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Abstract: Robust modeling of non-linear scales is critical for accurate cosmological inference
in Stage IV surveys. For weak lensing analyses in particular, a key challenge arises from the
incomplete understanding of how non-gravitational processes, such as supernovae and active
galactic nuclei — collectively known as baryonic feedback — affect the matter distribution.
Several existing methods for modeling baryonic feedback treat it independently from the un-
derlying cosmology, an assumption which has been found to be inaccurate by hydrodynamical
simulations. In this work, we examine the impact of this coupling between baryonic feedback
and cosmology on parameter inference at LSST Y1 precision. We build mock 3×2pt data
vectors using the Magneticum suite of hydrodynamical simulations, which span a wide range
of cosmologies while keeping subgrid parameters fixed. We perform simulated likelihood
analyses for two baryon mitigation techniques: (i) the Principal Component Analysis (PCA)
method which identifies eigenmodes for capturing the effect baryonic feedback on the data
vector and (ii) HMCode2020 [1] which analytically models the modification in the matter
distribution using a halo model approach. Our results show that the PCA method is more
robust than HMCode2020 with biases in Ωm-S8 up to 0.3σ and 0.6σ, respectively, for large
deviations from the baseline cosmology. For HMCode2020, the bias correlates with the
input cosmology while for PCA we find no such correlation.
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1 Introduction

The concordance ΛCDM model has been rigorously tested by the current generation of
wide-field surveys and has been remarkably successful in explaining a wide range of obser-
vations [e.g. 2–10]. However, challenges to the model have also emerged and among the
longstanding issues is the discrepancy between the amplitude of matter fluctuations measured
at lower redshifts and smaller scales, and those predicted by cosmic microwave background
(CMB) experiments [e.g. 11]. Upcoming Stage IV weak lensing surveys, such as the Rubin
Observatory’s Legacy Survey of Space and Time (LSST,1 [12]), Nancy Grace Roman Space
Telescope (Roman,2 [13]), and Euclid3 [14], will play a crucial role in addressing these issues
and exploring extensions to the ΛCDM paradigm.

While non-linear scales probed by weak lensing offer a rich source of information, these
scales are subject to a complex interplay between gravitational evolution and baryonic physics.
The formation of stars and supermassive black holes in galaxies triggers events such as
supernovae and active galactic nuclei (AGN), which inject energy into the surrounding medium.
These processes regulate star formation by preventing the collapse of cold gas and expelling it

1https://www.lsst.org.
2https://roman.gsfc.nasa.gov.
3https://sci.esa.int/web/euclid.
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into the circumgalactic and intracluster medium. The redistribution of gas, in turn, induces a
gravitational back-reaction on the dark matter halo, further altering the matter distribution.
State-of-the-art hydrodynamical simulations have demonstrated that feedback mechanisms can
suppress the matter power spectrum by O(10%) at 1 Mpc−1h < k < 10 Mpc−1h [e.g. 15–18].

Several methods have been developed to address the effects of baryonic feedback in weak
lensing analyses. One common strategy is to exclude the range of scales that are not modeled
with sufficient accuracy and may thus bias the inferred cosmology [e.g. 19, 20]. Another
approach is to utilize analytic prescriptions to capture the modifications in dark matter halos
through a set of baryonic parameters, these parameters can be calibrated from hydrodynamical
simulations and/or varied alongside cosmology during the inference process. Examples of this
approach include, HMCode which uses the halo model formalism to modify halo shapes and
their baryonic content [1, 21], and the baryonification method which modifies particle positions
in gravity-only simulations to emulate the impact of baryonic physics [22, 23]. Alternatively,
the PCA method directly models the impact of baryonic feedback at the level of summary
statistics by employing a set of eigenmodes and marginalizing over their amplitudes [16, 24].

State-of-the-art baryon mitigation techniques generally model the growth of structure and
baryonic feedback independently despite the intrinsic link between galaxy formation and the
underlying cosmology. Previous studies using hydrodynamical simulations have found that,
for a given subgrid physics implementation, the suppression in the matter power spectrum
varies with cosmological parameters [e.g. 17, 23, 25–27]. Feedback effects are more pronounced
in cosmologies where halos have a shallower gravitational potential well (e.g. due to changes
in concentration) or higher baryon fractions [28]. While there is evidence that this coupling
has negligible impact on cosmological constraints even for a Euclid-like survey [25, 29], these
studies have been limited by the accuracy of the analytical fitting functions used for building
mock data. Therefore, it is important to further investigate these effects in the context of
Stage IV surveys which will push us deeper into the non-linear regime [30]. Note that the
dependence of baryonic feedback on cosmology is distinct from the degeneracy between the
two, the latter simply implies that their effects on observables are indistinguishable.

The goal of this work is to ascertain whether baryon mitigation techniques, which as-
sume baryonic feedback to be independent of cosmology, can deliver unbiased cosmological
constraints. In particular, we consider two such techniques: PCA [16, 24] and the HM-
Code2020 model [1, 21]. The PCA method uses sets of hydrodynamical simulations to
identify eigenmodes, also called principal components (PCs), which can be used to model
the corrections due to baryons. These PCs are added to the dark matter-only data vector
with their amplitude as free parameters. In contrast, the HMCode2020 approach explicitly
models the modification to the matter power spectrum through a halo model formalism
with free parameters for baryonic feedback that are calibrated from simulations. Both these
methods have been used for baryon mitigation in weak lensing analyses [e.g. 3, 31–33].

