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Abstract: The shape vibrations of a superheavy nucleus with a complete (bubble) or a partially
(semi-bubble) depleted density in its central region and sharp-edge inner and outer surfaces are
investigated in the frame of the Liquid-Drop Model. The quadrupole oscillations of the two existing
surfaces are coupled in both velocity and coordinate and, upon decoupling, a low-energy and a
high-energy component are predicted. The electric transition probabilities are estimated for the decay
of the low-lying mode first 27 state to the ground state for the entire range of the radius and density
of the depleted core.
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transitions

1. Introduction

Estimates of the binding energies of hyperheavy nuclei using the Bethe-Weiszacker
semiempirical formula [1] predict the existence of spherical shell (bubble) configurations.
Previously, it was noted by Wilson that the formation of a shell instead of a sphere may be
caused by the saturation of nuclear forces [2]. Arguing that each nucleon cannot be strongly
attracted by more than four nearby particles, he conjectured that the electrostatic forces
should pull out a sphere into a shell.

Relativistic mean-field (RMF) calculations for nuclei with charges around Z = 120 point
to a pronounced central density depletion [3-5]. This result stimulated the appetite of
Walter Greiner to conjecture that superheavy elements assume a fullerene-like structure
formed of a-clusters [6]. The RMF framework applied by Greiner and collaborators in
2002 to the nucleus 22120 suggests the existence of a pronounced depletion of matter in
the interior of this superheavy nucleus [7]. In [8], a calculation for the N = Z superheavy
240120 was reported and it was concluded that the depletion of density is also visible. It
was also pointed out in [7] that, due to the density depletion in the central region of the
nucleus 272120, the electric multipole transition densities have oscillations for small radii,
more pronounced than for the lighter double-magic nucleus 2%Pb.

A first evaluation of the macroscopic energy and Strutinsky shell corrections of a
bubble nucleus was performed in [9]. A more thorough discussion of shell effects for
bubbles in superheavy and hyperheavy nuclei was carried out in [10-16].

On the other hand, the possible existence of depleted densities in the inner regions
of exotic nuclei was frequently called forth in the literature [17-19], along with the quest
of the stability of nuclear Coulomb bubbles [20] and the occurrence of a-matter in the
peripheral regions of nuclei [8,21]. Very recently, RMF calculations [22-24] have shown the
appearance of low nucleonic density in the central regions of lighter nuclei; 20 and 343¢Si
were emphasized as good candidates of being spherical bubble nuclei, whereas *Ne, 32Si
and 3*Ar were classified as deformed bubble nuclei.

The formation of unstable bubbles and rings (toroidal-like) in the central collision
between equal-mass heavy ions at beam energies per nucleon around 50-60 MeV was
predicted by BUU transport calculations [25].
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Bubble structures of quantum objects also arise in other fields of modern physics.
An example from solid-state physics is provided by the vibrations of a hollow spherical
molecule composed of a large number of atoms, such as the Cg fullerenes [26]. The problem
of collective excitations in triaxial superheavy nuclei was addressed in [27].

In Section 2, the structure of the collective Hamiltonian for the case of arbitrary
multipolarity is investigated. The expression of the deformation energy is given within the
Liquid-Drop Model (LDM) and the finite-range LDM (FRLDM). We present expressions for
the geometrical surface energy and Krappe-Nix energy of a nucleus with uniform densities
of the core and the shell.

Section 3 focuses on the expression of quadrupole vibrational energies, depending
on the size and density of the core, and the transition rates of the corresponding excited
quantum levels to the ground state.

2. Liquid-Drop Hamiltonian

In this paper, we consider a nuclear liquid drop that, in the ground state, consists of a
core of radius R; and a shell of thickness Ry — R;. Both core and shell are separated by an
inner surface that is assumed to be impenetrable, i.e., no exchange of nucleon mass and
charge between these two regions is allowed.

