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Zusammenfassung

Bis 1963 beschrinkte sich das Konzept der Kohérenz optischer Felder auf das, was man heute Ko-
hérenz erster Ordnung nennt. 1963 verallgemeinerte Roy J. Glauber den Begriff der Kohérenz, indem
er Korrelationsfunktionen héherer Ordnung der Feldvariablen einfithrte und darauf basierend geeignete
Bedingungen definierte. Eine besondere Klasse von Korrelationsfunktionen sind die sogenannten Pho-
tonenkorrelationsfunktionen, die mit einfachen Photonendetektoren gemessen werden koénnen. Ei-
nerseits konnen diese Korrelationsmessungen zur Charakterisierung des zugrunde liegenden optischen
Systems verwendet werden, andererseits konnen die Korrelationsmessungen als bedingte Photonen-
messungen angesehen werden. Dabei entstehen durch die Messung der ersten einfallenden Photonen
korrelierte Zusténde, deren Eigenschaften dann {iber die spater gemessenen Photonen erfasst werden.
Auf diese Weise konnen messinduzierte Quantenkorrelationen einem Quantensystem aufgepriagt wer-
den. Eine weitere Methode, Quantenkorrelationen zu erzeugen, besteht in einer Interaktion mit dem

System. Dabei kénnen sich Quantenkorrelationen iiber die Dynamik des Systems aufbauen.

In dieser Arbeit untersuchen wir die rdumlich-zeitlichen Korrelationen mehrerer Ensembles von
Atomen, wobei Quantenkorrelationen tiber Dipol-Dipol-Wechselwirkungen im Verlauf der Dynamik
der Atome sowie iiber bedingte Photonenmessungen erzeugt werden. Als erstes System betrachten
wir drei Atome, wobei zwei Atome miteinander interagieren, das verbleibende Atom jedoch weit vom
Zwei-Atom-Subsystem entfernt ist, sodass es nicht mit den anderen beiden Atomen wechselwirkt. Wir
zeigen, dass das spontane Emissionsverhalten dieses Systems durch bedingte Photonenmessungen so
eingestellt werden kann, dass abhéngig von der Beobachtungsrichtung gleichzeitig eine starke subra-
diante sowie superradiante Strahlung von Photonen beobachtet werden kann. Dariiber hinaus zeigen
wir, dass wir durch die Einfiihrung des entfernten Atoms in das System Informationen extrahieren kén-
nen, beispielsweise iiber den Abstand und den Anfangszustand der beiden benachbarten Atome, die
im Zwei-Atom-System allein nicht zugénglich sind. Auf diese Weise demonstrieren wir eine mégliche
Perspektive fiir die Quantensensorik, ndmlich das Hinzufiigen eines Hilfssystems und die Verwendung
bedingter Photonenmessungen zur Verschrankung dieses Hilfssystems mit dem eigentlichen System.
Wir wechseln dann zu einem Atomensemble aus N weit voneinander entfernten Atomen, sodass Wech-
selwirkungen zwischen den Atomen vernachléssigt werden kénnen. Auch hier zeigen wir, dass durch
bedingte Photonenmessungen, die zur Erzeugung von Quantenkorrelationen zwischen den verschiede-
nen Atomen verwendet werden, ein zeitlich Dicke-dhnliches superradiantes Emissionsverhalten der
nacheinander gemessenen Photonen in einer bestimmten Richtung beobachtet werden kann. Dieses
Emissionsverhalten, bekannt als Dicke-Superradianz, ist normalerweise auf Atome beschriankt, die
naher zusammen sind als die Wellenldnge des Lichts, sodass sie iiber Dipol-Dipol-Wechselwirkungen
miteinander interagieren und im Verlauf der Photonenemission Korrelationen aufbauen. Anschlieend
untersuchen wir, unter welchen Bedingungen ein unabhéngiges Atomensemble im Hinblick auf Photo-
nenkorrelationsfunktionen héherer Ordnung &hnlich einer thermischen Quelle emittiert. Wir definieren
zwei Bedingungen, die einerseits die Einzelatomkohérenzen in Bezug auf die Population der Atome
und andererseits die Korrelationsordnung in Bezug auf die Anzahl der Atome einschranken. Wir
demonstrieren die Giiltigkeit der beiden Bedingungen und die Ahnlichkeit der Lichtstatistik zu der
von thermischen Quellen anhand mehrerer Beispiele. Eines davon ist eine diinne Atomwolke, die von
einem ebenen Wellen-Laserfeld im starken Antriebsbereich getrieben wird. AbschlieBend analysieren
wir die Photonenemission desselben Atomensembles, jedoch schwach getrieben. Dabei lasst sich die

Dynamik der Atome im Wesentlichen durch ein klassisches oszillierendes Dipolmodell beschreiben. Da




die Atome jedoch jeweils nur ein Photon emittieren kénnen, unterscheidet sich die Statistik des abges-
trahlten Lichts drastisch von der klassischer Dipole. Insbesondere finden wir Beobachtungsrichtungen,
in denen die Atome Quantenlicht emittieren, das durch einen Wert der normierten Autokorrelations-

funktion zweiter Ordnung kleiner als 1 gekennzeichnet ist.




Abstract

Until 1963, the concept of coherence of optical fields was limited to what is nowadays called first-order
coherence. In 1963, Roy J. Glauber generalised the notion of coherence by introducing higher-order
correlation functions of the field variables and defining appropriate conditions based on them. A
particular class of correlation functions are the so-called photon correlation functions, which can be
measured with simple photon detectors. On the one hand, these correlation measurements can be used
to characterise the underlying optical system, on the other hand the correlation measurements can be
viewed as conditional photon measurements. Thereby, the measurement of the first incoming photons
create correlated states whose properties are then detected via the later measured photons. In that
way, measurement-induced quantum correlations can be imprinted on a quantum system. Another
method to create quantum correlations is via an interaction with the system, such that quantum
correlations can build up via the dynamics of the system.

In this thesis, we investigate the spatio-temporal correlations of several ensembles of atoms, with
quantum correlations generated via dipole-dipole interactions in the course of the dynamics of the
atoms as well as via conditional photon measurements. As a first setup, we consider three atoms,
where two atoms interact with each other, but the remaining atom is far distant from the two-atom
subsystem, such that it does not interact with the other two atoms. We demonstrate that the spon-
taneous emission behaviour of this system can be engineered via conditional photon measurements
allowing to observe strong subradiant and superradiant radiation of photons simultaneously depend-
ing solely on the direction of observation. Further, we show that by introducing the remote atom into
the system, we can extract information, for instance, the separation and the initial state of the two
close-by atoms, which is not accessible in the two-atom system alone. In this way, we demonstrate a
potential prospect for quantum sensing, i.e., adding an auxiliary system and using conditional photon
measurements to entangle it with the system of interest. We then switch to an atomic ensemble of N
mutually far separated atoms, such that interactions between the atoms can be neglected. Again, by
conditional photon measurements, used to create quantum correlations between the different atoms,
we demonstrate that a temporal Dicke-like superradiant emission behaviour of the consecutively mea-
sured photons can be observed in a particular direction. Such an emission behaviour, known as Dicke
superradiance, is usually restricted to atoms, which are closer separated than the wavelength of the
light, such that they interact with each other via dipole-dipole interactions and become correlated
in the course of photon emission. Afterwards, we investigate under which conditions an independent
atomic ensemble emits similar to a thermal source in terms of higher-order photon correlation func-
tions. We define two conditions restricting on the one hand the single-atom coherences with respect to
the population of the atoms, and on the other hand the correlation order with respect to the number
of atoms. We demonstrate the validity of the two conditions and the similarity of the light statistics
to the one of thermal sources via several examples, one of them being a dilute atomic cloud driven
by a plane wave laser field in the strong driving regime. Finally, we analyse the photon emission of
the same atomic ensemble, but weakly driven. Here, the dynamics of the atoms can be essentially
described by a classical oscillating dipole model. However, since the atoms can only emit one photon
at a time, the radiated light statistics differs drastically from that of classical dipoles. In particular,
we find observation directions in which the atoms emit quantum light characterised by a value of the

normalised second-order autocorrelation function less than 1.




Note

Parts of this thesis have been published or will be published in the near future in the form of journal

articles; see the list of publications at the end of this thesis.
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1 Introduction

The possibility of detecting individual quanta raises interesting questions concerning
their statistical distributions, distributions that should in principle be quite accessible
to measurement. We might imagine, for example, putting a quantum counter in a
given light beam and asking for the distribution of time intervals between successive
counts. Statistical problems of that sort were never, to my knowledge, addressed
until the importance of quantum correlations began to become clear in the 1950’s.
Until that time virtually all optical experiments measured only average intensities
or quantum counting rates, and the correlation function GV was all we needed to
describe them. It was in that decade, however, that several new sorts of experiments
requiring a more general approach were begun. That period seemed to mark the
beginning of quantum optics as a relatively new or rejuvenated field.

— Roy J. Glauber

Nowadays, the notion of optical coherence is a well-established concept describing corre-
lations of fluctuations of optical fields, i.e., it addresses the study of higher-order moments
of statistical distributions of light. Probably the most prominent manifestation of coherence
is Young’s double-slit experiment [1], in which a light beam is separated into two parts and
later recombined allowing the observation of interference fringes. Thereby, the appearance
of interference fringes is directly related to the coherence properties of the light beam. In
fact, Young’s double-slit experiment only demonstrates the existence of so-called first-order
coherence. Historically, the concept of optical coherence goes back until the mid of the 19th
century and was studied and developed further in the century thereafter [2]. However, ba-
sically all studies at this time investigated the possibility of two interfering fields, which is
nowadays referred to as first-order coherence.

Then, in 1956, a remarkable and controversially discussed experiment was conducted by R.
Hanbury Brown and R. Q. Twiss [3]. Their goal was to measure the angular size of several
thermal sources, i.e., stars in the radio frequency domain using two antennas. Mathematically,
this measurement involves not only a correlation of two, but four optical field amplitudes go-
ing beyond the usual first-order coherence theory. They demonstrated that, even though the
observed thermal sources have not possessed any coherence properties in first-order accessi-

ble by measuring the intensity, they show coherence in second-order accessible by measuring




1. INTRODUCTION

intensity-intensity correlations, which allows one to extract spatial information about the light
sources. The interpretation of the experiment remained, however, unclear, in particular since
the occurring interference term in the intensity-intensity correlation measurement involves
the interference of pairs of photons, which according to Dirac is inhibited. Dirac states in his
famous textbook The principles of quantum mechanics [4] that “each photon then interferes
only with itself. Interference between two different photons never occurs.” However, strictly
speaking the term interference refers to the summation of probability amplitudes instead of
a physical interference of photons and probability amplitudes are not restricted to a certain
number of photons [5]. Inspired by the experiments by Hanbury Brown and Twiss, Robert J.
Glauber developed a fully quantum-mechanical description of higher-order correlations and
redefined the notion of coherence by a class of conditions in 1963 [6].

One important subject area of the concept of optical coherence is the study of the emitted
light of atomic systems. Thereby, the most famous phenomenon is probably so-called Dicke
superradiance, where an ensemble of independent two-level atoms is concentrated in a small
volume compared to the transition wavelength of the atoms (ideally a single space point).
In this case, the atoms, which are all prepared in the excited state, develop dipole-dipole
correlations in the course of light emission leading to a coherent emission of spontaneous
radiation [7]. The emitted intensity of this atomic system does then not follow a usual ex-
ponential decay, as would be the case for a single atom, but shows a short burst. Multiple
theoretical [7-39] and experimental [40-51] investigations of superradiance, but also so-called
subradiance [28, 31, 34, 52-56], have been carried out since then, with a renewed interest in
the recent years.

In this thesis, we combine the system of dipole-dipole interacting atoms and the concept of
optical coherence in terms of higher-order correlation functions to enhance effects like super-
and subradiant emission of light or to extract information about the atomic system utilising
measurement-induced entanglement. In addition, we present new investigations on the sta-
tistical moments of the emitted light of independent atoms.

Therefore, in a first part consisting of the Chapters 2 and 3 we give an introduction to light-
matter interactions leading to the aforementioned photon-induced dipole-dipole interactions
between atoms, which are closely separated with respect to the transition wavelength. At
the end of Chapter 2, we will arrive at a Markovian quantum master equation describing
the dynamics of the atomic system, where the dissipation into the free field comes across
via tracing out the electromagnetic field degrees of freedom. In Chapter 3, we then link the
measurable photonic higher-order correlation functions to multi-time expectation values of
atomic observables. Applying the so-called quantum regression theorem, these multi-time
expectation values can be calculated using the quantum master equation derived in the pre-
vious chapter.

In a second part, we apply the introduced concepts to three different systems investigated

in the Chapters 4-6. We start in Chapter 4 by considering a rather small system consisting




of three atoms, where two atoms are close to each other, such that they interact via the
dipole-dipole interaction leading to modified decay rates and energy levels. However, the
remaining third atom is placed remotely, i.e., several wavelengths away from the two-atom
subsystem, such that no interaction is present. By entangling all three atoms with each other
using higher-order photon correlation measurements, we demonstrate that this system shows
an enhanced super- and subradiant decay beyond the canonical two-atom case. In particular,
the interplay of dipole-dipole interactions and measurement-induced entanglement allows for
engineering the spontaneous emission behaviour in space and time. Afterwards, we investi-
gate the possibility of using the remote atom as an auxiliary system to extract information,
which is inaccessible without the additional atom. Via the interference of quantum paths
associated with the two-atom subsystem and the third atom we are able to determine the
distance of the subwavelength separated atoms with sub-Abbe resolution. Thereafter, we
extend the level scheme of the atoms to four levels with three excited states corresponding
to angular momentum J = 1 and one ground state corresponding to J = 0. Assuming that
the two close-by atoms are initially in an arbitrary superposition of the three excited states,
we are able to deduce the coefficients of this state via a third-order photon correlation mea-
surement using again the interference with the third non-interacting atom.

In Chapter 5, we then consider a system of an arbitrary number of two-level atoms N and
recapitulate first the phenomenon of Dicke superradiance. In this context, we split the emit-
ted intensity in different terms accounting, in particular, for the contributions of single-atom
coherences and dipole-dipole correlations. In the case of Dicke superradiance, we demon-
strate that the resulting coherent emission of spontaneous radiation can be traced back to
the evolving dipole-dipole correlations rather than a macroscopic dipole moment. Afterwards,
we use this understanding to mimic a Dicke-like superradiant burst with non-interacting far
distant atoms via higher-order photon measurements. Instead of the necessary dipole-dipole
correlations being evolved via the dynamics, here the dipole-dipole correlations are created
by consecutive photon measurements. This allows us to model a temporal Dicke-like emission
behaviour in a particular observation direction. We interpret the resulting photon emission
within a quantum path interference formalism and support our findings with entanglement
and quantum correlation calculations, which we discuss in more detail in the last section of
this chapter.

Finally, in Chapter 6, we consider again N non-interacting atoms in a tensor product state
and investigate under which conditions this atomic ensemble shows thermal statistics in terms
of higher-order photon correlation measurements. We explicitly derive two conditions, one
for the number of atoms in comparison to the correlation order and one for the strength of
the coherences in comparison to the population of the atoms. Afterwards, we demonstrate
the conditions by applying them to several simple examples, one of them being a dilute
atomic cloud driven by a plane wave laser field. In the last section of this chapter, we then

analyse the dilute atom cloud system in more detail in the small driving regime, in which
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the dynamics can be essentially described by a classical dipole model. However, in contrast
to classical oscillating dipoles the emitted radiation is neither purely coherent nor classical.
Instead, this system of weakly driven atoms emits, depending on the observation direction, a
plethora of different light statistics reaching from superbunching over thermal and coherent
light to even quantum light, based on antibunching indicated by a value of the normalised
second-order autocorrelation function less than 1. We identify conditions, for which these
different emission characteristics can be observed and show, in particular, that the height
of the superbunching peaks and the depth of the antibunching dips can be controlled via
the so-called saturation parameter. We thus clearly demonstrate the important difference
between classical oscillating dipoles and weakly driven two-level atoms.

Lastly, in Chapter 7, we summarise our results and give a short outlook of possible investi-

gations in the future.




2 Light-matter coupling and quantum master equa-

tion approach

[T]he usual theories become exceedingly involved as the number of atoms taking
part in spontaneous emission increases [...]. Quantum statistical theories [...] are
especially well suited to such cases and naturally predict results identical to those
predicted by the usual theories. [...] Quantum statistical theories are interesting
in their own right as they are based on techniques of nonequilibrium statistical

mechanics [...].

— Girish S. Agarwal

In the above quote, by "usual theories” Girish S. Agarwal refers to the methods devel-
oped by Weisskopf and Wigner [57], later reformulated by Heitler and Ma [58, 59], and by
Goldberger and Watson [60] for treating the dynamics of spontaneous emission from atoms.
Atoms usually do not follow a unitary dynamics, but are coupled to some environment, e.g.,
the vacuum of the electromagnetic field. In the case of a single excited atom, this coupling
leads to the disexcitation of the atom via the radiation of a photon, a random process called
spontaneous emission. Considering not only a single atom, but many atoms, the coupling
to the electromagnetic field gives rise to collective effects, i.e., photon-mediated dipole-dipole
interactions between the atoms, which can be split into a coherent and an incoherent part.
The coherent part causes level shifts and splittings, whereas the incoherent part modifies the
spontaneous decay rates. Instead of following the "usual theories” to describe these processes,
we will introduce a powerful quantum statistical method, namely the general reservoir theory,
which leads us to a quantum master equation that covers the dynamics of the atoms in the

presence of the electromagnetic field. The following sections are based on Refs. [61-63].

2.1 Light-matter Hamiltonian

We consider a system of IV identical atoms coupled to the electromagnetic field. The Hamil-
tonian in this situation, obtained from the Hamiltonian in Coulomb gauge via the so-called

Power-Zienau-Woolley transformation and long-wavelength approximation derived in Ap-
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pendix A, reads

. 5 (14)72 A S
=y 3 e +1/d3ryp(#>(r)|2_dDL(Ru)
p=1 « 2m<()¢u) 2g9 €0
1 & . ) X
+ o Wzl /d3r PW(r)PW) (1) + /dSk ; hy, [&l(k)de(k) + 2] . (2
Htv

Thereby, ﬁ&“ ) and m&“ ) are the momentum and mass of the ath charge of atom p, and P+ (1)

and d® are the polarisation density and the dipole moment of the uth atom. Further,

- hw . .
: 3 k - kR, * —ikR
DJ_(R,LL) = 1&0 /d k ze: W |:€a5(k)€l v —g ai(k)e t “i| (22)
represents the transverse displacement field at the position of the uth atom R,. Finally,
ie(k) and al(k) are the annihilation and creation operators of the field mode characterised
by the polarisation € and the wave vector k, with wy being the corresponding frequency. We
split the polarisation term of the individual atoms as
L [P = 1/d3r\15(“)(r)]2 + 1/d3r]13(”)(r)\2 (2.3)
2¢eq 2e0 1 2¢e0 I ’
where the first term describes a self-energy contributing to the Lamb shift, which can not
be correctly captured in the following description, such that we omit this term. The second

term is exactly the Coulomb energy of atom pu. For the following derivations, we subtract

the vacuum energy and do the replacement
4 1 P
/d3k ze:hwk [al(k)aa(k) + 2} - /d3k EE: hapal (k)ae (k) (2.4)

for the energy of the electromagnetic field. Further, we assume that the mutual separations

of the atoms are larger than the extend of the individual atoms, such that
/ &r PW () P (r) = 0 (2.5)

for u # v. Then, the Hamiltonian reduces to

coul £0
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The sum of the kinetic and potential energies of the individual atoms gives rise to a char-

acteristic level structure with eigenenergies Ej and eigenstates |/,). Assuming that only L
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atomic states are relevant, we do the replacement

[ﬁ&“)]Q ” L
2+ V= D2 Bl ] (2.7
. o =1

and arrive at the final Hamiltonian
ﬁ[:ﬁA—FﬁR—‘rﬁ], (28)

where

) N L
Hy= 221 ; B |1 (] (2.9)

describes the Hamiltonian of the atoms,
Hp = /d3k > hwpal (k)ac(k) (2.10)
€
is the Hamiltonian of the free radiation field, and

N ~ A~
] d(M)DL(Ru)
Hi==2 ="

p=1

(2.11)

represents the interaction in the long-wavelength approximation (or also called electric dipole

approximation).

2.2 Reservoir theory

Usually, the system of interest, e.g., the collection of atoms is coupled to a large environment,
e.g., the infinite number of modes of the electromagnetic field. The general idea of a reservoir
theory is then to trace out the environment degrees of freedom, which we are not interested in
to find an equation of motion for the system alone. We start with the Liouville-von Neumann
equation in the interaction picture with respect to the uncoupled Hamiltonian Ho= Hs+Hp

D3y = S [H1(0), 1)) = = L0 (2.12)

where p(t) = Ug(t)ﬁﬁo(t), Hi(t) = Ug(t)ﬁlffo(t), Uo(t) = e_%ﬁot, and we set the reference
time to ty = 0. Further, we defined the Liouville superoperator Z(t)... = [H(t),...].
We now proceed with a projection operator technique [62, 64], which amounts to obtain an

equation of motion for the relevant part of the density operator. Therefore, we define the

7

5.
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projection operator & by

A(t) ® pr(0). (2.13)

Do

Pp(t) = Trglp(t)] ® pr(0) =

The complementary operator projecting onto the irrelevant part of ,5 is then @ = 1 — &.
Indeed, the two operators are projection operators, since they fulfil #? = & and @? = @.
Further, they add up to the identity by construction and the successive application of & and
@ gives zero, i.e., Q = QP = 0. Applying the two projection operators onto Eq. (2.12) and
using P + @ = 1, we find

%9&5@) - —29»3@)95@) - ;93@)@5@) , (2.14)
gt@ﬁ(t) = —%@Z(t)@ﬁ(t) - %@3@)@5@) . (2.15)

We can formally solve the second equation via Duhamel’s principle leading to

Q5(t) = (£, 0)05(0) — % /O ds ©(t, )0L () PH(s) | (2.16)
where
C(t,5) = T exp [—;L / ds’@.?(s’)] (2.17)

and I being the time-ordering operator. Plugging the solution into the first equation we
finally arrive at the so-called Nakajima-Zwanzig equation
8 2 Z 2 7/ 2 Z t 2
5 7Pt = =3 PZLOPp(t) - 2 PZL(2) |9(4,0)00(0) — + | dsE(t,5)QZ(s)Pp(s)| ,
0
(2.18)

which is an exact equation of motion for the relevant part of the density operator 9’5(7&) To
simplify the equation, we assume that the initial state is factorisable, i.e., p(0) = pa(0) ®
pr(0). Then, @p(0) = 0 and the second term on the right side of Eq. (2.18) vanishes. A
further assumption, which is often met by environmental states, is that the expectation value
of the interaction Hamiltonian Hj(t) with respect to the radiation state pr(0) vanishes, i.e.,
Trgr[H(t)pr(0)] = 0. This implies that PZL(t)% = 0 and thus that the first term on the
right side is zero. An exception will be discussed later. With the two assumptions just
described, Eq. (2.18) reduces to
0

& Pit) = —hlzgasz(t) /O ds @ (t, 5)0L () Pp(s) . (2.19)




2.3 QUANTUM MASTER EQUATION

2.3  Quantum master equation

Considering the right side of Eq. (2.19), we see that due to the appearance of & it is at least

of second order in the interaction H;. However, since

Z(t, s) = n0< ) /dtl. /tnl PH)... L)) (2.20)

contains the operator &, we additionally obtain all higher-order contributions. We now do
our first approximation, the so-called Born approzimation, which assumes that the coupling
between the system of interest and the environment is weak. This justifies to expand the
right side of Eq. (2.19) up to the leading order in the interaction Hj, which is obtained by
approximating €(t,s) ~ 1. By using

PLHVOZL (5)Pp(s) = PL )L (8)Pp(s) — PL ()P L (s)Pp(s) (2.21)
T

= PLM)L ()P p(s) = TrR{[H (1), [Hi1(s), pa(s) ®5R(0)H} ® pr(0),

(2.22)

we can then find an equation for the reduced density matrix p(t) given by

~

G0 = =5 [ ds Ten {100, 11(5). a5) © (0]

= —52/0 ds Trg {[ﬁ[(t),ﬁ[(s)ﬁA(s) ®5R(0)] —l—H.c.}
= th/o ds Trp {[ﬁ](t — 5)palt — s) @ pr(0), Hy(t)] + H.c.} ’ (2.23)

where H.c. denotes the Hermitian conjugate. In what follows, we consider the explicit form
of the light-matter interaction Hamiltonian. If we assume that there are D dipole-allowed

transitions, we can write the dipole operator of the uth atom as

D
d" = 3" [dnSU), + Hecl (2.24)

m=1

with 5’7(7’;1 = |hyu)(l,| the raising operator of the mth transition. Thereby, |h,) is the excited
and |1,) the ground state of the mth transition and d,, = (h,|d*)|l,) is the corresponding
matrix element. By using Eq. (2.11) and UO( )Sq(T’fJ)rUO( t) = S(“) wml with wy, = +(E), — Ey)

the transition frequency of the mth transition, a straightforward calculation leads to

N D
Z Z {[ngrd KM™ (¢ )dn,S( )} i(wWmwn)t

w,rv=1m,n=1




2. LIGHT-MATTER COUPLING AND QUANTUM MASTER EQUATION APPROACH

S, K (1), S | e ot [ G d KT (1), S| e et

+ [Sds K )y, S50 | ettty e} (2.25)

where we defined auxiliary matrices with operators as matrix elements given by

P L 1 ! v iwns =~
b = /0 ds GE (1, 5)e*in%F 4 (t — ) (2.26)
with
B 1 » r 5
Gy (t,8) = % Trr {[epDJ-<R/u t)llegDL(Ry,t — 3)]PR(O>} (2.27)

the reservoir correlation function and e, /, being Cartesian unit vectors. Usually, there are two
different time scales, on which the atoms and the reservoir evolve. The reservoir correlation
function Gbyq (t, s) is zero for times ¢t much larger than a typical correlation time 7.. Therefore,
we can replace the integral in Eq. (2.26) by fOTCds . The atoms instead evolve on a time scale
on the order of the radiation life time 7, > 7.. Since 7, > 7., the state of the atoms does not
change much within times on the order of the correlation time 7.. We can then approximate
pa(t —s) = pa(t) in the integral. On the other hand, since the correlation function is zero
for times much larger than the correlation time, we can also expand the upper limit of the
integral to infinity and replace it by fooods. This is the so-called Markov approximation.
Further, if we assume a stationary reservoir with respect to the radiation field Hamiltonian,

i.e., [Hg, pr(0)] = 0, we can simplify the correlation function as

Gl (t,5) = G (s,5) = GH¥(s) = %TrR {[epf?l(Ru, s)[egDL (R, 0)]ﬁR(0)} . (2.28)

i.e., it depends only on the time difference s. The operator of Eq. (2.26) can thus be approx-

imated by
A A 1 o0 +i
v,n 2 "
KA () = pa(t) FLQ/O ds Gl (s)e="m® . (2.29)
G

Before we proceed, we have to assure that the remaining equation of motion is consistent
with the aforementioned approximation. The obtained equation in Markov approximation
captures only processes on a "coarse-grained” time axis [65], i.e., processes that happen on
time scales smaller than the correlation time 7. are not resolved. This means, we have to
eliminate all terms in the equation of motion, which might cause a dynamics faster than 7.
This can be achieved by averaging the equation over a time interval At with 7. < At < 7.

+i(wm+twn)t
’

This will average out the fast oscillating terms e which is usually referred to as

rotating wave approximation. However, note that this neglection of the fast oscillating terms

10



2.3 QUANTUM MASTER EQUATION

is mandatory to be consistent with the Markov approximation. In contrast, for the difference
terms we assume that |w,, —wp|At < 1, such that we keep these terms.
Now, we turn back to the calculation of the correlation function Ghy (s). By plugging Eq. (2.2)

in Eq. (2.28), we obtain the following four expectation values

Trrla: (k)i (K')pr(0)] (2.30)
Trglal (k). (K')pr(0)], (2.31)
Trglal(k)al (K)pr(0)], (2.32)
Trlac(k)al, (k)pr(0)]. (2.33)

In the following, we consider the radiation field to be in the vacuum state, i.e., pr(0) = |0)(0|
with a.(k)|0) = 0. Therefore, the expectation values of Eqs. (2.30)-(2.32) become zero and
the last expectation value is Trp [de(k)di,(k’)ﬁR(O)} = 0. 0(k—k'). The correlation function

then simplifies to

v h 3 ik(R,—R, *]_—iwgs
h - i - *1 ,— WS
— 250(27-‘-6)3/0 d(JJk W% /ko Zek(Ru Ru)[eps][eqe ]6 k , (234)

€

where we plugged the expectation values in Eq. (2.28), used [70T(t)&€(k)(70(t) = a.(k)e WKt
and transformed to polar coordinates. For the latter step, we used wy = kc with k = |k| and
Q. denotes the solid angle. Note that we also introduced a cutoff frequency w. according to
the long-wavelength approximation, which the initial Hamiltonian is based on. Plugging the

correlation function in Eq. (2.29), we find

1
2eph(2mc)3 .

/ dek w; /ko Zeik(R“R")[epe][eqs*]/ ds e!Fwo—wk)s (9 35)
0 0

€

(LR O s
qui ~ qui -

=Fpq(k,Ry)

Here, we defined R, = R, — R, and we assumed that the differences between the transition
frequencies |wy, —wy,| are much smaller than the mean transition frequency wy = % 21?121 Wins
ie., W < 1, such that we can approximate wy, ~ wy. The matrix elements Fq(k, R, )

read (see Appendix B)

1 1 1
Foy(k,R,) = 47 {5},,(1 [( - 3> sin 7, + —— cos UW]
77/11/ nuy nw/
lepRyu]leq Ry [( 1 3 > . 3 ] }
— — — —— | sinn,, + —— cos 2.36
R;zw Npv 77211 g 77,31/ ! ( )

11



2. LIGHT-MATTER COUPLING AND QUANTUM MASTER EQUATION APPROACH

with 7, = kR, and Ry, = |R,,|. Now, let us consider the time integral. In terms of

distributions, it evaluates to

/0 ds e FW0=wk)S — 15 (+wg — wy,) + ip.v. (iwo—wk> ) (2.37)

where p.v. denotes the Cauchy principal value. With this at hand, we define the matrices

o= o W3 (ke Ry )0 (g — 2.
250h(27‘(‘6) /0 Wi Wi ( ) RM ) ( wo wk) ) ( 38)
1 We 1
JAN i — d SE(k y)— 2.
+ (27TC)3p V- (/0 Wk W ( vRM )in — Wk;) ) ( 39)
and write
qui qui + zqui (2.40)

We note that since wy > 0 and wg > 0, I = 0. Now, we come back to Eq. (2.25). Using the

previous equation, a lengthy but straightforward calculation leads to the following differential

equation
o . i
5:PA() == 3 1Ha, pa(t)]

N D
= 3> e (8USpaw®) + pa S S — 251 5a ()5

w,rv=1mmn=1

i Z Z {ar [S980, pan)] + (A )" [S 51, 64} (241)

pu,rv=1mmn=1

where we transformed back to the Schrodinger picture and defined

rey =d,,rtd; (2.42)
Alv L =da AV (2.43)
AM = d, A (2.44)

Since Fpq(k, R,,) is a real-valued function and invariant under a change of p and v, we
have (Akv )" = (AyE ). Using this property and defining Qhy, = — (ALY . + ALY ),

nm-— mn-+

Eq. (2.41) can be rewritten as

0 A0 A

HPalt) = h[HAaPA Z Z Oy [ WS, ﬁA(t)]
pn,rv=1mmn=1
wHV

12



2.3 QUANTUM MASTER EQUATION

—i) ZDZ {at [S95, pa)] — (At )" [SU281) pa0)] } - (245)
u=1mmn=1

We recognise that the last line only depends on the individual atoms separately. In particular,
the terms with m = n lead to level shifts, which are related to the Lamb shift. However,
a correct treatment of the Lamb shift needs to include relativistic effects and normalisation
procedures. Therefore, we omit these terms and assume that they are already correctly
included in the energies Ej. Further, terms with m # n correspond to a coherent coupling
between dipole transitions, but are only nonzero if the corresponding dipole moments are

5k S(“) )ng_) does not vanish.

not perpendicular and either the operator S, or the operator Sk
However, for transitions between atomic angular momentum multiplets, these two conditions
can not be fulfilled simultaneously [63], which justifies to neglect these terms in the following.
In summary, we thus omit the entire last line. The final master equation for an ensemble of

identical multi-level atoms coupled to the vacuum of the electromagnetic field then reads

%ﬁA(t) h[HAaPA E E o |:S7(rlj+ 5 PA(t)]
pnrv=1mmn=1
HFV

7
iz
>
S
|
o
i
S
h
=
n
3
+

Yy T (89053p4(0) + patt)

w,rv=1mmn=1

A(“)) . (2.46)

m

where the coupling parameters are given by (see Appendix B)

3
w 1 1 1
o = 0 __!d,d — —— | cosno — —— sinng
mre 4reghced { men (Uouu nguﬂ) - 77(2];w -

[dn Ry drRy] | (] 3 3
- — CoS Mo — ——Sinnou | ¢, (2.47)
R[ZI,I/ Mopv USW g "7(2)#1/ !

3
w 1 1 1
v — =0 ) g J* — —— | sinngu, + —— cosng
™ 4reghced { men (no;w 7759’#1,> w 770;w "

[dnR,][d; R, 1 3 3
- — sin oy + —— cosnouw | ¢, (2.48)
R2 770/“’ ng,uzx g TIO,LLI/ g

v
with 7o, = koRy, and kg = ‘”—CO We want to end this section by adding two more comments.

The first comment we want to make is that we can also write the coherent and dissipative

coupling parameters as the real and imaginary parts of

S = idy, (K1 + K™ (2.49)

13



2. LIGHT-MATTER COUPLING AND QUANTUM MASTER EQUATION APPROACH

1.0 2
— =0
_ 1 1
e 0.5 b =m/4 E
XN 0=m/2 ~
:E :S 01 N R e e
3E E4S
= 0.0- Lomm | ©
_05 T T T T _2 T T T T
0 1 2 3 0 1 2 3
R /A R/

Figure 2.1: Dissipative and coherent coupling parameters of atoms p and v for the same
dipole transition m against the separation R, of the two corresponding atoms in units of
the transition wavelength A. The parameters are normalised by the so-called half-decay rate
vm of the mth transition and plotted for three different orientations of the dipole moment
d,, with respect to the separation vector R,,,. Here, § denotes the angle between these two
vectors.

ie., Qnn = Re(Xhm) and Thy, = Im(2h,). Thereby, ¥ has the meaning of a self-energy,
which is essentially given by the sum of the one-sided Fourier transforms of the reservoir
correlation function at frequencies +wy [see Eq. (2.29)]. The second comment we want to
make is that the coupling of the atoms to the reservoir leads, by tracing out the reservoir
degrees of freedom, to an effective dipole-dipole interaction between the atoms, which we
discuss in more detail in the next section. However, beforehand we want to stress that this
effective dipole-dipole interaction strongly depends on the separation of the corresponding
atoms as we show in Fig. 2.1. Here, we plot the parameters '}, and Q. coupling atoms
p and v for the same dipole transition m against the separation R, of the two atoms in
units of the transition wavelength A = i—g Further, we normalised the parameters by the
so-called half-decay rate of the mth transition v, = Ymm With Y, = Thin and plotted
them for different orientations of the dipole moment d,,, with respect to the separation vector
R,,. In the figure, § denotes the angle between these two vectors, where we assumed a real
dipole moment. It is worth noting that the strength as well as the sign depend on the dipole
orientation with respect to the separation vector. In this context, we already note that the
sign of the coherent coupling parameter leads to an either appropriate attractive or repulsive
interaction of the two dipoles constituting the symmetric or antisymmetric superposition of
the two atoms, which we introduce in a later chapter. More important for us is, however, the
behaviour as a function of the distance of the atoms. In particular, we find that if the atoms
are far apart from each other, ie., R,, /A > 1, the coupling can be essentially neglected,

whereas for R, /A < 1 a significant coupling can be achieved.

14



2.4 DIPOLE-DIPOLE INTERACTION - DYADIC GREEN'S FUNCTION

2.4 Dipole-dipole interaction - Dyadic Green's function

In this section, we give a physical meaning to the effective dipole-dipole interaction derived
in the last section. For this, we need to introduce the so-called dyadic Green’s function for
the electric field. We start by finding a scalar Green’s function to the wave equation of, for
instance, the scalar potential, i.e., we search for a Green’s function G(r,r’,t,¢') [66], which
solves the equation

1 02

<V2 — 02(‘%2> Glr,r' t,t") =8(r —r")o(t - t). (2.50)

Since the operator V2 — C%g—; is invariant under spatial and temporal translations, the Green’s
functions only depend on the differences of the positions and times, i.e., G(r, v’ t,t') =
G(r—7',t—t"). A solution can be obtained by Fourier transforming the equation to frequency

space. With r” = — v’ and t” =t — t we obtain
2 W2 " "
V°+ = g(r,w)=246(r"), (2.51)
where
C(r" w) = / dt" G(r" ")t (2.52)

is the Fourier transform of the Green’s function G(r”,t”). Note that, for convenience, we
defined the Fourier transform asymmetrically in this section. Outside of " = 0, Eq. (2.51)
is the homogeneous Helmholtz equation. Thus, accounting also for the limit r” — 0, the

Green’s function in Fourier space is a spherical wave with proper normalisation, i.e.,

; "
eizw\r |/c

g 1 —
(r 7w) 47T|T'//| Y

(2.53)
where the plus sign in the exponent denotes an outgoing spherical wave, whereas the minus
sign describes an incoming spherical wave. Before we come to the dyadic Green’s function,
let us first find a Green’s function solving Eq. (2.50), since we need it in the next chapter.

