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Abstract We investigate the propagation of a scalar field
in a (2 + 1)-dimensional accelerated black hole, recently
revisited in Arenas-Henriquez et al. (J High Energy Phys
https://doi.org/10.1007/jhep05(2022)063, 2022). We briefly
describe how the conformal configuration renders a trivial
scalar perturbation with a rescaling of the field mass. On
the contrary, the free scalar field propagation presents an
intricate dynamic, whose equation may be reduced through
the use of Israel junction conditions and a non-trivial ansatz.
In this case, using two different methods we calculate the
quasinormal modes of the solution also obtaining unstable
field profiles delivered by the linear scalar perturbation to
the background geometry. We examine the parameter space
of angular eigenvalues of the field and accelerations under
which such instabilities occur.

1 Introduction

Lower dimensional theories of curvature represent an active
and important field of research in the present days. Since the
pioneering works of Jackiw [2], Mann [3] and Bañados, Teit-
elboim and Zanelli [4], dating back to the 80 s, a multitude
of significant studies were realized, improving the theoreti-
cal understanding and broadening the scope of use of their
concepts in many directions.

The appealing advantage of such curvature theories is
their mathematical simplicity, allowing the study of inter-
esting physical properties as that exhibited e. g. in the
AdS/CFT correspondence [5–7]. In many cases, the formal-
ism (even though simpler) strongly resembles that of a four-
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dimensional gravitational theory, thus representing a theoret-
ical enterprise worth of investigation.

Despite the absence of gravitational freedom, the most
straightforward action in (2 + 1) dimensions proposed in [4]
(admitting a deep connection with the Chern-Simons theo-
retical framework [7–9]) presents the interesting solution of
an original black hole spacetime: it possesses an event hori-
zon and a conical singularity [10,11].1 In this geometry, the
curvature scalars are smooth but a geodesic incompleteness
singularity is found when the spacetime is considered isomet-
ric to a globally AdS spacetime. Similar to its higher dimen-
sional counterpart, such solution possesses a fixed (small)
number of constants, associated with the black hole physical
properties (mass, spin and cosmological constant, and charge
investigated a few years later [12,13].

Since the pioneering paper [4], examples of black holes
in three dimensions became abundant in the literature. The
physical properties of such black holes have been extensively
studied (see for instance [14–20] and references therein).
Moreover, substantiating the relevance of the topic, text-
books of lower dimensional gravities are now available as,
e.g. [2,21] Additionally, different scenarios of those theo-
ries were investigated through quantum black holes (or more
precisely, solutions with quantum effects) where geometric
aspects such as geodesics, the Sagnac effect and thermody-
namics, among others are computed (see [22–32] and refer-
ences therein). It is also worth mentioning the recent sum-
maries of the progress made up to them in the excellent text-
book [33].

1 It is worth noticing also the solutions of the Jackiw gravity [2] in
(1 + 1) dimensions (for a comprehensive survey see [3]) as equally
important.
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In the present work we will consider a particular case of the
Bañados–Teitelboim–Zanelli (BTZ) black hole [4] perturbed
to linear order by a probe scalar field. The linear perturba-
tion theory, an important tool for the dynamical analysis of
such black holes, was firstly examined in the seminal paper
of Regge and Wheeler from 1957 [34]. Since then, a robust
development of the field brought the understanding that such
black holes perturbations generally evolve as a spectral tower
of imaginary frequencies (damped oscillations), the quasi-
normal modes (QNMs).

According to the modern view, perturbations of black
holes are described in three different phases: (i) the initial
radiation as a response to initial conditions (initial burst),
(ii) subsequent damped oscillations characterized by imagi-
nary frequencies (QNMs), and (iii) a power-law decay of the
fields. Such complex frequencies characterizing phase (ii) are
denoted as ω ≡ ωR + iωI and determined by a few key black
hole parameters, namely mass, electric charge and angular
momentum [35–39] (see also the seminal monograph [40]).
It is noteworthy that the real part of these frequencies governs
the oscillation period, expressed as T = 2π/ωR , while the
imaginary part is associated with the fluctuation decay with
timescale tD = 1/ωI .

The existence of such damped modes represents a ground-
breaking milestone, measured in the direct observation of
gravitational waves by LIGO in black hole mergers [41–43],
providing the most compelling evidence to date of the exis-
tence of black holes mergers. The discovery has not only
confirmed the reality of black holes but has also unveiled
an entirely new perspective on our understanding of the uni-
verse, trough linear perturbation theory of black hole space-
times. In such, the quasinormal mode spectra provides unique
details about the parameters of the black hole, making pos-
sible the determination of its mass and angular momentum.

The study of black hole perturbations and QNMs in 2 +
1 dimensions was performed for the first time for the BTZ
solution by Cardoso and Lemos [44] followed by the calcu-
lation for the rotating case [5]. More recent papers on the
subject can be found in [45–56] and references therein.