Below, the outer and the inner nuclear surfaces are described in a laboratory-fixed
system with orientation () by a volume conserving expansion into spherical harmonics Y} ;:

1
Ri2)(Q) = Ry(p <1 ~ i ;ﬁim”) (1 + Zﬁl(z))\yy/\y(ﬂ)> 1)
}l

Above, By (3),, are the dynamic multipole deformations of the inner (1) and the outer
(2) surfaces. The two surfaces are assumed to be sharp, i.e., they have no thickness, and, if
the nuclear matter inside the core can be completely depleted (left panel of Figure 1), one
then speaks of a bubble. If the density of the core, containing A1 nucleons,

3 A
=21 2
Pl 4 R% ’ ( )
is smaller than the density of the outer shell, containing A, nucleons,
A
3 4 3)

P2= T RB_R3 '
47 R; — Ry

as pictured on the right panel of Figure 1, then one deals with a configuration dubbed in
this work as a semi-bubble.

p Bubble p Semi—bubble

R R
Figure 1. Artist’s view of the square densities of bubble (left) and semi-bubble (right) nuclei.

At this point, one should remind the reader that the above choice of the nuclear matter
density is an ideal one. In Figure 2, the density calculated in [7] within the relativistic
mean-field framework, using the NL-Z parametrization for the meson coupling constants,
is approximated by a two squares distribution.
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Figure 2. The nuclear density with depletion in the central region as predicted by the RMF calculations
with NL-Z forces [7] (full line) and the simplification to a semi-bubble rectangular-like density
(dashed lines).

For sharp surfaces, the total density reads
o(r) = mO(R1(Q) = 7) + p2[O(R2(Q) = 1) = O(Ry (Q) = 7)] - 4)

In what follows, the collective energy of the nuclear drop is computed in the frame of
the macroscopic model and consists of a kinetic contribution and a potential part, which
accounts for the nuclear energy, calculated with and without finite-range effects, and also
the Coulomb energy.

2.1. Kinetic Energy

Similar to the case of a constant density massive nucleus [28], we adopt the assumption
that the velocity field is irrotational and incompressible in both inner and outer regions,

Vxv=0 V-v=0. )

Since these conditions are satisfied separately by the nuclear fluids inside the core
and the outer shell, we introduce the velocity potential, ®(r) = ®;(r) + P, (r), as a linear
superposition of the contributions from the core and the shell, respectively. Thus, the
function ®(r) satisfies the Laplace equation in each domain:

Vi®i(r) = 0, 0<r<Ry, (6)
Vi0,(r) = 0, Ri<r<R,. @)

The solution, regular at the origin, is available in spherical coordinates [29]:

Qi(r) = Y AyrYau(0,¢), 0<r<Ry 8)
Ap
Oy(r) = Y (Bt + Cur ) Vu(6,9), Ri<r <R 9)

Ap
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Similar to the case of a massive nucleus, a boundary condition on the nuclear surface
Sy of radius R; is imposed [28]:

- (%)

=70s, . (10)
TIRQ

A supplementary condition, at the interface between the outer layer of density p, and
the core of density pj, is derived from the natural requirement in hydrodynamics that,
at the frontier between two non-mixing fluids, the normal components of the velocity of
both fluids must be equal to the velocity vs, of the separating surface in the direction of
momentary normals [30,31]:

01 ff,_py = V2 1f,_p =05, , (11)
where OR1(6,0)
Us; = 1(—97[47 = R1)_ B Yau(0,0) + O(Biy,) -
Ap

Using the formula of the nuclear shape (1) and the solutions (8) and (9) in conjunction
with the boundary conditions (10) and (11), three equations for the three coefficients A,
B, and C,,, are obtained:

1

A/\y = XR%iAﬂl)\y ’

R%*/\ p2/\+1

By, = S (Biay — pi()\+3)ﬁ.2)\y) p
R/\+3 1 . .
— 1 A—2
C/\y T OA+1 pz,\+1 1 (51/\’/{ —-P 182/\}1) ’

where the constant p = Ry /Ry, dubbed as breathing deformation in [9], is constant in time
due to the incompressibility assumption.

