where we have defined E E,(a, b, c).
We focus on the h -- oo limit in which the expression for the contribution from

Region II simplifies. Consider the periodic, aperiodic, and edge paths whose cutoff
independent contribution to the energy is given in eqs. (8.13), (8.16), and (8.18).
Replacing a -* h - a, taking h -+ oc, and using eq. (8.52) of the appendix in these
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equations gives

S -- ha Z2(b/c,c/b; 4),
pr 3 2 7F 2AZ2(/c

~ -a (1 1 (3)
E - -y327r (b C2 (3)

5" -+0 (8.21)

where we have not reported terms independent of a, since they do not affect the
force. Also, we re-express the Region I energy E (a, b, c) in a fashion that is useful
for a < b, c, using eq. (8.51) of the appendix. The net force on the partition due to
quantum fluctuations of the scalar field is then

3((4) A ((3) P ((2) Jq(b/c)
F = 167 2 a4 

- 7 327r a3  167ra2  327r2A

+ n 2 (Ko (27rmn b/a) b + (b - c))
m,n=1

7r2 A coth(fmn(b/a, c/a))
+ - 4 2(8.22)

32 a m fmn(b/a, c/a) sinh2 (fmn(b/a, c/a))'

where the primed summation is over {m, n} E Z2 \ {0, 0} and Ko is the zeroth

order modified Bessel function of the second kind. Here we have defined J (x) =

Z 2 (X1/2  1/2 ; 4)+7q(x + x)((3) and fmn(X, y) - 7r V(mx) 2 + (ny) 2 . The first four
terms of eq. (8.22) dominate for a < b, c, while the following terms are exponentially
small in this regime. The first term arises from periodic orbits reflecting off walls (see
eq. (8.14)), the second term from aperiodic tours bouncing off walls (see eq. (8.17)),
the third term from reflections off edges (see eq. (8.18)), the fourth term from Region
II paths (see eq. (8.21)). Note that the infinite series, involving exponentially small
terms, is convergent for any a, b, c.

The electromagnetic case is closely related to the scalar Dirichlet and Neumann
cases, which we discussed in detail in Section 8.2.3. According to eq. (8.12), the EM
Casimir energy in Region I is related to the Dirichlet energy ED and the Neumann
energy EN by

E (A) = ED' (A) + Ey(A) - E1(d, A), (8.23)
d=a,b,c

where E1 (d, A) = dA 2 /27 - ((2)/(47d) is the energy of a scalar field in 1-dimensions
obeying Dirichlet boundary conditions in a region of length d. The contribution
from Region II follows from replacing a -> h - a. Combining previous results, the
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electromagnetic Casimir force is found to be,

3((4) A ((2) _ Jc(b/c)
F _ - +8- 2 a4  87a2  32- 2A

r2 A coth(fmn(b/a, c/a))
16 amn fmn(b/a, c/a) sinh2 (fmn(b/a, c/a))'

where Jc(x) - J-1 (x) + J+I(x) - 2Z2(Xi/2, X-1/2 4).

8.3.2 Discussion

Here we address the implications of eqs. (8.22) and (8.24) for the force on the partition
in more detail. To begin, we discuss the important issue of attraction versus repulsion.

We are interested in comparing the force on the partition (Fr, where IF = D, N or

C for Dirichlet, Neumann, or EM boundary conditions respectively) to the force
reported in the literature for a single cavity, which we denote Fr,box [17]. The latter

is obtained by the following prescription: calculate the energy in a single rectilinear

cavity, drop the cutoff dependent ("divergent") terms, ignore contributions from the

region exterior to the cavity, and differentiate with respect to a to obtain a force. We

emphasize that there is no justification for dropping the cutoff dependent terms, so

although we refer to this result, for convenience, as Fb0 x, it does not apply to the

physical case of a rectilinear box.
For the piston geometry, we note that the sole contribution from Region II is the

a-independent term denoted by J. In fact this is the only term that distinguishes F

from Fbex, i.e.,
Fr Fr,bo - Jr(b/c)/(32r2 A). (8.25)

Naively, the difference by a constant may not seem important. Indeed it is not too

important for small values of the ratio a/(b, c). However it is very important for

a > (b, c). In Fig. 8-2 we plot both these forces for a square cross section (b = c) as a

function of a/b. (The plots include scalar as well as EM cases.) Note that in all cases
F -- 0, while Fb0, --+ J(1)/(327r2 A) (a constant) as a/b -+ oo. For this geometry

