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Table 1. Cut-off parameters p; ; of B2 ions (in a.u.).
State j Pl,j

2s 1/2 0.72951
1/2 0.67398

2p
3/2 0.67164
3/2 0.91441

3d
5/2 0.91355

3 #ER 5
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PR 1 PEWTSE 1, , i 25, 2p; T 3d; REZHR
EHBEET NIST {H. K 2 LI, ns(n > 3),
np;(n = 3), ndj(n > 4) Mnf;(n > 4)EHT HHRES
REUE 5 L E AT AR AR T 4, S/ NS R
55 5 A 220, BIAN, 4py o B 4ps o B EE R 53500 R
~0.2874707 a.u.F1-0.2874514 a.u., 1% 5524645 17
~0.2875098 a.u.F1-0.2874920 a.u.fFS 1R

3.1.2 HFRE
NS 4 B2 e B BN R ) IR AL R 5 T LA
FoRhy 3437

2/ (nmbmim || Dl nilijis) P AE
Fo = [(m b 3”@;',»“])” C®
rn, 1 4300 FE TR BUE A SR ROR
B EE T, AEn . = En — B R ERITHE.
DI IR BRIESRAF, 1T ARy (38-40)

12al or

D=r—[t—exp(—rf/p")| 2L (7)

Hop ) W =8 ph 077210 au., p=
+pp1/2 + Pps ;o + Pds o + pds/z)'

1
6(2/)51/2

143101-2



¥ 1B ¥ Acta Phys. Sin.

Vol. 72, No. 14 (2023)

143101

£ 2 BET RS AT GEOR AR TR
S BES, SCIR{H (Expt.) B3 &2k A F NIST BY4L
& (BAN7: a.u.), “Diff.” &7~ ] RCICP J5 kit daim)
2505 NIST 25 2 20 E 40 b

Table 2.

some low-lying states of B** ions relative to atomic

Energy levels of the ground state and

core. Experimental values (Expt.) [ are from the
NIST data (in a.u.). “Diff.” denotes the difference in
percentage from calculated by RCICP method and
NIST results.

State  j RCICP Expt. ! Diff. /%
2s 1/2 -1.3939235 -1.3939235 0
1/2  -1.1735867 -1.1735867 0
» 3/2 -1.1734313 -1.1734313 0
3s 1/2  -0.5728008 —0.5728632 0.01
1/2  -0.5146980 —-0.5147730 0.01
» 3/2  —-0.5146520 -0.5147274 0.01
3/2  —0.5005686 -0.5005686 0
3 5/2  —-0.5005553 -0.5005553 0
4s 1/2  -0.3108609 —0.3108905 0.01
1/2  -0.2874707 —0.2875098 0.01
» 3/2 -0.2874514 -0.2874920 0.01
3/2  -0.2815308 —-0.2815324 0
1 5/2  —0.2815252 -0.2815268 0
~5/2  -0.2812848 -0.2812705 0.01
i 7/2 -0.2812820 -0.2812676 0.01
5s 1/2  -0.1948639 —0.1948793 0.01
1/2  -0.1831864 -0.1832067 0.01
» 3/2  -0.1831765 -0.1831970 0.01
3/2  -0.1801535 -0.1801552 0
o 5/2  —-0.1801507 -0.1801523 0
5 5/2  -0.1800204 -0.1800138 0
7/2  -0.1800190 -0.1800124 0

2 35 THIFH RCICP kit B B &+
L 25 RN 43 Pk 2 Z2 18] B iR 1 5 EE O 5 AH B
NIST HfE 1 ARXHE 2R (RMBPT) Jyik [
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BN 3 AILIEH, X T 281/573P1/2, 2P1/2>3d3)2,
2p3/9381 /2, 2D3/5>3d3)2, 572, 351/973D1/2, 32 HYIER
iF, RCICP JAEAYZ5R 5 NIST 14 1 RMBPT
TE W SR SRR L, 251N 0.1%. X T
28179 2D1 2, 3/2, 281/23D3)2, 2P1/2 3812, 2D1 )0
4819, 2p1p>4ds e, 2304819, 2p3n4d3)0 50,
381 /94D1 2, 30 MIBRIE, AR TARTHR AR T3R5
NIST f§ ', RMBPT J7k 2 DL K HR 7k 9 ()
TS RZEHITE 0.6% LAN.