We characterize the performance of these methods using hydrodynamical simulations
covering wide range of fiducial cosmologies. We build mock 3×2pt data vectors using the
Magneticum hydrodynamical simulation suite, which spans fifteen cosmologies. Using these
mock data, we perform simulated likelihood analyses for a LSST Y1-like survey and quantify
the parameter bias that arises from the coupling between cosmology and baryonic feedback.

– 2 –
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Ωm Ωb σ8 h Ωb/Ωm

C1 0.153 0.0408 0.614 0.666 0.267
C2 0.189 0.0455 0.697 0.703 0.241
C3 0.200 0.0415 0.850 0.730 0.208
C4 0.204 0.0437 0.739 0.689 0.214
C5 0.222 0.0421 0.793 0.676 0.190
C6 0.232 0.0413 0.687 0.670 0.178
C7 0.268 0.0449 0.721 0.699 0.168
C8 (WMAP7) 0.272 0.0456 0.809 0.704 0.168
C9 0.301 0.0460 0.824 0.707 0.153
C10 0.304 0.0504 0.886 0.740 0.166
C11 0.342 0.0462 0.834 0.708 0.135
C12 0.363 0.0490 0.884 0.729 0.135
C13 0.400 0.0485 0.650 0.675 0.121
C14 0.406 0.0466 0.867 0.712 0.115
C15 0.428 0.0492 0.830 0.732 0.115

Table 1. Cosmological parameter combinations for the 15 simulations in the Magneticum suite.

This paper is organized as follows. In section 2 we describe the hydrodynamical sim-
ulations and their basic properties. In section 3 we discuss the suppression in the matter
power spectrum measured from the Magneticum simulations. Section 4 details the theory
model, analysis choices and survey design. We present the results in section 5 and analyze the
performance of the baryon mitigation techniques across cosmologies. We conclude in section 6.

2 Simulations

2.1 Magneticum

The Magneticum4 suite of hydrodynamical simulations [34–40] were run using the smoothed
particle hydrodynamics code P-GADGET3 [41]. The subgrid physics implementation in these
simulations includes radiative cooling, heating, ultraviolet background, star formation [42];
stellar evolution, chemical enrichment, and metallicity dependent cooling [43, 44]; feedback
from supernovae driven galactic winds and active galactic nuclei [34, 45].

Several studies have shown that the Magneticum simulations reproduce a wide range
of observations spanning from galactic to cluster scales including: the galaxy stellar mass
function [46]; AGN luminosity function [47]; properties of the intra-cluster medium (e.g.
temperature profiles) [48, 49] and the Sunyaev-Zeldovich power spectrum [36]. Of particular
relevance to this work is the baryon fraction in galaxy groups and clusters, a strong indicator
of the strength of feedback [17, 18, 50], which has also been found to be consistent with

4http://www.magneticum.org.
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Simulation Box Size Total Particles Dark matter Initial gas Cosmology
particle mass particle mass

(Mpc h−1) (M⊙ h−1) (M⊙ h−1)
Eagle 67.77 2 × 15043 6.57 ×106 1.23 ×106 Planck2013
IllustrisTNG 75 2 × 18203 5.06 ×106 9.44 ×105 Planck2013
Illustris 75 2 × 18203 4.41 ×106 8.87 ×105 WMAP7
MassiveBlack-II 100 2 × 19723 1.1 ×107 2.2 ×106 WMAP7
Horizon-AGN 100 2 × 10243 5.6 ×107 7 ×106 WMAP7
cosmo-OWLS 400 2 × 10243 3.75 ×109 7.54 ×108 WMAP7
BAHAMAS 400 2 × 10243 3.85 ×109 7.66 ×108 WMAP9

Table 2. Simulations used for PCA training.

observations [51, 52]. The level of suppression in the matter power spectrum is similar to
the BAHAMAS simulations [53].

In this work we use the multi-cosmology Box3/hr simulations that have a box size of
128 Mpc h−1. The suite consists of 15 simulations C1, C2. . . C15, numbered in order of
increasing Ωm. Each simulation is run using a total of 2 × 5763 particles. The gas and dark
matter mass resolutions at the baseline WMAP7 cosmology are mgas = 1.4 × 108 M⊙h−1 and
mDM = 6.9 × 108 M⊙h−1, respectively. For the remaining cosomologies the mass resolutions
are scaled with Ωm and Ωb. The cosmological parameter combinations for the Mangeticum
simulations are listed in table 1.

Out of these simulations, only C8, which is run at the fiducial WMAP7 cosmology
{Ωm, Ωb, σ8, h, ns} = {0.272, 0.0456, 0.809, 0.704, 0.963} [54], is calibrated to reproduce obser-
vations. The remaining simulations adopt the same subgrid parameters, which ensures that
any variations in feedback strength can be attributed solely to changes in cosmology.

2.2 Simulations for PCA training

We use an independent set of simulations for PCA training: Eagle [55], Illustris [56], Illus-
trisTNG [57], MassiveBlack-II [58], HorizonAGN [59], cosmo-OWLS [60], and BAHAMAS [53].
The latter two simulations include additional scenarios varying the strength of AGN feedback
using the ∆Theat parameter, which determines the amount of energy the black hole deposits to
the neighboring gas particles. For cosmo-OWLS and BAHAMAS ∆Theat = (108.0, 108.5, 108.7)
K and (107.6, 107.8, 108.0) K, respectively. The simulation characteristics are summarized
in table 2.

