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Alfonso Rosado Sánchez y Dra. Melina Gómez Bock, quienes sentaron las bases de mi

aprendizaje y fueron un gran pilar durante mi recorrido por el posgrado. Por su gúıa en el
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Aspectos relevantes en la dispersión muy
inelástica ep a través del canal t

Resumen

En la presente tesis se estudian parámetros asociados a procesos de dispersión

electrón-protón muy inelástica para eventos de muy alta enerǵıa y valores pequeños del

parámetro x. El efecto de la luminosidad integrada en los experimentos actuales y futu-

ros generará mayor precisión en la evaluación experimental de los parámetros cinemáticos

asociados. Concretamente, discutimos la producción del bosón Z a través de la reacción

e + p → e + Z + X en el canal-t, calculando la sección eficaz de este proceso a primer

orden y usando el Modelo de Partones en el contexto del Modelo Estándar. En este trabajo

mostramos que el proceso de dispersión muy inelástico e+ p→ e+X, es decir, donde solo

se produce un jet hadrónico asociado con X, la elección del momento transferido Q̃2, es

indistinta si se toma desde la ĺınea leptónica o desde la ĺınea de quarks. Sin embargo, en el

caso para el cual se establece la producción del bosón vectorial Z, śı existe una diferencia

relevante, ya que ahora el momento transferido depende del diagrama de Feynamn asocia-

do a la producción y en consecuencia, se genera una ambigüedad al identificar a Q̃2. Con

el objetivo de resolver esta incertidumbre, proponemos diferentes prescripciones basadas

en fundamentos cinemáticos para la elección de Q̃2, mostrando la dependencia sobre las

enerǵıas del centro de masa del proceso. Eso nos permitirá contrastar con el experimento

y entonces establecer la prescripción adecuada al calcular la sección eficaz del proceso de

producción del Z a través de dicha dispersión.

La producción del bosón Z se realiza a través de una reacción del tipo 2 → 3

part́ıculas, la cinemática asociada involucra cinco part́ıculas. Con la finalidad de analizar y

entender la estructura cinemática de este tipo de procesos, trabajamos primeramente con

un proceso 2 → 2 donde solo están involucradas cuatro part́ıculas para posteriormente,

extender el análisis a cinco y de esa manera entender la fuente de la discrepancia en la

producción del Z. Es aśı que, presentamos el cálculo de la producción de un quark top

mediante un proceso exótico más allá del Modelo Estándar a través de corrientes neutras

que cambian sabor, en este caso, en el contexto de un modelo extendido de dos dobletes

(2HDM-III). Aunque para este último no hay ambiguëdad cinemática, su relevancia radica

en la posibilidad de establecer señales exóticas que puedan determinar una posible extensión
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del Modelo Estándar para procesos de violación de sabor con corrientes neutras, presentes a

nivel árbol, lo que lo convierte en una fuente importante de posibles señales de nueva f́ısica.

Por esta razón, estudiamos los escenarios que podŕıan exhibir tales eventos, espećıficamente

indagamos en los parámetros del modelo denotados como χf y cuyo valor determinaŕıan

la posible producción de un quark top en la dispersión muy inelástica de un electrón y un

protón en el contexto del modelo 2HDM tipo III, para las enerǵıas actuales y las que se

pretenden alcanzar en futuros colisionadores.



Relevant aspects of Deep Inelastic ep Scattering
at t-channel

Abstract

The present work focuses on studying deep inelastic electron-proton scattering

parameters for high energy and small values of the x parameter processes. The integrated

luminosity effect on current and future experiments, will produce higher precision on expe-

rimental evaluation of the associated kinematic parameters. We discuss Z boson production

in the reaction e + p → e + Z + X at the t-channel in the context of the Standard Model

at tree level. We have shown that in the deep inelastic process e + p → e + X, where just

one hadronic jet is produced, the choice of Q̃2 is unambiguous since the momentum transfer

at the leptonic line is equal to the momentum transfer at the quark line. However, in the

process of Z boson production, the momentum transfer depends on the Feynman diagram

related to the production, as a consequence there is an ambiguity on the identification of

Q̃2. In order to solve this uncertainty, we propose different prescriptions based on kinematic

analysis to choose Q̃2, showing the dependence on center of mass energy of the process.

These allow us make a contrast with the experiment therefore we will be able to establish

the most suitable prescription to obtain the cross section of the Z boson production process.

The Z boson production is realized trough a reaction 2→ 3, then the kinematic

analysis involve five particles. To understand this kind of process, we firstly present a 2→ 2

process, where four particles are involved, then we compare the kinematic of both processes

to finally present the source of the ambiguity on the Z production process. To this aim, we

calculate the single top production trough an exotic process beyond the Standard Model via

changing flavor of neutral currents, in the context of the two two doublet model (2HDM-

III). Even though this case does not exhibit a kinematic ambiguity, is important since we

can establish exotic signals that allow determine an extension of the Standard Model for

flavor violation neutral currents, at tree level, which makes them an important source for

new physic signals. Therefore, we study scenarios where this events can occur, specifically

we inquire on the parameters of the model, denoted as χf , whose values would determine

the single top production in the deep inelastic electron proton scattering in the context of

the 2HDM type III, for current and future energies.
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In order to analyze a 2→ 3 process, such as the Z production, we firstly present

the single top production trough Flavor Changing Neutral Currents, which is a 2→ 2 pro-

cess where just four particles are involved.

Processes of Flavor Changing Neutral Currents are present at tree level in Beyond

Standard Models, this feature makes them an important source of new physical signals. To

examine the scenarios that could exhibit such events, we have performed a search in the

parameter space to determine the possible production of a single top quark in ep Deep

Inelastic Scattering, in the context of a flavor violation extended model, the THDM type

III, for energies given by current and future colliders.
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W.Gonzalez, M.Gómez-Bock, L.T. López-Lozano, S. Rosado-Navarro and A.Rosado,

“Z-Production dependence on the identification of the scale energy parameter (Q̃2)

involved in the PDFs”, Pramana-J. Phys, DOI 12.3456/s78910-011-012-3.
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Caṕıtulo 1

Introducción

Debido al avance de la tecnoloǵıa, los f́ısicos de part́ıculas han concluido una era

precursora en el descubrimiento de part́ıculas que corroboran la estructura del Modelo

Estándar [1] [2], para aśı dar comienzo a una etapa de precisión con experimentos de mayor

enerǵıa y mayor luminosidad, cuyo objetivo es profundizar en el detalle de las interacciones

fundamentales. El presente trabajo busca contribuir con ese propósito, por lo que se ha es-

cogido el análisis de un tipo espećıfico de interacción, a saber, la Dispersión Muy Inelástica

electrón-protón, para la cual, se pretende mostrar que se requiere una mejor prescripción

del modelo teórico para describir sin ambigüedad los resultados experimentales. Dicha in-

teracción también es analizada en el contexto de un modelo extendido del Modelo Estándar,

con la finalidad de presentar los escenarios en los que es posible medir violación de sabor

por corrientes neutras. Una vez que se han estudiado las condiciones para observar este tipo

de señal, se pueden fijar algunas cotas experimentales.

A continuación, se exponen los motivos que llevaron a elegir a la interacción

electrón-protón como objeto de estudio.

Como es sabido, la f́ısica de part́ıculas busca explicar cuáles son los constituyentes

de la materia y cómo ellos interactúan entre śı. Para lograr indagar dentro de ella, es ne-

cesario golpearla hasta dividirla, por lo que grandes cantidades de enerǵıa son requeridos;

una vez que la materia se ha dividido, es posible estudiar sus componentes.

1
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La naturaleza lleva a cabo este tipo de procesos a muy altas enerǵıas, sin embargo,

son poco accesibles y en consecuencia dif́ıciles de analizar. Un ejemplo son los rayos cósmi-

cos ultra-energéticos, que superan a 1 EeV (1× 1018 eV ) de enerǵıa [3], la cual es lograda

por la interacción con objetos astrof́ısicos, aśı que es imposible obtener el mismo orden de

magnitud de manera sintética. Sin embargo, cuando estos rayos se adentran en la atmósfera

de la Tierra y por la desviación que sufren debido al campo magnético terrestre, únicamen-

te una pequeña fracción queda disponible para la colisión con un nucleón, el remanente se

transforma en productos.

Es entonces posible acceder a esos niveles de enerǵıa a través de la construcción de

grandes aceleradores de part́ıculas. En el LHC se ha obteniendo hasta 13 × 1012 eV [4], es

decir, cinco órdenes de magnitud menos que la enerǵıa lograda en los chubascos cósmicos.

Aśı que, se tiene una excelente fuente de análisis de procesos realizados a muy altas enerǵıas,

de manera controlada.

En los aceleradores de part́ıculas se pueden producir tres tipos de interacción: 1)

leptón-leptón, 2) hadrón-hadrón y 3) leptón-hadrón, de acuerdo con el interés en el sector

que se requiera estudiar, se realiza la más adecuada. Por ejemplo, el primer tipo permite

obtener señales muy claras de lo que se encuentra en los estados inicial y final del proceso

por lo que son útiles para fijar cotas experimentales pero tienen la desventaja de ser los

menos energéticos. En el segundo caso, se obtiene una gran variedad de part́ıculas en el

estado final, por lo que no es útil si se busca precisión; no obstante, estos procesos son muy

energéticos aśı que son buenos para buscar nueva f́ısica. Finalmente, en el tercer tipo, que

es una combinación de los dos anteriores, se obtenienen procesos a enerǵıas altas a la vez

que permite tener control de los productos de la reacción, por lo tanto, es conveniente para

fijar parámetros f́ısicos de procesos a muy altas enerǵıas. La interacción electrón-protón

pertenece a esta clase y es por esta razón que se está interesado en investigarla.

La interacción electrón-protón ha sido ampliamente estudiada en el contexto del

Modelo Estándar (ME) [5] [6] [7], de hecho, al realizar el análisis de sus parámetros cinemáti-

cos tales como, la enerǵıa total de la colisión, la enerǵıa cedida, el momento transferido,

etcétera, es posible obtener su valor sin ambigüedad. Sin embargo, al producirse un bosón

Z durante el proceso, el análisis exhibe una ambigüedad al escoger el parámetro de la escala



Caṕıtulo 1: Introducción 3

de interacción, denotado como Q̃2, ya que no puede ser escogido de manera ineqúıvoca.

Es importante señalar que este tipo de producción siempre se ha presentado en

procesos de Dispersión Muy Inelástica pero no hab́ıa sido necesario hacer una identificación

precisa de Q̃2, debido a que las luminosidades alcanzadas por aceleradores de hadrones,

tales como el Hadron Electron Ring Accelerator (HERA) [8], no eran suficientes para mos-

trar una cantidad significativa de eventos donde se produjera el Z, por lo que la precisión

en dicho parámetro no era relevante y no afectaŕıa de manera importante al cálculo de la

sección eficaz.

Por ejemplo, en el art́ıculo Z-Production in Deep Inelastic eP-Scattering [9] se

realizó un cálculo de la sección eficaz del proceso electrón-protón con producción de un

bosón Z, usando las siguientes prescripciones del parámetro Q̃2:

1) La masa del Z, Q̃2 = M2
Z .

2) La transferencia del momento sobre la ĺınea de los quarks, Q̃2 = Q′2.

3) El promedio de las transferencias de enerǵıa sobre las ĺıneas leptónica y de quarks,

Q̃2 =
(
Q′2 +Q2

)
/2.

El resultado de la sección eficaz para el segundo y tercer caso no fue diferente en

absoluto y con la primera propuesta únicamente cambió en 1 %. Otro aspecto importante

que se notó, es que, de haberse escogido la transferencia de momento sobre la ĺınea de los

leptones en lugar de la de los quarks, el resultado habŕıa cambiado en 5 %, este hecho no es

significativo cuando se tiene una mı́nima produción de bosones Z .

El objetivo de este trabajo de tesis es mostrar que, a diferencia de esos cálculos

realizados con la luminosidad lograda en HERA, el valor de la sección eficaz śı tendrá re-

percusiones importantes al ser calculadas con la luminosidad que se pretende alcanzar en el

acelerador LHeC [10] e implementando las diferentes prescripciones de Q̃2.

Antes de profundizar en el análisis de la producción de un bosón Z, cuya reacción

es del tipo 2→ 3, es decir, cinco part́ıculas interactuando, se toma como punto de partida
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una reacción del tipo 2 → 2, con la finalidad de establecer la cinemática de un proceso

con menos part́ıculas involucradas para después extender el análisis con una part́ıcula más

presente en la interacción.

Con este propósito, se presenta el estudio de la producción de un quark top en

la Dispersión Muy Inelástica electrón-protón a través de un proceso de cambio de sabor

por corrientes neutras o FCNC, por sus siglas en inglés, en el contexto del Modelo de Dos

Dobletes de Higgs [11] [12], una de las extensiones más simples del Modelo Estándar. La

finalidad de este análisis es establecer ĺımites experimentales sobre los parámetros libres del

modelo en el caso de que dichos procesos se manifestaran. Se tiene un particular interés

en ellos debido a que en modelos más allá del Modelo Estándar, estos se presentan a nivel

árbol por lo que, de ser observados seŕıan inminentemente señal de nueva f́ısica.

La razón para buscar mas allá del Modelo Estándar, es que, a pesar de ser una

teoŕıa exitosa, aún está incompleta ya que existen cuestionamientos tales como, la oscilación

de los neutrinos, la asimetŕıa materia-antimateria, etc., a los que no puede dar respuesta.

Particularmente cabe mencionar que, si bien en este contexto los quarks adquieren su masa

a través del rompimiento espontáneo de simetŕıa [13], este mecanismo no explica el espectro

de las masas ni su jerarqúıa, de hecho, los coeficientes directamente relacionados con los

valores de las masas, los acoplamientos de Yukawua, solo pueden ser encontrados experi-

mentalmente, aśı que se requiere de nueva f́ısica para dilucidar este problema.

La manera más simple de producir una extensión del Modelo Estándar es agre-

gando un doblete de Higgs a la teoŕıa, dando como resultado los Modelos de Dos Dobletes

de Higgs o 2HDM [14]. Este modelo puede considerar, en general, que las masas de los fer-

miones provienen de la interacción con ambos dobletes. Espećıficamente para el tipo III [15]

ambos dobletes se acoplan a los dos tipos de quarks (up y down), esta caracteŕıstica del

modelo explicaŕıa la jerarqúıa de masas desde un enfoque más natural y es por eso que se

ha escogido para realizar el análisis de los procesos de cambio de sabor.

El trabajo se ha dividido como sigue: En el caṕıtulo 2 se revisa el Modelo Estándar

y se analiza una extensión en el sector escalar. El caṕıtulo 3, está dirigido al estudio ci-

nemático de la interacción electrón-protón; se expone claramente el parámetro que define a



Caṕıtulo 1: Introducción 5

la transferencia del momento. Finalmente, en los caṕıtulos 3 y 4 se presenta respectivamente

el análisis de la producción del quark top y del bosón Z en la Dispersión Muy Inelástica

electrón-protón.



Caṕıtulo 2

Revisión del Modelo Estándar y

Una Extensión

Para entender el comportamiento de interacciones tan complejas como las que

tienen las part́ıculas subatómicas, fue necesario el esfuerzo de muchos cient́ıficos quienes

lograron construir una teoŕıa extraordinariamente precisa, la cual explica la conducta de los

componenentes de la materia, aśı como también sus interacciones. Esta teoŕıa es conocida

como el Modelo Estándar (ME).

El ME es una teoŕıa de norma, esto es, un tipo especial de teoŕıa de campos que

considera a las part́ıculas como campos cuánticos relativistas y atribuye sus interaccio-

nes al intercambio de los llamados “bosones de norma”. Estas part́ıculas de interacción se

manifiestan al imponer simetŕıas de norma sobre las ecuaciones que describen el compor-

tamiento de los campos fermiónicos libres, es decir, se exige que permanezcan invariantes

ante transformaciones hechas sobre los campos. A este tipo de operaciones se les conoce

como simetŕıas internas y pueden ser discretas o continuas. De acuerdo a las propiedades

que exhiben los campos bajo estas transformaciones, se ha logrado describir exitosamente

al ME en términos del grupo de simetŕıa SU(3)C × SU(2)L × U(1)Y . En la sección 2.2 se

revisará la estructura de este grupo y sus consecuencias en la f́ısica de part́ıculas.

6
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El objetivo del presente caṕıtulo es describir los elementos principales del ME,

indicando solo los aspectos más generales con el fin de mostrar las caracteŕısticas del electrón

y del protón, aśı como todos los estados que intervienen en su interacción para su correcto

análisis. Para mayores referencias, puede revisar la siguiente bibliograf́ıa [16], [17] y para la

teoŕıa de grupos se sugiere revisar [18], [19] y [20].

2.1. Part́ıculas Elementales

Las part́ıculas elementales son clasificadas en dos grupos: los fermiones y los

bosones. Los fermiones obedecen la estad́ıstica de Fermi-Dirac y tienen esṕın semientero

(1/2, 3/2, 5/2, ...), constituyen a la materia tal y como la conocemos, por lo que también

son conocidos como part́ıculas de materia, estos a su vez pueden dividirse en quarks y lepto-

nes como resultado de sus propiedades e interacciones. Por otro lado, se tiene a los bosones

quienes obedecen la estad́ıstica de Bose-Einstein y tienen esṕın entero (1, 2, 3, ...), son los

responsables de transmitir cualquier tipo de fuerza, también son conocidos como bosones

de norma, debido a que su comportamiento como transmisores está descrito a través de una

teoŕıa de norma.

Por su parte, los leptones y los quarks poseen ciertas caracteŕısticas que los distin-

guen. En primer lugar, los leptones existen libremente, lo que les permite ser estudiados de

manera directa, mientras que los quarks son estados confinados dentro de un hadrón por lo

que nunca se han observado de manera aislada. Los quarks además experimentan otra fuer-

za fundamental conocida como fuerza fuerte, en consecuencia, poseen un número cuántico

conocido como carga de color el cual les permite coexistir dentro del hadrón sin violar el

principio de exclusión de Paulli. La carga de color puede tener tres valores diferentes: rojo,

azul y verde, sin embargo, no tiene que ver con los colores que observamos, es solo un nombre

que se le confiere a la propiedad de las part́ıculas que experimentan a la fuerza fuerte. Los

leptones, por su parte, no experimentan dicha fuerza por lo que carecen de la carga de color.

