Eur. Phys. J. C (2021) 81:829
https://doi.org/10.1140/epjc/s10052-021-09626-3

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Reaction force of gravitational radiation in an effective-one-body
theory based on the post-Minkowskian approximation

Manman Sun!, Shuai Chen', Xiaokai He?, Jiliang Jing'*

! Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic
Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China
2 School of Mathematics and Computational Science, Hunan First Normal University, Changsha 410205, People’s Republic of China

Received: 6 May 2021 / Accepted: 6 September 2021
© The Author(s) 2021

Abstract Effective-one-body (EOB) theory based on the
post-Newtonian (PN) approximation presented by Buonanno
and Damour plays an important role in the analysis of gravi-
tational wave signals. Based on the post-Minkowskian (PM)
approximation, Damour introduced another novel EOB the-
ory which will lead to theoretically improved versions of
the EOB conservative dynamics and might be useful in
the upcoming era of high signal-to-noise-ratio gravitational-
wave observations. Using the 2PM effective metric obtained
by us recently, in this paper we study the radiation reaction
force experienced by the particle with the help of the energy-
loss-rate, which is an important step to construct the EOB
theory based on the PM approximation.

1 Introduction

Gravitational radiation plays an important role in astro-
physics and has attracted much attention since 1918 [1-
15]. The first detection of gravitational wave (GW) signal,
GW150914 [10], was published by LIGO and Virgo Col-
laboration on February 11, 2016, which verified the predic-
tion of Einstein’s general theory of relativity. Along with
the increasing gravitational wave detection events [11-15],
the era of gravitational wave astronomy has come. Gravita-
tional waves emitted by a coalescing compact binary system
carry information about the source, which can be extracted
from gravitational wave signals by using the matched filtering
technique [16], i.e., through cross-correlating the incoming
noisy signals with the theoretical templates. Since gravita-
tional wave signals are much weaker than the background
noises, it becomes crucial to study gravitational wave tem-
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plate in order to dig out real gravitational wave signals hidden
under noises.

Based on the post-Newtonian (PN) approximation, Buo-
nanno and Damour introduced an effective-one-body (EOB)
theory in 1999 [17], which was then applied to study the
gravitational waves emitted by a coalescing binary system of
compact objects [18-25]. The basic idea of the theory is to
map the relativistic two-body problem onto an effective one-
body problem, i.e., the motion of a test particle in an effective
background spacetime. In the EOB theory, one uses the fol-
lowing notations for the one-body quantities related to the
masses m and my of the real two bodies

mima

M:m1+m27 —’
mi + my

mo = 1.1
where M is the mass parameter that appeared in the effective
metric, and m( denotes the mass of a test particle.

The calculation of the reaction force is a key step to con-
struct the EOB theory, since the motion of a test particle is
affected by a reaction force due to the loss of energy and
angular momentum of the system in the process of the grav-
itational radiation. In a circular orbit, the reaction force can

be obtained from the relation [18], ]—"(;”C ~ — %, where

(%)d rc 1s the averaged energy-loss-rate along circular orbits
and ¢ is the angular velocity.

The energy-loss-rate for the gravitational radiation of
compact binaries has been studied extensively [26—-32], based
on the model that a test particle with mass m travels along
a circular orbit around a Schwarzschild black hole with the
mass M (M > mg). In such a model the stress-energy tensor
TH of the system is described by [33,34]

+00 UryY 4
TH = m()/ ¥ [xH — xé,‘(t)]dr,

—00 —8

(1.2)

where x* and xﬁ (7) represent spacetime events and the par-
ticle’s world line with tangent vector U* = dx‘ff /dt (t
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denotes the proper time), respectively. Gravitational waves,
induced by the motion of a particle with mass mq in the
background, may be explored in terms of black hole pertur-
bation theory. For the Schwarzschild spacetime, by using the
Newman—Penrose formalism, one found that the perturbed
Weyl fields can be described by the following inhomoge-
neous Teukolsky equation [35,36]

,d (1d
|:A e <Zd_r> + U(r):| R (r) = Tomo (1), (1.3)

dr

where A = r(r — 2M), U(r) is the effective potential and
Time(r) is the source term which is related to the stress-
energy tensor 7#". Based on Eq. (1.3), the energy-loss-rate
was first obtained analytically up to O(v>) beyond Newto-
nian by Poisson [26] and numerically up to O (v®) by Cutler
et al. [27]. By using the post-Newtonian expansion of the
ingoing-wave Regge—Wheeler functions X Z‘n, ahighly accu-
rate analytical calculation up to O(v®) was done by Tagoshi
and Sasaki [28,29]. In addition, the gravitational radiation
of the Kerr black hole was studied in Refs. [37—40], and a
system emits gravitational waves in which the particle’s orbit
evolves under radiation reaction was discussed in Ref. [41].