These simulations cover a broad variety of subgrid physics implementations, e.g. Massive
Black-II has relatively weak AGN feedback efficiency which results in an over-prediction of
the abundance of massive galaxies at low redshifts [58], the violent radio mode AGN feedback
in Illustris causes massive halos to be almost devoid of gas [61], and the AGN feedback in the
Eagle simulation only injects energy through a thermal channel rather than the commonly
used quasar- and radio-mode. As a result, the power spectrum suppression at z = 0 can

– 4 –
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Figure 1. Suppression in the matter power spectrum for the Magneticum simulations. Left:
suppression as a function of wavenumber at z = 0. Right: suppression averaged between k = 1 −
10 Mpc−1h as a function of redshift.

vary up to 30% across these simulations along with different evolution with redshift — these
variations ensure that the eigenmodes identified by the PCA have sufficient flexibility.

3 Impact of cosmology on baryonic feedback

The background cosmology dictates the hierarchical growth of dark matter halos, within
which galaxies form and evolve. Primarily, the balance between the gravitational potential of
a halo and the strength of feedback mechanisms determines the efficacy of baryonic feedback
in redistributing matter [62, 63]. The resulting suppression in the matter power spectrum
reflects the cumulative effect across the halo population. Consequently, variations in dark
matter halo properties or the halo population itself, driven by changes in cosmology, can
directly influence the effectiveness of feedback in altering the matter distribution.

For example, in less massive halos supernovae feedback is more important than AGN
activity, while more massive halos, with their deeper potential wells, are less susceptible to
AGN feedback [62–64]. As a result, changes in the halo abundance at a given mass (e.g. due
to a different growth rate) can lead to a different level of suppression in the matter power
spectrum. Halo concentration which has been found to depend on cosmology [65–67], also
modulates the gravitational potential and affects the extent to which AGN feedback can
expel gas. Furthermore, the cosmic baryon fraction influences the gas content of halos and
thus impacts the reservoirs available to fuel AGN activity.

Ref. [28] explored several such mechanisms using the suppression in halo mass — the ratio
of halo mass in the hydrodynamical and dark matter-only simulation — as a proxy. Specifically,
they investigate the impact of halo concentration, formation epoch, and environment using
the FLAMINGO suite of hydrodynamical simulations [68]. They find that for massive halos
(> 1013 M⊙), a higher concentration leads to smaller baryonic suppression due to the increased
gravitational binding energy whereas in the low mass regime (< 5 × 1012 M⊙) this trend

– 5 –
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Figure 2. Average suppression in the power spec-
trum at z = 0 as a function of the baryon fraction.
Overall we see that the suppression is primarily
determined by the baryon fraction. C14 and C15
offset vertically for visual clarity.
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Figure 3. Normalized redshift distributions for
LSST Y1. Refer to section 4.5 for details.

reverses. The trend for low mass halos is a result of concentration being anti-correlated
with the formation epoch. Halos that form earlier are more concentrated but also have a
larger black hole mass. For low mass halos, the non-linear black hole growth (as opposed to
self-regulating black holes found in higher mass halos) makes AGN outflows more effective at
expelling gas despite a higher concentration. They do not find any correlation between the
suppression in halo mass and halo environment, which implies that the cosmology variations
do not regulate feedback through this channel.

To demonstrate the impact of cosmological variations, figure 1 shows the suppression in
the matter power spectrum from the Magneticum simulations at 15 different cosmologies.
The suppression S(k, z) is defined as

S(k, z) = P hydro
mm (k, z)

P dmo
mm (k, z) , (3.1)

where P hydro
mm (k) and P dmo

mm (k) are the matter power spectra from hydrodynamical and dark
matter-only simulations, respectively, for a given cosmology. The results in the left panel
show that, even for the same subgrid physics, the strength of baryonic feedback can vary up
to 15% for the cosmology variations considered here. In the right panel we show for each
cosmology, the average suppression as a function of redshift, defined as

⟨S(z)⟩ =
∫

k3S(k, z)dk∫
k3dk

, (3.2)

where the lower and upper integration limits are k = 1 and 10 Mpc−1h, respectively. We see
that the evolution of baryonic feedback with redshift varies across cosmologies. For example,

– 6 –
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cosmologies C3 and C4 exhibit similar levels of suppression at z = 0, but differ by approx-
imately 6% at z = 2. Overall, we see that scenarios with stronger suppression also exhibit
a stronger evolution with redshift. Accurate modeling of these redshift evolution features
might help in breaking degeneracies between cosmology and baryonic feedback processes.

To explore trends in feedback strength across cosmologies, figure 2 presents the average
suppression as a function of the cosmic baryon fraction fb = Ωb/Ωm. We find a strong
correlation between suppression in the matter power spectrum and fb. This correlation can
be attributed to dark matter halos having larger gas reservoirs for fueling AGN activity.
The strong dependence on fb, even when multiple cosmological parameters are varied simul-
taneously, implies that the baryon fraction plays a dominant role in influencing feedback
strength. These findings are consistent with previous results [see, e.g., figure 2 in 25], which
show that the strength of baryonic effects primarily depends on fb. We also find that other
cosmological parameters, such as σ8 and h, can have a weak but albeit discernible influence.
For example, C1 (fb = 0.267) has a cosmic baryon fraction 10% larger than C2 (fb = 0.241)
and yet displays the same level of suppression. Similarly, C7 and WMAP7 have the same
value of fb and yet display a 2% variation in power spectrum suppression.