Although the expected pattern of evolution of such pertur-
bations is a spectral tower of oscillations (QNMs) followed
by the initial burst, under certain circumstances, perturba-
tions delivered by external fields in such systems can desta-
bilize the geometry [47,57–60]. We may see that, in the sys-
tem we examine in the present work - an accelerated BTZ
geometry, that is also the case.

The incorporation of acceleration within a 2 + 1 dimen-
sional spacetime framework is motivated by its potential
significance in 3 + 1 general relativity solutions exhibiting
non-trivial topology, as originally demonstrated in [61]. This
inspiration draws from an analogy with the five-dimensional
case, as elaborated in [62].

Accelerating black holes have a plethora of properties dis-
tinguishing them from other geometries. First, the spacetime
of these black holes come from a conformal line element,
known as the C-metric [63–65]. The force driving the accel-
eration is caused by a conical defect (deficit angle along a
polar axis of the black hole): the asymptotic behaviour (expe-
rienced by perturbative fields) depends on several parameters
of the geometry having a rich dynamics (described in the zoo
of C-metric geometries, see e.g. the textbook [66]). Such
asymptotic regions can be described by an accelerating hori-
zon, an AdS border or even a cosmological horizon. Studies
in which accelerated black holes are examined under differ-
ent scopes can be found in [67–81] and references therein.

While four-dimensional C-metrics have been extensively
studied in their complex aspects [82–89], three-dimensional
C-metrics [1,61,90–92], expected to provide a simpler arena
for holographic exploration, paradoxically presents a more
challenging paradigm [76]. The solution remained almost
unexplored until the present being revisited recently [1,91].

Considering the importance of (2 + 1) gravity as described
above, particularly the BTZ black hole and the recent increas-
ing interest in accelerated geometries, in this work we aim to
study the scalar field perturbation and corresponding quasi-
normal modes/instability issues of an accelerated BTZ back-
ground.

The paper is structured as follows. Section 2 discusses the
main features of the (2 + 1) accelerated BTZ black hole
solution. Then, in Sect. 3, we will introduce the background
to be considered in the corresponding scalar perturbations.
In the same section, we stablish the basis for computation
of the quasinormal modes due to a massless scalar field and
discuss the effect of the acceleration on the stability. Our
numerical results, as well as some figures and tables, are
delivered in Sect. 4, discussing the relative issues brought by
the perturbations. Finally, in Sect. 5 we discuss our results
and possible perspectives for future work.

2 Background: the (2 + 1) dimensions accelerated BHs

We begin by introducing the accelerated version of the BTZ
black hole without rotation and charge as described in [1,61,
90,93] by

ds2 = �−2
(

− P(y)dτ 2 + P−1(y)dy2 + Q−1(x)dx2
)
,

(1)

with

� = a(x − y),

P(y) = 1

a2L2 + 1 − y2,

Q(x) = x2 − 1 (2)
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In such geometry, we can insert a strut [1] at a particular x =
xs with induced metric ds2

I = �−2(−Pdτ 2 + P−1dy2), that
allows for the interpretation ofa as the acceleration parameter
of the geometry. The normal vector to the strut (used to define
boundary conditions for motion equations) is written as

n = −
√
Qs

�
dx . (3)

When put into the Israel Junction conditions [94], the geom-
etry presents a negative tension for the strut in the form

T = − a

4π

√
Qs (4)

with Qs = x2
s −1. In order to find a simple black hole geom-

etry, connected with the original BTZ proposal, we consider
another coordinate transformation defined as [1,91]

x = cosh(mϕ) (5)

r = − m

ay
(6)

τ = t

ma
(7)

in which m represents the constant related to the position of
the strut in the geometry established based the above trans-
formation as

m = arccosh(xs)

π
(8)

The new coordinates bring the metric to a more suitable con-
figuration,

ds2 = �−2
(

− Fdt2 + F−1dr2 + r2dϕ2
)
, (9)

with F and � given by

F = r2

L2 + m2(r2A2 − 1), (10)

� = 1 + Ar cosh(mϕ). (11)

and a = mA. Such solution casts a regular accelerated
spacetime with an event horizon rh at F = 0, or rh =
mL(1 − A2)1/2 pushed by a strut (A > 0). It has a smooth
transition to the pure BTZ spacetime whenever A → 0 with
m2 interpreted as the mass of the solution.

With the transformations (5–7), ϕ represents an angular
coordinate mirrored along the x-axis through the strut posi-
tion: x = xs whenever ϕ = ±π and x = xmin ≡ 1 with
ϕ = 0. In the complete spacetime with the x angular coor-
dinate, the two coordinates patch are defined limited at their
boundary by the presence of the strut. For this reason, spe-
cific (Israel) boundary conditions have to be considered for
the field perturbations as we may further see.