The solution can be obtained by Fourier transforming back, i.e.,

]_ : 1"
Gir" ") = — /dw G(r",w)e " =

2

c
—— (" £ ct”). 2.54

LD (2.54)
If one demands for the Green’s function that it exhibits the effect of a wave disturbance at
the point 7 and time ¢ originated at an earlier time ¢’ at the point 7/, only the minus sign

is relevant. We can then include the Heaviside step function (") to arrive at the so-called

15
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2. LIGHT-MATTER COUPLING AND QUANTUM MASTER EQUATION APPROACH

retarded Green’s function

c

Gr(r—r;t—1t) = 0t —t)o(|r —r'| —c(t —1)). (2.55)

dnlr — |

Now, let us motivate the introduction of the dyadic Green’s function. Coming from Maxwell’s

equations, we obtain the following wave equation for the electric field

VxVx B+~ Bt = - D (2.56)
’ c2 Ot? T g2 ol '\ '
with j(r,t) being the current density. A Fourier transform then leads to
w? w .
VXV x&(rw)— g%'(r,w) = —mg(r,w). (2.57)

Due to the curl on the left side of the equation, a current in a single spatial direction leads
to nonzero components of the electric field also in other spatial directions. Therefore, a
Green’s function relating the current to the electric field needs to be a matrix and is called
a dyadic Green’s function. Thus, we search for a Green’s function €p(r — r’,w) solving the

equation [67]
VXV xE(r—r w) —kCpr—r,w)=6r—1r)1. (2.58)

The solution can be given in terms of the earlier derived Green’s function of Eq. (2.53),
ie., [67]

1
?D(fr—fr’,w):—<]l+k2V®V> Gr—r w). (2.59)
An explicit calculation of the dyadic Green’s function for the outgoing spherical wave gives

etk i 1 3 3 \r'er’
Ep(r',w) = Ay [(1 + kr! k‘27"”2> 1- (1 + kr! k27”"2> P2 :| (2.60)

with " = |r”|. Physically, the dyadic Green’s function provides the electric field at a position

r radiated by a normalised, oscillating dipole at a position ’. By recognising that

v k3 "
Ql;rm = heo d,Re [gD(RuuaWO)] dn , (2.61)
0
ko
Lhn = g [“D (R, wo)] dy, , (2.62)

we find that the coherent and dissipative couplings between two dipole transitions m and n
of atoms p and v describe simply the coupling of one dipole to the electric field emitted by

the other dipole and vice versa, which gives a clear physical understanding.
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2.5 INTERACTION WITH COHERENT FIELDS

2.5 Interaction with coherent fields

For the interactions discussed so far, we assumed PZ(t)P = 0, which is achieved by
Trr[H;(t)pr(0)] = 0. However, since Hj is linear in a.(k) and al(k), this does, in gen-
eral, not hold true for coherent states of the radiation field. In this case, we will keep only
the first-order interaction term and neglect all higher-order terms. If we assume that we have
a single-mode laser, i.e., a particular mode described by polarisation &; and wave vector k;
is populated by a general coherent state instead of the vacuum, it is convenient to split the

Hamiltonian accordingly into
H=Ha+Hp+ Hp+ Hyag+ Hyar . (2.63)

Thereby, H 4 is the atomic Hamiltonian as before,
n = [ Y Rl (k)ao(k) ~ f il (k)i k) (2.64)
B
is the Hamiltonian of the radiation field without the laser mode,
Hy, = hwy,al, (kp)ac, (ki) (2.65)

is the Hamiltonian of the laser mode, and H 1,ARr and H 1,41 describe the couplings of the
atoms with the vacuum modes and the laser mode. In the following, we simplify the notation
by replacing ac, (k;) — @; and wy, — w;, which becomes convenient later on when we treat
multiple laser modes. As we see, the Hamiltonian is still the same as before, but we split it
conveniently for an initial state of the radiation field given by [¢r(0)) = |oy) ® |0), where
|ay) denotes a coherent state of mode {e;, k;} and |0) is the vacuum in all other modes. We
note that the derivation of the master equation of the previous section remains valid for
the vacuum modes, since we exclude only a single mode, which does not change any of the
derived results. However, we need to do the so-called approximation of independent rates of
variation [65]. We introduced earlier two characteristic time scales for the evolution of the

state given by

1. the correlation time 7. of the reservoir with 7. < wio for the vacuum,
2. the radiative lifetime 7., > 7. of the atoms.

If we now include the interaction with a laser field, a third time scale appears given by the
Rabi frequency g, which depends on the detuning §; = w; — wg. Then, Q;zl describes the
typical time scale, on which stimulated emission/absorption processes occur, i.e., on which
the interaction with the laser photons takes place. If we assume 7, < Q;il, then the laser
photons are only “spectators” during the process of spontaneous emission, but they can couple

to the atoms between two spontaneous emission events. Therefore, the two processes do not

17
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2. LIGHT-MATTER COUPLING AND QUANTUM MASTER EQUATION APPROACH

interact, but are independent, such that we can simply add the rates of variation of the density
operator and calculate both as they were acting alone. Therefore, we first consider again the
coupling to the vacuum and treat the coupling to the laser mode afterwards. Performing all

the steps of the previous section, we thus arrive at the following master equation

a . _ don . ) .
apAL(t)—_ﬁ[HALaPAL +Zu§:1mzn:19 [ ﬂAL(t)]
ptv
N D ) o A A
= 3 > o (SRS an) + pan(SLSY — 28 5ar S )
w,rv=1mmn=1

(2.66)

where now I:IAL = ﬁA + ﬁL + ﬁ[,AL and pas, denotes the density operator of the composite
system of atoms and of the laser field. However, in the end, we want to obtain an equation
for the system of atoms alone. Therefore, we transform again into the interaction picture,
but now with respect to H4 + Hy, and apply the Nakajima-Zwanzig projection method with

P now defined as

a(t) @ pr(0). (2.67)

Do

Ppar(t) = Trplpar(t)] ® pr(0) =

The second and third term on the right side of Eq. (2.66) are essentially unaffected, such that
we only need to consider the first term and the whole procedure is exactly the same as before.
However, as noted earlier, for a coherent state pr(0) = |oy)(oy|, PL(t)Ppar(t) # 0, such
that we keep only the first term of the right side of Eq. (2.18), representing the leading order.
Before we proceed, we generalise the situation to W laser modes instead of a single laser
mode. Then, the initial state of the laser field becomes pr,(0) = |y, ...,y My 5 ey Aty |
and in the Hamiltonians we additionally get a sum over the laser modes. A straightforward

calculation leads to

Trp[PL (1) Ppar(t)]

=Ty, ——Z Z{ D (Ry,t) + He. |, pa(t) @ pi(0)

,ulml

=—522{[ ) dn R (Dpa(0)| + | S0 (1), i RA(1)pa(t)] } (2.68)

p=1m=1

where we defined

RA(t) = EloTrL [i)L(R“,t)ﬁL(O)} . (2.69)
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2.5 INTERACTION WITH COHERENT FIELDS

By using Trr[a, pr(0)] = oy, et TrL[&;hp:L(O)] = afheiwlht, and defining
h
Elh0<Ru) = 2;:))[‘/slhal elklhR# ) (2'70)
we obtain
W
RA) =13 [Blo(Ru)e ™t — By o(Ry)en] (2.11)
h=1

Note that since we only have a sum over discrete laser modes instead of an integral over a

continuum of modes, we included the factor 4/ @ in D L(Ry,t), where V is the quantisation
volume. Plugging Eq. (2.71) in Eq. (2.68), applying the rotating wave approximation, and

defining the Rabi frequency Qg 1, (Ry) = %0(&‘), we find
N D W ‘
e [PLOPpar(0)] = =i 3 30 S { [ By (R)Sil et — Hee. pa(0)] }

p=1m=1h=1
(2.72)

Now, we transform back to the Schrédinger picture and define the Hamiltonian

N D W
Hig=—ihy Z 3 (QR iy (RS et H.c.) (2.73)

1 h=1

=
Il
_.
II

to finally arrive at

0

2 A1) =~ [Ha, pa(t)] — 3 1B, pa)] + Z,pa(t) + Zeopalt). (274

Thereby, the first and second term describe the unitary evolution of the atoms alone and the
coupling of the atoms to the coherent laser fields. The third term denotes the spontaneous

emission of the individual atoms
Lpalt Z Z Yo (SULSEpa(t) + pa®SELSY) — 281pa(HSEL)  (275)
p=1m,n=1

with Y, = Dhtn and ¥ = Ymm the so-called half-decay rate of the transition m. Lastly, the

fourth term accounts for the collective effects among the different atoms with

Laapalt) =~ Flo, pa(0)] + Zrpa(t). (2.76)
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2. LIGHT-MATTER COUPLING AND QUANTUM MASTER EQUATION APPROACH

where

=—h Z Z o g glv) (2.77)
p,rv=1mmn=1
nFV

accounts for the coherent coupling between two dipole transitions m and n of two different

atoms p and v and

Frpalt) § § e (Sf,iﬁr Dpa(t) + pat)SW 8 — QSS'_)ﬁA(t)@(,‘fJ)r) (2.78)
n,rv=1m,n=1
w#V

describes the modification of the spontaneous emission of one atom due to the presence of all

the other atoms.
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3 Source field and photon correlation functions

Where quantum phenomena are important the situation is usually quite different.
Experiments which detect photons ordinarily do so by absorbing them in one or
another way. The use of any absorption process, such as photoionization, means in
effect that the field we are measuring is the one associated with photon annihilation,
the complex field EH (r,t).

— Roy J. Glauber

In the following chapter, we define the concept of photon correlation functions, as orig-
inally introduced by Glauber in 1963 [6]. Thereby, the detection of a photon leads to the
annihilation of this photon and is thus related to the annihilation operator. In terms of elec-
tric field operators, the annihilation process is described by the so-called positive electric field
operator E(H) (r,t), which we introduce in a moment. We will first derive this operator for
the atomic system discussed in the previous chapter and afterwards proceed with introducing
the correlation functions. Before we dive into the derivation, let us first note that outside
the system of charges, the polarisation density vanishes, which implies that D = ¢F with
D being a transverse field for a globally neutral system. Therefore, the operator describing

the electric field outside the system of charges is given by

;- . hwy ~ ik N —ik
E(r) —z/d3k Z o [eac (k)™ — etal (k)e 7] (3.1)
Transforming to the Heisenberg picture, the operator becomes time-dependent and we split

it into the so-called positive and negative frequency parts E(r,t) = E(+)(r,t) + E(*)(r,t),

where
R hw .
EM (r 1) = '/d3k _ Tk ca (K, t)etRT 2
(’l", ) v zg: 280(27_[_)36@( ) )6 (3 )

Thereby, a-(k,t) denotes the annihilation operator in the Heisenberg picture. To find an

expression for the positive electric field operator in terms of atomic operators, we need to
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3. SOURCE FIELD AND PHOTON CORRELATION FUNCTIONS

solve the Heisenberg equation of motion

bk, 1) = — 3 a=(h,0), H (1), (3.3)

where the dot denotes the time derivative and H(t) is obtained from Eq. (2.8).

3.1 Source field operator

In the following section, we solve the foregoing equation and derive an expression for the

positive electric field operator in the far field by obtaining the so-called source field operator.

Uge(T) = %1 | h(;;)se“" (3.4)

and evaluating the different commutators, leads to

Defining the mode functions

Ge(fe,t) = —iwpae (K, t +Z Z { (dmuie (R)ISY) (1) + [d:‘nu*,;s(Ru)]Sfﬂ(t)} . (3.5)

p=1m=1

We now follow the route taken by Agarwal in Ref. [61]. Building the second derivative of the

previous equation gives

N D . .
e (k1) = —ieoniie (6, 0) + 3 > { [dmtiee (RIS + [ uie (ROISEL ()} . (3.6)
p=1m=1

Therefore, let us consider the time derivative of dmgq(flﬁ)r (t)+ d;;S#;Z (t), given by the Heisen-

berg equation of motion

dn L) + diy SE2 (1) = — [ S (8) + i, SUL (8), H (1)), (3.7)

It is simple to calculate that
[SYL (1), Ha(t)] = FhwmSLL(1), (3.8)
S8 (), Hr(t)] =0. (3.9)

However, the commutator with the interaction Hamiltonian needs a more detailed discussion.
There, we obtain the following commutators [dmgﬁl(t),dngni) ()], [dm,SA'W’Lﬁ)r( t),d: S(“)( t)],

? n-n
[d;lg,(#l (1), d’;LS’T(fL_) (t)], and [d;lg,(#l (1), dngéi) (t)]. Within our coarse-grained master equa-
tion in Markov approximation, the first two commutators can be neglected. Further, for

m # n, the third and fourth term only give a contribution if the two dipole moments are
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3.1 SOURCE FIELD OPERATOR

not orthogonal and either the operator ngig )

or the operator 5*7(# ) 3™ must not vanish.

n— —~n+

We recall that this can not be fulfilled simultaneously for usual angular momentum transi-
tions [63], such that we omitted these terms earlier in the derivation of the master equation.

Thus, we are only left with
(S (8), i, S ()] + [d5, 5% (1), dn S ()] = 0 (3.10)

and therefore we can approximate [d,, A,(#J)r(t) + d;‘nS’,(#l(t),ﬁj(t)] ~ 0. Then, Eq. (3.7)

simplifies to

A S () + 2, 8 (1) = it [dn S (1) — d, 89 (1)) . (3.11)

m

By plugging Eqgs. (3.5) and (3.11) in Eq. (3.6), we arrive at
e (K, t) + whac(k,t) =iy {[dmu,*ce(Rﬂ)](wm — wi)SW) (#)
,m

[y e (Ry)] (wm + ) S (D) (3.12)

Now, using this equation together with Eq. (3.2), we obtain the wave equation

V2o L8N pn = - L i (3.13)
c2 Ot2 ’ €oC Y .

where we defined the source term as
~ 1 . ~
(+) — 3 ik(r—R,,) * % (w)
J(r,t) 2m)? l;/d k ;ke " [e(dme ) (W + wg) Sy (t)
—e(dme™) (wm — wi) }fj}(t)] L (3.14)

Using the retarded Green’s function Gr(r — 7/, t — t’) of Eq. (2.55), a solution of the inho-

mogeneous wave equation is given by

B (1) = —— [ ¥ / dt' Gr(r — v/ t —t) T (' 1)

gpc
— a3 c 1
47reoc/ " |r — 7| ’ (3:15)

where the index S indicates that this field stems from a source term and we evaluated the

time integral, which leads to the so-called retarded time tgp =t — lr=r1]

ik(r—R,)

. In this context, we
already note that due to the oscillating phase e in Eq. (3.14), the integral over 7’ will
only pick up contributions from points located around R,,. Physically, the sources, i.e., the

atoms are located at R, and thus the source term J) should only be nonzero around the
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3. SOURCE FIELD AND PHOTON CORRELATION FUNCTIONS

positions of the atoms. In the following, we carry out the integration explicitly. However,
since we are only interested in detecting photons in the far field, we first introduce some

approximations to simplify the calculations. In general, we can write
Sud(t) = ikt (petient, (3.16)

where 5’,%1] (t) denotes the operator in the interaction picture with respect to the unperturbed
Hamiltonian Hy = Ha + Hg. In fact, the operators S’i,’ﬁ (t) and S,(ﬁr(t) in Eq. (3.14) need

to be evaluated at the retarded time tg. Therefore, we have

A r—r' A, [T =71\ i, (==
st (1= ) s (o T enio ) (317)
Now, since Sﬁﬁ’l (t — @) is a slowly varying operator, it does not change much on a
timescale given by @ ~ @, such that it is justified to approximate
A r—r A r
S (t =i - ’) ~ ST <t— |C|> . (3.18)

Further, we approximate the exponent by doing the usual far-field Fraunhofer approximation.
However, since there is the phase factor e*("=Fu) in Eq. (3.14), we need to be a bit careful.
Therefore, we first consistently insert the positions of the atoms R, and approximate in the

exponent

lr—7|=|r—R,— (' —R,)|~|R \—R“RL (3.19)
I R |

where R, =7 — R,,, RL =r'—R,, and \Ru < |R,|. Now, we can do the usual Fraunhofer

approximation for |R,| < |r| reading

- TR
A (3:20)
such that in total we have
g lr=rl Il TRy RuR, (3.21)
c c rle  |R,|e
Applying the discussed steps, we then find
R ! R i'knb(M_j’_TR#)
w (t =l CT |) ~ S (t — ’Z') e\ TR T (3.22)
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3.1 SOURCE FIELD OPERATOR

with k,, = “=. In addition, in the denominator of the expression in the integral in Eq. (3.15),

we do the usual stronger approximation

r—r'| = ’RM_R;A ~|Ry| =[r— Ry (3.23)
Next, we rewrite the sum over the two polarisation directions as

Ze(dms*) =d, — k(dnk) = —K X (k X dpy,) (3.24)

g

with kK = % For the source field operator, we then arrive at

N 1 ~
ESD (rt) = —8W€002/d3kk|Ruy Iy

[ 1 /dgrl (k bzt ‘)*‘/e (’“ ko g |)R“ —iho "t ¢ (k x d7,) (wo + wi) S (t—""'>

ey’ ‘
(o)
o A A - - )]

m— c
=5 (k+ko ‘gﬁ‘ )

- (27r)

(3.25)

where we replaced w;, by wg and k,, by ko. The two delta functions give restrictions to the
absolute values and the directions of the k vectors. In particular, we only get contributions at
magnitudes +kg. Since the absolute value integral is only over positive k values, the last line
of the previous equation vanishes. Further, the angular integral picks up only the direction
of Ru- Thus, we finally obtain

() (1) — d ) 1Bl st (Il
ES (7’ 47780 Z ‘R | <|R ’ m) ‘R,U| € Sm— <t c 9 (326)
—

spherical wave in
far-field approximation photon annihilation =
disexcitation of atoms

dipole emission pattern

where we indicated the meaning of the different terms. We note that often we additionally
neglect retardation effects and approximate ,SA'#Q (t - @) ~ 5',(,’;1 (t). Furthermore, in the far
field, the vectors Ru are almost parallel and of equal length, such that we usually approximate
Ru ~ r. What we have done so far, is to find a special solution of the inhomogeneous wave

equation. The general solution is given by the sum of this particular solution and all solutions
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3. SOURCE FIELD AND PHOTON CORRELATION FUNCTIONS

of the homogeneous wave equation. The homogeneous wave equation
v?— Lo E®)(r t)=0 (3.27)
c2 Ot2 ’ '
can be derived from the free field equation of the annihilation operator
ae(k,t) = —iwpac(k, t), (3.28)

which is solved by a.(k,t) = a.(k) ™k’ Therefore, the general homogeneous solution is given
by

EST(r ) =i / Y %sas(k)e“kr—%t) (3.29)
€

and the full positive electric field operator reads

ED(rt) = BV (r,t) + ESD (r, 1) (3.30)

3.2 Photon correlation functions

We continue by defining the photon correlation functions introduced by Glauber [6]. As
mentioned in the beginning of this chapter, the detection of a photon annihilates this photon
and is thus described by the positive electric field operator. Assuming some initial state |i)

and an ideal photon detector, the probability to detect a photon is proportional to [6]

Y HAES (r,0)]i) P = GIEC () ED (r,0)]i) | (3.31)
!

where the sum runs over all possible final states |f). Generalising to an arbitrary initial state
described by a density matrix p, the probability to detect a photon at position r and time ¢

is proportional to the expectation value
GO (r, 1) = (B (r,) ED(r,1) | (3.32)

which is the so-called first-order photon correlation function. More general, the detection of

m photons at positions ry,...,r,, and times t1,...,t,, is proportional to the expectation value
G(m) (’I"l, tl; 3 Tmys tm) = <EA(_)(T‘1, tl)"'E(_)(rm7 tm)E(+)(rma tm)E(+) (’rl, t1)> ) (3'33)

which is the so-called mth-order photon correlation function. In the following chapters, these
correlation functions will play the central role. In particular, on the one hand, we investigate

which information about the atomic system can be gained by measuring these higher-order
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3.2 PHOTON CORRELATION FUNCTIONS

photon correlation functions, on the other hand, we study how the atomic system can be
influenced by those conditional photon measurements. However, before we end this chapter,
we want to note that one can also define a normalised version of the mth-order photon
correlation function reading

(EC) (1, 11) B (2 ) B (2 ) B (01, £1))

) (1 415 e Py ) = - ~ ~ , (3.34
gt )= B . 1) B (. 11)) o (B (o ) B () oY

which we need in Chapter 6.

Finally, let us make two comments about the evaluation of the correlation functions. First,
we usually assume that the state of the environment is the vacuum and therefore the free field
operator E'(()Jr) (r,t) gives no contribution to the correlation functions. Therefore, we immedi-
ately express the correlation functions in terms of the source field operator Eéﬂ (r,t). Second,
since the photon correlation functions are multi-time expectation values in the Heisenberg
picture using the full unitary dynamics, the question is how these expectation values can be
evaluated using the quantum master equation derived in the previous chapter. The answer to
this is the so-called quantum regression theorem, which for the interested reader we explain

in detail in Appendix C.
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4  Spatio-temporal correlations of a three-atom sys-

tem

The quantum theory, in other words, has had only a fraction of the influence upon
optics that optics has historically had upon quantum theory. The explanation, no
doubt, lies in the fact that optical experiments to date have paid very little attention
to individual photons. To the extent that observations in optics have been confined to
the measurement of ordinary light intensities, it is not surprising that classical theory
has offered simple and essentially correct insights. FExperiments such as those on
quantum correlations suggest, on the other hand, the growing importance of studies
of photon statistics. Such studies lie largely outside the grasp of classical theory.

— Roy J. Glauber

In the above quote, Roy J. Glauber indicates the connection between the photon statis-
tics of a given light source, described by higher-order correlation functions, and quantum
correlations. In the following sections, we explicitly investigate how quantum correlations
can indeed be generated by multi-photon measurements in the case of a system with only a
few photons. Concretely, we will consider a system consisting of three atoms and will have
a detailed discussion on the measurement of two-photon and three-photon correlations in
different atomic configurations. We note that parts of the work presented in the following
sections have been previously published in Ref. [68]. We start by discussing first the case of

two-level atoms and afterwards extend our work to the case of four-level atoms.

4.1 Spatio-temporal correlations of three two-level atoms

In the first subsection, we introduce the description of the considered two-level atoms and

specify the spatial arrangement of the atoms.

4.1.1 Atom description and spatial configuration

We assume three identical two-level atoms with excited state |e), ground state |g), and energy
separation hwy as illustrated in Fig. 4.1. Further, the atoms can emit photons with a half-

decay rate of v. In what follows, we consider a particular spatial arrangement of the three
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=2
=t
&

S

— 9

Figure 4.1: Description of a single two-level atom. We denote the lower energy state with |g)
for ground state and the higher energy state with |e) for excited state. The energy spacing
is given by hwgy and the atom can drop from the excited state to the ground state via the
spontaneous emission of a photon characterised by the half-decay rate ~.

atoms. Two of the atoms are assumed to have a subwavelength separation, whereas the
remaining third atom shall be located far distant, i.e., several wavelengths away from the two-
atom subsystem. Therefore, the two close-by atoms interact via the dipole-dipole interaction
introduced in Chapter 2, while the third atom evolves independently of the other two atoms.
Thus, in the case of the third atom, we neglect the coupling to the other two atoms, which is
justified for the aforementioned separation (see Fig. 2.1). Before we describe the three-atom
system, it is worth having a look at the coupled two-atom subsystem first. Without any laser
interaction, Eq. (2.74) reduces to [63, 69]

o i A A « o A A )
2palt) == Z[Ha+ Ho pa()] = Y7 ($175Ypa®) + pa()) 51784 — 28154 (1)5(”)

p=1
- Z T (8808 (1) + pa()SPSY) — 28V054 0817 (4.1)
i
where
2 2
Hat Bo=hwo 3800 — 1 3 aw s g (4.2)
p=1 wr=1

and ﬁi“) = % (S’i“)g(_“) - SE“)SSFM)). Since the coupling parameters I'* and Q" are sym-
metric with respect to the atoms, we define Ay = I''? = I'?l and AQ = Q2 = Q2. For
mathematical reasons and also physical insights, it is convenient to diagonalise the Hamilto-

nian H A+ ﬁg. This leads to the eigenstates

|E> = |€7e> ) (4.3)

L (leg) +19:)). (4.4)

5) =5
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15)

X —r __|g)

Figure 4.2: Energy level scheme of the coupled two-atom subsystem. The new collective
states |S) and |A) are shifted with respect to the bare states |e, g) and |g,e). Note that we
assume the dipole moment to be perpendicular to the separation vector of the atoms and a
separation smaller than A, such that AQ < 0 (see Fig. 2.1). The system features two different
decay channels, the so-called symmetric decay channel via the symmetric state |.S) and with
the symmetric decay rate vs = v+ A~ and the so-called antisymmetric decay channel via the
antisymmetric state |A) with the antisymmetric decay rate v, = v — A~.

4) = Jgue,m ~lg.e)), (4.5)
1G)=19.9) (4.6)

with eigenenergies hwy, —hAQ, hAQ and —hwy, where we refer to the states |S) and |A) as
symmetric state and antisymmetric state. Further, we also express the dissipator in this new
basis. Therefore, we define the transition operators Sy; := |h)(I| with h,1 € {E, S, A, G}. The
master equation in terms of these operators then reads [63, 69]

B, i
—pa(t) = ——[Ha+ Hq, p
giPA(0) = =2 [Ha+ Ho, pa(t)]

— % (8 + 855)pa(t) + pa(t) (Swp + Sss) — 2(Ssp + Sas)pa(t) (Sps + S50)|

~ Ya [(SEE + Sa4)pa(t) + pa(t)(Ser + Saa) — 2(Sca — Sap)pa(t)(Sac — SEA)} , (47)

which allows for a direct physical interpretation. The first term of the dissipator describes
the decay cascade |E) — |S) — |G) with a rate 75 = v + A7, whereas the second term
describes the decay cascade |E) — |A) — |G) with a rate 7, = v — Ay. Thus, the coupled
two-atom subsystem can be pleasingly illustrated by the energy diagram shown in Fig. 4.2.
Now, with the coupled two-atom subsystem discussed, we immediately know the three-atom

dynamics, since it is just the sum of the coupled two-atom dynamics and the dynamics of the
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independent third atom.

4.1.2 Engineering of spontaneous emission

We investigate the collective spontaneous emission of photons of the three-atom system intro-
duced in the previous subsection. For this purpose, we study Glauber’s third-order photon
correlation function displaying a so-called conditional photon measurement. The third-order
photon correlation function G(3)(r1, t1;79,ta; 73, t3) describes the probability of measuring a
photon at a position r3 and time t3 under the condition that two photons were previously
detected at positions r1 and ro at times t; and to. Thereby, the first two photon mea-
surements can be viewed as a state preparation process, entangling all three atoms. As we
will see, the combination of this conditional measurement with the dipole-dipole interaction
of the two close-by atoms, which leads to modified decay rates, gives rise to a pronounced
spatial modulation of the photon emission rate. This is precisely the particularity of the
considered three-atom system. We note that a strong modulation of the decay rates can only
be achieved for subwavelength separations of the atoms, for which the emission is, however,
almost isotropic. The spatial modulation only comes into play via the third atom located
several wavelengths away, but entangled with the other two atoms by conditional photon
measurements. Thereby, the interference of the different decay channels, the three-atom sys-
tem can take, strongly depends on the emission direction. This allows for engineering the
collective spontaneous emission behaviour in space and time.

In the following, we assume that the third remote atom can be experimentally controlled.
Therefore, we assume that all three atoms are placed along one axis, which we consider to
be the z-axis and additionally choose wlog R; = 0 (see Fig. 4.3). Further, the detectors
shall be located in the zy-plane, such that we can write the direction of the mth detector
as Ty, = :—: = & COS Py, + Y sin p,,, which is characterised by the azimuthal angle ¢,,. The

source field operator of Eq. (3.26) can then be written as

2 3
i(+) _ ky . . * 6,m &(K)
Eg" (1, tm) = “ImegrTm % (Pm x d )5216 S (tm) (4.8)
where we defined the phase
Oum = —koR,Tm , (4.9)

which accounts for the geometric phase a photon accumulates by the propagation from the
atom at R, to the detector at 7, relative to a photon originating from the coordinate origin
(see Fig. 4.3). To calculate the third-order photon correlation function, we assume that
the dipole moment d is real and that the atoms are initially prepared in their excited state.
Further, the first two photon measurements shall be performed coincidently at the initial time

t1 = to = 0 with variable, but fixed positions 71 and 7r2. The third-order photon correlation
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G(s) (9037 t3)
G(3) (()03” 0)

\ (6

time

i3

Figure 4.3: Third-order photon correlation function G®) (s, t3), normalised to its initial value
for every angle 3, as a function of the third detector position characterised by the azimuthal
angle 3 and as a function of time ~yt3 (radial axis). The first two photon measurements take
place at time ¢ = 0 and angles ¢ = %’r, 2 = 7, illustrated by the purple detectors. The
atoms are located at positions R = 0, Ry = %ﬁ:, and Rz = 4)\& along the z-axis, i.e., the
first two atoms have a subwavelength separation Rjs < A, whereas the third atom is placed
several wavelengths away, 13 > A. The two angles ¢35 and 3 , denote directions, for which
an effective decay with the superradiant or subradiant decay rate I'y = 275 or I’y = 27, can
be observed.

function is then given by [68, 70]

G®) (13, t3) o< sin®(a) x

4 5
[eGe|?e 1% + 2esy[?e 20V cos? (223> + 2|cag|2e 2074 gip? ( 223)

+2|csgllcagle 73 sin(82,3) sin (pag — @5y — 2 AN t3)

1) 0
+ Zﬁ\csg\]cGe]e_(QVJrA”t?’ cos (223> coS <9059 423 03,3 + AQ t3>

2
) )
_{_2\/§|CA9||CG6|€—(27—A7)1:3 sin <223> sin <90Ag + % — 033 — AQ t3>] ,
(4.10)
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
vt3

Figure 4.4: On the left, the third-order photon correlation function for the two directions ¢34
and ¢3 ¢ (blue and green solid lines) is shown. By comparing the decay to the three reference
decays with the antisymmetric decay rate I'y, the unmodified decay rate I', and the symmet-
ric decay rate I's, we see that the third-order photon correlation function displays an effective
exponential decay with the antisymmetric (subradiant) or the symmetric (superradiant) de-
cay rate in these two directions. On the right, we show the third-order photon correlation
function together with the first-order photon correlation function for the initial time ¢t = 0
as a function of the detector direction. Whereas the first-order photon correlation function
shows only an isotropic emission pattern (up to the dipole radiation pattern), the third-order
photon correlation function displays multiple spatial fringes stemming from the entanglement
and thus quantum correlations between all three atoms (see Appendix D). Further, we also
indicate the directions ¢3 , and ¢3 s, where an effective subradiant or superradiant decay can
be observed.

where we defined the coefficients cge, csy, and c4q4 reading

Cao = (6i52,1 + €i52,2> ’ (4.11)
ng _ \}5 <6i(53‘1+52‘2) + ei(52,1+53,2) + ei53,1 + 6i53,2> , (4]_2)
cag = \}5 (6i(63'1+62’2) 4+ ¢i(021403,2) _ pids1 _ 6i53,2) ] (4.13)

€Sg/Ag
CGe
and c44 with respect to cge. In addition, o denotes the angle between the third detector at

Further, the phases ¢g4/ 44 = Arg ( ) denote the phases of the complex coefficients cg,
r3 and the dipole moment d. Therefore, the factor sin?(a) gives the usual dipole radiation
pattern. Finally, we note that in Eq. (4.10), we neglected the prefactor of the source field
operator and omitted the fixed positions and times of the first two photon measurements in
the argument of the correlation function. In the following, we assume that the dipole moment
d = dz is parallel to the atomic axis, for which the angle « is equal to the azimuthal angle
©3 (see Fig. 4.3). In Fig. 4.3, we show the third-order photon correlation function for atom
positions Ry = 0, Ry = %ﬁ:, and R3 = 4\&. Thereby, the first two photon detections take
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2

place at detection angles ¢1 = 5 and @2 = -

4.4
figure. The third-order photon correlation function is plotted as a function of time (radial

illustrated by the purple detectors in the

direction), normalised to its initial value, for every possible third detector position charac-
terised by the angle 3. We find a rich temporal and spatial emission pattern with multiple
different emission characteristics, only depending on the direction of the third detector. In
particular, in the directions ¢3 s and ¢34, an effective exponential decay with the symmetric
or antisymmetric decay rate I'y = 25 or I'; = 27, can be observed simultaneously, i.e., for
the same first two detector positions. This is illustrated in Fig. 4.4. Here, on the left, we
show the third-order photon correlation functions G®)(3.4,t3) and G (3 ,t3) (blue and
green solid lines), normalised to their initial value, against time. As a reference, we plot the
theoretical decays with the antisymmetric decay rate I',, the unmodified decay rate I', and
the symmetric decay rate I's. As can be seen, for the two directions ¢3, and ¢3 s an almost
perfect effective subradiant or superradiant exponential decay with rate Iy, or I's can be
found. On the right, we show the third-order photon correlation function G(3)(g03, ts = 0) for
the time ¢t3 = 0, normalised to its maximum value, against the position of the third detector.
We find that not only we get a rich temporal emission pattern, but also spatial interference
fringes. Since the third atom becomes entangled with the other two atoms via the first two
photon measurements (see Appendix D), the different emission paths of the remote atom and
the two-atom subsystem interfere with each other. Due to the large separation of the two
systems, many spatial fringes can be found. We note that the two close-by atoms on their
own can not produce such a rich spatial pattern.

Furthermore, we also plot the first-order photon correlation function, which shows an isotropic
emission characteristics [up to the dipole radiation pattern sin?(c)]. This demonstrates that
the conditional measurement, leading to entanglement between the atoms, is indeed essential
to obtain the great spatial variety shown in the Figs. 4.3 and 4.4.

We note that in obtaining the complex emission pattern shown in Fig. 4.3, we adequately
balanced the different modes in Eq. (4.10). Thereby, the first two detector positions were
chosen such to allow all three modes to substantially contribute to the emission pattern.
However, we note that other similar intricate emission patterns can be found for different
detector positions, in particular, we could choose positions, where either an isolated superra-
diant or subradiant decay can be observed. This huge variety allows to engineer the emission

dynamics of the presented three-atom system.

To analyse the emission pattern shown in Fig. 4.3 more quantitatively, in Fig. 4.5 the
different effective decay rates are illustrated as a function of the detection direction. Thereby,
the effective decay rates of the first- and third-order photon correlation functions are obtained
by an exponential fit in the time interval v¢ € [0, 0.5], i.e., we determine effective decay rates
for the early to intermediate time dynamics. Since the emission signal is the superposition of
different modes with different decay rates, the time behaviour can not be described by a single

exponential. Therefore, the exponential fit is only justifiable for short to intermediate times.
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3m/2

Figure 4.5: Effective decay rates I gf) and ngf)’f) of the first- and third-order photon correlation

functions. As a reference, we plot again the antisymmetric decay rate I'y, the unmodified de-
cay rate I', and the symmetric decay rate I'y. The decay rates are obtained by an exponential
fit in the early to intermediate time dynamics vt € [0,0.5] and displayed in units of ~.

Whereas the first-order photon correlation function shows almost no spatial modulation of
the decay rates, coming solely from the two close-by atoms alone, the third-order photon
correlation function displays a variety of different decay rates. Most remarkably, in the case
of G®) (r3,t3), we find multiple directions, for which the effective decay rates are larger or
smaller than the symmetric or antisymmetric decay rate. The reason for this is that the
different modes do not only have different decay rates, but also different frequency shifts
leading to oscillations in the interference terms between the different modes. The decay rates
are then effectively increased or decreased depending on the initial phase of these oscillations,

leading to decay rates that exceed the symmetric or antisymmetric decay rate.