El esṕın además, puede proyectarse sobre el momento, por lo que las part́ıculas

pueden obtener quiralidad izquierda o derecha y, de acuerdo a las simetŕıas que se estudian

en la siguiente sección, se han establecido las partes derechas de los fermiones como singletes

y las partes izquierdas como dobletes del grupo SU(2)L, cada uno de dichos dobletes cono-
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cido como generación o familia. Aśı que, se tienen dos conjuntos de leptones representados

por los campos LLi para las componentes izquierdas y LRi para las componentes derechas,

de la siguiente manera:

LLi =


 νe

e


L

,

 νµ

µ


L

,

 ντ

τ


L

 , ERi = {eR, µR, τR} , (2.1)

y para los quarks, se tienen los conjuntos representados como el doblete QLj para las

componentes izquierdas y los singletes URj , DRj para las partes derechas de los quarks tipo

up y down respectivamente, como se muestra a continuación:

QLi =


 u

d


L

,

 c

s


L

,

 t

b


L

 , URi = {uR, cR, tR} , DRi = {dR, sR, bR} ,

(2.2)

donde i = 1, 2 o 3 es el ı́ndice de la generación y, por convención, se ponen a las part́ıculas

con carga eléctrica más positiva en la primera fila. En la ecuación (2.1), los leptones de la

primera fila tienen una carga q = 0 y sus nombres son neutrino del electrón (νe), neutrino

del muón (νµ) y neutrino del tau (ντ ), mientras que los leptones de la segunda fila tienen

una carga eléctrica de q = −e, y sus nombres son electrón (e), muón (µ) y tau (τ). Por

su lado, los quarks de la primera fila en (2.2) son los llamados tipo up y tienen una carga

q = 2
3e, donde e es la magnitud de la carga eléctrica del electrón, los quarks de la fila de

abajo son los tipo down y su carga es de q = −1
3e, sus nombres son: up (u), charm (c), top

(t), down (d), strange (s) y bottom (b), respectivamente.

Por otro lado, se ha visto en los experimentos que cada tipo de part́ıcula tiene un

número cuántico que se conserva, aunque aún no se entiende la razón precisa; en el caso de

los quarks es el número bariónico B cuyo valor es igual a 1
3 y para los leptones es el número

leptónico que se define para cada generación.

Existen también los hadrones, que son part́ıculas compuestas por quarks y que

son clasificados en dos tipos, los mesones que contienen un par quark-antiquark con número

bariónico B = 0 y los bariones que están constituidos por tres quarks con B = 1. Cabe
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mencionar que además de las cargas eléctricas Q y de color, los hadrones cuentan con otros

números cuánticos, la tercera componente del isoesṕın I3 y la extrañeza S, la ecuación que

los relaciona se determinó emṕıricamente aunque más tarde se dedujo de la simetŕıa de

color y está dada por:

Q = I3 +
1

2
(B + S), (2.3)

esta ecuación fue originalmente escrita de la siguiente manera:

Q = I3 +
I0
2
, (2.4)

donde I0 es el número cuántico conocido como hipercarga y está relacionado con la interac-

ción fuerte.

Por otra parte, es sabido que existen cuatro fuerzas fundamentales, la fuerza gra-

vitacional, la electromagnética y las fuerzas nucleares débil y fuerte, la manera en que los

fermiones pueden experimentarlas es a través del intercambio de los bosones de norma. Cada

tipo de fuerza posee su respectivo portador, en el caso del electromagnetismo se tiene al fotón

γ, los bosones W y Z para la fuerza débil, los mediadores de la fuerza fuerte son los gluones

g y finalmente el hipotético gravitón [21] que es el responsable de la interacción gravitatoria.

Debe señalarse que, para que la teoŕıa sea invariante, los bosones debeŕıan carecer

de masa, y excepto por el fotón, todos ellos la tienen. Este dilema fue resuelto a través

de un mecanismo que es capaz de dotarlos de masa sin comprometer la consistencia de la

teoŕıa, como se verá más adelante, por ahora este hecho nos lleva a describir otra part́ıcula

importante del ME: el bosón de Higgs [22]. El bosón de Higgs es una part́ıcula de esṕın cero

y es el resultado de la rotura espontánea de una simetŕıa, por medio de este mecanismo se

da razón de la masa de las part́ıculas, por lo que es parte primordial en el ME, razón por

la que será detallado en otra sección.

Finalmente, tenemos a las antipart́ıculas cuyos valores de masa y esṕın son iguales

a los de su correspondiente part́ıcula (algunas son su propia antipart́ıcula) pero que tienen

carga eléctrica, carga de color y sabor opuestos.
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A continuación se muestran las propiedades de los fermiones izquierdos en la Ta-

bla 2.1 y los fermiones derechos en la Tabla 2.2, donde Q es la carga eléctrica, I3 es la

tercera componente del Isospin Débil e I0 es la Hipercarga [23]. Se usa la abreviación NE

para indicar que en el Modelo Estándar No Existen los neutrinos derechos y G. es para

abreviar la palabra Generación.

Fermiones Izquierdos

- 1.a G. 2.a G. 3.a G. Q I3 I0

Leptones
νe νµ ντ 0 1

2 −1

e µ τ −1 −1
2 −1

Quarks
u c t 2

3
1
2

1
3

d s b −1
3 −1

2
1
3

Tabla 2.1: Propiedades de los fermiones con quiralidad izquierda.

Fermiones Derechos

- 1.a G. 2.a G. 3.a G. Q I3 I0

Leptones
NE NE NE NE NE NE

eR µR τR −1 0 −2

Quarks
uR cR tR

2
3 0 4

3

dR sR bR −1
3 0 −2

3

Tabla 2.2: Propiedades de los fermiones con quiralidad derecha.
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2.2. Simetŕıas del Modelo Estándar

Las simetŕıas en general, se definen como transformaciones hechas a un sistema y

que dejan invariantes las ecuaciones que lo gobiernan, juegan un papel muy importante en

el ámbito de la f́ısica ya que, de acuerdo al Teorema de Noether [24], inmediatamente se

relacionan con cantidades conservadas; por ejemplo, un sistema que es simétrico con res-

pecto a un desplazamiento temporal o a uno espacial, exhiben conservación de la enerǵıa o

del momento respectivamente, aśı mismo, debido a la invariancia de Lorentz, la velocidad

de la luz, intervalos espacio-temporales y causalidad son conservados.

Si la transformación es hecha en el espacio donde toma lugar el sistema f́ısico y lo

deja invariante (por ejemplo las transformaciones de Lorentz) entonces se dice que hay una

simetŕıa externa, si por otro lado se realiza sobre el propio sistema y lo deja invariante, se

habla ahora de una simetŕıa interna y estas pueden ser discretas tal como lo son la conju-

gación de Carga (C), la inversión de Paridad (P) y la inversión temporal (T) o continuas,

como las transformaciones de fase.

En las siguientes secciones, se exploran las consecuencias de imponer un tipo de

simetŕıa interna al Lagrangiano que describe el comportamiento de los campos fermiónicos

y se muestra cómo, por efecto de dicha imposición, se desprende la interacción entre las

part́ıculas.

2.3. Teoŕıas de Norma Abeliana, QED

El Lagrangiano de un fermión libre de masa m es:

L = ı̇ψ̄γµ∂µψ −mψ̄ψ. (2.5)

Si se realiza una transformación de fase global dada por:

ψ(x)→ eı̇αψ(x), (2.6)
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∂µψ → eı̇α∂µψ, (2.7)

ψ̄(x)→ e−ı̇αψ̄(x), (2.8)

donde α es una constante real, se puede notar fácilmente que el Lagrangiano queda inva-

riante ante esta transformación. Todo el conjunto de operaciones dadas por U(α) = eı̇α

forman un grupo unitario, el cual además es Abeliano U(1) debido a que la multiplicación

de dos operadores del grupo conmuta.

Sin embargo, es deseable obtener el caso general en el que el parámetro α es

dependiente del espacio-tiempo, es decir, transformaciones locales donde α = α(x), con este

criterio ahora se obtiene:

ψ(x)→ eı̇α(x)ψ(x), (2.9)

ψ̄(x)→ e−ı̇α(x)ψ̄(x), (2.10)

∂µψ → eı̇α(x)∂µψ + ı̇eı̇α(x)ψ ∂µα. (2.11)

Se puede notar que el segundo término en (2.11) rompe la inviariancia del La-

grangiano, para restaurarla es necesario introducir una derivada que transforme como

Dµψ → eı̇α(x)Dµψ y que sea capaz de compensar ese término extra. Esta nueva deriva-

da se llama covariante y tiene la siguiente forma:

Dµ ≡ ∂µ − ı̇eAµ, (2.12)

donde Aµ transforma como:

Aµ → Aµ +
1

e
∂µ α. (2.13)
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Con estas condiciones se puede escribir un Lagrangiano que sea invariante ante

transformaciones de fase local, las cuales forman el grupo U(1), es importante recalcar

que para lograrlo se tuvo que proponer un nuevo tipo de derivada que contiene un campo

vectorial llamado campo de norma, en este caso dado por Aµ para el cual se debe introducir

su respectivo término cinético que también debe ser invariante bajo (2.13), lo cual se logra

con el tensor de campo dado por:

Fµν = ∂µAν − ∂νAµ. (2.14)

Aśı, finalmente se obtiene el Lagrangiano que describe las propiedades cuánticas

del campo electromagnético, es decir, el Lagrangiano de la electrodinámica cuántica (QED):

LQED = ψ̄ (ı̇γµ∂µ −m)ψ + eψ̄γµAµψ −
1

4
FµνF

µν . (2.15)

Los dos primeros términos en (2.15) corresponden al fermión libre, mientras que

el último es el término cinético del campo de norma. Es importante notar también que no

existe un término de masa asociado a dicho campo y esto se explica porque el fotón no tiene

masa, además que de existir, rompeŕıa nuevamente con la invariancia del Lagrangiano.

La parte interesante se encuentra en el término que contiene al fermión y al campo Aµ,

este acoplamiento se asocia con una interacción entre ambas part́ıculas, espećıficamente

en QED para el electrón y el fotón. En conclusión, un nuevo campo y la interacción con

este se manifiesta por la imposición natural de que exista una invariancia en la descripción

dinámica de un sistema f́ısico.

2.4. Teoŕıas de Norma No Abeliana, EW y QCD

Para analizar una teoŕıa no Abeliana se realiza el mismo tratamiento, excepto que

ahora se debe tomar en cuenta que no todos los generadores del grupo conmutan; este hecho

repercute en la derivada covariante y por lo tanto en la manera en cómo transforman los

campos de norma.

Una transformación de fase local como la descrita en la Ecuación (2.9), la cual

deja invariante al Lagrangiano, requiere de proponer una derivada covariante como en la
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expresión (2.12), que contiene al campo de norma, en forma general se escribe como:

Dµψ ≡ ∂ψ − gWµψ, (2.16)

donde g es una constante de acoplamiento y Wµ es el campo de norma que se toma en

general por ahora y tiene que cumplir con la regla de transformación:

Wµ →W ′µ = UWµU
−1 + (∂µU)U−1, (2.17)

aqúı U son los elementos del grupo y son construidos como U = eıαa(x)Ta ; el conjunto

de matrices Ta son los generadores del grupo y deben ser matrices Hermitianas con el fin

de asegurar unitariedad, esto además implica que los parámetros αa(x) son reales. Por el

hecho de tratar con un grupo no Abeliano, los generadores obedecen la siguiente relación

de conmutación:

[Ta, Tb] = ıfabcTc, (2.18)

donde fabc son números reales conocidos como constantes de estructura.

Otro aspecto importante por recordar, es que se deben introducir los términos

cinéticos asociados a los campos de norma, dichos términos se construyen a través del

conmutador de dos derivadas covariantes y usando (2.16) se tiene:

[Dµ,Dν ]ψ = Dµ (Dνψ)−Dν (Dµψ)

= − (∂µWν − ∂νWµ − [Wµ,Wν ])ψ,
(2.19)

que resulta en el siguiente tensor de campo:

Gµν = ∂µWν − ∂νWµ − [Wµ,Wν ] , (2.20)

o en términos de los generadores de grupo

Gaµν = ∂µW
a
ν − ∂νW a

µ − fabcW b
µW

c
ν . (2.21)
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Con estas ecuaciones generales en mano, se procede ahora a estudiar las partes no

Abelianas del ME: el sector Electrodébil y la Interacción Fuerte; la unificación de ambas

partes lleva a construir el Lagrangiano del ME. [25]

El modelo Electrodébil (EW) surge de la unificación de dos fuerzas fundamentales:

la electromagnética y la débil. El grupo de simetŕıa bajo el cual el Lagrangiano permanece

invariante, se ha obtenido de la evidencia experimental, particularmente del hecho de que

se ha observado un comportamiento diferente entre los fermiones que tienen quiralidad iz-

quierda L o levógiros y los fermiones de quiralidad derecha R o dextrógiros1 que permite

proponer al grupo mı́nimo de acoplamiento como SU(2)L × U(1)Y y de esa manera orga-

nizar a los fermiones de acuerdo a su comportamiento, en dobletes izquierdos de SU(2) o

singletes derechos de SU(2) y en familias que tienen caracteŕısticas similares excepto por

sus masas, como se muestra a continuación:

· Generación I:

ν−e
e−


L

, e−R,

u
d


L

, uR, dR

· Generación II:

ν−µ
µ−


L

, µ−R,

c
s


L

, cR, sR

· Generación III:

ν−τ
τ−


L

, τ−R ,

t
b


L

, tR, bR

Como se ha mencionado, la simetŕıa en un sistema conlleva a cantidades conserva-

das, en el caso de invariancia bajo transformaciones del grupo SU(2)L, se tiene al Isosoṕın

débil I, mientras que para el grupo U(1)Y es la Hipercarga Y . El Isosṕın débil posee la

misma estructura matemática que el esṕın (lo que le confiere el nombre de isosṕın), por

lo que se requiere de una tercera componente I3 para determinar el estado de un doblete.

Como se ha mencionado, estas propiedades se relacionan con la carga eléctrica Q a través

de la ecuación 2.4, es decir:

Q = I3 +
Y

2
, (2.22)

1Si el esṕın es paralelo al sentido del movimiento, se dice que tiene una orientación dexotrógira. De ser
antiparalela será levógira.
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en donde se ha tomado Y = I0. Por otro lado, se tiene a la Interacción Fuerte, esta es

experimentada por los quarks y puede ser descrita por medio del grupo SU(3), para el cual

los quarks se agrupan en tripletes y en este caso la cantidad conservada es la carga de co-

lor, por esta razón a este grupo se le conoce como el grupo de color y se denota como SU(3)C .

Una vez definidos los grupos, se enuncian sus propiedades para construir el Lagran-

giano invariante de norma. Los generadores del grupo para el sector EW están determinados

por:

ta =
1

2
σa; σx =

0 1

1 0

 , σy =

0 −i
i 0

 , σz =

1 0

0 −1

 y Y, (2.23)

donde σa son las matrices de Paulli y Y un escalar que de acuerdo a (2.18) deben cumplir

con:

[ta, tb] = εabctc, [Y, Y ] = 0, (2.24)

mientras que para las interacciones fuertes, se tiene:

[Ta, Tb] = ifabcTc, (2.25)

ecuación para la cual fabc son las constantes de estructura del grupo SU(3)C y convencio-

nalmente Ta = λa/2 donde λa son las matrices de Gell-Mann.

Es aśı que, como resultado de estas descripciones, se propone una derivada cova-

riante con doce campos de norma sin masa, cuatro asociados al grupo para las interacciones

EW dados por W a
µ (x) con a = 1, 2, 3 y Bµ(x), y ocho más como Gaµ con a = 1, 2, ..,8 asocia-

dos al grupo de color, todos ellos transformando como (2.17); se tiene entonces la siguiente

forma:

Dµ = ∂µ − igsTaGaµ − ig2taW a
µ − ig1

Y

2
Bµ, (2.26)
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donde gs, g2 y g1 son las constantes de acomplamiento determinadas para los grupos SU(3)C ,

SU(2)L y U(1)Y respectivamente. De acuerdo a (2.21), los tensores de campo son:

Gaµν = ∂µG
a
ν − ∂νGaµ + gsfabcG

b
µG

a
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2εabcW
b
µW

a
ν ,

Bµν = ∂µBν − ∂νBµ.

(2.27)

Finalmente, el Lagrangiano para fermiones sin masa del ME es:

LME = iL̄iDµγ
νLi + iēRiDµγ

νeRi + iQ̄iDµγ
νQi + iūRiDµγ

νuRi + id̄RiDµγ
νdRi

− 1

4
GaµνG

µν
a −

1

4
W a
µνW

µν
a −

1

4
Ba
µνB

µν
a .

(2.28)

Hasta este momento, se tiene una teoŕıa que puede explicar fenónemos electro-

magnéticos y los debidos a las fuerzas débil y fuerte, sin embargo, aún existe una aparente

discrepancia ya que, de acuerdo al formalismo desarrollado, las part́ıculas intermediarias

de las interacciones debeŕıan carecer de masa, y aunque esto es cierto para el fotón, no

es aśı para los bosones Z y W ; este hecho se ve reforzado debido al corto alcance de la

fuerza débil el cuál se explicaŕıa de contener bosones masivos. Este problema fue resuelto

proponiendo un mecanismo de ruptura espontánea de simetŕıa, cuya consecuencia revela la

masa de las part́ıculas y es conocido como “Mecanismo de Higgs” [26] cuando las part́ıculas

que adquieren masa son los bosones portadores de la fuerza electrodébil.

2.5. Rompimiento Espontáneo de Simetŕıa

Para ejemplificar cómo se lleva a cabo este mecanismo, se supone primeramente

el caso más sencillo, es decir, el comportamiento de un campo escalar φ que está descrito

por el siguiente Lagrangiano:

L =
1

2
(∂µφ)2 −

(
1

2
µ2φ2 +

1

4
λφ4

)
, λ > 0. (2.29)

El primer término está asociado a la enerǵıa cinética de φ mientras que los dos

últimos son los términos de autointeracción dados en la enerǵıa potencial2. Existen dos

2Deben ser solo de orden dos y cuatro debido a la invariancia de norma.
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posibles formas para el potencial, una de ellas sucede cuando µ2 > 0 mientras que la otra

se suscita cuando µ2 < 0. A continuación se analiza el primer caso.

Caso 1 V =
1

2
µ2φ2 +

1

4
λφ4, µ2 > 0

El potencial tiene la siguiente forma:

Figura 2.1: Potencial V para el caso µ2 > 0 y λ > 0. [17]

Este es un caso ya conocido en el cual el Lagrangiano describe a un campo escalar con

masa µ. El término que tiene unidades de campo a la cuarta se asocia con interacciones de

dichos campos, en este caso, solo existen autointeracciones del campo φ con una constante

de acoplamiento λ. El estado base o de vaćıo corresponde a φ = 0 y el potencial en este

punto es simétrico bajo la transformación φ→ −φ, es decir, bajo reflexión.