JD( 1 ) - -1.5259, JN( 1 ) ~ 13.579, and Jc(1 ) ~ 12.053, so J is negative for Dirichlet
and positive for both Neumann and EM. We see that F is always attractive, while

Fboo can change sign. It is always attractive for Dirichlet, but becomes repulsive for

Neumann when a/b > 1.745 and for EM when a/b > 0.785. This is the consequence
of ignoring Region II and the cutoff dependence. Indeed, it is easy to show that the
piston force is attractive for any choice of a, b, c, h. A final comment is that for h finite

and a = h/2, the partition sits at an unstable equilibrium position. This comment

was made in Ref. [28], although the above detailed results were not derived there.

With the explicit form for F, we can more closely compare the piston with

Casimir's original parallel plate geometry. For better comparison in Figs. 8-3 and

8-4, we have plotted the forces for the scalar and EM fields, after dividing by the

parallel plates results, F(D,N)II =-3(4)A/(167 2a4 ) or Fc1 = -3((4)A/(8 2a4).
First, note that for the EM case not only does Fc --+ 0 as a/b --+ o but it does so
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Figure 8-2: The force F on a square piston (b = c) due to quantum fluctuations
of a field subject to Dirichlet, Neumann, or conducting boundary conditions, as a
function of a/b, rescaled as F' = 167r2 AF/(3((4)) (F' = 87r2 AF/(3((4))) for scalar
(EM) fields. The solid lines are for the piston, solid middle = Fc, solid upper = FD,

and solid lower = FN, while their dashed counterparts are for the box.
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Figure 8-3: The force F on a square partition (b = c) due to quantum fluctuations
of a scalar field as a function of a/b, normalized to the parallel plates force F11.
Left figure is Dirichlet; solid middle = FD (piston), dashed = FD,box (box), solid
upper = {1/a 4, 1/a 3, 1/a 2} terms, solid lower = {1/a 4 , 1/a 3 , 1/a 2 , 1} terms. Right
figure is Neumann; solid middle = FN (piston), dashed = FN,box (box), solid lower =

{1/a4 , 1/a 3, 1/a 2} terms, solid upper = {1/a 4 , 1/a 3, 1/a 2, 1} terms.
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Figure 8-4: The force F on a square partition (b = c) due to quantum fluctuations

of the EM field as a function of a/b, normalized to the parallel plates force F11. Solid

middle = Fc (piston), dashed = Fc,ox (box), solid lower = {1/a 4, 1/a 2 } terms, solid

upper = {1/a 4 , 1/a2 , 1} terms.

182



rather quickly. Since Fojj vanishes as 1/a 4 , it is clear from Fig. 8-4 that Fc vanishes

even more rapidly. In fact it vanishes exponentially fast, as e-27a/h for a > b. We

can understand this as follows: In this limit the most important paths are those that

reflect off the top and bottom plates once, and therefore travel a distance 2a. The

transverse wavenumber k = r/b due to the finite cross section, acts as an effective

mass for the system, and damps the contribution of these paths exponentially. In
fact for any rectangular cross section we find

Fc ~i - ( r + e27a/c , as a -- oo. (8.26)

Experimentally, values of a/b - 1 are not yet realizable. Instead, typical exper-

imental studies of Casimir forces have transverse dimensions that are roughly 100
times the separation between the "plates". This means that the leading order cor-

rections to Fcjj are more likely to be detected experimentally. In Figs. 8-3 and 8-4

we show the result of including successive corrections to F11 for scalar and EM cases,
respectively; we plot the curve which includes {1/a 4 , 1/a 3 , 1/a 2} terms and another

curve that includes {1/a , 1/a 3 , 1/a 2 , 1} terms. In the EM case we note that the 1/a 3

term that appears in the expansion for Dirichlet and Neumann boundary conditions is

canceled. In the next Section, we will demonstrate that this is a general phenomenon

for any cross section (see ahead to eq. (8.37)). Hence the first correction to the EM

result scales as 1/a 2, which is O(a 2/A) compared to F 11. We see that this correction

is quite accurate up to a/b - 0.3. We suspect this regime of accuracy to be roughly

valid for any cross section.