4 Simulated likelihood analysis

We perform simulated likelihood analyses using the standard LSST Y1 model implemented
in Cocoa5 [69], the latter integrates the theoretical modeling from CosmoLike [70] and
the cobaya framework [71]. We build mock data vectors at different cosmologies by using
the power spectrum suppression measured from the Magneticum simulations. The data
vector comprises the 2pt correlation functions of cosmic shear, galaxy-galaxy lensing, and
galaxy clustering.

We now review the modeling ingredients for the simulated analyses including the compu-
tation of theory and mock data vectors, baryon mitigation techniques, and survey design.

4.1 Theory data vector

We compute the 2pt correlation functions from the projected angular power spectrum, the
latter is computed using the Limber approximation and adopting a flat sky geometry. For
two fields A and B, the angular power spectrum in the tomographic bin (i, j) is calculated
from the 3D power spectrum PAB as

Cij
AB(ℓ) =

∫ χh

0
dχ

qi
A(χ)qj

B(χ)
χ2 P ij

AB

(
ℓ + 1/2

χ
, χ

)
, (4.1)

where qi(χ) is the weight kernel, χ is the comoving distance, and χh is the comoving horizon
distance. The weight kernels for the lensing convergence field κ and the galaxy density
field δg are given by

qi
κ(χ) = 3H2

0 Ωm

2c2
χ

a(χ)

∫ χh

χ
dχ′ dz

dχ′
ni(χ′)

n̄i

χ′ − χ

χ′ , (4.2)

qi
δg

(χ) = ni(χ)
n̄i

dz

dχ
, (4.3)

5https://github.com/CosmoLike/cocoa.
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Figure 4. Amplitudes of the first two principal components measured from hydrodynnamical
simulations. The amplitudes are estimated by projecting the mock data vector on the PCs, as the
latter form an orthogonal basis. The mock data vectors for Magneticum simulations are computed
at their respective cosmologies while the mock data vector for the remaining simulations assume a
WMAP7 cosmology. The shaded region represents the informative prior used in the analysis, see
section 4.6.1 for details.

where ni(χ′(z)) is the galaxy redshift distribution and a is the scale factor. The 3D power
spectra for the fields read

P ij
κκ(k, z) = Pmm(k, z), (4.4a)

P ij
δgκ(k, z) = biPmm(k, z), (4.4b)

P ij
δgδg

(k, z) = bibjPmm(k, z), (4.4c)

where bi is the linear galaxy bias and Pmm(k, z) is the non-linear matter power spectrum
computed from CAMB [72]. The 3D power spectra in equations. (4.4a), (4.4b) & (4.4c) are
converted to angular power spectra using eq. (4.1), from which the 2pt correlation functions for
cosmic shear ξ±(θ), galaxy-galaxy lensing γt(θ), and galaxy clustering w(θ) are computed as

ξij
±(θ) =

∑
ℓ

2ℓ + 1
2πℓ2(ℓ + 1)2

[
G+

ℓ,2(cos θ) ± G−
ℓ,2(cos θ)

]
Cij

κκ(ℓ), (4.5)

γij
t (θ) =

∑
ℓ

(2ℓ + 1)
2πℓ2(ℓ + 1)2 P 2

ℓ (cos θ)Cij
δgκ, (4.6)

wi(θ) =
∑

ℓ

2ℓ + 1
4π

Pℓ(cos θ)Cii
δgδg

(ℓ), (4.7)

where Pℓ and G±
ℓ are the Legendre and associated Legendre polynomials, respectively [cf. 73].

4.2 Systematics

We include the following systematic effects

– 8 –
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• Intrinsic alignments: intrinsic alignments (IA) contaminate the measured cosmic shear
signal by introducing additional correlations between galaxy shapes. We account for IA
by including an additional term, characetized by the IA amplitude AIA, in the weight
kernel of the lensing convergence field [69]. The IA amplitude is modeled assuming
a redshift dependent non-linear alignment (NLA) model [74] parametrized by the
normalization aIA and redshift evolution ηIA

AIA(z) = −aIA
C1ρcritΩm

G(z)

(
1 + z

1 + z0,IA

)ηIA

, (4.8)

where, C1ρcrit = 0.0134, z0,IA = 0.62, Ωm is the matter density, and G(z) is the linear
growth factor.

• Photometric redshifts: the uncertainty in the redshift distribution ni(z) is modeled by
including a parameter ∆zi for each tomographic bin which shifts the distribution as

ni(z) → ni(z + ∆zi). (4.9)

We use separate shift parameters ∆zi
lens and ∆zi

source for the lens and source samples,
respectively.

• Shear calibration bias: galaxy shapes are biased estimators of the underlying shear and
the response of the shear estimator has to be calibrated. The residual biases in the
shear calibration in a tomographic bin are quantified by the multiplicative calibration
bias mi.

• Galaxy bias: we assume linear galaxy bias when modeling the galaxy-galaxy lensing and
galaxy clustering parts of the data vector. In total we have five galaxy bias parameters
bi, one for each tomographic bin.

