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We propose a procedure to extract a true ground state from an approximate ground state 
by using quantum entanglement. We use plural ancilla qubits with hierarchical structure, 
intending to gradually improve the precision of the approximation. We demonstrate the 
procedure for quantum systems with a few qubits that derive from the (1 + 1)-dimensional 
Schwinger model by classically emulated digital quantum simulation. Although we use for 
simplicity an approximate ground state pr epar ed by adiabatic quantum computation, our 
procedure is applicable to any approximate ground sta te tha t is a superposition of a true 
ground state and excited states. Our procedure is applicable for an N-qubits Hamiltonian 

with a nondegenerate ground state. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Subject Index A61, A64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/11/113A02/7875247 by guest on 07 M

arch 2025
1. Introduction 

Thanks to the recent de v elopment of quantum computers by superconductivity, some quan-
tum systems have been analyzed by the universal type of quantum computers [ 1 , 2 ]. The (1 + 1)-
dimensional Schwinger model [ 3 ] has been analyzed by analogue quantum simulation [ 4 , 5 ].
Recently, the (1 + 1)-dimensional Schwinger model has been studied with the IBM Eagle pro-
cessor [ 6 ], which has more than 100 quantum bits, by the variational quantum eigensolver [ 7 ].
The classicall y em ulated quantum sim ulator also has been used to analyze quantum systems.
The classicall y em ulated quantum sim ulator is free from noises and is suited for precise anal-
ysis of not-so-large quantum systems by classical computers. Recently, the (1 + 1)-dimensional
Schwinger model has also been analyzed by the classically emulated quantum simulator [ 8–
10 ]. By virtue of the analysis of the classically emulated quantum simulator, an unknown re-
gion of parameters for the (1 + 1)-dimensional massi v e Schwinger model with a topological
θ -term has been explor ed. If theor etically established results can be reproduced, the analy-
sis by the quantum simulator will be reliable. Some exact r esults ar e known for the (1 + 1)-
dimensional Schwinger model in the massless case [ 11 ] with θ = 0 . For the (1 + 1)-dimensional
Schwinger model, in the massless case the vacuum expectation value of ψ̄ ψ has been com-
puted as 〈 vac | ψ̄ ψ | vac 〉 = − e γ

2 π
g √ 

π
≈ −0 . 160 g [ 12 ], where γ ≈ 0 . 5772 is the Euler constant and

g is the coupling constant between the fermionic fields and the electric field. Chakraborty et al.
[ 8 ] have computed the value 〈 vac | ψ̄ ψ | vac 〉 by an extrapolation with respect to the number of 
qubits. Their result is consistent with the exact result within a kind of systematic error. 

It also has been recognized that in the quantum simulation an approximate vacuum pr epar ed
by adiabatic quantum computation [ 13 , 14 ] slightly differs from a true vacuum [ 8 , 15 ]. It seems
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that for the quantum simulation the conditions of the quantum adiabatic theorem [ 16 , 17 ] are
not completely satisfied. Vacuum expectation values of some physical quantities computed with 

this approximate vacuum oscillate periodically in time, which will mean that the approximate
vacuum is a superposition of a true vacuum and some e xcited states. Accor dingly, vacuum
expectation values of some physical quantities also slightly differ from the exact values and
their variances are not so small. Ther efor e, it will be an important task to establish a procedure
to separate a true vacuum from excited states in quantum simulation of this kind. Recently, the
author of the present paper has proposed a procedure to improve the approximate vacuum [ 18 ].
The influence of excited states has been diminished and the variances of the vacuum expectation
values have been suppressed. In the previous paper, we used a priori an exact value of ground
state energy to improve the approximate vacuum. In this r egard, the pr evious procedur e is not
self-contained. 

In this paper, we propose a procedure to extract a true ground state from an approximate
ground state, which is a superposition of a true ground state and excited states. Although
we onl y sim ulate up to a thr ee-qubits system, our procedur e , in principle , is applicable for
an N-qubits Hamiltonian with a nondegenerate ground state. We only use ancilla qubits and
an approximate value of a ground state energy. We introduce conca tena ted ancilla qubits to
e xclude e xcited sta tes itera ti v el y from the a ppr oximate gr ound state. We do not intend to di-
agonalize a Hamiltonian by unitary transformations on the physical system. But, we sepa-
rate a true ground state of a system from excited states by unitary transformations controlled
by the ancilla qubits. By proper unitary transformations controlled by the ancilla qubits, we
intend to transform the state (α| E 0 〉 + �i βi | E i 〉 ) | 0 〉| 0 〉 · · · | 0 〉 into a quantum entangled state
α| E 0 〉| 0 〉| 0 〉 · · · | 0 〉 + �i βi | E i 〉|| 1 〉〉 i , where | E 0 〉 is a true ground state, | E i 〉 is the i-th excited state,
| 0 〉| 0 〉 · · · | 0 〉 is the initial state of the ancilla qubits, and || 1 〉〉 i is a state where at least one of the
ancilla qubits is in the state | 1 〉 . This time, we do not a priori use the exact value of the ground
state energy. We use an approximate value of a ground state energy to improve the approxi-
ma te ground sta te and upda te the approxima te value of the ground sta te energy. We can itera te
this improving procedure as many times as there are ancilla qubits in the system. We estimate
ground state expectation values of physical quantities from the iterati v ely improv ed approxi-
mate ground state. As an initial approximate ground state we adopt the approximate ground
state pr epar ed by adiabatic quantum computation and we use its energy as the initial approxi-
mate value of the true ground state. For simplicity, we examine a one-qubit system, a two-qubits
system, and a three-qubits system that deri v e from the (1 + 1)-dimensional Schwinger model.
Our procedure can in principle be applicable irrespecti v e of the number of qubits and is not
restricted to the approximate ground state pr epar ed by adiabatic quantum computation. 

