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We propose a procedure to extract a true ground state from an approximate ground state
by using quantum entanglement. We use plural ancilla qubits with hierarchical structure,
intending to gradually improve the precision of the approximation. We demonstrate the
procedure for quantum systems with a few qubits that derive from the (141)-dimensional
Schwinger model by classically emulated digital quantum simulation. Although we use for
simplicity an approximate ground state prepared by adiabatic quantum computation, our
procedure is applicable to any approximate ground state that is a superposition of a true
ground state and excited states. Our procedure is applicable for an N-qubits Hamiltonian
with a nondegenerate ground state.

Subject Index A61, A64

1. Introduction
Thanks to the recent development of quantum computers by superconductivity, some quan-
tum systems have been analyzed by the universal type of quantum computers [1,2]. The (1+1)-
dimensional Schwinger model [3] has been analyzed by analogue quantum simulation [4,5].
Recently, the (14+1)-dimensional Schwinger model has been studied with the IBM Eagle pro-
cessor [6], which has more than 100 quantum bits, by the variational quantum eigensolver [7].
The classically emulated quantum simulator also has been used to analyze quantum systems.
The classically emulated quantum simulator is free from noises and is suited for precise anal-
ysis of not-so-large quantum systems by classical computers. Recently, the (141)-dimensional
Schwinger model has also been analyzed by the classically emulated quantum simulator [8—
10]. By virtue of the analysis of the classically emulated quantum simulator, an unknown re-
gion of parameters for the (1+1)-dimensional massive Schwinger model with a topological
f-term has been explored. If theoretically established results can be reproduced, the analy-
sis by the quantum simulator will be reliable. Some exact results are known for the (1+1)-
dimensional Schwinger model in the massless case [11] with 6 = 0. For the (141)-dimensional
Schwinger model, in the massless case the vacuum expectation value of 1y has been com-
puted as (vac|yy|vac) = —%% ~ —0.160g [12], where y ~ 0.5772 is the Euler constant and
g1s the coupling constant between the fermionic fields and the electric field. Chakraborty et al.
[8] have computed the value (vac|yi/|vac) by an extrapolation with respect to the number of
qubits. Their result is consistent with the exact result within a kind of systematic error.

It also has been recognized that in the quantum simulation an approximate vacuum prepared
by adiabatic quantum computation [13,14] slightly differs from a true vacuum [8,15]. It seems
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that for the quantum simulation the conditions of the quantum adiabatic theorem [16,17] are
not completely satisfied. Vacuum expectation values of some physical quantities computed with
this approximate vacuum oscillate periodically in time, which will mean that the approximate
vacuum is a superposition of a true vacuum and some excited states. Accordingly, vacuum
expectation values of some physical quantities also slightly differ from the exact values and
their variances are not so small. Therefore, it will be an important task to establish a procedure
to separate a true vacuum from excited states in quantum simulation of this kind. Recently, the
author of the present paper has proposed a procedure to improve the approximate vacuum [18].
The influence of excited states has been diminished and the variances of the vacuum expectation
values have been suppressed. In the previous paper, we used a priori an exact value of ground
state energy to improve the approximate vacuum. In this regard, the previous procedure is not
self-contained.

In this paper, we propose a procedure to extract a true ground state from an approximate
ground state, which is a superposition of a true ground state and excited states. Although
we only simulate up to a three-qubits system, our procedure, in principle, is applicable for
an N-qubits Hamiltonian with a nondegenerate ground state. We only use ancilla qubits and
an approximate value of a ground state energy. We introduce concatenated ancilla qubits to
exclude excited states iteratively from the approximate ground state. We do not intend to di-
agonalize a Hamiltonian by unitary transformations on the physical system. But, we sepa-
rate a true ground state of a system from excited states by unitary transformations controlled
by the ancilla qubits. By proper unitary transformations controlled by the ancilla qubits, we
intend to transform the state («|Ey) + X5/ E;))|0)|0) - - - |0) into a quantum entangled state
a|Ep)|0)]0) - --10) + X;8:|E:)||1)):, where | Ep) is a true ground state, | E;) is the i-th excited state,
|0)]0) - - - |0) is the initial state of the ancilla qubits, and ||1)); is a state where at least one of the
ancilla qubits is in the state |1). This time, we do not a priori use the exact value of the ground
state energy. We use an approximate value of a ground state energy to improve the approxi-
mate ground state and update the approximate value of the ground state energy. We can iterate
this improving procedure as many times as there are ancilla qubits in the system. We estimate
ground state expectation values of physical quantities from the iteratively improved approxi-
mate ground state. As an initial approximate ground state we adopt the approximate ground
state prepared by adiabatic quantum computation and we use its energy as the initial approxi-
mate value of the true ground state. For simplicity, we examine a one-qubit system, a two-qubits
system, and a three-qubits system that derive from the (1+41)-dimensional Schwinger model.
Our procedure can in principle be applicable irrespective of the number of qubits and is not
restricted to the approximate ground state prepared by adiabatic quantum computation.