The post-Minkowskian (PM) approach is another use-
ful approximation method to deal with the relativistic two-
body problem, which has attracted extensive attention in
recent years. Cristofoli describe the computation of post-
Minkowskian Hamiltonians in general relativity from scat-
tering amplitudes [42]. Energetics of two-body Hamiltoni-
ans and the amplitude for classical scattering of gravitation-
ally interacting massive scalars are conducted at third post-
Minkowskian order [43,44]. Blanchet discuss the equations
of motion of N self-interacting massive particles in the first
post-Minkowskian approximation of general relativity [45].
Post-Minkowskian approach has been further explored and
extended in more recent papers [46—50]. In contrast to the PN
approach in which £ is assumed to be small, the PM approach
uses the gravitational constant G as an expansion parameter
and 7 is not required to be small anymore [51-55]. The EOB
theory based on the PM approximation was then introduced
by Damour in 2016 [56]. Through calculating the scattering
angles [33], it was found that, at the 2PM approximation,
the energy map between the real two-body energy £ and the
energy & of the effective particle takes the form [56-58]

& £ — m%c4 - m%c4

= . 1.4
2mimayct (1.4)

moc?

They also presented an effective Hamiltonian, but they did
not give the effective metric at the 2PM order.

In our previous paper [59], we derived the 2PM effec-
tive Hamiltonian from the investigation of the bounded states
and show that the energy map Eq. (1.4) is still held. More-
over, we have constructed an effective metric at 2PM order
by calculating the action variables and precession angles. In

@ Springer

this manuscript, we take a step forward to study the radia-
tion reaction force by calculating the energy-loss-rate d E /dt
based on the effective metric in the EOB theory at the 2PM
approximation.

The paper is organized as follows. In Sect. 2, we derive
the inhomogeneous Teukolsky equation and the correspond-
ing formal solutions via the Green function method. Then
we transform the homogeneous Teukolsky equation to the
Sasaki—Nakamura equation. We obtain the solutions of the
Teukolsky equation with the source in Sect. 3, and calculate
the reaction force acting on the particle in Sect. 4. Section 5
is devoted to conclusions and discussions. We use the unit
with ¢ = 1 throughout the paper in the PM framework.

2 General formulation

In this section, we present explicit expression of the inho-
mogeneous Teukolsky equation, which describes the gravita-
tional radiation induced by the motion of an effective particle
in an effective background. The Teukolsky equation with-
out source is then transformed to the corresponding Sasaki—
Nakamura equation.

2.1 The Teukolsky equation

We study the model that an effective particle with mass mg
moves around a spherical symmetry black hole with total
mass M = mj + m» in a circular orbit. The background
geometry is given by the effective metric at 2PM which cor-
responds to a spinless real two-body system

ds;; = Adr* — Bdr® —r* <d92 + sin’ edwz) @D
with
26M GM\*  (r—r)(r —
. +a2< ) _ r1)§r rh)7
r r r

D12 GM\?
B=——, Di=1+d|\— ) , 22)

A r

where a and d; are dimensionless parameters, | = (1 —
JT—a)GM andr, = (1 + /1 —a2)GM.

To calculate gravitational radiation from a particle orbiting
around a spherically symmetric black hole, we first present
the Teukolsky equation. In a spherical spacetime given by
Eq. (2.1), the decoupled equation for W4 becomes [35]

|:(A +3y — 7 +4u+ @) (D — p) — (8 +2a)(8 — da) — 3\1}53}114

= §T4, (2.3)

where y, 1, p, « are spin coefficients, A, D, § are differential
operators, Wy is a component of Weyl tensor and k = 87 G
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is a constant. By decomposing Wy

+0o0 R .
Wy = / do) “”r—‘;’(r) Y@, @) (24
tm

—00

and considering the integral relationship between 74 and
Tyme(r)