We can obtain other types of spacetimes from the primeval
line element (1) by changing the character of the constants
and coordinates. Supposing a rotation in the acceleration

parameter of type A → −A: the operation reverses the sign
of (3) and (4) and – with the proper coordinate adjustments
– modify the structure of the spacetime turning its defect
into a domain wall. We can also portray the transformation
m → im which brings the solution yet to another acceler-
ated geometry of the BTZ class (viz. a particle without a
horizon [92]). In this geometry however, the BTZ solution is
not smoothly recovered whenever the acceleration is turned
of, and for that reason, we will restrict our analysis to that of
an accelerated spacetime with a strut.

We finish this section by quoting relevant papers in the
characterization of the accelerated black hole we here study:
some thermodynamical aspects of the spacetime were stud-
ied in [95], although seminal features as the first law remain
an open subject in the literature; semiclassical properties of
the scalar field in the spacetime in [96] and the scalar field
as part of the background in [93]. Further aspects as the Cot-
ton classification in terms of a null-system can be elucidated
through [97,98] and a non-linear version of the charged accel-
erated black hole can be found in [99].

3 Scalar perturbations

We aim to study the scalar perturbation in an accelerated BTZ
black hole through the scattering of a scalar field delivered
via matter term,

Sm = −
∫

M
d3x

√−g
(
∂μ�∂μ� + ε�2

)
. (12)

The motion for such scalar field action is given by

�� − ε� = gαβ∇α∇β� − ε�

= 1√−g
∂μ

(√−ggμν∂ν�
)

− ε� = 0, (13)

Here we analyze the scalar scattering problem in the geome-
try (1), in two different scenarios: the free scalar field (ε = 0)
and the conformal field with ε = R/8. The last choice rep-
resents a scalar field conformally coupled to the geometry
and has the special behavior of a symmetric decouple of the
scalar equation relative to the metric without the conformal
factor. We explore such situation in the next section with the
results (see Eq. (45)).

Following the prescription of [100], we consider a trans-
formation of � related to its conformal configuration [101]
written as

� → �1/2ψ. (14)

With the above relation we start with the free Klein–Gordon
equation (we will address the second profile in the next sec-

123



  179 Page 4 of 13 Eur. Phys. J. C           (2025) 85:179 

tion) casting it into the motion equation as

1√−g
∂μ

(
gμν

√−g∂ν

)
ψ +

(
R

8�2 − F

8

)
ψ = 0, (15)

in which g = diag(−F, F−1, r2), and

R = − 6

L2 (16)

is the Ricci scalar of the geometry and F = R − 6m2A2

the Ricci scalar of g. In order to put equation (15) into a
more suitable form, we perform the usual field transformation
ψ → ζ/

√
r and implement the tortoise coordinate, ∂r∗ =

F∂r into its derivative operators, obtaining

�2
(

∂2

∂r2∗
− ∂2

∂t2

)
ζ + �2F

(
F

4r2 − ∂r F

2r

)
ζ

+�2F

(
∂ϕϕ

r2 − F

8

)
ζ + RF

8
ζ = 0. (17)

The above relation (17) reduces to the usual pure BTZ equa-
tion [44] when A = 0 (� = 1).

For the purpose of integrating (17) we can expand the
conformal factor in a vectorial basis Xk = ekmϕ ,

�2 =
2∑

k=−2

αk Xk (18)

with α−k ≡ αk = ( Ar
k

)k
for k > 0 and α0 = 1 + 2α2.

Now, in order to match the angular part of (17) with the
above, we must take the Klein–Gordon field in a similar basis,
with the expansion,

ζ = �
∑
nr

�n, (19)

in which �n stands for the angular part of ζ and � the radial-
temporal (or double-null) dependence. We write �n in terms
of imaginary numbers n = nr + ini spanned by the functions
X as �n = Xnr+ini . In the non-accelerated limit we may take
nr = 0 and recover the usual field decomposition [44].

In order to rewrite Eq. (17) conveniently, we can introduce
new operators Ôi defined as

Ô1 =
(

∂2

∂r2∗
− ∂2

∂t2

)
+ F

(
F

4r2 − ∂r F

2r
− F

8

)
, (20)

Ô2 = F
∂ϕϕ

r2 , (21)

Ô3 = RF

8
, (22)

such that Eq. (17) in terms of Ôi is pictured as

�2
(
Ô1 + Ô2

)
ζ + Ô3ζ = 0. (23)

In the above relation, Ô1 and Ô2 act in the angular part of the
field allowing Eq. (17) to be separated in the angular basis of
vectors Xk .

