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of the B5 algebra.

Using the techniques of nonlinear coset realization with a generalized Poincaré group, we construct a
relativistic particle model, invariant under the generalized symmetries, providing a dynamical realization
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1. Introduction

One of the typical approaches in theoretical physics consists on
replacing the symmetry group of the spacetime, described by the
Poincaré group, by another symmetry group consistent with pos-
sible fields which might be present on a given physical situation.
This approach provides a geometrical description of the particle in-
teraction with the mentioned additional fields (see e.g. [1]). Using
the semigroup expansion method (S-expansion) introduced in [2],
on the AdS algebra as the starting seed algebra, it is possible
to construct a family of generalized Poincaré algebras by suitable
elections of the semigroup [3]. These algebras are denoted by B,
and have the structure of a semidirect sum between an ideal (con-
stituted by the translations) and the Lorentz transformations. It is
interesting to note that symmetries described by the Maxwell al-
gebra (see e.g. [4,5,8]) correspond to the so-called 984 algebra. The
case of a dynamical realization of the Maxwell algebra was studied
in [1,6,7]. It is natural to ask about the physical nature of the par-
ticle models that are obtained by considering similar constructions
for the B, algebras with m > 5. The purpose of this paper is to
shed some light on such problem for simplest case m =5, by the
construction of the particle action on the coset space B5/S0 (3, 1).

The organization of this article is as follows: In Section 2 we
will review the construction of a Maxwell (B4) invariant particle
model, where the interaction term can be interpreted in a physical
way as a constant EM background acting on the Minkowski space-
time. It is explicitly shown the B4/S0(3, 1) infinitesimal symme-
tries. Section 3 is devoted to reviewing the construction of B4 and
Bs algebras by the S-expansion of the AdS algebra. In Section 4
we construct the 985 invariant particle model which constitutes
the main result of this work. We present some possible extensions
and further comments in Section 5.
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2. The Maxwell (1B4) invariant particle model
2.1. The B4/S0 (3, 1) space-time particle Lagrangian

A B4 invariant particle model, defined in the Maxwell coset
spacetime 34/S0 (3, 1), can be constructed using the nonlinear re-
alizations techniques [9,10]. Let us consider an element g in the
coset spacetime parametrized as in [1,6] by

g=e " Za—x"Pa _ o=¢"Zurg=x"Pa )
where Z;, and P, are the coset generators. The Maurer-Cartan

1-form is given by

Q:—gdg:e“Pa-i—%kabZab, (2)
where the components are

et =dx*, (3)
Kb = dp® + % (wax —xbant) . 4)

We can therefore construct the following first-order Lagrangian

2

where the phase-space coordinates (x%, ;) are extended to (x%,
Ta, ¢, Pabs fab pz{b) and e is the einbein. In order to keep
the usual meaning of the x® coordinates as Cartesian coordinates
on Minkowski space, one is forced to implement the constraint
% (7‘[2 + m2) = 0. We can solve for 7¢ from its equation of motion
(a procedure known as the inverse Higgs mechanism [11]) and re-
place it on (5) to construct the following B4 invariant Lagrangian

e 1 . 1 . .
L=mex" — 3 (n2 + mz) + ifab [d)“b + = (xaxb - xbxa)} , (5)

XX m?

1 ;ab 1 a.b b.a
——e+5fab[¢> +7(xx—xx)], (6)
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where the einbein e implements the diffeomorphism invariance.
Since 7% is no more a dynamical coordinate, and by the constraints
imposed by the canonical momentum definition, we can set

Pab = fab, p({b =0

and shrink the phase-space into (x?, ¢®, fu). In the proper time
gauge, the equations of motions are

X7 :miq = fapX” (7)
. ‘ab__l ayb _ ,bsa

Sfap: ¥ = 2<xx xx), (8)

8¢ : fap=0. 9)

Equation (9) implies that fg, is a constant antisymmetric field
density fqp = f‘?b, which breaks the Maxwell symmetry into a sub-
algebra known as the BCR algebra [4]. Substituting this information
in equation (7) leads to an interpretation of the f, coordinates as
a constant electromagnetic field tensor which produces an inter-
action over the relativistic free particle described by the Lorentz
force. Equation (8) implies that ¢ is proportional to the angular
or magnetic moment of the particle.

2.2. The phase-space realizations of the B4 algebra

As in [6], using the nonlinear realization techniques [9,10] and
using the approach described in [12], it is possible to construct the
infinitesimal B4/S0 (3, 1) symmetries

1
Pq: 8x% =€, 8¢ = -3 (eaxb — ebxa) ,

Zap: 8™ =€,

Jab 1 8x" = 2%xP, 8% =21 9P, 5 fap = A1 fon. (10)

and where the Noether currents which realize the Maxwell algebra
are

1 b
Pa=DPa — =PabX »
2
Zab = Dab>
Jab = PlaXe] + flacp + P[facfb]c, (11)

where the coordinates pg, and pL{b are fixed by (pab,pC{b) =
(fab, 0).