We end this section with two remarks. First, we note that the antisymmetric coefficient
cag scales linearly with the separation Rjs of the two close-by atoms in the limit R — 0.
Therefore, with smaller separation, a substantial superposition of all three modes leading
to the obtained intricate emission patterns becomes harder to achieve. Second, since the
third-order photon correlation measurement is a conditional measurement, the experimental
efficiency is limited by selecting photons in particular directions. The goal of the presented
investigations is rather to demonstrate how dipole-dipole interactions and entanglement, i.e.,
quantum correlations can be combined to engineer particular spontaneous emission features.
However, we also note that recent experiments showed a realistic implementation of condi-

tional photon measurements [71-73].
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4.1.3 Subwavelength imaging

In this subsection, we consider once more the same three-atom system as before. Two atoms
are close to each other and interact via dipole-dipole interactions, whereas the remaining
atom is located far distant from the other two atoms. In addition, we investigate again
the third-order photon correlation function. However, we slightly change our point of view
and ask the question whether the third atom can be used as an auxiliary system to extract
information about the two-atom subsystem that is otherwise hard to access. In particular,
we investigate how the interference between the third atom and the other two atoms can be
utilised to determine the subwavelength separation of the close-by atoms.

We start by assuming that all three atoms are located along the z-axis as before. In what
follows, we place the detectors perpendicular to the atomic axis at an angle p1 = @3 = 7,
i.e., we project onto the symmetric state. If we additionally assume that the dipole moment
d is perpendicular to the detection plane, the third-order photon correlation function reduces

to

)
G (ra.ta) o [l 4 2y e 2080 cos? (222

) )
+2\/§\CSQHCG6|€*(27+A7)'53 COS (223> coS <9059 + 22’3 — 033+ AQ t3>] . (4.14)

As we can see, the third-order photon correlation function depends crucially on the two
coupling parameters Ay and ASQ). Further, as we already know from Egs. (2.47) and (2.48)
and from Fig. 2.1, the two parameters A~y and AQ vary quite strongly as a function of
the separation between the two atoms. In particular, the coherent coupling parameter AS2
depends drastically on the separation in the regime Rj2 < A. Because of this sensitivity, we
can deduce the distance of the subwavelength separated atoms if we can accurately determine
AQ. Therefore, let us simplify the expression for the third-order photon correlation function
even further by placing also the third detector perpendicular to the atomic chain at an angle

@3 = 5. The correlation function now reads
GO (t3) ox 42 4 16e20FANE | 16~ (T2 cos (AQ L) (4.15)

We find that the correlation function decays exponentially with different rates and oscillates
in time with the coherent coupling parameter A{2. Thus, measuring the third-order photon
correlation function as a function of time and determining the frequency of the oscillation via
a Fourier transform allows us to deduce the coherent coupling parameter and consequently
the separation of the close-by atoms. This is illustrated in Fig. 4.6. As can be seen, a peak at
the position of the modulus of the coherent coupling parameter can be clearly identified. In
addition, from the full width at half maximum (FWHM), we can also define an uncertainty

for this determination process. However, note that we plot the analytical Fourier transform
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Figure 4.6: The left plot shows G®) (t3), normalised to its initial value, as a function of time
~ts and for a separation of Rja/\ = 1/20. The correlation function decays in an oscillatory
manner according to Eq. (4.15). On the right, the modulus square of the Fourier transform
|€3)(w)|? of the third-order photon correlation function is shown. By determining the slightly
shifted position of the peak, the frequency AQ of the oscillation can be found. Here, the red
dashed line corresponds to the correct value of the modulus of Af) and the orange dots mark
the position of the peak maximum and the full width at half maximum of the peak.

of the normalised expression of Eq. (4.15), which requires knowledge about the separation of
the close-by atoms beforehand. Furthermore, in experiment noise is unavoidable. Therefore,
we additionally analyse noisy G® signals. In this case, we perform a numerical Fourier
transform and determine the frequency via a fit of the analytical expression. This can be
seen in Fig. 4.7 for the same separation of the first two atoms as in Fig. 4.6. Thereby, the noise
is chosen from a uniform distribution with values of at maximum +10% of the highest value
of GB). We see that the additional noise does not harm the determination of the coherent
coupling parameter.

Now, from Eq. (2.47), we can derive the separation Rja/A and analyse the accuracy of the
presented procedure. In Fig. 4.8, we plot the reconstructed separations R%ec)/ A against the
correct separations Ria/\. The shaded area gives the uncertainty of the method. We want
to emphasise two main points here. First, with the presented method, we obtain values for
the reconstructed separations, which are in excellent agreement with the correct separations
and second, what is most remarkable, the accuracy of the method increases with decreasing
separation of the atoms. That is, it becomes better the smaller the distance of the close-by
atoms is. This unintuitive result is based on the functional behaviour of A€}, which scales as
R1_23 in the limit Rjs — 0 and is therefore, in this limit, particularly sensitive to changes in
the separation. Finally, by comparing the results obtained from the noisy G function to

the noiseless results, we conclude that the method is essentially unaffected by the noise.

Let us now discuss the experimental feasibility and the underlying concept in more detail.

As already mentioned in the previous subsection, a G) measurement is a conditional mea-
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Figure 4.7: The left plot shows the noisy G®)(t3) function for a separation of Ryz/A = 1/20
normalised to its initial value. The right plot displays the modulus square of the numerical
Fourier transform (blue solid line) as well as a fit of the analytical expression (orange dashed
line). We determine the frequency by the peak position and the uncertainty by the FWHM

of the peak.
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Figure 4.8: Reconstructed separations R%ec) /A against the correct separations Ria/A. By
comparing the reconstructed separations with the black dashed reference curve, representing
the identity, we find that the reconstructed separations are in excellent agreement with the
correct separations. Furthermore, we highlight that the uncertainty of the obtained values
(shaded area) reduces with decreasing distance of the two atoms. Moreover, by comparing the
results obtained from the analytical noiseless Fourier transform with the ones obtained from
the numerical noisy one, we can conclude that the presented method is essentially unaffected
by the noise for realistic experimental noise levels.
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Figure 4.9: Working principle of the conditional GG) (r1,0;72,0; 73, t3) measurement. We
separate the measurement into three steps. The first two photon measurements at time ¢t = 0
are used to prepare an entangled state (blue preparation step, see Appendix D). After the
first two photon measurements, the state evolves in time (green evolution step) before the
final third photon measurement at a time ¢3 is performed (orange detection step). Thereby,
the factors along the black arrows give the effect on the corresponding states, the action on
the right describes. In total, we get six different quantum paths (coloured paths), where
for each path the factors encountered along the path need to be multiplied to find the final
prefactor of the state.

surement, which limits the experimental efficiency. This raises the question of whether a G (3)
measurement is the only possible measurement or whether a G?) measurement could also be
carried out. Of course, a G@ measurement is also a conditional measurement and thus comes
with a similar drawback of a limited efficiency. However, here, the selection depends on only
one photon instead of two photons. If a G measurement is sufficient, a follow up question
pops up, namely whether the third atom is actually necessary for the determination process.
To answer both questions, we explain the general working principle in more detail based on
Fig. 4.9. We separate the G®) (r1,0;79,0; 73, t3) measurement into three steps, a preparation
step (blue), an evolution step (green), and a detection step (orange). The preparation is done

by the first two measurements. Here, an entangled state is created (see Appendix D), which
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Figure 4.10: Working principle of the conditional G(3)(r1, 0; 72, 0; 73, t3) measurement if the
antisymmetric state is projected out by the first two photon measurements. The description
is analogous to that of Fig. 4.9.

afterwards leads to quantum interferences. During the evolution step, the state evolves in
time up to a final time ¢3, at which the last photon measurement is performed. In total, we
obtain six different quantum paths (coloured paths), which interfere with each other, since all
paths lead to the same final state, the complete ground state |G, g). Thereby, the prefactor
accumulated along a path is the product of all the factors along the black arrows encountered
along the path. In terms of the six paths, the third-order photon correlation function can be

calculated symbolically as

G (14,03, 05, t0) = (1) 42 )+ (3 )+ (1) + (5 )+ @‘2 (4.16)

leading to the general expression of Eq. (4.10). We find three different terms that depend
on the coherent coupling parameter A{2. Thereby, the dependence comes originally from the
phase AQt highlighted in Fig. 4.9. The interference term of the paths coming from |5, g) and
|A, g) oscillates with 2A(), whereas the interference terms of the paths coming from |G,e)
and |5, g), or from |G, e) and |A, g) oscillate with AQ (differences of the different phases).
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Figure 4.11: Working principle of the conditional G(z)(rl, 0; 72, t2) measurement if the anti-
symmetric state is projected out by the first photon measurement. We split the measurement
into the same three steps (preparation, evolution, detection) as before. However, now the
preparation only includes the first measurement. Afterwards, we evolve the states in time
until the second (final) measurement is performed at a time t. We note that the time evo-
lution of the doubly-excited states |S,e) and |E, g) leads additionally to the population of
singly-excited states, which also contribute to the G2 measurement. However, in the figure,
we neglect writing all factors explicitly since the contribution from the singly-excited states
is irrelevant for the working principle.

If we project out the antisymmetric state, as done in this subsection, the general scheme
of Fig. 4.9 reduces to the scheme shown in Fig. 4.10. Three quantum paths remain, which
interfere with each other. Thereby, the interference term of the paths coming from the states
|G,e) and |9, g) oscillates with AQ [last term in Eq. (4.14)]. With this understanding, we
are able to decide whether a G2 measurement is already sufficient or not. The working
principle for a G?) measurement, with the antisymmetric state already projected out, is
shown in Fig. 4.11. We see that the two paths and () lead to the same final state |5, g)
and thus interfere with each other. Since the two states |S ,e) and |E, g) evolve with a relative
phase of AQt (see Fig. 4.11), the interference term oscillates with a frequency given by Af.

Mathematically, the contribution coming from the doubly-excited states reads

) )
2e 20227 +AY) |9 4 2287 4 (g 02,0 + 2e1287 cos (222) cos <t2AQ — 22’2 + 5372>] , (4.17)

where the interference term of the states |S,e) and |E, g) oscillates with AQ. As in the case

of G®), this oscillation can be used to determine the distance between the close-by atoms.
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Figure 4.12: Left: G(2)(t2), normalised to its initial value, for a separation of the close-by
atoms of \/20 as a function of v¢3. The blue solid curve shows the total second-order photon
correlation function, which is the sum of the two contributions coming from the doubly-
excited states [see Eq. (4.17)] (dashed orange curve) and singly-excited states (dotted green
curve). The oscillation with frequency A is clearly visible. Right: Absolute value squared
of the numeric Fourier transform of the normalised G(?)(t3). A peak at the coherent coupling
parameter can be identified, from which the separation of the two close-by atoms can be
inferred.

We note, however, that one gets an additional contribution coming from the singly-excited
states. This contribution can be evaluated analytically, but since the expression is quite
lengthy, we do not state it explicitly. Rather, we plot both contributions together with the
total second-order photon correlation function in Fig. 4.12. In the time domain (left panel),
an oscillation of the correlation function with frequency corresponding to the peak at the
coherent coupling parameter in the frequency domain (right panel) is clearly visible.

Before we come to the question whether the third atom is necessary for the determina-
tion process, we compare the results from the third-order photon correlation function to the
ones from the above evaluated second-order photon correlation function. We find that the
additional contributions to G (t2) coming from the singly-excited states are not in phase
with the oscillation of the doubly-excited contributions. Furthermore, the interference am-
plitude in the case of G(®(ty) is smaller than the one in the case of G®)(t3). This leads
to the fact that, in the case of G(®)(t), the peak in the Fourier transform is smaller and
wider, which would favour to use G(®(t3) in this regard (see Fig. 4.13). However, a measure-
ment of G®) (t3) comes with a highly reduced signal strength, since three photons have to be
measured conditionally. Therefore, for the practical implementation, a measurement of the
second-order photon correlation function is still favourable, even though the signal is not as
clean as the one of the third-order photon correlation function.

Finally, the remaining question is whether G(?)(¢5) of only two atoms is already sufficient
to determine the distance between the two atoms via the coherent coupling parameter. In

this case, the first photon measurement only populates the states |\S) and |A), which would
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Figure 4.13: Absolute values squared of the numeric FTs of the normalised G(?(t;) and
G®)(t3) functions. We find that, in the case of the third-order photon correlation function,
the peak is higher and its FWHM is smaller compared to the one of the second-order photon
correlation function. Theoretically, this would favour to use G®)(t3) instead of G (ts).
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Figure 4.14: Top: G(Z)(tg) for a separation of the close-by atoms of A/20 as a function of vts.
The blue solid line shows the correlation function for the three-atom system, whereas the
orange dash-dotted line corresponds to the two-atom case. As can be seen, the correlation
function for only two atoms suffers from a total reduced signal strength and a small amplitude
of the oscillation (see normalised G@ plot on the right). Bottom: Absolute values squared of
the numeric FTs of the normalised G(?) signals. In theory, for a separation of A /20, a slightly
shifted peak compared to 2A() is still identifiable in the two-atom case.
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Figure 4.15: Top: Noisy G?)(t5) for a separation of the close-by atoms of A/30 as a function
of 4t5. The blue solid line shows the correlation function for the three-atom system, whereas
the orange dash-dotted line corresponds to the two-atom case. Bottom: Absolute values
squared of the numeric FTs of the normalised noisy G2 signals. In the case of our three-
atom system, the numeric FT still shows a clear peak around Af2, whereas in the case of
only two atoms, the peak gets lost in the noise.

correspond to the states |S, g) and |4, g) in Fig. 4.9. The subsequent time evolution and final
detection is then the same. Therefore, we find an interference term of the two quantum paths,
which oscillates with a frequency 2A€). However, if the separation between the atoms becomes
very close, the antisymmetric state is almost unpopulated, which suppresses the interference
term in this case. In contrast, in the case of three atoms, the schemes use interferences of
combined states of the symmetric state of the first two atoms and the excited or ground state
of the third atom, which can be sufficiently populated. Further, the total signal strength of
the two-atom setup is reduced compared to the one of the three-atom setup. This is shown
in the top plots of Fig. 4.14. In theory, for the shown separation of Ri2 = A/20 and a perfect
signal, one can, in principle, still determine the coherent coupling parameter, illustrated in
the bottom plot of Fig. 4.14. But, we note that the peak is slightly shifted in comparison
to the true value of 2AQ) due to interference terms in the square of the absolute value of
the numeric FT. Beyond that, if we go to even smaller separations and add noise, which is
unavoidable in a real experiment, it is practically impossible to determine the separation of

the atoms via the oscillation of the second-order photon correlation function (see Fig. 4.15).

To end this subsection, we want to do a final remark. We note that investigations of using
the coherent coupling parameter for the determination of the separation of two close-by atoms

have already been carried out [74, 75]. However, while in Refs. [74, 75] the coherent coupling

45



4. SPATIO-TEMPORAL CORRELATIONS OF A THREE-ATOM SYSTEM

parameter was extracted by additionally driving the two atoms in a standing wave laser field,
here, we extract the coherent coupling parameter by exploiting measurement-induced atomic
correlations to an additional third non-interacting remote atom. In this regard, we developed
a remote sensing scheme that can be used for more general sensing tasks, as will be shown

in the next section.

4.2 Spatio-temporal correlations of three four-level atoms

In this section, we consider the same three-atom system as before, i.e., two atoms are close
to each other, whereas the third atom is far away. However, we extend the single-atom level
scheme from two levels to four levels. First, we give a short description of the concrete
three-four-level-atom system. Thereby, we start by introducing a single four-level atom.
Afterwards, we investigate the coupled two-atom subsystem and finally we translate the
notions to the full three-atom system. After the introduction of the system, we then study
once more the third-order photon correlation function and show how it can be used to perform

an atomic quantum state reconstruction.

4.2.1 Description of a single four-level atom

The level structure of the atoms shall consist of three excited J = 1 states |m) := |1, m) with
m € {—1,0,1} and one ground state |g) := |0,0) (J = 0). Here, J denotes the total angular
momentum quantum number. Every transition between the ground state and the excited
states shall be dipole-allowed with dipole transition matrix element d,, := (m|d|g), where d
denotes the dipole operator. By use of the Wigner-Eckart theorem (see Appendix E for the
application to the dipole operator), one can find that d,, = (m|d,,|g) €, with the so-called

spherical components d, and the polarisation vectors
. . 1. A . .
€41 = €4 = :Fﬁ(ex +iey), Ep=é€,. (4.18)

Thus, all three dipole moments are mutually orthogonal, i.e., dy,d,, = (5m,m/|dm]2.

In the following, we assume that the states |m) are degenerate, i.e., they should have the
same energy eigenvalues. Further, we choose the zero energy to be in mid between the excited
state energy and the ground state energy, such that the excited state energy reads hwp/2 and

the ground state energy is —hwpo/2. The single-atom Hamilton operator is then given by

|9) (gl + %(I—lﬂ—ll +10){0] + [1)(1]) - (4.19)

th

Hy=—="
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In addition, the three raising operators connecting the ground state with the excited states

can be written as

S =1-Ddgl,  Sor=10){gl, St =11y (4.20)

4.2.2 Two four-level atom dynamics

In the following, we investigate the dynamics of two such four-level atoms coupled via the
vacuum of the electromagnetic field. Starting from the single-atom operators defined in
Egs. (4.19) and (4.20), the operators for multiple atoms can be obtained by simple tensor
product extensions. In terms of the general expressions introduced in Chapter 2, we have the
case N =2 and D = 3. From Eqgs. (2.47) and (2.48), we find that the coupling parameters
crucially depend on the orientation of the dipole moments with respect to the separation
vector of the atoms. Wlog we assume that the dipole moment dy € R? is parallel to the
separation vector Rio. Note that this assumption is simply a definition of the quantisation
axis (z-axis). Then, the dipole moments d_; and d; are perpendicular to Rjy (see the

previous subsection). From Egs. (2.47) and (2.48), we conclude that
Q=0 and TH =0 Vm#n. (4.21)
Therefore, we only have

Qg = 9(1)(2) = Q(2)(1]7 Q1= 91_21_1 = Q2_11_1 s O = Qg = Q%% ’ (422)
Lo = F(1)(2) = F(2)(1)> Iy = F1—21—1 = F2—11—1 ) I'y = Fﬁ = Fﬁ : (4.23)

Further, we assume the dipole moments to be of similar strength, i.e., |d,,| = |d,| Ym # n.
We then define

QJ_ = Q,1 ~ Ql s Q” = Q(] s (424)
FJ_ = F,1 ~ Fl y F” = FQ . (425)

In addition, we have y_1 &~ v9 ~ 71 =: 7. Considering the general master equation Eq. (2.74),
it is useful to study the total Hamilton operator H=H A+ I:IQ. The diagonalisation of this
Hamilton operator leads to a convenient basis for the description of the system. The energies

and corresponding energy eigenstates are (h = 1)

—wo :|G) = 19,9) , (4.26)

wo:|—1,—1),|-1,0),|—1,1),]0,—1),(0,0),(0,1), [1,—1),|1,0), |1, 1) , (4.27)
1

—Q) :180) = —=(19,0) + 10, 9)) , (4.28)
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Q) : | o) = \}(\g,m ~10,9)), (4:29)
~60, 115 = (19— + =L IS) = 7<|g, 1+ 11,9)), (4.30)
0 141) = (9. ~1) = [=1.). [0 = (19 1) = [1.0)). (4.31)

Now, we investigate the dissipative part of the master equation. The dissipator matrix can

be written as

n=-—1 n = n=1
v=1 v= V= v=2 v=1 v=2
p=1 ¥ 1T 0 0 0 0
m=—1
W= r, vy 0 0 0 0
= 0 0 T 0 0 (4.32)
m=0 " 7 ” —y.
/LZQ 0 0 F” Y 0 0
uw=1 0 0 0 0 ¥ I
m=1
w=2 0 0 0 0 I, vy

The diagonalisation of Y reveals the different decay channels. We define the operators Sh;l =
|h) (1| with h,[ being the above written energy eigenstates of H. The different decay channels
can then be characterised by the decay rate and the corresponding Lindblad operator L
expressed in terms of the operators S’h;l. Explicitly writing down the different decay channels

reads
"0" :
. . . 1 . . . .
Y= 1ﬂ\l : Lv—Fn = 56,40 — 540:0,0 + 5(551;1,0 +Ss ;10— 531;0,1 —Ss_1:0-1
~ 84101 = 84_-1.0 = Say01 — Sayno) (433
. . . 1 . . . .
Y+ Ty 2 Ly = Saisy + 556500 + 5 (Ssi0,1 + Ssii0 + S5_1:0,-1 + Ss_i-10
484 01 =84 210+ Sa01 — San0)  (4.34)
n _ 1" :
. . N 1
vy=T1:Ly_r, 1=8¢a, —Sa_,—1,-1+ 5(530 0,—1+ Ssl 1,-1 — SSO —1,0 — 551 1,1
— Sap0,-1 = Sagi-10 = Saya—1— Say-11)  (4.35)
. A N 1
vy+Iy:Lyyr, -1 =S8as_, +Ss_,;-1,-1 + 5(551 11+ 85,021+ 85501 + Ssp:-1.0
+ Sapi-1,0 — Sagi0,-1 + Sars—11 — Say1,-1) (4.36)
"1“ :
v=T1:Lyr, 1 =>Sca —San. + 5(350;0,1 + 85 111 = Sspi0 — Ss_y1,-1
- §A0;0,1 - SAO;LO - SA_1;71,1 - SA_l;l,fl) (4.37)
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“ ~ N 1 - ~ ~ ~
Y+T1L: Lyyr, 1= Sc;s, + Ssy51, + 5(550;0,1 + Ss051,0 + S5 151,10 + Ss_451,-1

+ SAU;LO - §A0;0,1 + SA_l;l,—l - SA_l;—l,l) . (4.38)

We note that having the two-level case in mind and considering the possible decay paths,
the different contributions of the operators S’h;l and their corresponding weightings to the
Lindblad operators are quite intuitive. With this at hand, we can now discuss the three-atom

case.

4.2.3 Three four-level atoms - Excited state determination

In the following, we investigate the situation of three four-level atoms, where the first two
atoms are close to each other, such that their dynamics can be described by the formalism

of the previous subsection, whereas the third atom shall be far distant. This means that
Lron = Toin = Ton = Toin =0, Qo = Q0 = Q70 = Q% =0 (4.39)

with m,n € {—1,0,1}, such that the dynamics of the third atom can be treated separately
from the two-atom dynamics. Thus, the third atom simply decays independently of the other
two atoms with half-decay rate . In what follows, we assume that the three atoms are all
initially excited. Since the remote atom is meant to be controlled, the state of the third atom
shall be known. Our aim is then to determine the state of the close-by atoms by using the
interference of the emission paths of the combined three-atom system in terms of a third-order

photon correlation measurement. To shorten the notation, we define

kg

4TEGTm

B = [P X (P x dyy)] (4.40)

Then, the positive electric field operator can be written as

3
EP (rtn) = Y B S (), (4.41)

Hn=1

where 6, ,, is defined as before. In a first step, we assume that all three atoms are in a
distinct excited state, i.e., the state reads |h, k,l) with h,k,l € {—1,0,1}. To calculate the
third-order photon correlation function (with ¢; = t2 = 0), we consider the application of
EL(;F) (ra, O)E‘gr)(rl, 0) onto this state, which gives

ESD (0, 0)ESY (71,0) |k, 1) = ¢ |GL 1) + Corg 19, s ) + Chgg |5 9, 9)
=cq |G, 1) + 5,9 |5k, 9) + ca,g | ARy 9) + €S,9 1S, 9) + Ca, g | AR, 9) - (4.42)
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4. SPATIO-TEMPORAL CORRELATIONS OF A THREE-ATOM SYSTEM

Here, the coefficients are defined as follows

ccr = BB ke €2 + By 1B pel 12 (4.43)
Cakg = BrnB2,e11e%3:2 4 B) 1By 31712 (4.44)
Chgg = B1kBaie 1€ + By 1Ba e e!2 (4.45)
CSpg = Cz]fk;? CArg = %7 (4.46)

= g = —hes (4.47)

€Sy g = —=, CAg=——r.
Shg \/5 Apg \/5

Now, let us do the reasonable assumption that the two close-by atoms were equally excited,
i.e., they are in the same excited state |h) = |k). The unnormalised post-measurement state
of Eq. (4.42) then simplifies to

B (r2,0)ES" (r1,0) |1, 1, 1) = 1[G 1) + es,q 1Sh,0) + cag | An, 9) (4.48)

where the coefficients are given by

car = B hﬁQh( Ura+oz2) 4 o (521+512)) , (4.49)
CSha = 75 [/31 hB2, ( i011+05.2) 4 (0211052 ) + BriBon ( i(83,14012) 4 i(03,1+02,2 )}
(4.50)
CApg = \}i [51,h,32,z (ei(‘slv”‘si”@) - ei(52vl+5372)> + BriB2n (ei(5371+5172) — ¢i(331+02,2 )}
(4.51)

Now, this calculated state above evolves in time. With Section 4.2.2, the evolution of the

coefficients can be written as

cai(t) = cae™™, (4.52)
Csg(t) = cgy g6 OFTRIFIE, (4.53)

CAh!](t) = CAhge_(,Y_Fh)t_mht ) (4.54)

and the time-evolved unnormalised state reads

[U(t)) = cai(t) |G, 1) + cs,9(t) |Shs 9) + capg(t) |An, g) - (4.55)

We note that in the last equation, we neglected the contribution of the state |G, g), since
this state does not contribute to the photon correlation function. Finally, let us calculate the

action of the third positive frequency part of the electric field operator at time ¢t = t3, which
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4.2 SPATIO-TEMPORAL CORRELATIONS OF THREE FOUR-LEVEL ATOMS

gives

ES7 (r3,0) |0(t)) Zﬁ e%3 81 [yh(ts))

H,n=1

_ 1033 cshg(tg) ( 1023 01 3) cAhg (t3) ( 1023 01 3>:| }
= e °C t3) + —— e e 4+ —— e —eh G, .
{ﬁs,z ci(ts) + Ban [ 3 G |G, g)

(4.56)
Thus, the third-order photon correlation function reads
G(S) (Tla 07 T2, 07 r3, t3)
- ¢50(t) (o iors) o CAnst3) (Linns _ inns)] L[
— 6163,36 ta) + hg (ez 23 | e’ 1,3) + hg (el 2,3 _ ! 1,3)
Hﬂs,z ci(t3) + Ba,n [ 3 G
(4.57)

Therefore, we have to consider products of the form ﬁfn’h,ﬁ'm,l. The cross products yield
[T X (P X A [P X (7 X d})] = |dp |7t mOh1 — 2 (rdp) (P dy) . (4.58)

Further, since the polarisation vectors are normalised, ||€,|| = 1, and we assumed |d;| ~
|do| =~ |d_1|, we find that

(11d+lg) ~ (0ldolg) ~ (~1]d_|g) = d € R, (4.59)

such that we can write d; = d€j. Then, we obtain

kd \° (Pmdp) (T dy)
* o B = Opg — ——~ 2 4.
B hBm.i <477507"m> [ t r2 d? (4.60)
Thereby, the products ry,d; = r,,d€; can be calculated by writing r, in spherical coordinates
giving
rmdo = Tipd cos 6, , (4.61)
rmd
rdy = 2= sin 0,,e " ($m+7) , 4.62
= (1.62)
md
rmd_1 = I'm® in O, e (4.63)

V2

In addition to the angular distribution of the emission pattern, we also need to calculate the
optical phase differences. We assume that all atoms are located along the z-axis, such that

the position vector of the uth atom is R, = Z,2 and the phases read

Opm = —koZy, cos Oy, . (4.64)
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Figure 4.16: Third-order photon correlation functions for different distinct excited states
|h) ,h € {—1,0,1} of the first two atoms. The interference with the third atom leads to
clearly distinct time behaviours, which allows to uniquely distinguish the different excited
states.

Wlog the first atom shall be located at the origin (as before), ie., Z; = 0, such that

d1.m =0,m € {1,2,3}. In addition, we project out the antisymmetric contributions. This can

us

2
leading to cos#; = cosfly = 0 and thus d,1 = 6,2 = 0, € {1,2,3}. Further, to simplify

be achieved by performing the first two photon measurements at a detection angle §; = 65 =

calculations, the measurements shall be done at an azimuthal angle ¢1 = @2 = —7, such that
(rmd1)(rmd” ) e~ (-3l o 1 (4.65)

with m € {1,2}. With this measurement configuration, the coefficients of Eqs. (4.49)-(4.51)
simplify to

cat = 2B1,nB2,h (4.66)
cspg = V2 (B1aB2i + B1iB2n) (4.67)
CAhg =0. (468)

Since the third atom shall be experimentally controlled, we assume that it can be prepared
in the state |[) = |1). Then, if the third measurement is also performed at a polar angle of

03 = 5, but with azimuthal angle ¢3 = 0, the three possible G®) functions read

1
G (t3) o ¢ 2 4 2e20HTDI — 9emBTHIL o5 (0 15) | (4.69)
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— /4
Fit

\ — /2 | 1o\

Relative error

Trial

Figure 4.17: Top: Third-order photon correlation functions and fits of the trial 25 for 3 = 5
on the left to obtain the absolute values and the phase difference, and for 3 = 7 on the right
to find the individual phase values. The separation of the atoms is Rj2 = A/20. Bottom:
Relative errors between the correct values and the reconstructed values from the fit for all
four parameters and all 51 trials.

G(()B) (t3) oc 2e 27t 4 4e=204T))ts (4.70)
1
Ggs) (ts) o 56727153 + 2720+t 4 9o~ (v ¢o5 (O t3) | (4.71)

where the index characterises the state of the first two atoms |h). Note that we neglected
the constant prefactor of Eq. (4.60), since we usually normalise the correlation function
In Fig. 4.16, we display the three different

photon correlation functions, which show clearly distinct time behaviours due to the different

with respect to its value at the initial time.

interference terms with the third atom. Thus, in this case, the three possible states |h) , h €
{—1,0,1} of the close-by atoms can be uniquely distinguished.

Now, the question is whether this can be generalised to an arbitrary superposition of the
possible excited states instead of a single distinct excited state. Therefore, we consider the
state |1s) = Sp__ cn|h) and ask the question whether it is possible to determine the
coefficients ¢, of this superposition. With a proper choice of phase, we can assume wlog that
co € R* and thus can be fixed via the normalisation of the state. Consequently, four real
parameters, namely the two absolute values |c1|, |c—1| and phases ¢1, ¢_1 of the complex
coefficients ¢; and c¢_; need to be determined. As we will see, this can be achieved by
measuring the third-order photon correlation function. Thereby, the measurement scheme

™

consists of a first measurement at a polar angle f3 = 5 and an azimuthal angle 3 = 0,

from which the two absolute values and the phase difference ¢1 — ¢_1 (up to +2m) can be
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Figure 4.18: Top: Third-order photon correlation function with uniform noise added and fits

of the trial 25 for f3 = 7 on the left to obtain the absolute values and the phase difference,

and for 03 = 7 on the right to find the individual phase values. The separation of the atoms
is Ri2 = A/20. Bottom: Relative errors between the correct values and the reconstructed
values from the fit for all four parameters and all 51 trials.

found. Afterwards, a second measurement at a polar angle 3 = 7 and an azimuthal angle

w3 = 0 is performed. Here, we fix the already found values and determine the two missing
phases individually. Since the calculation of the third-order photon correlation function is
rather involved, we discard any expressions and rather show the result of the aforementioned
procedure in Fig. 4.17. We do 51 random initialisations (trials) of the parameters |¢1], |c-1],
¢1, and ¢_ for a separation of R13 = A/20 of the close-by atoms and re-obtain the parameters
via a fit of the third-order photon correlation function. In the top, we show the third-order
photon correlation functions and the fits of the trial 25 (starting from 0). In the bottom,
we plot the relative errors between the correct values and the values found from the fit for
all four parameters and all 51 trials. As can be seen by analysing the relative errors of the
parameters, the coefficients of the excited state superposition can be adequately determined
by our method. However, in a real experiment noise is unavoidable. Therefore, we add
+2.5% uniform noise compared to the maximum values of the third-order photon correlation
functions for both directions and show the corresponding results for the same 51 initialisations
in Fig. 4.18. In this case, we did not fix the absolute values and the phase difference obtained
from the first fit. But, in the case of the absolute values, we used them as initial parameters
for the second fit. In the case of the phases, we took the correct phases plus a random number
from the interval [—0.5, 0.5], since we assume that the phase difference governed from the first

fit can be used to preadjust the two phases to reasonable values. As can be seen in Fig. 4.18,
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Figure 4.19: Relative errors between the correct parameters and the reconstructed parameters
obtained from the fits to the third-order photon correlation functions with uniform noise
added. The y-axis is plotted with two different scales, one reaching from 0% to 10% and one
starting from 10% on, to show that in a large percentage of trials (~ 2/3) the four relative
errors are still below 10%.

the noise affects the performance of the presented method quite heavily. This high sensitivity
to noise is based on the high sensitivity of the third-order photon correlation function to
small changes in the parameters. In this regard, we want to stress two points. First, in a
large percentage of trials of around 2/3, all four relative errors are still below 10%. This can
be seen in Fig. 4.19, where we plot the relative errors with two different scales of the y-axis,
one reaching from 0% to 10% and one starting from 10% on. In total, we performed 100 runs
with 51 trials each. Thereby, the overall percentage of simultaneous relative errors below
10% was 64.0%. The percentage of the run that we show in the Figs. 4.17-4.19 was 62.7%.
Second, we also find trials with relative errors of magnitude ~ 1. Even though these errors
may be reduced by restricting the absolute values or the phase difference, we want to point
out that the obtained fit parameters need to be treated with a certain level of carefulness

when the signal is affected by noise.

Let us conclude this section by noting that the key concept is again to exploit the quantum
correlations of the system of interest to a remote atom, produced by higher-order conditional
photon measurements. We further note, however, that the correlation function is quite sen-
sitive to parameter changes and thus the obtained parameters need to be enjoyed with some
caution when the signal is affected by noise. We finally mention that if we have only two
atoms, i.e., a state [¢) = [¢s) ® [¢)s), without the remote atom, a measurement of the second-

order photon correlation function fails, in general, to provide the correct coefficients. In

55

m'



4. SPATIO-TEMPORAL CORRELATIONS OF A THREE-ATOM SYSTEM

particular, in the case of ¢g = 0, only the product of |c¢1] and |c_1| can be determined, but

not the individual values.

After the extensive discussion of the different versions of the three-atom system in the
current chapter, in the next chapter, we investigate an atomic ensemble of an arbitrary
number of atoms N and analyse how collective effects, such as the superradiant emission of

photons, can be engineered by conditional photon measurements.
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5 Dicke-like superradiance of distant non-interacting

atoms

Coherent radiation is emitted when r is large but |m| small. For example, for even
n let . ) .
rzin, m=0; I:2n<2n—|—1>lo.

This is the largest rate at which a gas with an even number of molecules can radiate
spontaneously. It should be noted that for large n, it is proportional to the square of
the number of molecules. [...] For want of a better term, a gas which is radiating
strongly because of coherence will be called “super-radiant”.

— Robert H. Dicke

A single two-level atom in its excited state will spontaneously drop down to its ground
state and will thereby emit a photon. As can be seen from the quantum master equation,
this process happens with exponentially decaying probability leading to an exponential decay
of the measured intensity with rate I' = 2 in the ensemble average. If we now, instead of a
single atom, consider N independent atoms, i.e., atoms with pairwise separations much larger
than the transition wavelength so that they do not interact with each other, the ensemble
average of each observable is essentially the same as that of a single atom. Thus, they emit
independently of each other and the intensity follows the same exponential decay with rate
I'. If, however, the atoms are closer together than the transition wavelength, their decays
are not independent any more, but the atoms emit the photons collectively. In particular,
in the limiting case, where all atoms are placed on the same spot, the intensity does not
decay exponentially, but shows a burst of photons. Thereby, the maximum intensity scales
quadratically in the number of atoms and the duration of the pulse scales inversely with the
number of atoms [11]. This phenomenon has been investigated and coined superradiance by
Dicke in 1954 (see quote) [7]. Nowadays, a huge conglomeration of theoretical works [7-39]
and experimental realisations [40-51] of superradiance exists, whereby the terminology is not
unique. Most of the time, however, temporal features are used as a criterion to speak of
superradiance. For instance, when a system synchronises or builds up correlations over time
leading to a peaked emission, one speaks of a so-called superradiant burst. However, also in

the case without a burst of emission, but the emission of photons occurs with a faster decay
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5. DICKE-LIKE SUPERRADIANCE OF DISTANT NON-INTERACTING ATOMS

rate than the single-atom decay rate, one speaks of a superradiant decay. Another criterion is
the magnitude of the emitted intensity, for instance, in a particular direction. If this intensity
is higher than the number of excitations, which is the scaling for independent emitters, one
also speaks of (spatial) superradiance. Some authors even distinguish between superradiance
and measurement-induced cooperativity [35]. In this thesis, we have a broad understand-
ing of superradiance. For us, superradiance has different aspects that sometimes occur in
combination, sometimes on their own. In the first section of this chapter, we concretise the

foregoing discussion by consolidating it with mathematical expressions.