2. One-qubit system 

2.1. Hamiltonian and an appr o ximate gr ound state pr epar ed by adiabatic quantum 

computation 

We consider the following simple one-qubit Hamiltonian: 

ˆ H T = X + J Z, (1) 

where X and Z stand for the Pauli matrices σx = 

( 

0 1 

1 0 

) 

and σz = 

( 

1 0 

0 −1 

) 

and J is a real

par ameter. We mainly concentr ate on the typical case J = 1 , which will be the easiest case
2/14 
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Fig. 1. Ground state expectation value of Z for J = 1 by IBM Qiskit qasm-simulator. The parameter 0 ≤
s ≤ 1 is mapped to the time period 0 ≤ t ≤ 36 and this time period is divided into 144 small time intervals 
for simulation. The number of trials is 10 

6 . The time period 36 ≤ t ≤ 72 exhibits the time evolution by 

the constant Hamiltonian 

ˆ H T . We have used the second-order Suzuki–Trotter formula [ 19 , 20 ]. We have 
started from the initial state | 1 〉 . 
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to theoreticall y anal yze. To pr epar e an appr oximate gr ound state of ˆ H T by adiabatic quantum
computation we introduce the initial Hamiltonian 

ˆ H 0 = Z. We have the following Hamiltonian
ˆ H A 

(s ) to carry out the quantum adiabatic computation: 

ˆ H A 

(s ) = (1 − s ) ˆ H 0 + s ˆ H T = (1 − s ) Z + s (X + J Z) , (2) 

where s is a parameter that varies gradually from s = 0 to s = 1 . We set s = 

t 
T for an adequate

time period T . We start from the initial state | 1 〉 = 

( 

0 

1 

) 

, i.e. the ground state of ˆ H 0 . For ˆ H 0 , the

state | 0 〉 = 

( 

1 

0 

) 

is the excited state. We compute a ground sta te expecta tion value of Z at each

s . We show a simulation result in Fig. 1 . After the time t = T , the system time de v elops under
the constant Hamiltonian H T . If the true ground state is pr epar ed the ground state expectation
value of Z should be a constant. In the result in Fig. 1 the ground state expectation value of 
Z oscillates regularly. This means that the pr epar ed state by the present adiabatic quantum
computation is not a true ground state. In computer simulation we use a discrete time and
the Suzuki–Trotter formula [ 19 , 20 ], which may be the cause of deviation from a true ground
sta te. Recently, errors tha t deri v e fr om the Suzuki–Tr otter formula in quantum simulation have
been studied [ 21 , 22 ]. In the following we examine the approximate ground state pr epar ed by
adiabatic quantum computation for the case J = 1 . 
3/14 
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For J = 1 , the ground state of H T is 

| E 0 〉 = 

1 √ 

4 + 2 

√ 

2 

(| 0 〉 − ( 
√ 

2 + 1) | 1 〉 ) , (3) 

and the first excited state of H T is 

| E 1 〉 = 

1 √ 

4 − 2 

√ 

2 

(| 0 〉 + ( 
√ 

2 − 1) | 1 〉 ) . (4) 

We see that 〈 E 0 | H T | E 0 〉 = −〈 E 1 | H T | E 1 〉 = −√ 

2 , 〈 E 0 | Z| E 0 〉 = −〈 E 1 | Z| E 1 〉 = −
√ 

2 
2 , and

〈 E 0 | Z| E 1 〉 = 

√ 

2 
2 . 

After the adiabatic state preparation process, the observable Z time develops as 

e i ̂  H T t Z e −i ̂  H T t = e −iJHt Z e iJHt = 

1 

2 

(X + Z ) + 

1 √ 

2 

Y sin 2 

√ 

2 t + 

1 

2 

(Z − X ) cos 2 

√ 

2 t . (5) 

At the time t = T if we have a state | ψ (t = T ) 〉 = | ψ (0) 〉 = | ψ 0 〉 = α| E 0 〉 + β| E 1 〉 , | α| 2 + | β| 2 =
1 , instead of the desired state | E 0 〉 , we have at a time t(≥ T ) 

〈 ψ (t) | Z| ψ (t) 〉 = − 1 √ 

2 

(1 − 2 | β| 2 ) + 

√ 

2 | αβ| cos ( 2 

√ 

2 ( t − T ) + θ ) , (6) 

where we have again set αβ∗ = | αβ∗| e iθ . A procedure to obtain an appr oximate gr ound state
expectation value of Z is to take the time average of 〈 ψ (t) | Z| ψ (t) 〉 over the time region t ≥ T . In
this procedure, howe v er, the approximate value is al ways accompanied by the O (| β| 2 ) systematic
error, although it may be small compared with O (| β| ) . We propose another attempt to diminish
not only the O (| β| ) error but also the O (| β| 2 ) error. 

To obtain ground state expectation values of physical quantities with high accuracy from
the approximate vacuum | ψ 0 〉 , we introduce multiple ancilla qubits in the state | 0 〉| 0 〉 · · · | 0 〉 .
Our purpose is to transform the state (α| E 0 〉 + β| E 1 〉 ) | 0 〉 into the quantum entangled state
α| E 0 〉| 0 〉 + β| E 1 〉| 1 〉 . We compute an approximate ground state energy E 00 from the approxi-
mate ground state | ψ 0 〉 by E 00 = 〈 ψ 0 | ˆ H T | ψ 0 〉 . We compute a time parameter θ0 that satisfies

θ0 E 00 = 

π
2 . We transform the first ancilla qubit by the Hadamard operator H = 

1 √ 

2 

( 

1 1 

1 −1 

)

to the state | + 〉 = 

1 √ 

2 
(| 0 〉 + | 1 〉 ) . Taking the first ancilla qubit as the control qubit, we operate

 (θ0 ) = ie −iθ0 ˆ H T on the physical state | ψ 0 〉 . Then, we again Hadamard transform the first ancilla
qubit. We call this series of operations a twir ling oper ation. By this twir ling oper ation, we can
partially exclude the excited state. The initial state (α| E 0 〉 + β| E 1 〉 ) | 0 〉 is expected to approach
the quantum entangled state α| E 0 〉| 0 〉 + β| E 1 〉| 1 〉 . In practice, after the first twirling operation
the physical state and the first ancilla qubit will be in a state c 1 | ψ 1 〉| 0 〉 + d 1 | ϕ 1 〉| 1 〉 , where | ψ 1 〉
is a substitute of the true ground state | E 0 〉 and | ϕ 1 〉 is an obstructi v e state like the excited state
| E 1 〉 . The first approximate values of physical quantities are computed as the expectation val-
ues by | ψ 1 〉 . We compute the second time parameter θ1 by θ1 E 01 = 

π
2 , where E 01 = 〈 ψ 1 | ˆ H T | ψ 1 〉 .

Using θ1 and the second ancilla qubit, we carry out the second twirling operation and obtain a
state c 2 | ψ 2 〉| 0 〉| 0 〉 + d 2 | ϕ 2 〉|| 1 〉〉 , where || 1 〉〉 means tha t a t least one of the ancilla qubits is in the
state | 1 〉 . We call the states where ancilla qubits are in || 1 〉〉 excluded sta tes. W hereas, we call the
states where all of the ancilla qubits are in the state | 0 〉 acti v e states. Using the state | ψ 2 〉 , we
update the values E 01 and θ1 to E 02 and θ2 , respecti v ely. We can repeat this procedure as long
as a fresh ancilla qubit is supplied. 