Ahora bien, un caso más interesante se presenta a continuación.

Caso 2 V =
1

2
µ2φ2 +

1

4
λφ4, µ2 < 0

En este caso, el Lagrangiano no es de la forma L = T − V puesto que el potencial no tiene

el signo correcto para considerarse, el segundo término, como un término de masa. Para
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resolver esta discrepancia, primeramente se debe reconocer el comportamiento del potencial,

el cual está representado gráficamente por la siguiente curva:

Figura 2.2: Potencial V para el caso µ2 < 0 y λ > 0. [17]

Se pueden observar dos puntos mı́nimos en el potencial, para encontrarlos se procede como

sigue:

∂V

∂φ
= 0

φ(µ2 + λφ2) = 0

(2.30)

No se considera el caso φ = 0 ya que este punto no corresponde a un mı́nimo. Los

mı́nimos de potencial son entonces φ = ±
√
µ2/λ; se renombran a estos puntos como ±v por

simplificación y con ellos se puede aseguar que son mı́nimos usando la segunda derivada,

esto es realizado con facilidad por lo que no se muestra el cálculo expĺıcito.

Ahora bien, el cálculo perturbativo se debe efectuar alrededor de uno de los puntos

de equilibirio, sin pérdida de generalidad y por convención 3 se escoge el punto +v . Antes

de continuar, se hace énfasis en un aspecto importante: una vez que se ha escogido un punto

de equilibrio para realizar la expansión en ese lugar, el potencial ah́ı ya no es simétrico bajo

reflexión y entonces se dice que ha habido una rotura espontánea de la simetŕıa. Se procede

ahora a realizar la expansión perturbativa.

3Se obtendŕıa la misma f́ısica de escogerse −v pero se lidia con signos innesesariamente.
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Se consideran fluctuaciones alrededor de v de la siguiente manera:

φ(x) = v + η(x), (2.31)

sustituyendo este campo en la ecuación (2.29) se obtiene:

L′ = 1

2
(∂µη)2 − λv2η2 − λvη3 − 1

4
λη4 + const. (2.32)

Tras examinar brevemente la ecuación (2.32) se ve que ahora el potencial tiene el

signo correcto para asociar al término con unidades de campo al cuadrado con una masa,

siendo mη =
√

2λv2 =
√
−2µ2. Se ha revelado un campo masivo η que además se ha “co-

mido” al campo φ. El procedimiento mostrado parece ser un truco, sin embargo, esto no

es aśı ya que los Lagrangianos L y L′ son completamente equivalentes, inclusive, si ambos

pudieran resolverse exactamente se obtendŕıa de ellos la misma f́ısica, desafortunadamente

en f́ısica de part́ıculas tales cálculos son muy complicados o simplemente no pueden ser

realizados, razón por la cual se debe echar mano de la teoŕıa de perturbaciones a través de

transformaciones como la presentada en la ecuación (2.31).

Como se ha mencionado, la elección de un mı́nimo de potencial rompe la simétria

que se teńıa inicialmente, en la naturaleza se lleva a cabo este tipo de elección en infinidad

de situaciones, el ejemplo más notable es aquel donde, de hecho, surgió por primera vez el

concepto de ruptura espontánea de simetŕıa: el ferromagnetismo. Un material ferromagnéti-

co en general no tiene alineados sus dipolos magnéticos, por lo que el sistema es simétrico

ante rotaciones. Sin embargo, si el material se enfŕıa por debajo de una temperatura cŕıtica

conocida como temperatura de Curie [27], todos los dipolos se quedan alineados en alguna

dirección y ahora este sistema ya no tiene más simetŕıa rotacional. Lo que sucede es que

ahora se tiene un conjunto infinitamente degenerado de estados fundamentales, (en el caso

que se mostró, solo existen dos) en cada uno de los cuales puede ser encontrado un conjunto

completo de estados cuánticos, tal como se hizo en el ejemplo y la simetŕıa que teńıa el

sistema antes de cierto punto cŕıtico, parece ahora escondida. [28]

Se debe revisar ahora un caso un poco más general, donde la simetŕıa rota es

global. [17]
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2.5.1. Rotura de Simetŕıas Continuas

La transformación global de un campo se realiza haciendo el cambio φ → eiαφ

donde el parámetro α 6= (xxx), es decir, no depende de ninguna variable espacio-temporal. El

Lagrangiano invariante ante dichas transformaciones, que son descritas por el grupo U(1),

ahora contiene un campo complejo:

L = (∂µφ)∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2, (2.33)

para el caso en el que φ = 1√
2
(φ1 + iφ2), las derivadas parciales son:

∂µφ =
1√
2

(∂µφ1 + i∂µφ2),

(∂µφ)∗ =
1√
2

(∂µφ1 − i∂µφ2),
(2.34)

por lo que el Lagrangiano queda en forma extendida como:

L =

[
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2

]
−
[
µ2

2
(φ21 + φ22) +

λ

4
(φ21 + φ22)

2

]
︸ ︷︷ ︸

V

, (2.35)

análogamente a la sección anterior, se estudian los casos µ2 < 0 y λ > 0. Para encontrar el

mı́nimo de potencial, nuevamente se presenta la derivada:

(
∂V

∂φ1

)
φ2

=

(
∂V

∂φ2

)
φ1

= 0,

→ φ1
(
µ2 + λ(φ21 + φ22)

)
= 0,

(2.36)

con lo que se obtiene un ćırculo de infinitos mı́nimos de potencial, como se muestra en la

Figura 2.3, dado por:

φ21 + φ22 = −µ
2

λ
→ v2 = −µ

2

λ
, (2.37)
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Figura 2.3: Potencial V (φ) para un campo escalar complejo, donde µ2 < 0 y λ > 0. [17]

nuevamente la simetŕıa de este potencial se rompe cuando se traslada el campo φ a un

mı́nimo de potencial, el cual se escoge para φ1 = v y φ2 = 0, luego se realiza la perturbación

alrededor de este punto como:

φ(x) =
1√
2

[v + η(x) + iξ(x)] , (2.38)

sustituyendo esta expansión en la ecuación (2.35), se obtiene:

L′ = 1

2
(∂µξ)

2 +
1

2
(∂µη)2 + µ2η2 +O3(η, ξ) +O4(η, ξ) + constante. (2.39)

En la ecuación anterior, los primeros términos representan las enerǵıas cinéticas

de los campos η y ξ respectivamemente, mientras que el tercero es un término de masa tal

que mη =
√
−2µ, sin embargo, no hay un término similar para el campo ξ. A la clase de

part́ıculas sin masa se les conoce como bosones de Goldstone y tras observar que surgen

de un rompimiento de simetŕıa, se enunció el Teorema del Goldstone: por cada simetŕıa

continua espontáneamente rota, se revelará una part́ıcula escalar sin masa conocida como

bosón de Goldstone. [29]

Esencialmente, la manifestación de dichas part́ıculas en la teoŕıa no parece ser un

problema pero en la realidad, si existieran bosones de esṕın cero sin masa, seŕıan fácilmente
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observables, sin embargo, hasta ahora no se han detectado part́ıculas con estas caracteŕısti-

cas. Podŕıa entonces pensarse que se debe desechar la idea de dotar de masa a los bosones de

norma a través de este tipo de mecanismo, no obstante, una solución fue propuesta por tres

diferentes grupos de trabajo. Para saber cómo se debe proceder en un marco más general,

se trabaja ahora con una simetŕıa continua que ya no es más global si no local.

2.5.2. Mecanismo de Higgs

Si se desea analizar lo que sucede en la rotura de una simetŕıa local, particu-

larmente la que está descrita por el grupo SU(2), el Lagrangiano invariante ante estas

transformaciones es:

L = (∂µφ)†(∂µφ)− µ2φ†φ− λ(φ†φ)2, (2.40)

la forma general del campo φ es:

φ =

φα
φβ

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 (2.41)

Es claro que el Lagrangiano de la ecuación (2.40) es manifiestamente simétrico

ante transformaciones globales de SU(2). Para poder explorar las consecuencias de un rom-

pimiento de simetŕıa local con eiαaτa/2 siendo α = α(xxx), este Lagrangiano debe primero ser

escrito con las caracteŕısticas que lo hacen invariante, es decir, se debe recurrir a la derivada

covariante dada en este caso como:

Dµ = ∂µ + ig
τa
2
W a
µ , a = 1, 2, 3, (2.42)

donde cada campo de norma se transforma de acuerdo a la ecuación (2.17) como sigue:

WWWµ →WWWµ −
1

g
∂µααα−α×α×α×WWWµ, (2.43)

recordando que los términos cinéticos serán introducidos a través de los generadores de

grupo dados por la ecuación (2.21), para esta simetŕıa quedan como:

WWWµν = ∂µWWW ν − ∂νWWWµ − gWWWµ×W×W×W ν . (2.44)
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Con estas condiciones, se puede construir el Lagrangiano invariante ante transfor-

maciones locales:

L = (∂µφ+ ig
1

2
τττ ···WWWµφ)†(∂µφ+ ig

1

2
τττ ···WWWµφ)− 1

4
WWWµν ···WWWµν − V (φ), (2.45)

donde, de acuerdo a la ecuación (2.41), el potencial se expresa como

V (φ) =
µ2

2
(φ1 − iφ2 , φ3 − iφ4)

φ1 + iφ2

φ3 + iφ4

+ λ

(φ1 − iφ2 , φ3 − iφ4)

φ1 + iφ2

φ3 + iφ4


2

(2.46)

Se está interesado en el caso µ2 < 0 y λ > 0. Una vez que se realiza la derivada,

se encuentra que el mı́nimo de potencial está degenerado y es φ21 + φ22 + φ23 + φ24 = −µ2/λ.

Se escoge una dirección para realizar la expansión perturbativa, particularmente se recurre

a la siguiente elección:

φ1 = φ2 = φ4 = 0, φ23 = −µ
2

λ
,

⇒ φ3 = ±v, con v =

√
−µ

2

λ
,

(2.47)

por lo que la ecuación (2.47) se reduce a

φ0 =
1√
2

0

v

 (2.48)

El potencial en este punto ya no es simétrico, nuevamente ha habido un rompi-

miento espontáneo de la simetŕıa SU(2). Hasta ahora se ha procedido de manera análoga a

los casos anteriores, pero está por surgir la diferencia más importante.

Si se realizara una expansión como la mostrada en (2.38) y luego se introdujera

en el Lagrangiano (2.45), nuevamente apareceŕıan los no deseables bosones de Goldstone.

Es importante hacer una pausa con respecto al mecanismo para tratar de comprender qué

está sucediendo f́ısicamente.
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La invariancia de norma implica la posibilidad de realizar una transformación sobre

los campos sin cambiar ninguna propiedad f́ısica, en consecuencia, el mismo estado puede

estar representado por diferentes soluciones de las ecuaciones de campo relacionadas por

dicha transformación. De manera semejante, existen oscilaciones en las variables del campo

que podŕıan confundirse con part́ıculas f́ısicas pero que en realidad no lo son y únicamente

representan oscilaciones en el valor de α(xxx) y que son conocidos como modos de norma

(gauge modes, en inglés). Por tal motivo, se vuelve necesario imponer una condición que

fije una correcta representación para cada estado f́ısico. Para nuestro estudio, usaremos la

norma unitaria donde los bosones de Goldstone son cero.

Aśı entonces, se encontró [17] una solución para contrarestar la aparición de los

bosones de Goldstone a través de la “creación”de un bosón de norma masivo, y como se ha

mencionado anteriormente, esto se logra con una particular expansión alrededor de φ0 dada

como:

φ(x) =
1√
2

 0

v + h(x)

 , (2.49)

que siguiendo el mismo mecanismo, generará la masa de los bosones de norma W a
µ dando

como resultado:

∣∣∣∣ig1

2
τττ ·WWWµφ

∣∣∣∣2 =
g2

8

∣∣∣∣∣∣
 W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ W 3
µ

0

v

∣∣∣∣∣∣
2

=
g2v2

8

[(
W 1
µ

)2
+
(
W 2
µ

)2
+
(
W 3
µ

)2]
.

(2.50)

Se tiene una masa para cada bosón de M = gv/2, donde se ha usado la notación

| |2 para simplicar el producto ()† (). Entonces ahora, se tiene un Lagrangiano que describe

tres campos de norma masivos y un escalar h con masa, aśı que los campos de norma se

han “comido” a los bosones de Goldstone.

Espećıficamente, se conoce como Mecanismo de Higgs al proceso de dotar de masa

a los bosones portadores de la fuerza electrodébil, donde la simetŕıa espontáneamente rota

es:

SU(2)L × U(1)Y −→ U(1)em. (2.51)
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Para lograrlo, es necesario introducir un doblete de campos escalares complejos,

construidos con cuatro campos reales: dos cargados y dos neutros, de la siguiente forma:

Φ =

φ(+)

φ(0)

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 , (2.52)

la ruptura de SU(2)× U(1)→ U(1) se produce cuando se selecciona el siguiente estado de

vaćıo:

Φ0 =
1√
2

0

v

 , (2.53)

y para evitar a los bosones de Goldstone, las excitaciones en el vaćıo se deben parametrizar

en el gauge unitario [30] como:

Φ(x) =
1√
2

[v +H(x)]

0

1

 , (2.54)

realizando el mismo procedimiento mostrado anteriormente, se obtienen las masas para los

bosones W , Z0 y H dadas por:

MZ cos θW = MW =
1

2
vg, MH = v

√
2h. (2.55)

Las interacciones que se obtienen se muestran en la Figura 2.4. Finalmente, cabe

mencionar que emplearemos este mismo mecanismo de ruptura de simetŕıa para dotar de

masa ahora a los fermiones, para lograrlo, se debe trabajar en un sector diferente: el sector

de Yukawa.
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Figura 2.4: Interacciones del Higgs con los bosones Z y W (a)− (d). Autointeracciones del

Higgs (e) y (f). [26]

2.5.3. Lagrangiano de Yukawa

Para estudiar cómo los fermiones adquieren su masa, se escribe el Lagrangiano que

los acopla con los campos escalares de Higgs. Considerando las tres familias de fermiones y

siendo ν ′j , l
′
j , u

′
j y d′j con j = 1, 2, 3 a los miembros de dichas familias y usando el doblete

dado en (2.52) se tiene:

LY = −
∑
jk

(ū′j , d̄
′
j)L

Y (d)
jk

φ(+)

φ(0)

 d′kR + Y
(u)
jk

 φ(0)∗

−φ(−)

u′kR

+ (ν̄ ′j , l̄
′
j)LY

(l)
jk

φ(+)

φ(0)

 l′kR + h.c.


(2.56)

donde Y i
jk, i = d, u, l son constantes de acoplamiendo, conocidas como matrices de Yuka-

wa. Debido a que los quarks existen en estados derechos, debe ser introducido el segundo

término que se transforma covariantemente bajo SU(2)L y está relacionado con el campo

escalar conjugado Φc ≡ iσ2Φ
∗, con σ2 la segunda matriz de Paulli. Además, por simplici-
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dad y porque no se revisa ese sector, no se consideran neutrinos derechos, aunque se hayan

observado experimentalmente. [31]

Tras el rompimiento espontáneo de simetŕıa y con el gauge unitario, la ecua-

ción (2.56) adquiere la siguiente forma sencilla:

LY = −
(

1 +
H

v

){
d̄′LM

′
dd
′
R + ū′LM

′
uu
′
R + l̄′LM

′
l l
′
R + h.c.

}
, (2.57)

y la masa queda expresada en matrices proporcionales a los acoplamientos, es decir:

(M ′d,u,l)ij ≡
v√
2
Y

(d,u,l)
ij . (2.58)

La matriz M ′f puede diagonalizarse a través de matrices bi unitarias VL y VR de

la siguiente manera:

M̄f = V †fLM
′
fVfR, (2.59)

obteniendo:

M̄d = diag(md,ms,mb), (2.60)

M̄u = diag(mu,mc,mt), (2.61)

M̄l = diag(me,mµ,mτ ). (2.62)

Esta diagonalización determina los estados propios de los fermiones, los cuales son:

d ≡ V †d d
′, (2.63)

u ≡ V †uu′, (2.64)

l ≡ V †l l
′. (2.65)

En este punto, se debe tener en cuenta que un Lagrangiano como en la ecua-

ción (2.28) contiene interacciones con corrientes neutras y con corrientes cargadas. La dia-

gonalización del Lagrangiano de Yukawa, y por lo tanto la obtención de los autoestados de
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masa, tiene implicaciones f́ısicas sobre dichos términos.

Primero, de la ecuación (2.57), por el hecho de f̄ ′Lf
′
L = f̄LfL y f̄ ′Rf

′
R = f̄RfR con

f = d, u, l, entonces la parte que contiene a las corrientes neutras no cambia al ser expresado

en términos de los autoestados de masa, por lo tanto “No existen corrientes neutras que

cambien el sabor”, es importante notar que esta conclusión es válida en el contexto del ME.

Este hecho también es conocido como el Mecanismo de Gim [32] [33].

En cambio, la parte que contiene a las corrientes cargadas śı se ve afectada ya

que ū′Ld
′
L ≡ ūLVCKMdL, donde VuLV

†
dL = VCKM es decir, al expresar al Lagrangiano de

las corrientes cargadas en términos de los autoestados de masa, surge una matriz VCKM

llamada matriz de Cabbibo-Kobayashi-Maskawa [34] dada por:

VCKM =


c12c13 s12c13 s13 exp−iδ13

−s12c23 − c12s23s13 expiδ13 c12c23 − s12s23s13 expiδ13 s23c13

s12s23 − c12c23s13 expiδ13 −c12s23 − s12c23s13 expiδ13 c23c13

 , (2.66)

donde cij = cos θij y sij = sin θij , siendo θ una fase asociada a las transformaciones en los

campos. Esta matriz acopla cualquier quark tipo up con un quark tipo down, generando

acoplamientos como los que se muestran en la Figura 2.5. Otras parametrizaciones de la

matriz mostrada en la ecuación (2.66) pueden ser revisadas en [35] [36].

Figura 2.5: Acoplamientos con cambio de sabor a través de los bosones cargados W+ y W−,

denotados como W . Los quarks tipo down y up están denotados como dj y ui respectiva-

mente, siendo i y j ı́ndices de sabor.
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Finalmente, en el Modelo Estándar se considera que los neutrinos no poseen masa

y en ese caso, siempre se puede redefinir su sabor para evitar la mezcla en el sector leptónico,

es decir:

ν̄ ′Ll
′
L = ν̄ ′LV

†
l lL ≡ ν̄LlL, (2.67)

por lo tanto, se tiene conservación de sabor en el sector leptónico. Para concluir esta sección,

se muestran expĺıcitamente en la Figura 2.6, los acoplamientos del ME que serán usados en

los cálculos para el desarrollo de esta tesis.