Then, the total kinetic energy splits into a contribution coming from the core (domain
D, enclosed by the surface S1) and the outer layer (domain D, enclosed by the surface Sy),

1 1
T:Eplfpldrv%—i-ipl/pzdrv%. (12)

The kinetic energy of the fluid inside the core has the same form as that of a massive
nucleus of radius Ry [28],

1 ) 1 sl o
301 Jp, VRO = 0K T B (13)

For the outer layer, the calculation is more lengthy. It reads:

1 / ) 1 1
502 [ dr|ViDy(r)| = Sp2R
22 I, 2f 2§A(A+ 1)(1— p?H)

<{ P+ PP AH D] BraglP + (A + 1+ AP By,

- (2)\ + 1)p/\+3 (51/\;{52/\}: + hC)} . (14)

2.2. Liquid-Drop Model Macroscopic Deformation Energy

The LDM deformation energy results from the Weiszdcker expansion of the binding
energy of a leptodermous nuclear system [32,33]. The first term in the series is the volume
energy proportional to the number of particles. For small-amplitude shape fluctuations,
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47, R3(1 — p®)~2/3

- 47'[(711?%

this term is considered to have a negligible contribution. This is not the case for giant
resonances of a compressional nature. The next term in the expansion is the surface energy
that is discussed below.

2.2.1. Surface Energy

The surface energy of the nucleus is proportional to its surface in the LDM,
Eo=ocfds, (15)

where ¢ is the surface tension (given in units of MeV/fm?). Expressions for the surface
energy of a spherical and of a deformed nucleus can be found in the literature (see for
example [33]).

For the semi-bubble nucleus, the surface energy is the sum of the outer surface energy,
as written in Equations (5.12) and (5.13) of Ref. [9], and the surface energy of the core of
radius R; (taken with minus to compensate the contribution coming from the inner surface
of the shell for the case of a nucleus with homogeneous density):

pP1+ % AZ’}(A +2)A=1) (PP, + 52”*'2)1

1
1+ = LA+ A =1)IB1, 2| (16)
7T /\P‘
where 5
_ s |, _ (Ni—Zi 23 .
(71—4an2 1 K5< 7y ) A7, =12, (17)
and
Ry =Ry, Ry = (R} — R3S . (18)

The number of nucleons in the core A and in the shell A, can be expressed in terms
of the nucleus mass number A using the particle number conservation, i.e.,

3 3

qp 1-p

Ay=— P A p= P 4 (19)
T 1 —9) 2T 1-p (19

where g = p1/p> is the depletion factor.

The three-dimensional plot of the spherical part of Eg, relative to the ground state
value, as a function of p and g is shown in Figure 3 for the superheavy nucleus 2°2120. This
energy increases dramatically with p when the density of the core vanishes (bubble) or
is smaller than 1 (semi-bubble). For a nucleus with a homogeneous density distribution
(g = 1), the surface energy is naturally not dependent on p.



Particles 2024, 7

219

E0(p,q)-E (0(0,0) (MeV)

Figure 3. Three-dimensional plot of the spherical part of the surface energy with respect to the ground
statein p = Ry/R; and q = p;/p, coordinates for the nucleus 2°2120.

2.2.2. Finite-Range Nuclear Energy

A more refined approach to compute the deformation energy consists in folding a phe-
nomenological short-range interaction (e.g., Yukawa, Gauss) into the density distribution:

E= /dr/dr’p(r)p(r')vs(r—r’) ) (20)

The surface energy in this case results from subtracting the bulk binding energy from
the above expression.

If a Yukawa interaction is employed and the discussion is restricted to uniform den-
sity distributions, the single-folded energy (20) is known as the Krappe-Nix (KN) en-

ergy [34-36]:
E B _Lls(l —KSIZ) // e_‘r_rll/ud i (21)
KN 872r3a’ lr — 7| -

For the FRLDM, the physical constants entering the above formula are the surface
energy constant ag = 21.18466 MeV, the surface-asymmetry constant xg = 2.345, the
proton-neutron asymmetry [ = (N — Z)/ A, the nuclear radius constant rp = 1.16 fm and
the range of the Yukawa potential a = 0.6 fm [37,38].