8.4 General Cross Sections

The piston for arbitrary cross section cannot be solved exactly, but we can obtain

much useful information from an asymptotic expansion for small separation a. The

generalized piston maintains symmetry along the vertical axis, and its geometry is

the product of I & S of the interval I = [0, a] and some 2-dimensional cross section
S C R2. Let us denote by E = k2 the eigenvalues of the Laplacian on the piston base

S and the interval I, separately, with appropriate boundary conditions

-As, 5s, ' = Esj. (8.27)

The corresponding densities of states are denoted by by p, and ps, respectively. Then

the density of states (per unit "energy", 8) of the problem in the 3-dimensional region

I 0 S is p(E) and can be written as the convolution

p(9) j dE'ps(E - E')p( E'). (8.28)

The 2-dimensional density ps is not known in general, since the wave equation can

not be solved in full generality in an arbitrary domain S. However, for small height

to width ratios, the smallness of a translates to high energies E, and we will see that
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the asymptotic behavior of ps is sufficient for extracting an asymptotic expansion for

the force is powers of 1/a.
The number of eigenstates with energy less than S in S has the asymptotic ex-

pansion at large E [29],

A PNs(E)= -(9 .+X+TN ( -(-29)
47r 4-r

Here, x is related to the shape of the domain S through

x = - ) + s(-y) dy, (8.30)

where a is the interior angle of each sharp corner and r'(-yj) is the curvature of each

smooth section. It is easy to check that X = 1/4 for a rectangle and x = 1/6 for any

smooth shape (for example a circle). Note that we have included the step function

E(S) in the expression for Ns(E), ensuring that only S > 0 contributes. Here rN(S) is

a function which designates lower order terms (remainder) in an S -> 00 asymptotic

expansion. For any polygonal shape rN is exponentially small, rN(S) = O(ecE)
(c > 0 is a constant) [30]. However, we are aware of only a much weaker estimate for

smooth shapes, as rN(S) = 0(1/VS) [29]. The derivative of Ns(E) is the density of

states3

PS4) + 1' )(E) + x 6(E) + r,(E), (8.31)
47r 8 7r V1,c

where we have used e'(S) 6(E), and E 6(E) = v6(E) = 0 for all S.
The other function in the convolution, the 1-dimensional density of states, is

known exactly: it is simply a sum over delta functions, which we rewrite in terms of

its Poisson summation

() = ( an22) (8.32)
n=1

a + 2 fdx cos(27mx) X2 2  (8.33)
27 V mO - a2

The first term in eq. (8.33) is the smooth contribution to the density of states, and

the second is the oscillatory component. The leading contributions (as a -- 0) to the

3-dimensional density of states come from convolving the smooth part of ps with pi,

3 In Eqs. (8.31) and (8.34) we have denoted the various remainders by re(E), ri(E), r 2(S). We

discuss the size of the remainders in the expansion of the forces F, & Fc following eq. (8.37).
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giving3

p(E) = a _ + P + _ +
\427r 16w 2 r )
002VA aP

+ 2 sin(2ma ) + raPJo(2maV)
m=1

+ 2X cos(2maV) + r 2(E)). (8.34)

The first line agrees precisely with the Balian and Bloch theory of the density of

states [231, and gives the cutoff dependent terms in the Casimir energy

E(A)= dSp(S) -e /^. (8.35)

The cutoff dependent contributions have no effect on the Casimir force when Region

II is included, since they are linear in a, as explained earlier. The second line in

eq. (8.34) gives the leading three terms in an asymptotic expansion of the force

3((4) ((3) ((2)X
F= A - 77-P - + ra). (8.36)

iT672a 4 32 a s 4ira2  (8.36)

Also, even for these general cross sections, the EM energy can be related using

eq. (8.12) to Dirichlet and Neumann energies, as

3((4) ( (2) (1 - 2X)
Fc = - A + 4(2 + rc(a). (8.37)

8w2a4  4wa 2

In eqs. (8.36) and (8.37) we have written the remainder terms as r,7(a) and rc(a)