Figura 2.6: Vértices utilizados para el cálculo de la sección eficaz de la producción del bosón

Z. [9]

2.6. Extensión del Modelo Estándar en el Sector Escalar

Desde que en el año 2012 se corroborara la existencia del bosón de Higgs [37],

quedando de esta manera constituido el Modelo Estándar, se ha requerido buscar más allá

de él, ya que esta teoŕıa parece incompleta debido a que aún hay preguntas a las que no

puede responder. Por ejemplo, recientes mediciones han demostrado que los neutrinos son

part́ıculas que oscilan [38], esto implica que tienen masa, hecho que no concuerda con las

predicciones establecidas por el Modelo Estándar (ME). Otras cuestiones tales como la
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asimetŕıa materia-antimateria, la enerǵıa oscura, etcétera, se presentan en la naturaleza

y tampoco son explicadas en este contexto, aśı que nuevos modelos son requeridos para

esclarecer estas observaciones. Particularmente, se enfatiza en el hecho de que, si bien el

ME explica cómo los fermiones adquieren su masa a través del rompimiento espontáneo de

simetŕıa, no es capaz de justificar el espectro ni la jerarqúıa de esas masas, esta idea será

crucial para el desarrollo de un cálculo que es antesala del proceso que se desea analizar en

este trabajo y es la razón por la cual se debe presentar una breve revisión de un modelo

extendido.

La extensión más sencilla se logra añadiendo un segundo doblete escalar dando

origen a los modelos de dos dobletes de Higgs o 2HDM, por sus siglas en inglés [39] [15]. En

este caso la masa es provista por ambos dobletes y no solo por uno como en el ME, por lo

que se explica con un enfoque más natural la diferencia de las masas.

En este contexto se presentará el análisis de la interacción electrón-protón realizada

como una Dispersión Muy Inelástica, con el objetivo de sentar el estudio cinemático de

un proceso 2 → 2 para posteriormente extender estos resultados a un proceso 2 → 3.

Espećıficamente se indagará sobre el subproceso de producción de un quark top a través de

un proceso de violación de sabor.

2.6.1. Modelos con Dos Dobletes

El potencial de Higgs más general invariante ante transformaciones del grupo

SU(2)L × U(1)Y que incluye a los dos dobletes escalares de hipercarga +1, obedeciendo

la relación (2.22), tiene 14 parámetros y puede ser escrito como:

V (Φ1,Φ2) =µ21(Φ
†
1Φ1) + µ22(Φ

†
2Φ2)−

(
µ212(Φ

†
1Φ2) +H.c.

)
+

1

2
λ1(Φ

†
1Φ1)

2

+
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)(

1

2
λ5(Φ

†
1Φ2)

2 +
(
λ6(Φ

†
1Φ1 + λ7(Φ

†
2Φ2)

)
(Φ†1Φ2) +H.c

) (2.68)

donde Φ†1 = (φ−1 , φ
0∗
1 ) y Φ†2 = (φ−2 , φ

0∗
2 ). Los acoplamientos dados por λ y µ se suponen

reales por simplicidad, además de que también las λ deben ser positivas [40] para asegu-

rarse que existan mı́nimos del potencial. Otras parametrizaciones de este potencial, pueden
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ser encontradas en [41].

Una manera de reducir los grados de libertad, es a través de la imposición de si-

metŕıas discretas a (2.68) como se hace en [42] para las cuales algunas λ′s en (2.68) serán

iguales y los términos que las contienen con signo opuesto se cancelarán mutuamente, sin

embargo, este no es el caso que se desea abordar por lo que en este trabajo se analiza el

tipo más general, es decir, tomando en cuenta todos los términos del potencial de Higgs.

Para encontrar el espectro de part́ıculas, es necesario encontrar un mı́nimo en el

potencial de tal manera que ambos dobletes adquieran un valor de expectación en el vaćıo

y realizar en ese punto una expansión tal como se hizo en las secciones anteriores, logrando

el rompimiento espontáneo de simetŕıa, luego al introducir este campo perturbado en el

Lagrangiano de los campos fermiónicos, surgen finalmente los términos que se asocian con

la masa de las part́ıculas.

Espećıficamente el Lagrangiano que describe las interacciones entre campos esca-

lares y los fermiones, tiene la siguiente forma general:

LY =
∑
a,i

Y i
a F̄

i
Lφaf

i
R +H.c., (2.69)

donde FL denota al doblete fermiónico izquierdo, fR al singlete fermiónico derecho, i es

un ı́ndice de sabor, Φa son los dobletes de Higgs (a = 1, 2) y Y i
a son las matrices 3 × 3 de

Yukawa, ahora se tendrán dos de estas matrices por cada sector fermiónico y no solo una

como se vio en la sección Mecanismo de Higgs. Consideramos neutrinos sin masa.

Al introducir los campos perturbados en (2.69) surge un problema importante al

que se enfrentan este tipo de modelos, la aparición a nivel árbol de Cambios de Sabor por

Corrientes Neutras o FCNC, por sus siglas en inglés, el cual se suscita por el hecho de

que, a diferencia del ME donde la digonalización de las matrices de masa diagonaliza a la

interacción de Yukawa, en los modelos de dos dobletes Y1 y Y2 no son simultáneamente

diagonalizables por lo que la interacción de Yukawa tampoco lo será.



Caṕıtulo 2: Revisión del Modelo Estándar y Una Extensión 33

El fenómeno de FCNC aún no ha sido observado experimentalmente por lo que

es necesario suprimir su manifestación de la teoŕıa, de hecho existen diversas formas de

mantener bajo control esta clase de procesos y para lograrlo se realizan elecciones espećıficas

de las matrices de Yukawa lo que conduce a diferentes tipos de 2HDM. A continuación se

enuncian algunos mecanismos de supresión. [43]

1) Simetŕıas Discretas. Se aplican para que un tipo de matriz de Yukawa sea igual a cero.

� Tipo I. En este caso se permite que un quark ya sea del tipo u o del tipo d,

se acople con un solo doblete de Higgs de tal manera que: Y u
1 = Y d

1 = 0 o

Y u
2 = Y d

2 = 0.

� Tipo II. Se logra cuando los quarks tipo u se acoplan con un doblete de Higgs

mientras que los quarks tipo d se acoplan con el otro doblete de Higgs, por lo

que Y d
1 = Y u

2 = 0 o Y u
1 = Y d

2 = 0.

2) Supresión Radiativa. Considerando que cada tipo de fermión se acopla a ambos do-

bletes, para controlar las FCNC se impone una jerarqúıa en las matrices de Yukawa,

aśı que cierto grupo de dichas matrices estarán presentes a nivel árbol mientras que

otras surgirán como efecto radiativo.

3) Texturas. Se propone que ambos tipos de quarks se acoplen a ambos dobletes de

Higgs, por lo que se deben imponer ciertas formas, conocidas como texturas, a las

matrices de Yukawa y aśı mantener bajo control los procesos de FCNC; dichas texturas

están basadas en evidencia experimental. En este caso se habla de un modelo tipo

III. [44] [45] [46]

Debido al éxito fenomenológico que ha tenido, se ha escogido el tipo III para

el estudio hecho en este trabajo, por lo que es importante realizar una revisión de sus

principales caracteŕısticas.

2.6.2. El 2HDM Tipo III

Se han escogido matrices de Yukawa con textura de cuatro ceros [47], debido a que

dicha propuesta se ha corroborado experimentalmente, por ejemplo, es capaz de producir

predicciones suficientemente grandes para el parámetro de mezcla de sabor |Vub/Vcb| y para



34 Caṕıtulo 2: Revisión del Modelo Estándar y Una Extensión

los parámetros de violación CP [48]. Para consultar otras texturas se recomienda revisar [49].

El Lagrangiano que describe las interacciones entre los campos escalares y los

fermiónicos en este tipo de modelo, contiene a los dos dobletes de Higgs acoplados con los

dos tipos de quark y con los leptones, se escriben respectivamente de la siguiente manera:

LqY = Y u
1 Q̄
′
LΦ̃1u

′
R + Y u

2 Q̄
′
LΦ̃2u

′
R + Y d

1 Q̄
′
LΦ1d

′
R + Y d

2 Q̄
′
LΦ2d

′
R +H.c., (2.70)

LlY = Y l
1 L̄
′
LΦ1l

′
R + Y l

2 L̄
′
LΦ2l

′
R +H.c., (2.71)

donde Φ1,2 = (Φ+
1,2,Φ

0
1,2)

T se refiere a los dobletes de Higgs y Φ̃1,2 ≡ iσ2Φ
∗
1,2 es un objeto

que se transforma covariantemente bajo SU(2)L y se introduce análogamente a la sección

anterior.

Una vez que se lleva a cabo el rompimiento espontáneo de simetŕıa, las matrices

de masa adquieren la siguiente forma:

Mu =
1√
2

(v1Y
u
1 + v2Y

u
2 ),

Md =
1√
2

(v1Y
d
1 + v2Y

d
2 ),

Ml =
1√
2

(v1Y
l
1 + v2Y

l
2 ),

(2.72)

o en general

Mf =
1√
2

(v1Y
f
1 + v2Y

f
2 ), f = u, d, l, (2.73)

donde v1 y v2 son los valores de expectación en el vacio (VEVs) de los dos dobletes de Higgs

respectivamente, tal como se realizó en (2.53).

La única propiedad que deben cumplir las matrices de la ecuación (2.73) es que

la masa de los fermiones de diferentes familias sean las que se conocen de los datos ex-

perimentales, además de eso no hay otra restricción f́ısica que limite la forma que deban

tomar. Sin embargo, para expresar los acoplamientos de Higgs con los fermiones en térmi-

nos de la masa de los fermiones, ángulos de mezcla y otros parámetros que son restringidos
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por el experimento, se hace uso de una proposición de jerarqúıa [15], de la siguiente manera:

Y f
i =


0 Cfi 0

Cf∗i B̃f
i Bf

i

0 Bf∗
i Afi

 , |Afi | � |B̃
f
i |, |B

f
i |, |C

f
i |, (2.74)

y

Mf =


0 Cf 0

C∗f B̃f Bf

0 B∗f Af

 , |Af | � |B̃f |, |Bf
i |, |C

f |. (2.75)

Una vez que tienen esta forma y jerarqúıa, se procede a diagonalizar las matrices

de masa. Siguiendo el mismo proceso del caṕıtulo anterior, se tiene:

M̄f = V †fLMfVfR, (2.76)

con los autoestados dados por:

u = V †uu
′,

d = V †d d
′,

l = V †l l
′.

(2.77)

Con esta transformación se ha conectado el espacio de sabor con el espacio de

masas y la ecuación (2.73) se expresa ahora como:

M̃f =
1√
2

(v1Ỹ
f
1 + v2Ỹ

f
2 ), (2.78)

donde Ỹ f
i = V †fLY

f
i VfR. Ahora bien, en el ME la diagonalización de la matriz de masas

diagonaliza automáticamente a las matrices de Yukawa. En los modelos de dos dobletes,

en general, Y1 y Y2 no son simultáneamente diagonalizables. Es necesario entonces despejar

algunas matrices de Yukawa en términos de otras y de la matriz de masa diagonalizada.

Una manera de hacerlo se muestra a continuación:
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Ỹ d
1 =

√
2

v cosβ
M̄d − tanβỸ d

2 .

Ỹ u
2 =

√
2

v sinβ
M̄u − cotβỸ u

1 ,

Ỹ l
1 = Ỹ d

1 (d→ l),

(2.79)

con v2 = v21 + v22 y tanβ = v1/v2. Esta redefinición es conveniente ya que se obtiene

el acoplamiento Higgs-fermión-fermión como la suma de este acoplamiento en el modelo

2HDM-II más una contribución de la textura de cuatro ceros, que ha servido como punto

de partida. Sin embargo, no es única y otras propuestas pueden ser realizadas para obtener

el 2HDM-1, 2HDM-X y el 2HDM-Y, las cuales son respectivamente [50]:

Ỹ d
2 =

√
2

v sinβ
M̄d − cotβỸ d

1 ,

Ỹ u
2 =

√
2

v sinβ
M̄u − cotβỸ u

1 ,

Ỹ l
2 = Ỹ d

2 (d→ l),

(2.80)

Ỹ d
2 =

√
2

v sinβ
M̄d − cotβỸ d

1 ,

Ỹ u
2 =

√
2

v sinβ
M̄u − cotβỸ u

1 ,

Ỹ l
1 = Ỹ d

1 (d→ l),

(2.81)

Ỹ d
1 =

√
2

v cosβ
M̄d − tanβỸ d

2 ,

Ỹ u
2 =

√
2

v sinβ
M̄u − cotβỸ u

1 ,

Ỹ l
2 = Ỹ d

2 (d→ l).

(2.82)

Usando los autoestados de masa dados por la ecuación (2.77) y las redefinicio-

nes dadas por (2.79), se escribe el Lagrangiano de Yukawa del modelo 2HDM-III para las

interacciones de los Higss neutros (h0, H0, A0) como:
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LqY =
g

2

(
mdi

MW

)
d̄i

[
cosα

cosβ
δij +

√
2 sin(α − β)

g cosβ

(
mW

mdi

)
(Ỹ d

2 )ij

]
djH

0

g

2

(
mdi

MW

)
d̄i

[
− sinα

cosβ
δij +

√
2 cos(α − β)

g cosβ

(
mW

mdi

)
(Ỹ d

2 )ij

]
djh

0

i
g

2

(
mdi

MW

)
ūi

[
− tanβδij +

√
2

g cosβ

(
mW

mdi

)
(Ỹ d

2 )ij

]
γ5djA

0

g

2

(
mui

MW

)
ūi

[
sinα

sinβ
δij +

√
2 sin(α − β)

g sinβ

(
mW

mui

)
(Ỹ u

1 )ij

]
ujH

0

g

2

(
mui

MW

)
ūi

[
cosα

sinβ
δij +

√
2 cos(α − β)

g sinβ

(
mW

mui

)
(Ỹ u

1 )ij

]
ujh

0

i
g

2

(
mui

MW

)
ūi

[
− cotβδij +

√
2

g sinβ

(
mW

mui

)
(Ỹ d

2 )ij

]
γ5ujA

0.

(2.83)

El Lagrangiano en ecuación (2.83) aún tiene acoplamientos con FCNC a nivel árbol,

de hecho hasta ahora solo se estableció la forma y la jerarqúıa de las matrices, sin embargo,

aún no se ha mostrado cómo el modelo 2HDM-III mantiene bajo control los procesos de

FCNC. Para lograrlo, se implementa un Ansatz, el cual ha sido ampliamente estudiado en

procesos de violación de sabor en el sector de Higgs [52] y se muestra a continuación:

(
Ỹ d,l
2

)
ij

=

√
md,l
i m

d,l
j

v
χ̃d,li,j ,(

Ỹ u
1

)
ij

=

√
mu
im

u
j

v
χ̃ui,j

(2.84)

La ecuación (2.84) es la famosa propuesta de Cheng y Sher [53] que establece que

las matrices de Yukawa son proporcionales al promedio geométrico del producto de las ma-

sas fermiónicas multiplicado por los parámetros χu,d,li,j cuyos valores mediarán los procesos

de FCNC, y por lo tanto, deben ser determinados por el experimento.

Es aśı que, usando las parametrizaciones dadas por (2.80) y (2.84), la parte del

Lagrangiano que muestra las interacciones de los Higgs neutros con los leptones es el si-

guiente:
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g

2
l̄i

[
−
(
mli

mW

)
sinα

cosβ
δij +

cos (α − β)√
2 cosβ

(√
mlimlj

mW
χ̃lij

)
lj

]
h0, (2.85)

mientras que para los quarks tipo u se tiene:

g

2
ūi

[(
mui

mW

)
cosα

sinβ
δij −

cos(α− β)√
2 sinβ

(√
muimuj

mW
χ̃uij

)
uj

]
h0. (2.86)

el acoplamiento para los quarks tipo d es el mismo que para los leptones, haciendo la susti-

tución l→ d en la ecuación (2.85). Estos vértices son los requeridos para realizar el cálculo

de producción de un top.



Caṕıtulo 3

Dispersión Muy Inelástica

El proceso de la interacción electrón-protón, puede ser realizado a diferentes nive-

les de enerǵıa, dado que el objetivo de la presente investigación es estudiar la producción

del bosón Z0 y de un quark top (t), entonces se vuelve necesario trabajar a altos niveles.

Por esta razón, este caṕıtulo está dedicado a discutir la cinemática involucrada en esta clase

de proceso.

Hacia el año de 1911 con el propósito de corroborar el modelo atómico de Thom-

son, los f́ısicos Geiger, Marsden y Rutherford, llevaron a cabo un experimento que consist́ıa

en bombardear una fina lámina de oro con part́ıculas alfa1. El modelo establece que el

átomo es una esfera cargada positivamente con electrones incrustados distribuidos unifor-

memente por lo que posee una carga total neutra aśı que, en teoŕıa, los haces de part́ıculas

alfa que incidieran sobre los átomos de oro atravesaŕıan la lámina sin ser desviados. Sin

embargo, los resultados no fueron los que se esperaban y se reveló un comportamiento

sorprendente debido a que algunas part́ıculas del haz incidente eran desviadas en ángulos

significativamente grandes, incluso algunos rebotaban hacia atrás en un ángulo de 180◦. En

consecuencia, la idea de Thomson fue desechada y un nuevo modelo fue propuesto, en él se

postuló la existencia de un núcleo atómico cuya carga eléctrica deb́ıa ser positiva y donde

estaŕıa concentrada toda su masa; de esta manera Rutherford demostró en 1911 la existen-

cia del núcleo atómico [55]. Además, en 1917 también probó que el núcleo de hidrógeno está

presente en otros elementos, un resultado usualmente descrito como el descubrimiento del

protón [56]. Más aún, años más tarde Chadwick descubrió una part́ıcula a la que denominó

1Núcleos de helio ionizados por lo que su carga es positiva.

39
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neutrón y que, junto con los protones, formaban parte del núcleo atómico (por lo que se les

conoce conjuntamente como nucleones) concluyendo aśı que el núcleo también constaba de

estructura.