—iwt

Pe +00 —e
cn= [ 3 2T 9T )

from Eq. (2.3), one may obtain the inhomogeneous Teukol-
sky equation

A d 1 A d
|:r4A\/;dr (}‘2142\/;&1}’) + V(r)i| Rimo(r) = Tome (1)

2.5)

(2.6)
with
1 2 4/ . /
V) = W{r A <8w)B«/AB _ BA)
—i—4A2 (B + 2rB’) +rA [4ra)2B2 —rA'B’
+2B (—Siw\/AB £ 8A 4 rA”)]} — 12,
2.7

where A = (£ — 1)(£ +2) is the eigenvalue of spin-weighted
spherical harmonics _» Yy, (0, ¢), and Ty, (r) is the source
term. For a particle with the energy momentum tensor [34]

o M0 pgnyvs r— )8 (60— Z) 8(p —
ABr? sin 07 ( 0) ( 2) @ )
(2.8)
where / = dt /dt, the source term Ty, () is given by
Kk 4
Tomw = 1 2/(€ — 1)L + 1)(€ + 2)r*0 Tome ()
27206 = D+ 2)r*ALFP AT Tome(r)
+rA£r4A_1£r_2Tgmw(r)], (2.9)

with

moE [A T
0Teno(r) = o5\ 58 =r0)0¥e (5.0) 8@ — m),

8mr?

imoL

A5 Y (” 0)5( Q)
m E (r —ro) -1 tm E' w — maia),

. —moiz\/j 1
i) = [ 28 ¢ = r0) 2Yem (3,0) 80— m),
(2.10)

1 Tomew(r) =

where §(r) is the Dirac delta function, £ = \/% 0 +iw, E

and L are energy and angular momentum of the particle in a

circular orbit which are given by
ar(GM)?2 +r(r —2GM)
r2a(GM)2 + r(r —3GM)
_ rGM@r —ayGM)
V2a:(GM)2 + r(r — 3GM)

E =

~

@2.11)

By using the Green function method [60], the solution of
Eq. (2.6) at infinity can be expressed as

rleior” 0o . .
Rome(r = 00) = 7‘/ dr R Tome(r)r—"y/B/A3

2iwBi" Jy,

(2.12)

where RZ‘D (r) is the homogeneous solution of Eq. (2.6) which
is given by

. Dy Azefiwr* P — —o0,
Ry, (r) = {rSgZau)teiwr* 4B eTior s foo, (2.13)
and where the tortoise coordinate is given by r* = r +

2GMby In(r — r1) — 2GMbs In(r — rp), with

b (GM)? + 1}

B _ d(GM)? +r}
C2GM(ri— 1)’

! T 2GM(r —rp)

2

2.2 The Sasaki—Nakamura equation

It is difficult to solve Eq. (2.6) directly, since for this case
the source term is included. Therefore, we first consider the
solution of the homogeneous equation without the source
term, and then study the role of the source term. To do so,
we transform the Teukolsky equation without a source into
the Sasaki—Nakamura equation.

Teukolsky equation (2.6) without source term can be
rewritten as

d d
A—B— + V() |Ry,(r) =0, (2.14)
dr dr
with
A 1 A
A=r*Al=, B=——,/~=. 2.15
"B 2A2\ B 2.15)
The general transformation of Ry, can be taken as
. B .
Xtw = ARy + — Ry, (2.16)

AB

where o and 8 are functions of r, and a prime denotes the
derivative with respect to r. By using Eq. (2.14) and taking
the first derivative of Eq. (2.16) with respect to r, one obtains
the inverse transformations

Ry, = ! <Z B )
Lo = Y Xlw ABX(zw ,

, 1 , V(@) /
Ry, = " |:— <Ol - W) Xtw +axew} ,

2.17)

(2.18)
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where

_ BY_BE
Z“”(E) AB B’

_ o, B, B

y =aZ 1B |:Ol (AB)ZV(r):| .