2. One-qubit system

2.1.  Hamiltonian and an approximate ground state prepared by adiabatic quantum
computation

We consider the following simple one-qubit Hamiltonian:

Hr=X+JZ, (1)

where X and Z stand for the Pauli matrices o, = (? (1)> and o, = (1) 01 and J is a real

parameter. We mainly concentrate on the typical case J = 1, which will be the easiest case
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Fig. 1. Ground state expectation value of Z for J = 1 by IBM Qiskit gasm-simulator. The parameter 0 <
s < 1ismapped to the time period 0 < ¢ < 36 and this time period is divided into 144 small time intervals
for simulation. The number of trials is 10°. The time period 36 < ¢ < 72 exhibits the time evolution by
the constant Hamiltonian H7. We have used the second-order Suzuki-Trotter formula [19,20]. We have
started from the initial state |1).

to theoretically analyze. To prepare an approximate ground state of Hy by adiabatic quantum
computation we introduce the initial Hamiltonian Hy = Z. We have the following Hamiltonian
H (s) to carry out the quantum adiabatic computation:

Hs) =1 —s5)Hy+sHr = (1 —)Z 4+ s(X +JZ), ()

where s is a parameter that varies gradually from s = 0 to s = 1. We set s = + for an adequate

. . o 0\ . - -
time period 7. We start from the initial state |1) = <1> , 1.e. the ground state of Hy. For Hy, the

1\ . . .
state |0) = 0 is the excited state. We compute a ground state expectation value of Z at each

s. We show a simulation result in Fig. 1. After the time t = T, the system time develops under
the constant Hamiltonian Hy. If the true ground state is prepared the ground state expectation
value of Z should be a constant. In the result in Fig. 1 the ground state expectation value of
Z oscillates regularly. This means that the prepared state by the present adiabatic quantum
computation is not a true ground state. In computer simulation we use a discrete time and
the Suzuki-Trotter formula [19,20], which may be the cause of deviation from a true ground
state. Recently, errors that derive from the Suzuki-—Trotter formula in quantum simulation have
been studied [21,22]. In the following we examine the approximate ground state prepared by
adiabatic quantum computation for the case J = 1.

3/14

G20z Yyole L0 uo1senb Aq /$2G/82/Z0VE L L/ L LIYZ0Z/e10ne/deid/woo dnoojwepeoe//:sdiy wolj pepeojumoqd



PTEP 2024, 113A02 K. Oshima

For J = 1, the ground state of Hr is

1
E) = ————(10) — (/2 + D)), 3
|Eo) 4+2ﬁ(|> ( )IL)) (3)

and the first excited state of Hy is

1
E1) = ——=—==(10) + (V2 = DI1)). @)
Va—-22

We see that (Eo|Hr|Eo) = —(Ei|Hr|E\) = =2, (E|Z|Ey) = —(E\|Z|E)) = —é, and
(EolZIEr) = 2.

After the adiabatic state preparation process, the observable Z time develops as

A A . . 1 1 1
oirt 7 p=iflrt _ ,~iJHi 7 iJHI _ 5(X +7Z)+ E Y sin 2421 + —(Z — X)cos2v2t.  (5)
Atthetimet = T if wehaveastate |[y(t = T)) = |¥(0)) = o) = a|Ey) + BIEL), le|> + |8 =
1, instead of the desired state |Ey), we have at a time #(> T')
1
(WOIZWY (1) = === (1= 21pP) + V2laplcos(2V2(t = T) +96), (©6)
where we have again set af* = |af*|e”. A procedure to obtain an approximate ground state
expectation value of Z is to take the time average of (¥ (¢)|Z|y(¢)) over the time regionz > T. In
this procedure, however, the approximate value is always accompanied by the O(|8]?) systematic
error, although it may be small compared with O(|8]). We propose another attempt to diminish
not only the O(|B]) error but also the O(|8]?) error.