We analyze the equation for every operator, considering
that the sum is not limited (v. g., mnr ∈ Z, prescribing a field
decomposition). In the end, the equation is rearranged in each
pair ±nr that respects the angular boundary condition (34).
Starting with Ô1, we have

�2Ô1ζ = Ô1�

(
2∑

k=−2

αk Xk

∑
nr

Xnr

)
Xini (24)

Since the sum in nr is taken in every integer value mnr , each
one of the five terms Xk

∑
nr Xnr can be reordered as a simple

sum
∑

nr Xnr . Then

�2Ô1ζ = (α0 + 2α1 + 2α2)Ô1ζ. (25)

Similarly, for Ô2 we can write

�2Ô2ζ = F

r2 �

2∑
k=−2

αk Xk

∑
nr

n2m2Xn (26)

and

Xini

∑
nr

2∑
k=−2

αk Xk(nr + ini )
2m2Xnr

=
∑
nr

m2Xn

(
α0(nr + ini )

2

+ α1(nr + ini − m−1)2 + α−1(nr + ini + m−1)2

+ α2(nr + ini − 2m−1)2 + α−2(nr + ini + 2m−1)2
)
.

(27)

Since αk = α−k , we can write every term in the rhs of the
above equation in terms of a new operator τ to appear in the
scalar potential (viz. (32)),

τ = (τ+ + τ−)/2, τ± ≡
2∑
j=0

α j N
(±)
j (28)

in which

N (±)
j = 2

(2 − j)!
(

j2

m2 + (±nr + ini )
2
)

. (29)

We still can simplify (28) considering the cancellation of the
imaginary term and rewrite

τ =
2∑
j=0

α j
2

(2 − j)!
(

j2

m2 + n2
r − n2

i

)
.

In such case, the real and imaginary parts of the angular
dependence act in opposite direction in the frequencies and
the eigenvalue to be considered is the difference between
both. Since both nr and ni are quantized by the continuity
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rules, we may rewrite the angular eigenvalue in a different
set, n2

r − n2
i ≡ γ emphasizing the difference between both

integer numbers, to obtain

τ ≡
2∑
j=0

α j
2

(2 − j)!
(

j2

m2 + γ

)
. (30)

We discuss the allowed values for γ in the next subsection.
The last operator, Ô3 acts trivially on ζ not modifying the

angular part of it. After considering all three operators, we
summarize the Klein–Gordon equation in the usual form,
(

∂2

∂t2 − ∂2

∂r2∗
− V(r)

)
� = 0, (31)

with V(r) acting as the effective potential,

V(r) ≡ F

⎛
⎝∂r F

2r
+ F

8
− F

4r2 −
R
8 + m2τ

r2

α0 + 2α1 + 2α2

⎞
⎠ . (32)

We emphasize the need of the two real eigenvalues summed
in Eq. (28) seen in the above potential: we can only satisfy
the boundary condition (34) once in each equation (31) two
modes are concomitantly considered (nr and −nr ).

In the region of integration of the scalar equation, [rh,∞),
(32) can be entirely positive, partially positive or entirely
negative. In Table 1 we analyse the potential according to
to three important points: its signal (sV ) in both asymptotic
regions and the number of inflections.

The rich structure of V(r) presented in 1 demonstrates the
non-trivial behavior of the propagation of the scalar field in
such geometry. By instance, the emergence of an entirely neg-
ative potential for a range of accelerations (R3) is expected
to generate unstable profiles (see e. g. [47,57–59,102] ). We
may see in the next section that, that is not the case here. We
represent all the qualitative cases of Table 1 in the Fig. 1.

Despite such rich and oddly shaped potentials, for entirely
negative potentials unstable evolutions can not be taken for
granted as wee will verify. We assemble the results regard-
ing the dominant frequency and stability analysis in the next
section.

3.1 Boundary conditions

The scalar wave equation (31) allows us the investigation of
the dynamical aspects of the spacetime considering the field
at linear order.

In such equation, the evolution profile can be studied under
specific boundary conditions. In the event horizon frontier,
we have
(

∂2

∂t2 − ∂2

∂r2∗

)
� ∼ 0 (33)

bringing the out and inward plane waves ψ(r) → e±iωr∗

as possible solutions.2 In such case, considering the classi-
cal scattering problem of relevance – no signal emerges from
the horizon, the outgoing wave e+iωr∗ must be discarded. The
field behavior is that of an ingoing frontwave, incident to the
event horizon. That is a general condition present in geome-
tries with event horizon and a field motion equation similar

to (31), whenever V(r)
∣∣∣
rh

→ 0, as long as no information

can emerge from the inner region of the black hole.
In spacetimes with AdS asymptotic structure as the BTZ

geometries we are treating, different border terms are possi-
ble. In such region, we have,

V(r) =
⎧
⎨
⎩
F

(
2+m2γ

6 − 1
8A2L2

)
A 
= 0

3r2

4L2 A = 0

which restrains the field character in the frontier. In the
second case (non-accelerated) the only meaningful physi-
cal boundary term is ψ(r∞) → 0 (Dirichlet). In the first
case, we have to choose such term according to the physical
problem investigated. In [103] Robin boundary conditions
are considered, namely a zero energy flux in the AdS border.
In such, the conditions ∂rψ(r∞) → 0 (Neumann) and the
Dirichlet aforementioned are used with the transition from
one to another manipulated with a new variable (maintaining
the zero energy flux as the physical constraint).