(= r_1 (a) + r+i(a)), respectively. Following our earlier estimates for rN(S) that

appears in Ns(S), and noting that there is always an 0(1) term that comes from

Region II, we have ro,c(a) = 0(1) for polygonal shapes and rq,c(a) 0 0(1/a) for

smooth shapes, as a -+ 0.
The generalization to arbitrary cross sections in eq. (8.37) has interesting fea-

tures. The correction to the parallel plates result depends on geometry through the

parameter x, which depends sensitively on whether the cross section is smooth or

has sharp corners. For example, x =1 for all smooth shapes and x = for

an n-sided polygon of equal interior angles. Given unavoidable imperfections in any

experimental realization, one may wonder what precisely constitutes "smooth" or

"sharp." Note that for any deformation with local radius of curvature R (R = 0

for perfectly sharp corners), we have the dimensionless quantity R/a, where a is the

base-partition height. Given that our expansion is valid for small a, we conclude that

R > a is a smooth deformation, while R < a can be regarded as a sharp corner.

As a simple example, consider a shape that is roughly square (4-sided polygon) if

viewed from large distances, but is in fact rounded with radius R at the "corners"

if examined closely. Let us also imagine that the overall width (b) is much larger
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than R. Then, since the corresponding term in the Casimir force goes as 1 - 2X (see
eq. (8.37)), we expect the correction to be ((2)/(6xa 2) for a/R < 1 and decrease to
((2)/(8wa 2) for a/R >> 1. A more interesting example would be a self-similar (fractal
or self-affine) perimeter, in which the number of sharp corners deceases as a power
of the resolution a. For such a case, we expect a correction scaling as a non-trivial
power of 1/a, reminiscent of results in Ref. [31]. It would be interesting to see if such
corrections are experimentally accessible.

Another noteworthy feature of eq. (8.37) is that the leading correction to the

EM force (compared to parallel plates) is smaller by order of a2 /A. By contrast the
corrections are only of order a// 7 4 for scalar fields with either Dirichlet or Neumann
boundary conditions. However, the latter corrections are exactly equal and opposite in
sign, and cancel for the EM force. It is interesting to inquire if this precise cancellation
applies only to perfect metallic boundary conditions, or remains when the effects of
finite conductivity are taken into account. More work is necessary to understand the
finite conducting piston. Yet another case is for side walls made of dielectrics, where
a simple modification of the optical path method, which replaces the sign factor rq
with the reflection coefficients for TM and TE modes, suggests that the cancellation
does not occur. A piston that is made entirely of a uniform dielectric is examined in

Ref. [32]

8.5 Thermal Corrections

The question of the leading corrections to the Casimir force at finite temperatures T

has generated recent interest, both from the practical need to evaluate the accuracy
of experiments, and due to fundamental issues. In particular, there is controversy
pertaining to the appropriate model for the metallic walls, which we shall ignore in

this chapter. Instead, we shall compute corrections to the Casimir force due to finite
temperature excitations of the modes in the piston, while continuing to treat its walls

as perfect metals [33].

8.5.1 Rectangular Piston

We first answer this question for the piston with rectangular cross section. In units
with h = c = kB= 1, the inverse temperature 3 = 1/T introduces a new length
scale whose size relative to the dimensions a, b, and c of the piston (we imagine, as
earlier, that h -> oo) sets the importance of thermal corrections. (More precisely, 7#
is the appropriate length scale.) In typical experiments a ~ 1pm, b, c - 10Opm, and
at room temperature 7r# ~ 20p-m. Thus the regime of most experimental interest is

where the length scales satisfy a < r/# < b, c. In light of this we focus on thermal

lengths much larger than the base-partition height, i.e. a <70#. To fully investigate
the low temperature regime, we assume a < w#, b, c < h, but will allow w# to be

less than or greater than b or c.
Each mode of the field can be regarded as an independent harmonic oscillator,
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and by summing the corresponding contributions, we find the free energy

F7ot =i-Zln ( 1  _ = E + &. (8.38)
# - e-w

We have separated out the the zero-temperature Casimir energy E, from the finite

temperature "correction" 6,F = 6E - T6S, and focus on the latter for calculating

finite temperature effects.
First, a note of caution is in order regarding the scalar field with Neumann bound-

ary conditions. In any cavity, there is a trivial solution to the Neumann problem,
namely a constant field with w = 0. This means that whenever 3 is finite (T > 0)
then &F = -oo, which signals condensation of the scalar field into the ground state.