Let us set | ψ j 〉 = α j | E 0 〉 + β j | E 1 〉 , j = 0 , 1 , · · · , m − 1 , where α0 = α, β0 = β. By the ( j + 1) -
th twirling operation (Fig. 2 (a)), | ψ j 〉 and the ( j + 1) -th ancilla bit | 0 〉 transform as 
4/14 
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Fig. 2. (a) One-qubit j-th twirling operation. The operator U j is defined by U j = ie −i θ j ˆ H T , where θ j sat- 
isfies θ j E 0 j = 

π
2 for E 0 j that is computed by E 0 j = 〈 ψ j | ˆ H T | ψ j 〉 . By the Hadamard gate H the ancilla 

qubit is transformed as | 0 〉 → 

1 √ 

2 
(| 0 〉 + | 1 〉 ) . The dot in the ancilla qubit means that the corresponding 

unitary transformation U is controlled by the ancilla qubit. By the controlled unitary transformation the 
physical quantum state and the ancilla qubit are transformed as | ψ j 〉 (| 0 〉 + | 1 〉 ) → | ψ j 〉| 0 〉 + U | ψ j 〉| 1 〉 , 
and quantum entanglement is produced between the physical quantum state and the ancilla qubit. (b) m 

folds of one-qubit twirling operations. 
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| ψ j 〉| 0 〉 H −→ | ψ j 〉 1 √ 

2 

(| 0 〉 + | 1 〉 ) C−U −−→ | ψ j 〉 1 √ 

2 

| 0 〉 + (α j ie −iθ j E 0 + β j ie −iθ j E 1 ) 
1 √ 

2 

| 1 〉 

H −→ | ψ j 〉 1 

2 

(| 0 〉 + | 1 〉 ) + (α j ie −iθ j E 0 + β j ie −iθ j E 1 ) 
1 

2 

(| 0 〉 − | 1 〉 ) 

= 

(
1 + ie −iθ j E 0 

2 

α j | E 0 〉 + 

1 + ie −iθ j E 1 

2 

β j | E 1 〉 
)

| 0 〉 
(

1 − ie −iθ j E 0 

2 

α j | E 0 〉 + 

1 − ie −iθ j E 1 

2 

β j | E 1 〉 
)

| 1 〉 

≡ c j+1 | ψ j+1 〉| 0 〉 + d j+1 | ϕ j+1 〉| 1 〉 , (7) 

where c j+1 and d j+1 are normalization constants. Since θ j E 0 j = 

π
2 and E 0 j is an approximate

value of E 0 , we have θ j E 0 � 

π
2 . Ther efor e, it is expected that | β j+1 

α j+1 
| = | (1+ ie −iθ j E 1 ) β j 

(1+ ie −iθ j E 0 ) α j 
| < | β j 

α j 
| and

the state accompanied by the ancilla qubits | 0 〉| 0 〉 · · · | 0 〉 approaches the true ground state | E 0 〉 .
Our gate operation bears a resemblance to that of the quantum phase estimation [ 23 , 24 ]. 

The la tter estima tes the energy of a quantum state. In contrast with this our protocol separates
a true ground state from excited states using an approximate ground state energy. 

Let us consider the inequality | β j+1 

α j+1 
| = | (1+ ie −iθ j E 1 ) β j 

(1+ ie −iθ j E 0 ) α j 
| < | β j 

α j 
| more closely. Since θ j = 

π
2 E 0 j 

, where

E 0 j is the j-th approximate value of the ground state energy E 0 , we rewrite the ground state
energy as E 0 = E 0 j (1 + ε0 j ) , where ε0 j = 

E 0 −E 0 j 

E 0 j 
. If the state | ψ j 〉 is a good approximate state of 

| E 0 〉 , ε0 j is expected to be small. In this case we have 1 + ie −iθ j E 0 = 1 + e −i π2 ε0 j ≈ 2 . In contrast
with this, rewriting E 1 = E 0 j (1 + ε1 j ) , where ε1 j = 

E 1 −E 0 j 

E 0 j 
, we have 1 + ie −iθ j E 1 = 1 + e −i π2 ε1 j ,

which is equal to 2 only when ε1 j = 4 n for some integer n . Ther efor e, except in the worst case
5/14 
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Table 1. Ground sta te expecta tion value of Z. The column of j = 0 (adiabatic) indicates simulation re- 
sults of the expectation value of Z generated by the IBM Qiskit qasm-simulator at the end of the nai v e 
adiabatic quantum computation ( s = 1 ). The number j means that the j-th twirling operation has been 

done. The time interval θ j has been divided into 100 small intervals. The number 10 

7 (10 

8 ) means an 

av erage ov er 10 times for each set of 10 

6 (10 

7 ) trials. 

twirling 

operations 
j = 0 

(adiabatic) j = 1 j = 2 j = 3 j = 4 j = 5 

10 

7 −0.71243 −0.70739 −0.70702 −0.70719 −0.70721 −0.70720 

10 

8 −0.71234 −0.70703 −0.70707 −0.70714 −0.70719 −0.70703 
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that rarel y ha ppens, we have | 1 + e −i π2 ε1 j | < 2 . Thus, in an ordinary case | β j+1 

α j+1 
| < | β j 

α j 
| and | ψ j+1 〉

is closer to | E 0 〉 than | ψ j 〉 . 
In summary, we repeat the following steps as long as we have unused fresh ancilla qubits

(Fig. 2 (b)): 

� Evaluate E 0 j = 〈 ψ j | ˆ H | ψ j 〉 . 
� Perform Hadamard transformation H on the following fresh ancilla qubit. 
� Perform unitary transformation U (θ j ) on the physical state controlled by the ancilla qubit,

where θ j = 

π
2 E 0 j 

(in this process the physical state and the ancilla qubit are entangled). 
� Perform Hadamard transformation H on the ancilla qubit. 
� We have a new total state in the form c j+1 | ψ j+1 〉| 0 〉| 0 〉 · · · | 0 〉 + �i d j+1 ,i | ϕ j+1 ,i 〉|| 1 〉〉 j+1 ,i . 

2.2. Simulation results 
In Table 1 we exhibit our simulation results for the case J = 1 . The variance of measurement
values of Z for the state | E 0 〉 is σ 2 = 

1 
2 . The statistical error of the expectation value of Z for

n = 10 

7 trials is ± σ√ 

n = ±0 . 0002 . Ther efor e, roughly speaking, the expectation value of Z for

an average over n = 10 

7 trials will mainly be distributed over the range −0 . 7073 ∼ −0 . 7069 . On
this point our simulation results agree with this theoretical value except for the no twirling oper-
ations case ( j = 0 ). For n = 10 

8 trials, ± σ√ 

n = ±0 . 00007 and the main range of the distribution
will be −0 . 70719 ∼ −0 . 70704 . Our simulation results a gain a gr ee with this theor etical value ex-
cept for the no twirling operations case. These results will mean that in | ψ〉 j = α j | E 0 〉 + β j | E 1 〉
the amplitudes β j are sufficiently small for j = 1 , 2 , · · · , 5 , and our procedure works well. 

