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Abstract Effective-one-body (EOB) theory based on the
post-Newtonian (PN) approximation presented by Buonanno
and Damour plays an important role in the analysis of gravi-
tational wave signals. Based on the post-Minkowskian (PM)
approximation, Damour introduced another novel EOB the-
ory which will lead to theoretically improved versions of
the EOB conservative dynamics and might be useful in
the upcoming era of high signal-to-noise-ratio gravitational-
wave observations. Using the 2PM effective metric obtained
by us recently, in this paper we study the radiation reaction
force experienced by the particle with the help of the energy-
loss-rate, which is an important step to construct the EOB
theory based on the PM approximation.

1 Introduction

Gravitational radiation plays an important role in astro-
physics and has attracted much attention since 1918 [1–
15]. The first detection of gravitational wave (GW) signal,
GW150914 [10], was published by LIGO and Virgo Col-
laboration on February 11, 2016, which verified the predic-
tion of Einstein’s general theory of relativity. Along with
the increasing gravitational wave detection events [11–15],
the era of gravitational wave astronomy has come. Gravita-
tional waves emitted by a coalescing compact binary system
carry information about the source, which can be extracted
from gravitational wave signals by using the matched filtering
technique [16], i.e., through cross-correlating the incoming
noisy signals with the theoretical templates. Since gravita-
tional wave signals are much weaker than the background
noises, it becomes crucial to study gravitational wave tem-
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plate in order to dig out real gravitational wave signals hidden
under noises.

Based on the post-Newtonian (PN) approximation, Buo-
nanno and Damour introduced an effective-one-body (EOB)
theory in 1999 [17], which was then applied to study the
gravitational waves emitted by a coalescing binary system of
compact objects [18–25]. The basic idea of the theory is to
map the relativistic two-body problem onto an effective one-
body problem, i.e., the motion of a test particle in an effective
background spacetime. In the EOB theory, one uses the fol-
lowing notations for the one-body quantities related to the
masses m1 and m2 of the real two bodies

M = m1 + m2, m0 = m1m2

m1 + m2
, (1.1)

where M is the mass parameter that appeared in the effective
metric, and m0 denotes the mass of a test particle.

The calculation of the reaction force is a key step to con-
struct the EOB theory, since the motion of a test particle is
affected by a reaction force due to the loss of energy and
angular momentum of the system in the process of the grav-
itational radiation. In a circular orbit, the reaction force can

be obtained from the relation [18],Fcirc
ϕ � − ( dEdt )circ

ϕ̇
, where

( dEdt )circ is the averaged energy-loss-rate along circular orbits
and ϕ̇ is the angular velocity.

The energy-loss-rate for the gravitational radiation of
compact binaries has been studied extensively [26–32], based
on the model that a test particle with mass m0 travels along
a circular orbit around a Schwarzschild black hole with the
mass M (M � m0). In such a model the stress-energy tensor
Tμν of the system is described by [33,34]

Tμν = m0

∫ +∞

−∞
UμU ν

√−g
δ4[xμ − xμ

p (τ )]dτ, (1.2)

where xμ and xμ
p (τ ) represent spacetime events and the par-

ticle’s world line with tangent vector Uμ = dxμ
p /dτ (τ
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denotes the proper time), respectively. Gravitational waves,
induced by the motion of a particle with mass m0 in the
background, may be explored in terms of black hole pertur-
bation theory. For the Schwarzschild spacetime, by using the
Newman–Penrose formalism, one found that the perturbed
Weyl fields can be described by the following inhomoge-
neous Teukolsky equation [35,36][

�2 d

dr

(
1

�

d

dr

)
+U (r)

]
R�mω(r) = T�mω(r), (1.3)

where � = r(r − 2M), U (r) is the effective potential and
T�mω(r) is the source term which is related to the stress-
energy tensor Tμν . Based on Eq. (1.3), the energy-loss-rate
was first obtained analytically up to O(v3) beyond Newto-
nian by Poisson [26] and numerically up to O(v6) by Cutler
et al. [27]. By using the post-Newtonian expansion of the
ingoing-wave Regge–Wheeler functions Xin

�m , a highly accu-
rate analytical calculation up to O(v8) was done by Tagoshi
and Sasaki [28,29]. In addition, the gravitational radiation
of the Kerr black hole was studied in Refs. [37–40], and a
system emits gravitational waves in which the particle’s orbit
evolves under radiation reaction was discussed in Ref. [41].