Other possible set of boundary conditions respecting
different wave equations of AdS spacetimes is presented
in [104]: plane waves in the AdS infinite modulated by a
frequency

√
ω2 − V∞, what only applies in cases where V∞

is bounded (first case).
In the spacetime we study, the condition of a plane wave

in AdS infinite is not physical as long asV(r) is not smooth in
that region when A → 0. For such reason we consider a par-
ticular set inside the Robin boundary conditions [103], that
of a zero energy flux in the border with a Dirichlet term. That
represents a restraining choice in the possible perturbations
in a general class of zero energy flux. It is worth to mention
however, that more general boundary terms (Neuman, e. g.)
generate oscillations with higher damping, not affecting the
fundamental mode.

For the angular part of the field, �n we require that nrm ∈
Z as well as nim ∈ Z, which is also imposed in the pure BTZ
geometries (nr = 0). Both assumptions are fundamental to
the continuity of �n along the limiting values of the ϕ axis,

�n(−π) = �n(π) (34)

with the above chosen Ansatz.

2 Such condition is accomplished together with the usual decomposi-
tion ψ(t) → eiωt .
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Table 1 Effective potential
behavior with its signal (sV )for
the range of accelerations of the
black hole with rh = L = 1 and
δ = 0

Region sV (r → r (+)
h ) sV (r → ∞) Number of inflections

R1 (A < 0.5) + + 0

R2 (0.5 < A < 0.706) − + 1

R3 (0.706 < A < 0.781) − − 1

R4 (0.781 < A < 0.867) + − 2

R5 (A > 0.867) + + 1

Fig. 1 The scalar field effective potentials for different geometric acceleration (rh = L = 1) with angular momentum δ = 0

In Eq. (30) such condition narrows down the angular
eigenvalue γ (≡ δ/m2) to another quantization rule,

δ ∈ Zs (35)

in whichZs is a subgroup of the integer numbers that excludes
those multiples of 4Z + 2, namely

δ = ±{0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, · · · }. (36)

The derivative of the field on the other hand is not contin-
uous in ϕ (as the metric components are discontinuous as a
consequence of the presence of a wall/strut). In such case, the
Israel junction conditions [93,94,105] must be considered,

nμ[∂μζ ] = nμ∂μζ+ − nμ∂μζ− = 0, (37)

where we recall that n is the normal vector to the strut (3)
located at x = xs and the ± signals refer to the terminal
point of each coordinate patch, ϕ± = ±π . We emphasize
the limits of ϕ as mirroring coordinates to the region Rx ≡
x ∈ [1, xs): the negative and positive values of such angular
variable render the same image x defined trough (5) in the
inteval (Rx ) where the spacetime has a physical meaning.
In such sense, the above Junction condition must be applied
in the terminal points of ϕ where the strut is located. Yet the

field Ansatz (19) can not satisfy the boundary condition (37).
However, once we duplicate (19) considering a secondary
wave with negative ni or

ζ = �
(
Xini + X−ini

) ∑
nr

Xnr = 2� cos(nimϕ)
∑
nr

Xnr

(38)

equation (37) is fulfilled. Interestingly enough, the wave
equation remains unaffected as in (31-32) when we consider
the Ansatz (38). The reason is that, summing another equa-
tion substituting ni → −ni does not change τ in the poten-
tial.

3.2 Numerics

The integration of (31) is performed with an usual technique
prescribed firstly in [106] by Gundlach, Price and Pullin.
Firstly, we rewrite (31) in double-null coordinates (usually
defined, dv = dr∗ + dt and du = dt − dr∗) obtaining

(
4

∂2

∂u∂v
+ V(u, v)

)
�(u, v) = 0. (39)
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Using such coordinates, we can discretize the wave equation
as [107]

�N = �E + �W − �S − h2

8
VS

(
�W + �E

)
. (40)

Such expression is quite efficient for asymptotically flat or
de-Sitter black holes, but its convergence is relatively slow
for asymptotically AdS black holes [107]. To circumvent this
issue, an alternative integration scheme is

�N =
(

1 + h2

16
VS

)−1(
�E + �W − �S

−h2

16
(VS�S + VE�E + VW�W )

)
, (41)

Afterwards we apply in (41) generic Cauchy data,

�r∗→0 = 0, �(u0, v) = gaussian(v) (42)

that allows for the field evolution and acquisition of the field
profile after the above initial burst (42) is imposed. With the
signal at hand we finally can apply a spectroscopic technique
as the Prony method [107]. It consists of filtering the signal
with a specific number of overtones, ν

� =
ν∑
j=1

C je
−iω j t (43)

to which the fundamental is the most expressive, (most influ-
encing in the signal). The filtering is done dividing a partic-
ular time interval in the field evolution in a large number of
steps and inverting (43) for a specific ν. A thorough descrip-
tion can be found e. g. in [107].

