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Abstract In this paper, we calculate the vector, axial-
vector and tensor form factors of P — T transition
within the standard light-front (SLF) and covariant light-
front (CLF) quark models (QMs). The self-consistency and
Lorentz covariance of CLF QM with two types of corre-
spondence schemes are investigated. The zero-mode effects
and the spurious w-dependent contributions to the form fac-
tors of P — T transition are analyzed. Employing a self-
consistent CLF QM, we present our numerical predictions
for the vector, axial-vector and tensor form factors of ¢ —
(q,5) (g = u,d) induced D — (a2, K3), Dy — (K}, f3),
n.(18) — (D3, D},), B — (Bj, B},) transitions and b —
(g, s,c)induced B — (a2, K, D}), B; — (K3, fy, DY),
B — (D3, DY, xe2(1P)), np(1S) — (B3, B},) transi-
tions. Finally, in order to test the obtained form factors,
the semileptonic B — D3(2460)¢Tv, (¢ = e, p) and
D; (2460)t " v, decays are studied. It is expected that our
results for the form factors of P — T transition can be
applied further to the relevant phenomenological studies of
meson decays.

1 Introduction

In the quark model, mesons are bound states of quark g and
antiquark ¢, and thus the spin-parity quantum number J©
of mesons are consequently fixed by the constituent quark
pair, for instances J = 0~ for pseudoscalar (P) meson
and JP = 27 for p-wave tensor (T) meson. Many tensor
mesons have been well established in various processes [1].
Following the flavor SU (3) symmetry, nine possible tensor
(qq’) states containing the light u, d, and s quarks, isovector
mesons as(1320), isodoulet states K;‘ (1430) and two isosin-
gletmesons f>(1270), f;(1525) form the 1 P, nonet[1]. The
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known open charm and bottom p-wave tensor states include
D3(2460), D},(2573), B;(5747) and B},(5840), the char-
monium and bottomonium tensor mesons are x.2(1P) and

xp2(1P), respectively.
The B and D meson decays induced by heavy-to-light

transition provide a fertile ground for testing the Standard
Model (SM) and searching for new physics (NP). Some dis-
crepancies between the experimental data and the SM pre-
dictions have been found, for instance, the SM predictions
for Rpw deviate from data by more than 3o errors [2].
If these tensions are confirmed by the forthcoming experi-
ments, the discrepancies should also be seen in B transitions
to tensor mesons in addition to B decays to pseudoscalar
or vector mesons. The decay modes involving tensor final
states are of great interest because the tensor meson has addi-
tional polarization states compared with the (pseudo)scalar
and (axial)vector mesons and thus the relevant decays may
have more kinematical quantities related to the underlying
helicity structure. Some theoretical studies on these decays
have been made in, for instance, Refs. [3-21]. In the calcu-
lation of the amplitudes of semi-leptonic, non-leptonic and
radiative B and D meson decays, the form factors serve as
the basic and important input parameters.

There are many approaches for evaluating the form fac-
tors, for instance, Wirbel-Stech-Bauer model [22], lattice
QCD (LQCD) [23], perturbative QCD (PQCD) with some
nonperturbative inputs [24,25], QCD sum rules (QCD SR)
[26,27], light-front quark models (LF QMs) [28-34], etc.
Some B — T transition form factors have be evaluated
by employing the light-cone sum rules (LCSRs) approach
[35-37], QCD SR [38], the large energy effective theory
(LEET) [39,40] and PQCD approach [41]. In this paper, we
will evaluate the form factors of ¢ — (¢,s) (¢ = u,d)
induced D — (a2, K}), Dy — (K3, f3), n.(1S) —
(D3, D},), B — (B3, BY,) transitions and b — (g, s, ¢)
induced B — (a2, K3, D}), By — (K3, f5, DY), B —
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(D3, DYy, xc2(1P)), np(1S) — (B3, B},) transitions within
the standard and the covariant light-front quark models.

The standard light-front quark model (SLF QM) [28-31]
is based on the LF formalism [42] and LF quantization of
QCD [43], and provides a conceptually simple and phe-
nomenologically feasible framework for evaluating nonper-
turbative quantities. However, in this approach, the matrix
element lacks manifest Lorentz covariance and the zero-
mode contributions can not be determined explicitly. There-
fore, a basically different technique is developed by Jaus to
deal with the covariance and the zero-mode problems with the
help of a manifestly covariant Bethe-Saltpeter (BS) approach
as a guide to the calculation [33]. In such a covariant light-
front quark model (CLF QM), the zero-mode contributions
can be well determined, and the matrix element is expected
to be covariant because the w-dependent spurious contribu-
tions, where o is the light-like four-vector used to define
light-front by @ - x = 0, can be eliminated by the inclusion
of zero-mode contributions [33].

Unfortunately, the covariance of matrix element in fact can
not be fully recovered in such traditional CLF QM because
there are still some residual w-dependent spurious contribu-
tions associated with B functions [33,44]. In addition, the
traditional CLF QM suffers from a self-consistence prob-
lem for a long time, for instance, it has been found that the
CLF results for fy obtained respectively via longitudinal
(A = 0) and transverse (A = +) polarization states are incon-
sistent with each other [45], fv CLF # [ fV]CLF’ because
the former receives an additional contribution characterized
by the B](Z) function. Another self-consistence problem has
also been found in Ref. [46].

In order to deal with the self-consistence problem, Choi
and Ji present a modified correspondence scheme between
the covariant BS approach and the LF approach (named as
type-1I scheme) [47], which requires an additional M — M
replacement relative to the traditional type-I correspondence
scheme. By using such improved self-consistent CLF QM,
one can obtain the self-consistent results [47], and moreover,
the covariance of matrix element can be fully recovered [44,
46,48,49]. In this paper, we would like to further test the
self-consistence and covariance of the self-consistent CLF
QM via the form factors of P — T transition.

Our paper is organized as follows. In Sect. 2, the SLF and
the CLF QMs are review briefly, and then our theoretical
results for the vector, axial-vector and tensor form factors
of P — T transition are presented. In Sect. 3, the self-
consistency and covariance of CLF results are discussed, and
the zero-mode and the valence contributions are analyzed.
After that, our numerical results forthe c — (¢, s) (¢ = u, d)
induced D — (a2, K3), Dy — (K3, f)), nc(18) —
(D3, D},), Bc — (Bj, B},) transitionsand theb — (g, s, ¢)
induced B — (a2, K3, D3), B — (K3, f;, D%), Bc —
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(D3, D}y, X2(1P)), np(1S) — (B3, B},) transitions are
given. Finally, a summary is given in Sect. 4.

2 Theoretical framework and results
2.1 Definitions of form factors

The matrix elements of P — T transition with vector, axial-
vector and tensor currents are commonly factorized in terms
of form factors as [3,50]

(TE"", pP")q2yuqi| P(p"))
*V Pozqﬂ V(qz)

= iaﬂmﬁe m s (1)
(T (", pP)IG@2vuysq1| P(p))
e*-q
=—2M" qauAo(q®)
e* .
- () St
e . q M?2 — M2 5
+m Pu—q—z% Ax(q7), (2)
(T, P)NG200g" (1 + y5)q11 P(P))
= _5uvaﬁe*v Paqﬂ T (6]2)
+i[ (M2 = M, = (@ - )P | ()
q2
(e q)[an = T Pa | T3 ©)
where, eg13 = —1, P = p' + p’, g p—=r

exmv
etV = Mp" M'") is the mass of initial (final) state,

€™ is the polarization tensor of tensor meson and satisfies
eV p” = 0. The polarization tensors €””(1) with A helic-
ity (A = 0, £1, £2 ) can be constructed in terms of the polar-
ization vectors of vector state €/ (1’), and explicitly written
as

" (0) = \/g[e“(+1)e”(—1) + e (—De" (+1)]

2 v

+\/;6"(0)6 0, 4)
" (£1) = \/g[e“(:tl)e”(O) + € (0)e’ (£D)] . 5)
eV (£2) = et (£ e’ (£1), 6)
where,

1 —M? +p?
€"(0) = i (P ’p—+,—PJ_ ,
() = < —_GJ_ PJ_,EJ_> , € = :FU;/?) )
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Using the identity 204V ys = ighveh Oqp, ONE can rewrite
the definition of tensor form factors 77 > 3, Eq. (3), as

(T (", pP)g200q11P(P))
= e,w,s{ — " PP Ti(q%)
M/2 _ M//2
q—ze*aqﬂ [T1 @) - Tz(qz)]

*

+

1P’ Ti@d) - Taa?)
2

q 2
~ i P >]} , @®)

which is much more convenient for extracting the form fac-
tors within the SLF QM.