To obtain ground state expectation values of physical quantities with high accuracy from
the approximate vacuum |y), we introduce multiple ancilla qubits in the state |0)|0) - - - |0).
Our purpose is to transform the state («|Ey) + B|E1))|0) into the quantum entangled state
a|Eo)|0) + BIE1)|1). We compute an approximate ground state energy Ey from the approxi-
mate ground state |Yo) by Eo = (Yol Hr|¥o). We compute a time parameter 6, that satisfies

2\1 -1
to the state |+) = f(|0 4+ |1)). Taking the first ancilla qubit as the control qubit, we operate

) ) 1 1
6o Eoo = 5. We transform the first ancilla qubit by the Hadamard operator H = %f ( )

Uy = ie~®Hr on the physical state |1). Then, we again Hadamard transform the first ancilla
qubit. We call this series of operations a twirling operation. By this twirling operation, we can
partially exclude the excited state. The initial state («|Ep) + B|E1))|0) is expected to approach
the quantum entangled state «|Ey)|0) + B|E1)|1). In practice, after the first twirling operation
the physical state and the first ancilla qubit will be in a state ¢;|¥)|0) + di|¢1)|1), where |y)
is a substitute of the true ground state | Ey) and |¢) is an obstructive state like the excited state
|E1). The first approximate values of physical quantities are computed as the expectation val-
ues by [y1). We compute the second time parameter 6 by 0, Eo; = 5, where Eo; = (¢ |fIT|1p1).
Using 6, and the second ancilla qubit, we carry out the second twirling operation and obtain a
state ¢;[¥2)]0)|0) + da|@2)]]1)), where ||1)) means that at least one of the ancilla qubits is in the
state |1). We call the states where ancilla qubits are in ||1)) excluded states. Whereas, we call the
states where all of the ancilla qubits are in the state |0) active states. Using the state |y,), we
update the values Ey; and 6, to Ep; and 65, respectively. We can repeat this procedure as long
as a fresh ancilla qubit is supplied.

Letusset [Y;) = «;|Eo) + BjlE1), j=0,1,--- ,m—1,whereag = o, By = p. By the (j + 1)-
th twirling operation (Fig. 2(a)), |¥;) and the ( j + 1)-th ancilla bit |0) transform as
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Fig. 2. (a) One-qubit j-th twirling operation. The operator Uj is defined by U; = ie=/A7  where 6; sat-
isfies 0;Ey; = Z for Ey; that is computed by Eo; = (y;|Hr|y;). By the Hadamard gate H the ancilla
qubit is transformed as |0) — JLE( |0) 4 |1)). The dot in the ancilla qubit means that the corresponding
unitary transformation U is controlled by the ancilla qubit. By the controlled unitary transformation the
physical quantum state and the ancilla qubit are transformed as [/;)(|0) + [1)) — [¢;)]0) + Uly;) 1),
and quantum entanglement is produced between the physical quantum state and the ancilla qubit. (b) m
folds of one-qubit twirling operations.

1¥)10) H W;)%(IO) +11)) <y WJ-)%M + (o jie”rE0 4 ﬁ,ie—iefEl)%|1>
= |z/f,~>%(|0> + 1)) + (ajie™™ ™ + ﬁjie"efE')%qm — 1))
_ (—1 * ’;ﬁon o) + iziejEl ﬂle1>) 0)
1 — jeioiEo |
<—2 o)1 Eo) + ———— ﬁlel>> 1)
= 1|V 41)10) + djstlgj) 1), ™

where ¢;; and d;; | are normalization constants. Since 6;Ey; = 5 and Ey; is an approximate
(I+ie”"i*1)g;
(I+ie %0y,
the state accompanied by the ancilla qubits |0)]0) - - - |0) approaches the true ground state | Ep).
Our gate operation bears a resemblance to that of the quantum phase estimation [23,24].

The latter estimates the energy of a quantum state. In contrast with this our protocol separates

a true ground state from excited states using an approximate ground state energy.

value of Ey, we have 0;Ey > 7. Therefore, it is expected that |§f—i:| = | | < |fl—f| and
J J

. . By (i "iEp; B . _ =
Let us consider the inequality |01/‘+1 | = |—( ) | < |°‘/’ | more closely. Since 0; = 5 oo where
Ey; 1s the j-th approximate value of the ground state energy Ej, we rewrite the ground state
energy as Ey = Ey;(1 4 €y;), where ¢p; = EOE—(F” If the state [/;) is a good approximate state of
) ) ) ; .