23 BYETFHEAIIMEE LS Z RIKIT FR
FURBE, “Diff.” %78 ] RCICP FikiH s RS

NIST 52 U Z 2/ 43 b
Table 3.
between the ground state and some low-lying states

Oscillator ~ strengths  of  transitions
of B* ions. “Diff.” represents the difference in per-
centage form calculated by RCICP method and

NIST results.

Transitions RCICP RMBPTM HRMI NISTM Diff. /%

281/9572p1 2 0.121251 0.121101 0.121076 0.12099 0.22
2s1/572p3/2 0.242723  0.242501 0.242399 0.24215 0.24

2s1/573p1/2 0.051084 0.05108 0.01
2s1/573p3/2 0.102061 0.10240 0.33
2py /538172 0.046308 0.046288 0.04636 0.11
2p /5 —3d3/2 0.637937 0.63800 0.01

2py /4812 0.008193 0.008233 0.49

2p, jy—4d 0.122573 0.12280 0.19
2p35 38175 0.046346 0.046338 0.04636  0.03
2py5—3d3)5 0.063806 0.06381  0.01
2p3/—3d5 5 0.574284 0.57430 0

2p3/y 4812 0.008198 0.008236 0.46

2pg/5—>4dy 5 0.012256 0.01228  0.20
2p3/y—4d; /5 0.110323 0.11050 0.16
38,/53D1 2 0.203293 0.20310  0.10
381/5>3D3)2 0.406942 0.4068  0.04
38y/5>4py 2 0.048745 0.04850 0.51
38y /5—>4py )2 0.097357 0.09700 0.37

3.1.3 MiLFE
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Table 4.

breakdowns of the contributions of individual transitions (in a.u.).

Static electric-dipole scalar and tensor polarizability of the ground state and some low-lying state of B>* ions and

2819 2p1/2 2py)2 3812
Contr. o FCPC Contr. o Contr. o ol Contr. o
2Dy /2 2.4975 2.4953144) 281/ 2.4975 2819 2.4963 2.4963 3p1)2 60.218
2p3)2 4.9926 4.987214] 3ds), 1.4084 3ds), 1.2684 -0.2537 3p3/2 120.35
Remains 0.3433 0.345314] Remains 0.4959 Remains 0.6371 -0.0743 Remains 2.3125
Corel®) 0.0195 0.0195144 Core 0.0195 Core 0.0195 Core 0.0195
Total 7.8529 7.8473144 Total -0.5737 Total -0.5713 2.1683 Total 182.90
CICPM™l 7.8460 -0.56938 182.94
sccll 7.85
FCGI 7.8591

% 45 T R H RCICP FiEHAR BT
B 2515, VLR ITMR IR 2010, 2030 M
31 AT HL A AR AR Ab 30 o 32 BRAT A TR
I 5 A B T i A A R T . R
“Remains” 2 7 i I & & UL B 3% 2 25 1) o ik,
“Core” /R 152 (1s?) LTI TTRK, “Total” £
SR, X T HEZS 25, o RO HLE AR AL,
281 )52y 2, 372 BRIT 15 3, RCICP T4 (1 45
5 full-core plus correlation (FCPC)*, JEFAXTiE
M EAER IS (CICP) %)) SR ZS (SCC)H0)
DU SE 4 B i i (FOGHT Jrikit B &5 A5 &
BRI, 220078 0.1% LA X T 2py 0 &, TTHR
FERAT 2p1/9281)0 A 2py y—=3dy 0 HY BRI,
HZ T 2py 028 0 WMCRE y AH, 33X — TR
2p o WITTHR 9 7, TR 2py o BTHRLAEIR AR AL 3R T
fi, RCICP WY 45 R H-0.5737 auw. X T 2py)
SRR ERALR, FEETTHOR A T 2ps — 281
M 2ps — 3ds, MERIE, RCICP F15E (155 5
-0.5713 a.u., Ml 2p; R, BT 2p3/5—281 /2 R
IEXT 2pg 0 WALZITTER N 171, FTLL 2ps)s 7‘51‘&‘

/N FE. RCICP AR ME RS CICP ik
RN RS G 4r, 2204 0.8% LA,
X B AR A2 CICPUS) SR AR 45 R, HifH
AR 2p A8, ARG MBI AR, X T
2p30 SHYTKR AL, HFETTHOR A T 2py 0
2512 1 2p3 350 FUBRIE, 7050178 2.4963 a.u.tj
~0.2537 a.u., RCICP 115 ) 25 3 0 2.1683 a.u.,
FURIE BAT AT HEB AR DG . X T 3 0 2, FH
TR F T 351 /03Dy 2, 372 MIERIE, ASCGHRSHN
182.90 a.u., 5 CICPW! Jiki M HIZE R 182.94 a.u.
FFERAER I, 22517 0.02% LAA.