We note that this phenomenon occurs for closed geometries where the spectrum is

discrete and not in general for open geometries in which the region near W = 0 is inte-

grable due to phase space suppression. We will proceed by calculating the free energy

of a scalar field with both Dirichlet and Neumann boundary conditions, ignoring the

mode with w = 0 for the latter. We then use eq. (8.12) to obtain the EM force. This

procedure is valid since the offending Neumann mode is specifically excluded from

the EM spectrum.
For a Dirichlet scalar field in Region I, since all modes satisfy Wm > ir/a, their

Boltzmann weights are small in the limit of a <7r3, and

671 = O(e-73 /a) (8.39)

is exponentially small. Similarly, the a -dependent terms of the electromagnetic free

energy in region I are exponentially small. This is true for any cross section and

reflects the fact that thermal wavelengths - r/# are excluded from Region I [34].

However, a power law contribution to the free energy and force will come from Region

II. We use the optical expansion, which remains exact for the free energy in rectilinear

geometries, to compute this contribution for scalar fields [34], as

1 2 E -(pr, 7) E dx 1 2. (8.40)
2 Pr q [lp(X) 2 +(q#)2

Note that here the sum ranges over q E Z \ {0} - the q = 0 term is just the Casimir

energy (see eq. (8.7)).
It is natural to break the energy up into the familiar four classes of paths: periodic

orbits, aperiodic tours off faces, reflections off edges, and reflections off corners. How-

ever, summing each set separately gives a logarithmic divergence (that cancels among

the different classes for Dirichlet boundary conditions ). Fortunately, this problem

can be ignored in the h -- oo limit, as can be seen, for example, by considering the

contribution from the sum over periodic orbits (paths (c), (d), etc in Fig. 8-1). Noting
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that h - a is the height of the piston in Region II, we have

1 0 (h - a)bc
p 12 _ , [(n(h - a))2 + (mb) 2 + (ic) 2 + (q#/2)2] 2

This expression is logarithmically divergent, but if we take h -+ o, only the n =

0 term contributes and the remaining summation over {q, m, l} is finite. Strictly
speaking, the interchange of the limit h -- oo with the summations, which eliminates
the logarithmic divergence, is formally problematic. However a more rigorous analysis
justifies this step for the Dirichlet case through the cancellation among the different

classes, but always gives -oo for the Neumann case as anticipated. Performing this
interchange gives the following result for the contribution of periodic orbits

11F ((4)(p - Aa) (h - a)A

per - -2 4  32 Z2(b, c; 3)

+ (h - a)A Z2(b, c; 4) + O(e-479/13) (8.42)
3272

with g - min(b, c) and V as the total piston volume. Here we have expanded for

small 0 relative to g = min(b, c). We note that although the third term is independent

of #, this really is part of 6F. The reader that is interested in the opposite limit of

# -+ oo, i.e., the low temperature limit, should look ahead to Section 8.5.3.
Proceeding in a similar fashion for all contributions to the free energy of a scalar

field we find (ignoring the exponentially small contribution of Region I)

((4)(V - Aa) ((3)(Sp - Pa) ((2)(h - a) M, (b/c)(h - a)

72 p - 87/ 3  4x#O2  32xx/ vA

J,(b/c)(h- a) x 2 (V - Aa) , + 2fmn(, ) - e-fmn(b,)

327 2A 8 mn fn(b, Z)sinh 2 (fmn(b, a))

(h - a) n(h - (Ki(2rmnb) + K1 (27xmn)) (8.43)
m,n=1

where we have defined M(x) = Z 2 (x3 /2, z-3/2; 3)+47(X 1/ 2 +X-11 2 )((2), b 2b/0, a
2c/3, and Sp is the total surface area of the piston. It is important to note that while
6,T7-1 =_ FD, 6+ 1 = 6.FN is not strictly correct as we have ignored the W = 0
Neumann mode. Although 6.FN= -oO, as stated earlier, this expression correctly

gives the a-dependence in 6FN.