5.1 Intensity and total emission rate

The intensity measured with a detector at position 7 in the far field and at a time ¢ is related

to the first-order photon correlation function via

I(r,t) = eocGYV (r,t) = eoc (ET) (v, t) ED) (v, 1))

—MOZZ 81,;’” [y — (diy ) ()07 Ba=B) (31 (1) 8 (1)) . (5.1)

W,y mymn

To obtain the total emitted intensity, we integrate over a sphere at the position of the detector
I(t) = / dQ, 1 I(r,t) = hwo 3 T (SELOS2 (1) = hwoR(D),  (5:2)
W,y myn

where

=55 (88 )5V (1)) (5.3)

w,y mmn

can be interpreted as total emission rate. Next, we rewrite the emission rate in diagonal form
and discuss the case investigated by Dicke in more detail. For simplicity, we assume two-level
atoms, which means that the sum over the different transitions disappears. The emission

rate is then

R(t) = T (8P 1)SY (1)) . (5.4)
v
To obtain the emission rate in diagonal form, we consider the dissipator of the master equa-

tion, which is given by

Zpuu (8175Y5(t) + 51§15 — 25Y)p(1) 547 . (5.5)
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5.2 DICKE SUPERRADIANCE

Now, we define the matrix

FNl FNN

(5.7)

containing all the lowering operators. We diagonalise the matrix I' with the orthogonal
matrix V consisting of the eigenvectors of T, i.e., VII'V = A, where A is a diagonal matrix
with the eigenvalues of I' on the diagonal. Now, we define the new jump operator vector
J=VTe=Jf= ﬁ}TV [12]. Then, the dissipator can be written in its diagonal form as

3 A (jlj“ﬁ(t) +p(t) I, — 2jﬂp(t)j;) . (5.8)
I

Coming back to the emission rate, we finally obtain

R(t) =Y T (S )Y )y = S A (Jf(6) (1)) - (5.9)
v H

5.2 Dicke superradiance

In the following section, we discuss the phenomenon of Dicke superradiance [7], calculate the
corresponding decay rates and the total emission rate, and also have a look at static intensities
in the case of so-called (symmetric) Dicke states. Therefore, we first need to introduce the
aforementioned Dicke states. We consider N independent two-level atoms described by the

Hamilton operator

N
Hy =hwo Y SW = huwoS. . (5.10)
pn=1

where we introduced the z-component of the collective pseudo-spin operator

N
§=> 8w, (5.11)

p=1
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5. DICKE-LIKE SUPERRADIANCE OF DISTANT NON-INTERACTING ATOMS

One set of eigenstates of H 4 are, of course, the tensor product states created from the single-
atom ground and excited states. Another set of eigenstates, which will be convenient to use
later on, are the combined eigenstates of the pseudo-spin operators 52 and S,. These states
can be written as |J, M,«a). Here, J accounts for the eigenvalue of 52 and M accounts for

the eigenvalue of S, according to the following eigenvalue equations

S2|J, M, o) = R2J(J + 1) |J, M, a) , (5.12)
S, |J, M, a) =hM |J, M, a) , (5.13)
where
N
J € {0,1,...,2} for N even, (5.14)
13 N
J c {272,,2} for N Odd, (515)
Me{-J —J+1,.,J}. (5.16)

Further, the parameter o € {1,2, ..., 8} with

NI(2J +1)
A+ T+)E -0

8= (5.17)
describes the degeneracy of the states for a given value of J. The pseudo-spin eigenstates
just introduced are the so-called Dicke states. However, to understand Dicke superradiance,
it is enough to consider the symmetric subspace, characterised by J = N /2, for which 5 = 1,
such that we omit the « label of the states in the following. The symmetric Dicke states can
be constructed, for instance, by starting with the fully excited state |J = N/2, M = N/2) =

le, e, ...,e) and then applying consecutively the collective lowering operator

N

S =3"8". (5.18)

WE

=
Il
—

Alternatively, one can start with the fully ground state and apply the collective raising

operator

N
=58, (5.19)

Now, assume that all atoms are confined to a small volume whose dimensions are smaller than
the transition wavelength of the two-level atoms, so that the atoms can be approximately
described as being at the same position in space. Then, if the system of atoms is coupled to

the vacuum of the electromagnetic field, the foregoing approximation means that the phase
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5.2 DICKE SUPERRADIANCE

factors of the transverse displacement field in Eq. (2.2) can be omitted in the light-matter
interaction Hamiltonian in Eq. (2.11) [7, 61]. As a consequence, the total Hamiltonian of both
light and matter commutes with the pseudo-spin operators S, and 5’2, such that subspaces
with a fixed value of J are invariant under the time evolution of the system. In particular,
if we start with the fully excited state, which is a symmetric Dicke state, only symmetric
Dicke states with fewer excitations will be populated in the course of the time evolution.
Performing all the steps in Chapter 2 leads to the following quantum master equation in the

interaction picture [61]

(1) = — (8155() + A0S 5 — 25 p(1)S,.) (5.20)
Thus, in the case of Dicke superradiance, I'*” = ~ for all u,v € {1, ..., N}. Then, the I" matrix
has only one nonzero eigenvalue N+ and the corresponding jump operator is J = ﬁS’_

This enhanced decay rate N+ is one aspect of superradiance. Another aspect is the enhanced
(directional) intensity. Therefore, let us first consider the static total emission rate for a

single symmetric Dicke state in the case of Dicke superradiance given by
R= N~ (J,M|JTJ|J, M) =~ (J,M|S;S_|J, M) =~(J+M)(J - M+1). (5.21)

For J = N/2 and M = 0 (M = n. — N/2), this emission rate scales as n? instead of n.,
where n. is the mean number of excitations. Usually, this total emission rate is considered
in the context of a superradiant burst. However, in the case of Dicke superradiance, one can

directly look at the intensity (normalised to be dimensionless)
I(r) = (J,M|S.S_|J,M) = (J+ M)(J - M +1), (5.22)

which is identical to the total emission rate up to a factor of -, i.e., it shows the same scaling
with respect to the number of excitations. In the case of Dicke superradiance, this intensity
is isotropic, but for an atomic configuration with far separated atoms, the intensity depends
on the detection direction. Therefore, it is useful to define the terminology of spatial or
directional superradiance. Even though the total emission rate R = yn, does not show a
superradiant scaling in the case of far separated atoms, the intensity I(r) can show a super-
radiant scaling in particular directions. We then speak of spatial or directional superradiance
if I(r) > ne.

Now, let us investigate the origin of the superradiant behaviour in a single symmetric Dicke

state. Therefore, we write the intensity in Eq. (5.22) as [17]

I(r) = (5:5-) = Y (5178Y)

2214
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5. DICKE-LIKE SUPERRADIANCE OF DISTANT NON-INTERACTING ATOMS

=3 (8PS £ 37 (s +Z( 80— (519) (8"))

u#v WEV
=ne+ > (SY) (S + 3 K (81, 8V 100 (5.23)
kv pikv
where K (S W g ,|J, M)) accounts for dipole-dipole correlations and denotes the correlation

function deﬁned in Appendix D. We can simplify this expression by noticing that symmetric
Dicke states do not possess any single-atom coherences (and thus no dipole moment), i.e
<S§f )> = 0. Further, they are symmetric with respect to the atoms, such that the correlation

function is independent of x4 and v. Thus, the intensity reduces to
I(r) = ne+ N(N - DK (S, 8% 17, M)). (5.24)

Therefore, we find a superradiant behaviour if K (5’5:), 5’(_2), |J,M)) > 0. An explicit calcula-

tion of the correlation function gives

-1
() N -2\ /N (N — ne)ne (J—M)(J+ M)
(537,52 1, a) = <n - 1) <n) N(N -1) 2J(2J —-1) (5.25)
which leads to the already calculated intensity
I(r)=ne+ (N —ne)ne =ne(N —ne+1)=(J+M)(J—-M+1). (5.26)

We find that except for M = J (fully excited state) and M = —J (fully ground state), the
correlation function is always positive and thus results in a superradiant behaviour. Further,
as we show in Appendix D, in the case of a pure state, a nonzero correlation function implies
entanglement, such that we can identify the entanglement of the symmetric Dicke states as
the reason for the superradiant behaviour. We can also quantify the entanglement of the
symmetric Dicke states by calculating the so-called global entanglement, which gives (see
Appendix D)

om
2m — 1

m(|J, M)) = [1 —Pu(N,m,n.)], (5.27)
where the purity function Pu(N,m,n.) is defined in Section D.4. We find that it is always
positive for n. ¢ {0, N}. Further, Pu(N,m,n.) = Pu(N,m,N — n.), since interchanging
excited states and ground states does not change the amount of entanglement, and the en-
tanglement is highest for n, = N/2 for even N and for n. € {|N/2], |N/2] + 1} for odd N
(see Fig. 5.1). We note, however, that the last statement needs still to be rigorously proven.
Before we discuss the time evolution in more detail, let us give an illustrative explanation

for the scaling of the intensity in terms of quantum paths. Consider a pure state with a
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Figure 5.1: Global entanglement Q,,(|J, M)) as a function of the number of excitations n.
and of the possible splittings described by m for odd N (N = 7) on the left and for even N
(N = 8) on the right. The global entanglement is symmetric around n, = N /2, for which it
takes its highest value.
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Figure 5.2: Quantum paths of the three states in Eq. (5.29). The state is the superposition of
three tensor product states (three coloured boxes). Since in each state two atoms are in the
excited state, we have two possibilities or quantum paths for the emission of a photon leading
to two different states with one excitation less (splitting in each coloured box). Considering

all three states, we find three different final states (red, magenta, and purple coloured smaller

boxes). The number of quantum paths per final state is thus Pr = 3?%2 =2.

well-defined number of atoms in the ground state ny, = N — n. that can be written as a
tensor product of a symmetric Dicke state and a multi-atom ground state (after reordering
of the state). The (maximum) radiated intensity can be calculated by counting interfering

(spatial) quantum paths as [17]
I =N?PiF. (5.28)

Thereby, A is the normalisation of the state, Px is the number of quantum paths per final
state, and F is the number of different final states. Note that the square of Pr comes from

the indistinguishability of the quantum paths. Let us consider the state

1

[v) = —3(I6,g,e,g> +le,g,9,€) +19,9,¢e,¢€)) (5.29)
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5. DICKE-LIKE SUPERRADIANCE OF DISTANT NON-INTERACTING ATOMS

as a simple example. We see that after reordering the state, we can write |¢)) = |¢)®|3/2,1/2).
Since the ground state does not contribute to the intensity, we can calculate the intensity via
Eq. (5.26), which gives I = 4. To illustrate the applicability of Eq. (5.28), let us count the
interfering quantum paths by having a look at the possible detection events drawn in Fig. 5.2.
We have a superposition of three different tensor product states with two excitations. Each
of these states can emit a photon in two possible ways, i.e., quantum paths. Thereby, we
obtain three different final states, which have one excitation less than the original states. The

number of quantum paths per final state can thus be calculated to

_ #fproduct states X #quantum paths per product state 3 x2

Pz #different final states 3 2. (5.30)
Then, using Eq. (5.28), we obtain for the intensity
1\*

IZ(\/§> x2°x3=4, (5.31)

i.e., the same value as by a straightforward calculation of the intensity. However, the quan-
tum path picture gives a clear physical interpretation. In particular, we recognise that the
enhancement of the intensity (I > 2 = n.) comes from the interference of the quantum paths,
which is based on the quantum correlations of the state |¢).

The same formalism can be applied to an arbitrary symmetric Dicke state. Therefore, we find
again that the quantum correlations of the symmetric Dicke states, which lead to the inter-
ference of indistinguishable quantum paths, are responsible for the superradiant behaviour.
We finally explicitly show that we obtain indeed the same value for the intensity by simply
counting the interfering quantum paths. Applying Eq. (5.30) to an arbitrary symmetric Dicke
state characterised by the number of atoms in the ground state ny, we find for the number

of quantum paths per final state
N
(ng) X (N - ng)
N
(nngl)

Now, using Eq. (5.28), the intensity reads

Pr = —ng+1. (5.32)

1= <N> 1 X (ng—|-1)2 X < N ) =(N—-ng)(ng+1)=(J+M)(J-M+1), (533)
ng ng+1
which is the same result as in Eq. (5.26).

As a final step, we analyse the time evolution in the case of Dicke superradiance. Therefore,
we unravel the quantum master equation Eq. (5.20) in terms of quantum trajectories (see
Appendix F). In the right plot of Fig. 5.3, we show the expectation value (54 S5_) (left axis)
together with the populated states (right axis) against time for a single trajectory. We find
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Figure 5.3: In the left plot, we show the radiated intensity as a function of time for N = 8
atoms. By passing down the ladder of symmetric Dicke states, the atoms emit the photons in a
superradiant burst. The blue solid curve, which is the average over 5000 quantum trajectories
(QTM: quantum trajectory method), converges to the expectation value obtained from the
master equation, which displays an ensemble average (QME: quantum master equation).
In the right plot, a single quantum trajectory is shown. The blue solid curve shows the
expectation value (S‘+S’_> (left axis) whose average over many trajectories yields the blue
curve in the left plot. The orange dashed curve indicates the symmetric Dicke state, which
the system is in for all times (right axis).

that the system descends down the ladder of symmetric Dicke states. Every time a photon
is emitted, the state jumps from one symmetric Dicke state to the next symmetric Dicke
state with one excitation less. Thereby, the heights of the plateaus of the expectation value
<5’+5’_> can be traced back to the dipole-dipole correlations in the symmetric Dicke states.
The question, however, is how this expectation value is connected to superradiance. We found
earlier that the emitted intensity is exactly given by the expectation value (S‘+ 5’_) But, for a
single quantum trajectory, the measured intensity consists of single events, namely measured
photons at the times the jumps occur. Therefore, the expectation value (S’+ 5’_> only describes
the intensity if we average over many trajectories. The result of this procedure is shown in
the left plot of Fig. 5.3. Here, the blue solid curve shows the average over 5000 trajectories
(QTM: quantum trajectory method). This average is equivalent to calculating the intensity
via the master equation for the density matrix, which describes an ensemble average (QME:
quantum master equation). The resulting curve, displaying the emitted intensity, shows a
superradiant burst. Thereby, the height of the maximum scales with the number of atoms
squared, while the width scales inversely with the number of atoms, see Fig. 5.4. On the left,
we plot the intensity as a function of time for three different numbers of atoms, on the right,
the intensity normalised by N is shown to highlight the changes with the number of atoms.
By investigating the quantum master equation Eq. (5.20), we find that by starting initially

in the fully excited state, the density matrix remains always in the symmetric subspace.
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Figure 5.4: Superradiant burst of the intensity calculated via the quantum master equation.
On the left, we show the emitted intensity against time for three different numbers of atoms
N. The peak of the superradiant burst scales quadratically with the number of atoms,
whereas the width scales inversely with the number of atoms. To highlight these scalings, on
the right, we plot the intensity normalised by the number of atoms for the same three values
of N.

Therefore, the solution of the time evolution can be written as
J
S () 11, MY(J, M (5.34)

where pps,s(t) denotes the population of the respective symmetric Dicke state characterised

by M. Using this state for the calculation of the intensity, we immediately find

It +Z S\t )+ Y K8, 5, (1))
v
n#V

usﬁv
+ZK (8.8 h(t)), (5.35)
u#v

where n.(t) denotes the average number of excited atoms at time ¢t. We emphasise that the su-
perradiant behaviour is again based on the dipole-dipole correlations of the atoms. However,
we also note that in contrast to the case of a single symmetric Dicke state, these correlations
may not be based on entanglement, i.e., the incoherent superposition of symmetric Dicke
states, as given in Eq. (5.34), may not be an entangled state. We will discuss this mixed
state issue in the last section of this chapter. Finally, we note that since the time-evolved
density matrix is block-diagonal with respect to the number of atoms in the ground state n,
and the blocks fulfil the condition for the quantum path formalism, we can also interpret the
superradiant burst in terms of interfering quantum paths when we apply Eq. (5.28) to each
block individually.
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In the next section, we investigate the situation of distant non-interacting atoms. Our goal
is to mimic a similar (directional) superradiant emission behaviour as in the case of Dicke
superradiance by generating dipole-dipole correlations via conditional photon measurements.

We note that parts of the following section have been previously published in Ref. [30].

5.3 Dicke-like superradiance of distant non-interacting atoms

In the previous section, we discussed the phenomenon of Dicke superradiance, where the
atoms were confined to a small volume. In contrast, in this section, we consider an ensemble
of two-level atoms, which are far distant from each other. As such, we can neglect the
effects of photon-mediated energy shifts and changes of the decay rates, i.e., dipole-dipole
interactions. Therefore, the atoms evolve independently of each other in time, and thus
the density matrix does not display any dipole-dipole correlations. However, by intersecting
the free time evolution by conditional photon measurements at specific positions in space,
we can create dipole-dipole correlations leading to a directional superradiant emission [19,
30, 76]. Depending on the times at which the photon measurements are performed, a similar
superradiant burst as in the case of Dicke superradiance can be observed. The resulting time-
dependent directional emission behaviour can be transparently interpreted via the quantum

path formalism.

5.3.1 Master equation and differential equations for the density matrix elements

If we neglect all dipole-dipole interactions due to the large mutual separations of the atoms,

the quantum master equation Eq. (2.46) in the interaction picture simplifies to

N
==y > (8928%a(0) + (1) 5481 — 259 p(1) 81 . (5.36)

p=1

Thus, we immediately find that the atoms simply decay independently of each other. If we
project this master equation onto the tensor product basis, where |a), |5) denote two basis

states, we obtain the following set of first-order differential equations (see Appendix G)

0
ot paﬂ = QVZPW(M) s (t 'YZPS Xﬁ VZpa S(u)c (5.37)

Thereby, the indices on the right side of Eq. (5.37) specify the following three conditions

Losum: $W|n) =a) , S¥ 1) = 18) , (5.38)
2. sum: S |x) = |a) , (5.39)
3. sum: S [¢) = |B) (5.40)
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5. DICKE-LIKE SUPERRADIANCE OF DISTANT NON-INTERACTING ATOMS

that need to be fulfilled to get a contribution from the respective term in the sums.

It is convenient to characterise the tensor product states by the number of ground state
atoms. Therefore, we define the fully excited state as |g(?)) := |e, e, ...,e). A state, in which
atom v is in the ground state, but all other atoms are in the excited state, we define as
| gl(,l)) = 5" |9(9). Analogously, we define and denote all states with a higher number of
atoms in the ground state. In this notation, "g" reminds us that we characterise the states
with respect to the atoms being in the ground state. In addition, the superscript indicates
how many atoms are in the ground state, and the index specifies which atoms are in the
ground state.

Now, let us show a simple example of how Egs. (5.37)-(5.40) need to be applied. Consider
the population pyw) 4o (t) of the fully excited state 19@). We see that |a) = |8) = |¢g(©)
and therefore the first condition means that we need to find states |n) and |0) that fulfil
S In) = S 16) = [¢(?)). Obviously, there are no states that fulfil this equation since |g(?))
is the fully excited state. Next, we consider the second and third sum. Here, we need to
find states |x) and |¢) that fulfil S’Er“) Ix) = S’(f) 1¢) = |9(@). There is only one state, which
fulfils this equation, namely the state | g,gl)>, where atom p is in the ground state and all other
atoms are in the excited state. From each sum, we additionally obtain a factor of IV, such

that the differential equation for the population of the fully excited state is given by

0
5P9@,90 (1) = =27N g g () (5.41)

This yields the usual exponential decay with rate 2yN. We note that instead of applying the
condition ,SA”EF“ ) Ix) = S’J(r“ ) 1¢) = |9(D) for a specific 4 and afterwards considering the sum over
all atoms, one can directly view this condition for p € {1,2,..., N}, which immediately gives
the factor of N.

The same procedure can be applied to every other density matrix element characterised by
two tensor product states. This yields in general a set of 22N — 1 real first-order differ-
ential equations. However, if we assume two reasonable restrictions, which we specify in
Appendix G, we can reduce the number of real differential equations to N2. This allows us
to analytically solve the full time evolution intersected by conditional photon measurements

performed in a particular direction.

5.3.2 Photon correlation functions

In general, we need to solve the set of differential equations derived in the previous subsec-
tion to find the higher-order photon correlation functions defined in Eq. (3.33). However,
since we consider independent atoms, the time evolution is rather simple, such that the cor-
relation functions can be straightforwardly obtained using the quantum regression theorem

(see Appendix C). To connect the results to superradiance, we need to consider intensities.
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Therefore, by rewriting Eq. (3.33) as

Gém)(rl,tl; i Py b)) = Géﬁ,l(rlatﬂ o rm,tm)G;m_l)(rl,tl; i Pm—1ytm—1),  (5.42)

where [7, 19, 77, 78]

E(+) (’I"mfl, tmfl)...EA‘(—F) (7“1, tl)ﬁE(_) (’I"l, tl)...E(_) (’I"mfl, tmfl)
Tr[E®) (rm_1, tm1) .. EE) (11, 1) pE) (11, £1) . EC) (1, tin—1)]

Pm—1 = (5.43)
is the density operator after the measurement of m — 1 photons at positions r; to 7,1 and

times t1 to t,,—1 with pg = p, we define the conditional intensities

Gt (p St Pyt
G(‘l) (1, b5 Py tn) = £ i ) . (5.44)
Pm—1 (mfl)
G/; (rlvtl;-";rm—lvtm—l)

Note that we write the correlation functions with the density operator as an index to explicitly
specify the state which the expectation values are calculated with. Further, we note that
Gg”)hl (r1,t1;5...; 7, b ) depends, in general, on all positions 71 to 7, and times ¢; to ¢,, via
the conditional state pp,—1.

In the following, we assume an atomic chain with regular spacing much larger than the
transition wavelength. All conditional photon measurements are performed perpendicular
to this chain, such that in the far field approximation, all photons accumulate the same
phase by the propagation from the respective atom to the detector. Further, for comparison,
we consider again dimensionless intensities as in Section 5.2. For the described setup, the
dimensionless higher-order photon correlation functions are then given by multi-time pseudo-

spin expectation values, i.e.,
GU (1, ey tin) = (S (11 S () S— (tm) ... S— (1)) - (5.45)

Using Eq. (G.14) of Appendix G, computed via the quantum regression theorem, the condi-

tional intensities therefore read

(T e727%) (S4(0)...84(0) S—(0)...54.(0)) )
(I e ) (54(0)-.84.(0) 5-(0)...8,.(0) e

m—1 times m—1 times

(0,...,0).

(5.46)

We find that in the case of independently decaying atoms and photon measurements perpen-

dicular to the atomic chain, the conditional intensities only depend on the latest time ,,.

Furthermore, the amplitude is given by the conditional intensity at t; = ... = ¢, = 0, i.e.,
1
G (0,...,0).
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Figure 5.5: Conditional intensities against time for an equal time-spacing of the conditional
photon measurements. The jumps of the conditional intensities occur at times at which condi-
tional photon measurements are performed. As can be seen, a similar Dicke-like superradiant
burst for the conditional intensities can be obtained.

If we start, as in the case of Dicke superradiance, with the fully excited state gy = [g(?))(g(?)],
the state after m — 1 photon measurements at time ¢ = 0 and perpendicular to the atomic
chain is simply given by pp,—1 = |J,M)(J, M|, where J = N/2 and M = N/2 —m + 1.

Therefore, we find for the conditional intensities

G (b1, s tn) = (J, MIS4 511, M) =2t
= (J+ M)(J = M +1)e 2" =m(N —m+ e 2 (5.47)

In the case that conditional photon measurements are performed at equidistant times, we
plot the conditional intensities against time in Fig. 5.5. The free evolutions are intersected
by conditional photon measurements. The explanation of the different sections is as follows.
In the first section from time ¢ = 0 to a time ¢;, the usual intensity emitted by an ensemble of
independent atoms is shown. The second section corresponds to the intensity that one would
measure after the time ¢ to a time ty if at the time #; a photon was detected. Analogously,
the curve in the mth section corresponds to the intensity that one would measure after a time
tm—1 if at times ¢1 to t,,—1 photons were detected. Thereby, the heights of the conditional
intensities are based on dipole-dipole correlations generated by the photon measurements.
We will give more details on that in the next subsections when we explicitly investigate
the state of the atoms for all times, interpret the emitted intensity via interfering quantum

paths, and analyse the role of the measurement process quantitatively. Before that, we
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finally highlight that even in the case of distant non-interacting atoms, a similar Dicke-like
(directional) superradiant burst of the conditional intensities can be obtained, as can be seen
in Fig. 5.5.

5.3.3 Quantum path interference interpretation

Instead of solving directly for the photon correlation functions, i.e., the conditional intensities,
we can also solve the set of differential equations derived in Subsection 5.3.1 and Appendix G
to obtain the time-dependent density operator, with which we can then calculate the con-
ditional intensities afterwards. The time-dependent density operator allows, in particular,
to explain the occurring directional superradiant behaviour via interfering quantum paths,
which provides an illustrative physical picture.

We start with the fully excited state po(t; = 0) = [¢(®)(g(?)|, where the argument of the
density operator refers to times between two intersections, i.e., we consider the free time
evolution of the states after conditional photon measurements. For the initial state, we can
easily find that N' =1, Pr = 1, and F = N, such that the initial emitted intensity equals N,
the number of atoms. Now, let us investigate the first free time evolution. The time-evolved

density operator can be written as

po(t1) = poo(t1) 19 Mg + poa(t1) D g g+ poa(t) D lgSh gD+ ..., (5.48)
I

p<v

where the probabilities read
pos(ty) = e 2Nt (27t 1) (5.49)

which we obtain by solving the set of differential equations derived in Appendix G. Note
that we can write the probabilities in front of the different blocks of the density operator
since every state with the same number of ground state atoms evolves equally in time if we
consider initially the symmetric fully excited state. We note, further, that every state in the
incoherent sum in Eq. (5.48) can be written as a tensor product of the fully excited state of
a reduced number of atoms and the fully ground state of a reduced number of atoms. Thus,
every state fulfils the condition for the applicability of Eq. (5.28), such that we are able to
compute the maximum intensity, which can be measured perpendicular to the atomic axis
due to constructive interference, by counting the interfering quantum paths. For each state
in each block, the normalisation is N' = 1. Further, every state is a tensor product state with
a certain number of ground state atoms ny and excited atoms N —ng4. Therefore, the number
of single quantum paths per product state is N — n, and the number of different final states

is F = (N _1"9) = N — n4. Consequently, the number of quantum paths per final state reads
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Pr = 1. The intensity can then be calculated as
N-1
N
G (h Z pos(t (S >N2P]2:]-'

e’2N7t1(627t1 —1)° <N> x1x1%x (N - S)
s 1
=0

Ix (N—1+1)e 2 = Ne= 27t (5.50)

2

where (J: ) accounts for the number of product states in each block of the density matrix with
well-defined number of ground state atoms. Note that in the first expression of the last line
of Eq. (5.50), we wrote the intensity as in Eq. (5.47) to show the equality for m = 1.

Next, we come to the state after the first conditional photon measurement, which can be
obtained by applying the collective pseudo-spin lowering operator from the left and the col-
lective pseudo-spin raising operator from the right to the state of Eq. (5.48). The application

to the individual states of each block reads as follows:

N N
9@ = 195)) = S [g®) = 378U 9@y = 37 D) (5.51)
p=1 pn=1
N N
1
950y = 190 ) = 5 [gfD) = 37 5% gy me (5.52)
v=1 l/;é,u
N N
2 3
92) > 192 ) =5_1g2) =>"89 14D = S 142 (5.53)
e=1 £=1
EFpEFY

Then, if we evolve the state after the first conditional photon measurement in time, we find

) 1
prlte) = {Pl,o(t2) 19870981+ pralt) D lgjs Mgk

“w
2 2
+p12(t2) Y lgims Mofms |+ } , (5.54)
wv
where the probabilities are given by
p1s(ta) = e 2Nt (e2702 )5 (5.55)

Since we only applied the collective lowering operator, the symmetry of the states remains
unchanged, so we can again apply Eq. (5.28) to find the radiated conditional intensity. The
normalisation can be read off as N’ = 1/v/N. Now, a single state in Eq. (5.54) with n, many

72



5.3 DICKE-LIKE SUPERRADIANCE OF DISTANT NON-INTERACTING ATOMS

atoms in the ground state came from a state with N — n, + 1 many excited states before
the application of the collective lowering operator. Therefore, the number of product states
in each superposition state after the first conditional photon measurement is N — ng + 1.
Together with the number of single quantum paths per product state given by N — n, and
the number of different final states, which can be obtained by distributing two ground states

N—gg-i-l)

over N —ng + 1 previously excited states, i.e., F = ( , the number of quantum paths

per final state can be calculated to
(N —ng+1)x (N —ny)

Pr = ) =2. (5.56)

Then, the conditional intensity after the first photon measurement reads

N
Gy (t2) = p1,31(t2)< )szf?f
= s—1
N—-1
N 1 N—-s+1

_ —2(N—=1)vto [ 2vta 1 s—1 - 22

8216 (e ) <S_1>><N>< x( 5 >

N-2

N 1 N —

_ > e~ 2(N=1nta (2ytz _ 1)s<s> X 92 o ( ) s)
=2(N -2+ 1)e 2 = 2(N —1)e” 2, (5.57)

Note that we wrote the first expression in the last line of Eq. (5.57) to show the equality to
Eq. (5.47) for m = 2.

This explicitly demonstrated calculation of the conditional intensity after the first photon
measurement by simply counting interfering quantum paths can be analogously applied to

the state after m — 1 photon measurements. In this case, the probabilities are given by
Pin—t,s(tm) = e 2N TmEDm (29tm )5 (5.58)

where s characterises, as before, the number of ground state atoms before the first photon

measurement [see Eqgs. (5.48) and (5.54)]. Further, the normalisation is

N = <m]i 1) o (5.59)

Now, let us count the interfering quantum paths. For each state with n, many atoms in the

ground state, the number of different final states can be obtained by distributing m ground

N—ng+(m—1))

states over N —ngy+ (m —1) previously excited states, i.e., F = ( . Moreover, the

number of product states in a superposition state with n, many atoms in the ground state

can be counted to (N _”797:_({”_1)) and the number of single quantum paths per product state
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is N — ng. Therefore, the number of quantum paths per final state reads

() X (N =)

Pr= (N—ng+(m—1)) (5-60)

m
The conditional intensity after m — 1 photon measurements is thus given by
N
pm1 me 1,s m<S>N2,P%:JT"
—1
_ Z —2(N— m+1)'ytm( 29tm 1)5 <N> « ( N ) % m2 X (N—S)
s m—1 m
s=0
=m(N —m +1)e 27t (5.61)

As can be seen, we obtain the same result for the conditional intensities as calculated via the
quantum regression theorem in the previous subsection. However, by tracing the directional
Dicke-like superradiant behaviour back to interfering quantum paths based on the generated
dipole-dipole correlations, we have a clear physical interpretation. What remains is to show
that the photon measurement indeed creates dipole-dipole correlations. Therefore, we analyse
the role of the measurement process quantitatively in the next subsection. In this context,
we also investigate the distance of the time-evolved state after m photon measurements to

the symmetric subspace.

5.3.4 Role of the measurement process

As mentioned above, in this subsection, we have a closer look at the consequences of the

conditional photon measurements.

Creation of dipole-dipole correlations

To verify that the conditional photon measurements create dipole-dipole correlations, we
make use of the splitting of the intensity introduced in the second line of Eq. (5.23). Since
the density operator is always block-diagonal with respect to the number of atoms in the
ground state, there are no single-atom coherences, i.e., <5’£_L“)) =0 for all p € {1,..., N}.

Therefore, the conditional intensities can be written as
G (tm) = nem—1(tm) + Z K(SY, 8% b (b)) - (5.62)
u#v

With the number of product states (N_n;’nt({n !

a superposition state with n, many ground state atoms after m — 1 photon measurements,

)) and the number of excitations N — n, for
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the average number of excitations is given by

(1) (o

= (N —m+ 1)e 21t (5.63)

Nem—1 (tm)

Now, by rewriting Eq. (5.62), the dipole-dipole correlations can be calculated as

STKSY, 8, i) = G

Pm—1
w,v

p#EV

(tm) - ne,mfl(tm) = (m — 1)(N —m + 1)6_2’%”

= Nem-1(0)[N — nem—1(0)]e 27'm . (5.64)

Thereby, the prefactor of the exponential function is equal to the dipole-dipole correlations of
the symmetric Dicke state |J, M) with n¢ ,—1(0) many excitations [see Eq. (5.26)], which is
not surprising since we already saw that p,,—1(0) = |J, M)(J, M|. We thus explicitly showed

that the photon measurements create dipole-dipole correlations.

Distance to symmetric subspace

Besides creating dipole-dipole correlations, the photon measurement also projects the density
operator closer to the symmetric subspace spanned by the symmetric Dicke states and thus
enhances the emission of photons perpendicular to the atomic axis (directional superradiance

of symmetric Dicke states [17]). To prove this quantitatively, we calculate the trace distance

. 1 A - - N
T(pm, Pm,pmj) = ) Tr [\/(Pm - Pm,prOJ)T(Pm - pm,plij) (5.65)

between the time-evolved state p,, after m conditional photon measurements and its projec-

tion onto the symmetric subspace

prproj = O[S, MY(J, M| pyn| J, M) (J, M| . (5.66)
M, M’

For the detailed calculation, we refer the reader to Appendix G. Here, we state the final result

reading

1/N\ 'L (N
T (v P ) = 5 (m> > (n )T(mvnww(m,ng) ~Dpilming)],  (5.67)

ng=0 9
where the functions 7 (m,ngy), D(m,ny), and Dyyoj(m,ng) are defined in Appendix G. We
show the result of the measurement process in Fig. 5.6. Here, we plot the trace distance to-

gether with the conditional intensities against time for N = 8 atoms. We see that every time
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Figure 5.6: Conditional intensities (left axis) and trace distance (right axis) against time for
N = 8 atoms. It can be clearly seen that the conditional photon measurements project the
state closer to the symmetric subspace and thus enhance the directional emission leading to
a Dicke-like superradiant radiation behaviour.

a photon is detected, the measurement projects the state closer to the symmetric subspace
leading to an enhancement of the directional emission perpendicular to the atomic chain.

Viewed in time, this leads to a Dicke-like superradiant radiation profile.

Let us conclude this subsection by noting again that the measurement process leads to the
creation of dipole-dipole correlations, which enhance the (directional) emission of photons.
Similar, in the small sample limit of Dicke superradiance, the superradiant burst is also based
on the dipole-dipole correlations of the atoms. The question that arises is whether these cor-
relations are classical correlations or quantum correlations, or even hint at entanglement.

This will be the topic of the next section.

5.4 Dipole-dipole correlations - quantum or classical?

Before we come to the cases of Dicke superradiance and Dicke-like superradiance, we start

by discussing an introductory example to explain the main issues.

5.4.1 Introductory example

Let us define the states

|Py) = alg) £ Ble) (5.68)

76



5.4 INDIVIDUAL DIPOLES AND DIPOLE-DIPOLE CORRELATIONS - QUANTUM OR...

with o, 8 € R and o? + 32 = 1. Now, consider the tensor product state | P, ) = |P) ®|Py).

In Ref. [76], we investigated the emitted (dimensionless) intensity of this state reading
I(r) = 28%[1 + a? cos(9)] (5.69)

with § = —koPR12 as usual. Since the average number of excitations is given by n, = 232,
we find a directional superradiant behaviour if both « and § are nonzero. Furthermore, since
the state is a tensor product state, there are no dipole-dipole correlations. This implies that
the origin of the superradiant emission can be addressed to the single-atom coherences of the
atoms [see Eq. (5.23)]. In addition, the state is neither entangled nor possesses any classical
or quantum correlations. Analogously, the superradiant behaviour of the tensor product state
|P__) = |P-) ® |P_) can be explained. But, what can be said about the mixed state

. 1 1
pr- = 5 |1 (P + 5 [P- (P, (5:70)

i.e., the incoherent superposition of the introduced product states with equal weightings?

The radiated intensity of this state reads
I(r) = 28%[1 + a?cos(9)] (5.71)

i.e., it shows the same directional superradiance. Further, it is easy to verify that this state is
not entangled. However, for this state the single-atom coherences are zero implying that the
superradiant behaviour stems from dipole-dipole correlations. Thus, by incoherently super-
posing two classical states with no correlations but only single-atom coherences, we obtain
a state without single-atom coherences, but with dipole-dipole correlations. By applying
the formalism developed in Ref. [79], we can also identify whether these correlations are
classical or quantum. We analytically calculate the mutual information Z;,  describing the
total amount of correlations, the classical correlations J;, _, and the quantum discord Dy, _
describing the amount of quantum correlations. Since the expressions are rather lengthy,
we omit writing down the explicit results, but rather plot all three quantities against § in
Fig. 5.7. We see that unless 8 = 0 or § = 1, the state always possesses correlations quanti-
fied by the mutual information Z,, _. Furthermore, for almost the whole range, the classical
correlations (Jj,_) dominate over the quantum correlations (Dj, _), only at the edges the
quantum correlations do surpass the classical ones. A particular point is at 3 = 1/v/2, where
we have an equal superposition of the ground and excited state. Here, the correlations reach
a maximum, however, these correlations are purely classical, i.e., Ds, = 0 at this point.