We consider the number of the acti v e states and the expectation value of the Hamiltonian
from a slightly different point of view. For example, after the second twirling operation we will
have the following quantum entangled state in which the ground state and the excited state are
almost separated: 

| �〉 = α| E 0 〉| 0 

′ 
1 〉| 0 

′ 
2 〉 + β| E 1 〉| ↗ 1 〉| ↗ 2 〉 , (8) 

where 

| 0 

′ 
j 〉 = 

1 

2 

(1 + e −i π2 ε0 j ) | 0 〉 + 

1 

2 

(1 − e −i π2 ε0 j ) | 1 〉 , (9) 

| ↗ j 〉 = 

1 

(1 + e −i π2 ε1 j ) | 0 〉 + 

1 

(1 − e −i π2 ε1 j ) | 1 〉 . (10) 

2 2 

6/14 
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Ther efor e, we have 

| �〉 = 

(
α| E 0 〉 1 

4 

(1 + e −i π2 ε00 )(1 + e −i π2 ε01 ) + β| E 1 〉 1 

4 

(1 + e −i π2 ε10 )(1 + e −i π2 ε11 ) 
)
| 0 〉| 0 〉 

+ | ϕ〉|| 1 〉〉 , (11) 

where | ϕ〉 stands for an excluded state. We only deal with the state in which the two ancilla
qubits are in the state | 0 〉| 0 〉 . Since the initial state α| E 0 〉 + β| E 1 〉 is an approximate vacuum, the
energy ratio 

E 0 −E 00 
E 00 

= ε00 is expected to be small and e −i π2 ε00 ≈ 1 . Since E 01 is obtained from an

impr oved appr oximate gr ound state, E 0 −E 01 
E 01 

= ε01 is also expected to be small and e −i π2 ε01 ≈ 1 . In
contrast with this, the possibilities that e −i π2 ε10 ≈ 1 and e −i π2 ε11 ≈ 1 will be very small. Ther efor e,
except for the exceptional case that e −i π2 ε1 j ≈ 1 , the amplitude of the excited state | E 1 〉 in the
acti v e state shrinks to zero by se v er al iter ations of the twir ling oper a tions. In this sta te we
observe the two ancilla bits to be in the state | 0 〉| 0 〉 with the following probability: 

||〈 0 |〈 0 | �〉|| 2 = | α| 2 cos 2 
π

4 

ε00 cos 2 
π

4 

ε01 + | β| 2 cos 2 
π

4 

ε10 cos 2 
π

4 

ε11 . (12) 

The expectation value of the number of the acti v e states is gi v en by this probability times
the trial number. For J = 1 , the expectation value of the Hamiltonian H T ⊗ | 0 〉〈 0 | ⊗ | 0 〉〈 0 |
normalized by the probability ||〈 0 |〈 0 | �〉|| 2 is 

〈 �| (H T ⊗ | 0 〉〈 0 | ⊗ | 0 〉〈 0 | ) | �〉 
||〈 0 |〈 0 | �〉|| 2 

= −
√ 

2 

| α| 2 cos 2 π4 ε00 cos 2 π4 ε01 − | β| 2 cos 2 π4 ε10 cos 2 π4 ε11 

| α| 2 cos 2 π4 ε00 cos 2 π4 ε01 + | β| 2 cos 2 π4 ε10 cos 2 π4 ε11 
. (13) 

In the same way we have 
〈 �| (Z ⊗ | 0 〉〈 0 | ⊗ | 0 〉〈 0 | ) | �〉 

||〈 0 |〈 0 | �〉|| 2 

= −
√ 

2 

2 

| α| 2 cos 2 π4 ε00 cos 2 π4 ε01 − | β| 2 cos 2 π4 ε10 cos 2 π4 ε11 − K 

| α| 2 cos 2 π4 ε00 cos 2 π4 ε01 + | β| 2 cos 2 π4 ε10 cos 2 π4 ε11 
, (14) 

where K is the cross term: 

K = | αβ| 
(

e iθ
1 + e i 

π
2 ε00 

2 

1 + e i 
π
2 ε01 

2 

1 + e −i π2 ε10 

2 

1 + e −i π2 ε11 

2 

+ c . c . 
)

= 2 | αβ| cos 
π

4 

ε00 cos 
π

4 

ε01 cos 
π

4 

ε10 cos 
π

4 

ε11 cos 
(
θ + 

π

4 

ε00 + 

π

4 

ε01 − π

4 

ε10 − π

4 

ε11 

)
. 

(15) 

Since | cos π4 ε00 cos π4 ε01 cos π4 ε10 cos π4 ε11 | < 1 ex cept for the singular v alues of ε01 , ε11 , the cross
term K makes damping oscillation by the twirling operations. 

After the third twirling operation we will have the state 

| �〉 = α| E 0 〉| 0 

′ 
1 〉| 0 

′ 
2 〉| 0 

′ 
3 〉 + β| E 1 〉| ↗ 1 〉| ↗ 2 〉| ↗ 3 〉 , (16) 

and so on. We will see that as the number of the twir ling oper ation increases, the expectation
value we find the ancilla qubits in the state | 0 〉| 0 〉 · · · | 0 〉 decreases, the expectation value of the
Hamiltonian approaches E 0 = −√ 

2 , and the expectation value of Z approaches −
√ 

2 
2 . 

We show in Table 2 our simulation results for the ground sta te expecta tion value of Z and the
number of acti v e states for a series of successi v e rounds of the twir ling oper ation for n = 10 

8 

trials. For j = 2 , 3 , 4 the exact value −
√ 

2 
2 of the ground state expectation value of Z lies in

the 95% confidence interval. In this case | α| � | β| and it seems that we have almost reached
a static state after the first twir ling oper ation. The 95% confidence interval of the number of 
7/14 



PTEP 2024 , 113A02 K. Oshima 

Table 2. Ground state expectation value of Z and the number of acti v e states for J = 1 . The ground 

sta te expecta tion value of Z is obtained by av eraging ov er n = 10 

8 trials. We estimate the 95% confidence 

interv al b y ±1 . 96 × 2 

√ 

p (1 −p ) 
n , where n is the number of acti v e states and p is the probability Z = 1 is 

observed and 1 − p is the probability Z = −1 is observed when Z is measured in the basis {| 0 〉 , | 1 〉} . For 

j = 0 , 1 , · · · , 5 , we find 1 . 96 × 2 

√ 

p (1 −p ) 
n = 7 × 10 

−5 . 