As a double check of our results, we used a secondary
method to probe the outcome frequencies of the characteristic
integration scheme, the Frobenius expansion as developed by
Howoritz and Hubeny [102]. In the Appendix A we elaborate
some of the equations needed to perfom the acquisition of
the quasinormal frequencies.

4 Results

After the separation of the scalar field equation (39), with a
suitable Ansatz (19) and adequate boundary conditions for
the angular (34, 37) and radial parts (Dirichlet) we are in
position to integrate it and obtain both the field evolution
and the quasinormal frequencies. The methods we used were
previously described and achieved good convergence in most
of the frequencies compared. In what follows we describe
the results obtained with the free scalar field wave equation,
a rich structure of perturbation with quasinormal modes and
instabilities, depending on the acceleration parameter. For
completeness, we explore afterward the case of a conformal

field, whose results are close to that of a pure BTZ geometry
with a rescaling of the cosmological constant.

4.1 Free scalar field

The free scalar field perturbations we studied can be classified
into two categories, depending on the field profile evolutions:
the stable (quasinormal modes) and the unstable waves. We
describe our results in a huge range of geometry/field param-
eters particularizing for one or another situation.

The fundamental quasinormal modes of the free scalar
field (31) can be put into two different sets, depending on the
signal of the angular eigenvalue, δ. In both cases, the field
perturbations for small |δ| are stable. Its evolution occurs as
a tower of quasimodes after the initial burst. The resultant
frequencies of such evolution are shown in Fig. 2 for |δ| ≤ 1.

The results displayed in Fig. 2 show interesting peculiar-
ities of the scalar propagation in the accelerated spacetime.
First of all the oscillatory nature of the modes is qualita-
tively unaffected by A, that is, oscillatory waves maintain
their behavior (ωr 
= 0) in the accelerated spacetime, for
every value of A, the same being true for purely imaginary
evolutions. Second, the existence of positive decoupling con-
stant δ, behavior associated with the presence of the strut in
the geometry, diminishes the fundamental frequencies when
compared to that found in [44].

The imaginary part of ω behaves qualitatively the same for
small |δ|, with increasing acceleration: ωi achieves a max-
imum value depending on δ and monotonically decreases
from this value on. Such behavior was found in other (2 +
1)D spacetimes, but associated with the change in ωr (see e.
g. [45] and references therein).

An important aspect of the spacetime response to the field
perturbation is the oscillation pattern (oscillatory or purely
imaginary). In our case such response is defined solely trough
the angular constant. When δ < 0 we observe decaying oscil-
latory profiles dominating the spectrum and whenever δ ≥ 0
we have a purely damped profile (ωr = 0).

In the accelerated BTZ black holes we observe instabili-
ties if δ(> 0) is sufficiently large. In the pure BTZ limit, fre-
quencies with δ > 0 were never reported as they result from
non-usual boundary conditions (not described e. g. in [44]).

The presence of new modes unnoticed in the pure BTZ
case whenever δ ≤ 0, can be summarized in the limit of very
small acceleration (mA � 0.01) with the scale

ω =
√−δ

L
− 2

rh
L
i, (44)

which brings entire new towers of oscillations delimited by
(36), not bounded by the condition

√−δ ∈ N as in [44]. A
table with the oscillatory frequencies for different δ < 0 is
provided in Table 2. We notice the numerical results of the
first line of Table 2 that perfectly reproduce the scale of (44).
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Fig. 2 Quasinormal modes with δ = 0 (top-left panel), δ = 1 (top-right panel) and δ = −1 (bottom panels). The geometry parameters are
rh = L = 1

Table 2 Quasinormal modes for negative δ with rh = L = 1.

