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Using the techniques of nonlinear coset realization with a generalized Poincaré group, we construct a 
relativistic particle model, invariant under the generalized symmetries, providing a dynamical realization 
of the B5 algebra.
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1. Introduction

One of the typical approaches in theoretical physics consists on 
replacing the symmetry group of the spacetime, described by the 
Poincaré group, by another symmetry group consistent with pos-
sible fields which might be present on a given physical situation. 
This approach provides a geometrical description of the particle in-
teraction with the mentioned additional fields (see e.g. [1]). Using 
the semigroup expansion method (S-expansion) introduced in [2], 
on the AdS algebra as the starting seed algebra, it is possible 
to construct a family of generalized Poincaré algebras by suitable 
elections of the semigroup [3]. These algebras are denoted by Bm

and have the structure of a semidirect sum between an ideal (con-
stituted by the translations) and the Lorentz transformations. It is 
interesting to note that symmetries described by the Maxwell al-
gebra (see e.g. [4,5,8]) correspond to the so-called B4 algebra. The 
case of a dynamical realization of the Maxwell algebra was studied 
in [1,6,7]. It is natural to ask about the physical nature of the par-
ticle models that are obtained by considering similar constructions 
for the Bm algebras with m ≥ 5. The purpose of this paper is to 
shed some light on such problem for simplest case m = 5, by the 
construction of the particle action on the coset space B5/S O (3, 1).

The organization of this article is as follows: In Section 2 we 
will review the construction of a Maxwell (B4) invariant particle 
model, where the interaction term can be interpreted in a physical 
way as a constant EM background acting on the Minkowski space-
time. It is explicitly shown the B4/S O (3, 1) infinitesimal symme-
tries. Section 3 is devoted to reviewing the construction of B4 and 
B5 algebras by the S-expansion of the AdS algebra. In Section 4
we construct the B5 invariant particle model which constitutes 
the main result of this work. We present some possible extensions 
and further comments in Section 5.
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2. The Maxwell (B4) invariant particle model

2.1. The B4/S O (3, 1) space–time particle Lagrangian

A B4 invariant particle model, defined in the Maxwell coset 
spacetime B4/S O (3, 1), can be constructed using the nonlinear re-
alizations techniques [9,10]. Let us consider an element g in the 
coset spacetime parametrized as in [1,6] by

g = e−φab Zab−xa Pa = e−φab Zab e−xa Pa , (1)

where Zab and Pa are the coset generators. The Maurer–Cartan 
1-form is given by

� = −gdg = ea Pa + 1

2
kab Zab , (2)

where the components are

ea = dxa , (3)

kab = dφab + 1

2

(
xadxb − xbdxa

)
. (4)

We can therefore construct the following first-order Lagrangian

L = πaxa − e

2

(
π2 + m2

)
+ 1

2
fab

[
φ̇ab + 1

2

(
xaẋb − xbẋa

)]
, (5)

where the phase-space coordinates (xa, πa) are extended to (xa,

πa, φab, pab, fab, p f
ab) and e is the einbein. In order to keep 

the usual meaning of the xa coordinates as Cartesian coordinates 
on Minkowski space, one is forced to implement the constraint 
1
2

(
π2 + m2

) = 0. We can solve for πa from its equation of motion 
(a procedure known as the inverse Higgs mechanism [11]) and re-
place it on (5) to construct the following B4 invariant Lagrangian

L = ẋa ẋa

− m2

e + 1
fab

[
φ̇ab + 1 (

xaẋb − xbẋa
)]

, (6)

2e 2 2 2
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where the einbein e implements the diffeomorphism invariance. 
Since πa is no more a dynamical coordinate, and by the constraints 
imposed by the canonical momentum definition, we can set

pab = fab, p f
ab = 0

and shrink the phase-space into (xa, φab, fab). In the proper time 
gauge, the equations of motions are

δxa : mẍa = fabẋb , (7)

δ fab : φ̇ab = −1

2

(
xaẋb − xbẋa

)
, (8)

δφab : ḟab = 0 . (9)

Equation (9) implies that fab is a constant antisymmetric field 
density fab = f 0

ab , which breaks the Maxwell symmetry into a sub-
algebra known as the BCR algebra [4]. Substituting this information 
in equation (7) leads to an interpretation of the fab coordinates as 
a constant electromagnetic field tensor which produces an inter-
action over the relativistic free particle described by the Lorentz 
force. Equation (8) implies that φ̇ab is proportional to the angular 
or magnetic moment of the particle.

2.2. The phase-space realizations of the B4 algebra

As in [6], using the nonlinear realization techniques [9,10] and 
using the approach described in [12], it is possible to construct the 
infinitesimal B4/S O (3, 1) symmetries

Pa : δxa = εa, δφab = −1

2

(
εaxb − εbxa

)
,

Zab : δφab = εab,

Jab : δxa = λa
bxb, δφab = λ

[a
cφ

cb], δ fab = λ c[a fcb], (10)

and where the Noether currents which realize the Maxwell algebra 
are

Pa = pa − 1

2
pabxb,

Zab = pab,

Jab = p[axb] + f[acφ
c

b] + p f
[ac f c

b] , (11)

where the coordinates pab and p f
ab are fixed by (pab, p

f
ab) =

( fab, 0).