Let us now extent the foregoing discussion by considering an at first glance completely dif-

ferent state. For this, let us define the two states

15) = j§<|e,g> e, (5.72)
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Figure 5.7: Total amount of correlations Z;, _ together with the splitting in classical correla-
tions J5, _ and quantum correlations D;, _ for the state py against 3. Only at the edges,
the quantum correlations are higher than the classical correlations. A particular point is at
B = 1/4/2, where the correlations reach a maximum, but are solely classical, i.e., D;,_ =0
at this point.
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As can be easily verified, both states are maximally entangled states. Now, if we consider

127) = —=(lg.9) + le,e)).- (5.73)

the incoherent superposition

. 1 1
pr =5 1S)(S] + 5 187) (@71 (5.74)

we would intuitively expect that this state is also an entangled state. However, by writing

the density matrix p;_ of Eq. (5.70) in its spectral decomposition given by

Pt— = wi [v1)(v1| + wa [va)(va| (5.75)

where the eigenvalues are
wy = ot + B, (5.76)
wy = 20252, (5.77)
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and the corresponding orthonormal eigenvectors read

1
lv1) = W(QQ l9,9) + B e, e)), (5.78)
jua) = j§<re,g> Flg.e)), (5.79)

we find that p; = py_ for a = 8 = 1/4/2. Therefore, the state p; is actually an unentangled
state. Even more, it possesses no quantum correlations at all, but only classical correlations.
This example clearly demonstrates the issue of mixed states. The incoherent superposition

of entangled states does not have to be an entangled state since entanglement is sublinear.

5.4.2 Dicke superradiance vs. Dicke-like superradiance

After having discussed the simple example of the previous subsection, let us now come back
to Dicke superradiance on the one hand and to the engineered Dicke-like superradiance based
on conditional photon measurements on the other hand. We start with the simplest case of
only two atoms and afterwards conclude the entire chapter by analysing the general N atom

case.

Two atoms

In the following, we investigate the situation of two atoms in more detail both in the case
of Dicke superradiance and in the case of distant non-interacting atoms. For two atoms, the
amount of entanglement can be quantified by the so-called concurrence. As the calculation
shows, in the case of Dicke superradiance, the density matrix p(t) is actually unentangled for
all times ¢ (C = 0, see left plot of Fig. 5.8). However, by determining the mutual information
T,, the classical correlations J;, and the quantum discord Dy, we find that the state develops
quantum correlations, which are always higher than the classical correlations (see left plot
of Fig. 5.8). Before we come to the case of distant atoms, let us note that, as can be seen,
the quantum and classical correlations show a small kink at around ~t = 0.46. However, this
kink is an artefact of the calculation, which is based on Ref. [79]. As was later shown, the
general formula of the quantum discord presented in Ref. [79] is not entirely correct, i.e., it
does not capture all of the extrema [80]. But, the obtained results are approximately correct
with a very small worst case error [81, 82]. Further, by referring to Ref. [83], we can state
that our calculations of the correlations are completely correct up to vt = 0.45, i.e., up to
around the kink.

Now, in the case of distant atoms, it can be easily shown that the state before the measurement
is a separable state that possesses no correlations at all. Therefore, we consider immediately
the state after the first photon measurement pi(t2). As can be seen in the right plot of

Fig. 5.8, this conditional state possesses quantum correlations Dj, at any point in time,
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Figure 5.8: In the left plot, we show the mutual information Z, the classical correlations 5,
the quantum correlations D, and the entanglement C; as a function of time for the two-atom
density matrix in the case of Dicke superradiance. As can be seen, the state is unentangled
for all times, but develops quantum correlations, which are always higher than the classical
ones. In the right plot, we show the mutual information Z;, , the classical correlations 7, , the

quantum correlations D , and the entanglement Cj, as a function of time for the two-atom

density matrix after the first conditional photon measurement in the case of distant non-
interacting atoms. We find that the state possesses always quantum correlations surpassing
the classical correlations. Even more, the conditional state is always entangled.

which are always higher than the classical correlations J,, except for the time t3 = 0, where
both coincide. But even more, as we show by calculating the concurrence Cj,, which is
maximal for to = 0 and then decays exponentially with the single-atom decay rate, in the

case of conditional photon measurements, we create an entangled state.

N atoms

After the detailed discussion of the two-atom case, let us now come to the general case of
N atoms. We note that for a general mixed state of N qubits, it seems rather hopeless
to determine its (multipartite) entanglement or correlation splitting since both are still not
well understood. However, regarding entanglement, one can construct so-called entanglement
witnesses (see Appendix D), which are more easily accessible. Here, a negative value of the
expectation value of the entanglement witness indicates entanglement, whereas for positive
values no conclusion can be drawn. Even more, in the case of Dicke superradiance, one can
actually make statements about the separability of the density operator due to its special
form as an incoherent superposition of symmetric Dicke states [18].

But let us first come back to the entanglement witnesses. In Appendix D, we introduce an
entanglement witness, which is based on the so-called structure factor, and calculate it for the
case of Dicke superradiance. Thereby, we choose the parameters such to detect symmetric

Dicke states. The obtained result is shown in the bottom plot of Fig. 5.9. As a reference,
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Figure 5.9: Top: Normalised intensity in the case of Dicke superradiance as a reference.
Bottom: Expectation value of the entanglement witness calculated in Appendix D. As can
be inferred from the figure, even around the maximal value of the superradiant burst, where
the entanglement witness works best, no entanglement of the state is indicated.

we also plot the normalised intensity in the top plot. As we can see, even around the maxi-
mum of the superradiant burst, where the population of Dicke states with M = 0 is highest
and the entanglement witness works best, the entanglement witness does not indicate any
entanglement. Even more, as already teasered, we can make use of the separability equations
developed in Ref. [18] and explained in more detail in Appendix D.6 to numerically show
that the state is separable in the case of Dicke superradiance. In this context, we extend the
work of Ref. [18] up to an atom number of N = 16. In Fig. 5.10, we show the mapping of the
state obtained from the time evolution in the small sample limit to a separable state. Since
all parameters x;, y; lay between 0 and 1 for all times 7t, the state mapping is valid and
demonstrates that the state is separable for all times ~¢ in the case of Dicke superradiance
(see details in Appendix D).

Now, let us consider the case of distant non-interacting atoms, but influenced by conditional
photon measurements, and let us calculate the expectation value of the same entanglement
witness for this system. The details of the calculation are shown in Appendix D. Here, we
rather show the result for the case of N = 8 atoms in Fig. 5.11. In the left plot, we show the
conditional intensity (blue solid line and left axis) together with the expectation value of the
entanglement witness (dashed orange line and right axis). As can be seen, for intermediate
times ~t,,, the entanglement witness is negative and thus indicates entanglement, even though
the value is rather small. However, by considering the right plot, where we illustrate the ex-

pectation value of the entanglement witness for all states p,,—1 over the whole range of times,
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Figure 5.10: Mapping of the state obtained in the case of Dicke superradiance to a separable
state for N € {4,8,16} atoms. As can be seen, all parameters z;, y; lay between 0 and 1 for
all times implying that the mapping to the separable state is valid. Thus, in the case of Dicke
superradiance, the time-evolved state, which is an incoherent superposition of symmetric
Dicke states, is separable, i.e., not entangled.
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Figure 5.11: On the left, we plot the conditional intensity (blue solid line and left axis)
together with the expectation value of the entanglement witness (orange dashed line and
right axis). As can be inferred from the figure, for intermediate values of vt,,, the conditional
state is entangled, characterised by a negative expectation value of the entanglement witness.
On the right, we plot the expectation value of the entanglement witness for all conditional
states pp,—1, but starting from the time ~¢,, = 0. As can be seen, for some of the conditional
states (around M =~ 0), the entanglement witness clearly indicates entanglement. This allows
to enhance the amount of entanglement and still to obtain a Dicke-like superradiant burst
by properly engineering the times of the photon measurements.

i.e., starting from ~t,, = 0, we recognise two points. First, for some of the post-measurement
states (around M = 0), the entanglement witness clearly indicates entanglement. Thus, by
engineering the times of the photon measurements properly, one can enhance the amount of
entanglement and still obtain a Dicke-like superradiant burst. Second, even though all states
except m = 1 are entangled at the time ~¢,,, = 0, since we simply have pure symmetric Dicke
states at that time, the entanglement witness does not rigorously indicate entanglement.
Thus, the conditional states may be entangled, even though the entanglement witness does

not detect the entanglement.

Let us conclude this section by summarising the main points of the entanglement and
correlation investigations. In the case of two atoms, the superradiant behaviour in the Dicke
superradiance setup is based on dipole-dipole correlations, which we were able to trace back to
quantum correlations that the state develops over time. Strictly speaking, the state possesses
quantum and classical correlations, which together are the origin of the enhanced radiation.
We note that also in the case of a single symmetric Dicke state, which is an entangled state,
the superradiant emission, strictly speaking, stems from quantum and classical correlations
equally contributing, since for pure states the amount of entanglement, quantum correlations,
and classical correlations is completely equal. Similar, in the case of two distant atoms with
conditional photon measurements, the directional superradiant emission of photons can also

be explained by both quantum and classical correlations, whereby the quantum correlations
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dominate. However, here, we can trace the radiation behaviour even back to entanglement of
the two atoms. Afterwards, we analysed the situation of N atoms, where similar conclusions
can be drawn. In the case of distant non-interacting atoms, we demonstrated that the state
becomes entangled via the conditional photon measurements. Thus, it possesses quantum
correlations, which the superradiant emission is based on. In the case of Dicke superradiance,
however, one can show that the state is separable at any time. Nevertheless, it may develop
quantum correlations in the course of photon emission. Therefore, we finally note that in

both cases a thorough analysis of the amount of correlations needs still to be done.

After discussing in this chapter how an ensemble of distant non-interacting atoms can be
influenced by photon measurements, in the next chapter, we analyse the statistics of such
independent emitters in more detail and in particular investigate under which conditions such

an ensemble of atoms emits light with a statistics similar to the one of a thermal source.

84



6 Classical and non-classical features of the light emit-

ted by an independent atomic ensemble

To speak of nonclassical states of light might seem an oxymoron. After all, aren’t
all states of light quantum mechanical? Well, yes, all states of light are quantum
mechanical, but, waxing Orwellian, it turns out that some states are more quantum

mechanical than others.

— Christopher C. Gerry and Peter L. Knight

Inspired by the famous line ”all animals are equal, but some animals are more equal
than others” in the beast fable Animal Farm by George Orwell, Christopher C. Gerry and
Peter L. Knight speak of states of light that are more quantum mechanical than others (see
quote). This is based on the fact that there exist states, for which the so-called Glauber-
Sudarshan P function does not describe a proper probability distribution, but is negative
in some regions of phase space or is more singular than a delta function. These states
are particularly desirable in several fields, e.g., in quantum information processing, in the
context of quantum parameter estimation theory, and in quantum simulation and quantum
computing [84-86]. In contrast, in the case of ’classical’ states, the Glauber-Sudarshan P
function is a true (classical) probability distribution. In the first section of this chapter,
we recapitulate the Glauber-Sudarshan P-representation, define the notion of classical and
non-classical or quantum light, establish the relation to the normalised second-order photon

correlation function, and discuss a particular class of classical states, namely thermal states.

6.1 Classical light and quantum light

In this section, we define some general notions needed for the next sections. We start by
introducing the so-called Glauber-Sudarshan P-representation. To simplify the notation, we
consider a single mode in the following. However, all derivations can easily be extended to

the multi-mode case.
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6.1.1 Glauber-Sudarshan P-representation

In many cases, we can write the density operator p as a function of products of the anni-
hilation and creation operators @ and a. By rearranging the operators, we can bring the
density operator in anti-normal order, i.e., all annihilation operators to the left of all creation

operators. The density operator then reads [87]
p=> cmna™al]". (6.1)
m,n
Inserting an identity 1 = 1 [d?a|a)(a|, we obtain
1
p= [ a3 cnmamialM ) o] = [daPa) )l (6.2
T
m,n
where

P(a) = - Zcmnam[a*]" (6.3)

is the so-called Glauber-Sudarshan P function. Since p is Hermitian and Tr[p] = 1, the P

function is real and normalised to one, i.e., [d?a P(a) = 1.

6.1.2 Optical equivalence theorem

Consider an operator in normal order, i.e., all annihilation operators to the right of all creation

operators, written as
g™ (a,a") =" gmnlal]ma™. (6.4)
m,n

By using the Glauber-Sudarshan P-representation, the expectation value of this operator can
be calculated as [87]

™)@ = Tr [ (0,0 = [aPla)g™ (a0’ = (Ve . (65)

That is, we can write the expectation value as an expectation value of the corresponding
phase space function ¢&V)(a, a*) with P(«) as weighting function. This is the so-called optical
equivalence theorem and suggests to interpret P(«) as a probability density. However, there
exist states, for which the P function is negative in some regions of phase space or is more
singular than a delta function. Therefore, on the one hand, the P function is usually called a
quasi-probability density, and on the other hand, the states for which the P function is not

a true probability density are called non-classical.
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6.1.3 Relation between non-classical light and the normalised second-order photon corre-
lation function

If only the free field is present without any atoms as sources, using Eq. (3.29), the normalised
second-order photon correlation function for a single mode and time difference 7 = to —t; =0

can be written as [88]

da P(a) [|af? — (aTa)]?
ita) (ata)
So, for a classical state for which P(a) > 0 applies everywhere, we immediately find ¢(?)(0) >
1. However, for a non-classical state for which P(«) < 0 holds in some regions, it is possible
to have ¢ (0) < 1. Therefore, a value of the normalised second-order photon correlation

function less than 1 implies that we have quantum light.

6.1.4 Thermal states and Gaussian Moment Theorem

In this last subsection, we discuss a particular class of classical states of light, so-called thermal
states. In the case of the free electromagnetic field and a single mode, the Hamiltonian reads

H = hwala. Therefore, the thermal states can be written as

= [P e T e 67
= ——— = « ——e (@8 |a)(af , .
P Trle—AH] m(afa)
—_———
=P

where g = kE%T with kp the Boltzmann constant and 7T the temperature. Now, let us consider
M independent modes, such that the total density operator is simply the tensor product of
the individual density operators. Then, the P function becomes the product of the individual

P functions, i.e.,

M 1 _ lom®
P(ay,...;ap) = H — ¢ (@fnam) (6.8)
m=1 T (@mam)
Thus, we see that the P function for thermal states is a multivariate Gaussian function,
for which the so-called Gaussian Moment Theorem applies. It states that all higher-order
correlations of the complex variates aj, ..., aps can be written as a sum of products of second-
order correlations (second order in the variates). Concretely, let i1, ..., 7, be a set of n indices

and j1, ..., jm be a set of m indices, the Gaussian Moment Theorem for zero-mean Gaussian
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complex variates reads [87]

0, n#*m,

(af ...af o, ..oj) = Y (afap) .ok ), n=m. (6.9)
all n!
pairings

In terms of (normalised) higher-order photon correlation functions, this theorem implies that
in the case of thermal light sources, all higher orders can be expressed in terms of the so-called

(normalised) first-order field correlation function [6]

G(l) (’l"l, tl; T2, t2) = <E( )(’I"l, tl)E( )(7"2, t2)> s (610)
EG
gD (1t o) = = (O, ) ry 1) : (6.11)
EO 1 0B (r1,10)) (BO) (2, 12) B (12, 1)
Explicitly, the Gaussian Moment Theorem for photon correlation functions reads

G(m) (7"1, U5 P, tm) = Z H G(l) (rpv tp; To(p)s to(p)) ) (6]‘2)

oc€Sm, p=1
G (1t e Py b)) = Z H Yty o) to(p)) » (6.13)

g€Sy p=1

where S,, denotes the set of all permutations of m elements. We note that the correlation
functions on the left are photon correlation functions, while the correlation functions on the
right are field correlation functions. In the next section, we investigate under which conditions
the light emitted by an ensemble of independent atoms shows thermal light statistics in terms
of higher-order photon correlation functions. Therefore, we identify a parameter regime

wherein the Gaussian Moment Theorem approximately holds.

6.2 Classical feature - Gaussian Moment Theorem

Let us consider N two-level atoms with excited state |e) and ground state |g). Since we inves-
tigate the behaviour of the normalised mth-order photon correlation function, we neglect the
dipole radiation pattern and a general constant prefactor, which would provide a meaningful
physical unit. But, as usual, we account for the different accumulated travelling phases in
the positive electric source field operator. Furthermore, we analyse the stationary case, i.e.,
all photon measurements are performed at the same time t = 0. We therefore use the scalar

positive electric source field operator

N
E (r) =Y e ot R gl (6.14)
pn=1
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where we most of the time assume that the positions of the atoms R, p € {1,..., N}, are
randomly distributed, but fixed. For convenience, we define k := ko7 and write the positive

electric source field operator as a function of k instead of r as

N
EP (k) =) e ikRu g (6.15)
p=1

We note that if the atoms are driven by a plane wave laser field with wave vector kr, we
can do a basis transformation to include the additional phase coming from the laser in the
electric field operators instead of the atomic states. In this case, the positive electric source

field operator would read (see Appendix J)

i(kot—kr R“S( ) (616)

||M2

Therefore, we would define the momentum transfer vector k := ko7 — k1, to obtain again the
same form as in Eq. (6.15). This means that the case of an atomic ensemble driven by a

plane wave laser field can be easily included by a redefinition of k.

As already mentioned, in what follows, we only consider equal-time photon correlation func-
tions. Moreover, we consider only atomic tensor product states, i.e., p = ®iLV:1ﬁM, where
pu denotes the state of atom p. In addition, we assume that the differences of the atomic
expectation values are ’small’ compared to the mean values over all atoms. We define the

mean values as

N
_ 1 ~
Se=5 > (8, (6.17)
pn=1
_ 1 N ~ N
S5 =y (8l gy (6.18)
pn=1

with which we can concretise the meaning of ’small’ by the conditions

(S - (¢)

‘ <1,Vp#ve{l,., N}, (6.19)

>‘ <1,Vu#ve{l, ., N}. (6.20)

With these foregoing definitions, we now investigate the conditions that must be satisfied to

obtain thermal statistics, i.e., the Gaussian Moment Theorem, in this atomic ensemble.
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6.2.1 Conditions for obtaining thermal light statistics

Let us consider the unnormalised mth-order photon correlation function. Since [Ai“ )]” =0

for n > 2, we can write

N N
G (ky, ..., k) = Z Z ek1Buy  ptkmBym o=tkmRum | o=ik1Ruy o
H1yee s lm =1, Vi, Vm=1,

mutually different mutually different
alr)  &lum) §vm)  &(v1)
(4 gl gm) gy
N

N m
_ Z Z Z H otkp Rup o=k () Ruy <giup)g(_vp)> . (6.21)

Hlseesptm=1, 1v1<...<vm=10€SH p=1
mutually different

On the other hand, the first-order field correlation function reads

N
G(l)(kl’k2) — Z eik1Rue—ik2Ry (ﬁiﬂ)é«(jb ’ (6.22)
=1
such that
m m N A ) )
> T16W ko) = 30 T 32 etrfnemom e (51951)
oc€Sm p=1 0ESm p=1 p,v=1

N N

= Z Z Z ﬁeikpR,Lpe—ikw)Ryp <§Srup)g(_yp)> .

U1 yeeestm=1v1,....um=1 0€S,, p=1

(6.23)

Comparing Eq. (6.21) to Eq. (6.23), we find two differences, namely the different sums

N N
> oy (6.24)
H1yee s im =1, M1y pbm =1
mutually different
N N
Yoooe > (6.25)
<..<vm=1 V1o, Vm=1
Now, with the definitions
N
Si(Nym):= > 1=N", (6.26)
Py bm =1
3 N (6.27)
So(N,m) == 1:m!< ), .
m,..%;n:L m

mutually different
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Sy(N,m) = iv: _ <N ) , (6.28)

m
p1<..<pm=1
we find that
. Sl(N,m)—SQ(N,m) -
N ( S (N, m) - (6:29)
: Sl(N7m)_S3(N7m) _ 1
v ( S1(N,m) =l (6:30)

This means, the relative error between the first two sums vanishes for N — oo, whereas the
relative error between the first and the third sum is finite for m > 2. This implies that we
can not properly approximate the first sum by the third sum in the thermodynamic limit for
m > 2. However, the difference in the correlation functions is only present if there are nonzero
single-atom coherences <S ) # 0. If it would hold that <S(“”)S(V‘7)> = (S‘iﬂp)g(_”p)) Opp vy, the
sums over the vs disappear and we can potentially obtain the Gaussian Moment Theorem.
Therefore, we now investigate the ratio of the coherences and the populations of the atoms.
If the atoms have randomly distributed positions R,,, the sums over the phases e* Ry statis-
tically scale as v/N. However, in the direction k = 0, the sums over these phases scale as N,
such that this direction gives a particular strong constraint. We note, however, that there
might be some outlying directions, which are even more disadvantageous. Nevertheless, to
obtain a condition, which is a strict condition almost everywhere (and can even be loosened

in most directions), we consider the direction k = 0. Here, we have

N
G(m) (0,...,0) = Z <st_u1) S(um)g(um)mg(_yl)>
M1y sm V1. m:1

~Z< )aem-n(, Y JEEyEsT . e

where we write an approximation sign since we use the mean values in the second line. We
note that if all N atoms are in the same state, both sides are exactly equal. To determine
under which condition the contributions from the coherences can be neglected compared to
those from the populations, we calculate the ratio between the terms corresponding to j — 1

and j, which is given by

S+S_ ( - ] + 1)

(6.32)
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To be able to keep only the term with j = m, this ratio has to be much smaller than 1 for

all j. The maximal constraint is obtained for j = m. Therefore, we require

(5¢) (84%) B
me—m) <l& S50, < (N ) Vupe{l,..,N}. (6.33)

However, we note that if one is only interested in the normalised mth-order photon correlation
function, a weaker condition based on the second-order correction instead of the first-order
correction is actually sufficient (see Appendix H). Nevertheless, if condition (6.33) is fulfilled,

we can approximate Eq. (6.21) almost everywhere in leading order by

N m
G (k) Y 3 T eikekew) R (54 S0y (6.34)

Ulseesbm=1, TESp, p=1
mutually different

and Eq. (6.23) by

2 ﬁGm(kp,kU(p))fv Z 5 [Tt b (§059) . (o)

0ESm p=1 cbm=10€S,, p=1

Further, the first-order photon correlation function can be approximated by

N
~ ) (SIS =, (6.36)

p=1

where n. is the average number of excitations. In the following, we investigate under which
additional condition Egs. (6.34) and (6.35) are approximately equal. The indices of sum-
mation piq, ..., t, in Eq. (6.34) need to be mutually different. This can be accounted for by

including an additional product reading

H (1 - 5u1,V1) X H (1 - 5#271/2) X e X (1 - 5Mm717,u7n)

llle{llzZ,...,,le} Z/QG{#S,...“LLm}
= 1 + f(5M11H27 ) 5#17,U»m7 6,“27#37 e 5#27[’0717 Tt 5/‘m—17ﬂ7ﬂ) ? (637)
where f (01 s > Opt pim s Opio iz s -3 Opia pim s -++> Opior 1,1 ) 15 @ Multivariate polynomial of degree

m — 1. We note that the lowest monomial of f has a degree of 1.

Let us now consider again the direction k = 0, for which we find

N ~ A
Z kR, <S(+ )S&“‘)>

p=1

N
=S (8%5W) = n. ~ GV (k) (6.38)
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and

=™~ [GOK)™. (6.39)
kp=0

N mo A .
Z H etkp Ry, < iﬂp)s(_l‘p)>

Py tm=1p=1

Further, in the case of a Kronecker delta of indices 1, and ps we have

N N N
A1) A A ) A1) 2 A1) A
Z 5#;77#5 H < _(i_NQ)S(_HQ)> — Z <S§f P)S(_Mp)> ~ S, S Z <SS_HP)S(_#p)> =55 ne,
Hp,ps=1 q<{p,s} pp=1 pp=1
(6.40)
so we find that
N m A A
Z 5}@7“8 H e'quRll«q <S_(i_#q)s(_l‘q)> ~ S_:,_S_n;nil o~ S+S_ [G(l)(k)]mfl )
Hlseeoslhpyeeesbhs sy im =1 q=1 kq=0
(6.41)

Therefore, the terms coming from the function f are at most of order [G™) (k)] !. Now,
we also need to take into account the number of summands of a specific order of G (k).

Therefore, let us calculate

N N

> 1= > (1+f):m!(]n\;>:N(N—l)...(N—m+1), (6.42)

bty orent.
which gives a falling factorial, a polynomial in N. The coefficients of this polynomial are the
so-called Stirling numbers of the first kind. Now, the number of summands of order [G™) (k)™
is exactly given by the coefficient, i.e., the corresponding Stirling number of the N™ term for
n € {1,...,m— 1} in the falling factorial. Let £ = {—1, ..., —m+ 1}, then the Stirling number
of the first kind for a given m and n is [89]

m—n m—1 m—n
simn)= > J[ =)™ ) 11 i (6.43)
1

TCL, p= 11<12<...<lm—n p=1
|T|=m—n

We can estimate the product from above by

"ﬁ” ip < (m—1)(m—=2).n<m™". (6.44)
p=1
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In addition, we count
m—1 m—1
E 1= ( ) <m™ ", (6.45)
o . m-—n
11<12<...<lm—n

such that |s(m,n)| < m2™=™) . Finally, taking the normalisation factor [G(!)(k)]~™ in the

normalised g(m)(kzl, ..y ki) function into account, we obtain

N m
%g(m)(O,...,O) = [G(l)l(k)]m Z (1+f) H ( “Srup)sv(_up)>
. M1y bm =1 p=1
< W {[G(l)(k;)]m + mQ&T[G(l)(k)]mfl bt (m2)m71(S+T)m71G(1)(k)} .

(6.46)

Taking also the sum over the permutations into consideration, it is justified to keep only the

i

zeroth order of the mth-order photon correlation function if %)S(Z)S_ < 1. However, we
e

note that it is usually enough to have % < 1 since also the terms contributing to the

Gaussian Moment Theorem are m! many (see e.g. the case of k = 0). Using Eq. (6.34),

approximating the normalised mth-order photon correlation function in zeroth order gives

N m
1 . N N
g(m) (kl, ceny km) ~ ﬁ Z Z H ez(kp_kU(P))RMp <S(+“‘P)S(;U'P)>
[G (k)] U1seersbm=1 0 €Sy, p=1
Tl 5 (1) &)
e Z H i(kpfko'(p))R,up <S Hp S Hp >
1 Z ¢ + o=
g€Sm p=1 Gl )(k) pp=1
= > T k. ko) (6.47)
€Sy, p=1

which is the Gaussian Moment Theorem. If we further approximate GV (k) ~ n. ~ S;S_N,
we thus find the following two conditions for the applicability of the Gaussian Moment The-

orem, namely

(54 (U R (ml) m?
<A5_N)Sf(_ﬂ)> < m(N _ m) ~ mN ,V,LL € {1""’N} and N < 1. (6.48)

If these two conditions are satisfied, the light emitted by the atomic ensemble shows thermal
statistics in terms of higher-order photon correlation functions. As a remark, we note that
if instead of all N atoms only N = N — N, many atoms are partially excited and Ny many
atoms are in the ground state, all derived results remain true if we replace N by N.

In the next section, we demonstrate the found results on some examples. However, before

we end this section, we note that for the interested reader we analyse a similar question as in
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the current section in Appendix I. Since thermal light sources are incoherent in first order, in
Appendix I we split the radiation emitted by the atomic ensemble in a first-order coherent
and a first-order incoherent part and investigate when the incoherent higher-order photon

correlation functions show thermal statistics.

6.2.2 Validity of the conditions - Examples

In this subsection, we investigate the applicability of the Gaussian Moment Theorem using
several examples.

Fully excited state

In the case of the fully excited state, the state of a single atom is given by p,, = |e)(e| for all
w e {l,...,N}. Thus, <5'Sr“)5’(_”)> =1 and <5‘Sr“)> = <5'(_“)> =0 for all 4 € {1,..., N}. Further,
in the limit GM (k) = n. = N > m!m?, we expect the Gaussian Moment Theorem to hold.

We can explicitly calculate

GY(k)=n. =N, (6.49)
1L
M) (key, ko) ~ > itk R (6.50)
pn=1

and

N m
g(m) (k1,....km) = % Z Z H ei(kp*kg(p))RM)

H17-~~7Mm:17 c€Sm p=1
Inutlnlly different

ZHg (Kp, Koy +o(mx”2> (6.51)

oc€Sm p=1

using the approximation from the previous subsection. We note that the factor of m! comes
from the sum over all permutations. As concrete examples, let us consider the second-
and third-order photon correlation functions ¢(® (ki, ko) and ¢ (ki, ko, k3) explicitly. A

straightforward calculation leads to
2
9@ (ko1 ko) = 1+ g (R, ko) [* — N (6.52)
9O (K1, ko, kz) = 1+ g (or, o) > + [ (ka, k) [P + 91 (K, K3)|?

- 2Re{g<”<k1,kz> W (Ko, k3) g™ (K3, k1) }
6 12

“NTwe T [lg VK1, k) ? + |9 (ka, Kea) > + |91 (1, k)], (6.53)

where we already ordered the terms to see the deviations from the Gaussian Moment Theorem.

In the case of ¢, the deviation is —2, which we can directly find from our calculations in

ﬁv
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the previous subsection. The factor of 2 comes from the number of permutations, which is

in general m!. This factor needs to be multiplied with the coefficient given in Eq. (6.43).

For n = m — 1, we generally find s(m,m — 1) = (—l)m(rgfl), which for m = 2 gives
s(2,1) = —1. From this we can also see that the leading deviation is of order mWQ (excluding

the permutations), which we identified earlier. Now, let us move on to g®, here the highest
deviation is obtained for ki = kg9 = k3. In this case, the leading deviation is —%, whereas
the deviation of the next order is % The leading deviation can again be found by the
multiplication of the number of permutations 3! with the coefficient s(3,2) = —3 giving —18.
For the deviation of the next order, we need the coefficient s(m, m — 2), which is, in general,
given by

m(m —1)(m —2)(3m —1). (6.54)

s(m,m —2) = o

For m = 3, we obtain s(3,1) = 2, which together with 3! gives the factor of 12. Again, we

can also identify the general scaling, which is of order N;

Doubly excited state

As a second example, we consider an ensemble of N two-level atoms, where atoms ji and U
are excited, but all other atoms are in the ground state. Here, Ny = N — 2 and N = 2.
Moreover, <§Sr”),§(_“)) = Opn + 65 and (S’Sr”)> = <§(_“)> = 0. Therefore, all higher-order
photon correlation functions with m > 3 are zero and can thus not be approximated by the
Gaussian Moment Theorem. However, also in the case of m = 2, we have N = 2 = m, such
that we expect that the Gaussian Moment Theorem can not be applied either. We check this

explicitly by calculating the correlation functions. The first-order correlation functions read

GY(k)=N =2, (6.55)

(ei(kl—k2)Rg + ei(kl—k2)Rl7) . (656)

<g§ru1)giu2)g(u3)g(u4)> = (5111,#35#27#4 + 5#171145#2,#3)(5#1,115#2,5 + 5#1795112,/1) (6'57)

we obtain for the second-order photon correlation function

g(2)(k1, k) = Z ei(k1—ko 1)) Rpi i(ka—ko (2)) Ry + eilk1—ky(1)) Ry ji(k2—ko(2)) R

22
gES2
2
= > [Tk kg 2222—21]9 (kpo ko) — 1. (6.58)
€Sy p=1 gES2 oeSy p=1
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which is not approximative the Gaussian Moment Theorem due to the additional —1. The

reason is that m is of the same order as N. Moreover, using the calculations of the previous

subsection, we can immediately identify the deviation as —m!%, which gives —1 for

m=N = 2.

Symmetric Dicke state

As a third example, we consider a symmetric Dicke state, which can not be written as a tensor
product of the individual atomic states. This means, we can not apply our conditions to find

approximately the Gaussian Moment Theorem. However, we choose this example on purpose
to show that in the case of a correlated state, the condition m!]{['LQ < 1 does indeed not imply

thermal statistics. Therefore, let us consider the symmetric Dicke state with N = N — 1

excitations reading
1 X 1 . 1.
IDN )= —=3"8Wle,...e) = —=5_le,...e) = L5 (0) e, ..,¢) . (6.59)

This means, we can relate the second-order photon correlation function of the symmetric
Dicke state to the third-order photon correlation function of the fully excited state as

(0,k1, k2) = N2g®) (0, k1, ks). (6.60)

GO (ki ks) = —GP .

‘D%—ﬂ N le,...,e)

For simplicity, let us consider the case of k1 = ko = 0. In this case, the correlation functions

are given by

al, (0)=20N-1), (6.61)
IDN_)
) _
g‘DJJ¥71>(07 O) - 1 9 (662)
(2) B 3(N —2)
Ipy 00 =35 (6:63)

2

Thus, for 2™

T < 1, e.g., by considering the limit of NV going to infinity, we have

2
. 3
lim g% 0.0)=2#2=3 ] gl(ll))%_l>(0,0). (6.64)

N—o00 |D1]\\;—1
oeSs p=1

Therefore, we conclude that correlated states do, in general, not show thermal light statistics

even in the thermodynamic limit.
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Atoms in steady state driven by a plane wave laser field

As a last example, we consider an ensemble of identical two-level atoms driven by a plane
wave laser field. For simplicity, we assume that the laser frequency is in resonance with
the transition frequency of the atoms. The single-atom steady state is then given by (see
Appendix J)

T VA
N +s s
Pu= N s (6.65)

Va(lts)  21ts)

for all p € {1,..., N}, where s denotes the saturation parameter. The atomic expectation

values can be calculated to

o) &(w)y _ s
Gy — V5 6.67
B = (6.67)
gy _ Vs 6.68
B = -5 (6.68)
Gy g &m) S
Thus, the fraction of the coherences and the populations of the atoms given by
Gy (g 1

crucially depends on the saturation parameter s. In what follows, we calculate the second-
order photon correlation function and show that under the conditions of Eq. (6.48), it is
approximatively given by the Gaussian Moment Theorem. Let us first calculate the unnor-

malised first-order field correlation function. A straightforward calculation gives

S

G(l)(kl,kg) — m [

S(I)(kl — kz) + (I)(kl)(I)(—kQ)] , (671)

where we defined the so-called structure factor

N
O(k) = e*Fu. (6.72)
pn=1
Then, with
GO (k, k) = 2 i o7 BN+ 2(R)B(—k) (6.73)
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the normalised first-order field correlation function reads

S@(kl — kg) + @(kl)q)(—kg)
VN + &(k1)®(—k1)\/sN + (k) (—k2)

g k1, k) = (6.74)

from which we obtain

2
( B [Sq)(kl — kQ) + (I)(kl)q)(—kg)] [S(I)(kz — kl) + ‘I)(—kl)q’(kg)]
2 1Py ko) =1+ SN+ @) B(— )] (5N + D (ha)B( )] |

og€Se p=1
(6.75)

Similarly, we can calculate the second-order photon correlation function, which is given by

1
[SN + ®(k1)®(—k1)] [sN + ®(ka)®(—ks)] [

—1-82@(]{:1 —ko)P(ky — k1) + sP(—kq1)P (k)P (k1 — ko) + sP(k1)P(—ka)P (ks — k1)
—®(k1)P(k2)P(—F1 — k2) + P(—k1)P(k1)P(—Fk2)P(k2) + ®(—k1 — k2)P(k1 + k2)
—O(—k1)P(—k2)®(k1 + k2) + SNP®(—k1)P (k1) — 4sP(—k1)P(k1) + sNP(—k2)2(k2)
—4sD(—ks)D (k)] - (6.76)

g (k1 k) = s°N? — 25> N + 4sN

Now, let us consider the first condition of Eq. (6.48). Together with Eq. (6.70) we can write

this condition as (m = 2)

L ¢ L 2Nzt 2N (6.77)
1+s 2N s s ’ '
This suggests to define the expansion parameter r = % and to do a Taylor expansion of

both Egs. (6.75) and (6.76) up to the leading order in . We obtain

2
1
Z H g(l)(k;p’ kg(p)) =1+ W(I)(kl — ko)®(ky — k1) + O(r), (6.78)
o€Ss p=1
1 2
gD (k1 ky) =1+ 2 ®(k1 — k2)®(ky — k1) — -+ O(r), (6.79)
which are equal except for the term —%. This is the same deviation that we found earlier,

given by —m! m(glN_l) for m = 2, and can thus be neglected if the second condition of Eq. (6.48)

holds. We illustrate this transition to the Gaussian Moment Theorem by considering a dilute
cloud of atoms uniformly distributed in a sphere (see Fig. 6.1). Since only the product kR,,,
is important, we can effectively control the diluteness of the cloud by adjusting the absolute
value k of the wave vector. Therefore, we are allowed to place the atoms within a sphere of
radius 1 in units of the wavelength. The state of such a driven dilute cloud of atoms, where
dipole-dipole interactions can be neglected, is given by the Nth tensor product of the state

written in Eq. (6.65). Further, let us assume that the wave vector of the laser is parallel to
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Figure 6.1: Cloud of 100 atoms uniformly distributed in a sphere of radius 1 in units of the
transition wavelength. The laser with wave vector kz, || 2 drives the atoms to steady state,
of which the emission properties are analysed. The angle ¢ denotes the azimuthal angle in
the xy-plane, while the angle 6 is the usual polar angle.

the z-axis.