Con estos antecedentes experimentales, era natural suponer que a su vez los nucleo-

nes estaban compuestos por otras part́ıculas y con la finalidad de corroborarlo, se comenzó

a explorar en intervalos más amplios de enerǵıas, con experimentos que emulaban el trata-

miento de Rutherford. A continuación se muestra esquemáticamente el comportamiento de

un electrón interactuando con un protón a diferentes niveles de enerǵıa:

Figura 3.1: Escenarios del proceso electrón-protón a diferentes enerǵıas [57]

Como se puede ver un la Figura 3.1, a muy altas enerǵıas el electrón es capaz de ver

el interior del protón y con una longitud de onda suficientemente pequeña, inclusive puede

romperlo, a este tipo de interacción se le conoce como Dispersión Muy Inelástica o DMI.
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La DMI es un proceso análogo al experimento de Rutherford pero dotando de

muy altas enerǵıas a la part́ıcula incidente, suficiente para desbaratar a la part́ıcula blanco

permitiendo indagar en la estructura dentro de ella. Ahora bien, se habla de inelasticidad

porque para este tipo de interacciones la enerǵıa cinética no se conserva debido a que una

parte de dicha enerǵıa proveniente del haz incidente es absorbida por la part́ıcula blanco y,

en consecuencia, la masa del estado final hadrónico ya no es más la masa del protón. De

hecho a muy altas enerǵıas, el nucleón es “dividido” y emite otro tipo de hadrones por lo

que este proceso es conocido como hadronización y será detallado más adelante.

Ahora se analiza el modelo que dio explicación al comportamiento de los nucleones

observado en una Dispersión Muy Inelástica: el Modelo de Partones.

3.1. Modelo de Partones

Con el objetivo de estudiar el comportamiento de las part́ıculas, grandes acelera-

dores han sido construidos, los cuales buscan generar un gran número de colisiones y aśı

producir nuevas part́ıculas mediante las cuales es posible obtener información de las part́ıcu-

las que se desintegraron. Desde el primer ciclotrón, desarrollado por Ernest Lawrence en

1929 [59], hasta las propuestas de futuros aceleradores tales como el Future Circular Colli-

der [60] o el Large Hadron electron Collider [61], los colisionadores han ido mejorando por

efecto del desarrollo tecnológico, en consecuencia, se ha conseguido acceder a experimentos

de DMI llevados a cabo con mayores luminosidades.

Con estas condiciones, fue posible observar un comportamiento en los nucleones

que daba pauta para suponerlos como part́ıculas compuestas. Por ejemplo, en el experi-

mento SLAC-MIT [62] se produjeron colisiones inelásticas entre un electrón y un protón y

sorpresivamente se observó que el electrón perd́ıa una gran fracción de su enerǵıa cinética

y que saĺıa a un ángulo de dispersión mucho más grande de lo que se esperaba; más aún, la

tasa total de reacción era comparable a la que se esperaŕıa de suponerse que el protón fuera

una part́ıcula elemental, sin embargo, al interaccionar con el electrón, en muy pocos casos

el protón emerǵıa ı́ntegro. Debido a estas observaciones experimentales, fue posible inferir
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una estructura en los nucleones, de hecho, esta suposición también explicaŕıa los momentos

anómalos que exhiben el protón y el neutrón si se considera que sus constituyentes poseen

carga eléctrica. Es aśı como en 1966, Bjorken sugiere que los nucleones constan de part́ıculas

puntuales a las que más tarde R. Feynman se referiŕıa como partones [63].

Al mismo tiempo, se estaban descubriendo un gran número de part́ıculas con cier-

ta estabilidad y que no formaban parte del núcleo atómico pero que también mostraban

estructura, tales como el pión cargado cuya vida media es de 26, 033 ns [23] o los kaones

cuya vida media es del orden de 10−18 s [23] , de esta manera se concluyó que no solo los

nucleones estaban conformados por estos partones si no que además otro tipo de part́ıculas

los conteńıan, las cuales ahora son conjuntamente conocidos como hadrones.

El siguiente paso era desarrollar una teoŕıa capaz de explicar las interacciones

de los partones y se pensó en formularla como una teoŕıa de norma en analoǵıa al caso

electrodébil, pero exist́ıan algunos inconvenientes para hacerlo, uno de ellos era que si los

hadrones estaban constituidos de partes más pequeñas, estas debeŕıan experimentar inte-

racciones muy intensas hecho que no era observado en otro tipo de fuerzas por lo que no

parećıan proceder de la misma naturaleza. Por otro lado, los experimentos mostraban que

a muy altas enerǵıas este tipo de interacciones no se detectaron, es aśı que, en un primer

intento para dar respuesta a este comportamiento aparentemente contradictorio, surge el

Modelo de Partones (MP) [64].

Se enuncian las aseveraciones del MP:

a) Los hadrones son un ensamble de part́ıculas débilmente interactuantes, es decir, que

mientras están en el interior del hadrón no intercambian un momento grande, de hecho

se comportan como si no estuvieran sujetos a ninguna interacción, esta propiedad se

conoce como libertad asintótica.

b) Los partones están sujetos al confinamiento de color, esto es, no pueden existir de

manera aislada. Se les observa en combinaciones de su carga de color (azul, rojo y

verde) para dar como resultado part́ıculas neutras de color, es decir, blanco.

c) Algunos de estos partones tienen carga eléctrica por lo que son suceptibles a disper-
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sarse tras interactuar con los leptones.

d) Estos partones tienen una fracción del momento total del hadrón.

Estas afirmaciones surgieron de la observación experimental, por ejemplo, el con-

finamiento de color se estableció al observar piones en el estado final en una colisión; la

razón es que los piones son part́ıculas formadas por un par quark-antiquark lo que implica

que, si bien los quarks son arrancados de un hadrón, no pueden ser vistos de manera aislada.

El modelo impone una fuerte restricción conocida como El Escalamiento Bjor-

ken [65], el cual establece que la sección eficaz de las interacciones con hadrones en DMI,

es decir, a altas enerǵıas, es independiente del momento transferido. Este comportamiento

es consecuencia directa de considerar que el hadrón tiene subestructura de part́ıculas pun-

tuales [66], sin embargo, esta es una sobresimplificación que no se cumple en interacciones

realistas en donde se ha obsevado violación del Escalamiento Bjorken [67]. Dicha particula-

ridad es un punto crucial para el desarrollo de este trabajo, por esta razón, a continuación se

hace una descripción cuantitativa de lo que significa y se muestra cuáles son sus deficiencias.

De acuerdo al MP, el proceso inclusivo2 e−(p) + p(Pp) → e−(p′) +X(PX), donde

X es cualquier cosa (con los correctos números cuánticos), es proporcional al subproceso

electrón-quark yendo a electrón-quark, es decir, e−(p)+q(q)→ e−(p′)+q′(q′), y para lograr

la igualdad se introducen las funciones de distribución, denotadas por fi(x), que expresan

la probabilidad de encontrar a un partón tipo i con una fracción de momento x dentro del

protón, esquemáticamente:

Figura 3.2: Esquema del Modelo de Partones como función de fracciones de momento.

2En una reacción inclusiva únicamente algunas part́ıculas y sus momentos son conocidos.
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Se observa que las distribuciones solo dependen de x pero esta suposición debe ser

probada experimentalmente, de hecho es la única forma de obtenerlas ya que no se pueden

calcular de forma directa de la teoŕıa. Expresando la igualdad matemáticamente se tiene:

(
d2σ

dxdQ2

)
e+p→e+X

=
∑
i

fi(x)

(
dσ

dQ2

)
e+q→e+q

(3.1)

Ahora bien, se debe calcular dσ
dQ2 del subproceso, para hacerlo, se puede tomar el

resultado del proceso electrón-muón ya que es una dispersión análoga y solo se debe inter-

cambiar las propiedades del muón por las del quark [68]. El cuadrado de la matriz invariante

de elementos en el ĺımite ultrarelativista se escribe como:

1

4

∑
espines

|M|2 =
8e4Q2

i

t̂2

(
ŝ2 + û2

4

)
, (3.2)

donde ŝ, t̂ y û son conocidas como variables de Mandelstam para la colisión electrón-quark

y Qi es la carga eléctrica del quark en unidades de |e|. Para el ĺımite ultrarelativista, las

masas se desprecian y en ese caso se tiene la relación ŝ+ t̂+ û = 0, a través de ella y usando

el resultado de la ecuación (3.2), la sección diferencial en el sistema del centro de masas

está dada por:

dσ

d cos θCM
=

1

2ŝ

1

16π

8e4Q2
i

t̂2

(
ŝ2 + û2

4

)
=
πα2Q2

i

ŝ

(
ŝ2 + (ŝ+ t̂)2

t̂2

)
, (3.3)

la variable t̂ puede relacionarse con cos θCM de la siguiente manera: t̂ = −ŝ(1− cos θCM )/2,

por lo que la ecuación (3.3) se convierte en:

dσ

dt̂
=

2πα2Q2
i

ŝ2

(
ŝ2 + (ŝ+ t̂)2

t̂2

)
. (3.4)
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Para usar este resultado, se requiere expresar las variables de Mandelstam en

términos de observables experimentales del proceso electrón-protón, la manera de hacerlo

será explicado con detalle en la siguiente sección, por el momento solo se toma el resultado

final que se muestra a continuación:

d2σ

dxdQ2
=
∑
i

fi(x)q2i
2πα2

Q4

[
1 +

(
1− Qi

xs

)2
]
, (3.5)

donde Q2 se define como el momento transferido entre el electrón entrante y el saliente, qi es

la carga del partón i y s es la enerǵıa total del sistema en el marco de referencia del centro

de masa. Si de la ecuación (3.5) se remueve la dependencia cinemática del factor electro-

magnético [1 + (1−Qi/xs)2]/Q4, queda una cantidad que es completamente independiente

de Q; esta aproximación es el Escalamiento Bjorken y esencialmente establece que la estruc-

tura del protón luce igual para una sonda electromagnética sin importar qué tan fuerte sea

golpeado. Sin embargo, los experimentos mostraban una pequeña pero medible desviación

en los resultados que se esperaban, lo que mostraba que la estructura del protón no era tan

sencilla como se pensaba, en consecuencia se pod́ıa inferir que las funciones de distribución

depend́ıan además de otra cantidad cinemática conocida como momento transferido, deno-

tado como Q2, aśı que las distribuciones ahora tendŕıan la forma f(x,Q2) y fueron llamadas

Funciones de Distribución de Partones o PDF, por sus siglas en inglés. Esta conjetura fue

explicada por la Cromodinámica Cuántica (QCD) donde se observa que dicha dependencia

se debe a los teŕminos perturbativos que aparecen por la interacción con los gluones.

Finalmente con el MP y las correcciones hechas por QCD, se propone el Teorema

de factorización [69], que establece que el proceso electrón-protón (ep) está directamente

relacionado con el subproceso electrón-quark (eq) y se escribe matemáticamente como:

dσep ∼ PDF× C, (3.6)

donde C se calcula por métodos perturbativos. Para concluir esta sección, se hace énfasis

en el hecho de que las cantidades medibles en el laboratorio tienen una dependencia con el

momento transferido Q2.
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3.2. Las Variables Cinemáticas de la DMI

Las variables cinemáticas de cualquier interacción juegan un papel muy impor-

tante en la DMI ya que, a través de ellas, puede ser formulada su ley dinámica, además

de que están relacionadas directamente con algunas observables f́ısicas. En esta sección se

muestra cuál es su significado f́ısico, haciendo por simplicidad el análisis para una inter-

acción exclusiva 2 → 2, esto es, una interacción para la cual todas las part́ıculas y sus

momentos son conocidos. Estos resultados son válidos para cualquier tipo de proceso por lo

que pueden ser extendidos para una reacción 2 → 3, que permitirá analizar la interacción

e− + p→ e− + Z0 +X que es el objetivo del presente trabajo.

3.2.1. Variables de Mandelstam

Estas variables son cantidades invariantes de Lorentz y contienen información de

la enerǵıa, del momento o de los ángulos que intervienen en un proceso, por lo que están

directamente relacionadas con cantidades medibles en el laboratorio. Particularmente para

el caso 2→ 2 que puede ser visualizado como se muestra en la Figura 3.3:

Figura 3.3: Diagrama de un proceso 2→ 2.

donde pa y pb son los cuadrimomentos de las part́ıculas que inciden mientras que p3 y p4

de las part́ıculas salientes, se definen las variables de Mandelstam de la siguiente manera:

s = (pa + pb)
2 = (p3 + p4)

2,

t = (pa − p3)2 = (pb − p4)2,

u = (pa + p4)
2 = (pb − p3)2.

(3.7)
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Con el objetivo de saber qué representan, es necesario especificar la forma de los

cuadrimomentos. En general para un proceso de dos part́ıculas a y b los cuadrimomentos

se expresan como pa = (Ea, pppa) y pb = (Eb, pppb), donde las letras en negritas representan

el vector de momento3. Sin embargo estos valores dependerán del sistema de referencia en

el que se definan respetando que s, t y u sean invariantes de Lorentz. A continuación se

especifican los sistemas más comúnes en los que se trabaja:

1. El Sistema de Centro de Momentos (CMS) es aquel en el que se cumple que ppp∗a+ppp∗b = 000.

Todas las cantidades que se definan en este sistema de referencia serán escritas con

un asterisco.

2. Sistema de Referencia de Blanco Fijo (TS). Como su nombre lo sugiere, la part́ıcula

blanco es estacionaria, por lo que se cumple con pppTb = 000; en este caso se denotarán las

variables definidas en este sistema con el supeŕındice T .

Con las definiciones anteriores se pueden escribir los cuadrimomentos de las part́ıcu-

las en el estado inicial en ambos sistemas de referencia como sigue:

p∗a = (E∗a, 0, 0, P
∗
a ), p∗b = (E∗b , 0, 0,−P ∗a ), (3.8)

pTa = (ETa , 0, 0, P
T
a ), pTb = (mT

b , 0, 0, 0). (3.9)

De acuerdo a (3.7) y usando (3.8) y (3.9), la variable s queda como: 4

s = (Ea + Eb)
2 − (pppa + pppb)

2,

s = (E∗a + E∗b )2,

⇒
√
s = E∗a + E∗b ,

(3.10)

es decir que
√
s es la enerǵıa total del sistema en el CMS.

3Se sigue la notación de [70].
4Tomando la métrica de Minkowski.
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También se cumple que P ∗a = P ∗b = P ∗, al usar esta igualdad y (3.10), se pueden

expresar las enerǵıas en términos de s, de la forma:

E∗a = (s+m2
a −m2

b)/2
√
s,

E∗b = (s−m2
a +m2

b)/2
√
s.

(3.11)

Por otro lado, las letras usadas para definir las variables de Mandelstam se em-

plean también para denotar el tipo de diagrama de Feynman a través del cual se describe

un proceso, es decir:

Figura 3.4: Tipos de diagramas de Feynman para los diferentes canales definidos.

En el canal s se observa un proceso de aniquilación de dos part́ıculas entrantes con

momento pa y pb respectivamente, en el canal t la part́ıcula con momento pa interactúa con

la part́ıcula con momento pb a través de una transferencia de momento, el canal u es similar

al canal t pero con los momentos finales intercambiados. Observando estos canales y viendo

las ecuaciones (3.7) se puede inferir que la variable t está asociada a una transferencia de

momento llevada a cabo en el canal t y que se puede escribir como:

t = (pa − p3)2

= (pa)
2 + (p3)

2 − 2pa · p3,
(3.12)
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a altas enerǵıas se puede despreciar la masa (ĺımite relativista), en este caso:

t = −2pa · p3. (3.13)

Si ahora el momento transferido q se define como q = (pa − p3), entonces por

comparación con (3.7) se concluye que q2 = t y por lo tanto q2 es negativa. Este resultado es

poco conveniente, ya que experimentalmente no se desea trabajar con cantidades negativas,

aśı que por convención se define:

Q2 = −q2. (3.14)

Esta nueva variable es de suma importancia, ya que como se ha visto, está relacio-

nada con la transferencia de momento y es una excelente opción para describir la escala de

enerǵıa a la que está sucediendo un evento. Más adelante se verá cómo las secciones eficaces,

dependerán de dicho parámetro.

Finalmente la variable u, es similar a t pero con los cuadrimomentos intercam-

biados p3 → p4, su uso se vuelve relevante para la llamada simetŕıa de cruzamiento o

simplemente cruzamiento, que permite calcular un proceso desconocido a través de uno

conocido únicamente intercambiando s, t y u. Por ejemplo, el proceso e+e− → µ+µ− que

tiene lugar en el canal s, queda como:

∑
ri

∑
si

|M(e+e− → µ+µ−)|2 =
8e4

s2

[(
t

2

)2

+
(u

2

)2]
. (3.15)

Por el cruzamiento, se puede calcular el proceso e+µ− → e+µ− que sucede en el

canal t, intercambiando s con t, con lo que se obtiene:

∑
ri

∑
si

|M(e+µ− → e+µ−)|2 =
8e4

t2

[(s
2

)2
+
(u

2

)2]
, (3.16)

la Figura 3.5 muestra esquemáticamente este proceso. En la Figura 3.6, se muestran otros

procesos que pueden ser calculados a través de la simetŕıa de cruzamiento. En el primer

caso notamos que, por medio de la interacción entre un positrón y un electrón cuya reacción

es e+e− → e+e−, podemos calcular el proceso de la interacción entre dos electrones, cuya

reacción es e−e− → e−e−, usando la simetŕıa de cruzamiento al hacer el cambio s→ u. En
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el segundo caso se observa que, a través de la dispersión Compton, es posible calcular la

aniquilación de un electrón y un positrón realizando la sustitución s→ t.

Figura 3.5: Proceso e+µ− → e+µ− calculado a través del proceso e+e− → µ+µ− por la

simetŕıa de cruzamiento. [17]

Figura 3.6: Procesos cuya sección eficaz puede ser calculada empleando la simetŕıa de cru-

zamiento. [17]
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3.2.2. Variables adimensionales

Para la Dispersión Muy Inelástica, es conveniente definir además otras variables

cinemáticas que ayudan con la descripción de la interacción realizada a altas enerǵıas. Un

proceso electrón-protón en una colisión inelástica es visto como:

Figura 3.7: Interacción inelástica de un electrón con un protón. [17]

Se define la variable x también conocida como variable de Bjorken de la siguiente manera:

x =
Q2

2p2 · q
, (3.17)

donde ya se ha definido Q2 = −q. Si se calcula la masa invariante MX , se obtiene:

M2
X = p24

= (q + p2)
2

= −Q2 + 2p2 · q +M2,

(3.18)

por lo que Q2 = 2p2 ·q+M2−M2
X , esto quiere decir que Q2 ≤ 2p2 ·q y entonces 0 < x ≤ 1 y

el caso elástico se recupera cuando x = 1. Ahora bien, otra variable importante es y definida

como sigue:

y =
p2 · q
p2 · p1

(3.19)

para la cual, usando (3.9) y siendo q = (E1 − E3, ppp1 − ppp3) adquiere la siguiente forma:



52 Caṕıtulo 3: Dispersión Muy Inelástica

y =
M(E1 − E3)

ME1
= 1− E3

E1
, (3.20)

aśı que y puede ser interpretada como la enerǵıa cedida de la part́ıcula entrante. Finalmente

se define la variable ν como:

ν =
p2 · q
M

, (3.21)

la cual, en el TS, se escribe como ν = E1 − E3.