2.2 Theoretical results in the SLF QM

In order to clarify the convention and notation used in this
paper, we would like to review briefly the framework of SLF
QM. One may refer to, for instance, Refs. [28-31] for details.

The main work of LF approach is to evaluate the current
matrix element,

B = (T (", p")g kDT g (kDIP(P)) .
L=y, vuVs5,0umq" (1 +y5), 00, 9)

which will be further used to extract the form factors. The
meson bound-state (g1g2) with total momentum p and spin
J can be written as
IM(p, L, J))
_y / 3k &3k
et Q32K @m)32, ks

x \PLS"(klﬁhl,kz, h2)lq1 (k1. h1))lg2(ka, h2)) (10)

Qn)*83(p — k1 — k)

where k1 and k; are the on-mass-shell light-front momenta
and can be written in terms of the internal relative momentum
variables (x, k) as
+ -
ky =x p+ ,

ki =xpt, kiL=xpi+ki,

kyy =xp1 — ki, (1D

withx =1 — x.

The momentum-space wavefunction (WF) for a 25+,
meson, \Ilzg (k1, h1, ka2, hy),in Eq. (10) satisfies the normal-
ization condition and can be expressed as

Wy, by, ks 1) = Shy o (6, KDY (6, K1) (12)

where, ¥ (x, k| ) is the radial WF and responsible for describ-
ing the momentum distribution of the constituent quarks in
the bound-state; Sy, p,(x,Kk ) is the spin-orbital WF and
responsible for constructing a state of definite spin (S, S;)
out of the LF helicity (h1, h») eigenstates. For the former,
we adopt the Gaussian type WF

3
ok, k2 4 k2
Y1 (x, k¢>—4’;—§ - P [— Zzﬂf} :
2
Yipx, ki) = %Vﬂs@ﬂkL), (13)

where, k, is the relative momentum in z-direction k, =
k
(x— E)MO + , with the invariant mass M2 al + —1 L4
mzx#. The sp1n-0rb1tal WE, Sp, .1, (x, K ), can be obtained
by the interaction-independent Melosh transformation. It is
convenient to use its covariant form, which can be further

reduced by using the equation of motion on spinors and
finally written as [31,45]

2
’"2’1

i(ky, hi)IMv(ky, h2)
Shihy = N7 , (14)
)

where, M5 = M3 — (m; — m»)*. For P and T mesons, the
vertices I/ are written as

s =vs, (15)
1, (k1 — ko),
To= ==t |y, — 220 k),
T 26 |:VM DT,LF ( 1 2)v
Drir = Moy+my+my, (16)

where eV = eV (M — My).
Using the formulae given above, the matrix element of
M’ — M" transition can be written as

dXd2k/ 1% " / /
> / =" (. KDY (v K))

BsLp =

A CREE
xS,;’Ih (KD Gy (KL KD S (KD

(17)
where S’ and ¢'"" are the WFs of initial (final) state;
Cur i, (%, K . K|) = ity (x, | ‘DTuy (x, k' ) with T' given
by Eq O forP > T transmon In the further calculation,
it is covariant to use the Drell-Yan-West frame, q+ =0, and
take a Lorentz frame, p/J_ = 0. In this frame, the momenta of
constituent quarks in initial and final states are written as

ki = (xp't, K\, ki= (xp't, xp’| +Kk]),
ky = (xp"", —K}) = Gp™, xp] —K]), (18)
where p| =p’| —q. = —qr andk| =Kk —Xq..
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Inthe SLF QM, in order to extract the form factors of P —
T transition defined by Egs. (1-3), one has to take explicit
values of u and/or A. In this work, we take the following
strategyl:

e For the vector form factor V, we take A” = +2 and
multiply both sides of Eq. (1) by €.

e For the axial-vector form factors, we take @ = +, and
then use B;LF with A/ = +2 and +1 to extract A, and
Ay, respectively; we take A’ = +2, and multiply both
sides of Eq. (2) by ¢** to extract Ay.

e For the tensor form factors, we take A’/ = +2, and mul-
tiply both sides of Eq. (8) by €*¢", e P¥ and €*¢** to
extract 77, T> and T3, respectively.

After some derivations and simplifications, we finally
obtain the SLF results for the form factors of P — T transi-
tion written as

dx &>k, ¥ (e, K)D) Y (x, K))
(27)3 2x QMM
xS (K, %),

[F(g»)]sLr =/
(19)
where, the integrands are

M (M’ +
xxq2(M'? —

M//)
M2 4 qi)

{214 qL[(zx — DKZ(m|, — m)
+ 25K - qu((1 = 2x)m]
+ xm{ 4+ xmy) + (Xm' + xmy)
X ((m’l
T+ EQx — 1)qi)]

VSLF

—m{)(xm! + xm3)

D% LF [(Zx DKad — 20k - K] (K| - qu)’
+28(1 + 20K, KK, - qug?

+ 2K, - qu)® — 2x7K7K] - qiqd
+3(1 - 60)k?K, -qiq} — #°K, K[ q}
_ —(k/2k// SqL— )_Ck/
+ (kL(h

— izqi)(xzmz —i? ml )]}

J_qj_)(ml - m/l/z)
Zkl : ‘IJ_kL “qL
(20)

1" This strategy is not unique. It is possible to extract the form factor by
choosing the other values of w or A, but the other strategies may make
the calculation complicated relative to our strategy. In addition, different
strategy may result in different expression for the form factor, which
can be easily understood because the manifest covariance is violated
in the SLF QM, this is exactly why the CLF QM is needed. A simple
example for this issue is fy (one may refer to Ref. [44] for details).