The integral in the above formula can be expressed as a convolution of the
density (4) with the product of the Yukawa kernel and the density [36]. Thus, for a
semi-bubble nucleus, the KN energy splits into the following direct and mixed terms:

Exn = Exni + Exng + Exni2

where Exni and Egnp are the KN energies of equivalent massive (with homogeneous
density) nuclei of radii R;(i = 1,2). According to [35,36] they read
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R\ ? 2R; a\? a\? ,x
Exni = as(l—K512)<rol) (1—¢15i,1)2{ [_3“1+1_ (R) +<1+R> e ZRI/”]
1 1

1 Ri 2 Ri 2 —2R./ Ri 3 Ri
+ E)»z (a) _1+<ﬂ+1) e 2 a KA*% I/\ﬂ |‘BM”| (22)
where I, +1 and K 4 are the modified Bessel functions of rank A [39]. It is important to
note that the first term in the first square bracket of (22) is the volume energy term and,
if subtracted, we are left with the surface energy and the higher-order terms from the
leptodermous expansion, customarily known as generalized surface energy [34].
In what follows, instead of the above form, a more concentrated one, deduced in this
work, is employed:
Ri\? R; R; R\ 1
- _ 2y —gb:1)2 2t il )2
Exni 2a5(1 — xsl )<To) (1—4di1)"— {Ig<a>Kg<a> 3
1 R R; R; 2
T m() [13 ()K ( i () hen () |18l - 23
Below, we show how to derive the mixed term:
as(l—Kslz // e —|r=r'|/a , ,
E :7 - O(Rq( ——O(Ry(Q) —r)drdr’ . (24
KN12 87220 q) 1( |r | (R2(©) )drdr (24)
This part of the energy can be split into a spherical and a deformed part if we expand
the nuclear form up to quadratic terms in the deformation:
0
Exni2 = EI((Iznz + AExn12(B1, B2) (25)
where
0 2a5(1 — Ks1?) Ry Rl
B = (r00)2 (1—-9q) Rl L2\ — K1/2 +Ks/2
Rq Ry Ry Ry R
ol )] < Jeal2)
= 2a5(1—rsI2) (2 2 - 5 T (RiRe), Rl K R2 (26)
= S S 0 P 2 3/2 3/2 ’
and ( 2
as 1-— KSI 5/2
AE ,B2) = —————>—(R4R 1—¢g)x
kN12(B1, B2) PR (R1R2)™*(1 —q)
Ry Ry 1 Rq Ry
{13/2( )K3/2< p ) Y (plBiaul* + ;|ﬁ2)\y\2) - ZIM% <a>K9\+% ( ) (BiruPoap +hec )} :
Au Au

The three-dimensional plot of the spherical part of EI(<0121/ relative to the ground state

value, as a function of p and q is shown in Figure 4 for the superheavy nucleus 2°2120. The
qualitative behavior is similar to the surface energy represented in Figure 3.
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E oy (9,0)-E ((0,0) (MeV)

Figure 4. Three-dimensional plot of the spherical part of the Krappe-Nix energy with respect to the
ground state in p = Ry /R, and g = p1/p, coordinates for the nucleus 2°2120.

2.2.3. Coulomb Energy

For a charge distribution p (), the Coulomb potential energy is
1 1Pc(r)pe(r’)
Ec_z/dr/dr o 27)
where the charge density of the semi-bubble reads similar to the mass density (4):
pc(r) = pa®@(R1(Q) = 1) + p2[O(R2(Q) —7) = O(Ry(Q) = 7)] - (28)

The charge densities of the core, containing Z; protons, are

3 Zie
01 = L (29)

~ 47 R3
41 Ry
and of the outer shell, containing Z, protons,

3 Zze

P2 = Em . (30)

After some lengthy calculations, we arrive at the following expressions for the
spherical part,
£ _ 3 (ZePp’(1—q)[p*(3—29) — 5] +2
¢ 5 Ra 2 -p(A=-g) '

and the deformation-dependent part,

(B1)
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3 (Ze)? 1
AEc(B1,Ba) = ——
CPrh) = "4 R T-p -
s (2L 2 (A1 154 2
x %[p -0 (570-9 -3 ) B+ (3757~ 37°0-9) By
3 A+3 *
gt 0= DB bar, e @
In the limiting case of a bubble (3 — 0),
(0) _ 3(Ze)* p*(3p* —5) +2
Ec 5 Rp  2(1—-p3)2 7 (33)
AE( )_i(Ze)2 1
clPiP2) = g2 1, (1—p3)2
1 ]
Y 57 3P 1Bu = (220 7)1 = 2) B2y P =39 (B B2y + B (34)