4.3 Baryon mitigation techniques

We test two methods for modeling baryonic effects.

• PCA: the PCA method [16, 24] uses the difference between the mock data vectors
from simulations and theory predicted data vectors, where each data vector consists of
(ξ±(θ), γt(θ), w(θ)), to identify principal components. These PCs serve as a flexible basis
for modeling baryonic effects on smaller scales. For details about the computation of
principal components we refer the reader to [16]. Note that the Magneticum simulations,
which are used for computing mock data vectors, do not enter PCA training. The
model prediction Dmodel is given as the of sum the theory data vector Dtheory and the
principal components Pi weighted by amplitudes Qi

Dmodel = Dtheory +
N∑

i=1
QiPi, (4.10)

where N is the number of principal components. The theory data vector is generated
using the non-linear matter power spectrum from halofit [75] following the procedure

– 9 –
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in section 4.1. The PC amplitudes Qi are treated as free parameters, which allows us
to marginalize over baryonic scenarios during cosmological inference.

The PCA is trained using a difference matrix that depends on both theoretical and mock
data vectors. Consequently, the resulting eigenmodes are sensitive to the cosmology
at which these data vectors are computed. To train the PCA, we adopt the WMAP7
cosmology [54] which means that regardless of the fiducial cosmology of the simulations
described in section 2.2, we use the measured suppression to create mock data vectors
at WMAP7 cosmology by modifying the theory power spectrum (using the procedure
in section 4.4). The choice of WMAP7 cosmology as the baseline is motivated by two
key reasons: (i) approximately half of the simulations used for PCA training (described
in section 2.2) are run at this cosmology, and (ii) the Magneticum C8 simulation is also
run at this exact cosmology which allows us to evaluate the PCA’s ability to capture
the subgrid physics implemented in Magneticum.

The galaxy clustering and galaxy-galaxy lensing parts of the data vector are robust
to baryonic feedback due to the choice of scale cuts (cf. section 4.5). Therefore, the
principal components only apply corrections to cosmic shear.

• HMCode2020: the HMCode2020 (hereafter, HM20) framework takes a halo model
approach to model the effects of non-gravitational physics on the matter power spectrum
the [1, 21]. The model comprises parameters that govern the change in the internal
structure of dark matter halos, specifically, the modification in halo concentration (B),
the formation of stars which dominate the matter profile in the halo centers (f∗), and
the expulsion of gas from halos (Mb). These parameters are calibrated using the power
spectrum response from the BAHAMAS WMAP9 simulations for wavenumbers in the
range k = 0.3 to 20 Mpc−1h at z < 1. HM20 is able to match the measurements from
the simulation upto a few percent in the fitted range. In the commonly used single
parameter variant of HM20, the model parameters are expressed as a function of the
AGN feedback strength ΘAGN ≡ log(TAGN/K), here, TAGN is related to the heating
temperature of gas particles when an AGN feedback event occurs.

For generating the model data vector with HM20, we evaluate the equations in section 4.1
using the mead2020_feedback option in CAMB.

4.4 Mock data

To build mock data vectors at different cosmologies which are contaminated by baryonic
effects, we use the power spectrum suppression inferred from the Magneticum simulations
and modify the theoretical prediction (e.g. from halofit) which does not model these effects.
For a simulation at a cosmology θsim, we compute the power suppression S(k, z) as a function
of wavenumber k and redshift z by taking the ratio of the matter power spectrum from the
hydrodynamical simulation and its dark matter-only counterpart (equation (3.1)). We use
S(k, z|θsim) to modify the theory prediction of the non-linear matter power spectrum, Pmm, as

Pmm(k, z|θsim) → S(k, z|θsim) × Pmm(k, z|θsim). (4.11)
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Parameter Prior Fiducial Value
Cosmology

As Flat (5×10−10, 1×10−8) Varied
Ωm Flat (0.05, 0.9) Varied
ωb ≡ Ωbh2 Gaussian (ωfid

b , 0.0016) Varied
h Flat (0.55, 0.91) Varied
ns Flat (0.87, 1.07) 0.963
Σmν Fixed 0.06 eV

Photo-z shift
∆zi

lens Gaussian (0.0, 0.005) 0.0
∆zi

source Gaussian (0.0, 0.002) 0.0
Linear galaxy bias

bi Flat (0.8, 3) [1.24, 1.36, 1.47, 1.60, 1.76]
Shear calibration

mi Gaussian (0.0, 0.005) 0.0
Intrinsic Alignment

aIA Flat (−5, 5) 0.5
ηIA Flat (−5, 5) 0.0

Baryon Model: PCA
Q1 Flat (−1, 25) —
Q2 Flat (−8, 3) —

Baryon Model: HM20
ΘAGN ≡ log10(TAGN/K) Flat (7, 8) —

Table 3. Model parameters and priors for the simulated likelihood analyses. Flat(a, b) denotes a flat
prior within lower and upper limits a and b, respectively. Gaussian(µ, σ) denotes a Gaussian prior
with mean µ and standard deviation σ. The fiducial values for cosmology parameters are enumerated
in table 1.