The EM case can be handled in a similar fashion. Repeating our earlier de-

composition, we note that FEM W 1  + 1 + ((2)(h - a)/0 2 , since the spectral

decomposition in eq. (8.11) correctly leaves out the w = 0 mode of the Neumann spec-

trum. We thus find (again ignoring the exponentially small contribution of Region
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2((4)(V -- Aa) ((2)(h - a) Mc(b/c)(h - a) Jc (b/c)(h - a)
6EM 2+ +72427/3 2  32iri3Vi7 32r 2 A

2(V - Aa) 1 + 2fmn(b, ) - e 2fmn(b,)

4034 mn fmn (b, E)sinh2 (f m (b, '))

where Mc(x) M_1 (x) + M+1 (x) = 2Z 2(x 3/2 , X-3/2; 3).

In Eqs. (8.43) and (8.44) we have written the expansion as a series in increasing

powers of #. The result, though, is correct (up to exponentially small terms in a/7r3)

for any ratio of / to b or c, and for h much larger than any of the other scales. The

infinite summations that appear are convergent for all finite values of {#, b, c}. The

leading term in eq. (8.44) is the Stefan-Boltzmann energy, and the following terms

are corrections due to geometry. The term independent of 3 is equal to but opposite

in sign to that appearing in the Casimir energy. Note that the appearance of a term

independent of # is an artifact of performing a small # expansion. All terms depend

linearly on a and provide a constant force on the partition. Note that the first five

terms in &.F, and the first four terms in 6
EM have power law dependences on /, while

the remaining terms (summations) are exponentially small for 7r# < (b, c).

8.5.2 General Cross Section

If we consider general I 0 S geometries, as in Section 8.4, we may use the smooth

3-dimensional Balian and Bloch density of states in Region II to obtain the leading

terms in the free energy. Specifically, we use the first line of eq. (8.34) with the

replacement a -+ h - a for p(E), and calculate the free energy from

6T = j dS p(E) ln(1 - exp(-#v/"E)). (8.45)

Since we only know the first three terms in the expansion for the density of states, we

will obtain contributions proportional to the volume, surface, and perimeter of the

piston, but nothing at O(1/0). It is fairly straightforward to get

JFD = 72 04  + 87r,3 3  7032  (8.46)

JEM = 2( (4)((V - Aa) + ((2)(1 - 2X)(h - a) (8.47)
72E4 702 +'0

We again see the effect of the modes excluded from Region I due to a < r#, in the

factors V7-Aa, Sp-Pa, and h-a. These leading terms provide thermal contributions

to the quantum force on the partition, given in eqs. (8.36) and (8.37).
Let us comment on the relationship between the Casimir and thermal contribu-

tions to the force. We begin by focusing on the regime that is perhaps of most

experimental interest: a < 7r# < V. If we include both Casimir and thermal
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contributions to the force, as given in eqs. (8.37) & (8.47),

3((4) 1 1 +((2)(1 - 2X) 1 1848
FEM + A+-+ +--- (8.48)

Note that the leading contributions are related to terms in the Casimir energy by

the interchange a +-+ /2, but this connection ceases for higher order corrections. We

have only calculated further terms for the parallelepiped and we can compare them

in this limit. In particular, eq. (8.44) includes a contribution of order 1/3 which has

no counterpart (i.e. a term of order 1/a) in the Casimir force. A term of order 1/a

can only come from the derivative of - In a, which is absent from the EM Casimir

energy.

8.5.3 Low Temperature Limit

Equation (8.48) provides the leading terms in the Casimir force in the limit a <

7r# < b, c (or more generally a < r# < v/Z for non-rectangular cross sections). We

may more accurately refer to this as a "medium temperature" regime, as opposite

to a lower temperature regime with 7r# > v/ZA. In fact, for the rectangular piston

we obtained in eqs. (8.43) and (8.44) results that are valid for a < {r#, b, c} for any

ratio of / to b or c, and will now examine their lower temperature limit. A naive

application of the proximity-force approximation gives always a thermal correction to

the force that vanishes as - 1/#4 = T 4 in the T --+ 0 limit [16]. However, in Ref. [34]

it is argued that for open geometries this limit is quite subtle and is sensitive to the

detailed shape of each surface. In fact it is reasonable to argue that for the cases

relevant to experiments there may be weaker power laws, i.e., 1/#' with a < 4. But

in our closed geometry another scenario is natural: If T - 0, so that # > a, VZ,
modes are excluded from both regions due to a gap in the spectrum, resulting in an

exponentially small free energy, which (for the rectangular piston) is

(h- ) 1 1
6YEM - (h-7r/b + 7/c as 0 -- oc. (8.49)

V/203/2 r/b V/c
A plot of the force FTr = -dor/da (where F = D or C as for T = 0), derived

from eqs. (8.43) and (8.44) is given in Fig. 8-5. The force is normalized to the Stefan

Boltzmann term, FSB =-((4)A/(72 4 ) (-2((4)A/(7r2 34 )) for Dirichlet (EM) fields.