By taking the first derivative of Eq. (2.17) and using
Eq. (2.18), we obtain the equation of motion of xg,,

d? dB "N\ dxew
AL Lle | <AE - AB”7) X ) e = O,

dr? dr
(2.19)
where
AB)? [ d '
vy = v+ D Lorzy— 20|,
B Ldr Y
Taking the transformation
2
4 r Ry,
P [%L_ <r—2)} , (2.20)

where L_ = 75 —iw = /5 4; — iw, and comparing the

coefficients of Egs. (2.16) and (2.20), we get « and S as

2 1
a=r‘L_ |1 (=)]|-aBV@)
Tl AB T \r2 ’
3 d [(AB dA
=rAB| -2irovAB + —— | — — .
p=r |: e +Bdr<r2)+rdri|
(2.21)
Now we introduce a new function
Xew = HX oy, (2.22)

then Eq. (2.19) reduces to the Sasaki-Nakamura equation
3 [d_z .
dr+2

with

Ay’ d
B y dr*

+ U(r):| Xyp =0, (2.23)

~ 1 ! d

Ur) = —= [HU(r) +AB)/—H’ — A—(BH/)i| .
r 1% dr

H=rA.

Then the asymptotic solutions of X E’Z) can be expressed as

; Cy e~ior” r* — —oo,
Xlﬁrzlu(r) = {Azz))zeiwr* + AZloe_iwr* P = 400, (2.24)
where A’Z’Zo is related to Béz) appeared in Eq. (2.13) as

. 1 .
B! = _mAZKZ' (2.25)

@ Springer

3 The solutions of the Teukolsky equation

In this section, we first study the solutions X Z} and ampli-
tudes A’@’ZU of the Sasaki—Nakamura equation, and then look
for the solutions of the Teukolsky equation with source.

3.1 The solutions of the Sasaki—Nakamura equation

The method employed in this subsection is mainly based
on the work of Sasaki [28] and Mino et al. [38]. We first
introduce the variable z = wr, and take the ansatz

Xin = ¢~ 2GMolbi InG=21GMo)—by Inz—2GMo)] g, ()

w 9
G.1)

where ¢; = HEvl=@ Vzl_“z and ¢, = 1==a2 Vzl_“z Inserting Eq. (3.1)

into Eq. (2.23) and expanding it in powers of 2GMw, we
obtain

LO] =2GMoLV[E] + QGMw)’LP[&],  (32)
where
> 2d LE+1)
R Al
(3.3)
L 1d> 142izd 4+z-i+2)
zdz? 2 dz 23 ’
(3.4)
Lo _ Ca d* [a2(12+iz(12+x(2+x)))
472 d72 22302+ 1)
+d2(—12+5k(2+k) - iz(12+/\(6+x)))]i
223024 1) dz
ar(48 4+ 48iz — 4r — 812 — 2224 4+ 12 + 1))
_[ 4792+ 1)
+2d2(—24—4iz(6+x))—x(3+A)(8+A)+z2(12+x(6+x))]
4240241 '
(3.5)

In the low frequency limit and by noting that 2G M w only
appears on the right-hand side of Eq. (3.2), we may look for
the solution of &;(z) perturbatively in terms of € = 2GMw,
ie.

g =) €"e" (), (3.6)
n=0

and one obtains the recursive equations from Eq. (3.2)

L(O)[Sén)] — Wé(n)’ 3.7
where

Wz(O) -0, (3.8)
W,z(l) _ L(l)[S((O)]’ 3.9)
Wi = LV + L) (3.10)
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The general solution of Eq. (3.8) corresponding to the case
ofn =0is

5" =a®jo+pOne, G.11)

where j, and n, are usual spherical Bessel functions. Con-
sidering the boundary condition that Se(") isregularatz = 0
forn < 1, we have & éo) —_— Jje, and for convenience and
without loss of generality we set o) = 1, and thus we have
Eéo) = j¢. To calculate the cases for n > 1, we rewrite
Egs. (3.9) and (3.10) in the indefinite integral form by using

the spherical Bessel functions

4 Z
gé’”:,u/ dZZZJ‘lW;"Ljef Az W (n=1,2). (3.12)

The solution of Eq. (3.9) corresponding to the case of n = 1
is given by

-1 +3
él(l): ( )( ) . _[

200+ nee+ 7!
-2

1
200 — jeno) i !
+2z7(nejo Jzno)Jo-&-;(k-i-

02 —4 N 20117 .
w0+ 1) T ee—n !

1 SO .
[ I)Z (e jk — jenk) jk

D e+ B ne,
(3.13)

+ny (Ci2z —y —In2z) — jiSi2z +ijelnz + &

where Six = [ drsint/t and Cix = — [ drcost/t are
the sine and cosine integral functions, respectively. We set
the integration constant aél) = 0 for simplicity, and then the
regular boundary condition of zéz(l) lead to ,B(l) = 0.