For the PCA method, we compute Pmm using the halofit option in CAMB. For HM20,
however, the mead2020_feedback model which applies baryonic corrections and is parame-
terized by ΘAGN, does not recover the dark matter-only prediction under any limit of ΘAGN.
Therefore, we compute the mock data vector for HM20 by modifying Pmm from the mead2020
option which produces a dark matter only power spectrum without any baryonic effects. We
then proceed to compute mock data using the contaminated matter power spectrum and
following the modeling recipe described in section 4.1.
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4.5 Survey design

We perform a simulated LSST Y1 analysis, following the survey design outlined in the DESC
Science Requirements Document (DESC SRD, [76]). The analysis assumes a survey area of
12,300 deg2, with redshift distributions for the lens and source samples derived using limiting
i-band magnitudes of 24.1 and 25.1, respectively. The redshift distributions are modeled using
the analytical form n(z) ∝ z2exp[−(z/z0)α]. For the lens sample, we set (z0, α) = (0.26, 0.94)
and normalize the distribution by an effective number density neff = 18 arcmin−2. The sample
is then divided into five equally populated tomographic bins (differing from the DESC SRD,
which uses 10 bins) based on estimated redshift and each bin is convolved with a Gaussian
photo-z scatter of σz = 0.03(1 + z). For the source sample, we use (z0, α) = (0.19, 0.87)
and normalize the distribution to neff = 11.2 arcmin−2. The source sample is also split
into five tomographic bins, with each bin convolved with a Gaussian photo-z uncertainty of
σz = 0.05(1 + z). The lens and source redshift distributions are shown in figure 3.

Following the DESC SRD, we choose a scale cut of kmax = 0.3 Mpc−1h, which approx-
imately corresponds to a minimum comoving scale Rmin = 2π/kmax = 21 Mpc h−1. For
galaxy clustering, the angular scale cut for a tomographic bin i is θi

min = Rmin/χ(z̄i), where
z̄i is the mean redshift of the tomographic bin. Thus for the lens sample, the minimum
comoving scale translates to angular scale cuts of [105.86′, 81.17′, 71.24′, 65.32′, 61.49′]; we
adopt the same angular scale cuts for galaxy-galaxy lensing. For cosmic shear, we restrict the
analysis to an angular multipoles of ℓ < ℓmax = 5000, which is more aggressive than the scale
cut of ℓmax = 3000 specified in the DESC SRD. The angular scale cuts for the correlation
functions ξ± are determined by the first zeros of their corresponding spherical Bessel function
J0/4(ℓθ), which translates to a minimum angular scales of θ

ξ+
min = 2.4048/ℓmax = 1.653′ and

θ
ξ−
min = 7.5883/ℓmax = 5.217′.

Note that as a consequence of the scale cuts described above, the galaxy clustering and
galaxy-galaxy lensing data vectors are robust to baryonic effects and thus the constraints
on baryonic feedback parameters are driven by cosmic shear data only.

4.6 Likelihood and covariance

We use the Python package emcee [77] to sample the posterior distribution assuming a
Gaussian likelihood

log L = −1
2(Dmock − Dmodel)TC−1(Dmock − Dmodel), (4.12)

where C and D refer to the covariance and data vector, respectively, and the subscript denotes
if the latter is the mock or the model data vector. We use a Gaussian prior on the physical
baryon density Ωbh2 with the prior width set to ten times the measurement uncertainty from
Planck [2]. The model parameters priors are summarized in table 3.

The covariance for the 3×2pt data vector is calculated using the publicly available code
CosmoCov6 [78] which is built upon the CosmoLike framework. CosmoCov uses the
2D-FFTLog algorithm to efficiently compute real-space covariance matrices. We compute the

6https://github.com/CosmoLike/CosmoCov.
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cosmic shear covariance which consists of Gaussian, super-sample covariance and connected
non-Gaussian components.

Since the model data vector evaluations are slow and computationally expensive, we
use the neural network emulator presented in [79] which predicts the model data vector
as function of cosmology and nuisance parameters. We train separate emulators for each
component of the data vector (ξ+, ξ−, γt, w). As the fiducial cosmologies for the Magneticum
simulations differ significantly, we train separate emulators for each cosmology to ensure
prediction accuracy. We refer the reader to [79] for further details about the emulator
architecture and training method.

4.6.1 Prior on baryonic feedback parameters

The simulations used for constructing the PC basis can serve as external information to
inform priors that better match observations. Figure 4 shows the distribution of the PC
amplitudes {Qi} for the simulations considered in this work.7 We derive informative priors for
the PC amplitudes by examining the range of {Qi} spanned in the figures (not including the
Magneticum simulations), as indicated by the shaded region. We exclude the Illustris, cOWLS
T8.5, and cOWLS T8.7 simulations when determining these priors as they represent too
extreme feedback scenarios. The baryon fractions in group and cluster sized halos predicted
by the Illustris simulation are in disagreement with observations due to the strong AGN
radio-mode feedback [61, 80]. The cOWLS T8.5 and cOWLS T8.7 simulations also do not
reproduce the observed gas fractions in massive halos [81].

5 Results

5.1 Performance at the baseline WMAP7 cosmology

We first asses the performance of the baryon mitigation techniques in capturing the baryonic
feedback in the Magneticum WMAP7 (C8) simulation. Note that, while the principal
components are computed at the WMAP7 cosmology, the Magneticum simulations are
not used for training the PCA. Similarly, HM20 is calibrated on the BAHAMAS WMAP9
simulation which differs from Magneticum in its subgrid physics implementation. Therefore,
it is important to first verify if both methods result in unbiased inference at this baseline
scenario before considering variations in cosmology.