twirling 

operations 
j = 0 

(adiabatic) j = 1 j = 2 j = 3 j = 4 j = 5 

〈 Z〉 −0.71241 ±7 −0.70704 ±7 −0.70706 ±7 −0.70707 ±7 −0.70712 ±7 −0.70699 ±7 

acti v e states 100000000 99998535 99998549 99998547 99998442 99998525 
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acti v e states is ±1 . 96 

√ 

nq (1 − q ) = ±75 , where n = 10 

8 and q = 0 . 99998535 is the probability
the acti v e state is observed, which is calculated from the value for j = 1 . The fluctuation of 
the number of acti v e states in j = 2 , 3 , 4 , 5 would r epr esent the probabilistic fluctuation in the
quantum measurement. These results will mean that in | ψ〉 1 = α1 | E 0 〉 + β1 | E 1 〉 the amplitude β1 

is sufficiently small. In the appr oximate gr ound state | ψ〉 = α| E 0 〉 + β| E 1 〉 pr epar ed by adiabatic
quantum computation, the amplitude β is not so large. Ther efor e, the true ground state | E 0 〉
has been almost extracted by the first twirling operation and this state has been maintained by
the following twirling operations. 

3. Twirling operations for an N -qubits Hamiltonian 

In this section we introduce the twirling operations for an N-qubits Hamiltonian 

ˆ H that we use
in this paper. Let us have an approximate ground state 

| ψ〉 = α| E 0 〉 + 

2 N −1 ∑ 

l=1 

βl | E l 〉 (17) 

for the Hamiltonian 

ˆ H . First, we measure the 0-th approximate value E 00 of a ground state
energy by E 00 = 〈 ψ | ˆ H | ψ 〉 and set θ0 = 

π
2 E 00 

. Second, we pr epar e N ancilla qubits in the form
| 0 〉 1 | 0 〉 2 · · · | 0 〉 k · · · | 0 〉 N 

. Then, we Hadamard transform the k-th ancilla qubit | 0 〉 k . Using the k-
th ancilla qubit as a control qubit, we a ppl y the controlled operation ie −iθ0 ˆ H on the physical state
2 

k−1 times; the number 2 

k−1 is an example of a nonzero integer and does not have inevitability.
We again Hadamard transform the k-th qubit. We perform this operation from the first ancilla
qubit through the N-th ancilla qubit. 

By this twirling operation, the total state | �〉 transforms as 

| �〉 = | ψ〉| 0 〉 1 | 0 〉 2 · · · | 0 〉 N 

→ α| E 0 〉| 0 

′ 〉 1 | 0 

′ 〉 2 · · · | 0 

′ 〉 N 

+ 

2 N −1 ∑ 

l=1 

βl | E l 〉| ↗ l 〉 1 | ↗ l 〉 2 · · · | ↗ l 〉 N 

, (18) 

where 

| 0 

′ 〉 k = 

1 

2 

(
1 + e −i π2 2 

k−1 ε00 

)
| 0 〉 + 

1 

2 

(
1 − e −i π2 2 

k−1 ε00 

)
| 1 〉 , (19) 

| ↗ l 〉 k = 

1 

(
1 + e −i π2 2 

k−1 εl0 

)
| 0 〉 + 

1 

(
1 − e −i π2 2 

k−1 εl0 

)
| 1 〉 , (20) 
2 2 
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with εl0 = 

E l −E 00 
E 00 

. After the first twirling operation, we have an unnormalized physical state in
the acti v e state | 0 〉 1 | 0 〉 2 · · · | 0 〉 N 

as 

| ψ 1 〉 = α

N ∏ 

k=1 

e i 
π
4 2 

k−1 ε00 cos 
(π

4 

2 

k−1 ε00 

)
| E 0 〉 + 

2 N −1 ∑ 

l=1 

βl 

N ∏ 

k=1 

e i 
π
4 2 

k−1 εl0 cos 
(π

4 

2 

k−1 εl0 

)
| E l 〉 . (21) 

Under the condition that ε00 ≈ 0 , the relati v e amplitudes of the excited states diminish and the
physical state approaches the ground state | E 0 〉 , except for the singular case εl0 = 4 n ( n = an
integer). Using E 01 = 〈 ψ 1 | ˆ H | ψ 1 〉 , we can perform the second twirling operation, and so on. 

4. (1 + 1)-dimensional Schwinger model on a 1D spatial lattice 

The (1 + 1)-dimensional Schwinger model on a finite-size lattice can be analyzed by quantum
simulation [ 8 ], and the vacuum of the (1 + 1)-dimensional Schwinger model is nontrivial. There-
fore, the (1 + 1)-dimensional Schwinger model is suitable for ascertaining whether our procedure
works well. The (1 + 1)-dimensional Schwinger model with the θ -term is described in the natural
unit system � = c = 1 by the following Lagrangian density: 

L = −1 

4 

F μνF 

μν + 

gθ
4 π

εμνF 

μν + i ψ̄ γ μ(∂ μ + igA μ) ψ − m ψ̄ ψ, (22) 

where γ 0 = σz = 

( 

1 0 

0 −1 

) 

, γ 1 = iσy = 

( 

0 1 

−1 0 

) 

, and F μν = ∂ μA ν − ∂ νA μ. In the (1 + 1)-

dimensional model the vector potential A = (A 0 , A 1 ) only produces a 1D electric field. We use

the metric (g μν ) = 

( 

1 0 

0 −1 

) 

and we set the dielectric constant of the vacuum as ε0 = 1 . We are

interested in the simplest case m = 0 , θ = 0 . In the temporal gauge A 0 = 0 , the corresponding
Hamiltonian is 

ˆ H = 

∫ 

dx 

(
−i ψ̄ γ 1 (∂ 1 + igA 1 ) ψ + 

1 

2 

�2 
)

, (23) 

where � = 

˙ A 

1 = −E 

1 . To investigate the vacuum of this Hamiltonian by quantum simulation,
we formulate this Hamiltonian on a 1D spatial lattice with lattice spacing a . To avoid the species
doub ling prob lem, we introduce staggered fermions [ 25 , 26 ] with one-flavor. For x = na (n =
e v en), we set ψ (x ) = (ψ n 0) T = 

1 √ 

a (χn 0) T . For e v en n , χn r epr esents an annihila tion opera tor

of an antiparticle and χ
† 
n r epr esents a creation operator of the antiparticle on the site x =

na . For x = na (n = odd), we set ψ (x ) = (0 ψ n ) T = 

1 √ 

a (0 χn ) T . For odd n , χ † 
n r epr esents an

annihila tion opera tor of the particle and χn r epr esents a cr ea tion opera tor of the particle on
the site x = na . These fermionic operators satisfy the following anticommutation relations: 