|Eo), €9, is expected to be small. In this case we have 1 + je~ 0B — 1 4 ¢=7% ~~ 2. In contrast
with this, rewriting E7 = Ey;(1 + €1;), where €;; = E‘;f“’, we have 1 4 ie @F1 = | 4 =131,
J

which is equal to 2 only when €;; = 4n for some integer n. Therefore, except in the worst case

514
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Table 1. Ground state expectation value of Z. The column of j = O(adiabatic) indicates simulation re-
sults of the expectation value of Z generated by the IBM Qiskit qasm-simulator at the end of the naive
adiabatic quantum computation (s = 1). The number j means that the j-th twirling operation has been
done. The time interval 6; has been divided into 100 small intervals. The number 107(10%) means an
average over 10 times for each set of 10°(107) trials.

twirling j=0

operations (adiabatic) j=1 j=2 j=3 j=4 j=5
107 —0.71243 —0.70739 —0.70702 —0.70719 —0.70721 —0.70720
108 —0.71234 —0.70703 —0.70707 —0.70714 —0.70719 —0.70703

s

that rarely happens, we have |1 4 e~'2¢€1/| < 2. Thus, in an ordinary case |§’:—i:| < |f%| and [Y;11)
J J
1s closer to |Ep) than [v;).
In summary, we repeat the following steps as long as we have unused fresh ancilla qubits

(Fig. 2(b)):

« Evaluate Eo; = (y;|H|y)).

e Perform Hadamard transformation H on the following fresh ancilla qubit.

¢ Perform unitary transformation U (6,;) on the physical state controlled by the ancilla qubit,
where 6; = %0/ (in this process the physical state and the ancilla qubit are entangled).

e Perform Hadamard transformation H on the ancilla qubit.

* We have a new total state in the form ¢ 1]v/;41)]0)[0) - - - [0) + Zidj1.il@jr1,0111)) j1,i-

2.2.  Simulation results

In Table 1 we exhibit our simulation results for the case J = 1. The variance of measurement
values of Z for the state |Ey) is 0> = % The statistical error of the expectation value of Z for
n = 107 trials is i% = £0.0002. Therefore, roughly speaking, the expectation value of Z for
an average over n = 107 trials will mainly be distributed over the range —0.7073 ~ —0.7069. On
this point our simulation results agree with this theoretical value except for the no twirling oper-
ations case (j = 0). For n = 108 trials, :I:% = £0.00007 and the main range of the distribution
will be —0.70719 ~ —0.70704. Our simulation results again agree with this theoretical value ex-
cept for the no twirling operations case. These results will mean that in |); = «;|Eo) + B E1)
the amplitudes B; are sufficiently small for j = 1,2, ---, 5, and our procedure works well.

We consider the number of the active states and the expectation value of the Hamiltonian
from a slightly different point of view. For example, after the second twirling operation we will
have the following quantum entangled state in which the ground state and the excited state are
almost separated:

W) = a|Ep)|07)]05) + BIE| /1)] /). 8)
where
1 —i5€o; l _ o5y
107) = 5(1 +e )I0) + 2(1 e ), )
1 o 1 -
7)) = 54+ F0[0) + 51— e Ty, (10)
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Therefore, we have
1 . . 1 =T ST
1) = (alBo) 7 (1 4+ €7 30)(1 + e730) 4 BIEY) (1 4+ e 30)(1 + e73)) 0)[0)

+lo)lI1), (11)

where |¢) stands for an excluded state. We only deal with the state in which the two ancilla
qubits are in the state |0)|0). Since the initial state «|Ey) + B|E1) is an approximate vacuum, the
energy ratio EEUO = ¢qp 1s expected to be small and e~72¢® ~ 1. Since Ey; is obtained from an
improved approximate ground state, ']E‘” = € is also expected to be small and e~'2¢' & 1. In
contrast with this, the possibilities that e=2€0 ~ | and e~'2¢!" & 1 will be very small. Therefore,
except for the exceptional case that e~'€1 & 1, the amplitude of the excited state |E}) in the
active state shrinks to zero by several iterations of the twirling operations. In this state we

observe the two ancilla bits to be in the state |0)]|0) with the following probability:

, T , T
|1{0[{0|W)||* = |e|* cos? ZEOOCOS 2601+|/3| cos’ 4610COS 7 (12)

The expectation value of the number of the active states is given by this probability times
the trial number. For J = 1, the expectation value of the Hamiltonian Hr ® |0)(0] ® |0)(0]
normalized by the probability ||(0](0]¥)]||? is

(VI(Hr ®0)(0] ® |0){0])|¥)
|1{01{01W) ]2

lor]? cos? Zego cos® Zegr — |BI? cos? Fejgcos® Zey
-2 (13)

la|? cos? Zen cos® Feor + | B? cos? Tejg cos? § 4611

In the same way we have
(UI(Z ®10)(0] ® |0)(0])| W)
|[1{01{0[W)|?