3. From the B4 algebra to the B5 algebra

The B4 and B5 algebra can be constructed using the S-
expansion on the AdS algebra with a suitable choose of the semi-
group [3]. If the semigroup is chosen as S(2)

E = {λ0, λ1, λ2, λ3}
with a null element λ3 = 0S and the product rule defined by 
λaλβ = λα+β where α + β < 3, and λaλβ = 0S where α + β ≥ 3, 
after imposing the 0S -reduction condition one obtains the B4 al-
gebra which coincides with the Maxwell algebra. On the other 
hand if the semigroup is chosen as S(3)

E = {λ0, λ1, λ2, λ3, λ4} and 
with an analogous product rule one obtains the B5 algebra

[Pa, Pb] = Zab,

[Zab, Pc] = ηbc Za − ηac Zb, (12)

[ Jab, Zab] = ηcb Zad − ηca Zbd + ηbd Zca − ηda Zcb,

[ Jab, Zc] = ηbc Za − ηac Zb,

[ Jab, Pc] = ηbc Pa − ηac Pb,

[ Jab, Jcd] = ηcb Jad − ηca Jbd + ηbd Jca − ηda Jcb,
where the Zab , Za , Pa generators constitute a (translations) sub-
group.

4. The B5 invariant particle model

4.1. The B5/S O (3, 1) space–time particle Lagrangian

In analogy with previous section, using the nonlinear realiza-
tion techniques, one can construct a particle model defined on the 
space B5/S O (3, 1). Let us consider an element g of coset space 
B5/S O (3, 1) by

g = e−xa Pa− 1
2 φab Zab−θa Za = e−xa Pa e− 1

2 φab Zab e−θa Za ,

and computing the MC 1-form defined over the coset space–time

� = −gdg = ea Pa + 1

2
kab Zab + ka Za,

where the components are

ea = dxa,

kab = dφab + 1

2

(
xadxb − xbdxa

)
,

ka = dθa + 1

2

(
φabdxb − xbdφab

)
+ 1

6
xc

(
xcdxa − xadxc) .

We can construct a first order Lagrangian. Interpreting the xa coor-
dinate in the same footing as a Minkowski space–time coordinate 
by the imposition of the 1

2

(
π2 + m2

) = 0 constraint, we obtain

L = πaẋa − e

2

(
π2 + m2

)
+ 1

2
fab

[
φ̇ab + 1

2

(
xaẋb − xbẋa

)]

− fa

[
θ̇a + 1

2

(
φabẋb − xbφ̇

ab
)

+ 1

6
xc

(
xc ẋa − xaẋc)] . (13)

Using the inverse Higgs mechanism on the πa coordinate

L = ẋa ẋa

2e
− m2

2
e + 1

2
fab

[
φ̇ab + 1

2

(
xaẋb − xbẋa

)]

− fa

[
θ̇a + 1

2

(
φabẋb − xbφ̇

ab
)

+ 1

6
xc(xc ẋa − ẋcxa)

]
. (14)

In the proper gauge, the equations of motion are

δxa : mẍa = fab ẋb, (15)

δ fab : φ̇ab = −1

2

(
xaẋb − xbẋa

)
, (16)

δ fa : θ̇a = −1

2
φa

bẋb + 1

6
φ̇a

bxb, (17)

δφab : ḟab = −2 faẋb, (18)

δθa : ḟa = 0. (19)

The equation of motion (19) implies that fa is a constant field den-
sity fa = f 0

a which plays an important role in the fab tensor field 
definition. Replacing into the Lagrangian (14), the B5 symmetries 
breaks into a subgroup. As in the previous case, the equation of 
motion provides a description of a massive particle moving in a 
EM field, where the field is not constant.
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4.2. The phase-space realizations of the B5 algebra

Using the nonlinear realizations, the infinitesimal transforma-
tion can be constructed.

Pa : δxa = εa; δφab = −1

2

(
εaxb − εbxa

)
,

δθa = 1

2
φacεc + 1

2
φa

cφ
cdεd + 1

12
xc

(
εaxc − εcxa) ,

Zab : δφab = εab, δθa = −1

2
εacxc − 1

2
φa

cε
cdxd,

Za : δθa = ρa,

Jab : δxa = λa
bxb, δφab = λ

[a
cφ

cb], δθa = λa
bθ

b,

δ fab = λ c[a fcb]; δ fa = λ b
a fb,

and the corresponding Noether currents are:

Pa = pa − 1

2
pabxb + 1

2
φab fb − 1

2
φacφ

cb fb

− 1

12
xb ( faxb − fbxa)

Zab = pab + 1

2
( faxb − fbxa) − 1

2
fc

(
φc

axb − φc
bxa

)
Za = − fa

Jab = p[axb] + f[acφ
c

b] − f[aθb]
The algebra is dynamically realized, where the phase space coor-
dinates (pab, ka, p

f
ab, k

f
a ) are fixed by (pab, ka, p

f
ab, k

f
a ) = (pab, − fa,

0, 0). Note that the ka coordinate is the canonical conjugate mo-
menta for the θa variable. The constraints defined by this fixing, 
shrink the phase space from (xa, πa, φab, pab, θa, ka, fab, p f

ab,

fa, ka
f ) to (xa, φab, θa, fab, fa) where the last sets of coordinates 

are the dynamical ones.