Then X in may be obtained from &, straightforwardly. In

general, 3; may be decomposed into real and imaginary

parts, denoted by f, ™ and gé”), respectively, i.e.

£ — ) g, (3.14)

Inserting this expression into Eq. (3.1) and expanding the
result with respect to €, we obtain the conventional expansion
of X" as

XO = 5O = gy X0 = ®

Xg =2 [(2) + (b — bz)zjz(lnz)z], (3.15)

To evaluate AZ” , we only need to examine the asymptotic

behavior of &, ™ at infinity. For this purpose, we present the

(n)

asymptotic form of f,"" at z — oo as

£ = PP+ 0ne (n=1.2), (3.16)
with
1 1
PO = pV,
Q(l) (1) — (b1 — b)) Inz,
P® = p,§2> + (b1 — b)g!" Inz — (b1 — b2)*(In2)?,

0% = 4@ _

1 —b)pMInz, (3.17)

where pfz") and qé") are constants, and ple) and qél) can be
obtained from the asymptotic behavior of &, M at z— 0.

Now we can read off the incident amplitude A +, form the
asymptotic form of X ”;, which is

Azg}; _ Eii—&—le—telne(«/l—az) [1 +e <p(1) + lq(l))

+€ ( (2)+1q52))+ ]

The iterative equation (3.10) for the case of n = 2 con-
sists of the terms of L(l)[gél)] and L® [éz(o)]. The result

of L“)[Eél)] is the same as the counterpart obtained by
Sasaki [28], and L® [& E(O)] is our correction term. Note that
Eq. (3.15) is related to the real parts fe("), where fi(l) can

be easily obtained from the Eq. (3.13), fe(z) can be acquired
from Eq. (3.12), and for the case of £ = 2 we have

(3.18)

f(z) 389 . 113 +1‘+B()‘
7012/0 420211 7,J3 n(2)J2

B (s + C(2) 5 5 3 107 |
—Bi(2)n oy —Iny = Zpg— —
jznz < 62 2 3711 Z"O 210.12

@) 5 . 5. 3.
< 6zJ2 3jl ZJo

107 107 1
310" 2) = yig2 e = 5’ + 0y s
N, c Loy Lg !
+M (840 @D j2+ o= 340 M2 + 340 (2)n2 — mnz
1 33—z Ny (2 N3 ja
0™ T3 > 840z< ’2_’)+420z2’ (3.19)
with
M =41+ 1lay + 2T + ),
Ny = —1687 — 188ar +4J +2),
Ns = 2527 + 102ap + 97 — 48Y + 7Qas + V)72,
(3.20)
where
_ @244+2Q2+ 0] 2[12+ A6+ )]
A2+ ) A2+x)
g day (222 + 1 —12) 20430 +8) 48y
- AL +2) rAt2 AL +2)
B 24a, 24d,
Y= [m T 1%] . 321)

Note that here B, (z), Bj(z), C(z) and S(z) are as defined in
[28]. The asymptotic behavior of f, @ ig easy to evaluate at
7z — 00, by comparing Eq. (3.16), the amplitude A2w upto
0(€2) is found to be

, 5 428 — N
Ain = je—i€n2e(V/T=az)+y) exp <l€7 _ie2 l”)