In the following, we consider the autocorrelation function g(2)(k) (k1 = ka2 = k) given by

1
(sN +[®(K)[?)

9P (k) = (2N [2+ (N = 1)] + 4s(N = 2)|0(K)|* + [[2(K))* — ©(2K)|*}

(6.80)

in two different setups. In the first setup, we scan around the sphere in the xz-plane, i.e.,
including the direction of the laser, so the effective wave vector can be written as k = k,, =
27rl;:(sin 6,0,cos — 1), where k determines the diluteness. In the second setup, we scan
around the sphere in the xy-plane, i.e., perpendicular to the direction of the laser, such that
the effective wave vector is given by k = k;, = ok (cos g, sin g, —1)T. We note that in the
next section, we also consider a 2D scan of the correlation function. Nevertheless, let us first
investigate the aforementioned two particular setups. In Fig. 6.2, we show the autocorrelation
function for both setups for N = 100 atoms and different values of the saturation parameter
s when we average over M = 100 realisations of the atomic positions. In the left plot, we
show the autocorrelation function for the first setup. By increasing the saturation parameter
s for a fixed number of atoms N, we can clearly see the transition to the Gaussian Moment
Theorem. However, by considering both plots (in the right plot we show the autocorrelation
function for the second setup), we see that the condition % < 1 is only needed in the
direction of the laser. In other directions, a weaker condition is already sufficient. In what
follows, we explain these both behaviours quantitatively. First, we note that the derivation

of the conditions was based on the direction k = 0, which characterises the direction of the

d 2N

s < 1. This can also be seen

laser. Therefore, in the direction of the laser we indeed nee
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Figure 6.2: Left: Autocorrelation function for the first setup, i.e., kK = k,, and k= 4.
Right: Autocorrelation function for the second setup, i.e., k = k;, and k = 4. We want to
highlight that we can clearly see the transition towards the Gaussian Moment Theorem by
increasing the saturation parameter s for fixed NV, such that % becomes small compared to
1. Concretely, the dip in the left plot becomes smaller and smaller and we approximately find
the value obtained from the Gaussian Moment Theorem. However, we also want to mention
that except for a vicinity around the direction of the laser (left plot, § = 0), the Gaussian
Moment Theorem can already be found for saturation parameters s, for which % is not yet
negligibly small.

by doing a Taylor expansion of the autocorrelation function up to the second order in the
parameter r that we defined earlier. Using ®(k = 0) = N, we find
2 ANk, 1
@D(k)y=2- = N|®(2k)|? — N®(2k)[®(—k)]?
9O (k) =2 - — + S [N|B(2K) 2 — NB(2k)[@(—k)
— NO(—2k)[D(k)]* — N|®(k)|* + 10/®(k)[* — 8N|®(K)|*] + O(r®).  (6.81)

Now, the direction of the laser is characterised by k = 0, so we have

g?(0) =2~ % + 4(1]\78N) G 722]\7 D o). (6.82)

Therefore, the leading correction is of second order and scales as ];7—22 (see Appendix H), which
needs to be much smaller than 1 if we want to approximately obtain the Gaussian Moment
Theorem. However, if we consider a direction far away from the direction of the laser, for
example perpendicular to the laser, then the function ®(k) describes for sufficiently large
wave numbers for which the phase is randomly distributed in the interval [0, 27), a random
walk. This is illustrated in Fig. 6.3. Here, we plot on the left the root mean square distance
\/W for N = 20 atoms against the wave number k for k = %(1,0,—1)T, i.e., for a
detection in the z-direction. On the right, the products kR, which enter the phases of the
exponentials of ®(k), are shown, sorted from small to big. As can be seen, if we consider

only a single realisation of the atomic positions, the phases are not uniformly distributed and

101



6. CLASSICAL AND NON-CLASSICAL FEATURES OF THE LIGHT EMITTED BY AN...

204 - 1% 1 19P® 099 9900 |1 1™ |
rFrTrTr1Trrrrrrrrrrrrrrrrnruni
rFrrTr1Trrrrrrrrrrrrrrrrunruni
rFrrTr1Trrrrrrrrrrrrrrrrunrun
rFrrTr1Trrrrrrrrrrrrrrrrunrun

- ledaooalalobbblalabhlanidl!
& prprin e M=l
S i e =100
rra
| IO I O I |
V20 RN ¥ avehass
Vv by e luniform M= 100
0 I blolob bedelelolobbblobov oo 1
0 5 10 15 20 0 /2 ™ 3m/2 2w
k sorted kR,

Figure 6.3: Left: Root mean square distance \/(|®|?) for N = 20 atoms against the wave
number k for k = %(1, 0,—1)T, i.e., for a detection in the z-direction. For a single realisation,

the v/N scaling of a random walk can not be observed. However, the average over M = 100
realisations follows the v/N behaviour in the case of a sufficiently large wave number k. Right:
Products kR, which enter the phases of the exponentials of ®(k), sorted from small to big.
In concordance with the results for the root mean square distance, when comparing the
results with those from a pseudo-uniform distribution (red), we see that the phases exhibit
fluctuations in the case of a single realisation (blue), but are almost perfectly uniformly
distributed in the case of an ensemble average over many realisations (orange). As additional
information, we plot the average over all angles ¢ for a single realisation, which also shows a
uniform distribution of the phases (green).

no VN scaling for the root mean square distance can be observed. However, if we average
over many realisations (M = 100 in the plots), the phases become uniformly distributed for
sufficiently large wave numbers and the statistics of a random walk can be found. As a side
remark, if we average a single realisation over all angles ¢, the phases are also uniformly

distributed. Now, using the scalings

([@(F)[*), (| @(2k)|*) ~ N, (6.83)
(|2(k)[") ~ N2, (6.84)
(D (2K)[@(—K))*) [, [{D(—2K)[@(K)]*)| ~ N, (6.85)
which apply in the case of a random walk, the averaged 9(2)(k) function reads
2 N?-N3
D(pyvo_ 28— 3
g (k) ~2 N + N2 + O(r?). (6.86)

We notice that the second-order correction is essentially independent of the number of atoms
for N large enough, but is determined by the saturation parameter s. That is, also for
N > s, we obtain approximately the Gaussian Moment Theorem if s is sufficiently large.

This is illustrated in Fig. 6.4, where we plot the averaged ¢(® function for s = 100 and three

102



6.3 NON-CLASSICAL FEATURES OF A WEAKLY LASER DRIVEN ATOMIC CLOUD

2.0 A 1 r 2.0 1
<
=~ 1.5 1.5 4
% N =102
N =10?
| — N=10
1.0+ T T T T T 1.0+ T T T T T
T —7/2 0 /2 Q T —7/2 0 /2 @
0 2

Figure 6.4: Autocorrelation function for s = 100 and three different numbers of atoms N > s
in the case of a detection in the xz-plane (left plot) and in the case of a detection in the
xy-plane (right plot). Apart from the direction of the laser, the autocorrelation function is a
flat curve whose value is approximately given by the Gaussian Moment Theorem.

different numbers of atoms N > s. We find that except for the direction of the laser, a
flat curve is obtained, the value of which is approximately given by the Gaussian Moment
Theorem. We end this subsection by noting that to find the Gaussian Moment Theorem in
all directions, we need a particularly large saturation parameter s > 2N. In the next section,
we consider exactly the opposite regime of small saturation parameters s. Then, the atomic
ensemble emits mainly coherently and the dynamics can be approximatively described via a
classical dipole model [20, 34, 46, 52, 90-99]. However, as we will see, the light emitted by

this coherently driven atomic ensemble exhibits unintuitive non-classical features.

6.3 Non-classical features of a weakly laser driven atomic cloud

In this section, we consider the limit of small saturation parameters s, i.e., s < 1 (or even
the stronger condition sN < 1). In this case, the atoms are driven coherently and the
dynamics can be essentially described by a classical dipole model, whereby the individual
dipole moments are given by the off-diagonal elements of the single-atom density matrices [20,
34, 46, 52, 90-99]. Based on this picture of classical dipoles, one would assume that the light
emitted by the atomic ensemble will be classical coherent light. In fact, this is not the
case, but rather the atoms emit quantum light in certain directions, which is characterised
by a value of the second-order autocorrelation function less than 1. In Fig. 6.5, we plot a
characteristic course of the second-order autocorrelation function for a single realisation of
N = 100 atoms and saturation parameters s € {107%,1075, 10*4}. Here, we want to highlight
three features. First, for some observation directions, we obtain so-called superbunching, i.e.,
g (k) > 2. Second, for other observation directions, we find quantum light, i.e., g (k) < 1,

and third, the curves are basically independent of the saturation parameter s. The latter
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Figure 6.5: Autocorrelation function for a single realisation of the atomic positions with
N =100 and s € {1075,1075,107*} in the case of k = k,, (left) and in the case of k = kzy
(right). The curves are essentially independent of the saturation parameter s. Further, we
find a plethora of different emission behaviours reaching from superbunching (¢(® (k) > 2)
to antibunching (¢\® (k) < 1).

is easy to understand, since in the so-called linear regime, i.e., for a very small drive of
the atoms, the emitted intensity is proportional to the strength of the driving laser, i.e.,
proportional to s, while the second-order photon correlation function is proportional to s2.
Thus, in the normalised second-order photon correlation function, the saturation parameters
in the numerator and denominator cancel each other out, so that the function is independent
of s in the zeroth-order approximation. We can also verify this quantitatively by calculating
the Taylor expansion of the second-order autocorrelation function around r := sN = 0, which

reads

[@(k)]? — ©(2Kk)*
@ (F)[*

gD (k) = +O(r) (6.87)

and is thus independent of s. In Fig. 6.6, we illustrate this result by plotting g(2)(k:) and
W for s = 1076, ie., sN = 107% and k = kzy. As can be clearly seen, both

curves are basically identical. Therefore, all superbunching peaks and antibunching dips are
|[®(k)]2—D(2Kk)|2

[P (k)[4 )
However, to gain more physical insight, let us first show the normalised second-order au-

determined by the expression

tocorrelation function g(® (k) together with the unnormalised second-order autocorrelation
function G(? (k) and the first-order correlation function squared [G™") (k)]? in Fig. 6.7. As can
be inferred from the plots, the superbunching peaks can be explained by a strong destructive
first-order interference of the emitted photons. On the other hand, the antibunching dips
are not based on a strong constructive first-order interference, but we rather find that the
destructive second-order interference is stronger than the destructive first-order interference.

To analyse this behaviour in more detail, we plot the different terms entering the expression
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Figure 6.6: Autocorrelation function (top) and W (bottom) for sN = 10~* and
k = k;y. As can be seen, in the limit of sIN < 1 both curves are basically identical. Thus,
the directions and values of the superbunching peaks and antibunching dips are determined

|[®(k)]*—P(2k)|?

by the expression ) . In the figure, we mark all superbunching peaks with a value

greater than 100 (green dashed lines) and all antibunching dips with a value less than 0.1
(red dashed lines).

W together with the normalised autocorrelation function in Fig. 6.8. First, let us

note that we see again that the superbunching stems from the strong destructive first-order
interference, expressed by |®(k)|?> < 1 [see Eq. (6.73)]. Second, by writing the expression
[@(k))> — ®(2k) in the numerator as

N N N
[‘I’(k:)]Q o (I)(Qk) _ Z ezk(R,ﬁ-Ry) o ZeleR“ _ Z €zk(RH-i-Rl,) ’ (6.88)
pv=1 p=1 pFv=1

we see that the term ®(2k) assures that every atom emits only one photon. This term is the
essential difference of a two-level atom compared to a classical oscillating dipole and leads to
the emission of quantum light in certain directions. Without this term, the numerator and
the denominator in the expression W would be identical, but including this term,
the numerator may actually be smaller than the denominator for certain wave vectors k. In
accordance with this, we find in Fig. 6.8 that the numerator exhibits dips in the particular
directions of antibunched light.

So far, we have only considered two particular sets of observation directions. In contrast, in
Fig. 6.9, we plot the inverse exponential of the second-order autocorrelation function against

both angles ¢ and 8 scanning the entire sphere of possible observation directions. The inverse
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Figure 6.7: Normalised second-order autocorrelation function ¢(®)(k) (top) together with
the unnormalised second-order autocorrelation function G (k) (bottom) and the first-order
correlation function squared [G(M(k)]? (bottom). As can be seen, the superbunching peaks
can be explained by a strong destructive first-order interference, whereas the antibunching
dips result from a strong destructive second-order interference, stronger than the first-order
one.

exponential is taken to be able to show the richness of the autocorrelation function, which
would otherwise be dominated by the large superbunching peaks. We can clearly identify mul-
tiple regions of superbunching [exp (—¢®(k)) ~ 0] and antibunching [exp (—g®(k)) ~ 1].

In what follows, let us analyse particular directions of superbunching and antibunching. Since
®(k) and [®(k))? — ®(2k) are randomly fluctuating functions, we expect that both functions
are approximately zero in some directions. But what is the particularity of these two con-
ditions? We first consider ®(k) ~ 0, which characterises a strong destructive first-order
interference and we thus expect superbunching. In contrast, as we will show later on, the
condition [®(k)]?—®(2k) ~ 0 can lead to strong antibunching depending on the value of ® (k).
Before we analyse these two regimes mathematically, let us plot the correlation function and
the inverse correlation function in Fig. 6.10. At first glance, the two plots seem rather fea-
tureless. However, this results from the several superbunching peaks and antibunching dips
that can be observed. In particular, we mark the directions of the highest value of g(Q)(k)
(left plot) and the lowest value of ¢(® (k) (right plot). The two cuts drawn in Fig. 6.10, which
contain the highest and lowest values of g(® (k) are shown in Figs. 6.11 and 6.12. As can
be seen, the strong superbunching peak results from a structure factor ®(k) ~ 0 indicating
strong destructive first-order interference. On the other hand, the remaining structure factor

expressions ®(2k) and [®(k)]? — ®(2k) have finite absolute values. Considering now the anti-
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Figure 6.8: Autocorrelation function (top) together with the different terms entering the
2 2
expression W (bottom). We find again that the superbunching peaks stem from

a strong destructive first-order interference, expressed by |®(k)|> < 1. Further, the term
®(2k) represents exactly the difference between two-level atoms, which can emit only one
photon at a time, and a coherent light source. Subtracting this term from the coherent term
[®(k)]? opens the possibility of finding particular observation directions for which ¢(®) (k) can
be smaller than 1.

bunching dip in Fig. 6.12, we find that here [®(k)]? — ®(2k) = 0 indicating strong destructive
second-order interference. In contrast, the remaining structure factor expressions have again
finite absolute values. The most remarkable feature we want to highlight is that the height
of the superbunching peak as well as the depth of the antibunching dip can be controlled by
the saturation parameter s. In what follows, we analyse these dependencies quantitatively
by doing appropriate Taylor expansions of the second-order autocorrelation function to de-
rive the scaling with the saturation parameter. Afterwards, we check our findings using the
explicit values of the example realisation.

Let us start with the case of ®(k) ~ 0. A Taylor expansion of the normalised second-order
autocorrelation function leads to

|®(2K)|2 + 25N [2 + s(N — 1)]

9 (k) = N2 +O(|2(k)[%) . (6.89)

We note that the absolute value squared of the structure factor ®(2k) usually fluctuates
around N, whereas the other terms in the numerator scale at least linearly with s. Since the

saturation parameter is much smaller than 1 (s < 1), the autocorrelation function can be
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Figure 6.9: Inverse exponential of the second-order autocorrelation function against
both angles ¢ and 6. Several superbunching and antibunching regions characterised by
exp (—9(2)(k)) ~ 0 and exp (—9(2) (k)) ~ 1 can be observed.
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Figure 6.10: Left plot: Normalised second-order autocorrelation function for all observation
directions, characterised by the angles ¢ and 6. Right plot: Inverse normalised second-order
autocorrelation function for all observation directions. The plots seem rather featureless.
However, this is based on the strong superbunching peaks as well as antibunching dips (the

maximum and minimum of ¢(?) are indicated by the insets) that can be observed in several
directions.
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Figure 6.11: Normalised second-order autocorrelation function (top) for the superbunching
cut drawn in the left plot of Fig. 6.10 together with the absolute values of the structure
factor expressions ®(k), ®(2k), and [®(k)]?> — ®(2k) (bottom). At the superbunching peak,
the structure factor ®(k) is approximately zero, indicating strong destructive first-order in-
terference, whereas the absolute values of the two remaining structure factor expressions are
finite. As can be seen in the top plot, the height of the superbunching peak can be controlled
by the saturation parameter.

approximated by

_ |2(2k)?

2

(6.90)
Thus, we find that the correlation function scales inversely with the square of the saturation
parameter. This means, by lowering the saturation parameter by a factor of 10, we expect
an increase of the superbunching peak by a factor of 100. Indeed, in the example realisation
considered, the increase of the superbunching peak is by a factor of 98.4 when going from
s =10"* to s = 107°, and by a factor of 85.7 when going from s = 107® to s = 107%. To
explain the deviation in the latter case, we note that, in general, the denominator of the
autocorrelation function reads (sN + \CIJ(k:)\Q)z. When going from s = 107° to s = 1079,
|2

the correction in the denominator given by |®(k)|? =~ 9 x 107¢ becomes already important in

comparison to the leading term sN = 10~*. Indeed, if we calculate

(sN +12(K)[?)* |sz10-5
(5N + @ (k)[2)? |s—10-

~ 85.7, (6.91)
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Figure 6.12: Normalised second-order autocorrelation function (top) for the antibunching cut
drawn in the right plot of Fig. 6.10 together with the absolute values of the structure factor
expressions ®(k), ®(2k), and [®(k)]? — ®(2k) (bottom). At the antibunching dip, the struc-
ture factor expression [®(k)]? — ®(2k) is approximately zero, indicating strong destructive
second-order interference, whereas the absolute values of the two remaining structure factor
expressions are finite. As can be seen in the top plot, the depth of the antibunching dip can
be controlled by the saturation parameter.

we find exactly the factor by which the value of the peak increases. Now, let us come to the

case of [®(k)]? — ®(2k) ~ 0. We perform again a Taylor expansion leading to

_ 25N[24 s(N — 1)] + 4s(N — 2)|®(k)|>

(2)
o k) (N + k)P

+ O(|[®(k)]* — ®(2Kk)[?). (6.92)

Since we consider saturation parameters for which sV < 1, we do a second Taylor expansion,

which gives

4s[N + (N — 2)|®(k)[?]
g (k) = < ST +O(ANY ) + O([@(R) - B(2K)2) . (6.93)
Therefore, we expect that the autocorrelation function is linear in the saturation parameter.
Indeed, in the example realisation considered, the decrease of the antibunching dip is by a
factor of 9.7 when going from s = 107* to s = 107, and by a factor of 7.7 when going from

5 =107%to s = 1075, In the latter case, the first-order correction given by

[@(k)]? — (2Kk)?

@ (k) (6.94)
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becomes already important. Indeed, the calculation

[@(k)[* [©(k)[*

<4S[N+(N*2)|<P(k)\2} 4 22— (2k)|> )
@ (k)| Ok

(4S[N+(N—2)|<1>(k)\2} + |[‘1>(k)]2—<1>(2k)|2>

s=10"% _ 77 (6.95)

s=10—6

leads exactly to the factor by which the value of the antibunching dip decreases.

Let us conclude this section by noting that we have demonstrated that coherently driven
two-level atoms, even in the linear driving regime, show a unique, unintuitive emission char-
acteristics that is in strong contrast to the emission of classical oscillating dipoles. However,
we also note that all the previous plots and discussions were based on a single realisation of
the atomic positions. If we were to average over multiple realisations, the signal would wash
out and, in particular, lose its quantumness, i.e., we would no longer find directions for which

g (k) < 1.
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7 Summary and Outlook

What really matters for me is [...] the more active role of the observer in quantum
physics [...]. According to quantum physics the observer has indeed a new relation
to the physical events around him in comparison with the classical observer, who is
merely a spectator.

— Wolfgang E. Pauli

After the introduction of a general open system approach to describe light matter inter-
actions and of the concept of higher-order correlation functions, in Chapter 4, we have shown
that the combination of dipole-dipole interactions and measurement-induced entanglement
allows for engineering the spontaneous emission properties of a three-atom system, in which
two atoms are close to each other, while the third atom is far distant from the two-atom
subsystem. In this context, we found that by properly balancing the different interference
channels, one can observe a strong superradiant and subradiant decay simultaneously, only
depending on the observation angle. Afterwards, in the same chapter, we have demonstrated
how the interference of the different emission paths of the remote atom and the two-atom
subsystem can be used to gain information about properties of the two close-by atoms, which
would be inaccessible without the remote atom. With our developed measurement proto-
col, using either the second-order or third-order photon correlation function, the distance of
the subwavelength separated atoms can be determined with sub-Abbe resolution. Then, we
extended the system by adding additional energy levels and excited states and presented a
method how the interference can be utilised to reconstruct the initially excited superposition
state of the two-atom subsystem. In the future, we plan to investigate further quantum sens-
ing tasks that can potentially be performed utilising the entanglement of a system of interest
with a remote quantum system created via conditional photon measurements.

In the subsequent Chapter 5, we extended the number of atoms from three to an arbitrary
number N. In a first step, we recapitulated the prominent phenomenon of Dicke superradi-
ance and traced the emission behaviour back to dipole-dipole correlations that emerge during
the course of the time evolution. We used this understanding to mimic a temporal Dicke-
like superradiant burst in a particular observation direction even in the case of far distant
non-interacting atoms, with the necessary dipole-dipole correlations created via consecutive

conditional photon measurements. To give a transparent physical explanation of the result-
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ing light emission, we applied a quantum path interference formalism, which allowed us to
calculate the full time course of the emission using combinatorics, i.e., by simply counting
interfering quantum paths. In the end, we gave a short outlook on the quantumness of the
correlations by explicitly calculating measures of entanglement and quantum correlations in
the case of two atoms, and by computing an entanglement witness and solving separabil-
ity equations in the general case of N atoms. In the latter case, in future investigations, a
comparison with other entanglement witnesses and an analysis of proper measures of entan-
glement and quantum correlations need to be done to unravel confusions and to be able to
clearly identify the origin of superradiance.

In the last chapter, Chapter 6, we considered once more an arbitrary number of atoms N, all
independent of each other, so that the total state is a simple tensor product of the individual
atomic states, and analysed the statistical moments of the emitted light. In particular, we
derived two conditions, one relating the number of atoms to the correlation order and one
relating the strength of the coherences to the populations of the atoms, which need to be
fulfilled to observe thermal light statistics in terms of photon correlation functions. In the
future, we plan to extend these investigations by additionally deriving conditions for the field
correlation functions. After establishing the two conditions, we demonstrated the validity of
the two conditions by considering several examples, one of them being a dilute cloud of atoms
driven by a plane wave laser field. In the last section of this chapter, we analysed the afore-
mentioned system in more detail in the small driving regime. Even though the dynamics can
be adequately described by a classical dipole model, the emission statistics differs drastically
from that of classical oscillating dipoles, showing the difference of the latter in comparison
to two-level atoms. In particular, we explicitly calculated the second-order autocorrelation
function and identified conditions for strong superbunching and antibunching. Thereby, the
heights of the superbunching peaks and the depths of the antibunching dips can be controlled
by the saturation parameter. These astonishing results motivate us to analyse the correlation
functions of even higher orders in the future and also to investigate a system of weakly laser

driven interacting atoms, i.e., a densely packed cloud of atoms.

114



A Power-Zienau-Woolley transformation

In this appendix, we derive the Hamiltonian describing the interaction between charges and
the quantised electromagnetic field in the long-wavelength approximation by introducing the
so-called Power-Zienau-Woolley transformation. The following derivation is based on Chapter
IV.C in Ref. [100].

A.1 Polarisation and magnetisation density

Assume a charge ¢, at position r, with respect to the origin. This charge can be represented
by a charge ¢, at the origin plus a dipole chain where the —g, and ¢, charges cancel each
other, such that only the charge ¢, at r, remains (see Fig. A.1). For n such dipoles their
separation reads “>. By letting n go to infinity, one arrives at a continuous distribution with

polarisation density

e T Pty !
P(r) = 7}1_{10102 QQI(S e e = ; du garad (T — ury) . (A.1)
P

This polarisation density together with the charge q, at the origin is an alternative description
of the charge ¢, at r,. Here, the dipoles are distributed along the line Or,, but any curve is
possible (with dipoles tangentially aligned), i.e., we have a certain freedom in choosing the
polarisation density. The made choice of a straight line gives the minimum polarisation field.

If we consider now a system of charges, we can describe them by the sum of all charges at

Ta To
/ qo /
0 0% 4a

Figure A.1: A charge q, at point 7, is equivalent to a charge ¢, at the origin @ plus a dipole
chain consisting of n dipoles eTe.
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the origin (which is zero for a globally neutral system) and a polarisation density

1
r) = Z/o du qorod(r — ury,) . (A.2)

For the following calculations, it is convenient to introduce the Fourier transform of P(r)

reading

Z / Lar“ g ikran (A.3)

From the divergence of P in Fourier space

zkra

follows that VP(r) = —p(7) + po(r) with p(r) the charge density and py(r) = (3, ¢a) 6(7)
the reference charge density. Further, from Maxwell’s equations, we have VE = % This
leads to the definition of the so-called displacement field D = oF + P, for which VD = p,,.

Writing the Fourier transform of D in terms of its so-called longitudinal and transverse

components as D = D + D, where P is parallel and D | perpendicular to k, we find
D\ = egEy with Ej being the static electric field produced by the charge density p,. If we
assume a globally neutral system, i.e., >, go = 0, py = 0 and thus D is a transverse field,
ie, Dy =0and D = D,, with which we obtain ¢gE = —P. This allows us to write the

Coulomb energy as
//d3 d3 /p ) /dgk ( ) ( )
’meg — r’ | " 2

&’k |8 (k)]> = /d3 r|By(r /d r|P(r)]?, (A.5)

00111

where we applied the Parseval-Plancherel identity and the Convolution theorem. Further, we
used &) = p kQ resulting from the Maxwell equation ik& = £ in Fourier space.
Connected to the motion of the charges, there is a current j, Wthh is related to a change of
the polarisation density P. With p+ VP = 0 and the conservation of charge p+ Vj = 0, we
find V(j — P) =0, i.e., j — P is divergence free. Thus, we can write

3(r) = Jp(r) + Jm(r) (A.6)

with j,(r) = P(r) the polarisation current and j,,(r) the divergence free magnetisation

current. Calculating the Fourier transform of Eq. (A.6) and transforming back to real space,
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leads to

1
Jm(r) =V x M(r) with M(r)= Z/o duugare X Tod(r — ury) (A.7)

«

interpreted as magnetisation density.

A.2  Power-Zienau-Woolley transformation

We now introduce the Power-Zienau-Woolley transformation by considering the standard

Lagrangian of electrodynamics in Coulomb gauge given by
1 .
L= za: §ma1'“§ — Veoul + /d% %O[A2 —A(VxA?+jA, (A.8)

where A is the vector potential. If we add the total time derivative of a function F' to this
standard Lagrangian, we obtain an equivalent Lagrangian L’ with respect to the principle of

least action. Power, Zienau, and Woolley introduced the function
F=— / d3r P(r)A(r) (A.9)

to obtain a new equivalent formulation. Grouping the resulting additional term together with

the interaction between charges and field leads to
= /d3rjA - /d% (PA+ PA) = /d3r MB + /d% PE, , (A.10)

where we used B = V x A and A = —E | . Therefore, we find that the interaction is given by
the coupling of the magnetisation density to the magnetic field and the polarisation density
to the transverse electric field. The new conjugate particle and field momenta are [& (k) is

the Fourier transform of A(r)]
1
Pl = MaTa +/ duugaB(rou) X o, (A.11)
0
I (k) =cod (k) — P (k), (A.12)
with which the new Hamiltonian can be found via the Legendre transform giving

- S o v o

Here, f denotes the integral over one reciprocal half space. This procedure would give us a new
equivalent description of quantum electrodynamics, which is particularly suited for a mul-

tipole expansion. However, for simplicity, we do immediately the so-called long-wavelength
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approximation, which will give us a pure electric dipole coupling. Let the system of charges
have an extent of a around the origin. Then, if the charges and the field couple mainly via
modes whose wavelengths A are much larger than the extent a, such that § < 1 holds, we

can approximate A(r) ~ A(0) in the coupling terms. The function F' reduces to
F =—A(0) /d3r P(r) =—-dA(0) (A.14)

with d = ) ¢aTo being the total dipole moment. Further, the interaction term in the

Lagrangian simplifies to
L) = /d3rjA — /d3r (PA+ PA) = /d?’r PE, (A.15)
since V x A(0) = 0 and the new conjugate momenta are

ParL = MaTo s (A16)
I (k) =cod (k) — P (k). (A.17)

We now present the new Hamiltonian, obtained via the Legendre transform of Eq. (A.13).
It can be split into a part describing the particles Hpy/, a part describing the radiation field
Hpgy/, and a part accounting for the interaction Hyy/. The particle Hamiltonian reads

Par 1

I 2
> S + 220 r|P(r)], (A.18)

P2, 1
Hppr = all Ly oo+ - ][d3k P (k)|? =
0

2m,
a (e}

where we extended the integral over one half reciprocal plane to the full plane, used the
Parseval-Plancherel theorem, and applied Eq. (A.5). The radiation field Hamiltonian is given
by
2,
Hpp = %0 /d3r {52(’") + 2|V x A(r)]2} : (A.19)
0
where II/(r) is the Fourier transform of IT;/(k), and for the interaction Hamiltonian we
find

P(r)II;, II;,
HIL/:/d?’r (r)Iy(r) , Il (0) (A.20)
€0 €0

A.3 Quantisation and physical variables

Now, we come to the usual quantisation procedure. Therefore, in the following, we denote
with a superscript (2) the operators in the new representation, whereas operators in the old

representation are labelled by a superscript (1). The position variables r, and conjugate
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momenta P,z now become operators that have to satisfy the fundamental canonical com-

(2)

mutation relations. This can be achieved by choosing the operators 7’ = 7, = 74 (i.e.,

multiplication with r,) and f)((f) = Po = —thV,,_,. The new field variables are represented by

A~

operators of 2 (k) = o (k) = ed.(k) + € do (k) and TS (k) = T(k) = eIl.(k) + &' [T (k),

which have to fulfil the commutation relations

>

A~

[ s(k)vns’(k/)] =0, (A.Zl)
ol (K), IT%, (k)] = ihd. . 0(k — K') . (A.22)

Thereby, € and €' denote two polarisation directions orthogonal to each other and to the

wave vector k. With these operators, one can define a new operator

wm;¢;&ﬁwﬁm+;mmﬂ (A.23)

whose Hermitian conjugate is

4@=¢£@Pw@@—;m@ﬂ. (A.24)

The commutation relations for the field operators then imply for the commutation relations

of these two new operators

la-(k), a=r (K')] =0, (A.25)
lal(k),al, (k)] =0, (A.26)
lac(k), al, (k)] = 6. 00 (k — k') , (A.27)

which shows that a.(k) and ai(k) are the annihilation and creation operators of the mode
characterised by k and e. Inverting Eqgs. (A.23) and (A.24), and performing a Fourier trans-

form gives the field operators in real space

A(r) = / Py 2&)(4):1(27#” [sae(k)ei’" + s*ai(k)e—ik”} , (A.28)
SN 3 hwy . ikr _ _x st (L, —ikr
II(r) = —ico / Sy I [eae(k:)e —etal(k)e } . (A.29)

Before we state the Hamilton operator in the new representation, we want to note that
depending on which representation one uses, the same physical quantity G is, in general,

described by different operators G® and é(l), where the operators are related to each other
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by the unitary transformation
T = exp <;F> = exp <—;LJA(O)> , (A.30)

ie., G® =TGOTT. Vice versa, the same operator in the two representations corresponds,
in general, to different physical variables.

Coming back to the Hamiltonian obtained via the Legendre transform of Eq. (A.13), we can
now give the operators of the different parts. The particle Hamiltonian is given by
Iz

+— [ d®|P(r)]%. (A.31)

Hyp=H2), =
P PL > 2ma 260

Further, the radiation field Hamiltonian can be written as

e I (r)
= )~ 1), - 2 /dsr{ ! +02[vXA<r>]2}

. . 1
= /d3k EE hwy, [a;[(k)ae(k) + 2] (A.32)
and for the interaction Hamiltonian we find

H; = A% ——dI1(0). (A.33)

Since the displacement field is D® (r) = eg E®)(r) + PP (r), we find II(r) = —b(f) (r) =

—501:1‘5_1)(1“), such that the interaction can be written as ﬁ} = —JE(LI)(O), i.e., as an electric

dipole coupling to the transverse electric field in representation (1). However, we should note

that the transverse electric field in representation (2) is not described by the operator E®.

dD?(0)
€0

Therefore, we should rather write the coupling as H, = — , i.e., as a coupling of the

dipole moment to the transverse displacement field at the origin given by

Thus, the total Hamiltonian reads

; 5
=y Poy /d3k 3 i [&l(k)&s(k) + 1} + L /d% Py — POy g

= 2mg €0
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A.4  Extension to two globally neutral systems

In this section, we extend the previous description to the case of two separated globally
neutral systems. Let us denote the two subsystems with letters A and B, and indices « and
B. The charges of subsystem A shall be placed around a point R4, and that of subsystem B

around a point Rp. The polarisation densities now read
PA/B Z/ duqa/ﬁsa/ﬁé('r—RA/B—usa/ﬁ) (A36)

where s,/3 = 7,3 — R4 /p are the relative position vectors. Again, since Za/ﬁ da/p = 0,
we have Ej4/p(r) = —% |4/B(7), which we can use to express the individual Coulomb
energies. To obtain the new description from the standard Lagrangian in Coulomb gauge,

again the total time derivative of the function
—/d?’r P(r)A(r) (A.37)

is added to the Lagrangian. However, here P(r) = P4(r) + Pp(r) denotes the total po-
larisation density given by the sum of the individual polarisation densities. Applying the

long-wavelength approximation and performing the transformation, leads to the Hamiltonian
(for details see Ref. [100])

Hp = Hp, + HE,, + Hppy + HA, + HE, + VAB (A.38)

where the particle Hamiltonians Hﬁé, the radiation field Hamiltonian Hg;/, and the inter-

. . . A/B
action Hamiltonians H; L/, are given as before. However, in addition, a term

1 qaqp
AB 3 * *

~
=self-energy for transverse polarisation
7‘/AB

/ol Coulomb energy between systems A and B

arises describing the interaction of the two subsystems. The Coulomb energy between the

two subsystems can be written as

V;:oul chtoolh choul choul
2
/d L [Pla(r) + Pjp(r)] _P||2A("“) ||B = % /d T Pja(r)Pp(r).
(A.40)
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By combining this expression with the self-energy, we finally find

VAB = = [ @ [PLAGPLa(r) + Pa(r)Po(r)] = - [ Par)Pa(r). (A1)

VAB vanishes

Since Py4(r) is strictly zero outside of system A and Pg(r) outside of system B,
if the distance |[R4 — Rp| between the two subsystems is larger than the extents of the two

subsystems. With that, we obtain a natural extension of the case of one system of charges.
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B  Explicit calculation of the coupling parameters

In this appendix, we carry out the explicit calculation of the coupling parameters appearing
in the quantum master equation. Therefore, we start with the function Fy,(k, R), which was

defined in the main text as
Fpo(k, R) = / 192 3 e*Rle el lege”]. (B.1)
£

In spherical coordinates, the wave vector is k = ke,. The two polarisation vectors are

orthogonal to the wave vector, such that we can wlog choose € = ey and €’ = e,. Thereby,

cos ¢ sin cos ¢ cos 0 —sin¢
e, = | singsinf | , eg= |singcosh |, ey,=| cos¢ (B.2)
cos 6 —sinf 0

are the spherical coordinate unit vectors. We see that, within this choice, the polarisation
vectors € and €’ are real vectors. However, we note that one could, e.g., also use complex
spherical unit vectors e4 = %(e + ie’). Since we integrate over the whole solid angle, we
can choose wlog R = Re, with R = |R| and e, being the Cartesian unit vector in the z

direction. With this choice, a straightforward calculation gives

lepR|[e,R] .

— (B.3)

2
/ do Z[epe} [e,e*] = 7(1 + cos20)8, 4 + m(25in?0 — 1 — cos?d)
0 g

ik R cos 6

Now, only the @ integration remains. With e?*® = ¢ = MY where n = kR, we

obtain the following three integrals

s . 2 3
/ df sin et cos? = 2501 , (B.4)
0 n
df sin 0 cos?he™ ¥ = Acosy + E sin (B.5)
2 3 77’
0 n non
™ meosg Asing 4
/0 df sin 0 sin?ge™ s = s;?n - c;;sn . (B.6)
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Putting everything together and simplifying, we finally arrive at

1 1 . 1
Pl R = 47 (i (5 = ) o+ gy onn
Rlle,R 1 3 3
(G- o)t o]} .