A δ = −1 δ = −3 δ = −4 δ = −5

0 0.9999 − 2.000i 1.732 − 2.000i 2.000 − 2.000i 2.236 − 2.000i

0.1 1.032 − 1.879i 1.789 − 1.860i 2.063 − 1.854i 2.304 − 1.849i

0.2 1.014 − 1.799i 1.793 − 1.779i 2.072 − 1.773i 2.317 − 1.768i

0.3 0.9740 − 1.788i 1.789 − 1.777i 2.078 − 1.774i 2.331 − 1.771i

0.4 0.9344 − 1.856i 1.804 − 1.857i 2.109 − 1.857i 2.375 − 1.857i

0.5 0.9060 − 2.021i 1.853 − 2.033i 2.180 − 2.036i 2.464 − 2.038i

0.6 0.8946 − 2.328i 1.952 − 2.350i 2.310 − 2.356i 2.620 − 2.360i

0.7 0.9062 − 2.899i 2.130 − 2.930i 2.535 − 2.938i 2.885 − 2.944i

0.8 0.9449 − 4.109i 2.461 − 4.148i 2.948 − 4.161i 3.367 − 4.170i

Table 3 Quasinormal modes for δ ≥ 0 with rh = L = 1

A δ = 0 δ = 1 δ = 3 δ = 4 δ = 5

0 −1.996i −0.9993i −0.2681i 0 0.2358i

0.1 −1.708i −0.8387i −0.09255i 0.1807i 0.4212i

0.2 −1.500i −0.7162i 0.02688i 0.3011i 0.5431i

0.3 −1.356i −0.6444i 0.09475i 0.3709i 0.6154i

0.4 −1.296i −0.6302i 0.1140i 0.3957i 0.6458i

0.5 −1.334i −0.6863i 0.07773i 0.3703i 0.6310i

0.6 −1.500i −0.8460i −0.04081i 0.2707i 0.5490i

0.7 −1.890i −1.199i −0.3193i 0.02423i 0.3319i

0.8 −2.814i −2.038i −1.019i −0.6172i −0.2565i
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Table 4 Critical values of acceleration for the scalar instability thresh-
old

δ Ai As

3 0.18 0.57

4 0 0.70

5 0 0.76

The perturbations with δ > 0 bring the most important
issue associated to the scalar field propagation in such space-
time: for δ ≥ 3 and a range of values of acceleration, insta-
bilities are present. We list the quasinormal modes and expo-
nential coefficients in Table 3.

In this table, we see oscillations with negative imaginary
parts representing quasinormal modes and others with posi-
tive coefficient portraying instabilities. The unstable profiles
occur in different range of the space of parameters δ and A.
Interestingly, for each δ > 1 there is a minimum (Ai ) and a
maximum (As) acceleration that triggers unstable evolution.
Examples of such values are summarized in Table 4.

We must emphasize the convergence of the results in
Tables 2, 3 and 4 with those obtained in the Frobenius expan-
sion elaborated in the appendix of this work. For δ = 0, the
deviation in the fundamental modes does not surpass 0.4%
(except in the high acceleration regime) and in most of the
other cases (with δ 
= 0) it is limited to 1–2%. The qualitative
behavior of the modes is essentially the same as calculated
with both methods, with the existence of instabilities being
assured in both cases.

The only exception for such good convergence in the fre-
quencies between the results of both methods lies in the tran-
sient regions from stable to unstable evolutions, for high δ.
Such fact is actually expected as in the threshold regions, the
convergence of the Frobenius method is highly affected for
the series expansion considered with the nearly stationary
configuration, ω ∼ ωR − 0i (viz. ωI ∼ 0).

It is worth mentioning however, that the critical values for
the accelerations of Table 4 are confirmed in both methods
within a deviation of 2%, raising no doubts on the instabilities
to linear perturbations on the accelerated spacetime in (2 +
1) dimensions.

The unstable scalar field evolution of linear perturbations
in 2 + 1 accelerating black holes is an interesting feature that
we stress out to be absent in the 3 + 1 counterparts.

4.2 Conformal scalar configuration

The conformal motion equation (13) of the scalar field in an
accelerated BTZ black hole (1) can be extremely simplified
with the transformation (14). For such reason we didn’t ana-
lyze the perturbation in the previous section, since that would
be similar to what is reported in [44] (with the addtional cou-

pling term acting as a scalar field mass). If we consider

�g� − R

8
� = �g̃� − F

8
� = 0 (45)

with the conformal metric g̃ given by ds̃2 = �2ds2, or
diag(−F, F−1, r2), the system represents the same as the
simplest BTZ solution with the cosmological term rescaled
as L−2 → L−2+m2A2. In this case, we obtain two groups of
solutions, the first one possessing the scaling proposed in [5]
when Dirichlet boundary conditions are considered,

ω(D) = ±ni
L

− i
rh
L2

(
2ν + 1 +

√
1 + μ2

e f f

)
(46)

in which we emphasize the role played by the term

μ2
e f f ≡ F/8 = −3

4

(
1 + m2L2A2

)
(47)

as an effective mass of the scalar field. The second one is that
produced by Neumann boundary conditions representing in
our case stable solutions [103],

ω(N ) = ±ni
L

− i
rh
L2

(
2ν + 1 −

√
1 + μ2

e f f

)
(48)

Interestingly enough, for black holes with m2L2A2 > 1/3,
the mass term acts in the real part of the frequency, breaking
the scaling between ωR and the angular momentum of the
field as seen in the pure BTZ solution [44]. We also notice the
extra term in the frequencies as the distance of an accelerated
version of the BTZ and the non-accelerated spacetime, since
m2L2A2 = m2L2 − r2

h .

5 Final remarks

In this work, we studied the scalar field perturbation in accel-
erated (2 + 1) dimensional BTZ geometries. The black hole
possesses a topological defect (angular deficit) that results in
a strut pushing the spacetime.