La DMI electrón-protón al no ser elástica queda completamente descrita con dos

de estas variables, de hecho, no son independientes entre śı por lo que pueden ser escogidas

según sea conveniente.

3.2.3. Regiónes F́ısicas de las variables cinemáticas

Se considera ahora el caso general donde se tiene una colección de cuadrimomentos

p1, p2, p3, ..., con los cuales puede ser construido un invariante más, el producto escalar entre

ellos a través del cual es posible expresar cantidades como los ángulos y magnitudes de los

correspondientes vectores de momento y más importante aún, permite delimitar la región

f́ısica para las variables cinemáticas presentadas hasta ahora.

En general se escribe el producto escalar como:

pi · pj = EiEj − pppi · pppj , i, j = 1, 2, ... (3.22)

Ahora bien, si se tienen espećıficamente cuatro cuadrimomentos p1, p2, p3 y p4,

se escoge el sistema de referencia donde p1 está en reposo, es decir, el sistema tal que

p1 = (m1,000), las partes vectoriales correspondientes a los restantes cuadrimomentos están

en las direcciones mostradas en la Figura 3.8.
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Figura 3.8: Sistema de referencia definido por p1 en reposo.

En este sistema de referencia, se definen los cuadrimomentos como:

p1 = (m1, 0, 0, 0),

p2 = (E2, 0, 0, P2),

p3 = (E3, P3 sin θ23, 0, P3 cos θ23),

p4 = (E4, P4 cos θ24 cosφ, P4 sin θ24 sinφ, P4 cos θ24).

(3.23)

Tomando en cuenta la relación enerǵıa-momento, la magnitud de la parte vectorial

del cuadrimomento p2 es:

P 2
2 = {(p1 · p2)2 − p21p22}/p21, (3.24)

que puede ser arreglado como un determinante de la siguiente manera:

P 2
2 = − 1

p21

∣∣∣∣∣∣p1 · p1 p1 · p2
p2 · p1 p2 · p2

∣∣∣∣∣∣ o P 2
2 = − 1

p21
∆2(p1, p2), (3.25)

donde ∆ 2(p1 , p2) se conoce como el determinante simétrico de Gram de p1 y p2. Dado que

P2 es la magnitud de un vector, se debe cumplir ∆2 = p21p
2
2 − (p1 · p2)2 < 0 de acuerdo

a (3.25) o equivalentemente, se deben satisfacer las siguientes desigualdades:
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(p1 + p2)
2 ≥ (m1 +m2)

2 o (p1 + p2)
2 ≤ (m1 −m2)

2. (3.26)

Esta ecuación impone condiciones importantes para el intervalo f́ısico de la variable

s. Por ejemplo, en un proceso 2 → 2 descrito por los cuadrimomentos pa + pb → p1 + p2,

la ecuación (3.26) implica que s debe ser más grande que (ma +mb)
2 y (m1 +m2)

2 o más

pequeño que (ma −mb)
2 y (m1 −m2)

2 aśı que la región f́ısica puede ser planteada como:

(m1 +m2)
2 ≤ s ≤ (mb −ma)

2, (3.27)

usando el teorema de cruzamiento visto para las variables de Mandelstam, se puede además

delimitar las regiones de t y u:

(ma +m1)
2 ≤ t ≤ (mb −m2)

2, (3.28)

(ma +m2)
2 ≤ u ≤ (mb −m1)

2. (3.29)

Hasta ahora solo se ha escrito la magnitud de un vector en términos de productos

escalares, pero otras cantidades también pueden ser expresadas a través de ellos, por ejemplo

el siguiente producto:

p2 · p3 = E2E3 − P2P3 cos θ23 (3.30)

p2 · p3 =
p1 · p2p1 · p3

p21
− {∆2(p1, p2) ∆2(p1, p3)} 1/2

p21
cos θ23, (3.31)

permite escrbir al ángulo entre dos vectores de momento como:

cos θ23 = −

G

p1, p2
p1, p3


{∆2(p1, p2)∆2(p1, p3)}1/2

, (3.32)

donde ahora G

p1, p2
p1, p3

 es el determinante antisimétrico de Gram y está dado por:



Caṕıtulo 3: Dispersión Muy Inelástica 55

G

p1, p2
p1, p3

 =

∣∣∣∣∣∣p1 · p1 p1 · p3
p2 · p1 p2 · p3

∣∣∣∣∣∣ . (3.33)

Ahora bien, podŕıa usarse (3.32) para obtener sin θ23 a través de una identidad

pitagórica pero esto podŕıa llegar a ser tedioso, aśı que una manera más conveniente de

hacerlo es por construcción del determinante simétrico de Gram ∆3(p1, p2p3):

∆3(p1, p2p3) =

∣∣∣∣∣∣∣∣
p21 p1 · p2 p1 · p3

p2 · p1 p22 p2 · p3
p3 · p1 p3 · p2 p23

∣∣∣∣∣∣∣∣ (3.34)

Tras realizar los productos escalares en el marco de referencia de reposo de p1 se

vuelve:

∆3(p1, p2p3) = m2
1P

2
2P

2
3 sin2 θ23, (3.35)

y aśı se obtiene finalmente:

sin2 θ23 =
∆1(p1)∆3(p1, p2, p3)

∆2(p1, p2)∆2(p1, p3)
. (3.36)

De la ecuación (3.35) se puede deducir que ∆3 > 0 debido a que es el producto de

cantidades únicamente positivas, de hecho se puede generalizar este resultado: los determi-

nantes de Gram con sub́ındice impar, cumplen con la condición de ser positivos mientras

que los de sub́ındice par son negativos; esto puede ser demostrado pero no es el fin de esta

sección, para mayor referencia se puede revisar [70].

Las condiciones impuestas sobre los determinantes de Gram, establecen las regiones

f́ısicas de las variables cinemáticas permitidas por conservación de la enerǵıa-momento como

se ha hecho para ∆2, sin embargo, aún falta imponer una restricción importante sobre

el ángulo. Nuevamente para un proceso 2 → 2 y por la relación de los cuadrimomentos

pa + pb → p1 + p2, la variable t toma la siguiente forma expĺıcita:

t = (pa − p1) = m2
a +m2

1 − 2EaE1 + 2PaP1 cos θa1, (3.37)
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por lo que, en el CMS se obtiene

cos θ∗a1 =
t−m2

a −m2
1 + 2E∗aE

∗
1

2P ∗aP
∗
1

. (3.38)

Esta última ecuación impone la condición de que cos θ∗a1 = ±1, aśı que finalmente

se obtiene para la variable t la siguiente región f́ısica:

t± = m2
a +m2

1 − 2E∗aE
∗
1 ± 2P ∗aP

∗
1

= m2
a +m2

1 −
1

2s
{
(
s+m2

a −m2
b

) (
s+m2

1 −m2
2

)
∓ λ

1
2
(
s,m2

a,m
2
b

)
λ

1
2
(
s,m2

1,m
2
2

)
}.

(3.39)

Se han usado las ecuaciones (3.11) que describen a las enerǵıas en términos de

s, y se define a λ como la función cinemática de tres part́ıculas que recibe ese nombre

porque es muy útil en procesos donde solo intervienen tres cuadrimomentos, por ejemplo,

el decaimiento de una part́ıcula, tiene la forma:

λ(s,m2
a,m

2
b) = {s− (ma +mb)

2}{s− (ma −mb)
2} (3.40)

En conclusión se puede notar que las regiones f́ısicas de las variables cinemáti-

cas pueden ser delimitadas a través de los determinantes de Gram. Esta es una fuerte

observación ya que dichos determinantes dependen de los productos escalares de los cua-

drimomentos, es decir, de invariantes de Lorentz, aśı que su uso y aplicación los vuelve una

arma poderosa para el análisis cinemático de cualquier proceso.
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Producción de un quark top via

DMI electrón-protón

La producción de un bosón Z0 es una reacción del tipo 2→ 3, esto es, dos part́ıcu-

las en el estado inicial y tres en el estado final. Ahora bien, con el objetivo de entender a

detalle esta clase de proceso, se analiza primeramente un caso en el que solo cuatro part́ıculas

están involucradas. Existen infinidad de procesos de esta clase, sin embargo, se ha escogido

la producción del quark top en el canal t ya que, a parte de cumplir con esta condición por

ser una reacción 2 → 2 y proveer en este canal la sección eficaz más grande medida en el

LHC [71], su análisis ofrece otras ventajas que se exponen a continuación.

Una razón importante para elegir al quark top es porque posee una gran masa,

esta caracteŕıstica indica que tiene el acoplamiento con el Higgs más grande del ME, aśı

que su comportamiento se utiliza para fijar cotas experimentales y, dado que el trabajo está

dirigido al estudio sobre la precisión de ciertos parámetros experimentales, entonces es un

excelente candidato de estudio. Además, por el mismo hecho de ser muy masiva, es una

part́ıcula sumamente inestable, aśı que decae antes de hadronizar [72] por lo que hereda sus

propiedades a los productos del decaimiento y a través de ellos es posible medir observables

que dependen de las caracteŕısticas del top.

Por otro lado, como se mencionó en la sección 2.6, es deseable proponer e indagar

en modelos que van más allá del ME. Una fuente importante de búsqueda es a través de

57
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procesos con cambio de sabor por corrientes neutras o FCNC (por sus siglas en inglés), ya

que en el contexto del Modelo Estándar, esta clase de procesos son altamente restringidos,

por lo que su observación seŕıa una inminente señal de nueva f́ısica. De hecho, los procesos

de violación de sabor han sido ampliamente estudiados en la literatura [73], en particular

en los llamados decaimientos exóticos via un bosón de Higgs neutro y con un quark top

involucrado en el proceso, en el contexto del 2HDM-III [74].

Por todos los motivos expuestos, se ha propuesto analizar la producción del quark

top en el canal t a través de un proceso de FCNC en el contexto del modelo 2HDM-III. En

las siguiente secciones se mostrarán los resultados de dicha investigación.

4.1. Cálculo de la Sección Eficaz

La producción del quark top se presenta en la interacción electrón-protón, por

lo que su análisis debe realizarse, debido al Modelo de Partones, mediante el subproceso

electrón-quark. Para un proceso de FCNC la contribución a nivel árbol está dada por el

siguiente diagrama:

Figura 4.1: Diagrama de Feynman para el proceso inclusivo e(p) + q(q)→ µ(p′) + t(q′) en

el canal t.
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En el estado inicial se deben considerar dos casos: 1) el electrón interactuando con

el quark u y 2) cuando lo hace con el quark c, estos son los procesos más probables debido

a que no se considera cambio en la carga eléctrica, aun cuando śı exista cambio de sabor.

Se presenta el estudio solo del primer caso ya que el segundo se realiza de manera análoga.

Para el estado final, se tiene al muón en la ĺınea leptónica y al quark top en la ĺınea de los

quarks, teniendo un doble proceso de violación de sabor. El cuadrado de la amplitud del

proceso se construye como:

|M| 2 =
1[

(p− p′)2 −m2
h

]2Mθν
l M

q
θν , (4.1)

donde, el factor 1/
[
(p− p′)2 −m2

h

]2
es el propagador para un bosón con esṕın cero, en este

caso para h, y los tensores están dados por:

Mθν
l =

∑
s

{
µ̄(p′)

[
vθl

]
e(p)

}{
ē(p) [vνl ]∗ µ(p′)

}
, (4.2)

Mq
θν =

∑
s′

{
t̄(q′)

[
vqθ
]
u(q)

}{
ū(q) [vqν ]∗ t(q′)

}
. (4.3)

En este caso vl es el vértice de la ĺınea leptónica y vq el vértice en la ĺınea de los

quarks y están determinados por las ecuaciones (2.85) y (2.86) respectivamente. Podemos

observar que estos no contienen ninguna matriz γ por lo que su expresión expĺıcita no afecta

al siguiente cálculo.

Ahora bien, escribimos el producto completo en términos de los elementos indivi-

duales de la matriz (etiquetados α, β, γ y δ con una suma impĺıcita sobre ı́ndices repetidos).

Mostramos solo los cálculos para el tensorMθµ
l ya que el otro tensor, es decir,Mq

θµ se cal-

cula de manera análoga.

Mθν
l =

∑
s

µ̄α(p′)vθαβeβ(p)ēγ(p)vνγδµδ(p
′). (4.4)
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Para realizar la suma, usamos las siguientes relaciones de completez:

∑
s

ūα(k)uδ(k) = (/k +m)δα∑
s′

uβ(p)ūγ(p) =
(
/p+m

)
βγ

(4.5)

por lo que la ecuación (4.4) queda como:

Mθν
l =

(
/p
′ +mµ

)
δα
vθαβ

(
/p+me

)
vνγδ

= Tr
[(
/p
′ +mµ

)
vθ
(
/p+me

)
vν
]
.

(4.6)

En el ĺımite de altas enerǵıas, se puede despreciar el valor del producto de las masas

por los momentos, con esta consideración y utilizando las propiedades de las trazas [17], se

obtiene:

Mθν
l = 4(p · p′ −memµ)|vl|2, (4.7)

análogamente:

Mq
θν = 4(q · q′ −mumt)|vq|2. (4.8)

Además, de acuerdo a las ecuaciones (2.85) y (2.86), los vértices están dados por:

vl =
g

2

cos (α− β)√
2 cosβ

√
memµ

mW
χ̃l12, (4.9)

vq =
g

2

(
−cos (α− β)√

2 sinβ

) √
mumt

mW
χ̃u13. (4.10)

Sustituyendo las ecuaciones (4.9) y (4.10) en (4.7) y (4.8) respectivamente, el

cuadrado de la amplitud del proceso queda finalmente como:

|M| 2 =
16

[(p− p′)2 −m2
h]

2

(g
2

)4 [cos (α− β)√
2 cosβ

√
memµ

mW

]2
|χ̃l12|2

[
cos (α− β)√

2 sinβ

√
mumt

mW

]2
|χ̃u13|2×

(p · p′ −memµ) (q · q′ −mumt) ,

|M|2 =
g4 cos4(α − β)

4 cos2 β sin2 β

memµmumt

m4
W

|χ̃l12|2|χ̃u13|2
(p · p′ +memµ)(q · q′ +mumt)

[(p− p′)2 −m2
h]2

.

(4.11)
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Para realizar los productos escalares, para la parte de los leptones, de acuerdo a

la ecuación (3.22) se obtiene:

t = (p− p′)2

t = m2
µ +m2

e − 2p · p′

→ p · p′ = −1

2
(m2

µ +m2
e − t),

mientras que para la parte de los quarks, se tiene:

t = (q − q′)2

t = m2
u +m2

t − 2q · q′

→ q · q′ = −1

2
(m2

u +m2
t − t).

Al introducir los valores de estos productos y simplificar, la ecuación (4.11) se convierte en:

|M|2 =
g4

16
CM |χ̃l12|2|χ̃u13|2

[
t− (mµ −me)

2
] [
t− (mu −mt)

2
]

(t−m2
h)2

, (4.12)

donde se han agrupado las constantes angulares y de masas en dos definiciones como sigue:

C =
cos4(α − β)

cos2 β sin2 β
, (4.13)

M =
memµmumt

m4
W

. (4.14)

Por otro lado, de acuerdo al análisis cinemático revisado en el caṕıtulo anterior, la sección

eficaz diferencial es:

dσeq =
|M| 2

16πλ(ŝ,m2
e,m

2
u)
dt, (4.15)
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siendo λ(ŝ,m2
e,m

2
u) la función cinemática de tres variables definida en ecuación (3.40), la

cual en este caso, depende de las masas y de ŝ, la variable de Mandelstam. En este caso se

tiene:

λ(ŝ,m2
e,m

2
u) = (ŝ−m2

e −m2
u)2 − 4m2

em
2
u,

ŝ = x′s 0 < x′ < 1,

en el ĺımite de altas enerǵıas λ(ŝ,m2
e,m

2
u) ∼ x′s, por lo que la sección eficaz total del

subproceso es:

σeq =

∫ t+

t−

|M| 2

16π(x′s)2
dt. (4.16)

donde t+ y t− están dados por la ecuación (3.39), es decir:

t± = m2
e+m

2
µ−

1

2ŝ
{
(
ŝ+m2

e −m2
u

) (
ŝ+m2

µ −m2
t

)
∓λ

1
2
(
ŝ,m2

e,m
2
u

)
λ

1
2
(
ŝ,m2

µ,m
2
t

)
}. (4.17)

Finalmente, con el Modelo de Partones y usando las ecuaciones (4.12) y (4.16),

la sección eficaz total del proceso de producción del quark top a través de la interacción

electrón-protón es:

σep(ep→ µ t) =
g4

256π
CM |χ̃l12|2|χ̃u13|2

∑
i

∫ 1

0
dx′

fi(x
′, Q̃2)

(x′s)2

∫ t+

t−
dt

[
t− (mµ −me)

2
] [
t− (mu −mt)

2
]

(t−m2
h)2

,

(4.18)

con la finalidad de definir un factor que contenga a los parámetros libres del modelo y

análizar su orden de magnitud, se establece la siguiente definición:

k =

(
g4

256π

)
CM |χ̃l12|2|χ̃u13|2. (4.19)

Un análisis del orden de magnitud de los factores que definen k, permite hacer

conclusiones acerca de los escenarios óptimos para los cuales se observaŕıan señales de pro-
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ducción de un quark top a través de un proceso de FCNC. A continuación, serán presentadas

las condiciones requeridas para obtener resultados medibles.

4.2. Resultados y Análisis

Se puede observar que el factor M es quien más contribuye al valor de k, ya que es

una razón del producto de las masas de quarks y leptones dividida entre la cuarta potencia

de la masa del W lo que reduce su valor considerablemente y vuelve a M el factor dominante

en (4.19). Sin embargo, esta relación podŕıa ser compensada a través del valor de los χ̃ij ya

que son parámetros que deben ser fijados por el experimento, por lo que, podŕıa plantearse

un escenario para el cual tuvieran el tamaño adecuado para contrarestar el valor de M y

que permitieran observar la producción del quark top a través de un proceso de violación

de sabor.

Tras calcular los restantes factores en (4.18), es decir, las integrales que contiene-

nen a las PDF’s y a la cinemática del proceso, se logró obtener una condición que haŕıa

observable una señal de ese tipo. La condición es que k sea igual a 1, en tal caso, la magnitud

de los parámetros experimentales seŕıan del orden de magnitud de |χ̃u,d,li,j | ∼ 103.