With this at hand, we can now explicitly calculate the coupling parameters of the final master
equation Eq. (2.46). We use Egs. (2.38) and (2.42) to find

3
e = 0 {dmd;

4reghc

1 1 i n 1
— —— | sinnou + —— cosNouw
Nopv 778/“/ ngul/

dn R, [d: R, 1 3 ) 3
[ (22 H M ] — 3 Sin nOulI + 5 COS nOl,LV ) (Bg)
nOul/ 770;/,1/ no/“/

R2,
where 1o, = koRy, and kg = ‘% The coherent coupling parameter Q,, needs a more
detailed treatment. Using Egs. (2.39), (2.43), (2.44), and Q= — (Ahy .+ ALY ), we
find
1 We Ld4
Q= HEr </0 dwy, [dp F(k, Ry,)d;) w,g—kwg) . (B.9)

In the following, we omit the index pr and adopt the notation to z = 1., 20 = Mo, and

ze = keRyy, where k. = 2. In addition, we write

e, R, 1|e,R,,
Foy(z, Ryy) = 4w [5p7qF1(z) e MR]Q[ " ]FQ(z)] , (B.10)
uv
where we defined

1 1 . 1
Fi(z) = (z_zg’> smz+?cosz, (B.11)

1 3\ . 3
Fy(z) = (2 - 23) sin z + 3 Co8 % (B.12)

To solve the integral in Eq. (B.9), we regularise it by replacing the sharp frequency cutoff by
the smooth step function [63]

w2

= B.13
w? + w? (B.13)

é(wk7 wc) =

and expand the integral to infinity. Note that the step function is &~ 1 for w; < w, and ~ 0
for wy > w.. We also note that the choice of the step function is not unique and the integral

depends on the specific choice. However, as we will see in the end, effects coming from the
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lim ———— — lim lim — T

R—oo —R Tp R e—0 R—oo —R Tp R

Figure B.1: Extension of the integral to the complex plane and avoiding the pole at z, by
going around it with a semi-circle.

step function can be neglected. We now have
1 1 o0 [dnR,.]d;R,,] 2 22
Qv = —— ———p.v. dz |d,d F — pr n” M F —_—
mn 4€0ﬁ7r2 Rzyp v (/ z |: n 1(2) R,%V Q(Z) 22 _ Z(% Zg + 22 )
(B.14)

— 00

where we used that the integrand is an even function of z to extend the integral to —ooc.
Before we proceed, let us do a small excursion in calculating Cauchy principal values. The

Cauchy principal value for any function f(z), which has a singularity at some point z, is

defined by
p.v. ( /_ de f@)) = lim [ /_ Z‘de flz) + / ngm f(x)] . (B.15)

Let us assume that the function f(z) is real and has a single pole of order 1 at x, on the real
axis. We can write f(z) = % with some function g(z) and extend the integration to the
complex plane assuming g(z), z € C, to be holomorphic in the following. We can avoid the

pole at z), by going around it with a semi-circle (see Fig. B.1). We then consider the integral

Iﬁ:/xpsdacf(x)—i-/oo da:f(ac)+/dz 9(z) (B.16)

—0o0 -

Tpte ~ z Lp

from which we find

ii_r}r(l)[n: p.v. </OO dx f(:c)) + lin% dz 9(2) : (B.17)

—0o0
Now, we consider the second term of the right side of the previous equation. Since the
function g(z) is holomorphic, we can expand it in a Taylor series around xp, i.e.,

©  (m)(y
o5 =3 L) gy, (B.18)

m
m=0
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where g™ (xp) denotes the mth derivative at position z,. With z—z), = ee? and dz = ice®dp,

we obtain for the integral

e—=0 /. Z—=Tp 0

: g(Z) _ "o R T - g(m)(m.l)) m " ml _
lim [ dz = /Odﬁzg(xp) i%; N df e = —img(xzp). (B.19)

=0

We note that since g(z) is holomorphic, we can expand f(z) in a Laurent series around z,,
from which we can read off g(z,) = Resy, f(2), where Res,, f(2) denotes the residue of f(z)
at x,. Now, to calculate the integral I, we can close the contour sketched in Fig. B.1 in the

upper half plane. Then, assuming zf(z) — 0 uniformly for |z| — oo, we have

I.=2mi Y  Res,f(z)= lim [, =1, (B.20)

2p€Pc,Im(zp)>0

where P¢ denotes the set of all poles of f(z) and the Cauchy principal value reads

p.v. ( /_ de f(x)>:2m' > Res, f(2) + inRes,, f(2) . (B.21)

zp€Pe,Im(zp)>0

If there are multiple poles of order 1 on the real axis, we simply need to replace imRes;, f(2)
by i pre P Resg, f(2), where Pr is the set of all poles on the real axis. Now, let us come
back to the expression of Qh,, in Eq. (B.14). We replace the sines and cosines in the functions
Fi(z) and F(z) by € and take later on the real and imaginary parts. Then, we need to

evaluate the following three integrals

0 »m 22 .
I, =p.v. dz — ——5—¢** B.22
m =PV /_OOZzQZng?—G—zQe ( )

— fm(2)

with m € {1,2,3}. We find poles at +zp on the real axis and at +iz. on the imaginary axis.
Since e** drops to zero for |z| — oo in the upper half plane, we close the contour in the upper
half plane. Thus, we get a contribution from the pole at iz., but not from the pole at —iz..

We write

fm(Z) _ 2™ Z? ez’z _ gml('z) _ gm?(z) _ gm3(z) (B.23)

(2= 20)(z+ 20) (2 +ize) (2 — i2e) z—z0 2420 z—iz

where we implicitly defined the functions ¢m1(2), gma(2), and gms(z). Thereby, gm1(2) is
holomorphic in a neighbourhood of zy, gm2(2) in a neighbourhood of —zg, and g¢,,3(2) in a

neighbourhood of iz.. Thus, we obtain

I, = 2miResi, f(2) + imRes,, f(2) + imRes_,, f(2)
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= 2Tigm3(ize) + imgm1(20) + imgma(—20) - (B.24)

Explicitly plugging in the expressions, leads to

2.2 4 —z
. [z5zfcoszy  zhieFe )
L =in < 0220+ > ch_{_ 22> = in[z8 cos 20 + G1(20, 2c)] (B.25)
0 c 0 c
2 o3 3,—z
zpzcsinzg e e .
ILy=m (— ch+ > Z§+ 22> = m[—zp sin zg + G2(20, zc)] (B.26)
C C
. ZCQ COS 20 zge_ZC )
Is =im Zi 2 2.0 " im|cos zo + G3(z0, 2¢)], (B.27)
0 c 0 c
where we defined the functions
G1(20, 26) = 5 (zte ™ — 2 cos 2) (B.28)
1(20, 2¢ Jo z.e 2 COS 20) , )
0 c
1
Ga(20,2¢) = m(zg’e_% + zg sin zp) , (B.29)
0 c
1 _
G3(20,2c) = R (—z2e™ — 22 cos z) . (B.30)
0 c

Changing back to the "n”-notation, we finally find (1., = keRyw)

1 1
d.R,.|d R,
_[ MR]Z[ u ][Im(Il) — 3Im(I3) + 3Re(12)]}
m
_wig d.d* 1 _L coS —Lsin +C’( )
N 4meghc men Nouv 77(?))“1, Moy nl%,w Nopw 1\Mopwv s Nepv
[dmRMV] [d;klR/uz] 1 3 3 .
_ — coS Moy — —5— sin Moy + Co(Mouws Nepw ,
wa Mo ngw 0 778,“, u (M0p> Nepwr)
(B.31)
where
1
4 (770#1/7776#1/) = 7773 [Gl(UOuwncuz/) - GS(nﬂuuancuu) + Gg(nouy,ncwj)] , (B.32)
Opv
1
Cy (nowa "70#1/) = [Gl (770w/7 ncuu) — 3G3(770w/7 770#1/) + 3G2(770NV7 778#,/)] . (B.33)
Opv

The functions C7 and Cs depend on the chosen regularisation function via 7,,,. However, on

the one hand, lim C;=0= lim (s, on the other hand, for finite 7., the contributions
Nepy —>00 Nepw —>00

from C; and Cy are negligible if ﬁ < 1 and e wql < 1, which is well satisfied if
Neyr = kel > 1 or equivalently R, > k_ 1. Since k! ~ ap, where qq is the Bohr radius,
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this is well satisfied if the separation of the atoms is much larger than their extent, which we
already assumed earlier to neglect the coupling of the polarisation densities. Therefore, it is
justified to omit the two functions C7 and Cy in Eq. (B.31) and we arrive at the expression

given in the main text [see Eq. (2.47)].
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C Quantum regression theorem

In this appendix, we derive the so-called quantum regression theorem, which links multi-time
expectation values of some product of operators to single-time expectation values of the same
product of operators when the unitary time evolution of the full system is replaced by the
time evolution of a reduced system. In the following, we show two different formulations, a
rather abstract one via the Laplace transform and a more practical one using the projection

onto an operator basis. We start with the Laplace transform formulation.

C.1 Laplace transform formulation

The following derivation of the quantum regression theorem is based on Ref. [101]. The basic
idea of the so-called quantum regression theorem is to connect two-time correlation functions
(O1(t")O4(t)) to single-time expectation values. Therefore, we write
Tr[p(0)01(t)02(H)] = Tr[p(0)T (¢, 0)01U (¢, 0)U (£, 0)0:U (1, 0)]
Tr[Ut, ) U, 0)p(0)UT(#,0) 01U, 0)UT(t,0)0,]

=p(t')
= Tr[Ox U(t,t")p(t)OrU T (t,1")] = Tr[OxQ(t, )], (C.1)

=Q(t,t')

(O1(t") Ox(1))

which has the form of an expectation value, where j(t) is replaced by Q(t,t'). Since jp(t) =
U(t,0)p(0)UT(t,0), it is obvious from the definition of Q(¢,#') that p(¢) and Q(¢,t') fulfil the
same equation of motion with respect to . Thus, if one is able to solve the equation of motion
for the density matrix p(t), one immediately has the solution for Q(¢,#') and the two-time
correlation function. However, note that p(t) is the total density operator, which describes

usually a composed system, i.e., the total Hamiltonian often reads
ﬁ:ﬁs—FﬁR—}—ﬁs}z:ﬁo—i—ﬁl, (C.2)

where H, S, H r are the system and reservoir Hamilton operators, and H sr accounts for inter-
actions between the two subsystems. Note that we assumed that the Hamilton operator is

time-independent. We are not interested in the dynamics of both the system and the reser-
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voir, but only of the system alone. Therefore, we use projection operators & and @ = 1 — P,

as given in Eq. (2.13), and define the operators

pr(t) = Pp(t). (C3)
palt) = Gp(1). (C.4)

Now, we Laplace transform the Liouville-von Neumann equation

2Lplt) = il pl1)] = ~iZ (1) (©5)
with Liouvillian & ... = [H,...] leading to
25(2) — p(0) = —iLH(2) (C.6)
Here,
< 2) — > ~ e—zt )
)= [ ai )

is the Laplace transform of p(t). Note that we set h = 1 for simplicity. Projecting onto the

relevant and irrelevant parts then gives

2p1(2) = p1(0) = —iPLp1(2) — iPLpa(2) (C8)
2pa(z) — p2(0) = —iQZL 1 (2) — iQL fa(2) - (C.9)

By rearranging and solving Eq. (C.9) for pa(z) and plugging the solution in Eq. (C.8), we

obtain

1

mm(o) : (C.10)

(z +iPL + PL @3) p1(2) = p1(0) —iPL

1
z+1Q0L

A usual assumption is that the initial state does not have any correlations, i.e., p(0) =
ps(0) ® pr(0), such that pe(0) = 0. This simplifies Eq. (C.10) to

(z +iPL + PL @g) p1(z) = p1(0). (C.11)

1
z+10L

Analogously to 1 (t), we can define Q1 (¢,t') == PQ(t, ). Then, assuming O; and Oy to be

system variables, we can rewrite the expectation values as

(Oa(t)) = Trs[O2 Trr[p1 (1)]], (C.12)
(O1(t)O4(t)) = Trg[O2 Trr[h ()], (C.13)
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where we used Trg[p(t)] = Trg[2p(t)] = Trg[p1(t)] and analogously for Q(t,¢). We now
assume t > ¢/, such that we can choose Q(t, ') = 0 for ¢ < t'. Defining the Laplace transform
Q(z,t') of Q(t,#) analogously to the one of the density operator, we immediately find the

same equation of motion for Q(z,t') as for py(2), i.e.,

. A N 2 '
(z+z@$+@$2+i@g@$> Qi(z,t) =, 1) + 2(2,t), (C.14)
where
H N _ #A Y A #A/_A ! ~ A
d(z,t) = z,@ng@gQQ(t,t)_ 2@32+i@3[p(t) ps(t') @ pr(0)]O1. (C.15)

Thus, we find that if no correlations build up within the time interval [0,¢'] and the reservoir
state remains unchanged, the inhomogeneous part @(z, t') = 0 and we obtain the same type
of equation of motion as in Eq. (C.11). Then, Ql(t, t') obeys the same equation of motion as
p1(t), such that the time evolution in the interval [t', ] is given by the solution of the master
equation for py(t). This is the quantum regression theorem. Usually, if the coupling between
the two subsystems is weak, one assumes j(t') =~ pg(t') ® pr(0) for all times ¢, such that the
use of the quantum regression theorem for the calculation of multi-time correlation functions

is justified.

C.2 Operator basis projected formulation

In the following section, we derive the quantum regression theorem again, but in a more
practical formulation. Therefore, we write it in an operator basis projected form given in
Ref. [77]. We assume, as before, that the Hamilton operator is time-independent, such
that also the Liouvillian superoperator is time-independent. The generalisation to the time-
dependent case is then found by small replacements, which we will address at the end of the
section. We assume that the time evolution of the reduced system is governed by a master

equation of the form

ps(t) = Lps(t), (C.16)

where £ is the corresponding Liouvillian superoperator for the time evolution of the reduced
system. We are interested in two-time correlation functions (Oy(#)Oa(t)) =
Tr[p(0)01(t')Oa(t)], where O1 and Oy are two system operators as before. Further, we write

the two-time correlation function in the same way as in the previous section as

~ ~

(O1(t)Os()) = TelU (1, ) p(H) 0L 0 (1, 1) 03] = Tx[Oapy (7)), (C.17)
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where we assumed ¢ > ' and defined po, (7) = U(r,0)p(t')O,UT(r,0) with 7 = ¢t — /. Note
that we used that the time evolution depends only on the time difference, i.e., U (t,t') =
U (1,0), since we assumed a time-independent Hamilton operator. Further, note that the
operator po, (1) is the same as (¢, ') of the previous section. Thus, it obeys the Liouville-
von Neumann equation with respect to 7, i.e.,

0 o

Eﬁol (T) = h[ﬂvﬁOl (7-)] (0.18)

with initial condition po,(0) = p(¢')O1. The corresponding system operators are found by

tracing over the reservoir degrees of freedom reading

ps,0,(1) = Trr[po, (1)] , (C.19)

p5,0,(0) = Trrlpo, (0)] = Trr[p(t")O1] = ps(t')O1 . (C.20)

If we now do the crucial assumption that the density operator p(t') factorises for all times ¢’

with some fixed initial reservoir state, i.e., p(t') = ps(t') ® pr(0), we find that
$0,(0) = p(t') 01 = ps(t')O1 ® pr(0) = ps.0,(0) ® pr(0). (C.21)

Note that in the previous section, we found that this assumption is the condition for the
correctness of the quantum regression theorem as it implies that po, (7) factorises at 7 = 0.
Therefore, we can derive the same master equation for pg o, (7) with respect to 7 as for pg(t)

with respect to t, i.e.,

ﬁS,Ol (T) = gﬁ5701 (T> 9 <C22)

for which the solution is given by ps.0,(7) = ¢?7ps.0,(0). Then, we find for the two-time

correlation function

(O1(t)0s(1)) = (O1(t)Oa(t' + 7)) = Tr[O2p0, ()] = Trs[Oa Trr[po, (7)]]
= Trs[02p5,0,(7)] = Trs[Ose”7 ps,0,(0)] = Trs[Ose” (ps(t)01)], (C.23)

which means that we can evolve the unnormalised state of the system after the application
of the operator O, at time ¢/ , ps(t’ )Ol, with the same master equation as for the initial state
at time ¢ = 0. The last equation is thus just another formulation of the quantum regression
theorem.

We now project the last expression onto an operator basis to get a direct connection between

the equations of motion of single-time expectation values and multi-time correlation functions.
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If we can find a complete set of system operators Au with p € {1,2,...}, which fulfil

Trg[A Z o Trs[A,0] (C.24)

for all system operators O and M ux being constants, we can relate the differential equations
of two-time correlation functions to the one of one-time expectation values. Note that this
equation holds true, for example, for the operators A, = |n)(m|, where |n) is any orthonor-
mal basis. We now find for the time derivative of the one-time expectation values of the

operators fl# that
(A1) = TrslAups(0)] = Trs[A,Zps(t)] = 3 My (Ax(1)) - (C.25)
A

Equivalently, we can write
(A(t)) = M (A(t) (C.26)
if we define the vector A := (A1, As,...)T and the matrix

My Mo
M= | My My ---|. (C.27)

Then, we obtain for the time derivative of the two-time correlation functions

L (OO A(t + 7)) = - Trsl e (ps(6)00)] = Trs[4, L7 (ps(1)00)]

=3 M Trg[Aye” (ps(t)01)] = > Ma (O1()Ax(t + 7)) , (C.28)
A A

i.e., the two-time correlation functions fulfil the same equations of motion as the single-time

expectation values. Again equivalently, in vectorial form we have
d - A A A
e (O1(t)A(t+ 7)) = M{(O1()A(t + 7)) . (C.29)

This is the quantum regression theorem projected onto an operator basis.

Now, finally, we have a look at the generalisation to time-dependent systems. If the Hamilton
operator is time-dependent, the time evolution operator U (t,t") does not only depend on the
time difference, but we need to keep both times ¢ and t’. For the following discussion, it is
then convenient to define the one-parameter family {V (¢)|t > 0} of dynamical maps, where
the dynamical map V (t) is defined via the commutative diagram shown in Fig. C.1 [62]. In

addition, we assume that the Markov approximation can be applied. Then, in the time-

133



APPENDIX C. QUANTUM REGRESSION THEOREM

unitary evolution

p(0) = ps(0) ® pr p(t) = U(t,0)[p5(0) ® pr(0))UT(t,0)
Trp Trr
ps(0) ps(t) = V(t)ps(0)

dynamical map

Figure C.1: Commutative diagram to define the dynamical map V(t) for the reduced system.

independent case, the dynamical map V(t) fulfils the semigroup property

V(t)V(ta) = Vit +t2) (C.30)

with £1,%2 > 0. Under certain mathematical conditions (see Ref. [62]), one then finds a linear
map &, the generator of the semigroup, such that one can represent the semigroup in its

exponential form as
V(t)=e”. (C.31)
Thereby, < will be the Liouvillian of the time evolution of the reduced density matrix, i.e.,
J . R
5iPs(t) = Zps(t). (C.32)

Now, if the Hamilton operator is explicitly time-dependent, & in Eq. (C.32) changes to Z(t)
and Eq. (C.31) changes to a time-ordered exponential. In addition, instead of the semigroup

property, the dynamical map V(t, to) can be split as
V(t, 1)V (t1,t0) = V(t, to) (C.33)

in analogy to the unitary time evolution operator.
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D  Quantum coherence, quantum correlations, and en-

tanglement

Since we use the notions of quantum coherence, quantum correlations, and entanglement
throughout this thesis and also quantify them in several places, we briefly discuss calculated

quantities in this appendix.

D.1 Measures

To quantify quantum coherence [102], quantum correlations [103, 104], and entanglement [105],
several measures can be used, which may be related to each other (see references for respective

reviews). In the following, we focus primarily on quantum correlations and entanglement.

D.1.1 Quantum discord

A measure of quantum correlations is the so-called quantum discord, which captures quan-
tum correlations even beyond entanglement [103] and quantifies basis-free quantum coher-
ence [106]. Consider a composite system AB with subsystems A and B. The quantum discord
with respect to subsystem A is defined as [103, 104]

Da(pap) =Z(paB) — Ja(pan) - (D.1)
Thereby,
Z(paB) == S(pa) +S(pB) — S(paB) (D.2)

is the mutual information accounting for the total amount of correlations between the sub-
systems A and B. Here, S(pa), S(pp) denote the von Neumann entropies of the reduced
systems and S(p4p) is the von Neumann entropy of the total system AB. Further,

Ta(pas) = sup |S(ps) — Siih(pas)| (D.3)
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quantifies the one-sided classical correlations with respect to subsystem A. Thereby,
M4 /A .
Spi(Pan) =Y paS(Ppia) (D.4)
a

is the conditional von Neumann entropy, where

. Tra[lla.pan
PBla = W (D.5)
a

is the conditional post-selected state of outcome a of a measurement on subsystem A de-
scribed by the positive operator-valued measure 11 A. Moreover, p, = Tr[f[ A.apAB] denotes
the probability of outcome a. Analogously, the quantum discord with respect to subsystem B
can be defined. We also note that a two-sided quantum discord Dag(pap) can be defined by
considering local measurements on both subsystems {f[ AB,ab = II A,a®f[ By} and by replacing
the one-sided classical correlations with the two-sided ’classical mutual information’ defined
as [104]

Jap(pap) = sup Typ” (pap) - (D.6)

Map
We end this subsection with two remarks regarding the application to pure states. First, for
pure states, the two one-sided quantum discords and the two-sided quantum discord coincide,
i.e., Da(pa) = Dp(paB) = Dap(pap) [104]. Second, for pure states, all quantum correla-
tions are directly related to entanglement and no quantum correlations beyond entanglement

exist.

D.1.2 Concurrence

The concurrence is a measure of entanglement. To arrive at the concurrence, we first introduce
the so-called entanglement of formation, which for a pure state [¢)) of the total system AB
with subsystems A and B is defined as [105]

E([¢) = 8(pa) = S(pB) - (D.7)

The entanglement of formation for a mixed state p can then be defined by the so-called

convex-roof construction as the minimum over all decompositions of p reading [105]

E(p) = minZPig(Wi))- (D.8)
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In the case of a mixed state p of two qubits, it was shown that this entanglement of formation

can be written as [107]

£(p) = H (1 Uk Ll )2> , 09)

where C'(p) denotes the so-called concurrence and H is the binary entropy function reading
H(z) = —xlogyr — (1 —x)logy(1 — x). (D.10)

The concurrence is given by
C(p) = max{0, VA = VA2 = VAs = VA } (D.11)

where the A\;js (i € {1,2,3,4}) are the eigenvalues of the operator pp, in decreasing order.

Thereby, the operator  is defined as

Q>

pi=6Gy @ 6,06, D6, (D.12)
where 6, denotes the y-Pauli matrix and p* is the complex conjugate of p. Since the con-
currence is a positive and monotonous function, the concurrence can directly be considered
as a measure of entanglement instead of the entanglement of formation. Thereby, C(p) = 0
indicates no entanglement, while a value of C'(p) > 0 quantifies the amount of entanglement,
with maximal entanglement for C(p) = 1. In the case of pure states, the concurrence can be
written as [105]

C(|v) = /2(1 — Tr[p?]) = \/28L(p) , (D.13)

where p is one of the reduced density matrices and Sr(p) is the linear entropy function. We
note that first, from this expression, it is clear that the concurrence measures the entanglement
of the state in terms of the purity of the marginal density matrices. And second, the relation
of the concurrence to the linear entropy function allows for the construction of entanglement

measures based on the linear entropy function.

D.1.3 Global entanglement

The global entanglement is a multipartite entanglement measure defined as the average over
bipartite entanglement measures. Thereby, the amount of bipartite entanglement is quantified

by the linear entropy function defined in the previous subsection. The global entanglement
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for pure states of N qubits reads [108-111]

N N
QU = 1 D2 281(5) = 5 D220~ Telaf)), (D14
k=1

k=1
where pr is the reduced density matrix of the kth qubit. Here, the linear entropy function
measures the entanglement between the kth qubit and all other qubits. This definition allows

for a straightforward generalisation to bipartite divisions consisting of subsets of qubits, which
can be written as [110, 111]

1 m
Q)= (1) 3 G- Tl (D.15)

m
|S|=m

Thereby, S denotes a subset of m qubits and pg = Trg/[p] is the corresponding reduced
density matrix of this m-qubit subsystem (S’ consists of the remaining N — m qubits). This
defines a class of [N /2] measures, all with values 0 < @Q,,, < 1. A measure for mixed states

can be obtained again by the convex-roof construction.

D.2 Correlation function

Let us consider two operators O4 and Op on the subsystems A and B. We define the

correlation function

~ ~

K(0,08,p) = (0408) — (04) (Op) . (D.16)

In the case of pure states, this correlation function can be used as an entanglement measure
if we take the supremum over all operators OA, Op. In particular, a nonzero value of K
corresponds to quantum correlations due to entanglement. The reason is quite simple. For
a pure separable state, it is easy to show that K = 0. Therefore, a value of K # 0 implies
that the state can not be separable, i.e., the state must be entangled. We use this property

mainly throughout our explanations in Chapter 5.

D.3 Explicit calculations for the three-two-level-atom system

In Chapter 4, we consider a second- and third-order photon correlation measurement. Thereby,
the measurements at t = 0 are seen as a preparation of the quantum state. At several loca-
tions, we note that these measurements can be used to create entangled states, which then
lead to the interference phenomena that we discuss in detail in Chapter 4. In this section, we
explicitly prove that the encountered states are indeed entangled by calculating the global

entanglement and also the concurrences for the reduced two-atom states.
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D.3.1 State after the first photon measurement

The normalised state after the first photon measurement is given by

1 . . ,

i) = %(6161’1 lg,e,e) + 921 le,g,e) + e'3.1 le,e, g)) . (D.17)
Since the amount of entanglement does not depend on the relative phases of the state, the
global entanglement as well as the concurrences between the different atoms are independent
of the d-phases and read

QY1) = ¢ (D.18)

WM ©| oo

(D.19)

Here, p12 denotes the marginal state when we trace out the third atom and analogously pi3,
p23 are the marginal states when we trace out the second and first atom, respectively. As
can be inferred from the values, a highly entangled state is produced via the first photon

detection.

D.3.2 State after the second photon measurement

The normalised state after the second photon measurement is a bit more complicated reading

|¢2> _ N71/2 [(6i(52,2+53,1) + ei(62,1+53,2)> ]e,g,g) + (€i(§1,2+53,1) + ei(51,1+53,2)> ]g,67g>

+ (ei(51,2+52,1) + ei(51,1+52,2)> 9,9, €>} (D.20)
with normalisation

N =2[3+4 cos(d1,1 — 01,2 — 2.1 + 02.2) + cos(d1,1 — 01,2 — d3.1 + I32)
+ COS((5271 — (5272 — 53,1 + 53,2)] . (D.21)

Using this state the global entanglement can be calculated as a function of the d-phases.
Since the general expression is quite involved, we omit writing down the explicit form and

rather evaluate it below for the two special cases discussed in this work.

Engineering of spontaneous emission

In the case of our engineering of spontaneous emission setup (see Section 4.1.2), the positions
of the atoms are Ry = 0, Ry = %:ﬁ, and R3 = 4\x. Further, the detectors are located at

azimuthal angles @1 = 2{ and o = ;. For this configuration, the global entanglement is
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given by

Q(2)) =~ 0.34 (D.22)

and the concurrences between the atoms are

C(p12) ~ 0.43, (D.23)

This shows that all three atoms are entangled with each other, with biqubit entanglement

particularly between atoms 1 and 2 and between 2 and 3.

Subwavelength imaging

In the case of our subwavelength imaging setup, we project out the antisymmetric state by
measuring perpendicular to the atomic chain. Thus, we have 611 = d21 = 03,1 = 012 = d22 =
032 = 0, so that the state is given by the symmetric Dicke state

1
V3

for which the global entanglement and the concurrences are easy to calculate reading

[v2) = —=(le;9,9) +g,¢,9) +19,9,€)), (D.26)

Qlv2)) =

C(p12) = C(p13) = C(p23) =

, (D.27)

Wl N ol oo

(D.28)

Note that the values are exactly the same as for the state [¢1), which obviously needs to
be the case since we simply swap the ground and excited states. This does not change the

amount of entanglement.

D.4 Global entanglement of symmetric Dicke states

In this section, we calculate the global entanglement of symmetric Dicke states. Let us

consider a symmetric Dicke state written as (the state |.J, M) is defined in Chapter 5)
N 12
]DSQ)::‘J:N/Q,M:ne—N/%:( ) Z IN;S) , (D.29)
n(i
|S|=ne

where S denotes a subset of the N atoms and |N;S) is a tensor product state of N atoms

with n, many atoms in the excited state. Thereby, the subset S specifies which atoms are in
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the excited state. We need to calculate the reduced density matrices pn—_,, where we trace
out m qubits. Since the state is symmetric with respect to the atoms, the density matrices
do not depend on the specific atoms, such that we choose to trace out the first m atoms in

the following. Further, we choose the symmetric Dicke states
m\ ~1/2
D) = (n,> Z im; S') (D.30)
c IS |=ns

to be part of the basis used for the partial traces and we calculate

1/2 ~1/2 1/2
m m N N-—m _
(ogle o = (1) () (VT o oa

e Ne
Therefore, the reduced density matrices read
m -1
) m\[(N—-—m)\ /N N_ N
prm = @ <”’e> (ne - né) <ne> DD | (D.32)
nL=0
where (Z) =0 if k£ < 0. Then, we find for the trace of the squared reduced density matrices
m 2 2 —2
.9 _ m N—-—m N
iAo = 32 () () (o)
nL=

N-—m 2 N —2
= < ) ( ) 4F3(a17a27a37a4;b17b2,b3;1) = Pu(N’m7ne)’ (D33)

e Uz
where we defined the purity function Pu(N,m,n.), and a1 = ag = —m, a3 = a4 = —ne,
by = 1, and by = b3 = N + 1 —m — ne. Here, ,Fy(at,...,ap;b1,...,b4; 2) is the so-called

generalised hypergeometric function. Now, we finally obtain for the global entanglement of

a symmetric Dicke state

[1 —Pu(N,m,n.)]. (D.34)

—1 m
(D) = () X gl PuVom ] = g

m 2m — 1
|S|=m

D.5 Entanglement witness based on the structure factor

An entanglement witness is not a strict entanglement measure, but explicitly designed to
detect a certain class of entangled states. It is a Hermitian operator whose expectation value
is greater than or equal to 0 for all separable states, such that any value less than 0 implies
entanglement. In this section, we present the entanglement witness introduced in Ref. [112],

which is based on the structure factor of coherent diffractive imaging. It is defined as

A

W(k) =1—3%(k), (D.35)
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where
A~ 1ra S
(k) =3 [Z(k) + z(—k)} (D.36)
and
N N\ ! ) ) .
(k) = <2> [0S () + Sy (k) + 2822(h)| (D.37)
Here, the operators
A N . ~ A
Saa(k) =4 BRI GIWSY) o € {,y, 2} (D.38)
u<v

are based on the structure factor and account for pair correlations of the atoms. Further, R,

is the position of the uth atom (one dimensional). If the goal is to detect symmetric (Dicke)

states, it is best to use k = 0 and ¢; = ¢y = 1, ¢; = —1. In this case, the expressions reduce
to
. N\ L. . )
W=1- <2> [See + Sy — Sz (D.39)
and
N
Saa =4 _SWSEY) o€ {x,y,2}. (D.40)
p<v

Thereby, the constructed entanglement witness reliably detects entanglement of symmetric

Dicke states with approximately N /2 many excitations [112], i.e., (W) < 0, but fails to detect

entanglement for small (= 1) or large (= N) number of excitations, i.e., (W) > 0 in these

cases.

D.5.1 Entanglement witness for Dicke superradiance

In the case of Dicke superradiance, the density operator at any time ¢ can be written as an
incoherent sum of symmetric Dicke states as in Eq. (5.34). Thus, the expectation value of

the entanglement witness is simply given by [112]

A N ne(N —ne.) — —2n,)?
WO = T p(0] = 1= 3 pron (9= SN

ne=0

where we characterised the density matrix elements by the number of excited atoms n.
(ne=M + N/2).
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D.5.2 Entanglement witness for Dicke-like superradiance of distant non-interacting atoms

In the case of Dicke-like superradiance via consecutive photon measurements, we need to
calculate the expectation value of the entanglement witness with respect to the conditional

states ppm—1(tm). First of all, we recognise that

(Baa) = 2 (Baa) = 5 (D.42)
Since (S‘?Q = <5’3) = 0 for the states py,—1(ty,), we have
(8:8) = (8,8) = § ((8:8) +(5-81)) . (D.43)
We already know that
(S+5-) = Tr[S4-S—pm—1(tm)] = GV _ (t1,....tm) = m(N —m + 1)e~ 27 (D.44)
Further, by using (7. is the excited state number operator)
(8:) = () — (D.45)
and Eq. (5.63), we find
(5_8,) = =2(8.) + (545 ) = (m — 2)(N —m + 1)e 'm 4 N . (D.46)
Therefore, the two expectation values for the z and y components are
(Szz) = (Syy) = (m = 1)(N —m + 1)e"2tm (D.47)
Now, we calculate the remaining z component. By writing
A N?
(828:) = (Ag) = N {ie) + = (D.48)

2

we recognise that the only expectation value that is left to calculate is (n;

), which can be

evaluated as

(72) = gpm_l,sum)(f T I G [

= (N —m+ e [(N —m) + e2im], (D.49)
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The final result for the expectation value of the entanglement witness is then given by

de= ' (N —m+1)[(N +m — 2)e*?' +m — N]

W(t) = Te[Wppm—1(tm)] = 2 — N(N —1)

(D.50)

D.6 Separability of symmetric mixed states

Due to the sublinearity of entanglement, in the case of mixed states, it is hard to decide
whether a state is entangled or not. However, in the case of an incoherent mixture of sym-
metric Dicke states, in Ref. [18] they developed a method to check for the separability of
such states by solving N + 1 polynomial equations. For this purpose, they constructed the
so-called separable diagonally symmetric (SDS) states [18]

o ]max
Psps = — / d¢ 25 (Plys )2V | (D.51)

where the integral over ¢ cancels all single-atom coherences and the state is symmetric and

separable by construction. Further, the single-atom states are parametrised as

ply, ol = Vi lg) + /1 —yele) (D.52)

and the normalisation of the SDS state demands that the sum of the weighting factors z; is
equal to unity. Then, by rewriting the state pspg in terms of symmetric Dicke states, they

found the following set of polynomial equations [18]

jmnx T N—ne 1 o
_N'Z ]yf v ,ne €{0,...,N}, (D.53)

— ne)lne!

which needs to be solved to check whether the state
N
p= Z pn. D) (DY | (D.54)

is separable. Thereby, the solution needs to pass a ”sanity check”, i.e., the state p is only
separable if one can find a solution of Eq. (D.53) that satisfies 0 < z;,y; < 1 for all j. In
Ref. [18], by numerically solving the set of equations for up to N = 8 atoms, they claim
that in the case of Dicke superradiance the resulting mixed state is actually separable. For
the discussion within this thesis, we extend these calculations to up to N = 16 atoms (see
Chapter 5).
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E Wigner-Eckart theorem and selection rules

In this appendix, we state the Wigner-Eckart theorem and show its application to the dipole

operator to obtain selection rules for atomic dipole transitions.

E.1 Wigner-Eckart theorem

Let us consider two commuting angular momenta Land S , which are added together to give
the total angular momentum J = L+ 8. A natural basis is given by the tensor product basis
defined as

|0, myg; s,mg) = [€,my) @ |s,ms) . (E.1)

However, it is often convenient to work in the common eigenbasis of J? and J,. Since
[i}2, jl] = [5’2, j,] = 0,1 € {z,y, 2}, the new basis states can be characterised by four quantum
numbers, so we write the states as |j,m;,(¢,s)). The matrix elements between the two

introduced basis sets denoted as
(€, mg; 5, m|3,my) = (€, myg; s, ms|j,mj, (¢, s)) (E.2)

are the well-known Clebsch-Gordan coefficients.
Now, we continue by defining so-called tensor operators Tkmk by their transformation prop-
erties under rotations. These can be formulated via commutation relations with a given

angular momentum operator J as

[jza Tk,mk} = hkak,mk ) (E3)
[j+,Tk,mk} = hfk,kak,karl ) (E.4)
[j—a Tk,mk} = hfk,mkflfk,mkfl 5

where fi,m, = /k(k + 1) — mg(my + 1) and Jx == J, +iJ,,.

The Wigner-Eckart theorem now states that the matrix elements of such tensor operators
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Th.m, can be related to Clebsch-Gordan coefficients via [113]

2 1Tl

Here, (j'||Tk||7) is the so-called reduced matrix element, which only depends on the angular
momentum quantum numbers j’, j, and k, but not on the corresponding magnetic quantum

numbers.