V2 lar? cos? Zeg cos® Zegr — |BI? cos? Zejgcos? Ty — K

- la|? cos? Tego cos® Teg + | 1% cos? Tejgcos® ey (14)
where K is the cross term:
= |ap (eiel telm ]t el | e 4oy +c C)
2 2 2 2
T T T T T T
= 2|aB]cos ZEOO Ccos 4601 cos 4610 cos ZG]] cos (9 + ZG()() + ZE()l — ZEIO — Zell) .
(15)

Since | cos Jego COS 7 €1 €Os T€19 Cos Te11| < 1 except for the singular values of €1, €11, the cross
term K makes damping oscillation by the twirling operations.
After the third twirling operation we will have the state

W) = ] E0)[01)]05)105) + BIEN| /'1)| 72} /713), (16)

and so on. We will see that as the number of the twirling operation increases, the expectation
value we find the ancilla qubits in the state |0)|0) - - - |0) decreases, the expectation value of the
Hamiltonian approaches Ey = —+/2, and the expectation value of Z approaches —*/72.

We show in Table 2 our simulation results for the ground state expectation value of Z and the
number of active states for a series of successive rounds of the twirling operation for n = 108
trials. For j = 2, 3, 4 the exact value —?
the 95% confidence interval. In this case |@| > | 8| and it seems that we have almost reached

a static state after the first twirling operation. The 95% confidence interval of the number of

of the ground state expectation value of Z lies in
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Table 2. Ground state expectation value of Z and the number of active states for J = 1. The ground
state expectation value of Z is obtained by averaging over n = 108 trials. We estimate the 95% confidence

interval by +1.96 x 2,/ 1@, where 7 is the number of active states and p is the probability Z =1 is
observed and 1 — p is the probability Z = —1 is observed when Z is measured in the basis {|0), |1)}. For

j=0,1,---,5 wefind 1.96 x 2,/ 202 = 7 5 105

twirling j=0

operations (adiabatic) j=1 j=2 j=3 j=4 j=5
(Z) —0.71241£7 —0.70704+£7 —0.70706+£7 —0.70707+7 —0.70712+7 —0.70699 +7
active states 100000000 99998535 99998549 99998547 99998442 99998525

active states is +1.96,/ng(1 — q) = £75, where n = 10% and ¢ = 0.99998535 is the probability
the active state is observed, which is calculated from the value for j = 1. The fluctuation of
the number of active states in j = 2, 3, 4, 5 would represent the probabilistic fluctuation in the
quantum measurement. These results will mean thatin [); = o] Eo) + B1|E1) the amplitude 5,
is sufficiently small. In the approximate ground state |) = «|Ey) + B|E1) prepared by adiabatic
quantum computation, the amplitude g is not so large. Therefore, the true ground state |Ep)
has been almost extracted by the first twirling operation and this state has been maintained by
the following twirling operations.

3. Twirling operations for an /N-qubits Hamiltonian
In this section we introduce the twirling operations for an N-qubits Hamiltonian A that we use
in this paper. Let us have an approximate ground state

2V 1

W) =alE) + > BIE) (17)

/=1

for the Hamiltonian H. First, we measure the 0-th approximate value Ey of a ground state
energy by Ey = (¥ |H|¥) and set 6y = 2’]:3—00 Second, we prepare N ancilla qubits in the form
[0)1]0)2 - - - |0) - - - ]0) 5. Then, we Hadamard transform the k-th ancilla qubit |0);. Using the k-

~%H on the physical state

th ancilla qubit as a control qubit, we apply the controlled operation ie
2%=1 times; the number 2¢~! is an example of a nonzero integer and does not have inevitability.
We again Hadamard transform the k-th qubit. We perform this operation from the first ancilla
qubit through the N-th ancilla qubit.