This expression coincides with the form of the Coulomb potential given in Equa-
tions (5.24-27) of Wong's paper [9]. The three-dimensional plot of the spherical part of

relative to the ground state value, as a function of p and g is shown in Figure 5 for

the superheavy nucleus 2°2120. The dip for p = 1 and g = 0 indicates the instability of

an initially purely charged liquid drop, driven to Coulomb explosion due to the absence of
attractive forces.

E 0(p,q)-E (0(0,0) (MeV)

4 o = D
.
1000 e SRR
- =
4 o

292120

=N

0.9
0.8
0.7
0.6
0.5
0.4
03
0.2 ‘
0.1 0.1

0.2

Figure 5. Three-dimensional plot of the spherical part of the Coulomb energy with respect to the

ground state in p = Ry /Ry and g = p1/p2 coordinates for the nucleus 292120.
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3. Coupled Quadrupole Vibrations

In this work, we discuss the mode corresponding to small-amplitude quadrupole oscil-
lations of a bubble/semi-bubble inside an inviscid and irrotational drop around concentric
spherical interfaces. More precisely, we are interested in the case when the two surfaces
(menisci) are oscillating in phase. This is the bubble mode, which is pictured in Figure 6. If
the oscillation of the interfaces occurs in anti-phase, one speaks of a sloshing mode. For an
inviscid liquid shell surrounding an incompressible gas bubble, the first mode corresponds
to a high-frequency mode [40].

R

20

Figure 6. Schematic illustration of the quadrupole distortions of a bubble nucleus.

According to the findings of the previous section, the classical collective Hamiltonian,
including all shape multipolarities, reads

1 . . o N
H=T+AE = 3 Z{B{H Buial® + BalBorul* + Bia (BiauPor + BuauPiony)
Ap

+ ChilBiaul® + ChalBar,® + Cha (BT puBany + 5u;f’§w)} . (35)

which represents two coupled five-dimensional harmonic oscillators (see Ref. [41] for more
details on the harmonic quadrupole oscillator), with couplings of the type coordinate—
coordinate (8 — B) and velocity—velocity (8 — ) and no coordinate-velocity couplings
(B — B). The inertia parameters are given by

A+pr A+
Bi\l = BLDM(RZ)P5 ‘1‘|‘ (1—52A+1)(()L+1)):| ’ (36)
A+14 Ap2Atl
By = Buow(Re) iy (37)
AH3(2A +1
Bhy = —Biom(Ry) P AT (38)

1=pHA+1) 7

where B pp(Ry) = szg /A is the LDM inertia moment of a compact nucleus of radius R
and uniform density p;.

The Hamiltonian of two coupled harmonic quadrupole oscillators (A = 2 in
Equation (35)), from which two generalized momenta (2),, conjugate to the coordinates

,31(2)” can be defined, reads

_ 1 1 2, 1 2, B . «
H = z;{B—HVflM +B_22|7T2‘u| +m(7‘[1yﬂ2y+ﬂ1yﬂ2y)
+C11|:Bly|2+czz|ﬁ2y|2+C12(ﬁ?yﬁ2y+:Blyﬁ§‘u)} ’ (39)

and is quantized following the standard procedure [28]. For that, we introduce the bo-
son creation and annihilation operators corresponding to the two pairs of conjugate co-
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ordinates, i.e., (aﬂ,a;r,) for (71, B1,) and (by, bu®) for (72, B2y), through the canonical
transformations, namely,

By = ( U >1/2(a;;—0—(—)ﬂa_y), ﬁzy=< f >1/2(b;;+(_)7‘b_;¢),

2B11w1q 2Byrwp)
[ hBjiwyg \ 2 [ Boywon \ /2
T, = 1<1;11> ((_)Pla’f_y_uy), myzl( 2; 22) ((_)Mbi”_by)/ (40)
where
11