Two different field configurations are analyzed, the con-
formal and the free scalar field, with different outcomes.

The first pattern brings the motion equation to the same
as that of the free scalar field in non-accelerated BTZ space-
times with an effective mass written in terms of the geometric
acceleration as in Eq. (47).

The free scalar field representation unleashes a more
subtle dynamic. In such regime, we must perform a non-
usual field transformation (Ansatz) that leads to a decou-
pled motion equation (despite the acceleration of the space-
time). The non-trivial boundary conditions are governed by
the Israel junction conditions in the patches delimited by the
strut.

The decoupled equation was treated with the usual tech-
niques available in the literature (characteristic integration
and Frobenius method), with good convergence for the

123



  179 Page 10 of 13 Eur. Phys. J. C           (2025) 85:179 

results (quasinormal modes and unstable frequencies) of both
methods.

The quasinormal modes (δ ≤ 0) maintain the oscillatory
pattern considering spacetimes with different accelerations,
contrary e. g. to the charged BTZ spacetime [46]. The damp-
ing of the field achieves a minimum for intermediate acceler-
ations growing from that point on for increasing A, achieving
values considerate high when compared to other BTZ space-
times.

The results announce an unexpected behavior of the scalar
field to linear order, its instability for high enough accelera-
tion or angular eigenvalue. Instabilities triggered by a probe
scalar field with non-trivial couplings scenarii [59,60] and/or
non-usual global properties are well-represented in the liter-
ature from recent [108] to ancient [109] works. To this point
it is unclear if the mechanism leading to the particular insta-
bility we present in this paper is a liberation mechanism as
in the superradiant cases (supporting the evolution of scalar
clouds as resolution process to the instability) or an elabo-
rated channel perpetuated at high scale in the entire spacetime
that modifies its background as a whole. The answer to such
question must be investigated considering a fully non-linear
evolution of the perturbations and is outside the scope of our
work.

Further lines of investigation include: (i) field perturba-
tions with higher spin and the thermodynamics of scalar
field in 2 + 1 dimensional accelerated geometries, or still
the quantum-inspired scalar fields on a three-dimensional
accelerated geometry.
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Appendix A: Frobenius method

In order to apply the Frobenius method [102] in the wave
equation (31) with potential (32), firstly we change the radial
coordinate to a more suitable to the boundaries of the spread-
ing problem,

u = rh
r

(A1)

such that uh = 1 and u∞ = 0. In this system the scalar
motion equation turns to

f 2u4

r2
h

∂2�

∂u2 + f 2u

(
f u

r2
h

− �

rh

)
∂�

∂u
+ (ω2 − V )� = 0

(A2)

in which � = (∂r F)x , f = Fx , V = Vx and x represents
the change of coordinate r → u−1rh in each function. The
method consists in implementing the expansion

� =
N∑

n=0

(u − 1)n+α (A3)

in the wave equation, solving the boundary condition near the
event horizon implicitly, v. g. choosing the proper α for an
ingoing plane wave. To leading order, equation (A2) produces

α = ∓ ω

�
i. (A4)

The upper signal represents an ingoing wave while the bottom
accounts for an outgoing that we may ignore.

In a second step, we rewrite equation (A2) performing
expansions for each function of the equation as

s(u)
∂2�

∂u2 + τ(u)
∂�

∂u
+ �(u)� = 0 (A5)

with

s(u) = u4 f 2

r2
h

=
∑
n=0

sn(u − 1)n

123

https://doi.org/10.54499/UIDB/04106/2020
https://doi.org/10.54499/UIDB/04106/2020
https://doi.org/10.54499/UIDP/04106/2020
https://doi.org/10.54499/UIDP/04106/2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C           (2025) 85:179 Page 11 of 13   179 

τ(u) = u2 f

r2
h

(2u f − rh�) =
∑
n=0

τn(u − 1)n

�(u) =
∑
n=0

�n(u − 1)n (A6)

and

� = ω2 + m2 u
2 − 1

u2

(
− m2u2

2r2
h

− 3u2

4L2(u + Arh)2)

+ 4δu2 + 8Arhu(1 + δ) + 4A2r2
h (2 + δ)

4r2
h (u + Arh)2

u2
)

(A7)

Finally, solving (A5) order by order, we obtain the recurrence
relation for the coefficients an ,

an = − 1

(n2 + 2nα)s2

n−1∑
j=0

a j

(
�n− j + (α + j)τn+1− j

+(α2 + α(2 j − 1) + j2 − j)sn+2− j

)
(A8)

The acquisition of the frequencies is done by constructing
an algorithm that solves the imaginary polynomial equation
derived from the quasinormal condition near infinity, �∞ →
0, �(u = 0) = 0 or

N∑
n=0

an(−1)n = 0 (A9)

for a particular N . For such we used the well-known Muller‘s
procedure.
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