Having taken a < 7r3 in our analysis, the a dependence is ignorable, and we plot

the force as a function of /b (b = c). The high /b asymptotic curves (eq. (8.49) is

the EM case) are also included. Note that from eq. (8.48) we can read off the small

//A corrections to FSB for arbitrary cross sections.

8.6 Conclusions

In this work we have obtained an exact, analytic result for the Casimir force for a

piston geometry. Exact, analytic results are rare in this field but nonetheless partic-
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Figure 8-5: The force FT from thermal fluctuations on a square partition

(b = c), normalized to the Stefan-Boltzmann expression FSB = -((4)A/(7r23 4)
(-2((4)A/(r 2/3 4 )) for Dirichlet (EM) fields, as a function of //b. This is valid in

the regime: a < {7r, b, c}. Starting from a normalized value of 1, the full result

for Dirichlet (electromagnetic) is the lower (upper) curve. Also, starting from a nor-

malized value of 0, the exponentially small asymptote (as /b -+ oc) for Dirichlet

(electromagnetic) is the lower (upper) curve.
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ularly useful for comparison with the approximations needed to describe real systems
and more complicated geometries.

We have obtained analytic expressions for the force acting on the partition in a
piston with perfect metallic boundaries. The results are exact for the rectangular
piston, and in the form of an asymptotic series in 1/a for arbitrary cross section. We
find that the partition is always attracted to the (closer) base; consistent with a more
general result obtained in Ref. [18]. Since the piston geometry is closely related to sin-
gle cavity for which a repulsive force has been conjectured, we are able to shed some
light on this question. In particular, we emphasize that to avoid unphysical deforma-
tions (and closely related issues on cutoffs and divergences) it is essential to examine
contributions to the force from both sides of the partition. The cutoff independent
contribution from a single cavity (that we call F.X) approaches a constant for large a.
However, in the piston geometry compensating contributions from the second cavity
cancel both the cutoff dependent terms and part of the cutoff independent term, to
cause a net attraction.

For general cross sections we find interesting dependence on geometrical features
of the shape, such as its sharp corners and curved segments. We have obtained the
first three terms for scalar fields and the first two terms for EM fields (one less due
to cancellation) in an expansion in powers of a. By comparison to our calculated
exact result for a rectangular cross section we estimate that this expansion is valid
for a/b 0.3. This covers the conventional experimentally accessible regime, and is
therefore a useful result for a large class of geometries. We have also obtained thermal
corrections which cover the experimentally accessible regime.
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8.7 Appendix: Zeta Functions

The general Epstein Zeta function is defined as

Zd(ai, ... , ad; s) - ' ((niai) 2 + + (ndad)2)-s/2 , (8.50)
ni r .,nd

where the summation is over {ni, ... , n} E Zd \ {0, ... , 0}. Note that the Riemann
Zeta function is a special case of this, namely ((s) = Zi(1; s)/2.

In eq. (8.15) we pointed out that such functions could be approximated by a
term involving the Riemann zeta function and a power of ai, as ai -+ 0. An exact
representation, as discussed in Ref. [17], is

2((s) ]F(sf) 7rZ(1,..., ad; s) = s + Z-1(2,..., ad; s-1)

47r s/ 2  00 ' (-1)/2 K 2 n (a 2n 2 )2 + -- + (adnd)2
+F ( s a E ns K(s-1)/22rni

2 n=1 n2,.--,nd

) (1-s)/2(V/(a2n2)2 + - + (adnd)2  (8.51)
al

where K, is the modified Bessel function of the second kind. This is useful in Region
I where ai is small (with ai -- a).

For Region II it is important to examine the limit in which one of the lengths is
infinite, say a1 -> oo (with ai -- h - a). In this limit the order of the zeta function
is reduced:

Zd(ai,... , ad; s) -* Zd-1(a2,.. . ,ad; s). (8.52)
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