The quantized Hamiltonian is

5 5
H = hwn (Zﬂ;ﬂa;‘ + 2> + hwyy (Zb;by + 2)
M M

+ Q- Y () (afbt, +al b+ he) +hOL Y (afby +at by +he) . (42)
M [

We therefore deal with two SU(5) oscillators with a*b™, ab, a*bh and ab™ couplings,

where . c 5
QL= anzz( 2, B ) . (43)
2 vVCi1C2  VBuB»

Introducing the 20-dimensional column vector

v=(aba" b"T, (44)

the quadrupole Hamiltonian then acquires the following matrix form:

H= %a* Ma , (45)
where the 20 x 20 matrix M reads
A D 0 C
welbE g
C 0 D B

The submatrices composing M have the structure
A=wnls, B=wnl5,C=Q 795, D=0Q,I5 , (47)

where I5 is the five-dimensional unit matrix, whereas

0 0 0 0 1
0 0 0 -1 0

=0 0 1 0 0 (48)
0 -1 0 0 0
1 0 0 0 0

In order to solve the eigenvalue problem, we have to diagonalize the matrix #M

(see [42] for details), where
o 110 0
= < 0 —ho ) )
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and [jg is the ten-dimensional unit matrix. The eigenvalues are

1 1
wip = E((/J]] + wzz) + 5\/((011 — w22)2 + 4(Q+ + Q_)z . (50)

We therefore end up with two decoupled five-dimensional oscillators, one of high-
frequency wj and the other one of low-frequency w,:

5 - 5
H = hw, (Za;ay + 2> + hw, (Zb;by + 2) ) (51)
I I

The evolution of the high-frequency mode w; with p and g is displayed in Figure 7.
In the range p = 0 + 0.8, w; increases with the core’s depletion and with a larger R;. For
p > 0.8, wy attains a maximum for a given q and afterwards starts to decrease with growing
depletion. A similar trend can be inferred from Figure 8 for w,. It should be also pointed
out that, for a nucleus with homogeneous matter distribution (§ = 1) and vanishing core
radius (p = 0), wy is finite (~0.4 MeV), whereas the low-frequency mode fades away.

00 0.1 02 03 04 05 06 07 08 09 1.0 00 0.1 02 03 04 05 06 07 08 09 1.0

45 ‘ N 45 — S
292 — p=0 i 292 === p=0.5
40 | 120 p=0.1] 40 [TIEmaal 120 1
35 F ~ael e p=0.21 35 " :
== p=0.3
30 et 30
> == p=0.4 >
§ 25 === p=0.51 § 25
S 20 . 8 S 20
- . -
215 \,\‘:\ . 215
10 SO 10
., SO
5 p—————. e Y 5¢
0 lllllllll g 0 L L L L L L L L L
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
q q

Figure 7. The high-frequency mode dependence on g for p =0, 0.1, 0.2, 0.3, 0.4 and 0.5 (left panel) and
p=0.5,0.6,0.7,0.8,0.9 and 1 (right panel) for the spherical superheavy nucleus 2°2120.
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1.6 ’\,\\\‘: e p=0.27] 1.6 L \»\?¢~ ——=- p=0.7
~ L, TR, == p=0.31 P . p=0.81
% 2L ~..~::\:\’ - p:ggi % 12l \\\:’i'&’ --------- p=0.9 ]
S ool T, NS p= S 1o 1
N '~.,.\Q% ~
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q q

Figure 8. The low-frequency mode dependence on g for p =0, 0.1,0.2, 0.3, 0.4 and 0.5 (left panel) and
p=0.5,0.6,0.7,0.8,0.9 and 1 (right panel) for the spherical superheavy nucleus 2%2120.