5. Conclusions

In this paper we have constructed a relativistic particle model, 
invariant under the generalized Poincaré group (B5) symmetries 
providing a dynamical realization of the B5 algebra. This con-
struction introduces a new dynamical field density called fa which 
plays an important role in the generalization of the EM field 
Lorentz force.

The B5 algebra realization can be achieved if the variables 
(xa, φab, fab, fa) can be conceived as dynamical ones. The equa-
tions of motion for each variable (15)–(19) describe the state of 
a particle in the B5/S O (3, 1) space where the equation for fa
breaks spontaneously the Lagrangian symmetry.

It is interesting to note that (i) there exists a physical and 
mathematical connection between the equations of motion (17)
and (18) and the equations of motions (3.22) and (3.23) of the 
Ref. [13]. In fact, if we consider the transformation of coordinates

θa = −1

3
ξ ac

c + 1

2
xcφ

ac,

we have that the equation (17) is given by

ξ̇ ac
c − 3ẋcφ

ac − xcφ̇
ac = 0, (20)

and using the equation (16), we find that the equation (20) takes 
the form

ξ̇ bc
c − 3ẋcφ

bc + 1

2
xc

(
xbẋc − xbẋa

)
= 0, (21)

which corresponds to equation (3.23) of Ref. [13], with the con-
tracted indices a and c.
Furthermore, if we consider the transformation

fabc = ηac fb, (22)

this means that

fbca = ηba fc = ηab fc = facb = − fabc,

so that

fbca + fabc = 0. (23)

From (23) and (22) we have

ḟab = −2 fcabẋc + ( fbca + fabc) ẋc

= (−2 fcab + fabc + fbca) ẋc,

which corresponds to equation (3.22) of Ref. [13]. From (22) we 
can see that

f[abc] = 1

3! ( fabc − facb + fbca − fbac + fcab − fcba) = 0, (24)

where this expression is related with the Y [abc] = 0 condition 
of [13].

In addition, (ii) there is an explicit relation among the gener-
alized Poincaré B5 algebra and the second level extension of the 
Poincaré group studied in Ref. [13] and constructed in Ref. [14]. Let 
us consider now a relation between the generalized Poincaré B5
algebra and the second level extension of the Poincaré group stud-
ied in Ref. [13]. From the second level extension of the Poincaré 
group [13] we can obtain the generalized Poincaré B5 algebra. Af-
ter we use the Yabc := ηac Zb basis transformation, where Yabc is 
antisymmetric in b and c, and, symmetric in a and c, we have

[Pa, Zbc] = i (2Yabc − Ybca − Ycab) ,

= 2iYabc − i (Yabc + Ycab) . (25)

From the Yabc definition we can see,

Ybca = −Ybac = −Ycab ⇒ Ybca + Ycab = 0. (26)

Substituting (26) into (25)

[Pa, Zbc] = 2iYabc

= −i (ηab Zc − ηac Zb) , (27)

we obtain one of the commutation relations that defines the gen-
eralized Poincaré B5. From the Eq. (3.15) of the Ref. [13] it is 
possible to obtain

[Y pab, Mcd] = −i
(
ηbc Y pad − ηbdY pac + ηadY pbc − ηac Y pbd

+ ηpc Ydab − ηpdYcab
)
.

Multiplying it by ηpd

[ηpbY pab, Mcd] = −i
(
ηbcη

pbY pad − ηbdη
pbY pac + ηadη

pbY pbc

− ηacη
pbY pbd + ηpcη

pbYdab − ηpdη
pbYcab

)
= −i

(
ηadη

pbY pbc − ηacη
pbY pbd

)

and using the same basis transformation, Y pab = ηpb Za

ηpbY pab = ηpb (
ηpb Za

) = 4Za

we obtain

4[Za, Mcd] = −4i (ηac Zd − ηad Zc) ,

which can be written in the form

[Za, Mbc] = −i (ηab Zc − ηac Zb) . (28)
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This result coincides with the Eq. (12) in the appropriate represen-
tation. Since Yabc commutes with itself and with Zab , we find

[Za, Zb] = [Za, Zbc] = 0. (29)

This means that from equations (27), (28) and (29), it is possible 
to obtain the generalized Poincaré B5 algebra.

A natural extension of this work is the construction of a parti-
cle model for every Bm and its supersymmetric extensions. Since 
the fa is a constant background field density acting on the particle, 
our model supports, in addition with [1], the framework where the 
cosmological constant can be interpreted as a dynamical variable. 
This point of view in addition with the Bm algebras may give an 
insight bridge between the problems related with the cosmologi-
cal constant and the S-expansion. Another interesting possibility of 
this work is the construction of general identifications that unify 
the extended Poincaré algebras, constructed in Ref. [13] and the
Bm algebras.
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