3 1680
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e[ B e (T oM im (y +1n2)”
x{l e [18+24n +<210 ) 2 +7(y+ln2)—fi|}. (3.25)
+2a26(4)-y} +} (3.22)
Next, we consider Xle’clu Inserting fe(n) into Eq. (3.15) we
Similarly, we may derive obtain
o ~ 13,780 — A , 2P ! 13z* daz
AL = ~e ie(ln2e(vT=az2)+y) exp (le— —ie? ) X - _ = 4 * = 2 422
2 6 5040 =15 210 " 7560 T\ w0 ) T\ )
L[5 s (1B N sos g
x{l ez+e[72+z4n +(42 2500 ) T1n2) Xg":Z—— b4 Z
@ 105 1890 = 83160
2a +Y 3 5 2
+ BRI € z z o daz
0 ("1 "o0) T om0 )
Aﬁ("u = lie*"é(l“k(ﬁ)“’) exp (ieﬂ — i62737704 —5Ns > 5 7 9 4 6
2 60 332640 in _ 2 o2 Z z
(oo 2222005 5 (1571 NS 40 = 945 20790 " 1081080 <\ 630 _ 9900
2 7200 24 6930 33264 ) 1 @ d 3
2 — . 3.26
( £1n2) + “;5;3’]+...}, (3.23) e (1764 50, 1764)Z (3.26)
with By using the transformation given by Eq. (2.17), we obtain
the corresponding solutions R} of the Teukolsky equation
Ny = 4(45T +23ay +27 + ), without the source
N5 =24(777 +39a; + 2T + ). (3.24)
‘ Lo i 11 i 238 iz’
The corresponding incident amplitudes By for the Teukol- @Ry, = 30 + 45 1260 420 ' 45360 ' 11340
sky function can be obtained from Eq. (2.25) A3

BZL — 8;2 e—ie[ln(e«/l—az)]

1+ 3 -5 o +ma]+d]
x3l+€e|l————i(y+In2)|+e¢€
3 2
i (—457 4 60ay — 40d,)
+ 420
572 457 — 60ay + 40d>
T 210
(y +1n2)?

Sl

1 e—ie[ln(e«/ 1—ay)]
8w?

l+e| 22T iy +m2)
% DT
€ 6 ) i(y +1In
9ay —49d,  im(=52+3ay —2dy) 57l

2 —
+e [ 700 2 T
52 — 3ap + 2d,

21

ar — 9d»
60

(y +1In2)
i T
+%(V +In2) —

in __
B3a)__

(y +In2)

(y +1n2)?
S|
_#eﬂ‘e[ln(eﬁ)li] + E[% _ % —i(y+1In 2)i|
5[ 29a; — 149d,
[ 3780
i (37561 — 1356a; + 904d>)
B 27720
572 37561 — 1356a; + 904d,
toa T 13860

im
+7(V +1n2) —

in __
B4a) -

(y +1n2)

@ Springer

- iz 4175 31iz°
te|l 4= — = — = — ==
15 60 3780 3780

+62[(4 +2a —3dy)z* (124 3a; — 2d2)z3]

120 720
. 5 iz6 77 iz 2977
wR3, = — + - - +
630 1260 3780 16200 = 2494800
+e€ <_—Z4 - i - iz )
252 756 9450
62[(20 + 5a — 7d2)z3]
6300 ’
z8 iz’ 1378 iz’

in

R =
@Riv = 11330 ©

28350 1247400 467775

71710 -7 11iz° 13177
+ +e - +
194594400 3780 136080 = 18711000
(3.27)

N 2[(540 +103a, — 141d2)z4]
€ .

1905120

3.2 The solution of the Teukolsky equation with the source

In order to obtain the solution of the Teukolsky equation with
the source term, we rewrite the source term 7y,,, schemat-
ically in the form of summation, by applying a differential
operator to s Tpme (1)

Tymw =27G Z sPt sDw s Tomo (1), (3.28)
s
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where the functions Ty (7) is given in Eq. (2.10), the con-
stants g py are

2[(€ — De + HE+ 212 s=0,

spe =1 2206 — (L +2)]'/2 s=—1, (329
1 s = -2,

and the differential operators are
r4 s =0,

Dy = { rPALPA™Y s =1, (3.30)
FALF*ATILr s = 2.

Now by using the inhomogeneous Teukolsky variable at
infinity Eq. (2.12), we get

Reme
rleior*

o0 .
Zimew = = I:leBZ!l)] / dl’}’_4 B/A3R22)Temw(r)’
Tn
(3.31)

where Zimew = Zime (r). From Egs. (2.9) and (3.31), we see

that Z tme takes the form
Zimw = Zimd(® — mQ). (3.32)

To carry out the integral in Eq. (3.31), we define an inner
product as

+00
(g1, 82) :=f drr=* B/A3grg. (3.33)
Th
By making use of the relations
(LT, R) = (ST, cTR), (3.34)
(sDo 5T, R) = (T (D} R) , (3.35)
with
Lh=—r*ALr—4A !, (3.36)
— A d
L=,/———iw, (3.37)
B dr
rt s =0,
sDf = —r7Lr=2 s =—1, (3.38)

it can be deduced that

G _
n {[\/ B/A3opeoTim +2A7" _ipe 1 Tom

T
Zom = 21
tm iwB!