The strength of these vibrational states can be assessed by estimating the transition
probability for the electromagnetic decay from a one-phonon state 2% to the zero-phonon
0™ state. For that purpose, the quadrupole moment operator is introduced [43]:

Qo = /rzY,W(Q)pc(r)dr . (52)



Particles 2024, 7

226

Inserting in the formula above, the specific shape parametrization (1) and the nucleon
density for a bubble-like nucleus (4), a straightforward calculation, yields

37 1
Qo = T;Rém [PS(Q — 1)1+ 524 +0(B?) . (53)

For simplicity, we assumed in the above formula that the ratio of nuclear radii (densi-
ties) Ry /Ry (p1/p2) coincides with the ratio of charge radii Ry /Re2(0c1/pc2)- This assump-
tion was already used in deriving the various pieces of the Coulomb potential energy in
Section 2.2.3. It is also important to note that the charge numbers of the core, Z;, and of the
shell, Z, = Z — Z,, are related to p and g according to the formulas

3 3
9P 1—p
Zy=7z—I 7=z P (54)
1-p*(1-q) 1-p*(1-q)
As an example, we take the decay to the ground-state of the quadrupole state cor-
responding to the low-lying mode, i.e., (07)1(27u), — (0%)1(0"),. The corresponding
transition probability reads

B(E2,p,q) = £[{(0)1(07)a 1] G2 | (0F)a(2")a)] 55)

The representation of the ratio of B(E2,p,q) to its value in the uniform case,
ie., B(E2,0,1), is displayed in Figure 9. It indicates a sharp decrease of the transition
probability with the growing density depletion of the core. Moreover, for an increase in
the size of the core, the decay probability of the low-lying quadrupole state is reduced
significantly.

00 01 02 03 04 05 06 07 08 09 1.0

1 T ‘ ‘ ‘ | ‘

5 w2 p=0
%\ 2 120 =)

0 0 e :
g 10" F :
a2
. — J
= o —————— .
= S T — ;
? o "‘o
:f 10-3 J—— ------ﬂ' |
Qs .
Q

2

10* ‘ - B

00 01 02 03 04 05 06 07 08 09 1.0
q

Figure 9. B(E2, p,q) dependence on g for p=0, 0.1, and 1 for the spherical superheavy nucleus 2%2120.

4. Summary and Outlook

Compared to the old study of Wong [9], which deals with bubble-shaped nuclei, the
present work extends the investigation such that semi-bubble shapes are also dealt with.
The analysis introduces an additional parameter in the macroscopic deformation energy,
i.e., the ratio g of the core to the shell density.

The main conclusion of the present study concerns the possibility of generating,
within the LDM, a new branch of surface oscillations for a nucleus with a significant density
depletion in the central region. The standard branch is characterized by high frequencies
increasing further with the enhanced depletion of nuclear matter inside the core. The
situation changes in the limit of vanishing thickness of the shell (bubble nucleus) when
the energies of both modes are drastically diminished compared to the more realistic semi-



Particles 2024, 7 227

bubble case when p =~ 0.3 (see Figure 2). On the other hand, transition rates are large only
in the vicinity of nuclei with a uniform density.

Studies on viscous and inviscid fluids point out that small perturbations decentering
the bubble inside the drop do not induce motion of the liquid and, therefore, the bubble’s
center is not restored toward the center of mass of the bubble—shell aggregate [40]. Analo-
gously, for the particular type of nuclei discussed in this work, one could inquire on the
possible existence of a dipole oscillation of the core with respect to the outer shell, a type of
collective motion which bears some similarities to the pygmy resonance [44].

Regarding the possibility of observing the decay of collective levels discussed in this pa-
per, one could imagine, first, their excitation through the bombardment with intense beams
of nuclei, simultaneously with or following the synthesis of the superheavy nucleus with
the same projectiles. The formation of bubble nuclei in heavy-ion reactions was discussed
in [45-47]. In the context discussed in this work, one could envisage a scenario in which, dur-
ing the formation of the compound semi-bubble superheavy nucleus, phonon levels of the
type discussed in this work are also populated and subsequently decay electromagnetically.

One should add that the present analysis can be extended to include protons and
neutrons separately. The spectrum of collective states is then expanded with anti-phase
vibrations of proton surfaces compared to neutron ones, as discussed in [48] for nuclei with
uniform density.
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