3.1.4 AMAE

FRAR DU B AR B3, X T B2 T LA 25,
B A A3 AT AT £k oy (48]

Yo (281)2) = 12T (s1/2:P;1,51/2:P;11)
+ T (Sl/Qupj’adj7p_j”) - alﬁo] ’ (11)

Horp o RIS S B R AR AR AL 3, Bo A2 FEL AR
WA FE ) — B A B TE L T(s1/2, 057,812, 0,77)
*u T(Sl/27 pJ’ ) d]a pj” )E‘[u%‘:{ﬂ?ﬂ?

T (s1/2:p;1:51/2:Pj0r) =

ninans

) Z <251/2 ||D|| nlpj/> <’I’Llpj/ ||D|| n251/2> <n2s1/2 HD” ngpj//> <n3pj,, ||D|| 281/2>
(

T (Sl/Qapj’vdjapj”) = Z

’
ninzng (

K5 BT BRI 25, MR AL AT
[E &M BTHR, IF 5 Roy 1 Bhattacharya® fii HI#%

. (12)
E, - E281/2) (E2 - E281/2) (E3 - E281/2)
<2Sl/2 ||D|| nlpj > <n1pj/ ||D|| ’/lgdj> <7’L2dj ||D|| ngpj”> <n3pju ||D|| 2S1/2> (13)
B — E2s1/2) (B; — E2s1/2) (Es — E251/2) ’

|
4 Hatree-Fock (CHF) A& Drake Fl Cohen[™ fifi {i
A A Hatree-Fock (UCHF) Bl Ty 45 2| 1) £
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B AKIHRE M RET T . 4 (11) =X, B>
BT RS AR BT R 3 AR L, i
T(s,p;:8,p;7), T(s,py.dj,pyr) Ml ol Bo. N T PFAl
T RSE R IR 2, TR Ak A 52 Tk i
2s—2p;, 2p;—>3d; BRIT R BT 4o NIST #E##
(1 BRIT 4 I8, 4% 3s, 3p;, 4s, 4p;, 4d;, 5s, 5p; Al
5d; (M REDR [ R i, NIST #fERE(H, I E B 57
THEBAL A (BRIE RS (29)), DFFER B 70 (28) 5
7§ (28) B9 ZE FAUALHI 22 6.645 a.u., XA 2B 5
HRTHE R 19 0.6%. Ik, & RCICP
TR B R IR BEAE 1% LA, 72T A BTk
e, 5 A FAH SC Y o Bo T BTk B R, SR N
134.364(586) a.u.. RCICP J7ikit i B2k m
AL AL, Tl -1063.346(6.645) a.u., 5 CHFH)
DA UCHFPO S 7 B R 25 A G 45 LA

R 5 BT HEES AL AL K H b ) 250 AR
AR TR (FALL: aa)

Table 5.  Hyperpolarizability of the ground state of
B?** ion and the contributions to the hyperpolarizabi-

lity (in a.u.).

Contributions Yo (25) 7§ (2s)
1
TST(S,P1/2,57P1/2) 1.251(1) 1.250
1
_TST(S7P1/2757P3/2) 2.501(1) 2.500
1
~15T(5:p3/2:5,p1/2) 2.501(1) 2.500
1
ET(57P3/2757P3/2) 5.001(1) 5.000
T(s,p;7>5,p;7) 11.255(5) 11.250
1
ET(Svpl/%dg/gapl/z) 9.588(8) 9.580
L T(s,py /o dsjipasy)  LO1T(2) 1.915
1810 /BT
L (s, pasardssprse)  LO1T(2) 1.915
1810 /BT
1
@T(57p3/27d3/27p3/2) 0.383(1) 0.382

1
30 (5 P3/2:d5/2,P3/2) 20.692(16) 20.676

T(s,p,,d;,p;r) 34.497(28) 34.469

ol Bo 134.364(586)  133.778
RCICP ~1063.346(6.645) ~1056.701
UCHFF! -1160
CHF) ~1120

3.2 BtETF

321 & &R

FIR A2 B2 S TH0E, #A15E B+
HILL A R, E— XL T BT FIFE T
A A B B R, 530 T B TR TAW
W RREL. 3 6 I T IS DL RGR MR L S AN T
JRF52 12 1S I RELK, IF 5 NIST HEf# Ry S g i by
HEATHOER. NFE 6 AT LR B, RCICP J7 kit nyss
5 NIST M SR SR IF, 27 A
i 0.05%.