The post-Minkowskian (PM) approach is another use-
ful approximation method to deal with the relativistic two-
body problem, which has attracted extensive attention in
recent years. Cristofoli describe the computation of post-
Minkowskian Hamiltonians in general relativity from scat-
tering amplitudes [42]. Energetics of two-body Hamiltoni-
ans and the amplitude for classical scattering of gravitation-
ally interacting massive scalars are conducted at third post-
Minkowskian order [43,44]. Blanchet discuss the equations
of motion of N self-interacting massive particles in the first
post-Minkowskian approximation of general relativity [45].
Post-Minkowskian approach has been further explored and
extended in more recent papers [46–50]. In contrast to the PN
approach in which v

c is assumed to be small, the PM approach
uses the gravitational constant G as an expansion parameter
and v

c is not required to be small anymore [51–55]. The EOB
theory based on the PM approximation was then introduced
by Damour in 2016 [56]. Through calculating the scattering
angles [33], it was found that, at the 2PM approximation,
the energy map between the real two-body energy E and the
energy E0 of the effective particle takes the form [56–58]

E0

m0c2 = E2 − m2
1c

4 − m2
2c

4

2m1m2c4 . (1.4)

They also presented an effective Hamiltonian, but they did
not give the effective metric at the 2PM order.

In our previous paper [59], we derived the 2PM effec-
tive Hamiltonian from the investigation of the bounded states
and show that the energy map Eq. (1.4) is still held. More-
over, we have constructed an effective metric at 2PM order
by calculating the action variables and precession angles. In

this manuscript, we take a step forward to study the radia-
tion reaction force by calculating the energy-loss-rate dE/dt
based on the effective metric in the EOB theory at the 2PM
approximation.

The paper is organized as follows. In Sect. 2, we derive
the inhomogeneous Teukolsky equation and the correspond-
ing formal solutions via the Green function method. Then
we transform the homogeneous Teukolsky equation to the
Sasaki–Nakamura equation. We obtain the solutions of the
Teukolsky equation with the source in Sect. 3, and calculate
the reaction force acting on the particle in Sect. 4. Section 5
is devoted to conclusions and discussions. We use the unit
with c = 1 throughout the paper in the PM framework.

2 General formulation

In this section, we present explicit expression of the inho-
mogeneous Teukolsky equation, which describes the gravita-
tional radiation induced by the motion of an effective particle
in an effective background. The Teukolsky equation with-
out source is then transformed to the corresponding Sasaki–
Nakamura equation.

2.1 The Teukolsky equation

We study the model that an effective particle with mass m0

moves around a spherical symmetry black hole with total
mass M = m1 + m2 in a circular orbit. The background
geometry is given by the effective metric at 2PM which cor-
responds to a spinless real two-body system

ds2
e f f = Adt2 − Bdr2 − r2

(
dθ2 + sin2 θdϕ2

)
, (2.1)

with

A = 1 − 2GM

r
+ a2

(
GM

r

)2

= (r − r1)(r − rh)

r2 ,

B = D1
2

A
, D1 = 1 + d2

(
GM

r

)2

, (2.2)

where a2 and d2 are dimensionless parameters, r1 = (1 −√
1 − a2)GM and rh = (1 + √

1 − a2)GM .
To calculate gravitational radiation from a particle orbiting

around a spherically symmetric black hole, we first present
the Teukolsky equation. In a spherical spacetime given by
Eq. (2.1), the decoupled equation for 
4 becomes [35]

[
(� + 3γ − γ̄ + 4μ + μ̄)(D − ρ) − (δ̄ + 2α)(δ − 4α) − 3
B

2

]

4

= κ̂

2
T4, (2.3)

where γ , μ, ρ, α are spin coefficients, �, D, δ are differential
operators, 
4 is a component of Weyl tensor and κ̂ = 8πG
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is a constant. By decomposing 
4


4 =
∫ +∞

−∞
dω

∑
�m

R�mω(r)

r4 −2Y�m(θ, ϕ)e−iωt , (2.4)

and considering the integral relationship between T4 and
T�mω(r)

κ̂

2
T4 =

∫ +∞

−∞
dω

∑
�m

−e−iωt

2r6 −2Y�m(θ, ϕ)T�mω(r), (2.5)

from Eq. (2.3), one may obtain the inhomogeneous Teukol-
sky equation

[
r4A

√
A

B

d

dr

(
1

r2A2

√
A

B

d

dr

)
+ V (r)

]
R�mω(r) = T�mω(r)

, (2.6)

with

V (r) = 1

4A2B2

{
r2A′ (8iωB

√
AB − BA′)

+4A2 (
B + 2r B ′) + r A

[
4rω2B2 − r A′B ′

+2B
(
−8iω

√
AB + 8A′ + r A′′)]}

− 1 − λ,

(2.7)

where λ = (�− 1)(�+ 2) is the eigenvalue of spin-weighted
spherical harmonics −2Y�m(θ, ϕ), and T�mω(r) is the source
term. For a particle with the energy momentum tensor [34]

Tμν = m0√
ABr2 sin θ ṫ

UμU νδ (r − r0) δ
(
θ − π

2

)
δ(ϕ − �t)

,(2.8)

where ṫ = dt/dτ , the source term T�mω(r) is given by

T�mω = κ̂

4

[
2
√

(� − 1)�(� + 1)(� + 2)r4
0T�mω(r)

+2
√

2(� − 1)(� + 2)r2ALr3A−1−1T�mω(r)