Sin embargo, hasta ahora solo se han observado señales para las cuales los paráme-

tros |χ̃u,d,li,j | son de un orden de magnitud de ∼ 101 tal como se ha propuesto en [15], lo que

produce una k diferente de 1. Utilizando estos valores, la sección eficaz se reduce notable-

mente ya que no se contrarresta el valor de la masa del W . Es importante mencionar que,

el hecho de que hasta ahora solo se haya observado este caso, no implica que el escenario

donde k = 1 deba ser descartado, ya que los modelos extendidos aún deben ser explorados

ampliamente.

A continuación, se presentan los resultados de las secciones eficaces calculadas en

ambos escenarios: k = 1 y k 6= 1. La Figura 4.2 muestra el proceso donde el electrón y el

quark u están en el estado inicial, mientras que la Figura 4.3 muestra al electrón y al quark

c en el estado inicial. Los cálculos presentados en los gráficos fueron hechos con enerǵıas en

CMS de diferentes colisionadores: HERA
√
s = 0,310TeV , LHeC

√
s = 1,3TeV , LHeC-he

√
s = 1,9TeV y FCC

√
s = 3,50TeV [54].
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El presente análisis ha sido llevado a cabo con la finalidad de mostrar un posi-

ble escenario en el cual se observe un proceso de violación de sabor a través de corrientes

neutras (FCNC) con el bosón de Higgs. Con los resultados presentados, se puede realizar

una importante conclusión al respecto: para el caso en el que los parámetros experimentales

tienen un valor cuyo orden de magnitud es |χ̃u,d,li,j | ∼ 101, tal que k 6= 1, la observación de

la producción de un quark top a través de un proceso de violación de sabor, es muy poco

probable. Por otro lado, para un escenario donde k = 1, ahora se tendŕıan valores cuyo

orden de magnitud son |χ̃u,d,li,j | ∼ 103, en este caso una sección eficaz de dicho proceso es

observable. En la literatura [50] se menciona que parámetros tales como χf2,3 son de O(1)

(e.g.,χf2,3 ≤ 10), basados en esos resultados, se puede concluir que se ha encontrado un

escenario que concuerda con predicciones hechas por otros trabajos. [75]

En general, interacciones de procesos donde ocurre violación de sabor y se ven

involucrados el Higgs neutro y el quark top, son una fuente excelente de búsqueda de nueva

f́ısica, más aún, de acuerdo a [76] esta clase de procesos no han sido revisados amplia-

mente, por lo que el presente trabajo puede usarse como punto de referencia para futuras

investigaciones.
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|χ
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Figura 4.2: Secciones eficaces para el proceso ep→ µt con las enerǵıas logradas en diferentes

colisionadores. En el estado inicial se tiene al electrón y al quark u.
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Figura 4.3: Secciones eficaces para el proceso ep→ µt con las enerǵıas logradas en diferentes

colisionadores. En el estado inicial se tiene al electrón y al quark c.



Caṕıtulo 5

Producción del bosón Z0 via DMI

electrón-protón

Una vez estudiado el proceso con cuatro part́ıculas involucradas, se está en po-

sición de extender el análisis para la interacción e + p → e + Z + X donde ahora están

presentes cinco part́ıculas.

En este caṕıtulo, se presenta el análisis cinemático de la Dispersión Muy Inelástica

(DMI) del proceso electrón-protón cuando existe producción de un bosón Z0. Se muestra la

ambigüedad que se presenta al escoger el parámetro que describe la escala de enerǵıa a la

que está sucediendo dicho proceso y cómo ello repercute de manera importante en el cálculo

de la sección eficaz con las enerǵıas y luminosidades que se pretenden alcanzar en futuros

colisionadores de hadrones. [54]

5.1. Dispersión Muy Inelástica electrón-protón con produc-

ción de un bosón Z0

En la Dispersión Muy Inelástica (DMI) de un electrón y un protón, en general

puede o no producirse un bosón Z0. Analicemos el caso donde no hay producción de Z0.

67
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De acuerdo al Modelo de Partones (MP), el proceso electrón-protón (ep) se analiza

a través del subproceso electrón-quark e−(p) + q(q) → e−(p′) + q′(q′) donde el cuadrimo-

mento del electrón y del quark en el estado incial son p y q y en el estado final son p′ y q′,

respectivamente. El diagrama de Feynman que contribuye, a nivel árbol, se muestra en la

Figura 5.1.

Figura 5.1: Diagrama de Feynman para el subproceso eq sin producción de Z0.

Un parámetro apropiado para describir a la colisión es la transferencia del mo-

mento, la cual, con el fin de mostrar la ambigüedad que existe en su elección, se le denota

a partir de ahora como Q̃2, la cuestión importante es cómo designar dicho parámetro. Si

se tiene un diagrama como el mostrado en la Figura (5.1), la ecuación de conservación del

momento se escribe como:

p+ q = p′ + q′ (5.1)

⇒ (p− p′)2 = (q − q′)2. (5.2)

El lado izquierdo de la ecuación (5.2) no es más que la transferencia de momento

llevada a cabo en la ĺınea de los leptones y que se denota como Q2, mientras que el lado
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derecho es la transferencia de momento en la ĺınea de los quarks y que es denotada como

Q′2, por lo que:

Q2 = Q′2. (5.3)

De acuerdo a la ecuación (5.3), se concluye que se puede elegir a Q2 o a Q′2 para

ser Q̃2 porque la transferencia de momento llevada a cabo en la ĺınea leptónica y en la de

los quarks es igual. Sin embargo, si ahora durante la interacción ep se produce un bosón

Z0, la elección de Q̃2 no es clara. En la Figura 5.2 se muestran los diagramas a nivel árbol

que contribuyen al proceso:

Figura 5.2: Diagramas de Feynman para el subproceso eq con producción de Z0.
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donde k es el cuadrimomento de Z0. Los diagramas que contienen interacciones con el bosón

de Higgs han sido despreciados debido a que su acoplamiento con los fermiones es propor-

cional a la masa de dichos fermiones, lo que resulta en un acoplamiento despreciable.

En los diagramas a) y b), el bosón Z0 fue producido en la ĺınea leptónica, aśı que

la transferencia de momento, definida como en la ecuación (3.12), se lleva a cabo en la ĺınea

de los quarks, por otro lado en los diagramas c) y d) la producción se dio en la ĺınea de

los quarks, por lo que ahora la transferencia se realiza en la ĺınea leptónica. En concreto, la

ecuación de conservación del momento dada por:

p+ q = p′ + q′ + k, (5.4)

manifiesta que debido al momento extra k, no puede ser rearreglada para obtener una

igualdad como en (5.3) en consecuencia Q2 6= Q′2 y entonces no se puede escoger ineqúıvo-

camente a alguna de las dos para ser Q̃2.

Esta indeterminación ya hab́ıa sido notada en el art́ıculo [9], en él se hizo un análisis

de las señales que se obtendŕıan proponiendo diferentes prescripciones para Q̃2 obteniendo

diferencias en la sección eficaz de entre 1 % y hasta 5 %.

El estudio se hizo utilizando las enerǵıas disponibles en el Hadron Electron Ring

Accelerator (HERA) [77] donde se logró una enerǵıa máxima para el electrón de 30 GeV y de

820 GeV para el protón; con estos valores, la cantidad de producciones de bosones Z0 al año

no es muy grande por lo que una desviación del 5 % no seŕıa de gran notoriedad en la sec-

ción eficaz. Sin embargo, para el futuro colisionador Large Hadron electron Collider (LHeC)

la cantidad de producciones de bosones Z0 aumentará considerablemente. A continuación

se muestra un cálculo hecho de manera general para el número de eventos realizados por año.

Una cantidad importante para conocer la eficiencia de un colisionador, es la lumi-

nosidad instantánea o simplemente luminosidad L, la cual mide el número de colisiones por

unidad de área y por unidad de tiempo, es decir:

L =
N

σt
, (5.5)
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donde N es el número de colisiones y t es tiempo. Además para hacer una estimación del

número de bosones Z0 producidos tras la colisión, es necesario conocer la probabilidad

de que se lleve a cabo dicho evento, esta cantidad viene dada por σ, es decir, la sección

eficaz. Ahora bien, si la luminosidad se integra con respecto al tiempo de funcionamiento

del colisionador, se obtiene la luminosidad integrada ` dada por:

` = L∆t =
N

σ
, (5.6)

de donde finalmente se obtiene el número de producciones del Z0:

N = σ`. (5.7)

Se muestran los valores que se obtuvieron en el HERA y los que se esperan en el

LHeC calculados para un año (t = 3,15× 107s) de funcionamiento.

HERA LHeC

L = 2× 1031 cm−2s−1 L = 1× 1034 cm−2s−1

` = 6, 3× 1038 cm−2 ` = 3, 15× 1041cm−2

σ = 0, 5× 10−37 cm2 σ = 0, 5× 10−37 cm2

Número de part́ıculas = 31, 5 Número de part́ıculas = 15, 750

∼ 31 Z0 por año ∼ 1× 104 de Z0 por año

Tabla 5.1: Cantidad de producciones de Z0

Se puede observar de la Tabla 5.1 que con las luminosidades que se pretende

alcanzar en el LHeC, la producción se eleverá tres órdenes de magnitud, ahora un 5 % de

15, 750 en lugar de 5 % de 31 marca una diferencia significativa para el cálculo de la sección

eficaz y por esta razón es necesario hacer una elección única de Q̃2 para que tal discrepancia

no sea grave.
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5.2. Cinemática del proceso ep con producción de Z0

A continuación se discute la cinemática del proceso e(p)+p(PN )→ e′(p′)+Z0(k)+

X, donde e y p son el electrón y el protón en el estado inicial y e′ y Z0 son electrón y el bosón

producido en el estado final, X es un estado final desconocido y el cuadrimomento asociado

a cada part́ıcula se encuentra entre paréntesis. De acuerdo a los experimentos llevados a

cabo en los colisionadores, se trabaja en el Sistema de Referencia del Centro de Momentos

(CMS), esquemáticamente:

Figura 5.3: Esquema de producción del Z0 en el sistema de referencia del centro de masas.

Los cuadrimomentos quedan especificados, suponiendo una masa en reposo des-

preciable, como:

p = E(1, 0, 0, 1),

PN = EN (1, 0, 0,−1),

p′ = E′(1, sin θ, 0, cos θ),

k = (Ek, k sin θk cosφk, k sin θk sinφk, k cos θk), k =
√
E2
k −M2

B.

(5.8)
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Usando las definiciones dadas en la sección sobre Variables Cinemáticas, se obtie-

nen las variables correspondientes para este proceso:

s = (p+ PN )2 = 4EEN ,

Q2 = −(p− p′)2 = 2EE′(1− cos θ),

ν = PN (p− p′) = EN (2E − E′(1 + cos θ)),

s′ = (p+ PN − k)2 = 4EEN +M2
B − 2E(Ek − k cos θk)− 2EN (Ek + k cos θk),

Q′2 = −(p− p′ − k)2,

= 2EE′(1− cos θ)−M2
B + 2E(Ek − k cos θk)− 2E′(Ek − k(cos θ cos θk + sin θ sin θk cosφk)),

ν ′ = PN (p− p′ − k) = EN (2E − E′(1 + cos θ)− Ek − k cos θk),

(5.9)

y las variables adimensionales asociadas a la DMI son:

x =
Q2

2ν
=

E′(1− cos θ)

2EN (1− E′(1 + cos θ)/2E)
,

y =
2ν

s
= 1− E′(1 + cos θ)

2E
,

τ =
s′

s
= 1− Ek − k cos θk

2EN
− Ek + k cos θk

2E
+

M2
B

4EEN
,

x′ =
Q′2

2ν ′
=

2EE′(1− cos θ)−M2
B + 2E(Ek − k cos θk)− 2E′(Ek − k(cos θ cos θk + sin θ sin θk sinφk))

EN (2E − E′(1 + cos θk)− (Ek + k cos θk))
,

y′ =
2ν ′

s
= 1− E′(1 + cos θ)

2E
− Ek + k cos θk

2E
.

(5.10)

Invirtiendo estas ecuaciones se obtiene:

E′ = ENxy + E(1− y),

E′ cos θ = E(1− y)− ENxy,

Ek = E(y − y′) + EN (1− τ + µ + y′ − y),

k cos θk = E(y − y′)− EN (1− τ + µ + y′ − y),

cosφk =
1

2

xy(y − y′ − 1) + x′y′ − y(1− τ + y′ − y) + µ (1− y)√
xy(1− y)

√
(y − y′)(1− τ + y′ − y)− µ (1− y + y′)

.

(5.11)
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Como se ha analizado anteriormente, las regiones f́ısicas de las variables cinemáti-

cas, se derivan de la imposición del signo en los determinantes de Gram, particularmente

exigiendo que ∆4 < 0, donde:

∆4(p, p
′, PN , k) =

∣∣∣∣∣∣∣∣∣∣∣

0 p p′ pPN p k

p′ p 0 p′ PN p′ k

PN p PN p
′ 0 PN k

k p k p′ k PN M2
B

∣∣∣∣∣∣∣∣∣∣∣
(5.12)

Realizando expĺıcitamente los productos, se obtienen los intervalos siguientes:

0 5 x < x′ 5 1, 0 5 y′ < y 5 1. (5.13)

Ahora, para encontrar los ĺımites de τ se debe factorizar al determinante de Gram

de la ecuación (5.13) en la forma ∆4 ∼ (τ+− τ )(τ − τ−) e igualarlo a cero, como resultado

se obtiene que τ− 5 τ 5 τ+, donde:

τ± = (1−x′)(1+y′−y)+
1

y
{ (1−y)[(x′−x)(y−y′)−µ]+xy′± 2

√
xy′(1− y)[(x′ − x)(y − y′)− µ]},

(5.14)

con µ = M2
B/s = M2

B/4EEN , esta ecuación es análoga a (3.39). Ahora bien, del requeri-

miento de que ∆3(p, p
′, k) = 0 se obtiene:

(x′ − x)(y − y′) = µ (5.15)

Empleando esta última ecuación en (5.13) se obtiene las relaciones que restringen

más las regiones, resultando en:

0 5x 5 1− µ/y, x+ µ/y 5 x′ 5 1 (5.16)

µ 5 y 5 1, 0 5 y′ < y − µ/(x− x′). (5.17)

Las ecuaciones (5.14), (5.16) y (5.17) definen la región f́ısica para las variables x,

x′, y, y′ y τ .
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Por otro lado, las Funciones de Distribución de Partones o PDF por sus siglas en

inglés, son usadas para valores de Q y Q′ no muy pequeñas, por lo que se requiere fijar

cortes para sus valores, esto es:

Q2 = sxy ≥ Q2
cut,

Q′2 = sx′y′ ≥ Q′2cut.
(5.18)

Ahora bien, usando el MP, la sección eficaz diferencial del proceso ep denotada

como dσep se calcula a través del subproceso elástico de un electrón interactuando con un

quark eq, cuya sección eficaz diferencial es dσeq, de la siguiente manera:

dσep =
∑
i

∫ 1

0
dx′fi(x

′, Q̃2) dσeq. (5.19)

donde las fi(x
′, Q̃2) son las mencionadas PDF, que representan la probabilidad de encontrar

al partón i con una fracción x′ del momento del protón en una interacción realizada a una

escala de enerǵıa descrita por Q̃2.

Es necesario obtener ahora las variables cinemáticas del subproceso. Si el momento

del partón, en este caso el quark, esta dado por q = x′PN , se tiene:

ŝ = p+ q = x′s,

Q̂2 = −(p− p′)2 = Q2,

ν̂ = q(p− p′) = x′ν,

ŝ′ = (p+ q − k)2 = s′ − (1− x′)s+ 2(1− x′)(ν − ν ′),

Q̂′2 = −(p− p′ − k)2 = Q′2,

ν̂ ′ = q(p− p′ − k) = x′ν ′.

(5.20)

Con estas variables, se puede escribir dσeq como:

dσeq =
2(2π)−5

ŝ

1

4
|Meq|2dΓ3, (5.21)
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donde dΓ3 queda expresado en términos de las variables x, x′, y, y′ y τ como sigue:

dΓ3 =
πs3

32

ydxdydy′dτ√
−∆4(p, PN , p′, k)

. (5.22)

Ahora, debido a la producción del Z0 la amplitud del proceso dada por Meq,

constará de dos partes, la parte que toma en cuenta la producción en la ĺınea leptónica y

la que lo hace en la ĺınea de los quarks, aśı que:

|Meq|2 = |Meq
l +Meq

q |2 (5.23)

Si se sustituye esta definición en (5.21), se obtendrán tres términos:

dσeq =
2(2π)−5

ŝ

1

4

(
|Meq

l |
2 + |Meq

q |2 + 2Re|Meq
l ||M

eq
q |
)
dΓ3, (5.24)

o bien

dσeq = dσeql + dσeqq + dσeqint, (5.25)

por lo que finalmente queda

dσep =
∑
i

{∫ 1

0
dx′fi(x, Q̃

2) dσeql +

∫ 1

0
dx′fi(x, Q̃

2) dσeqq +

∫ 1

0
dx′fi(x, Q̃

2) dσeqint

}
. (5.26)

En esta última ecuación, se puede notar claramente la ambigüedad, ya que para el

primer término Q̃2 puede ser escogida como Q′2 debido a que la producción se lleva a cabo

en la ĺınea leptónica. Para el segundo término la producción es en la ĺınea de los quarks,

por lo que Q̃2 tendŕıa que ser igual a Q2. El problema lo tiene el tercer término, el de

interferencia, ya que contiene a ambas matrices de elementos, por lo que Q̃2 no puede ser

fijado uńıvocamente.

El siguiente paso para calcular dσep es obtener los valores de las matrices de am-

plitud de probabilidad del proceso y luego realizar la integral. Primeramente se muestra la
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construcción de M, después para realizar la integración, se proponen diferentes prescrip-

ciones de Q̃2 para mostrar cuánto cambia dσep.

Figura 5.4: a) Diagrama de Feynman que muestra la producción del bosón Z en la ĺınea

leptónica en el estado inicial.