{ χ † 
n , χm 

} = δnm 

, { χn , χm 

} = 0 . (24) 

We introduce the link variable L n by L n = − 1 
g �(x = (n + 

1 
2 ) a ) that li v es on the link connecting

the sites x = na and x = (n + 1) a . Thus we have the lattice Hamiltonian, which leads to Eq. ( 19 )
in the limit a → 0 , as 

ˆ H = −iw �∞ 

n = −∞ 

(χ † 
n e 

iagA 1 χn +1 − χ
† 
n +1 e 

−iagA 1 χn ) + G�∞ 

n = −∞ 

L 

2 
n , (25) 

where w = 

1 
2 a and G = 

1 
2 g 

2 a . Rewriting e iagA 1 χn +1 as χn +1 , which does not affect the anticom-
muta tion rela tions in Eq. ( 20 ), we have 

ˆ H = −iw �∞ 

n = −∞ 

(χ † 
n χn +1 − χ

† 
n +1 χn ) + G�∞ 

n = −∞ 

L 

2 
n . (26) 
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Fig. 3. Three folds of two-qubit twirling operations. 
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5. Two-qubits system derived from the (1 + 1)-dimensional Schwinger model 
We consider the simplest case of Eq. ( 26 ); let us only have two sites x = 0 and x = a on the
spa tial la ttice, which we indica te by the numbers 0 and 1, respecti v ely. We also adopt the fixed
boundary condition; the electric field is zero out of the region 0 ≤ x ≤ a [ 8 ]. Gauss’s law will
hold on physical states. The discretized version of Gauss’s law ∂ 1 E 

1 = ρ = g : ψ 

† ψ : at x = 0
is 

L 0 − L −1 = χ
† 
0 χ0 − 1 − (−1) 0 

2 

= χ
† 
0 χ0 . (27) 

From the fixed boundary condition L −1 = 0 and we have L 0 = χ
† 
0 χ0 . Thus we have the following

Hamiltonian on the two sites: 

ˆ H = −iw (χ † 
0 χ1 − χ

† 
1 χ0 ) + G(χ † 

0 χ0 ) 2 . (28) 

Using the Jordan–Wigner transformation [ 27 ], we r epr esent the fermionic variables χ0 and
χ1 by spin variables: 

χ0 = 

1 

2 

(X 0 − iY 0 ) , χ1 = 

1 

2 

( −iZ 0 )( X 1 − iY 1 ) , (29) 

where Y = σy = 

( 

0 −i 
i 0 

) 

. Thus we have the following simplest lattice Hamiltonian [ 8 ] up to

a constant: 

ˆ H = 

1 

2 

GZ 0 + 

1 

2 

w (X 0 X 1 + Y 0 Y 1 ) . (30) 

The first term in Eq. ( 30 ) is the electric field energy and the second term in Eq. ( 30 ) corresponds
to the fermionic kinetic energy. For simplicity we study the following Hamiltonian: 

ˆ H = 

1 

2 

(X 0 X 1 + Y 0 Y 1 ) + J Z 0 , (31) 

where J = 

G 

2 w 

= 

1 
2 g 

2 a 

2 . The matrix representation of Eq. ( 27 ) is 

ˆ H = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

J 0 0 0 

0 J 1 0 

0 1 −J 0 

0 0 0 −J 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (32) 
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Table 3. Ground sta te expecta tion value of Z̄ and the number of acti v e states. The number of trials is 
10 

8 both for J = 1 and for J = 2. The numbers j = 1 , 2 , · · · , 6 indicate the number of times that we 
have performed the twir ling oper ation (Fig. 3 ). As for the adiabatic process, the initial Hamiltonian is 
ˆ H 0 = 

1 
2 (Z 0 − Z 1 ) and we have started from the initial ground state | 1 〉 0 | 0 〉 1 . The state j = 0 (adiabatic) 

is the initial approximate vacuum. 

j = 0 (adiabatic) j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

10 

8 (J = 1) −0.71475 −0.70716 −0.70701 −0.70708 −0.70703 −0.70706 −0.70710 

acti v e state 10 

8 99996822 99996734 99996858 99996733 99996846 99996864 

10 

8 (J = 2) −0.90014 −0.89438 −0.89435 −0.89440 −0.89442 −0.89441 −0.89439 

acti v e state 10 

8 99995612 99995742 99995488 99995518 99995548 99995709 
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The smallest eigenvalue of Eq. ( 28 ) is E 0 = −√ 

1 + J 

2 and the corresponding eigenstate is 

| E 0 〉 = 

1 √ 

2(J 

2 + J 

√ 

J 

2 + 1 + 1) 

t (0 , 1 , −
√ 

J 

2 + 1 − J, 0) . (33) 

We are interested in the ground state expectation value of Z̄ ≡ 1 
2 (Z 0 − Z 1 ) [ 8 ]. We see that 

〈 E 0 | ̄Z | E 0 〉 = − J 

2 + J 

√ 

J 

2 + 1 

J 

2 + J 

√ 

J 

2 + 1 + 1 

, (34) 

which is − 1 √ 

2 
for J = 1 and is − 2 √ 

5 
for J = 2 . 

We show in Table 3 our simulation results for the vacuum expectation value of Z̄ and the
number of acti v e states for a series of successi v e rounds of the twir ling oper ation for n = 10 

8 

trials. 
For J = 1 , the theoretical value of the variance of Z̄ is σ 2 = 

2+ 

√ 

2 
4 when the ground state

| E 0 〉 is measured by the basis {| 0 〉 , | 1 〉} . The standard deviation of the average of Z̄ is σ√ 

n =
0 . 000092 · · · . Ther efor e, except for the no twir ling oper ations case the average of Z̄ is within
one standar d de viation from the theor etical value − 1 √ 

2 
. For J = 2 , the theor etical value of the

variance of Z̄ is σ 2 = 

1 
5 when the ground state | E 0 〉 is measured by the basis {| 0 〉 , | 1 〉} . The stan-

dar d de viation of the av erage of Z̄ is σ√ 

n = 0 . 000045 · · · . Ther efor e, except for the no twirling

operations case the average of Z̄ is within two standar d de viations from the theoretical value
− 2 √ 

5 
= −0 . 8994427 · · · . Thus, as for the expectation value of Z̄ , the shift of O (| β| ) seems to

substantially be reduced by the first twirling operation. Ther efor e, it seems that the true ground
state has substantially been extracted by the first twirling operation. 