3. From the 234 algebra to the 2535 algebra

The B4 and Bs algebra can be constructed using the S-
expansion on the AdS algebra with a suitable choose of the semi-
group [3]. If the semigroup is chosen as S(Ez) = {Ao, A1, A2, A3}
with a null element A3 = Os and the product rule defined by
Aarpg = Agyp Where a + B < 3, and Aqhg = 0s where a + 8 >3,
after imposing the Os-reduction condition one obtains the 954 al-
gebra which coincides with the Maxwell algebra. On the other

hand if the semigroup is chosen as S(E3) = {Ao, A, A2, A3, A4} and
with an analogous product rule one obtains the 285 algebra

[Pa, Pp]l = Zgp,

[Zap, Pcl = NpcZa — Nac Zp, (12)
[Jabs Zab]l = NevZad — NeaZbd + NbdZca — NdaZch>

[ab, Zcl = NbcZa — NacZ,

[Jab, Pcl=nbcPa — 1ac Py,
[Jabs Jedl = Ncb Jad — Nea Jbd + Mbd Jea — Nda Jeb

where the Zg,, Z4, P, generators constitute a (translations) sub-
group.

4. The Bs invariant particle model
4.1. The Bs5/S0 (3, 1) space-time particle Lagrangian

In analogy with previous section, using the nonlinear realiza-
tion techniques, one can construct a particle model defined on the
space B5/S0(3,1). Let us consider an element g of coset space
Bs5/S0(3,1) by

—X'Pa— 5™ Zap—0"Za _ o—X"Pap— 5™ Zap p—0"Za

g=e
and computing the MC 1-form defined over the coset space-time
Q=—gdg=e"P, + %kabzab +k*Z,,
where the components are

e =dx°,

Kb = dg 4 % (vdx" — xbax),

K =do® + % (qb“bdxb - xbdqb“b) + %xc (dx® — Xdx°)
We can construct a first order Lagrangian. Interpreting the x? coor-

dinate in the same footing as a Minkowski space-time coordinate
by the imposition of the § (72 +m?) =0 constraint, we obtain

. e 1 . 1 . .
L=mgx* — 5 (712 + mz) + ifab [qbab + 3 (x”xb - xbx”)}

. 1 . . 1 . .
— fa [9” + 3 (cp"bxb — xb¢“b) + X (x°x* — x"xc)] . (13)

Using the inverse Higgs mechanism on the 7% coordinate

2

Xaka m 1 s ab 1 b b
L= ——e+= R (x“x —X x“)
26~ 2T glw [4’ *3

. 1 . . 1 . .
— fa |:9a + 3 (qb"bxb — xb¢ab> + Exc(xcx“ — cha)] ) (14)

In the proper gauge, the equations of motion are

8x%:m¥q = fapiP, (15)
; 1 . .
8fav: 47 =—3 (xaxb _ xbxa), (16)
ja 1 a ;b 1'a b
8fa: 0 :_54’ pX + Eff) pX > (17)
8¢ 2 fab = —2faks, (18)
86%: fa=0. (19)

The equation of motion (19) implies that f; is a constant field den-
sity fa = f2 which plays an important role in the fg, tensor field
definition. Replacing into the Lagrangian (14), the B85 symmetries
breaks into a subgroup. As in the previous case, the equation of
motion provides a description of a massive particle moving in a
EM field, where the field is not constant.
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4.2. The phase-space realizations of the *Bs algebra

Using the nonlinear realizations, the infinitesimal transforma-
tion can be constructed.

1
Pa: 8x%=¢€% 8¢ = -3 (e"xb — ebx“) ,

1 1 1
80% = 5q)"cec + 5¢“C¢Cded + o (€% — €x7),
1

1
$0% = _ieacxc _ §¢ac66dxda

Zab . 8¢Clb — Eﬂb,

Zg: 86% = p°,

Jab: 8% = )Labxb’ 8¢ab — )L[ac(bcb]7 569 — Aabeb7
8fap = )\[acfcbﬁ 8fa= )Labfb,

and the corresponding Noether currents are:
1 1 1
Pa=Pa— 5PabX’ + 50% f5 = 5 bach” fy

1
- ﬁxb (faXp — foXa)

1 1
Zab = Pab + 5 (faxp — foXa) — Efc (¢Caxb - ¢Cbxa)
Zq= _fa
Jab = PlaXp] + f[ac¢b]c - f[aeb]
The algebra is dynamically realized, where the phase space coor-
dinates (pay. ka. pJy. kJ) are fixed by (pab. ka. py. k&) = (Pap. — fa.
0,0). Note that the k, coordinate is the canonical conjugate mo-
menta for the 6% variable. The constraints defined by this fixing,
shrink the phase space from (X%, 7q, ¢, pab, 6% ka, fap. P[{b,

fas k‘}) to (x%, ¢%, 0%, fu, fo) where the last sets of coordinates
are the dynamical ones.