El primer diagrama de Feynman se muestra en la Figura 5.4, para la cual se tiene:

−iMeq = LlPLq (5.27)

donde Ll y Lq se calculan con los vértices del Caṕıtulo 2. Además, dado que el fermión que

aparece en la ĺınea leptónica es el electrón para el cual T3 = −1
2 y Qf = −1, se obtiene:

Ll = ē′(p′)ieγµ(PLL
B′

e′e′′ + PRR
B′

e′e′′)
i( 6 p− 6 k)

(p− k)2
ενie

2γν((−1/2 + 2 sin2 θW )/ sin 2θW + 1/2 sin 2θW )e(p),

= − ie3

(p− k)2
ē′(p′)γµ(PLL

B′

e′e′′ + PRR
B′

e′e′′)( 6 p− 6 k)ενγ
ν((−1/2 + 2 sin2 θW )/ sin 2θW + 1/2 sin 2θW )e(p),

P = − −i
(q′ − q)2 −M2

B′
=

i

Q′2 −M2
B′
≈ i

Q′2
,

Lq = q̄(q′)ieγ µ(PLL
B′

q′q + PRR
B′

q′q)q(q),

(5.28)

en este caso B′ puede ser un fotón o un bosón Z0 por lo que M2
B′ puede ser despreciado

al comparar su masa con el valor de los momentos. Podemos notar que P depende inver-
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samente de Q′2, por lo tanto, la amplitud asociada a este diagrama también depende del

inverso de Q′2. Realizando el mismo cálculo para el resto de los diagramas, se obtienen las

dependencias mostradas en la Figura 5.5.

Figura 5.5: Diagramas de Feynman que contribuyen al proceso de producción del bosón Z.

En a) y en b), la amplitud del proceso depende del inverso de Q′2, mientras que en c) y en

d) depende del inverso de Q2.

Estos diagramas exponen nuevamente la diferente dependencia que tienen según

si la producción se dio en la ĺınea leptónica o en la de los quarks. Sin embargo, en este

momento se puede hacer una primera aproximación útil para establecer a Q̃2.

De acuerdo a [9], con las enerǵıas que se alcanzaron en el experimento HERA,

la mayor contribución a la sección eficaz del proceso e + p → e + Z + X, es provista por

los diagramas cuya producción se da sobre la ĺınea leptónica, como se muestra en la Fi-
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gura 5.6, donde la sección diferencial total está dada por T =
dσ

dy
y la sección diferencial

de las contribuciones cuando la producción se da en la ĺınea leptónica y de los quarks, son

respectivamente L =
dσlep
dy

y H =
dσhad
dy

.

Figura 5.6: Se muestra la sección diferencial total T , y la sección diferencial de las contribu-

ciones de la producción en la ĺınea leptónica L y de la producción en la ĺınea de los quarks

H, para
√
s = 314GeV . [9]

Se puede notar que L es quien más contribuye a T . Más aún, analizando los dia-

gramas a y b, se puede concluir que a) > b) ya que en b) el numerador es la suma de los

momentos p′ y k lo que reduce el valor de su contribución.

La sección eficaz entonces se vuelve más grande cuando Q′2 se acerca a su valor

mı́nimo, de acuerdo a (5.16) y (5.17), esto sucede cuando x′ = x+
µ

y
y y′ → 0. Si se susti-

tuyen estas condiciones en la expresión para el cosφk en la ecuación (5.11), se obtiene para
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el numerador:

Numerador (N)

N = xy(y − 1)− y
[
1− (1− x− µ

y
)(1− y)− y

]
+ µ (1− y)

= xy(y − 1)− y
[
x− xy +

µ

y
− µ

]
+ µ − µ y

= 2xy(y − 1)

mientras que para el denominador se tiene:

Denominador (D)

D =
1

2

√
xy(1− y)

√
y

[
x− xy +

µ

y

]
− µ(1− y)

=
1

2

√
xy(1− y)

√
xy(1− y)

= −1

2
xy(y − 1)

sustituyendo numerador y denominador en cosφk, se obtiene finalmente:

cosφk =
N

D
= −1 (5.29)

Se presenta una primera conclusión importante: con las enerǵıas logradas en HE-

RA, la mayor contribución a la sección eficaz del proceso ep con producción de Z0 estará

dada por el diagrama que contiene al Z0 producido en el estado inicial de la ĺınea leptónica;

de acuerdo a la cinemática del proceso, esto sucede cuando se produce mayor cantidad de

bosones en el plano que subtienden el leptón entrante y el leptón saliente, en este caso Q′2

puede ser escogido para ser Q̃2.

Como primera aproximación, esta prescripción es suficiente para el HERA, sin

embargo, para la luminosidad que se pretende alcanzar en el LHeC, no deben despreciarse las

contribuciones de los restantes diagramas. A continuación se presentan otras prescripciones

basadas en la cinemática del proceso.
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I Prescripción A. La masa del bosón Z es usada con frecuencia para separar fenome-

noloǵıa del ME y la de modelos nuevos.

dσep =

∫
dx′fi(x

′,MZ) · dσeql +

∫
dx′fi(x

′,MZ) · dσeqq +

∫
dx′fi(x

′,MZ) · dσeqint (5.30)

I Prescripción B. Se toma la transferencia de momento en la ĺınea leptónica.

dσep =

∫
dx′fi(x

′, Q2) · dσeql +

∫
dx′fi(x

′, Q2) · dσeqq +

∫
dx′fi(x

′, Q2) · dσeqint (5.31)

I Prescripción C. Se toma la transferencia de momento en la ĺınea de los quarks.

dσep =

∫
dx′fi(x

′, Q′2) · dσeql +

∫
dx′fi(x

′, Q′2) · dσeqq +

∫
dx′fi(x

′, Q′2) · dσeqint (5.32)

I Prescripción D. Se propone tomar el promedio de la transferencia de momento en

la ĺınea leptónica y la de los quarks.

dσep =

∫
dx′fi(x

′,
(Q2 +Q′2)

2
)·dσeql +

∫
dx′fi(x

′,
(Q2 +Q′2)

2
)·dσeqq +

∫
dx′fi(x

′,
(Q2 +Q′2)

2
)·dσeqint
(5.33)

I Prescripción E

dσep =

∫
dx′fi(x

′, Q′2) ·dσeql +

∫
dx′fi(x

′, Q2) ·dσeqq +

∫
dx′
√
fi(x′, Q2)

√
fi(x′, Q′2) ·dσeqint (5.34)
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Esta última prescripción se propuso como una ligera desviación del MP, con el

objetivo de darles el mismo peso a las PDFs asociadas a cada uno de los dos mecanismos

de producción (en la ĺınea leptónica y de los quarks) de la siguiente manera:

|Meq|2 = |
√
fi(x′, Q′2) · Meq

l +
√
fi(x′, Q2) · Meq

q |2, (5.35)

se puede notar en esta ecuación que cada matriz de amplitud de probabilidad va multiplica-

da por el promedio geométrico de su respectiva PDF, a diferencia del MP mostrado en (5.23).

5.3. Análisis de la Ambigüedad en la Elección de Q̃2

Empleando las prescripciones (5.30)-(5.34) y tomando los valores de la enerǵıa

total del sistema en el CMS, dados por
√
s = 300 y

√
s = 1300, hemos calculado la sección

eficaz. Los valores obtenidos se muestran en la Tabla 5.2.

√
s σep→eZXA σep→eZXB σep→eZXC σep→eZXD σep→eZXE

(GeV ) (10−37cm2) (10−37cm2) (10−37cm2) (10−37cm2) (10−37cm2)

300 0,587 0,682 0,763 0,803 0,909

1300 3,934 4,064 4,257 4,590 4,912

Tabla 5.2: Secciones Eficaces del proceso e+ p→ e+ Z +X para diferentes prescripciones

de Q̃2
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La Figura 5.7 muestra la sección eficaz del proceso, tomando las mismas prescrip-

ciones, ahora haciendo un barrido de las enerǵıas para el intervalo 300 ≤
√
s ≤ 1300GeV .

Los cálculos se hicieron tomando M2
Z = 91,2GeV , sin2 θW = 0,231 y empleando la ecua-

ción (5.19), la cual depende de dσeq quien a su vez tiene una dependencia con la enerǵıa a

través de la variable ŝ, como se puede ver en la ecuación (5.21).

Figura 5.7: Sección eficaz de la producción de Z0 a través del proceso e+p→ e+Z+X con

una enerǵıa total en el intervalo 300 ≤
√
s ≤ 1300GeV tomando las prescrpciones A− E.

Si analizamos los valores de la Tabla 5.2, podemos notar que la sección eficaz au-

menta al incrementar la enerǵıa total, este comportamiento es completamente esperado, ya

que, la sección eficaz es una medida de la interacción entre part́ıculas, se puede pensar como

una probabilidad de que ocurra cierto evento, aśı que, al aumentar la enerǵıa también au-

menta la probabilidad de ocurrencia. No obstante, la razón entre la sección eficaz a 300GeV

divida por la que se obtiene a 1300GeV es aproxidamente de 0,17 para cada prescripción

por lo que el aumento es proporcional en cada caso, aśı que el aumento en la enerǵıa no está

causando la diferencia en los valores de las secciones eficaces. Por otro lado, si se comparan

los resultados entre las prescripciones śı se nota una diferencia importante, siendo la más
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grande la comparación entre A y E, arrojando una desviación de 25 %, lo que significa una

diferencia de ≈ 104 bosones producidos. Tal discrepancia, será muy notoŕıa experimental-

mente y debe tomarse en cuenta para establecer una única prescrpción universal de Q̃2 para

este tipo de procesos.

Por otro lado, D y E solo son propuestas que aún no han sido empleadas, por

esta razón, se han tomado otras prescripciones encontradas con frecuencia en la literatu-

ra [81] [82] [83], las cuales son:

1) s que es la suma de los cuadrimomentos de las part́ıculas en el estado inicial, en otras

palabras, la enerǵıa total en el sistema de referencia del centro de masas.

2) Q′2 la transferencia de momento sobre la ĺınea de los quarks.

3) Q2 la transferencia de momento sobre la ĺınea leptónica.

4) B =

√
2stu

s2 + t2 + u2
.

La última opción es nombrada en este trabajo como B en honor a A. Belyaev,

quien es uno de los desarrolladores de CalCHEP [78], el programa usado para calcular las

secciones eficaces. La Figura 5.8, muestra la sección eficaz del proceso e + p → e + Z + X

para el intervalo 300 ≤
√
s ≤ 1300GeV .

Además, podŕıa pensarse que por tratar con una teoŕıa de perturbaciones, la elec-

ción de las escalas es ambigua per se. Por esta razón, en la Figura 5.9 se muestran las

secciones eficaces calculadas con los siguientes términos de la serie, es decir, a Leading

Order (LO) y Next to Leading Order (NLO), usando las mismas prescripciones1. Como

se puede notar, la sección eficaz es casi la misma al ser calculada a LO y NLO usando

la misma prescripción, sin embargo, śı se nota una diferencia importante si se cambia de

prescripción. Se puede concluir que la sección eficaz del proceso e+ p→ e+ Z +X no de-

pende de los términos más altos de la serie perturbativa, pero śı de la prescripción utilizada.

1Las unidades de la sección eficaz en la Figura 5.9 son los picobarns (pb), cuya equivalencia es 1 pb =
1 × 10−36 cm2.
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Figura 5.8: Sección eficaz de la producción de Z0 a través del proceso e + p → e + Z + X

con una enerǵıa total en el intervalo 300 ≤
√
s ≤ 1300GeV tomando las prescripciones 1)-

4).

Figura 5.9: Sección eficaz de la producción de Z0 a través del proceso e + p → e + Z + X

con una enerǵıa total en el intervalo 300 ≤
√
s ≤ 1300GeV tomando las prescripciones 1)-

4).
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Se ha demostrado que, para el proceso e+p→ e+Z+X, la ambigüedad que existe

en la elección del parámetro de la escala de enerǵıa, denotado como Q̃2, tiene repercusiones

importantes en la sección eficaz para las enerǵıas y luminosidades que se espera lograr en

los futuros experimentos, tal como el LHeC. Por esta razón, es necesario establecer una

prescripción universal de Q̃2.

Basados en argumentos cinemáticos, se han presentado algunas propuestas para

realizar dicha elección. Cabe mencionar, que la prescripción E podŕıa no ser tomada en

cuenta inmediatamente, dado que en ella se propone una desviación del MP, sin embargo,

no debe ser descartada ya que, todas las prescripciones proveen secciones eficaces medibles

y por lo tanto son susceptibles a ser comprobadas por el experimento.
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Conclusiones

La Dispersión Muy Inelástica electrón-protón (ep) ha sido estudiada ampliamen-

te en la literatura. De hecho, se han publicado muchos trabajos (ver por ejemplo [9], [79]

y [80]) considerando las enerǵıas y luminosidades que fueron alcanzadas por el acelerador

HERA (DESY, Hamburgo, Alemania) [8] y para las que se planea alcanzar en el proyectado

acelerador LHeC (CERN, Ginebra, Suiza). [10]

El propósito de este trabajo de investigación es contribuir al análisis de paráme-

tros involucrados en esta clase de dispersión con la finalidad de que, al tener acceso a más

altas enerǵıas y luminosidades, pueda saberse con certeza si se está midiendo una señal que

encaja con las predicciones del Modelo Estándar o si se está observando nueva f́ısica.

Por un lado, hemos establecido un escenario para el cual es posible observar la

producción de un quark top a través de un proceso de violación de sabor con el Higgs

neutro, tal posibilidad se presenta cuando los χ̃fij son de un orden de magnitud de ∼ 103.

Este panorama tiene repercusiones importantes, ya que, en el caso de medirse una señal de

este tipo, se estableceŕıan los valores de los χ̃fij y debido a que en el Modelo Estándar este

proceso solo aparece a nivel de un loop, se podrá establecer como señal para discriminar el

modelo teórico adecuado.

Por otro lado, presentamos el análisis de la dispersión muy inelástica electrón-

protón para la cual puede o no producirse un bosón Z0. Mostramos que en el caso para el

cual no se presenta tal producción, es decir, en una reacción e+ p→ e+X, la elección de

87
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Q̃2 no es ambigua ya que dicho parámetro se asocia con el momento transferido y en este

caso, el momento transferido en la ĺınea leptónica y el momento transferido en la ĺınea de

los quarks son iguales, por lo que cualquiera de ellos puede ser seleccionado para ser Q̃2.

Sin embargo, cuando se manifiesta un bosón Z0, el momento transferido ahora depende del

mecanismo de producción aśı que este ya no es igual en ambas ĺıneas y por lo tanto no se

puede escoger ineqúıvocamente a Q̃2.

Es importante aclarar que esta ambigüedad siempre ha estado presente, pero debi-

do a que la cantidad de Zs producidos por año no era muy grande, entonces no se presentaba

una desviación importante al calcular la sección eficaz utilizando diferentes prescripciones

para Q̃2. Por ejemplo, con base en los datos reportados en [77], calculamos que se produ-

jeron alrededor de 102 bosones Z0 en el acelerador HERA. Sin embargo, en el proyectado

LHeC [61] estimamos que se producirán 4 × 104, es decir, dos órdenes de magnitud más

de bosones producidos. Demostramos que esta diferencia de part́ıculas producidas entre un

colisionador y otro, causan desviaciones importantes en el valor de la sección eficaz, debido

a la ambigüedad que se manifiesta al escoger a Q̃2.

Con la finalidad de proponer una prescripción universal para Q̃2, presentamos un

análisis cinemático para el mencionado proceso, mostrando que una primera aproximación

puede ser hecha al tomar la mayor contribución de los diagramas de Feynman que describen

al proceso, concluyendo que Q̃2 puede ser asociada con la transferencia de momento en la

ĺınea de los quarks. Esta aproximación resultó útil para las luminosidades de HERA, no

obstante, para luminosidades más altas, el resto de las contribuciones no debe ser despre-

ciada, razón por la que además, propusimos otras prescripciones para escoger a Q̃2 y será el

experimento quien arroje cuál de ellas es la más adecuada, todo esto para que finalmente,

al realizar estudios posteriores de la Dispersión Muy Inelástica ep, se lleven a cabo usando

una única prescripción.
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Institute of Physics Publishing. ISBN 978-0-750-30865-6. OCLC 50812954

[60] Benedikt, M.; Zimmermann, F. (28 March 2014). The Future Circular Collider Study.

CERN Courier. Retrieved 4 July 2018.

[61] Fernandez, JL Abelleira, et al. A large hadron electron collider at cern report on the

physics and design concepts for machine and detector. Journal of Physics G: Nuclear

and Particle Physics 39.7 (2012): 075001.

[62] The SLAC-MIT experiment. J. I. Friedman, H. W. Kendall, and R. E. Taylor , Rev.

Mod. Phys. 63, 573 (1991).

[63] Feynman, R. P. (1969). The Behavior of Hadron Collisions at Extreme Energies. High

Energy Collisions: Third International Conference at Stony Brook, N.Y. Gordon &

Breach. pp. 237–249. ISBN 978-0-677-13950-0.

[64] Ellis, R. Keith, et al. Perturbation theory and the parton model in QCD. Nuclear Physics

B 152.2 (1979): 285-329.

[65] Adler, S. L. and W.-K. Tung (1969). Breakdown of Asymptotic Sum Rules in Pertur-

bation Theory. Phys. Rev. Lett. 22, 978-981.

[66] Bjorken, J. D. (1968). Current Algebra at Small Distances, in Proceedings of the In-

ternational School of Physics Enrico Fermi Course XLI, J. Steinberger, ed., Academic

Press, New York, pp. 55-81.



Bibliograf́ıa 95

[67] Matumoto, K. I. (1980). Bjorken scaling violation, QCD and models of quarks with

substructure. Progress of Theoretical Physics, 63(6), 2148-2151.

[68] Peskin, M. (2018). An introduction to quantum field theory. CRC press.

[69] Tung, W. K. (2001). Perturbative QCD and the parton structure of the nucleon. In At

The Frontier of Particle Physics: Handbook of QCD (In 3 Volumes) (pp. 887-971).

[70] Byckling, Eero, and Keijo Kajantie. Particle kinematics. (1973).

[71] CERN-LHC-CMS, CERN-LHC-ATLAS Collaboration, A. Giammanco, Single top

quark production at the LHC, Rev.Phys. v1 (2016) 1–12, [arXiv:1511.06748].

[72] Quadt, A. (2007). Top quark physics at hadron colliders. Top Quark Physics at Hadron

Colliders, 1-166.

[73] Goldouzian, R. (2015). Search for top quark flavor changing neutral currents in same-

sign top quark production. Physical Review D, 91(1), 014022.

[74] Arhrib, A., Benbrik, R., Chen, C. H., Gomez-Bock, M., & Semlali, S. (2016). 125GeV

Higgs decays into γγ, γZ and rare top quark decay in generic 2HDM. Nuclear and

particle physics proceedings, 273, 2430-2432.

[75] Flores-Sánchez, O., Hernández-Sánchez, J., Honorato, C. G., Moretti, S., & Rosado-

Navarro, S. (2019). Light charged Higgs boson production at future ep colliders. arXiv

preprint arXiv:1908.09405.
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