+r ALr4A−1Lr−2T�mω(r)

]
, (2.9)

with

0T�mω(r) = m0 Ẽ

8πr2

√
A

B
δ (r − r0) 0Y�,m

(π

2
, 0

)
δ(ω − m�),

−1T�mω(r) = im0 L̃

4
√

2πr3

√
A

B
δ (r − r0) −1Y�,m

(π

2
, 0

)
δ(ω − m�),

−2T�mω(r) = −m0 L̃2

4πr4 Ẽ

√
A

B
δ (r − r0) −2Y�,m

(π

2
, 0

)
δ(ω − m�),

(2.10)

where δ(r) is the Dirac delta function, L =
√

A
B ∂r + iω, Ẽ

and L̃ are energy and angular momentum of the particle in a

circular orbit which are given by

Ẽ = a2(GM)2 + r(r − 2GM)

r
√

2a2(GM)2 + r(r − 3GM)
,

L̃ = r
√
GM(r − a2GM)√

2a2(GM)2 + r(r − 3GM)
. (2.11)

By using the Green function method [60], the solution of
Eq. (2.6) at infinity can be expressed as

R�mω(r → ∞) = r3eiωr
∗

2iωBin
�ω

∫ ∞

rh
dr Rin

�ωT�mω(r)r−4
√
B/A3

, (2.12)

where Rin
�ω(r) is the homogeneous solution of Eq. (2.6) which

is given by

Rin
�ω(r) =

{
D�ωA2e−iωr∗

r∗ → −∞,

r3Bout
�ω eiωr

∗ + r−1Bin
�ωe

−iωr∗
r∗ → +∞,

(2.13)

and where the tortoise coordinate is given by r∗ = r +
2GMb1 ln(r − r1) − 2GMb2 ln(r − rh), with

b1 = d2(GM)2 + r2
1

2GM(r1 − rh)
, b2 = d2(GM)2 + r2

h

2GM(r1 − rh)
.

2.2 The Sasaki–Nakamura equation

It is difficult to solve Eq. (2.6) directly, since for this case
the source term is included. Therefore, we first consider the
solution of the homogeneous equation without the source
term, and then study the role of the source term. To do so,
we transform the Teukolsky equation without a source into
the Sasaki–Nakamura equation.

Teukolsky equation (2.6) without source term can be
rewritten as[
A d

dr
B d

dr
+ V (r)

]
R�ω(r) = 0, (2.14)

with

A = r4A

√
A

B
, B = 1

r2A2

√
A

B
. (2.15)

The general transformation of R�ω can be taken as

χ�ω = αR�ω + β

AB R′
�ω, (2.16)

where α and β are functions of r , and a prime denotes the
derivative with respect to r . By using Eq. (2.14) and taking
the first derivative of Eq. (2.16) with respect to r , one obtains
the inverse transformations

R�ω = 1

γ

(
Zχ�ω − β

ABχ ′
�ω

)
, (2.17)

R′
�ω = 1

γ

[
−

(
α′ − V (r)β

A2B2

)
χ�ω + αχ ′

�ω

]
, (2.18)
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where

Z = α +
(

β

AB
)′

− β

AB
B′

B ,

γ = αZ − β

AB
[
α′ − β

(AB)2 V (r)

]
.

By taking the first derivative of Eq. (2.17) and using
Eq. (2.18), we obtain the equation of motion of χ�ω

AB d2χ�ω

dr2 +
(
AdB

dr
− AB γ ′

γ

)
dχ�ω

dr
−U (r)χ�ω = 0,

(2.19)

where

U (r) = −V (r) + (AB)2

β

[
d

dr
(α + Z) − Z

γ ′

γ

]
.

Taking the transformation

χ�ω = r4L−
[
r2

AB L−
(
R�ω

r2

)]
, (2.20)

where L− = d
dr∗ − iω =

√
A
B

d
dr − iω, and comparing the

coefficients of Eqs. (2.16) and (2.20), we get α and β as

α = r4L−
[
r2

AB L−
(

1

r2

)]
− ABV (r),

β = rAB
[
−2irω

√
AB + r3

B

d

dr

(
AB

r2

)
+ r

d A

dr

]
.

(2.21)

Now we introduce a new function

χ�ω = HX�ω, (2.22)

then Eq. (2.19) reduces to the Sasaki–Nakamura equation

r3

[
d2

dr∗2 −
√

A

B

γ ′

γ

d

dr∗ + Ũ (r)

]
X�ω = 0, (2.23)

with

Ũ (r) = − 1

r3

[
HU (r) + AB γ ′

γ
H ′ − A d

dr
(BH ′)

]
.

H = r A.

Then the asymptotic solutions of Xin
�ω can be expressed as

X in
�ω(r) =

{
C�ωe−iωr∗

r∗ → −∞,

Aout
�ω eiωr

∗ + Ain
�ωe

−iωr∗
r∗ → +∞,

(2.24)

where Ain
�ω is related to Bin

�ω appeared in Eq. (2.13) as

Bin
�ω = − 1

4ω2 A
in
�ω. (2.25)

3 The solutions of the Teukolsky equation

In this section, we first study the solutions Xin
�ω and ampli-

tudes Ain
�ω of the Sasaki–Nakamura equation, and then look

for the solutions of the Teukolsky equation with source.