#* 6 BRI MG AR T T SR RE
GfH, SEHME (Expt.) PUIEOR A T NIST 9 £ s
(Bfi7: a.), “Diff.” /s Hl RCICP kit B m4h
5 NIST G2RZ 2R A4

Table 6. Energy levels of the ground state and
some low-lying states of B* ions relative to atomic
core. Experimental values (Expt.) are from the NIST
data (in a.u.). “Diff.” denotes the difference in per-
centage from calculated by RCICP method and
NIST results.

State RCICP Expt.P! Diff. /%
25218 2318347  —2.318347 0
2s2p ®Py -2.148235  -2.148233 0
2s2p 3Py -2.148205 ~2.148205 0
2s2p 3Py ~2.148178  -2.148132 0
2s2p Py ~1.9832 -1.983927 0.03
2p??Py ~1.867621  ~1.867673 0
2p23P, ~1.867634  —1.867634 0
2p?3P, ~1.867565  —1.867573 0
2p*1D, ~1.852917 ~1.851947 0.05
2p2!Sg ~1.736452 1736679 0.01
2s3s 38, ~1.727042 ~1.727053 0
2s3s 1Sg ~1.690800 -1.691293 0.03
2s3p *Py ~1.662206  —1.662280 0
2s3p 3Py ~1.662167 ~1.662277 0.01
2s3p 2Py -1.662006 -1.662261 0.02
2s3p 1Py -1.661601 -1.661765 0.01
2s3d 3Dy ~1.631934 ~1.631936 0
2s3d 3D, ~1.631720 ~1.631936 0.01
2s3d 1Dy -1.613116 -1.613545 0.03
254538 ~1.560411 ~1.560423 0
2s4s'Sg ~1.552914  -1.553177 0.02
2s4p 'Py ~1.540973 ~1.541075 0.01
2sdp 3P, ~1.5366 ~1.5367 0.01
2sdp Py ~1.536439 ~1.536726 0.02
2sdp Py ~1.536693 ~1.536726 0
2s4d 3Dy ~1.524938 ~1.525210 0.02
2s4d 3Dy ~1.525198  —1.525210 0
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T UL Ry Re g kg, A (6) X, 152
T BRI AR A A 2 1] ) H A A R T
PR pE, 2 780 TASCGHRSR, I SR
NISTHY HE#A{E . CICP 15 J5 ik | B-FE A HE A 75 4H
HAERMZH (BCICP) J5 ik P2, Z 2075 Hartree-
Fock 5 Breit-Pauli (MCHF-BP) J7ik 53, Z4 2
Hartree-Fock (MCHF) J5 i DU S5 45 R AT 1L
B.XTF 28218, — 2s2p 'P HPRERIE, RCICP 1Y
S50 5 NIST HEfe (i 1Y A A B 45 5 155254 £F
BRI, 2207E 0.4% VAN, & 78 0] LIF
H, BR 282 1S,—2s4p Py Fll 282 1S;—2s5p Py BRif
4h, RCICP J ik it H M AR BGE Mk T 5
NIST HEfA{E 1Y Z (8] (% 22 51 4E 2% LAY, 28% 1Sy—
2s4p 1P, il 252 1S, — 2s5p P, BRIFAYIRE FoRE 5
NIST HEFAE MY Y 22 53 4 5 20 4% F 7%, 1 K
XA ZEFIEFATRER 34, Hp— g, i 7
A A A RS R S5 800, HER
WS PR 4, B PR A A WS L S
Z. I AR, FEA SO R R IR A
XIFRRME (FRRALE B J) F R AR A,
T4 2s2p, 2s3p, 2sdp, 2s5p A Bl %) 4 25 23 1]
AHA], 2s4p P, il 2s5p Py BIREARXS T 2s2p 'Py
U SEAR 2% Y 2s4p 1P, Fl 2s5p 1Py A5 3]
SR BRAT R T30 5 NIST 4508 = [a] (1) A X}
EZRBR. e — A JRE SR, 2s4p P 285p 1Py
BB MR 5 B W R R /N Bilan, XF+
2s? 1Sy—2s5p Py BRIE MR TR, A SRR 4
A2 0.0224, 10 NIST #EFEEM 0.0241. RCICP [#)
g 5 H A BRIE ik 1052 PR 4 AR AT S 15
FeBLAT, BR 2s2p °Py — 2p? Py RYERIESR, HARER