@ Springer

ASLF _
A l —_

/

= 27 4{(1& K q}

— 2K/, - quk’] ~¢u)[4ki -q1(my —m))

+ (M — M"*)2xm| —m)| —m} — 2xmy)
+ ((3 —2x)m| +m} — 2im2)qj_]

K| -q.q
—{kf( m' + m)

— 27K} - q1 (1 —2x +2xP)m)}

+xmy 4+ x(1 = 2x)my)

+ (xmz + )Em’l) ((xmz + xmY)(m} + mY)
—xxQ2x — H(M* — M%)

] 2
— ¥ (2x - l)qzl)] -D—//(Zkl k] qu
T,LF

— K22 + 3 qL)[zki-k[k’L ‘q1

+ %K) -quq]

+ (KE + 2P my) (M — M?) — 3q] ]
+ K| - qu(2xma + Xm) (xmy — xmY)
+X(m} +m)? +xF(M?* — M)

+ x)E(M”2 — M’z)(xmzm’l — xm’{mz — im’lm’{)
+ xx%ma(m| — m))q} — xm) (Zm)
txim! + zxmz)qi]} , @1

M/M//
XIMY(M' + M")q}

X {k’fk’j_ . ql[(l — 8xx)m}| — 4xmf

+2x(3 - 4x)m2]

+(1 - 2x)[k’j_2kj_ ~qumy + xK/| kj’_qlmg]
— 27K, - quk/ - qL[(l — 8x¥)m,

— 2xm] + 4x (1 — 2x)m2]

+ (1 = 8x0)K| - q1 (xM"? + 5¢%)(Em| + xm>)
— 4xK/| - qum{my(xm} + xm2)
+K| - qJ_[(l —2x)m} +my + 2xm2](i

m{? —xm3) + x(1 — 20K/ - q L M"*(Fm| + xmy)

+ g4 (Fm] + xm2)[(1 = 2x)(xm3 — Zm}?)
4
+ dxxim{ms] — T ——Kk| qu[K| ‘K]

+ (Xm) 4+ xma)(xmy — xm’)][(2x — DK/

— xm!? + xm3 + x¥(2x — 1)M”2]}
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ASLF
AZ

TSLF __
Tl

2 M/2 _M//2+ AN
( WIS K, gD, ()
(M’+M”)2

M/(M/+M//)
= T{ —2(2kl~qlkl “q

— K| K[ @)1 = 2x)m} +m! + 2xm;]
+2(1 = 20K - q % (Fm) + xmy)

+ ﬁ[zqui

+27K%K, - quq?

— 4K (K - qu)? +45K] - qu K] - qu)?
—25°K| K| qt —202K| -q K| -qu

—K2q2 + #2qY) Gmy + xma)(xmy — )zm’{)] } ,

(23)
M/
quZ(M’Z —M" 4 qi)

X {(Zx — DIG - x)KTK] -qrq] — 4K

K (K] - qu)” + 357K - K] q! — 4K, - quk] - qugl]

— x3K] - quqd [2x(M? — M"?) + q} ]

+KIK] - qu22* (M7 - M")

+ (—4x% +7x =)@ 1 + K| - qu[QFxm — &m)]
+xm2)q} + 2x(Em| + xmy)(M? — M)

(xm} + xm2)

— (2K -quk] -q1

— K| K[ q)EQ@x — DmE — xm* + 2x*m3]

+ D,,2 [x (3KTK] -a1q]
T,LF
— 4K - qu(K) -q1) + 3K -k[q])
(2xmy —m + xm!)
+x¥my(4k’] - qL (K| -q1)* —2K7K - qiq]
+250°K, - qiq)) + (KK -qu
— 7K K[ Q%) (x(m) +my(M? — M)
+ im’lqi)
+ (2K - quk] -qL — K| K[ q]
— 3k - qrql)(@x — DK () +mf)
+2xxk'| - qimy + x)?mz(m’l2 — m’{z) + (m
+ m/{)(xzm% — %2

+ xE(M"? — M) (Zm') + xm>)

U Vi
mymy)

— x&(m + mz)qi)” ; (24)

T xiqt (M2 - M7+ )

!/
FSLF _ M

X2E (M2 = M"?)(M? — M +q7)
x {x;z(zx — 34K - qu (K| - q1)°
—2k7K] - quq?
— 3K, -K[K) -qiq]] - 45°K7K) K[ q}
+ QK| -q K| -qL — K| -K[q?)[2(x —2
— 2xHKE 4+ % (2x% + 3x — dymP + 3xim!?
+ 2x°m3 4 dxx (m) — ma) (ZFm'y — xm!)]
+ 3K K| @} [4GEm| + xmo)(xm| — Fm')
— dxmim| + 233 (M + M) + x*q3 ]
+ K| - qu 47K} +KPqd (4 — 14x + 1327 — 4x%)
+KE(4m) (F2m + x*m] + x¥my)
+ 4xm! (m] + xma) — 2x3 (M + M”z))
— (Xm! + xm2) (4m \m’ (xmy — xm’)
+2x2(M"” + M) (Em'| + xm2)
+ @} Qxx?m! — m{ (4 — 11x +9x% — 2x%)
2x

I
DT,LF

+x2m))] + o [F(AK] - q (] - q0)?

—3K7K - quq] — ¥K, - K[ q})(m} —xm] — xmy)
—2x%(K''qf — 2%k, -K K| -qiq]

— ©k2ql)(m} —m2) + (2K - quK] -qu —KkZq}
+22q}) (kP @2x — (| +m)) — 2k'Em)

+ (xm’ 4+ xma)((my + m)(xmy — xmY)

—2mmy + xX(M? + M") — iq?)

+ (KTK| - qL — %K -K|q}) (KT + 25 (m)

— ma)(m| +ma) 4+ 2m3 — x¥ (M + M"?))

(', +m’) + £ (3xm| + 3xmy — 2m2)qi)“

— TP (K, g%, (25)
ZM/(M/Z _ M//2)

{(4x - 3Kk -qiq?

+43K] - qL(K| - qu)® — 5K k[ q]

+202K, - quk’ - q1 —k7q] +q})
2xk| - K| —Kk?)

+ K| -quqi +4K, -quk] -qL

—2k'2q? 4 2x8°q 1(x2m3 — 2mf)

+ 3K k] -qr - K K[ gD —m?)
- #(Zkl -q k] -q —kPq]

+ g1 ) [ @xk, KL —KD)0n} +m]) — ()
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+xmy) (2;21(; qu— i1 —20)q
+(m' + m)(xmy — xmY)) ]}

M/Z _ M//2
q2

— (K, qz)] : (26)

|75 F KL g7

2.3 Theoretical results in the CLF QM

In order to treat the complete Lorentz covariance of matrix
elements and investigate the effect of zero-mode contribu-
tion, a theoretical framework of CLF approach is developed
by Jaus with the help of a manifestly covariant BS approach as
a guide to the calculation. One may refer to Refs. [33,45,51]
for detail. In the CLF QM, the matrix element is obtained by
calculating the Feynman diagram shown by Fig. 1. For the
P — T transition, the matrix element can be expressed as

d*k] HpHr .
BZNC WmlSB'E*, (27)
171

where d*k| = %dkfdkﬁdzk’l, the denominators Nl(/’”) =
ki/’”)z — m(l””)2 +ig and Ny = k% — m% + ie come from
the fermion propagators, Hp r are vertex functions, and € is
the polarization tensor of tensor meson. The trace term Sg is

associated with the fermion loop and is written as

Sg = Tr [ (K +m}) (Tp) (— fo + m2)
XAy TRy K+ ] (28)

where I'p 7 are the vertex operators written as [45]

iTp =—iys, (29)
1 (k/ll - kZ)/L]
il'r =i= ———— 2| (k] — ko),
’ 2 |:VM DT,Con ( ! )U
Drcon =M +m] +my. (30)

As has been stressed in Ref. [33], the covariant calculation
and the calculation of the light-front formalism give identi-
cal results at the one-loop level if the vertex functions Hp r
are analytic in the upper complex k/l_ plane. By closing the
contour in the upper complex k/l_ plane and assuming that
Hp 7 are analytic within the contour, the integration picks
up a residue at k% = 12% = m% corresponding to putting the
spectator antiquark on its mass-shell. After integrating the
minus component of loop momentum, the covariant calcu-
lation becomes the LF one. Such manipulation ask for the
following replacements [33,45]

Ni(//) N Ni(”) = (M/(//)2 _ M(/)(’/)z) (31)

@ Springer

and

XP(T) = HP(T)/N/(N) N hP(T)/]\A]/(N) ,
(type-I) (32)

where the LF form of vertex function, & p(r), is given by

Dt con — D7.LF,

1 X Yiscip)
2Nc X M(/)(//) ’

hpa) /N = (33)
The Eq. (32) shows the correspondence between manifestly
covariant and LF approaches [33,45], the correspondence
between x and & can be clearly derived by matching the CLF
expressions to the SLF ones via some zero-mode independent
quantities [33,45]. However, the validity of the correspon-
dence for the D factor appearing in the vertex operator can-
not been clarified explicitly [47]. In fact, the traditional type-I
correspondence may give self-contradictory results for some
quantities. An obvious example is fy noted by the authors
of Ref. [45]. In order to get self-consistent results for fy, a
much more generalized correspondence scheme is proposed
[47],

xpay = Hpay/N'"

;()/(/)T) / N/ ’ (type-1I) (34)

Within this updated self-consistent scheme, the CLF QM
can give a self-consistent result for fy 4 and form factors of
P — (V,A) and V' — V” transitions [44,47-49], while
the self-consistency of the form factors of P — T transition
remains to be tested.