3.1 The solutions of the Sasaki–Nakamura equation

The method employed in this subsection is mainly based
on the work of Sasaki [28] and Mino et al. [38]. We first
introduce the variable z = ωr , and take the ansatz

Xin
�ω = e−2iGMω[b1 ln(z−2c1GMω)−b2 ln(z−2c2GMω)]zξ�(z),

(3.1)

where c1 = 1+√
1−a2
2 and c2 = 1−√

1−a2
2 . Inserting Eq. (3.1)

into Eq. (2.23) and expanding it in powers of 2GMω, we
obtain

L(0)[ξ�] = 2GMωL(1)[ξ�] + (2GMω)2L(2)[ξ�], (3.2)

where

L(0) = d2

dz2 + 2

z

d

dz
+

[
1 − �(� + 1)

z2

]
,

(3.3)

L(1) = 1

z

d2

dz2 + 1 + 2i z

z2

d

dz
− 4 + z(−i + z)

z3 ,

(3.4)

L(2) = − a2

4z2

d2

dz2 −
[
a2(12 + i z(12 + λ(2 + λ)))

2z3λ(2 + λ)

+d2(−12 + 5λ(2 + λ) − i z(12 + λ(6 + λ)))

2z3λ(2 + λ)

]
d

dz

−
[
a2(48 + 48i z − 4λ − 8λ2 − z2(24 + λ(2 + λ)))

4z4λ(2 + λ)

+2d2(−24 − 4i z(6 + λ))−λ(3+λ)(8+λ)+z2(12+λ(6+λ))

4z4λ(2+λ)

]
.

(3.5)

In the low frequency limit and by noting that 2GMω only
appears on the right-hand side of Eq. (3.2), we may look for
the solution of ξ�(z) perturbatively in terms of ε = 2GMω,
i.e.

ξ�(z) =
∞∑
n=0

εnξ
(n)
� (z), (3.6)

and one obtains the recursive equations from Eq. (3.2)

L(0)[ξ (n)
� ] = W (n)

� , (3.7)

where

W (0)
� = 0, (3.8)

W (1)
� = L(1)[ξ (0)

� ], (3.9)

W (2)
� = L(1)[ξ (1)

� ] + L(2)[ξ (0)
� ]. (3.10)
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The general solution of Eq. (3.8) corresponding to the case
of n = 0 is

ξ
(0)
� = α(0) j� + β(0)n�, (3.11)

where j� and n� are usual spherical Bessel functions. Con-
sidering the boundary condition that ξ

(n)
� is regular at z = 0

for n < 1, we have ξ
(0)
� = α(0) j�, and for convenience and

without loss of generality we set α(0) = 1, and thus we have
ξ

(0)
� = j�. To calculate the cases for n ≥ 1, we rewrite

Eqs. (3.9) and (3.10) in the indefinite integral form by using
the spherical Bessel functions

ξ
(n)
� = n�

∫ z

dzz2 j�W
(n)
� − j�

∫ z

dzz2n�W
(n)
� (n = 1, 2). (3.12)

The solution of Eq. (3.9) corresponding to the case of n = 1
is given by

ξ
(1)
� = (� − 1)(� + 3)

2(� + 1)(2� + 1)
j�+1 −

[
�2 − 4

2�(2� + 1)
+ 2� − 1

�(� − 1)

]
j�−1

+z2(n� j0 − j�n0) j0 +
�−2∑
k=1

(
1

k
+ 1

k + 1

)
z2(n� jk − j�nk) jk

+n� (Ci2z − γ − ln 2z) − j�Si2z + i j� ln z + α
(1)
� j� + β

(1)
� n�,

(3.13)

where Six = ∫ x
0 dt sin t/t and Cix = − ∫ ∞

x dt cos t/t are
the sine and cosine integral functions, respectively. We set
the integration constant α

(1)
� = 0 for simplicity, and then the

regular boundary condition of zξ (1)
� lead to β

(1)
� = 0.

Then Xin
�ω may be obtained from ξ� straightforwardly. In

general, ξ
(n)
� may be decomposed into real and imaginary

parts, denoted by f (n)
� and g(n)

� , respectively, i.e.