By this twirling operation, the total state |¥) transforms as

W) = [¥)10)110)2 - - - [0) v

N_
— | Ep)[07)1]0)2---10') +221 BIEN /il /)21 S, (18)
/=1
where
0= 5 (142 ) 0 43 (1= 72 )y, (19)
=g (1 e ) 0 4 (1- 2 ) ), (20)
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with ¢ = E’E—O’OE"O After the first twirling operation, we have an unnormalized physical state in

the active state [0);]0),---|0)n as

2V 1

N
3 B¢ 0 cos (%2/‘_161()) E). (21)
=1 k=1

Under the condition that €y ~ 0, the relative amplitudes of the excited states diminish and the
physical state approaches the ground state |Ey), except for the singular case €0 = 4n (n= an
integer). Using Eo; = (W1 |H|¥1), we can perform the second twirling operation, and so on.

N
1) =a [T " cos (22 e ) 1 o) +
k=1

4. (141)-dimensional Schwinger model on a 1D spatial lattice

The (141)-dimensional Schwinger model on a finite-size lattice can be analyzed by quantum
simulation [8], and the vacuum of the (1+1)-dimensional Schwinger model is nontrivial. There-
fore, the (1+1)-dimensional Schwinger model is suitable for ascertaining whether our procedure
works well. The (1+1)-dimensional Schwinger model with the §-term is described in the natural
unit system & = ¢ = 1 by the following Lagrangian density:

1 LV g@ LV - T - T
L= ~2 wF" 4 - €™ + iyry"(0, + igd, ) —myry, (22)
0 1 0 1 0 1
where yY = 0. = o _1) Yy =io, = 1 o) and F,, = 9,4, — 3,4,. In the (1+1)-

dimensional model the vector potential A = (A4, 4;) only produces a 1D electric field. We use

1 0
0 -1
interested in the simplest case m = 0, 6§ = 0. In the temporal gauge 4y = 0, the corresponding
Hamiltonian is

the metric (g,,) = and we set the dielectric constant of the vacuum as ¢y = 1. We are

H = /dx (—it/;yl(al +igA\ )Y + %nz) , (23)

where [T = A' = —E!. To investigate the vacuum of this Hamiltonian by quantum simulation,
we formulate this Hamiltonian on a 1D spatial lattice with lattice spacing a. To avoid the species
doubling problem, we introduce staggered fermions [25,26] with one-flavor. For x = na(n =
even), we set ¥ (x) = (¢, 0)7 = \/L;(Xn 0)”. For even n, x, represents an annihilation operator
of an antiparticle and X,f represents a creation operator of the antiparticle on the site x =
na. For x = na(n = odd), we set ¥ (x) = (0 ¥,)7 = \/LE(O x»)T. For odd n, x, represents an
annihilation operator of the particle and y, represents a creation operator of the particle on
the site x = na. These fermionic operators satisfy the following anticommutation relations:

{thv Xm} = Sum» {xns xm} =0. (24)

We introduce the link variable L, by L, = —éH(x =+ %)a) that lives on the link connecting
the sites x = na and x = (n + 1)a. Thus we have the lattice Hamiltonian, which leads to Eq. (19)
in the limit ¢ — 0, as

H=—iw2 (e yun — x| ey, + G2 L2 (25)

n+1 n=—oo"—"n’
where w = ﬁ and G = % g%a. Rewriting €41y, | as x,41, which does not affect the anticom-
mutation relations in Eq. (20), we have

H = —iwS2_ (gt — X)) + GEZ_ L2 (26)

n=—00 n=—oo—n-
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0y —{H] [H]—|0)
0) —{x} (H]-10)
0) —{H] Eldl
0y —{2] (H}-10)
0) —{ ] [H}-10)
10) —{H}— {H - 10)
[10) —————{U(80) [ (U (00))* ——{ U (62) [H (U (6)2 |——{ U (8) [ (U (62)) | ———  [9s)

Fig. 3. Three folds of two-qubit twirling operations.

5. Two-qubits system derived from the (1+1)-dimensional Schwinger model
We consider the simplest case of Eq.(26); let us only have two sites x = 0 and x = @ on the
spatial lattice, which we indicate by the numbers 0 and 1, respectively. We also adopt the fixed
boundary condition; the electric field is zero out of the region 0 < x < a [8]. Gauss’s law will
hold on physical states. The discretized version of Gaussslaw ) E! = p=g:¢fy ratx =0
is

0
O i )
From the fixed boundary condition _; = 0 and we have Ly = X(;r xo. Thus we have the following
Hamiltonian on the two sites:

Ly—L = XJXO -

H = —iw(xixi — xi x0) + Gxlxo0)*. (28)

Using the Jordan—Wigner transformation [27], we represent the fermionic variables yo and
X1 by spin variables:

1 . 1 :
Xo = E(XO —iY)), X1 = 5(—120)(/\’1 —ih), (29)
where Y =0, = 0 Bl> . Thus we have the following simplest lattice Hamiltonian [8] up to
i
a constant:
L1 1
H = EGZO + EW(X()X] + Yo ). (30)

The first term in Eq. (30) is the electric field energy and the second term in Eq. (30) corresponds
to the fermionic kinetic energy. For simplicity we study the following Hamiltonian:

N 1
HZE(X0X1+ Yoh) + JZ,, (31)
where J = £ = 1¢%¢%. The matrix representation of Eq.(27) is

J 0 0 0

A 0o J 1 0

H = 32
o 1 —J 0 (32)
0 O 0 —J
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Table 3. Ground state expectation value of Z and the number of active states. The number of trials is
10 both for J = 1 and for J = 2. The numbers j = 1,2, - , 6 indicate the number of times that we
have performed the twirling operation (Fig. 3). As for the adiabatic process, the initial Hamiltonian is
Hy = %(Zo — Z1) and we have started from the initial ground state |1)¢|0),. The state j = 0 (adiabatic)
is the initial approximate vacuum.

j = O(adiabatic) ;=1 j=2 j=3 j=4 j=>5 j=6
103(J =1) —0.71475 —0.70716 —0.70701 —0.70708 —0.70703 —0.70706 —0.70710
active state 108 99996822 99996734 99996858 99996733 99996846 99996864
108(J = 2) —0.90014  —0.89438 —0.89435 —0.89440 —0.89442 —0.89441 —0.89439
active state 108 99995612 99995742 99995488 99995518 99995548 99995709

The smallest eigenvalue of Eq. (28) is Ey = —+/1 4+ J? and the corresponding eigenstate is

1
|Ey) = 0,1, —v/J2+1—-J,0). (33)
\/2(.]2 +JVIP+1+1)
We are interested in the ground state expectation value of Z = %(ZO — Z1) [8]. We see that
- J+IVI+1
(Eo|Z|Eo) = — . (34)
JE+IVI2+1+1
which is _«/LE for J =1 andis —% for J = 2.

We show in Table 3 our simulation results for the vacuum expectation value of Z and the
number of active states for a series of successive rounds of the twirling operation for n = 108
trials.

For J = 1, the theoretical value of the variance of Z is 0> = #j when the ground state
|Ep) is measured by the basis {|0), |1)}. The standard deviation of the average of Z is % =
0.000092 - - - . Therefore, except for the no twirling operations case the average of Z is within

one standard deviation from the theoretical value —%. For J = 2, the theoretical value of the
variance of Ziso? = % when the ground state | Ey) is measured by the basis {|0), |1)}. The stan-
dard deviation of the average of Z is % = 0.000045 - - - . Therefore, except for the no twirling
operations case the average of Z is within two standard deviations from the theoretical value
—%5 = —0.8994427 - - .. Thus, as for the expectation value of Z, the shift of O(|]) seems to
substantially be reduced by the first twirling operation. Therefore, it seems that the true ground

state has substantially been extracted by the first twirling operation.

6. Three-qubits system derived from the (1+1)-dimensional Schwinger model

In this section we are not interested in the vacuum of the (14-1)-dimensional Schwinger model
itself, but we are interested in the ground state of a three-qubits Hamiltonian that derives from
the (141)-dimensional Schwinger model. We consider the next simplest case of Eq. (26); let us
only have three sites x = 0, x = ¢, and x = 2a on the spatial lattice, which we indicate by the
numbers 0, 1, and 2, respectively. This time we also adopt the fixed boundary condition; the
electric field is zero out of the region 0 < x < 2« [8]. This time we have the following three-
qubits Hamiltonian:

N 1 1
H = EG(ZO + ZoZ)) + EW(XOXI + XX+ YooY+ D). (35)

11/14

G20z Yyole L0 uo1senb Aq /$2G/82/Z0VE L L/ L LIYZ0Z/e10ne/deid/woo dnoojwepeoe//:sdiy wolj pepeojumoqd



PTEP 2024, 113A02 K. Oshima

0y —{H] (H - [0)
10) (H] (H]—10)
|0) H| H—10)
[}y —————U0) (U(6)) veN'——- )

Fig. 4. One three-qubits twirling operation. We use three ancilla qubits for one twirling operation.