For a quantitative assessment of the performance of the two methods, we adopt the bias
in the Ωm-S8 plane as our metric, as the two parameters are of key interest for weak lensing
surveys. We consider the baryon model to be effective if the bias in the 2D marginalized mean
is below 0.3σ. The bias in mean parameter values can also result from the marginalization
in the high dimensional parameter space. To account for these so-called projection effects,
we repeat the analysis by fitting a data vector generated from the model and adopt the
resulting 2D marginalized mean as the reference, rather than the fiducial parameter values, for

7The amplitudes for each simulations are estimated by projecting the difference between the mock and
theory data vectors onto the principal eigenmodes. Since the PCs form an orthogonal basis, by construction,
the amplitude is simply Qi = 1

||Pi|| P
T
i (Dmock − Dtheory).
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Figure 5. Results from simulated 3×2pt analysis as a function of cosmology. The figure shows 1σ

contours (39.35% credible intervals) in Ωm-S8 when a mock data vector contaminated by baryonic
effects is fit using PCA and HM20. At each cosmology, we compute the mock data vector by modifying
the non-linear matter power spectrum by the suppression measured from the Magneticum simulation.
The cross marker represents the true values (refer to table 1 for list of parameter values at the 15
cosmologies). For reference we also show 3σ contours (98.9% credible intervals) from the joint DESY3
+ KiDS 1000 analysis [33]. Note that the constraints shown in this figure include projection effects,
however, they’re insignificant at the scale of this visualization.

computing the bias.8 Using the same model for, both, generating and fitting the data vector
eliminates model misspecification and isolates the bias due to projection effects, enabling
us separate it from the systematic effect of interest.

The two baryon models exhibit comparable accuracy in the 3×2pt analysis at the
baseline cosmology. For PCA and HM20, we recover cosmological parameters within 0.1σ

and 0.12σ, respectively, indicating that both methods effectively capture the subgrid physics
implementation in Magneticum. Therefore, any bias observed when repeating the analysis
for other cosmologies would therefore arise from variations in cosmology and the resulting
modulation of suppression in the matter power spectrum.

8The bias is computed as bias
σ

=
√

XTC−1
Ωm−S8

X, where X = (∆Ωm, ∆S8)T is the difference between the
2D marginalised mean and the reference parameter values. CΩm−S8 is the marginalized parameter covariance
in the Ωm-S8 plane.

– 14 –



J
C
A
P
0
3
(
2
0
2
5
)
0
4
1

C1 C2 C3 C4 C5 C6 C7

WMAP7 C9
C10 C11 C12 C13 C14 C15

0.0

0.5

1.0

(b
ias

/
)

m
S 8

PCA
HM20

bias < 0.3

bias < 0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Q1

7.2

7.4

7.6

7.8

AG
N

Figure 6. Bias in Ωm-S8 at different cosmologies when using PCA and HM20 to mitigate baryonic
effects. The marker color represents the marginal mean of the baryonic feedback parameter for the
respective models, Q1 for PCA and ΘAGN for HM20. The bias when using PCA is < 0.3σ (0.5σ)
in 13 (all) scenarios indicating that PCA is robust to the coupling between baryonic feedback and
cosmology, meanwhile, using HM20 results in < 0.3σ (0.5σ) bias for 9 (12) scenarios. The bias shown
here is corrected for projection effects.

5.2 Baryon mitigation across cosmologies

After validating both methods at the baseline cosmology, we perform simulated analysis at
the remaining cosmological scenarios. In figure 5, we show the Ωm-S8 constraints across the
15 cosmologies using PCA in blue and HM20 in red. Firstly, we find that PCA and HM20
give similar constraints on Ωm while HM20 gives tighter constraints on S8. This can be
qualitatively attributed to the stronger degeneracy of PC amplitudes with S8 compared to
ΘAGN. However, further analysis is needed for a detailed assessment. The estimated bias
at each cosmology is shown in figure 6, where we also color the symbol based on baryonic
feedback parameter i.e. Q1 for PCA and ΘAGN for HM20. We find that the PCA method
obtains unbiased parameter constraints in all but two scenarios. The parameter bias is at most
weakly correlated with feedback strength, as measured by the first PC amplitude.9 While
relaxing the priors on PC amplitudes results in a loss of constraining power, it also makes it
more robust to such effects. When using flat wide priors of (−50, 50), the bias is < 0.3σ in
all cases. The HM20 model results in biased constraints at six out of the fifteen cosmologies
and in three scenarios the bias is > 0.5σ. We also reanalyzed the mock data with a wider
prior of (7,8) for ΘAGN and found that it has virtually no impact on parameter constraints.
Note that, neither PCA or HM20 are trained/calibrated on the Magneticum simulations

9While Q1 represents the level of suppression in the data vector, the values at different cosmologies must
be interpreted with caution. This is because Q1 is proportional to the absolute change in the data vector, as
evident from equation (4.10); therefore cosmologies with larger Ωm or σ8 (and hence larger Pmm(k) amplitude)
will naturally have larger Q1 even if the suppression is relatively small.
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Figure 7. Bias in Ωm-S8 as a function of S8. Results for PCA and HM20 model are shown in the left
and right panels, respectively. The shaded regions represent 3σ (99.7% confidence levels) constraints
from DES Y3 + KiDS-1000 analysis [33] and Planck [2]. We do not find a significant trends for PCA,
while the bias for HM20 shows strong correlation with the input cosmology. Note that the parameter
bias shown here is corrected for projection effects.