Low
X <1

iwrg ) / 1 T
Zm —2Pt —214m

|: < / roA/ )

iwrg— | —iwrg +

3ro B’

“FT X + — B gw(”())
1 1
—A7 _1pe 1Ty —2 1B —2pe —2Tem

x[iwro\/:+ 1+ — 1 (2 + Z)HVOR '(ro)

1

+ —ope —2Tem ro R”’”(Vo)}~

2B (3.39)

4 Reaction force

In this section, we first present an analytical expression for
the energy-loss-rate d E /dt of gravitational waves, and then
derive the radiation reaction force acting on a particle.

4.1 Energy-loss-rate

By noticing the symmetry of the spin weighted spherical har-
monics Yy, (5,0) = (— 1)+ Y (%, 0) and by using
Eq. (3.39), we have Z; _, = (— l)ngm, where Zg,, is the
conjugate of Zy _,,. In terms of the amplitudes Z,,, the grav-
itational waveform at infinity are given by [26,28,61]

2 1 ; *
hi —ihx =23 " —Zom 2Yem(@, @)e 7, (41)
r tm @
and the energy-loss-rate is described by [26,29]
dE _ s | Zow 1P
= 4.2
t Z Z 27 w? (42)

By substituting Eq. (3.39) into Eq. (4.2), we may obtain the
explicit form of the energy-loss-rate for the case we consid-
ered in this paper.

In order to show the difference between our results and
that obtained by Tagoshi and Sasaki [29], we list a few cases
of the energy-loss-rate (4.2) we obtained as follows

2 2 4 4
dE/dty=2,m=2) = Gzromoa)6 ! _ % + To®
’ 10 126 2646
2 2
9/2 2 rsw
—GMV e 0
45 189
7
+G Mr0m0w6 Tro®
18 5
16r2w? )
S el WPCLE VETE N TE M W) (i
189 27 45
36 + 4ay — 27ds)
G M2r2m2ab| € ,
+ romow 23
8 22r2w?
3 6 0
dE/dty=2m=1) =G Mromoa) (45 045 >

_G7/2M3/2r07/2m3w7<i>

135
2 8ay
G*M22 of -2 _ 22 )
+ romoa) ( 5 45>
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dE/d1 G2 romiot (L _ 0
(t=3m=y = G rgmie 756 9072

_G5/2M1/2ré3/2m%w9 1
1512
23
3024 )’

1
dE/dt (=3 m=2) = G3Mr0m0w8(504>

+G3Mr8m(2)a)8 (—

1
26 2 8 _
dE/dt@e=3m=1) = G rompw (1260

rng 5/2001/2.13/2 2 of 1
-2 ) -G?mY ro” Tmyw’ | s
15120 7560

—G3MrIm2
700 (15120)
1
dE/dti—s mes) = G*rémiw'®
fdi=am=4) = G romyw 7| 257
1
dE /dt(g—a mer) = Grimio' ——— ). 4.3
/At =4,m=2) Mo\ 157008 (4.3)

Noting w = m,/GM/ rg for a given radius ro and using the
above results, we find that the energy-loss-rate at 2PM order
can be expressed as

dE _ 32mj (GMY’ 1247GM ,(GM 32
— = - — T
it~ 5 M? 336 1o

ro
44711 M\?
- ) (%) |
ro

47a2
9072 36
It is shown explicitly that the energy-loss-rate dE/dt is
related to the parameters a> and d», and the 2PN results
obtained in the Schwarzschild background [29] can be recov-
ered when ap = 0 and d», = 0.

ro

4.4)

4.2 Reaction force

In this subsection, we calculate the reaction force acting on
a particle. Considering quasi-circular motions and ignoring
the radial damping force 7., Damour and Buonanno showed
that the difference between the numerical results in the case
of F, = 0and non-zero radial force is quite small. Therefore,
we can obtain the reaction force by using the rate of energy-

loss
1 oo /L ZZ |
circ __ __ — m
A==y el @9
=2 m=1
For simplicity, we consider the case with equal mass, i.e.,
v = ‘—IL, and study the reaction force .7-';"’ ¢ with an orbital
phase ¢ = 0 at ro = 20 for different £ and m modes on
the 2PM effective metric in the EOB theory. We present

the energy-loss-rate upto the 2PM approximation with a; =

@ Springer

Table 1 The reaction force for different £,,m modes at 2PM approxi-
mation of energy-loss-rate in the EOB theory, the total reaction force
Fo'¢ =4.36336 x 1072 in this case