Using above formulas and integrating out k/f, the matrix
element, Eq. (27), can be reduced to the LF form

R dxd’k’| hphr |
B— NC/ Grdky ekt g
2(2m)° xN{ Ny

— h M — M.

€*. (35)

However, the matrix element obtained in this way con-
tains spurious " -dependent contributions, which violate the
covariance of matrix element. It should be noted that the con-
tribution of the zero-mode from the ki+ = 0 is not taken into
account in the contour integration. It is interesting that the
spurious w*-dependent terms in B can be eliminated by the
zero-mode contributions [33]. The inclusion of zero-mode
contributions in practice amount to the following replace-
ments

B pra® g grald, (36)
121“12?’ — g’“’AiZ)
+ PPP AP + (PHg" +¢"P)AY
+q"q A
Plo’ + o' P o)

w-P L
]21#]21\1]21& N (g;wPa +guapv

(37)
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+guapu) A?) + (g;wqa
3
uaqv + gvaqu) Ag)
+ PHPUPYAY + (P P'q® + Pl P®
)
+g" PV PY) A
+(a"q"P* +q"P"q"* + P"q"q") A
+ quqvqu?)
1
—— (P* P
+ > P ( 0}
+P"w" P* + 0" P PY) B
1
Plg? 1 pv o
+ P [(P"q" +¢"P")w
+ (P*q* +¢" P%) &"
+ (PYq" + q“P") w“] By, (38)
Kl Ny — gt (A“)Z + A(z’) (39)
IRy, — ¢ APz,
g (A(Z)Z PLALS A<1)A(2)>
q’

PHreY + ot PY B(3)
3

40
P (40)
R R
P
_>(uvoz+g;wc u+g Q)(A§3)Z2+q2A(l4))
wovoal 43 P @
+4q"q"q" | Ag 22 +3 7 A,
1
P/,L v ,LLPU o
+— [(P*q" +¢"P") o
+ (Puqa +qu.Pa)wv
+(Pq" +q°P") ] B, (41)
where A and B functions are given by
K, -
Ail) _ f’ Agl) _ 19l : (42)
2 2 q*
’ 2
@) o K -qu) @ (12
Al =—kﬁ_—q—2, Az =(A1)’
AD = AV AW
1
() (1Dy2 @ .
Ay =(A)" — q2A1 ; (43)
3 )] (2) 3 1) 4, @)
AT =AVA Ay =ACA7,
(3) (1 (2) 3 1 42
A7 =A7A, Ay =AA,
2
3 (1 (2) 3 1 42 1) 4@ .
AsT =A17A A=Ay A; _?Az A7
(44)
“ 1) 43,
Ay =AA (45)

B =32, - P (46)
P
B = 22,40 4+ APAP L _ 4042,
¢
. P)?
BY =B®7, + <P2 @ P )A(II)A?); 47)
q

BY = 27,40 _ A®,
2

P - P)?
B =Yz, + L L p® 4 | p2 - Dy,
q? q
(43)
Zy =N +m? —m3+(E—x)M"

J_qJ_

+(@*+q-P) (49)

The w-dependent terms associated with the C functions are
not shown because they can be eliminated exactly by the
inclusion of the zero-mode contributions [33]. However,
there are still some residual w-dependences associated with
the B functions, which are irrelevant zero-mode contribution
[33], and possibly result in the inconsistence and covariance
problems [44,47-49].

Using the formulae given above, one can obtain CLF
results for the matrix elements of P — T transition, BZLF.
Then, matching obtained By z(I' = ) , Bey p(I' = yu¥s)
and BQLF(F = 0, (1 4+y5)g") to the definitions of form fac-
tors given by Eqgs. (1-3), the CLF results for the form factors
of P — T transition can be extracted directly. They can be
written as

"Lg?), (50)

dxd?K X/ X// -
[Fg)err = Ne / Qedky XpX7 e,

22n)3 X
where the integrands are
yCLE _ 2M'(M' + M//)I:m/l(l _ ZAEI) _ 2A;D + AEZ)

+ 247 + AP + mi(=AD + A + AP

— AP +2my(AS) — AP — AP
2 3 3
+ s (AP + 4P +a0)]. (51)
T ,con
o ML 3 6at Z 1040 4349 4 1442
0 = MG 641 — 10437+ 3477 4 1445
+ 1147 — 44D -84 —44)
ml(—AD £ AD 4 4D 4D
+2my(A” + 248 — AP — 547 — 44
+240 444 +249) + oy
T,con

x [( —2M? + 20 — mp)* — (), +m)? + N
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S 2 () M), 4@ @
— Ny —q1)(1 =247 = 2457 + Ay 4243 (AP =24 — 24P + 4D + 24 + A§3))” :
+ AD) 4 2(M? + M 4 2(m) — ma)(m!] + m2) 54
+q)@Ad =24 — 24P + AP \
= M'144® 11249 — 104?
3) 3) (D) 2) 3) 1 2 1
+245 + A +225(1 — 4AS) +547 — 248
4(M/2 _ M//Z) (_2A(2) + 4(M/2 _ M//Z)(Ag) _ A§2) _ A§3) + A?))
1
¢ +4g%(A" — A + AP + AP — 240 — AP
F3a0a? a0 AL [l R
1 1
M + M//ZCLF( y 2) + qi](l _ A(l ) _ Aé )) + Z[M/Z M qi
A M X, Kj,q ~ 1
m +20m} 4+ m)(ma — mh) — 28] (ALY
M — M" ~ / Vi
- A, K, gD, 52 2 2. 8| +mY) 3 2
oM 2 (x, K}, q%) (52) — AP —AQ) + Dl// D a® 4 a® — 4l
XCLF _ 2M' / (M//Z o2 2 N// T,con 55
U S e |™ my” —mj 1 (55)

— 7)) + m’{(M’2 — m/]2 — m% — ]\71/ —27Z)
+ ma[(my +m))? + N + N + ¢7 ]

_ I:m/1 (M//Z _ m/1/2 _ m% _ N]//) + m/l/(M/z
—m —m3 = N} + ma(m +m))? + N
Py [a0 ¢ a0

M/Z _ M//2
+ ('} + m) [ZzAé” Y Aﬁ”}

+2(4m] —m] —3my) AP

—80my = m)(A) +457) - -

T,con
x [(M’2 + M+ @2+ 20, — ma)(m]

+m)) (AP = 4Y = 4D) +2 (=224

M/2 _ M//Z
+2,A5 + TAﬁ‘”) ” : (53)

ASYE oM/ (M + M”){ —ml + (6m) —m| —2mp) A

+my +mHAY — ) +m)AP
— Om) —m] — 6m2) AP — (10m); — 6m)ALY
+4(my — ma)(AY)
+24 + 49
1 .
T,con
+ N7 +q}) (= 14240 4240 — AP
@ _ 4@
- 2A3 - A4 )
+2(M”? + M + qf +20m) — my)(m] + my))
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- M’{ [(m’] —m)?+ N+ N/ +¢%
CIZ 2 2
- M2 — M”72 (z(m/l —mp)” — (m/l - m/l/)