ξ
(n)
� = f (n)

� + ig(n)
� . (3.14)

Inserting this expression into Eq. (3.1) and expanding the
result with respect to ε, we obtain the conventional expansion
of Xin

�ω as

X (0)
�ω = z f (0)

� = z j� X (1)
�ω = z f (1)

�

X (2)
�ω = z

[
f (2)
� + 1

2
(b1 − b2)

2 j�(ln z)2
]

, . . . . (3.15)

To evaluate Ain
�ω, we only need to examine the asymptotic

behavior of ξ
(n)
� at infinity. For this purpose, we present the

asymptotic form of f (n)
� at z → ∞ as

f (n)
� → P(n)

� j� + Q(n)
� n� (n = 1, 2), (3.16)

with

P(1)
� = p(1)

� ,

Q(1)
� = q(1)

� − (b1 − b2) ln z,

P(2)
� = p(2)

� + (b1 − b2)q
(1)
� ln z − (b1 − b2)

2(ln z)2,

Q(2)
� = q(2)

� − (b1 − b2)p
(1)
� ln z, (3.17)

where p(n)
� and q(n)

� are constants, and p(1)
� and q(1)

� can be

obtained from the asymptotic behavior of ξ
(1)
� at z → ∞.

Now we can read off the incident amplitude Ain
�ω form the

asymptotic form of Xin
�ω, which is

Ain
�ω = 1

2
i�+1e−iε ln ε(

√
1−a2)

[
1 + ε

(
p(1)
� + iq(1)

�

)

+ε2
(
p(2)
� + iq(2)

�

)
+ · · ·

]
. (3.18)

The iterative equation (3.10) for the case of n = 2 con-
sists of the terms of L(1)[ξ (1)

� ] and L(2)[ξ (0)
� ]. The result

of L(1)[ξ (1)
� ] is the same as the counterpart obtained by

Sasaki [28], and L(2)[ξ (0)
� ] is our correction term. Note that

Eq. (3.15) is related to the real parts f (n)
� , where f (1)

� can

be easily obtained from the Eq. (3.13), f (2)
� can be acquired

from Eq. (3.12), and for the case of � = 2 we have

f (2)
2 = − 389

70z2 j0 − 113

420z
j1 + 1

7z
j3 + Bn(z) j2

−Bj (z)n2 + C(z)

(
5

6z
n2 − 5

3
n1 − 3

z
n0 − 107

210
j2

)

−S(z)

(
5

6z
j2 − 5

3
j1 − 3

z
j0

+107

210
n2

)
− 107

210
j2 ln z − 1

2
j2(ln z)2 + α

(2)
2 j2

+N1

(
1

840
C(z) j2 + 1

840
ln z j2 + 1

840
S(z)n2 − 1

420z
n2

+ 1

420
n0

3 − z2

z3

)
− N2

840z

(
2

z
j2 − j3

)
+ N3 j2

420z2 , (3.19)

with

N1 = 4(21I + 11a2 + 2J + Y),

N2 = −168I − 188a2 + 4J + 2Y,

N3 = 252I + 102a2 + 9J − 48Y + 7(2a2 + Y)z2,

(3.20)

where

I = a2[24 + λ(2 + λ)]
λ(2 + λ)

− 2d2[12 + λ(6 + λ)]
λ(2 + λ)

,

J = −
[
−4a2

(
2λ2 + λ − 12

)
λ(λ + 2)

− 2d2(λ + 3)(λ + 8)

λ + 2
− 48d2

λ(λ + 2)

]
,

Y = −
[

24a2

λ(λ + 2)
− 24d2

λ(λ + 2)
+ 10d2

]
. (3.21)

Note that here Bn(z), Bj (z), C(z) and S(z) are as defined in

[28]. The asymptotic behavior of f (2)
2 is easy to evaluate at

z → ∞, by comparing Eq. (3.16), the amplitude Ain
2ω upto

O(ε2) is found to be

Ain
2ω = −1

2
ie−iε(ln 2ε(

√
1−a2)+γ ) exp

(
iε

5

3
− iε2 428 − N1

1680
π

)
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×
{

1 − ε
π

2
+ ε2

[
25

18
+ 5

24
π2 +

(
107

210
− N1

840

)
(γ + ln 2)

+2a2 + Y
60

]
+ · · ·

}
. (3.22)

Similarly, we may derive

Ain
3ω = 1

2
e−iε(ln 2ε(

√
1−a2)+γ ) exp

(
iε

13

6
− iε2 780 − N4

5040
π

)

×
{

1 − ε
π

2
+ ε2

[
169

72
+ 5

24
π2 +

(
13

42
− N4

2520

)
(γ + ln 2)

+2a2 + Y
140

]
+ · · ·

}
,

Ain
4ω = 1

2
ie−iε(ln 2ε(

√
1−a2)+γ ) exp

(
iε

149

60
− iε2 37704 − 5N5

332640
π

)

×
{

1 − ε
π

2
+ ε2

[
22201

7200
+ 5

24
π2 +

(
1571

6930
− N5

33264

)

(γ + ln 2) + 2a2 + Y
252

]
+ · · ·

}
, (3.23)

with

N4 = 4(45I + 23a2 + 2J + Y),

N5 = 24(77I + 39a2 + 2J + Y). (3.24)

The corresponding incident amplitudes Bin
�ω for the Teukol-

sky function can be obtained from Eq. (2.25)

Bin
2ω = i

8ω2 e
−iε[ln(ε

√
1−a2)]