The corresponding dimensionless Hamiltonian is
.1 1
H = E(XOXI + X1 X+ YooY + Yle)-l-EJ(Zo-l-Zozl)- (36)

Theoretically, we have the ground state

(0 )
0
0
1 1
RN YN 0 | o7
~J =2+ 2
1
0

with eigenvalue Ey = —(J + v/2+ J2). For J = 1 we have Ey = —1 — /3 = —2.73205- -, and
for J =2 we have Ey = —1 — /6 = —3.44948 - - - . We also measure

-1
7 = g(Z() —Z + Zz) (38)
The theoretical vacuum expectation value of Z is
- - 1 4
(2) = (EolZ)Eo) = (—- BV RPN J2> . 3
Y BE V5 R G )
33

For J =1 we have (Z) =
246) = —0.87766 - - -

We show simulation results in Table 4 for the cases / = 1 and J = 2. We see that the correc-
tions of (Z) by the twirling operation are more significant than those of (), which agrees with
the theoretical results for the one-qubit system when |A] is small. As for (H), the corrections are
small and would be O(|;]?). It seems that the true ground state has substantially been extracted

by the first and second twirling operations.

_ 7\ — (L
e = —0.71823---, and for J =2 we have (Z£) = —(5 +

7. Summary and discussions

We have proposed a procedure to use quantum entanglement to extract a ground state from
excited states for approximate ground states of the type «|Ey) + X;6;|E;). We only use an ap-
proximate value of a ground state energy and concatenated ancilla qubits. Although we have
used the approximate ground state prepared by adiabatic quantum computation for conve-
nience, our procedure can be applied to any approximate ground state that is a superposition
of a true ground state and excited states. We have developed the previous method presented by
the present author [18] by concatenating the ancilla qubits and the twirling operations. By the
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Table 4. Ground state expectation values of Z and H. Before the twirling operations we have used adia-
batic quantum computation and the state j = 0 (adiabatic) is the initial approximate ground state. The
physical quantum state approaches |Ey) by the twirling operations (Fig. 4). We show averages over 103
trials. For the 4 twirling operations we need 12 fresh ancilla qubits.

j=0
J=1 (adiabatic) j=1 j=2 j=3 j=4 theoretical
(Z) —0.712514 —0.71872 —0.71808 —0.71818 —0.71824 —0.71823
(H) —2.73148 —2.73229 —2.73213 —2.73195 —2.73212 —2.73205
active states 108 99986679 99986373 99986107 99986210 -

J=2 j=0 j=1 j=2 j=3 j=4 theoretical

(adiabatic)

(Z) —0.88467 —0.87834 —0.87772 —0.87773 —0.87769 —0.87766
(H) —4.44912 —4.44949 —4.44942 —4.44965 —4.44961 —4.44949
active states 108 99991476 999912973 99991366 99991307 -

concatenation it is expected that the approximate ground state approaches the true ground state
more closely. We have introduced twirling operations for an N-qubits Hamiltonian. We have
carried out quantum simulation by using IBM Qiskit for the one-qubit system, the two-qubits
system, and the three-qubits system that derive from the (1+1)-dimensional Schwinger model.
We have seen that the ground state expectation values we have obtained by the simulation agree
with the theoretical values within the statistical errors.

We have simulated the one-qubit system, which has two energy eigenstates. We also have
simulated the two-qubits system that derives from the (1+1)-dimensional Schwinger model.
Although this system has four energy eigenstates, since we have started from the charge-neutral
state and the Hamiltonian conserves the number of the charge, the approximate ground state is
supposed to be a superposition of two charge-neutral states: the state in which no particles are
excited and the state in which a pair of an electron and a positron is excited. Therefore, concern-
ing the ground state, this system is substantially a two-state system. In our simulation results we
have obtained satisfactory ground state expectation values by only one twirling operation. This
may be peculiar to a two-state system. We also have examined the three-qubits system, which
is not a two-state system. In this case we have seen that the combination of adiabatic quan-
tum computation and the concatenated twirling operations seems effective to produce the true
ground state | Ep). We can compute ground state expectation values of some physical quantities
with high accuracy without algebraic calculation. We have simulated some simple systems that
can be analyzed by algebraic calculation. Our procedure, however, in principle can be applied
to more complicated systems that are difficult to analyze by algebraic calculation. In principle,
our simulation procedure applies to any finite-dimensional Hamiltonian that is represented
by Pauli matrices. Our procedure works well only for the case that the quantum system has
a nondegenerate ground state. Our procedure would give a new quantum algorithm that uses
quantum entanglement.
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