—2M? 4 Nf = By = ad) | + a8 = 1)

2Z,q* M @
+ ma — 345 +24Y)
+ 2[M’2 + M —2(m'y — ma)(m!| —my) + qi]
2
AD 4@ 4@ 4740
1 2 3 M2 — M2 2

2 2 1 2 3 3
=AY — AP+ 84 AP — AP - aD)

B S C B
+M/2_M//2( 1 1 = 2)
2
’ 1" q
" D/7/" con [ml e M2 — M2

(' —m' — 2m2)] [Aﬁ” +ADY - A(f)]} . (56)
= M/{[zM/2 + (my —m)?* = 2(m) — m2)?
— N+ 8+ 2101 — AP — alDy
+2AM? + M +2(my — ma)(my — m)) + ¢} ]
« (A9 + 4P — AD)
(3) 3)
+2(4AY + 44§
2) 3) 3) 3) 3)
+2470 + A9 14D — 4P —AD)
1 2 D@
+ Lap —anpap)]

+2Z5(~1 4348 —249)
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4

T,con

=348 — 647 - 347 + A7) +347) +34Y
+AY — D +2m) (AP + AP + 4D
+m{(M? = M)A

— AP +24 — 249

— AP —AD + AP 1+ AD) 1 2mf (AP — AP
— A 1 2maM” — M) 24

— AP 4240 — AP — 24D - aP)

+amy(A® — A Af))]} . (57)

The CLF results given above are independent of w and
A, which implies that the CLF contributions are irrelevant
to the self-consistence and covariance problems. This is a
significant advantage of CLF QM compared the SLF QM.
However, it should be noted that the contributions associ-
ated with B functions are not included in above formulae.
These contributions may result in the self-consistence and
covariance problems of CLF QM except they are equal to
zero numerically, and will be analyzed in the next section.

In our following discussions, we also need the valence
contributions, which can be obtained by assuming k; # 0 (or
pT # 0). This assumption ensures the pole of N, is safely
located in the contour of k|~ integral ( the pole of N is
finite) and implies that the zero-mode contributions are not
taken into account. At this moment, the replacements for
121” given above have to be disregarded. Instead, one just
need to directly use the on-mass-shell condition of spectator
antiquark, k% = m%, and the conservation of four-momentum
at each vertex. The valence contributions to the form factors
can also be expressed as Eq. (50) with the integrands written
as

2M/(M/ + M//)

fjval. —
)qu(M’Z — M2y qi)

x {2ikl ~q K| - q(m) —mY)

KL - q [(KE +m3) onf —my)
+32((m] — m)M™* — (m} —m)(M"* — q}))
+imy(M? — M +q})]
—D%[(qui — 27K, -q.k| -q;
T,con
—q)K? — ¥ M? +m3) + GKTK] - q
+52q3 K, K (M? — M)
+x (4K - q)°K] -q; —2kTqlk] q)

—K7K| -qq] + FK) - qui)]} , (58)

Tval.
Al =

/

g {x [80<, a0’k - a. — 6Kk -auqd
1
—45k2q} + 45K, - q,)%a} |on —m2)
+E[ 2K a k] ag - K, Kl ]
x [((1 — 2x)m} + m] + 2xma) (M2 — M"?)
—2q3 (25m) — (1 — 2x)m2)] + 3K, Klqh
X [(Zx — Dm| +m! — 2xm2]
K] q,q% [)EZM’Z((Z)C — Dm); — m] — 2xmy)
+2(xmy + im})(F*qF — xiM"?)
+KZ((1 = 2x)m) — mf + 2xm>)
—m3(my +m —2my)
+2xma(my — ma)(my — m/l’)]
2
—T[Zx(2(kl a0’} -q — K - q KPed
T,con
+3%K) - q.qt) (M” + (m) — mo)(m| + m2))
+(k2qd - 2K, - q K] - a, - Pl ) (fad
x()EM’2 — (x = 2)mimy
+m’{ (xm)| + xm2) — )Em%)
+(kf + m3 4 Xma(m'y — m! — 2my)
&2 (my — m) (] +ma)) (M2 = M”2)>]} . (59)
M/
(M +M"q%
x| = 2m + (1 = 4x)m; + (4x = 3y |

{ —F[20¢, -q.)? K24} |

— (k- ‘h)[k/f(@ —4x)m’ 4 3m! + (4x — 2)m»)
4 (972 — Sasm + 3]
+12xxmy — 2m2) + M2
x (= 2xmay — m} + (4x — hym})
+2xm3 + (1 — 2x)mm}
(1 + 20)m{m3 -+ 28mm{m |

2 | w2(= ,
—‘h[kL(X(SX —6)m)
—43m| + (8x* — 10x + 3)m;)
+(1 = 40)(M"? = q}) (xZmy + Fm))
—2q7 (x¥°my + ¥m)) — 287 m m{m,
+2x = Dym3emy + Fmi) — 28m{m3]

2

+)ED//

T,con

x [27K] - a K] - qu (3K +m3
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Aval. _
A2 ==

Tval.
Tl _—

Tval. __
T2 _

+2(Xm) + xma) (xmy — ¥mf) — (M — ¢7))

—432(K| -q )%k -q,

~2K| - q (KT + @m) + xma) (xma — Tm))
(kJ_ + m2 —Z(M//Z _ qi))] }

2(M/2 _ M//2 + qJ_)

1.
(M’ + M")? A K g), (©0
2M' (M 4+ M"
M+ M) qi ){<k1-k1qi

—2K - q k] - q)[(1 = 20)m]| +m| +2xmo]
+K| - quq} (1 = 2x)(Fm) + xm)

2

+= D/ [(quj_ 2k} -q K] -q;

T,con

—22q}) (K + @m) + xma) (xmy — 5m'))

+25 (K, -q))°K] -q, —TKPK| - q 4]

+i3kl : ‘hq‘i]} ) 61)

M/

xq2(M’2 — M2+ qi)

—6kPak] - qy + 47K, - q)%q] — 47K 7qt |
2

+(k/¢ -kiq] -

x [2kﬁ FR(Qx — DM? — M™ +23¢3) + 2m§]

{i[S(ki a0’k qy

2K -q K] - QL>
—7K] - q}[2eM” = 2xM" + Q11+ K] -qp
X [Ziqi (KT + ma(my +m{ —m2))
—2%(K? — ma(m) +m| — 2m2)(M"* — M"%))
+KF +md)eM? —2M" + q])
+522x — DM} + 25%(m) — ma)(m| — m2)
><(M’2 _ M//Z + qi):l
2 / 7 e WA 24,17
I~ (ml +ml)[4x(kj_ “q)k] qy
DT con
kaqu// )_Czk/ k// 4
+(k'Tq] — 21& q k7] -q,
Pq)KE — M +md)
—R(KPK] - qu — K K[ q])(M”? - M”z)]} (62)
M/
M//Z)(M/Z _

)E(M/z _ M2 +q3_)
{ [S(kJ_ q,.)°k] -q; —6k7qiK] -q;
—4ik?qt + 45K -, %] ]

(K] - k) - q - alK K] )[2K2

@ Springer

= )Eq4(M/2 _M//2_|_

+2m3 — %(M? +3M"*

+4(m| —my)(my —mY)) — 253 (M"? - qi)]
+iK| K| g% [4(m1 ma)(ma — mY)

a2 +22 M2 + 20" ]