EHRT R 2= HITE 2% DA, 2s2p 3Py — 2p? °P,
BRAT FPR T3R5 BCICP 4553 02 225/ N T 7%.

3.2.3 MiLFE

8 s BYES T 5 B BRI A G 1Y 282 1S,
1 2s2p 3Py A ERA AR LR, I 54184
AR (CT) Jrik B9 4l 25 AH B AR R R Z AR e
W (CI+MBPT) J5 % o 21 & #H B 4F FH 4= By
(Cl+4-all-orders) 77k % A BRI AHE (CCD4+ST)
77 08, CICP J7i: ) fdiARx e & 7% (PRCC)
Tk B = HBUR AR & (CCSD,T) J5ik BT
DL R B H- HL 22738 43 (RRV) J7 125 58 18 i 45 3 ok
frEbde. W3 8 ATLIR Y, 3T 282 1S ML R,
282 1S;—2s2p 'Py W BRIE 5 FE T, sTERZ N 93%,
RCICP Wz 5 Cl+all-orders J7i B3] CIP9, CI4
MBPTEF | CCD+4STEY, RRVES DL K CICPH! Jy
45 R 2 IR Tt 0.6%, 5 PRCCRY 25 5 95 &
TE 2% 747, 5 CCSD, TP G522 7 7% 22 ).
XFF 2s2p 5Py ML, 2s2p 5Py — 2p? P, 1Y
BRAT I 2s2p 3P, — 2s3d 3D, BUBRIT 5 £ 5, vimk
3 29R 56% F 24%. HHET RCICP 254 5 C1P7,
CI4+MBPTF, Cl+all-orderl L} CICP J5 3 149)
TR R 2 T A 0.3%.

SR TH %M BBR il LIS N

4
Av = —%(831.9 V/m)? (1;)(0%)) Aar(147), (14)

Krf, Aot BERIT YIRS S BRI LR Z
2, AU —A7T L2 I S0 N S A AE 1 PO,
TIRRWEEE (K), 24 T h%=E 300 K B, $pEE
2s52p P, —2s2 1S, i BBR 5% A4 0.01605 Hz, 5
CI+MBPTP J5 gk 3+ 5 1Y 45 2R 0.0159(16) Hz £F

® T BrE AR A Z A AR BRIT AR TR (B au)

Table 7. Oscillator strengths of electric-dipole transitions between the ground state and some low-lying states of B* ions
(in a.u.).
Transition RCICP CICP] BCICPF MCHF-BPP3 MCHFb NIST.!HU
2s%1S) —2s2p 1P, 1.00092 0.99907 1.002 1.001 0.9976(22) 0.9990
2s?1S;—2s3p P 0.10829 0.10959 0.108 0.1087 0.1093(3) 0.1090
252 1S;—2sdp 'Py 0.05331 0.0530 0.0514
25%1S,—2s5p Py 0.02244 0.0230 0.0241
2s2p *Py—2p? °Py 0.34113 0.34298 0.365 0.3430 0.3427(2) 0.3400
2s2p 3Py —283s 35, 0.06437 0.06377 0.06397 0.0640
2s2p *Py—2s3d *D, 0.47657 0.47627 0.473 0.4759 0.4750
2s2p 3P —2s4s *S; 0.01170 0.0115
2s2p *Py—2s4d *D, 0.12480 0.125 0.1260
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* 8 BYET 22'S, Fl 2s2p P, M HLIHHLAL LK
Table 8.  Electric-dipole polarizability of 2s?!S, and 2s2p *P, states of B ions.
252 1S, 2s2p *Pg

Contributions polarizability /a.u.

Contributions polarizability /a.u.