6. Three-qubits system derived from the (1 + 1)-dimensional Schwinger model 
In this section we are not interested in the vacuum of the (1 + 1)-dimensional Schwinger model
itself, but we are interested in the ground state of a three-qubits Hamiltonian that deri v es from
the (1 + 1)-dimensional Schwinger model. We consider the next simplest case of Eq. ( 26 ); let us
only have three sites x = 0 , x = a , and x = 2 a on the spatial lattice, which we indicate by the
numbers 0, 1, and 2, respecti v ely. This time we also adopt the fixed boundary condition; the
electric field is zero out of the region 0 ≤ x ≤ 2 a [ 8 ]. This time we have the following three-
qubits Hamiltonian: 

ˆ H = 

1 

G(Z 0 + Z 0 Z 1 ) + 

1 

w (X 0 X 1 + X 1 X 2 + Y 0 Y 1 + Y 1 Y 2 ) . (35) 

2 2 
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Fig. 4. One three-qubits twirling operation. We use three ancilla qubits for one twirling operation. 
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The corresponding dimensionless Hamiltonian is 

ˆ H = 

1 

2 

(X 0 X 1 + X 1 X 2 + Y 0 Y 1 + Y 1 Y 2 ) + 

1 

2 

J (Z 0 + Z 0 Z 1 ) . (36) 

Theoretically, we have the ground state 

| E 0 〉 = 

1 √ 

2 J 

2 + 2 J 

√ 

2 + J 

2 + 4 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

0 

1 

0 

−J − √ 

2 + J 

2 

1 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (37) 

with eigenvalue E 0 = −(J + 

√ 

2 + J 

2 ) . For J = 1 we have E 0 = −1 − √ 

3 = −2 . 73205 · · · , and
for J = 2 we have E 0 = −1 − √ 

6 = −3 . 44948 · · · . We also measure 

Z̄ ≡ 1 

3 

(Z 0 − Z 1 + Z 2 ) . (38) 

The theoretical vacuum expectation value of Z̄ is 

〈 ̄Z 〉 = 〈 E 0 | ̄Z | E 0 〉 = 

1 

2 J 

2 + 2 J 

√ 

2 + J 

2 + 4 

(
−4 

3 

− 2 J 

2 − 2 J 

√ 

2 + J 

2 

)
. (39) 

For J = 1 we have 〈 ̄Z 〉 = − 5 
3 + 

√ 

3 

3+ 

√ 

3 
= −0 . 71823 · · · , and for J = 2 we have 〈 ̄Z 〉 = −( 1 3 +

2 
9 

√ 

6 ) = −0 . 87766 · · · . 
We show simulation results in Table 4 for the cases J = 1 and J = 2 . We see that the correc-

tions of 〈 Z〉 by the twirling operation are more significant than those of 〈 ˆ H 〉 , which agrees with
the theoretical results for the one-qubit system when | β| is small. As for 〈 ˆ H 〉 , the corrections are
small and would be O (| βi | 2 ) . It seems that the true ground state has substantially been extracted
by the first and second twirling operations. 

7. Summary and discussions 
We have proposed a procedure to use quantum entanglement to extract a ground state from
excited states for appr oximate gr ound states of the type α| E 0 〉 + �i βi | E i 〉 . We only use an ap-
proximate value of a ground state energy and conca tena ted ancilla qubits. Although we have
used the approximate ground state pr epar ed by adiabatic quantum computation for conve-
nience, our procedure can be applied to any appr oximate gr ound state that is a superposition
of a true ground state and excited states. We have developed the previous method presented by
the present author [ 18 ] by conca tena ting the ancilla qubits and the twirling operations. By the
12/14 
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Table 4. Ground sta te expecta tion values of Z̄ and 

ˆ H . Before the twirling operations we have used adia- 
ba tic quantum computa tion and the sta te j = 0 (adiaba tic) is the initial approxima te ground sta te. The 
physical quantum state approaches | E 0 〉 by the twirling operations (Fig. 4 ). We show av erages ov er 10 

8 

trials. For the 4 twirling operations we need 12 fresh ancilla qubits. 

J = 1 

j = 0 

(adiabatic) j = 1 j = 2 j = 3 j = 4 theoretical 

〈 ̄Z 〉 −0.712514 −0.71872 −0.71808 −0.71818 −0.71824 −0.71823 

〈 ˆ H 〉 −2.73148 −2.73229 −2.73213 −2.73195 −2.73212 −2.73205 

acti v e states 10 

8 99986679 99986373 99986107 99986210 −
J = 2 j = 0 

(adiabatic) 
j = 1 j = 2 j = 3 j = 4 theoretical 

〈 ̄Z 〉 −0.88467 −0.87834 −0.87772 −0.87773 −0.87769 −0.87766 

〈 ˆ H 〉 −4.44912 −4.44949 −4.44942 −4.44965 −4.44961 −4.44949 

acti v e states 10 

8 99991476 999912973 99991366 99991307 −
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conca tena tion it is expected that the approximate ground state approaches the true ground state
more closely. We have introduced twirling operations for an N-qubits Hamiltonian. We have
carried out quantum simulation by using IBM Qiskit for the one-qubit system, the two-qubits
system, and the three-qubits system that deri v e from the (1 + 1)-dimensional Schwinger model.
We have seen that the ground sta te expecta tion values we have obtained by the simulation agree
with the theoretical values within the statistical errors. 

We have simulated the one-qubit system, which has two energy eigenstates. We also have
simulated the two-qubits system that deri v es from the (1 + 1)-dimensional Schwinger model.
Although this system has four energy eigenstates, since we have started from the charge-neutral
state and the Hamiltonian conserves the number of the char ge, the appro xima te ground sta te is
supposed to be a superposition of two charge-neutral states: the state in which no particles are
excited and the state in which a pair of an electron and a positron is excited. Ther efor e, concern-
ing the ground state, this system is substantially a two-state system. In our simulation results we
have obtained satisfactory ground state expectation values by only one twirling operation. This
may be peculiar to a two-state system. We also have examined the three-qubits system, which
is not a two-state system. In this case we have seen that the combination of adiabatic quan-
tum computation and the conca tena ted twir ling oper a tions seems ef fecti v e to produce the true
ground state | E 0 〉 . We can compute ground state expectation values of some physical quantities
with high accuracy without algebraic calculation. We have simulated some simple systems that
can be analyzed by algebraic calculation. Our procedure, howe v er, in principle can be applied
to more complicated systems that are difficult to analyze by algebraic calculation. In principle,
our simulation procedure applies to any finite-dimensional Hamiltonian that is r epr esented
by Pauli matrices. Our procedure works well only for the case that the quantum system has
a nondegenerate ground state. Our procedure would gi v e a ne w quantum algorithm that uses
quantum entanglement. 