K] q [2(KE 4 m3 + F0m2 = ) mz = m)

x (M + M") + 2% (K7 + ma(my — m}))

X (M = M) + 40m), = m2)(mz —m{) K +m3)
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—2(Xm) + xma)(Xm| + xmy)

+4xmmy +3(x — )E)m%)]

2 / i
o7 (—m1+m1+2m2)
T,con
[f1? - m ikt KK, g,

—3%K, - q.q}) + 45K, -q)’K] q,
—3ikTaik] -q. - PqiK] K]

+(kTql — 2K, -q K] -q; —¥°q])

x (K? +m3 — sz/z)]} + T (K Lg%, (63)

2M/(M/2 _ M//Z) _ > )
s {x[eklkj 04
1

—8(K, -q)’K] -q, +47k7q]
4%, - q0%q] | K] - q1q1 [ - 40K?
(1 — 2x) (m2 — sz’z)]

[ki ﬂh Zkl : ‘hk/i : ‘h]

x [2kf +2m3 + 7 (2x — HM™

M’/2+2qu_)]+x(l—2x)k/ K[ q*

2
| Fomh +mD A, a0k - a

T,con

—2k7K, -q, ¢}

+2xK/, - QJ_CIJ_) + (kj_(h_ 2K -q K -q)
—22q) (0m} +m) KT +m3)

+ximy(M?* — M +q7) — B2m{M"?
—m(M" — qi))]}
M/2 _ M//Z

+T[Tlval.(-kalaq2)

Ty x KL g2 (64)
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3 Numerical results and discussion

With the theoretical results given above and the values of
input parameters collected in appendix A, we then present our
numerical results and discussions in this section. As has been
mentioned in the last section, the contributions associated
with B functions are notincluded in the CLF results, Egs. (51-
57). These contributions to the matrix elements of P — T
transition can be written as

dxd?K’ X/ X// "
(Bl = N, / LXPIT (65)

2Q2n)3 %

where, the integrands are

©)
N B
BE(T = yu) = 2ie 00605 PP L (—m +m))

2)
+ ZiSM;\pae*Mq(gq“wpﬁ (m) +mY| —2my)
BY +28Y —28®
w- P

)

+4die e g5 qs PYqP P .
npap DT,con

(66)
e

B (T = yuys) = 4Pue*™ gy ws { ﬁ[ — 5m' +3my

1 A
+——0M"?* +2M" + N| + N/
DT,con

+ O+ )2 + 40} = )+ mo) = 3¢%) |

287 + B)
+ RN S— N

2m| =2
w- P g 2
1
_ 7(M/2 + M+ 2(m’y — ma)(m'| +my) — q2)]
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3 4 2
L Rt S T o | B
- : +4que™’ gosy ——
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><|:—3m’1—m’1/—2m2+ (2M’2—](7{—|—]§’{/

T,con
(3
2B;

—o2(m — 2 / AV 2]
(my —mp)” + (m| +my) q) +a)-P

« |:2m/1 —2my — (M/2 + M _q2
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(3) )
2(By" — B:")
2m — ” _ 3 5
+ 20} = mo)m +mo)) | —
5@

+ 4wy erd —1_
} Wy qrgs w- P

1
DT,con

(M™ + M"* + 2(m) — my)

X |:—4m’1+m/1/+3m2+

T,con

3) 4 ,p®
By +2B;

" _ 2]
(m| +m2) ‘1) + w- P

X [Zm/] —2my — (M/2 +M"?

T,con

+ 20} = o) +m2) - ¢%)]

B ©7)
w- P DT,con ’
BNB(F = quqv) = 481})»0(5 Paqvwﬁf*m%spu

(3) (3) 2
N B”+ By — B

— + 260008 PYq 0P 40 g5q,,

(3) 2
2B," — B
x 2 1

w- P +28,50p PP 0P €405
2) (3) (3) () (3)
B — B — B B, — 2B
« |:2(M,2 _ M//Z) 1 1 2 q2_ 1 2 :|
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. 1281
+ ZSMM;;q“a)ﬁe* qs { [(m/l +m!)(m} —my) + N{} —>
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+ 2(M/2 _ M//2) 1 » .IP 2 + q2

2 (3)
. B)” —2B,
w- P

+ 26,008 PP e g { [(m’l +m!)(my —m') — 1(’{]

@)
2B|

2) 3) 3)
B” +2B;”" —2B

+ (M’2 o M//Z) 1 1 2
P

w- P

w -

(2) (3)
3B, +2B
2. #} +45uvaﬂpvqawﬁé*xéqkq8

w- P
(2) (3) 3)
my+mj 2B" — By —2B; 68)
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2B?
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w- P

3
B 4q2(my —m))
w- P
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+ (m) —ma)(my —m!)) + ¢°

2 2 "2 l " 2, 1 /"
- (M= = M"Y, + m) — q*(m; —m| —2m») ]
DT,con ( 1 1 1 1 )
3) 3)
B|” +2B; [_M/2+M//2_q2+ 1
w- P DT,con
O
x (M2 = M)} +mi) = g2y —mf = 2m2) | = = } Fig.
QM
@
+ 2l~6*ﬂ5w5 (M/2 _ M//2> « { 1 [_ (M + M)
w- P
28
+2(m2—ml)(m2—m1)—q ]—1—7})} (69)
After extracting their contributions to the form factors,
[F]B, one can obtain the full result of form factor in the CLF

QM, which can be expressed as

[]_—]full — []_‘]CLF + []_‘]B (70)

Based on these results, we have following discussions and
findings:

e Here, we take EB (I' = ouvysq”) given by Eq. (69) as an
example. From this equation, it can be found that the third
term is proportional to w,,. This spurious w,-dependent
contribution corresponds to an unphysical form factor
and may violate the covariance of matrix element if it is
non-zero. The other terms would present contributions
to the tensor form factors, 75 and 73. For convenience
of discussion, we take 73 as an example, which could
receive the contribution from the second term written as

TB _ Z(M/Z _ M/IZ) eké*qkwé
3 e* - q w- P
4(my +2my — 2m/

{sz) [3 N ( 2 )}

DT con
m! —2m

+4BY <1 T R 2)

DT,con

8(m'| — m2) B

(71)
DT,con

|

which is obviously dependent on the choice of A”. For
different values of A", T can be explicitly written as
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1 The Feynman diagram for the matrix element within the CLF

ZM/(M/Z—M”Z)(M,Z—Mﬁz-l—qi)
(M’2—M”2)2+2(M’2—2M”2)qf_+qf_

) 4(m" 4+2mr—2m’,)
{Bl [3+ 22y |

D T,con

3) m'y—m' —2m»
+4B (1 + : DT,lcon
(3) 8(m'|—my2)
+B D; con
M (M/z_M//z)
M/Z_M//2+q2

B3+

+4B® (1 +
+B(3) 8(m' —m2)

DT con

)\.// — O
7B (72)

4(my+2my—2m")

b
)

my—m{—2mj
DT,con

)\4//
1 — Z|:2

==+l1

0.

Further considering the fact that [F]°%F is independent
of A7, it is clearly seen that T3 possibly suffers from a
self-consistence problem (i.e. [T3]f“” + [T3]§uil L F
[T3]§‘il 1,) caused by the B function contributions in the
CLF QM. Comparing with the other transitions, the P —
T transition is associated with much more B functions,
and thus presents a tougher challenge to the CLF QM.
In order to clearly show the possible self-consistence
problem caused by B functions within type-I and type-
II schemes, we define the contributions of B functions
Ap(x) as

d[FB],
Aoy = Wb (73)
dx
which is equal to N f 2‘12:%; Xp XXT T3 for the case of T5.