282 15,—2s2p 1P, 8.9149 2s2p *Py—2p2p P, 4.3326
2s?1S;7—2s3p 'P, 0.2511 2s2p 3Py—2s3d °D, 1.7878
Remains 0.4365 Remains 1.6195
Core 0.0195 Core 0.0195
RCICP 9.6220 RCICP 7.7594
C1M 9.5750 C169 7.7790
CI+MBPTP) 9.6130 CI+MBPT) 7.7690
CI+all-orders) 9.6240 ClI+all-order! 7.7720
CCD+ST Bl 9.5660
CICP) 9.6441 CICP¥l 7.7798
PRCC 9.4130
CCsD, Tk 10.395(22)
RRVP 9.6210
SAEMAE, % BBR L Cat, SO B THBGE  SEH

Dj %12 B BBR B8 (Ca': 0.38(1) HzP), Sr:
0.250(9) Hzl%%) /N 1 ¥iE%%, L Ca, Sr, Yb Ji 1
B () BRIT 3P, — 1S, 9 BBR #ii#% (Ca: 1.171 He,

Sr: 2.354 Hz, Yb: 1.25 Hz) /)N 2 NG PO, X —
FEMET BB T T B B L

4 % @

FIFABX S A EA BRI T B2
1 BT pREL . RERFNIR P, i — 245 5
T B¥ BT 25/, 2D1)2, 2D/, 35172 25 M HLI AR AR
FFNEEZS: 25, o HUBIALAR, LUK BT T 2215,
1 2s2p 3Py AR HL AR AL, JF 5 HAL IS 45
AT AL, AU R 5O AR 1A i
X F BB 2Dy o F1 2Dy )0 SHBALF N F1HE, 2
N 2Dy 9, 3737251 0 BRIT AR RE DA T, 3 T3
XF 2py /o Fl 2py o A HB ALY TTBRHER 1 5. X T
2D3 0 ASHY IR, HFETTHOR A T 2py 5
2510 F 2p3)0—3ds o WY BRIT, 73 51 H 2.4963 a.u.
H1-0.2537 a.u., RCICP IT& 25K 2.1683 a.u..
BEA 25y o HOEENALARAY TIIR £ 2Ok A T 5L
FHOCHY o Bo T X T B ESFJEAS 282 1S, MR AR
b F R 9.6220 a.u., 2s2p Py 2 B B AL R S
7.7594 a.u., T AYBIERE 2s2p SP, — 282 1S,
KR SRS 0.01605 Hz, XA BAKGE SHFAL L
il = 4 i JE T I B R SRR SR S A AL /N 1—2 B
H.
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Abstract

The wave functions, energy levels, and oscillator strengths of B** ions and B* ions are calculated by using a
relativistic potential model, which is named the relativistic configuration interaction plus core polarization
(RCICP) method.The presently calculated energy levels are in very good agreement with experimental energy
levels tabulated in NIST Atomic Spectra Database, with difference no more than 0.05%.The presently
calculated oscillator strengths agree very well with NIST and some available theoretical results. The difference
is no more than 0.6%. By using these energy levels and oscillator strengths, the electric-dipole static
polarizability of the 2s; 5, 2p; 5, 2p3/9, and 3s; j state and static hyperpolarizability of the ground state 2s, /, for B
ion, as well as electric-dipole static polarizability of the 2s?> 'S, state and 2s2p 3P, state for B* ion are
determined, respectively. The polarizability of the 2p,j, state and 2p;/, state of B?* ion are negative. The main
reason is that the absorption energy of the 2p;/y 3/, — 2s;/, resonance transition is negative. The contribution to
the polarizability of the 2p, ), state and 2p;/, state are both negative. For the tensor polarizability of the 2p;/,
state, the main contribution from the 2p3/, — 2s, ), transition and 2p3/, — 3d;/, transition are 2.4963 a.u. and
—-0.2537 a.u., respectively, and the present RCICP result is 2.1683 a.u. The largest contribution to the
hyperpolarizability of the ground state 2s,,, originates from the term of a'By. The electric-dipole static
polarizability of the 2s? 'S, state and 2s2p P state of BT ion are 9.6220 a.u. and 7.7594 a.u., respectively. The
presently calculated blackbody radiation (BBR) shift of the 2s2p 3Py — 2s? 1S, clock transition is 0.01605 Hz.

This BBR shift is one or two orders of magnitude smaller than that for alkaline-earth-metal atom.
Keywords: electric-dipole polarizability, hyperpolarizability, B>* ions, B* ions
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