5. Conclusions

In this paper we have constructed a relativistic particle model,
invariant under the generalized Poincaré group (Bs5) symmetries
providing a dynamical realization of the 85 algebra. This con-
struction introduces a new dynamical field density called f; which
plays an important role in the generalization of the EM field
Lorentz force.

The B5 algebra realization can be achieved if the variables
(x*, ¢® fup, fo) can be conceived as dynamical ones. The equa-
tions of motion for each variable (15)-(19) describe the state of
a particle in the B5/50(3,1) space where the equation for f,
breaks spontaneously the Lagrangian symmetry.

It is interesting to note that (i) there exists a physical and
mathematical connection between the equations of motion (17)
and (18) and the equations of motions (3.22) and (3.23) of the
Ref. [13]. In fact, if we consider the transformation of coordinates

1 1
9(1 — _§;§Cac + ExCd)aCa
we have that the equation (17) is given by

£, — 3k — ™ =0, (20)

and using the equation (16), we find that the equation (20) takes
the form

R X 1 . .
& be _ 3% + EXC (xbxc — xbx”) =0, (21)

which corresponds to equation (3.23) of Ref. [13], with the con-
tracted indices a and c.

Furthermore, if we consider the transformation

fabe = Nac fbs (22)

this means that

Fbea = Mba fe = Nab fe = facb = — fabc.
so that

fbca+fabc=0- (23)
From (23) and (22) we have

fab = _zfcabj‘c + (fbca + fabc) X
= (_zfcab + fabc + fbca)kC,

which corresponds to equation (3.22) of Ref. [13]. From (22) we
can see that

1
f[abc] = 5 (fabc - facb + fbca - fbac + fcab - fcba) =0, (24)

where this expression is related with the Y4 = 0 condition
of [13].

In addition, (ii) there is an explicit relation among the gener-
alized Poincaré Bs algebra and the second level extension of the
Poincaré group studied in Ref. [13] and constructed in Ref. [14]. Let
us consider now a relation between the generalized Poincaré 85
algebra and the second level extension of the Poincaré group stud-
ied in Ref. [13]. From the second level extension of the Poincaré
group [13] we can obtain the generalized Poincaré 85 algebra. Af-
ter we use the Ygp := ngcZp basis transformation, where Ygp. is
antisymmetric in b and ¢, and, symmetric in a and ¢, we have

[Pa, Zbcl =1 (2Yape — Ybca — Yeab) s

= 2iYabc —i (Yabe + Yeap) - (25)
From the Y, definition we can see,
Ybca = —Ybac = —Yeab = Ybca + Yeap = 0. (26)

Substituting (26) into (25)
[Pa, Zpc] = 2iyabc
= —i(NabZc — NacZbp) s (27)

we obtain one of the commutation relations that defines the gen-
eralized Poincaré Bs. From the Eq. (3.15) of the Ref. [13] it is
possible to obtain

[Ypab, Mcal = —i(nbcY pad — MbaY pac + NMad Y pbe — NacY pbd
+ NpcYdab — MpaYeab)-
Multiplying it by nPd
[npprab, Ml = _i(nbcnpbypad — MY pac + nadnpbypbc
— NacPPY pbad + NpenPP Y dap — ﬂpdﬂpbycab)
=—i (Uaaﬂpprbc - nacﬂpprbd)
and using the same basis transformation, Y yqy = 17ppZq

Upprab = npb (npbza) =47,

we obtain

A[Zq, Mgl = —4i (NacZg — Nad Zc) »

which can be written in the form

[Za, Mpc]l = —i (MapZc — NacZp) - (28)
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This result coincides with the Eq. (12) in the appropriate represen-
tation. Since Yq,. commutes with itself and with Zg,, we find

[Za, Zp] = [Za, Zpc] = 0. (29)

This means that from equations (27), (28) and (29), it is possible
to obtain the generalized Poincaré %5 algebra.

A natural extension of this work is the construction of a parti-
cle model for every By, and its supersymmetric extensions. Since
the fq is a constant background field density acting on the particle,
our model supports, in addition with [1], the framework where the
cosmological constant can be interpreted as a dynamical variable.
This point of view in addition with the B,, algebras may give an
insight bridge between the problems related with the cosmologi-
cal constant and the S-expansion. Another interesting possibility of
this work is the construction of general identifications that unify
the extended Poincaré algebras, constructed in Ref. [13] and the
B, algebras.
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