=2 =3 =4

m=1 6.05019 x 1078  2.10471 x 10710 2.05004 x 10~14
m=2 4.14183 x 1075  9.18419 x 10~° 1.45781 x 10710
m=73 1.88305 x 107° 9.41523 x 10710

m=4 2.61239 x 1077

Table 2 The reaction force for different £, m modes for Zom does not
expanded in the EOB theory, the total reaction force '™ = 4.23409 x

1075 in this case
=2

=3 =4

m=1 647389 x 1078 238064 x 10710 1.64877 x 10714
m=2 3.96520 x 1075  8.40678 x 10~° 1.12650 x 10~10
m=73 2.43720 x 1070 7.85002 x 10~10

m=4 1.82756 x 1077

6(1 — ML)y = 1 4 3" and dy = —2 + 252 in
Table 1, and show the reaction force for the case that Zy,,
does not expanded in Table 2.

It can be seen from these tables that the reaction force is
mainly determined by the £ = m = 2 mode. Therefore, we
only compare our results with those obtained in other back-
grounds for the particular case of the £ = m = 2 mode. From
Table 1, we obtain the reaction force Fopy = 4.14183 x
107 at the 2PM approximation of the energy-loss-rate. We
also derive the reaction force Fapys sen = 4.12319 x 1072
for the case ap = d» = 0, which is the same as the result
obtained by using the 2PN expansion of the energy-loss-rate
in Schwarzschild background [29].

5 Conclusion

Gravitational waves produced by coalescing binary system of
compact objects have become the promising candidates for
the ground based laser interferometric detectors. In order to
detect gravitational waves, the theoretical templates are nec-
essary. To construct gravitational waveform templates, the
EOB formalism was put forward with the aim of analytically
describing the gravitational wave signals emitted by coalesc-
ing binary black holes. The basic idea of the EOB theory is
to map the relativistic dynamics of a two-body system (with
masses m1, mo) onto the relativistic dynamics of an effec-
tive test particle with mass mg = mmo/(m| + m>) moving
in an effective metric background of mass M = m| + my.
The EOB theory is initially based on the PN approximation
(v/c is assumed to be small). In 2016, Damour [56] intro-
duced another EOB theory based on the PM approximation
in which Z is not required to be small anymore.
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To construct the EOB theory based on the PM perturba-
tion, the calculation of reaction force is a key step because
the motion of test particle is affected by a reaction force due
to the loss of energy and angular momentum of system in the
process of gravitational radiation. The reaction force for the
case that a test particle with mass m travels along a circu-
lar orbit around a Schwarzschild black hole based on the PN
approximation was studied in Refs. [26—32]. In this paper we
analytically studied the reaction force acting on the effec-
tive particle during the gravitational radiation of compact
binaries based on the PM approximation in the EOB theory.
First, we derived the inhomogeneous Teukolsky equation of
gravitational perturbation on the effective metric, and trans-
formed the corresponding homogeneous counterpart into the
Sasaki—Nakamura equation. Second, we obtained the ana-
lytic solution X ZZ of the Sasaki—Nakamura equation and the
corresponding amplitude expressions A}’ . Third, we got the
corresponding solution R;’Z) of the Teukolsky equation with-
out the source and amplitudes Bé’o’) through the transformation
equations. Finally, we found the solution of the Teukolsky
equation with the source, which was expressed in terms of
amplitudes Zy,,. With the solution of the Teukolsky equation
at hand, we may derive the energy-loss-rate d E /dt and the
corresponding radiation reaction force.

We observed that, the £ = m = 2 mode is the domi-
nant term for the reaction force with the 2PM energy-loss-
rate. Our results are quite close to the values obtained by
Buonanno and Damour with the Pade approximation method
[18]. We also show that the reaction force at the 2PM order
for the case of ap = 0 = d» is the same as the result obtained
by using the 2PN expansion in Schwarzschild background
[29]. In the next step we would like to calculate the reaction
force to higher-order PM approximations and generalize it
to a binary system with spin.
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