×
{

1 + ε

[
5i

3
− π

2
− i(γ + ln 2)

]
+ ε2

[
a2 − 9d2

60

+ iπ(−457 + 60a2 − 40d2)

420

+5π2

24
+ 457 − 60a2 + 40d2

210
(γ + ln 2)

+ iπ

2
(γ + ln 2) − (γ + ln 2)2

2

]}
,

Bin
3ω = − 1

8ω2 e
−iε[ln(ε

√
1−a2)]

×
{

1 + ε

[
13i

6
− π

2
− i(γ + ln 2)

]

+ε2
[

9a2 − 49d2

700
+ iπ(−52 + 3a2 − 2d2)

42
+ 5π2

24

+52 − 3a2 + 2d2

21
(γ + ln 2)

+ iπ

2
(γ + ln 2) − (γ + ln 2)2

2

]}
,

Bin
4ω = − i

8ω2 e
−iε[ln(ε

√
1−a2)]

{
1 + ε

[
149i

60
− π

2
− i(γ + ln 2)

]

+ε2
[

29a2 − 149d2

3780

− iπ(37561 − 1356a2 + 904d2)

27720

+5π2

24
+ 37561 − 1356a2 + 904d2

13860
(γ + ln 2)

+ iπ

2
(γ + ln 2) − (γ + ln 2)2

2

]}
. (3.25)

Next, we consider Xin
�ω. Inserting f (n)

� into Eq. (3.15) we
obtain

Xin
2ω = z3

15
− z5

210
+ z7

7560
+ ε

(
−13z4

630

)
+ ε2

(
−d2z

15

)
,

Xin
3ω = z4

105
− z6

1890
+ z8

83160

+ε

(
− z3

126
− z5

630

)
+ ε2

(
−d2z2

210

)
,

Xin
4ω = z5

945
− z7

20790
+ z9

1081080
+ ε

(
− z4

630
− z6

9900

)

+ε2
(

1

1764
+ a2

5292
− d2

1764

)
z3. (3.26)

By using the transformation given by Eq. (2.17), we obtain
the corresponding solutions Rin

�ω of the Teukolsky equation
without the source

ωRin
2ω = z4

30
+ i z5

45
− 11z6

1260
− i z7

420
+ 23z8

45360
+ i z9

11340

+ε

(
−z3

15
− i z4

60
− 41z5

3780
− 31i z6

3780

)

+ε2
[
(4 + 2a2 − 3d2)z2

120
− i(12 + 3a2 − 2d2)z3

720

]
,

ωRin
3ω = z5

630
+ i z6

1260
− z7

3780
− i z8

16200
+ 29z9

2494800

+ε

(
−z4

252
− i z5

756
− i z7

9450

)

+ε2
[
(20 + 5a2 − 7d2)z3

6300

]
,

ωRin
4ω = z6

11340
+ i z7

28350
− 13z8

1247400
− i z9

467775

+ 71z10

194594400
+ ε

(
−z5

3780
− 11i z6

136080
+ 131z7

18711000

)

+ε2
[
(540 + 103a2 − 141d2)z4

1905120

]
. (3.27)

3.2 The solution of the Teukolsky equation with the source

In order to obtain the solution of the Teukolsky equation with
the source term, we rewrite the source term T�mω schemat-
ically in the form of summation, by applying a differential
operator to sT�mω(r)

T�mω = 2πG
∑
s

s p� s Dω sT�mω(r), (3.28)
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where the functions sT�mω(r) is given in Eq. (2.10), the con-
stants s p� are

s p� =
⎧⎨
⎩

2[(� − 1)�(� + 1)(� + 2)]1/2 s = 0,

2[2(� − 1)(� + 2)]1/2 s = −1,

1 s = −2,

(3.29)

and the differential operators are

s Dω =
⎧⎨
⎩
r4 s = 0,

r2ALr3A−1 s = −1,

r ALr4A−1Lr s = −2.

(3.30)

Now by using the inhomogeneous Teukolsky variable at
infinity Eq. (2.12), we get

Z̃�mω = R�mω

r3eiωr∗ =
[
2iωBin

�ω

]−1
∫ ∞

rh
drr−4

√
B/A3Rin

�ωT�mω(r),

(3.31)

where Z̃�mω ≡ Z̃�mω(r). From Eqs. (2.9) and (3.31), we see
that Z̃�mω takes the form

Z̃�mω = Z�mδ(ω − m�). (3.32)

To carry out the integral in Eq. (3.31), we define an inner
product as

(g1, g2) :=
∫ +∞

rh
drr−4

√
B/A3g2g1. (3.33)

By making use of the relations

(L sT, R) =
(
sT,L†R

)
, (3.34)

(s Dω sT, R) =
(
sT, s D

†
ω R

)
, (3.35)

with

L† = −r4ALr−4A−1, (3.36)