Taking D — K3 and B, — Dj transitions as examples,
the dependence of Ag(x) on x are shown in Fig. 1. It can
be seen that the self-consistence is violated within the
type-I scheme, but it can be satisfied within the type-II
scheme due to fol dx [AB]z; (x) = O for any values of ”.

In order to further confirm such finding, we list the
numerical results of [T3]! for B, — D3 transition
at @2 = (0,1,4,9)GeV? with A" = (0,£1,42) in
Table 1, in which the SLF, valence and CLF results are
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Table 1 Numerical results of form factor T3(qﬁ_) at qf_ = (0, 1,4,9) GeV? for B, — D7 transition

B. — Dj (7:55E (7318, (7318, (731, (T3] [T3]LF
‘li =0 Type-1 0.03 —0.14 —0.04 0.05 0.10 0.05
Type-11 0.08 0.08 0.08 0.08 0.08 0.08
¢ =1 Type-I 0.03 —0.13 —0.04 0.05 0.09 0.05
Type-1I 0.07 0.07 0.07 0.07 0.07 0.07
Q@ =4 Type-I 0.02 —0.11 —0.04 0.03 0.07 0.03
Type-11 0.05 0.05 0.05 0.05 0.05 0.05
Q=9 Type-I 0.02 —0.08 —0.03 0.02 0.05 0.02
Type-11 0.04 0.04 0.04 0.04 0.04 0.04

also given for comparison. From these numerical results,
it is found that [T31}) # [T31M, | 2 [73]00, within
the traditional type-I scheme, while

(73100 = (1M = (), (type-ID)  (74)

which confirms again that the contribution associated
with B functions vanishes numerically within the type-1I
scheme, even though it exists formally in the expression
of form factor given by Eq. (70). In addition, one can also
find from Table 1 that the SLF results are also consistent
with the CLF ones, [T3]™!'=[73]5LF, in type-II scheme.
These results confirm again the finding obtained from
Fig. 1. Moreover, we have checked the contributions of
B functions to the other form factors, and obtain the same
conclusion. Therefore, it can be concluded that the CLF
results for the form factors of P — T transitions have
a self-consistence problem caused by B function contri-
butions within the type-I scheme, but the type-II scheme
can give self-consistent results.

e Besides of the self-consistence, the contributions of B
functions also possibly result in a covariance problem
because some terms in gﬂ are associated with w,,. Tak-
ing the third term in gB (I' = ouvysq”) given by Eq. (69)
as an example, this spurious w,-dependent contribution
corresponds to an unphysical form factor and would vio-
late the covariance of matrix element except it vanishes
numerically. Similar to the case of [73]8 discussed above,
it is found that this spurious w,,-dependent contribution
is (non)zero within the type-II (I) scheme, which implies
that the Lorentz covariance of B* is violated within the
type-I correspondence scheme, but such problem can be
avoided by employing the type-II scheme.

e Ashasbeen mentioned above, the spurious w,, -dependent
contributions associated with C functions can be can-
celed by the zero-mode contributions [33]. The resid-
ual zero-mode contributions to form factors can be
obtained via [F]YF = [F] + [F]“™ . In order to
clearly show the effect of zero-mode contribution, we

take TB_>K2 D27 s examples and plot the depen-

dence of d[F]*™ /dx on x in Fig. 2. It can be found
that zero-mode presents nonzero contributions within
the traditional type-I correspondence scheme; while,
these contributions, although existing formally, vanish
numerically in the type-II correspondence scheme, i.e.,
[T3 (qz)]zhm_£0 (type-II), because the contribution with
small x and the one with large x cancel each other out
exactly at each qi point. This can also be found from the
numerical results given by Table 1.

The tensor form factors of P — T transition have also
been calculated by Cheng and Chua (CC) [50] within the tra-
ditional CLF QM, their results are given in appendix B. The
contributions associated with B functions are not considered
in their calculation. Besides, comparing CC’s results with
ours, it is found that they are the same for 77, but are obvi-
ously different for 75 and 73 in form. In addition, it has been
checked that their numerical results for 75 and T3 are differ-
ent either within type-I scheme. After checking our and CC’s
calculations, we find another inconsistent problem caused

: : : P—>T
by the different way for dealing with the trace term S, s

related to the matrix element BgL_IZT[F = ouvysl. To clar-
ify the origin of this inconsistent problem, we take the term
2ig3.8an8po (P + q)PkPK"k| s appeared in S:’”T as an
example. As has been mentioned in the last section, some
replacements are needed to take the zero-mode contribution
into account after integrating out k/f. In the CC’s calculation,
the replacement for Igi" 12’1“12’18 is used directly though o is a
dummy indices, i.e.,

2igv)8angpo (P +q)ﬁ/2/101210l/2§6
= 2igv3.8an8po (P + q)ﬁ[(g‘“’ Ps+ g2 P +gf PH)AY

3
(8975 + 8897 + g gAY
+ PTPUR AT + ]

= 2igvx{gua[(P2 +P- DAY + (P g+gHAY]

@ Springer
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Table 2 The summary of the resonance masses (in units of GeV) with different quantum numbers entering the z-series expansions of the P — T

form factors [1,55,56]

Fg* JFP c—>q c— s b—gq b—s b—c
Ao(g?) 0~ 1.864 1.968 5.279 5.367 6.275
V(g?), Ti (g% 1- 2.007 2.112 5.325 5.415 6.329
A1(g?), A2(g%), T>(g?), T3(¢?) 1t 2422 2.460 5.726 5.829 6.767
3 3
+ PL2Ps + gAY + ;A5 +P, [(M’2 +m? —m3 + N))(PsAY + qu§2>)]
Ps(P2+ P -)AY + ... > >
TRETE Prods g (M2 4 m? = m3 + NDPAS + g5 A7)
3 3
+qulPsAD + (Py +2g5)AY) + ]] (75)

In our calculation, we employ the standard procedure of CLF

calculation, and obtain

2igv)\g(xp.gﬂa(P+Q)ﬂ12/1”]2;a1215
= 2igy k] kis ki - (P + q)

= Zigvkigué I:(M/Z + m/12 — m% + Ni - ZZ)A(12):|

@ Springer

q-P
2

—as(4P 72+ 2L AP aP) )+

q

(76)

Comparing Eq. (76) with Eq. (75), one can easily find that
CC’s result is different from ours because different replace-
ments are needed. As a result, our and CC’s results for 77 3

are different in form.



Eur. Phys. J. C (2022) 82:451

Page 150f 24 451

Table 3 Fitting results for form factors of ¢ — (g, s) induced D — (a2, K3), Dy — (K3, fz/), ne(18) — (D3, D},), B — (B3, B},) transitions

with the parameterization scheme given by Eq. (78)