The bias when using the HM20 model correlates with the input cosmological parameters
(most notably S8) while we do not observe any such trend for PCA, as shown in figure 7.
For comparison, we show 3σ constraints from the DES Y3 + KiDS-1000 analysis [33] and
Planck [2] as shaded regions. Even when considering only the cosmologies that are feasible
given the constraining power of existing surveys, these results suggests that the bias induced
due to a coupling with cosmology can still be significant for HM20. This implies that
HM20 may not fully capture the impact of cosmology on feedback strength at LSST Y1
accuracy. This is corroborated by previous findings that the HM20 model calibrated using
the BAHAMAS WMAP9 simulation shows differences of a few percent when it is used to
predict the suppression in BAHAMAS Planck2013 simulation [see section 6.3 in 1]. Another
possibility is that the HM20 predictions get progressively inaccurate at higher redshifts as
the model is calibrated only at z < 1.

One way to enhance the performance of HM20 is to introduce greater model flexibility.
Instead of parameterizing in terms of the subgrid heating temperature, ΘAGN, we can directly
fit the model parameters (B, f∗, Mb) along with their redshift dependence. While this approach
may introduce parameter degeneracies, applying informative priors based on simulations can
mitigate this issue. For example, [1] provides priors derived from fits to the BAHAMAS and
cosmo-OWLS simulations. Additionally, exploring alternative parameterizations of redshift
evolution could improve accuracy, as [1] found that the power-law z-dependence adopted in
HM20 led to inaccurate fits for z > 1. The performance of PCA is also dependent on the
simulation set used for training and the prior on PC amplitudes, therefore the precision is
likely to improve as more realistic simulations are included in the training set.

We repeat the simulated analyses using only the cosmic shear component of the data
vector and observe a degradation in the performance for both PCA and HM20, as shown in
figure 8. While the galaxy clustering and galaxy-galaxy lensing portions of our data vector
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Figure 8. Bias in Ωm-S8 when analyzing a cosmic shear only data vector, corrected for projection
effects. The bias for both baryon mitigation methods is larger compared to the 3×2pt case (figure 6).

are insensitive to baryonic feedback due to the scale cuts applied, including probes such as the
Sunyaev-Zeldovich effects, which incorporate both cosmological and astrophysical information,
can help disentangle parameter degeneracies and mitigate the impact of the coupling [82].

6 Conclusions

Stage IV surveys will deliver vast volumes of data, enabling an unprecedented level of precision
in cosmological measurements and inference. To fully leverage the statistical power of these
datasets, these advances in data acquisition must be matched by improvements in modeling
techniques. Of particular importance is understanding the growth of structure on non-linear
scales. In the context of weak lensing analyses, the modeling uncertainty on small scales is
dominated by baryonic processes like stellar and AGN feedback.

Current analyses generally assume the impact of baryonic feedback on the matter
distribution to be independent of the underlying cosmology. We test this assumption and
quantify its impact on parameter inference using the Magneticum suite of hydrodynamical
simulations. These simulations are run at a fixed calibration of subgrid physics parameters
which allows us to isolate the dependence of baryonic feedback on cosmology. We find that
the suppression in the matter power varies up to 15% across the cosmologies spanned by the
simulations. We show that the suppression in the power spectrum is primarily determined
by the cosmic baryon fraction fb = Ωb/Ωm with other cosmological parameters resulting
in a few percent effect at most.

We generate mock 3×2pt data vectors by modifying the non-linear matter power spectrum
with the suppression measured from the 15 Magneticum simulations. We test two baryon
mitigation techniques, PCA and HM20, by performing a simulated analyses for a LSST
Y1 like survey. Our analysis shows that the PCA method is more robust to cosmological
variations than HM20 with biases in Ωm-S8 reaching up to 0.3σ and 0.6σ, respectively, for
significant departures from the baseline cosmology.
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For the PCA method, we do not observe significant correlation between the bias and
either feedback strength or the fiducial cosmology, suggesting that PCA effectively captures
these features. We find that the bias in parameter inference from the HM20 model is
correlated with the background cosmology. This indicates that the dependence on cosmology
assumed in HM20 (through the cosmic baryon fraction) might not be sufficiently accurate
and needs further investigation. As the redshift evolution of feedback strength also changes
with cosmology, the performance of HM20 might also be limited by the redshift evolution
of parameters assumed in the model. To improve model flexibility, one approach is to relax
current assumptions by introducing additional parameters and/or allowing existing parameters
to vary independently, rather than being tied to ΘAGN. Advancements in hydrodynamical
simulations will be crucial for enhancing the performance of both baryon mitigation techniques.
Simulations suites such as ANTILLES [18] and FLAMINGO [68] span wider range of possible
feedback scenarios and can thus be used to determine realistic priors for model parameters.

In conclusion, cosmological inference at the precision required for upcoming surveys will
demand a thorough evaluation of baryon modeling. It is essential to rigorously test these
models using mock datasets from hydrodynamical simulations. Since the sensitivity to the
coupling between cosmology and baryonic feedback is likely influenced by subgrid physics
parameters, the performance of baryon models must be assessed across data vectors that
span a range of cosmologies and feedback implementations.
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