L =
√

A

B

d

dr
− iω, (3.37)

s D
†
ω =

⎧⎨
⎩
r4 s = 0,

−r7Lr−2 s = −1,

r5ALr4A−1Lr−3 s = −2,

(3.38)

it can be deduced that

Z�m = 2π
πG

iωBin
�ω

{[√
B/A3

0 p� 0T�m + 2 A−1 −1 p� −1T�m

×
(

1 + iωr0

2
√
A/B

)
+ 2

√
1

AB
−2 p� −2T�m

×
[
iωr0

B

A

(
1

2
iωr0 +

√
A

B
+ r0A′

2A

√
A

B

)

+3r0

4

(
A′

A
+ B ′

B

)]]
Rin

�ω(r0)

+
[
−A−1 −1 p� −1T�m − 2

√
1

AB
−2 p� −2T�m

×
[
iωr0

√
B

A
+ 1 + r0

4

(
A′

A
+ B ′

B

)]]
r0R

in
�ω

′(r0)

+
√

1

AB
−2 p� −2T�m r0

2Rin
�ω

′′(r0)

}
. (3.39)

4 Reaction force

In this section, we first present an analytical expression for
the energy-loss-rate dE/dt of gravitational waves, and then
derive the radiation reaction force acting on a particle.

4.1 Energy-loss-rate

By noticing the symmetry of the spin weighted spherical har-
monics sY�,−m(π

2 , 0) = (−1)s+�
sY�m(π

2 , 0) and by using
Eq. (3.39), we have Z�,−m = (−1)� Z̄�m , where Z̄�m is the
conjugate of Z�,−m . In terms of the amplitudes Z�m , the grav-
itational waveform at infinity are given by [26,28,61]

h+ − ih× = 2

r

∑
�m

1

ω2 Z�m −2Y�m(θ, ϕ)e−iω(t−r∗), (4.1)

and the energy-loss-rate is described by [26,29]

dE

dt
=

∞∑
�=2

�∑
m=1

| Z�m |2
2πω2 . (4.2)

By substituting Eq. (3.39) into Eq. (4.2), we may obtain the
explicit form of the energy-loss-rate for the case we consid-
ered in this paper.

In order to show the difference between our results and
that obtained by Tagoshi and Sasaki [29], we list a few cases
of the energy-loss-rate (4.2) we obtained as follows

dE/dt(�=2,m=2) = G2r4
0m

2
0ω

6
(

1

10
− r2

0 ω2

126
+ r4

0ω4

2646

)

−G5/2M1/2r9/2
0 m2

0ω
7
(

2

45
− r2

0 ω2

189

)

+G3Mr3
0m

2
0ω

6
(

− 7

18
+ πr0ω

5

−16r2
0 ω2

189

)
− G7/2M3/2r7/2

0 m2
0ω

7
(

2

27
− a2

45

)

+G4M2r2
0m

2
0ω

6
[
(36 + 4a2 − 27d2)

45

]
,

dE/dt(�=2,m=1) = G3Mr3
0m

2
0ω

6
(

8

45
− 22r2

0 ω2

945

)

−G7/2M3/2r7/2
0 m2

0ω
7
(

8

135

)

+G4M2r2
0m

2
0ω

6
(

− 2

15
− 8a2

45

)
,
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dE/dt(�=3,m=3) = G2r6
0m

2
0ω

8
(

1

756
− r2

0 ω2

9072

)

−G5/2M1/2r13/2
0 m2

0ω
9
(

1

1512

)

+G3Mr5
0m

2
0ω

8
(

− 23

3024

)
,

dE/dt(�=3,m=2) = G3Mr5
0m

2
0ω

8
(

1

504

)
,

dE/dt(�=3,m=1) = G2r6
0m

2
0ω

8
(

1

1260

− r2
0 ω2

15120

)
− G5/2M1/2r13/2

0 m2
0ω

9
(

1

7560

)

−G3Mr5
0m

2
0ω

8
(

61

15120

)
,

dE/dt(�=4,m=4) = G2r8
0m

2
0ω

10
(

1

72576

)
,

dE/dt(�=4,m=2) = G2r8
0m

2
0ω

10
(

1

127008

)
. (4.3)

Noting ω = m
√
GM/r3

0 for a given radius r0 and using the
above results, we find that the energy-loss-rate at 2PM order
can be expressed as

dE

dt
= 32

5

m2
0

M2

(
GM

r0

)5[
1 − 1247

336

GM

r0
+ 4π

(
GM

r0

)3/2

−
(

44711

9072
− 47a2

36
+ 6d2

)(
GM

r0

)2]
. (4.4)

It is shown explicitly that the energy-loss-rate dE/dt is
related to the parameters a2 and d2, and the 2PN results
obtained in the Schwarzschild background [29] can be recov-
ered when a2 = 0 and d2 = 0.