E.2 Application to dipole transitions - selection rules

In the following, we apply the Wigner-Eckart theorem to the dipole moment operator. The
dipole moment operator of a single atom can be written as d = —er, where 7 = )" 7, is
the sum over all position operators of the individual electrons. The eigenstates of an atomic

system are, to a very good approximation, eigenstates of J? and J,, where

J=E4 8= (Ea+t 5 (E.7)

(07

is the total angular momentum. Thereby, L, and S, denote the orbital angular momentum

and the spin of the ath electron. In this eigenbasis, the dipole matrix elements read
dJ,mJ;J’,Mf] = <J7 mJ‘(_eﬁ)‘Jlﬂmfﬂ . (ES)

Let us now consider a special case of tensor operators, the so-called vector operators, which
are tensor operators of order 1, i.e., kK = 1 in the previous notation. A vector operator is
thus characterised by its three components Rq, q € {—1,0,1}, where Rq = Tl,q. Such vector

operators fulfil the commutation relations

[J+, R+] =0, (E.9)
[Jx, R+] = V2hRy, (E.10)
[J.,Ri] = +hR. (E.11)
[J2, Ro] = 0, (E.12)
[Jx, Ro] = V2hR. (E.13)

where we defined Ry = Ry;. The vector operator R is called a spherical vector operator
and its components J%q are called spherical components if they are related to the cartesian

components via

Ry =——(R,+iR,), (E.14)

146



E.2 APPLICATION TO DIPOLE TRANSITIONS - SELECTION RULES

R 1 . .
R_ = E(Rx —iRy), (E.15)
Ro = RZ . (E.16)

The commutation relations can then be summarised to a single commutation relation for the

cartesian components reading
[jaa Rb] = ihsabcRc ) (E17)

where .4, is the epsilon tensor.
In what follows, we show that the dipole moment operator is a spherical vector operator.
Therefore, first note that

[La, 7] = [EacgcDgs Tb) = EacgPe(—iR)dgp = Eaeple(—ih) = iheapere . (E.18)

Thus, we find that

[Ja, dp] = Z(ﬁa)a + (Sa)a’ —€ Z(fﬁ)b = —€ Z[(ﬁa)aa (fﬁ)b] = —¢€ Z 6&6[(£O¢)a’ (Pa)b)
a.B

=—e) iheape(Fo)e = iheapede, (E.19)

which shows that d is a spherical vector operator. Then, by applying the Wigner-Eckart
theorem Eq. (E.6), we find for the matrix elements of the spherical components the following

relation
(Jymglde | m5) o (J',m!y; 1,100, my) . (E.20)
In addition, we generally have

(L,mp; 8, ms|J.|J,my) = hmy (L,myp; S, ms|J,my) = h(mg, + mg) (L,mp; S,ms|J,my)
(E.21)

which implies that (L, mp;S,mg|J,ms) = 0 if my # mp + mg. Thus, the Clebsch-Gordan
coefficients fulfil (J',m/;; 1, £1|J,ms) # 0 only if m/, £1 =m; and

(Jymyglde|J',m}) #0 onlyif my=m/+1, (E.22)
(Jymygld_|J',m}) #0 onlyif my=m/—1, (E.23)
(Jymyldo|J',mY) #0 only if my=m/. (E.24)
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Finally, to find the dipole transition matrix elements d, = (m|d|g) introduced in Sec-
tion 4.2.1, we have to write the dipole operator in its spherical components. Therefore,
we define the polarisation vectors for left-circularly polarised, right-circularly polarised, and

linear orthogonally polarised light as
. . r . . . ]
€41 = €4 = :Fﬁ(ex +iey), €p =€, , (E.25)

where the hat indicates normalisation to unity. Note that €;€, = d, 4, i.e., the vectors are

mutually orthogonal. Now, we can write the dipole operator as

A Lo s, 5 A
(dy +idy)é_ — ﬁ(dm —idy)é; + d.€ (E.26)
=dl = —=(dy —idy)é* — —=(dy +idy)é" + d.éy = d_é" +d & +doély,  (B.27)

where we used Egs. (E.14)-(E.16). Now, using Eqs. (E.22)-(E.24), we obtain for the dipole

matrix element dy introduced in Section 4.2.1

do = (0|d]g) = (1,0[d]0,0) = (1,0|d+]0,0) &% + (1,0|d_|0,0) & + (1,0]do|0,0) &;

=0 =0
— (1,0/dol0, 0) &5 = (1ldolg) €5 (E.28)
Analogously, we have
di = (1|d|g) = (1ld+|g) €}, (E.29)
d_y = (~1ldlg) = (~1]d_|g) " , (E.30)

where we can assume with proper choice of phase that (m\cfm| g) € R since we can generally
write (m|dy|g) = rme’® with r,, € Rt and ¢,, € (—m,7]. Now, by absorbing e/®" in the

definition of the excited states |m), one can achieve the claimed result.
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F Quantum trajectory method

In the following procedure, which is based on Ref. [77], we decompose the time evolution

governed by a master equation of the form

0

o= (F.1)

into so-called trajectories. The solution of Eq. (F.1) is formally given by

p(t) = e”'p(0). (F.2)

To rewrite Eq. (F.2), we first derive a general expansion for an exponential operator of the
form e!A+=B)  For this, we relate the expression to the physical problem of evolving a system
that interacts with another system, described by a non-perturbed Hamiltonian Hy and some
interaction term V. The full time evolution in the Schrédinger picture is governed by the time
evolution operator U (t,0) = e_%t(HOJ“V), where we assumed that the separate Hamiltonian
parts are time-independent. We can decompose the time evolution operator in the interaction

picture given by

Ur(t,0) =T (e—% Iyt VI@’)) (F.3)
as
Ur(t,0) = Up(0,1)U(t,0), (F.4)

where 7 is the time-ordering operator and V;(t) = Ug(t, 0)VUy(t,0). Furthermore, Up(t,0)
describes the time evolution initiated by the unperturbed Hamiltonian JEIO. Now, we make
the identifications A = —%FI@ and 2B = —%f/ to find

Uo(0,t) = Ul (¢,0) = U (t,0) = e 4 (F.5)
and
Vi(t) = e~tAihzBetA . (F.6)
149



APPENDIX F. QUANTUM TRAJECTORY METHOD

Then, the full time evolution operator is
U(t,0) = !B = 071(0,0)011(¢,0) = e Ag (eadt e HeB ) = g e fids B (.7)

with B (s) = e=sABesA, Now, we write the last expression in a Dyson series to obtain

0
~ oo t t'm t2 ~ ~ ~ N
—et4 me / dt / dtyy1 ... / dt; e tmABetmA | e~t1A Bet1A
0 0 0 0

0 t tm to N . N -
S [t [itise [t et Bttt e,
0 0 0 0

A S t tm ta X .
etA+eB) —_ tA me/ dtm/ dtm_l.../ dt1 B(ty)B(tm-1)...B(t1)
m=0 0 0

(F.8)
Using this expansion, we can write Eq. (F.2) as
pt) = e7"p(0) = e+ (0)
o tm to
— Z / dt ., / dtym—1 / dt,
00 0 0
% e(ﬂ—é’)(t—tm)&e(g—&)(tm—tmfl)".6(3—6’)(t2—t1)&e(g—cs’)hﬁ(o) ) (Fg)

This expression allows for an interpretation of the time evolution in terms of so-called quantum
trajectories [77]. The total time evolution is given by the sum of all possible trajectories or
paths that the system can take. In the case of an atom that spontaneously emits photons, the
action of & could be the destruction of a photon in a direct photon measurement. Then, the
trajectories consist of time spans, in which the system evolves without photon detections and
of times at which photon detections take place (so-called quantum jumps). The conditioned

source density operator at time t is [77]

ﬁc (t) = ﬁc <t)

= T (F.10)

where p.(t) = (&) t=tm) §e(L=8)(tm—tm—1) _ o(Z=S)t2=11) 9L =)t 5(0) is the unnormalised
conditioned density operator. Depending on the explicit form of & — & and &, one can often

write the conditioned (unnormalised) density operator as a pure state reading

:ac(t) = |¢c(t)><¢c(t)’ ) ﬁc(t) = |wc(t)><wc(t)| . (F'll)

The time evolution without a quantum jump given by & — & can then be replaced by the
time evolution generated by a non-Hermitian Hamiltonian H and a quantum jump described

by the action §p.(t) = C’ﬁc(t)C'T is accounted for by applying the so-called collapse operator
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C to the pure state. Thereby, each pure state trajectory is split into small time steps At
and whether the state at time ¢, = nAt is time-evolved without a collapse or undergoes a

collapse is stochastically chosen depending on the collapse probability

pc(tn) = <¢c(tn)|éTé|¢c(tn)> At. (F'12)

Then, the time evolution of the density operator is obtained by the average over the stochas-
tic trajectories of the pure states. We note that a single trajectory can be seen as a single
physical realisation, whereas the density operator describes the ensemble average of all phys-
ical realisations. We further note that the choice of & is not unique, but rather that there
exist multiple different so-called unravellings of the master equation with different physical
interpretations.

Let us now describe the situation of post-selecting trajectories, e.g., due to conditional mea-
surements. In Eq. (F.9), all possible quantum trajectories are included. However, we some-
times condition multi-photon measurements on the direction and time of previously measured
photons, i.e., we select only specific quantum trajectories. Consider, for instance, only quan-
tum trajectories, where one photon was measured at a specific time ;. Then, we only have
quantum trajectories with m > 1 and from Eq. (F.9) we get the unnormalised density oper-

ator

) oo m t tnt2 tnt1 t t2
ﬁ(t):ZZ/Edtm.../{ dth/O dtn/o dtnl.../o dt;

m=1n=1"" 1

X O(ty, — 1)L tm) g 9e(L=5) 5(0) . (F.13)

Here, we already changed the integral limits accordingly, i.e., all photon detections that
occur after the photon detection at time #; can only occur in a time span beginning with
the time ¢, while the last photon detection before the photon detection at time ¢; can only
happen until the time #;. Since n goes from 1 to m and m goes from 1 to infinity, every
possible decomposition of numbers of photon detections before and after ; is accounted for.

Therefore, we can do the replacement
o m o o
)IED IS Fa
m=1n=1 m=0n=0

to have two new sums going from 0 to infinity, one for all photon detections after and one for
all photon detections before the photon detection at time #;. In addition, we can carry out

the integral of the nth time ¢, leading to

N ot to )
p(t) = Z /t dtm /t dty e(Z=)t=tm) o op(Z=S)(t1-t1) ¢
m=0"" 1
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> £1 t ng / /
x> | .. Cdt, (2=t g 9l L=9) 5(0)
n=0 0 0

_ 63’(1&—51)(5)6351[)(0) — eg(t_fl)ﬁg(tl), (F.15)

where we can identify the density operator after the photon detection at time #; as

PN 21 (2)

ps(t1) = m (F.16)

Eq. (F.15) means that the density operator evolves with the usual time evolution given by the
master equation up to ¢;, where the specified photon detection takes place, and afterwards

evolves again with the time evolution given by the master equation.
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G Dicke-like superradiance of distant non-interacting

atoms - supporting calculations

In this appendix, we give some supporting calculations to Section 5.3.

G.1 Differential equations for the density matrix elements

In the first section, we explicitly carry out the projection of the master equation Eq. (5.36)

onto the tensor product basis. A straightforward calculation yields

N
gtmlﬁ(t)lm=—VZ(<a!§(+“)§(_“)ﬁ(t)lﬁ>+<alﬁ() #18) = 28" 5(1)8(”18))
pn=1
N
= =72 | D (@l ) (8 6()18) +Z $10) (¢158418)
p=1 X

(@S |n) (n] p(t)16) (6] 54 18)
7,0

N
0 ()
& 5pPas(t) =27 2:1 Pyt s () = Z Psins(t) =7 Z Pa,sc (G.1)
H:

whereby the last equal sign () is restricted by the three conditions listed in Egs. (5.38)-(5.40),
which need to be fulfilled separately to obtain a contribution from the respective terms in
the sums.

In general, this gives 22V — 1 real first-order differential equations for the density matrix
elements. To reduce the number of differential equations, we assume specific initial density
matrices. We only consider density matrices, which are block-diagonal with respect to the
number of ground state atoms. Furthermore, we restrict ourselves to initial density matrices
that provide the same initial conditions for the differential equations of the density matrix
elements that are of the same form. If the initial state fulfils these two requirements, the state
after the time evolution and consecutive conditional photon measurements at a particular
position, for which the emitted photons accumulate the same phase for each atom, also

meets the two requirements. The set of real first-order differential equations can then be
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reduced to N? many equations, meaning that only particular differential equations need to
be solved.

This leads to the following set of first-order differential equations for the diagonal elements

Py(0) g (t) —2yN 0 0 2\ [P g0 (D)
8 | Py g0 (@) 2y —2y(N —1) 0 Py (1) ©2)
9 : _ ’ . (G2
ot | p,@ o) 0 Ay —2y(N - 2) P2 ()

9uv 9uv v 9uv

while the set of first-order differential equations for the off-diagonal elements is given by

t t
Po), o0 ) Po, o0 )
t t
P2 42 ®) —2y(N-1) 0 0 0 0 0 L@ 4@ ()
P2 (2 (1) 2y —2y(N-2) 0 0 0 0 P2 (21
a Iex9pv 0 0 727(1\/'72) 0 0 0 Iex9pv
P @3 ) | = 0 4y 0 —2v(N—=3) 0 0 P 3 (t)
at KA’ K,)\u(t) 0 0 2~ 0 —2’y(N—3) 0 rRAp’ p.—,)\u(t)
P (3 3 _ _ P (3 3
gfv)\)p'gfcu)g 0 0 0 0 0 2v(N-3) . g,i)\)wgfw)&
P33 (t) : . P 3 @ ()
kip9veo IeapIveo
(G.3)

These two sets of first-order differential equations can then be solved analytically by either

taking the matrix exponential or by a successive application of the Duhamel-principle.

G.2 Multi-time expectation values of pseudo-spin raising and lowering op-

erators

To evaluate the higher-order photon correlation functions in Eq. (5.45), we need to find the
multi-time pseudo-spin expectation values. This can be achieved by applying the quantum
regression theorem of Appendix C. Therefore, we first need to compute the single-time expec-
tation value (S (t)...5 (£)S_(t)...S_(t)) consisting of m collective pseudo-spin raising and m

collective pseudo-spin lowering operators. Expanding the collective operators leads to

N N N N
(S ()5S (). 5y = Y 3 Y (8 0)..8E ) ()8 (1)... 84 (8)) |

(G.4)

i.e., the evaluation of expectation values of the form <S‘Sr“1)(t)...gsr”m)(t)S’(_Vl)(t)...S’(_Vm)(t».
First of all, we note that if s = p1,, or vy = 1, for some s,p € {1,..., N}, the expectation value
is zero since [S’(_“)]2 = [Ssr“)]Q =0 for all p € {1,..., N}. Further, remember that we consider
density operators, which are block-diagonal with respect to the number of atoms in the ground

state. Then, if any ps # v, Vp or v, # ps Vs, the expectation value is also zero, such that
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G.2 MULTI-TIME EXPECTATION VALUES OF PSEUDO-SPIN RAISING AND LOWERING...

it is enough to examine expectation values of the form <H:,n:1 gius)(t) | | g(_“p)(t)> with
ps # pp for all s # p. This single-time expectation value can be calculated by using the
master equation Eq. (5.36). To understand the structure, we first start with the expectation

value (S'Sf ) (t)S'(_“ ) (t)). To be able to apply the master equation, we build the time derivative

reading
2500890 = 1815 ()
=7 i {Te8P810817 8% p(o)] + oS W) p(1) 515
v=1
—2Tr[$1W 1 g1 [)(t)S'Sr”)]} (G.5)

Tr[$1 W S 6 5(#)) = Ta[S¥ W (1) S 5]

A1) &) &) A &) A1) &) A/ &) &) forp#v, (G6)
Te[SYVSY ST p(t) SY] = e[S S (1) ST 9]
Tr[S1 93180 5(#)) = TSP SW p(1) 81 ) = Tr[ Y 8™ j(1)]

501) &) &) A/ &) forp=v. (G7)
Tr[SYY S8 p(4) S = 0

Thus, if u # v, the term in the sum vanishes, so we only get a single contribution for y = v.

Then, we obtain the differential equation

9 . ) ) )
a7 (8L 08P (1)) = —27 (SP) (5W (1) (G.8)
whose solution is an exponential decay <5’5r“) (t)g(,“) (t)) = e 2t (S’Sr“) (0)5’(,“) (0)). Next, we
have a look at the single-time expectation value of two pseudo-spin raising and two pseudo-
spin lowering operators <S'(+’“)(t)SSFM)(t)S’(,M)(t)S(,“l)(t» with g1 # pe. In this case, we get
two contributions from the sum, namely for ;; = v and for po = v. The differential equation

for the expectation value is therefore

0 | A N N N N N N A
o7 SV OSED )5V (1058 (1) = —ay (SUVOSET S S 1) . (G.9)

The generalisation to single-time expectation values of m pseudo-spin raising and m pseudo-

spin lowering operators is then straightforward to obtain reading

gt < m S’iﬂs)(t) m S’(_“P)(t)> = —2my <ﬁ S'_(’_Hs)(t) ﬁ Sf(_#p)(t)> (G.IO)
s=1

s=1 p=1
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whose solution is again an exponential decay given by
m m m m
<H (ps H S .“p > — o 2mnt <H S-(‘,- H S\ Np) > (Gll)
s=1 p=1 p=1

This calculation allows us to find the time evolution of the multi-time expectation values of
pseudo-spin raising and lowering operators by applying the quantum regression theorem (see
Appendix C). It implies that the differential equation for the two-time expectation value of

two pseudo-spin raising and two pseudo-spin lowering operators is

fz@ﬁ@%ﬂﬁ%”@4~ﬂ§@”@4~ﬂ§9”@» —2y (S )8 (1 4 78 (¢ 4 1) S (1)) |

or
(G.12)

from which we obtain

(S (1) S (#2) 84 (1) SU) (1)) = 721270 (S (1) S (1) S (1) SV (1))
(G.13)

where t = t; and 7 = to — t;. Since we solved the single-time expectation value appearing
on the right of Eq. (G.13) beforehand, we already have the full solution of the two-time
expectation value. Now, the multi-time expectation values can be found by a successive
application of the quantum regression theorem, explicitly demonstrated for the two-time

expectation values. This gives

(S (1) 8V (1) 84 (1,)... 84 (1)) =
— 6727(tm7t'm71)674’7(t7n717t7n72)”'672m’yt1 (S—(’— )(0) Siﬂm)(o)g(um)(o)S’(Ml)(o)>

(H e—2’yt5> Sv )(0)...5’5:‘"1)(0)5'(_“7”)(0)...@(_“1)(0». (G.14)

G.3 Trace distance between the post-measurement states and the symmet-

ric subspace

We want to calculate the trace distance between the time-evolved post-measurement states
and the symmetric subspace spanned by the symmetric Dicke states. Therefore, we first note
that the state after the measurement of m photons is block-diagonal with respect to the

number of atoms in the ground state, i.e.,

pm = EB b, - (G.15)
g
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Since the symmetric Dicke states have a fixed number of ground state atoms, this implies

that also the projected state is block-diagonal. So Eq. (5.66) simplifies to

prmpro = O A, M| pmpg | T, MY T, MY, M| = @D (J, M|, |, M) |J, M)(J, M| . (G.16)

g Ng

Now, an important property of the post-measurement states is that when all elements of
a given row of Py, are summed up, the obtained value is independent of the row under
consideration. This implies that the symmetric Dicke state |J, M) with n, many atoms in

the ground state is an eigenstate of the block matrix P, n,, so we can write
Py = (I, M|pmp,| T, MY |J, MY(J, M| ® pmn, - (G.17)
Plugging Eq. (G.17) into Eq. (G.15), the state after m photon measurements reads

pm = D (J. M pmy | T, M) |, M)(J, M| & frmm, (G.18)

g

such that the difference operator ﬁm ‘= Pm — Pm,proj that is needed for the trace distance can

be written as

Pm = @ﬁm,ng . (G.19)
g

Since the Hermiticity of p,, and pp, proj implies that f)m is also Hermitian, the trace distance

simplifies to
A 1 [~ 1
T(pmvpm,proj) = 5 Tr |: p%{| = 5 Z |)‘m,z‘ ) (GQO)
7

where the A, ;s are the eigenvalues of pm. Now, note that py, is a density matrix and thus is
positive semidefinite. This means that also the block matrices pm n , and f)mn , are positive
semidefinite implying that all eigenvalues )\, ; are either greater than zero or equal to zero.

Therefore, the trace distance can be written as
T o) = = 5 Pl = 5 3 A = = T[] (G.21)
Pmy Pm,proj) = 2 i m,i| — 2 i m,i — 2 Pm| .

i.e., we only need to determine the trace of the difference operator. This can be achieved by

combinatorially calculating the diagonal entries of the matrices p,, and ppm, proj and manually
-1

building the difference. Both matrices have the same normalisation (Z ) and follow the

same time evolution accounted for by the function

T(m,ng) = e‘zm_m)w"”fl(eQ'thJrl — 1), (G.22)
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We note that this function is identical to the probabilities given in Eq. (5.58), but where
m = 1 already belongs to the state after the first measurement. Now, it remains to count
and calculate the entries on the diagonals of the two matrices. Let us consider the diagonal
entry of a single tensor product state with n, many atoms in the ground state. In the case
of pm, we need to count how many times we obtain this state by successively applying the
collective lowering operator. This number is given by the number of initial states leading to

the considered tensor product state, which we define as

D(m,ng) = (ng”_g m) - (Zz) . (G.23)

In the case of Py, proj, We first need to count the number of incoherent terms in the block
)

matrix pPpmn,, which is given by (ngim . Second, we need the number of product states

within a state in pp, n,, which can be calculated as

m

nlﬂilr_:[l[N—(ng—i)] - (N_”g+m>, (G-24)

where the factor % accounts for a multiple counting of the states. Third, taking also the

projection onto the symmetric Dicke states into consideration, we define

T 04 I U PR

With these definitions, we can finally write the trace distance as

TG ) = 3 () é (2} Plm.ng) = D)), (G:20)

where the factor ( 711\7 ) accounts for the number of tensor product states within each block.
g
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H Gaussian Moment Theorem - supporting calcula-

tions

Let us consider again the mth-order photon correlation function in the direction k = 0, which

is given by Eq. (6.31) reading

G0, ...,0) ~ i (Zn> 2j!(2m ) <2mN_ > (S 5y (ngSi)m—j

i=0 J
m 2
- m M o - it (N m—j
= (NS.50) ]Z; <]) 1@m = om— )T (H.1)
where we defined r = 1\;5‘25,. Similarly, we write the first-order photon correlation function
+ —

in the direction k = 0 as

I 1
¢M(0) = NS 5 {1 + (1 — N> r} : (H.2)
In what follows, we want to calculate the Taylor expansion of the normalised mth-order
photon correlation function g(m)(O, ...,0) around r = 0. From a pedagogical point of view, it
is instructive to first consider the limit of a large atom number N. Therefore, we keep only

the leading terms in both G™ and G(!) by approximating

m 2
G™(0,...,0) ~ (NS 5)™ > <m> jlrm=
i=o
= (NS:SO™ () <3) G ml(mr + 1) (H.3)
j=2
and
GM ()~ NS S_(1+7). (H.4)
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Then,

[G(1)<0)]m ~ (Nm)m(l + 7“) NS+S mi
j= 0

= (NS S )™ i <7Jn> m=I omr 41 (H.5)

Jj=2

and thus we find that G and [G(V]™ are equal up to the linear order in r, except for a
factor of m!. This implies that the linear order of the Taylor expansion of the approximated
g™ around r = 0 vanishes, so the leading correction is already of second order. We can also

calculate this Taylor expansion in the large N limit explicitly, which is given by
—1
9™ (0, ...,0) = m! — m!m(”;)r? + O, (HL6)

Thus, we would only require

2
>) < ]\[27%(4:'1_1) , Y € {1,...,N} (H7)

instead of the stronger condition given in Eq. (6.33), which can be obtained via a Taylor
expansion of the unnormalised G(™ function up to the leading order in r. Therefore, the
large N limit hints at a weaker condition, which is based on the second order in the Taylor
expansion. We end this chapter by finally calculating the general Taylor expansion using the

exact expressions given in Eq. (H.1) and (H.2). This leads to

(mH2(%)  (mH2(F)m(m — b,

g(m)(oa"'70) = Nm Nm+1
N
B i(m!)Q(m)(N2 — 3N — 2nj1:f]>fn:—23m —m?+2)m(m — 1)702 Low.

(H.8)

We note that here we find a linear correction in . However, this correction is independent
of the number of atoms /N and since we at least additionally require ~ < —3 to obtain
the Gaussian Moment Theorem, this first-order correction is negligible if we require that the

second-order correction is much smaller than 1, expressed by

(54 (50 ; N i
< (N2 —3N —2mN + 3m —m?2 + 2)m(m — 1) - N2m(m —1)° (1.9)

As a final remark, we note that from Eq. (H.8) we already find the m‘(% ) factor calcu-
lated in Eq. (6.42). Therefore, we see that to obtain the Gaussian Moment Theorem, i.e.,
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N(N—=1)..(N—m+1) _
Nm

~l&e

1

N

1

< —.
m

(H.10)
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| Incoherent mth-order photon correlation function -

Gaussian Moment Theorem

Motivated by the fact that thermal light sources are incoherent in first order, in this appendix,
we investigate the conditions for which the incoherent higher-order photon correlation func-
tions of the atomic ensemble exhibit thermal statistics, i.e., can be obtained via the Gaussian
Moment Theorem. For this purpose, we split the atomic raising and lowering operators in a

coherent and an incoherent part as [65, 114]
SE) = (81) + 08¢, (11)

where (S(f )> describes the coherent radiation, whereas 55&“ ) characterises the incoherent
fluctuations. The object of interest is the normalised mth-order photon correlation function

of the fluctuating part of the electric field operators, i.e.,

G (ky, ..., k)

59 (Key, ..., k) = , L2
97 k) = S ) 0G0 () (12)

whereby
G (K1, ... k) = OET) (k1) ..0 EC) (kp )0 E) (kpy)...d BT (k1)) (1.3)

and
A N ~
SE® (k) = 3 eFikRus5W. (L4)
p=1

Let M be a set of n elements, then we denote by P — M an m-tuple of the n-set M if |P| =m

and m < n. With this notation, we can write

G (ky, ..., k)

N
N TR (50058055055,
Pl seespba2m =1
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_ Z H elk“RPHC ikuRg,, <H 55 (Pu) H ( u)> ) (1.5)

PQC{1,..,N}, ur=1
|P|=|Q=m

The last equation may seem simple, but is not yet suitable for calculating the expectation

values. Therefore, let us define

n\) = " 6ppu, pefl,..,N}. (1.6)
peEP
Then, we find
(T 56 TT 8@ - G T 6@\ T /5 ) (5 600@
165 [T 659 ) = { [T TTi68 1 :H<[5S+]u (5.8 >
p=1 v=1 p=1 v=1 u=1
(L7)

where we used that p = ®ﬁ;1ﬁu in the second step. Instead of summing over the different
m-~tuples and accounting for the multiplicity of each element, we can also sum directly over

the multiplicities of all the N elements. This gives

(5G(m)(k1, k) = Z Z H Z ﬁ ﬁ e"(’“o(p)*ko%q»Rl

2,191
i1,.iN=0, J1,....jn=0, p,v=1 v 0,0'€Sm p=1¢=1
25:1 tp=m szzvzﬂvzm
iN JN N
y HH ( o(p+h 5 i) —k o (a+0 5" v) ) H< u) Jinls (#)]ju> ' (1.8)
p=1lg¢=1 p=1
Note that here ngl ... .= 1. Now, by using
N N R
OG M (ki ky) = el (5GUI5G1) = N7 fhimka B (55005510 (L)
w,r=1 pn=1
we obtain
ST TGV Kk ko) = > Hzez(kp Kot B (5545500
oc€Sm p=1 c€Sm p=1p=1

N

_ Z Z Hei(k:p—kg(p))Rup <5§iﬂp)5g(_up)> . (1.10)

M1, ppm=1 0€Sm p=1

If we compare Eq. (I.8) to Eq. (I.10), we recognise that the incoherent photon correlation
function of Eq. (I.8) can only be approximated by the Gaussian Moment Theorem if all terms

with 74,73 > 2 can be neglected. To find the explicit condition that must be satisfied, we
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need to calculate the expectation values <[5S’ (o )]Z# [65Y 4 )] > To evaluate these, we use

580 =[5 - 5] = 3 (7)o se] . a

=0

with which we find

I

<[5S< i [5g(_u)]ju> _ p:oq;) <Z;) <J’;)( 1)+ [<S(u>>] [<S<_u>>]q (CRRIECIEAY
(1.12)
We note that [S’i”)]” = 0 for n > 2. Thus, we obtain
(18547450 = (~1yietin (509" [(30)]"
i (SLOSY) (1 =i =) () (8] (1)

Now, to obtain the condition for which all terms with 4., j3 > 2 in Eq. (I.8) can be neglected,
we compare the term with m different i, = 1 to the next higher term with m — 2 different
i, = 1 and one iz = 2. The ratio between the latter and the former needs to be much smaller

than 1, expressed by

m(m —1) (S’SFM)HS(M)) 2<<1<:> M 2<<L Vue{l,.., N}
> 5 =) o NY.

(L14)

In the limit of Eq. (I.14), we can approximate the incoherent mth-order photon correlation

function by

5G(m) (kl, ey km) ~ Z Z H Z ﬁ H G(p)—ka/(q))Rl

151
i1y =0,  1pjn=0, pw=1 IV V' 0,0'€Sm p=1q=1
25,1 ip=m Zi\iljl,_m
P (R ) o)) B T 15600500
X HH p p=1 i 4T2y=1 Jv H <[5S+ ]lﬂ[(SS_ ]Ju>
p=1qg=1 pn=1

— Z Z He“% Rp,— a(Pm)H 55 a) 5GPy

Pc{1,..,N}, 0€Sm p=1
|P|=m

_ Z 3 H (kp ko) Ry (55012) 5 G010)y (I.15)

Hiyeestm=1, o0€Sm p=1
mutually different
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APPENDIX I. INCOHERENT mTH-ORDER PHOTON CORRELATION FUNCTION - ...

If we compare Egs. (I1.10) and (I.15), we notice that by applying Eq. (6.46) to the incoherent
mth-order photon correlation function, we can approximate the last equation by the Gaussian

m!m?2

Moment Theorem if *5*~ < 1. Let us finally end this appendix with the same remark that

we did in the end of Section 6.2.1. If only N = N — N, many atoms are partially excited and
N, many atoms are in the ground state, we simply need to replace N by N and all equations

remain valid.

166



J Steady state of a plane wave laser driven atomic

ensemble

Let us consider the general quantum master equation Eq. (2.74). If we assume that N
identical two-level atoms are driven by a single plane wave laser field and that the atoms
are separated far distant from each other, i.e., that their mutual separations are much larger
than the transition wavelength, then dipole-dipole interactions between the atoms can be

neglected and the master equation simplifies to

9 plt) = L 1Ha, p(0)] ~ A, 0] + L), (11)

Here,
N
Hy = hwy y_ SW (J.2)
pn=1
is the Hamilton operator of the atoms, whereas
N . .
Ay = —ih Y [R,)8 e rt — 0*(R,)SW et (1.3)
pn=1

denotes the Hamiltonian describing the dynamics induced by the laser field. Thereby, wy, is

the laser frequency and

dE(R),) hwy, 1 ik, R A ik R
Q(R,) = B — —deae™Lr = Qe'ritu 4
(Ry) - \/ 2oV T eae e (J.4)

is the position-dependent Rabi frequency. In a last step, we separated the position-dependent
phase that each atom sees, such that Q is the same for each atom. Finally, the last term
of Eq. (J.1) accounts for the spontaneous decay of each atom. To get rid off the oscillating

phases in Eq. (J.3), we transform into a frame rotating with the laser frequency wy, generated
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APPENDIX J. STEADY STATE OF A PLANE WAVE LASER DRIVEN ATOMIC ENSEMBLE

by the Hamiltonian [69]

N
f{trafo - th Z S‘(N) (J 5)
pn=1
The transformed density matrix reads
plt) = e*%Htmfot[)(t)e%ﬁrmfot. (1.6)

Further, we need to calculate the action of the rotation on the different terms in the master
equation. We note that [ﬁ A, ﬁtrafo} =0, such that H4 = H4. Further,

SQSF”) _ e—hiﬁn,afotgiu)6%1?&,.“@ _ Swsru)eith’ (J.7)

G _ =i Huaiot U o Hiaiot — §(W) p—iwpt

— — — )

(J.8)

so Z, is left unchanged under the transformation since products of 5’&“ ) and §% are left

unchanged. However, the laser Hamiltonian becomes

~ N
Hy = =ik Y [Q(R,)SY — 0 (R,)SY)], (4.9)
pn=1

i.e., the oscillating phases are eliminated by the transformation. The master equation for the

transformed density operator then reads

0 - (" 2 i 0 i
— D — H N —fF Hiatot | = 5 7 Hiratot
7 (0) =~ s (O] + <t | 2500
RS A 2 AN 2
= =3 [Ha + Huato, p(1)] = £ [Hr, p(8)] + L, (1) (J.10)
We note that
N
Hy + Hiato = —hA Z Sg“) , (J.11)
pn=1

where A = wr, —wy is the detuning of the laser frequency with respect to the atomic transition
frequency. Now, we consider the transformed laser Hamiltonian Hj, more carefully. In what

follows, we describe the situation relative to one of the atoms v at position R,. We therefore

write
< N N ~ . ~ .
Hy = —ih Y [Q(R,)8Y — @ (R)S™] = —in Y [ etk Ry §W =ik R
pn=1 pn=1
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N
— iR Z[QemLRy giu)eikL(RfRu) . Q*efikLRVSv(_u)efikL(RufR,,)]

pn=1
N A~ . ~ .
= —if Y [Qr8P e — pSWeimr], (J.12)
pn=1

where we defined Qp = Qe*tBv and Ny = krL(R, — R,). Note that we can assume that
Q) is real and that the vth atom is placed at the origin, i.e., R, = 0. Then, it follows that
Qr = Q% = Qand 1,, = k (R, — R,) = kR, = 1, is independent of v. So far, we
were able to eliminate the oscillating phases, but we are still left with the position-dependent
phases et . We can also eliminate these phases from the master equation if we do a basis
transformation. Therefore, we define the new ground state and excited state of the uth atom

as

~ — e
|Gu) =e > ) (J.13)
6,) = €% |e,) . (J.14)

This corresponds to a basis transformation matrix in the subspace of the uth atom given by

T = <<é“|e“> <é“|g“>> - (e; 0) . (3.15)
(Gulen)  (Gulgw) 0 etz

Then, the operators Sﬁf Jein and S(,“ Je=ih act in this basis as usual raising and lowering

operators since

N . 1
71 (Si”)e”“‘) [Tt = (0 ) , (J1.16)

7" (S*_“)e*mu) 7w = (0 O> . (J.17)

(1)

Therefore, we define the operators S f
that

= Sgr“)ei"” and S(_“) = S(f)e_i”#, with which we find

N
E[A + I;[trafo = —hA ZSEM) (J18)
p=1

since S(u) _ %(SY)S(_#) B S(_u)

¥4

ng)) = %(Si“)g(_“) - SA’(_“)S’SFH)) o Further, Z, can also

be expressed in an unchanged functional shape in the new operators. So, we can write the
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APPENDIX J. STEADY STATE OF A PLANE WAVE LASER DRIVEN ATOMIC ENSEMBLE

master equation as

d - (1) = ) alw) 2
5P =AY (S5 5(0)] = Qr Y157~ 57 4(0)]
p=l p=1
N ~ A A~ A A~ A~ A~ A~ A
- [ﬁ(f)ﬁ(_’””)ﬁ(t) + ﬁ(t)ﬁﬂf)ﬁ(_“) — 2§(_“)ﬁ(t)§(f)] : (J.19)
pn=1

where S gf )

act like the usual raising and lowering operators in the new basis. However,
we note that we then have to be somewhat careful when calculating the mth-order photon

correlation function ¢(™ since the nu-phases arise in the electric field operators if we write

A

§W (1) = 8 (tyein.
Finally, let us find the steady state of the transformed quantum master equation. For this

task, let us first consider a single atom at the origin. The master equation reduces to

0 .

500 = A8, p(0)] = QR[S — S_, p(0)] = YIS 8_p() + (1S, 8 = 28_p(1)S.].
(J.20)
Here, the steady state solution, written in the basis |g), |€), is given by
s LV s(v2+A2)
o 2(1+s) V2(145)(—iA)
pSS - _ 8(72+A2) 2ts 9 (JQ].)
V2(1+5) (y+iA) 2(1+s)
where we defined the saturation parameter
202,

If we now come back to the case of N identical independent two-level atoms, we find that
Eq. (J.19) does not lead to a correlated time evolution of the atoms and that it has the same
form as for a single atom, except for the summation over all atoms. This means that the
steady state solution for IV atoms is simply the Nth tensor product of the solution for a

single atom, i.e.,

A A N
ﬁgé\[) = ﬁ?;N = ®1 Pss - (J23)
:LL:
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