Acknowledgements 
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13/14 



PTEP 2024 , 113A02 K. Oshima 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/11/113A0
References 
[1] A. Smith, M. S. Kim, F. Pollman, and J. Knolle, npj Quantum Inf. 5 , 106 ( 2019 ). 
[2] B. Fauseweh, Nature Comm. 15 , 2123 ( 2024 ). 
[3] J. S. Schwinger, Phys. Rev. 125 , 397 ( 1962 ). 
[4] P. Hauke, D. Marcos, M. Dalmonte, and P. Zollar, Phys. Rev. X 3 , 041018 ( 2013 ). 
[5] E. A. Martinez et al., Nature 534 , 516 ( 2016 ). 
[6] R. C. Farrell, M. Illa, A. N. Ciavarella, M. J. Savage, Phys. Rev. X. Quantum 5 , 020315 ( 2024 ). 
[7] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and

J. L. O’Brien, Nature Comm. 5 , 4213 ( 2014 ). 
[8] B . Chakra borty, M. Honda, T. Izubuti, Y. Kikuchi, and A. Tomiya, Phys. Rev. D 105 , 094503

( 2022 ). 
[9] M. Honda, E. Itou, Y. Kikuchi, and Y. Tanizaki, Prog. Theor. Exp. Phys. 2022 , 033B01 ( 2022 ). 

[10] M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda, Phys. Rev. D 105 , 014504 ( 2022 ). 
[11] S. R. Coleman, Ann. Phys. 101 , 239 ( 1976 ). 
[12] C. Adam, Phys. Lett. B 440 , 117 ( 1998 ). 
[13] T. Kadowaki and H. Nishimori, Phys. Rev. E 58 , 5355 ( 1998 ). 
[14] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292 , 472 ( 2001 ).
[15] K. Oshima, [ arXiv:2107.01747 [quant-ph]] [ Search inSPIRE ]. doi:10.48550/arXiv.2107.01743 

[16] M. Born and V. A. Fock, Z. Phys. A 51 , 165 ( 1928 ). 
[17] T. Kato, J. Phys. Soc. Jpn 5 , 435 ( 1950 ). 
[18] K. Oshima, IET Quant. Comm. 3 , 214 ( 2022 ). 
[19] H. H. Trotter, Proc. Am. Math. Soc. 10 , 545 ( 1959 ). 
[20] M. Suzuki, Comm. Math. Phys. 51 , 183 ( 1976 ). 
[21] T. Hatomura, Phys. Rev. A 105 , L050601 ( 2022 ). 
[22] N. H. Nguyen, M. C. Tran, Y. Zhu, A. M. Green, C. H. Alderete, Z. Davoudi, and N. M. Linke,

Phys. Rev. X Quantum 3 , 020324 ( 2022 ). 
[23] A. Y. Kitae v, [ arXi v:9511026 [quant-ph]] [ Search inSPIRE ]. doi:10.48550/arXiv.quant-ph/9511026 

[24] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge,
UK, Cambridge Uni v ersity Press, 2001 ), p. 225 . doi:10.1017/CBO9780511976667 

[25] J. Kogut and L. Susskind, Phys. Rev. D 11 , 395 ( 1975 ). 
[26] L. Susskind, Phys. Rev. D 16 , 3031 ( 1977 ). 
[27] P. Jordan and E. Wigner, Z. Phys. A 47 , 631 ( 1928 ). 
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creati v e 
Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work 
is properly cited. 

14/14 

2/7875247 by guest on 07 M
arch 2025

http://dx.doi.org/10.10308/s41534-019-0217-0
http://dx.doi.org/10.10308/s41534-019-0217-0
http://dx.doi.org/10.10308/s41534-019-0217-0
http://dx.doi.org/10.10308/s41467-024-46402-9
http://dx.doi.org/10.10308/s41467-024-46402-9
http://dx.doi.org/10.10308/s41467-024-46402-9
http://dx.doi.org/10.1103/PhysRev.125.397
http://dx.doi.org/10.1103/PhysRev.125.397
http://dx.doi.org/10.1103/PhysRev.125.397
http://dx.doi.org/10.1103/PhysRevX.3.04108
http://dx.doi.org/10.1103/PhysRevX.3.04108
http://dx.doi.org/10.1103/PhysRevX.3.04108
http://dx.doi.org/10.1038/nature18318
http://dx.doi.org/10.1038/nature18318
http://dx.doi.org/10.1038/nature18318
http://dx.doi.org/10.11103/PRXQuantum.5.020315
http://dx.doi.org/10.11103/PRXQuantum.5.020315
http://dx.doi.org/10.11103/PRXQuantum.5.020315
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1103/PhysRevD.105.094503
http://dx.doi.org/10.1103/PhysRevD.105.094503
http://dx.doi.org/10.1103/PhysRevD.105.094503
http://dx.doi.org/10.1093/ptep/ptac007
http://dx.doi.org/10.1093/ptep/ptac007
http://dx.doi.org/10.1093/ptep/ptac007
http://dx.doi.org/10.1103/PhysRevD.105.014504
http://dx.doi.org/10.1103/PhysRevD.105.014504
http://dx.doi.org/10.1103/PhysRevD.105.014504
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1016/S0370-2693(98)01070-3
http://dx.doi.org/10.1016/S0370-2693(98)01070-3
http://dx.doi.org/10.1016/S0370-2693(98)01070-3
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1126/science.1057726
https://arxiv.org/abs/2107.01747
https://inspirehep.net/literature?q=find%20EPRINT%202107.01747
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1143/JPSJ.5,435
http://dx.doi.org/10.1143/JPSJ.5,435
http://dx.doi.org/10.1143/JPSJ.5,435
http://dx.doi.org/10.1049/qtc2.12046
http://dx.doi.org/10.1049/qtc2.12046
http://dx.doi.org/10.1049/qtc2.12046
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.1017/PhysRevA.105.L05061
http://dx.doi.org/10.1017/PhysRevA.105.L05061
http://dx.doi.org/10.1017/PhysRevA.105.L05061
http://dx.doi.org/10.1103/PRXQuantum.3.020324
http://dx.doi.org/10.1103/PRXQuantum.3.020324
http://dx.doi.org/10.1103/PRXQuantum.3.020324
https://arxiv.org/abs/9511026
https://inspirehep.net/literature?q=find%20EPRINT%209511026
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1007/BF01331938
https://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 One-qubit system
	3 Twirling operations for an -qubits Hamiltonian
	4 (11)-dimensional
Schwinger model on a 1D spatial lattice
	5 Two-qubits system derived from the (11)-dimensional
Schwinger model
	6 Three-qubits system derived from the (11)-dimensional
Schwinger model
	7 Summary and discussions
	Acknowledgements
	References