4.2 Reaction force

In this subsection, we calculate the reaction force acting on
a particle. Considering quasi-circular motions and ignoring
the radial damping force Fr , Damour and Buonanno showed
that the difference between the numerical results in the case
ofFr = 0 and non-zero radial force is quite small. Therefore,
we can obtain the reaction force by using the rate of energy-
loss

Fcirc
ϕ = − 1

ϕ̇

∞∑
�=2

�∑
m=1

| Z�m |2
2πω2 . (4.5)

For simplicity, we consider the case with equal mass, i.e.,
ν = 1

4 , and study the reaction force Fcirc
ϕ with an orbital

phase ϕ = 0 at r0 = 20 for different � and m modes on
the 2PM effective metric in the EOB theory. We present
the energy-loss-rate upto the 2PM approximation with a2 =

Table 1 The reaction force for different �,m modes at 2PM approxi-
mation of energy-loss-rate in the EOB theory, the total reaction force
Fcirc

ϕ = 4.36336 × 10−5 in this case

� = 2 � = 3 � = 4

m = 1 6.05019 × 10−8 2.10471 × 10−10 2.05004 × 10−14

m = 2 4.14183 × 10−5 9.18419 × 10−9 1.45781 × 10−10

m = 3 1.88305 × 10−6 9.41523 × 10−10

m = 4 2.61239 × 10−7

Table 2 The reaction force for different �, m modes for Z�m does not
expanded in the EOB theory, the total reaction forceFcirc

ϕ = 4.23409×
10−5 in this case

� = 2 � = 3 � = 4

m = 1 6.47389 × 10−8 2.38064 × 10−10 1.64877 × 10−14

m = 2 3.96520 × 10−5 8.40678 × 10−9 1.12650 × 10−10

m = 3 2.43720 × 10−6 7.85002 × 10−10

m = 4 1.82756 × 10−7

6(1 − m1+m2E ), b2 = 1 + 3m1+m2E and d2 = −2 + a2+b2
2 in

Table 1, and show the reaction force for the case that Z�m

does not expanded in Table 2.
It can be seen from these tables that the reaction force is

mainly determined by the � = m = 2 mode. Therefore, we
only compare our results with those obtained in other back-
grounds for the particular case of the � = m = 2 mode. From
Table 1, we obtain the reaction force F2PM = 4.14183 ×
10−5 at the 2PM approximation of the energy-loss-rate. We
also derive the reaction force F2PM.Sch = 4.12319 × 10−5

for the case a2 = d2 = 0, which is the same as the result
obtained by using the 2PN expansion of the energy-loss-rate
in Schwarzschild background [29].

5 Conclusion

Gravitational waves produced by coalescing binary system of
compact objects have become the promising candidates for
the ground based laser interferometric detectors. In order to
detect gravitational waves, the theoretical templates are nec-
essary. To construct gravitational waveform templates, the
EOB formalism was put forward with the aim of analytically
describing the gravitational wave signals emitted by coalesc-
ing binary black holes. The basic idea of the EOB theory is
to map the relativistic dynamics of a two-body system (with
masses m1, m2) onto the relativistic dynamics of an effec-
tive test particle with mass m0 = m1m2/(m1 +m2) moving
in an effective metric background of mass M = m1 + m2.
The EOB theory is initially based on the PN approximation
(v/c is assumed to be small). In 2016, Damour [56] intro-
duced another EOB theory based on the PM approximation
in which v

c is not required to be small anymore.
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To construct the EOB theory based on the PM perturba-
tion, the calculation of reaction force is a key step because
the motion of test particle is affected by a reaction force due
to the loss of energy and angular momentum of system in the
process of gravitational radiation. The reaction force for the
case that a test particle with mass m0 travels along a circu-
lar orbit around a Schwarzschild black hole based on the PN
approximation was studied in Refs. [26–32]. In this paper we
analytically studied the reaction force acting on the effec-
tive particle during the gravitational radiation of compact
binaries based on the PM approximation in the EOB theory.
First, we derived the inhomogeneous Teukolsky equation of
gravitational perturbation on the effective metric, and trans-
formed the corresponding homogeneous counterpart into the
Sasaki–Nakamura equation. Second, we obtained the ana-
lytic solution Xin

�ω of the Sasaki–Nakamura equation and the
corresponding amplitude expressions Ain

�ω. Third, we got the
corresponding solution Rin

�ω of the Teukolsky equation with-
out the source and amplitudes Bin

�ω through the transformation
equations. Finally, we found the solution of the Teukolsky
equation with the source, which was expressed in terms of
amplitudes Z�m . With the solution of the Teukolsky equation
at hand, we may derive the energy-loss-rate dE/dt and the
corresponding radiation reaction force.

We observed that, the � = m = 2 mode is the domi-
nant term for the reaction force with the 2PM energy-loss-
rate. Our results are quite close to the values obtained by
Buonanno and Damour with the Pade approximation method
[18]. We also show that the reaction force at the 2PM order
for the case of a2 = 0 = d2 is the same as the result obtained
by using the 2PN expansion in Schwarzschild background
[29]. In the next step we would like to calculate the reaction
force to higher-order PM approximations and generalize it
to a binary system with spin.
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