F F(0) by F F(0) by F F(0) by
vb-a 0.9670 1% —4.60135  vboK 1.0070 1 —4.6013% VDK 098707  —4.80730
D—a +0.07 +3.90 D—K3 +0.06 +3.10 Ds—Kj +0.08 +4.50
Ay " 0.6275 7 —3.702599 Ay 7 0.682 o8 —3.705 48 Ay : 0.58% 08 —4.2037
AP 0.63+011 —2,001260 407K 0.71+009 —1907198 4Pk 0611012 _p 60300
D— +0.10 +2.70 D—K3 +0.11 +2.58 Ds— K3 +0.14 +3.40
Ay @ 0457508 =3.70"790 A, 2 0.58" 10 —4.90"79; A,y 2 0.51%)15 =5.10757%,
D—ay +0.08 +3.16 D—K3 +0.07 +2.27 Dy—K5 +0.09 +3.40
T, 0.6175 08 —4.06259g T, : 0.682 09 —3.635578 T, : 0.58%5 .09 —4.5873
D— +0.08 +2.06 D—Kj +0.08 +1.66 Ds— K3 +0.09 +1.87
T, @ 0.617 05 4787138 T, 2 0.68" 09 4.647 59 T, 2 0.587 509 423753
D— +0.03 +1.81 D—K3 +0.07 +1.35 Ds— K3 +0.05 +1.97
Iy 0.227406 —4.851)5s Ty : 0172570 —2.85153 Ty : 0.15% 403 —4215,%
Dy~ f} +0.19 +3.00 (18)— D% +1.47 +10.8 (18)— D* +1.53 +9.59
VP h 1191020 —4.4073%  vned9H=by o pg7f —194708  yn$=Dy 36700 14,6703,
Dy— f; +0.07 +3.42 ne(18)— D3 +0.22 +11.4 1e(18)— Dg; +0.25 +9.59
Ayt 0.72Z 08 —3.70555, Ag : 0.96Z05) —18.57,5% Ay ? 1287554 —13.3%55%5
3 % B * (1 v
ATE ol a0l AT gy el 0T ey oy
O B+ B+ S NG Tk e
Ds— f; +0.08 +2.59 nc(18)—Dj +0.27 +10.9 1e(18)— Dy, 40.30 +9.07
T, : 0.73%410 —3.64753 T, : 104753 —22.17 104 T ’ 138758 —16.97¢'56
Ds—f; +0.08 +1.89 1c(18)—> D3 +0.27 +7.53 ne(18)— D3, +0.30 +26.1
T, 2 0.73%5.09 6.307 g5 T, 2 1.047)53 28.4715% T, 1.387 5 88.17517
Dy— f; +0.07 +1.09 1c(18)— D3 +0.18 +8.96 1e(18)— Dy +0.28 +6.30
T; 2 0.157575 —2.277 83 T; 2 0.167 53 —41.1777% T; 2 0.357535 —30.05355,
Be— B +5.30 +26.7 Be— B +5.59 +20.2
VBB 1347330 —87.6t2%7  yBoB, 14.8433) —74.7+202
B.—Bj +0.33 +3.46 Be— By, +0.11 +5.34
Ay 2.01%037 —19.37575 Ag ? 2455014 —20.5537%3
B.—B* B.— B*
A c 2 2.42+0.60 _35.4+1.13 A s 52 2.94+0410 _35.4+2.79
1 ~0.55 —3.74 1 ~0.30 —3.63
BB 2 51+242 _31.6+120 ABe B 3.45+315 09 4+165
2 D115 0141 2 9160 4791
Be.— B3 +0.43 +10.1 Be— By, +0.43 +4.74
T, 2 224704 =77.175015 T, 2 2.69" 45 —74.57343
Be— B3 +0.45 +22.9 Be— By +0.10 +235
T, : 2.25%045 89.27507 T, : 2697 13 175563
Be— B B.— B
I e e B S oy S e

In order to clearly show the divergence between CC’s and
our results, we define the difference

diF IS dIFIeE"

dx dx

A (x,q}) = (77)

where F = T 3. Then, taking D — K3 and B, — Dj as
examples, the dependences of A(szLf(x, qi) on x in type-I
and -II schemes are shown in Fig. 3. It can be easily seen
from Fig. 3 that our and CC’s numerical results for Tg}
are inconsistent within the type-I scheme; however, such
inconsistence problem vanishes in the type-II scheme due
to fy dx AGHE (x)=0.

From above discussions, one can conclude that the CLF
QM with type-II corresponding scheme can make sure
the Lorentz covariance of matrix elements and give self-
consistent results for the form factors. Using the values of
input parameters collected in appendix A and employing the

self-consistent type-II scheme, we then present our numeri-
cal predictions for the form factors of ¢ — (g, s) (¢ = u, d)
induced D — (a2, K}), Dy — (K3, f3), n.(1S) —
(D3, D},), B. — (B3, B},) transitions and b — (g, s, ¢)
induced B — (a2, K3, D}), By — (K3, f3, D)), B —
(D3, D}y, Xc2(1P)), np(1S) — (Bj, B},) transitions.

It should be noted that the CLF calculation is made in the
g™ = 0 frame, which implies that the form factors are known
only for space-like momentum transfer, ¢> = —qﬁ_ < 0,
and the results in the time-like region need an additional
g extrapolation. For the phenomenological applications, we
adopt the BCL version of the z-series expansion [52] in the
form adopted in Refs. [53,54],

rype FO_
- q /mi,pole

@ Springer
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Table 4 Fitting results for form factors of b — (g, s, ¢) induced B — (a2, K3, D3), By — (K3, fz/, DY), B — (D3, D}, x2(1P)),
np(1S) — (B3, BY,) transitions with the parameterization scheme given by Eq. (78)

F F(0) by F F(0) by F F(0) by

vi—a 0247000 —530%54  VESK 028700:  —5.50%540  vEoD: 0757018 —6.20103
Ao saogE AN eawgl sl A oerdll 62003
L T R L O e - T
e - T L I e I O &
e 0a9nR sanq N ol seol nP oetlh 60t
e I T T e S - Ve v R
R =S At N WESe 1 SN T S St B Vie 1/ S LT 1
VESRL 0230 _es0TE vESA 039 630708 vASPR 0ostl es0%0
AP oas0 emotB ARTH 02l S0t 4T 076t —6s0'Df)
APTEL ot aonl APTE ol amotl aPTTR omlli a0t
AT onedl —enotdil aMTE ol eoo AFTPR osefl —eo0rd
IR oar —es0tE TR 025t —esotd TR arstl —en0t
X (e O A e O A X i R K
e T e 8P S T A N e e A 3
v Be=D; 035100 —140tyy VBT 0657013 —13.01380  vBoxeUP 54ttt —13.013%
AT oot st ST ol Sl AR osed om0ty
AT ot notl® AT asehl oot AT oo —omnd
AT o notl AT oscgl il AR owE —noty
A A e ST - B G et BT
e T e TR e B e Tt TR
NG R e N L - B e e R
VRSB 062 514l vR09oE 00083 —seoti

AP aoE sest AP0 oot 5721

AP ol sorl AP omrty ss

R N X S T ECe | S TR

R it (L 1 R IR £

R e QR

O ooy metly nT oo omany

N

x AT+ b [26% 0 =200 L (78)

k=1

—m_m, ty=M'+M")? 1=
Vi i

(M' + M"Y(WM’ — /M")2. For the masses of resonances
collected in Table 2, we take the values given by PDG [1]
and lattice QCD [55,56]. In the practice, we will truncate the
expansion at N = 1. The parameter b; will be obtained by
fitting to the results computed directly by CLF QMs.

where, z(qz, to) =

@ Springer

Using the parameterization scheme given by Eq. (78),
we present our numerical results of F(0) and b; for the
c = (q,8) (g = u,d) induced D — (a2, K3), Dy —
(K3, f)sn.(18) — (D3, DY), B. — (B}, B},) transitions
and the b — (g, s, ¢) induced B — (a2, K5, D), By —
(K3, f3,D%), Be = (D, Dl Xea(1P)), my(1S) —
(B3, B},) transitions in Tables 3 and 4, respectively. The q°
dependence of form factors are shown in Figs. 4 and 5. Some
remarks on these results are given in order.
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transitions
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Table 5 Numerical results of Z; (q2) at q2 = (3,5,7)GeV2 for B — Dj transition, and at q2 = (6, 10, 14) GeV? for B — K7 transition

B — Dj q* =3GeV? g% =5GeV? q% =7GeV?

Z1(g%) —1.28 x 1072 —2.18 x 1072 —3.11 x 1072
Z5(q%) —2.92x 1074 —3.00 x 1074 —1.40 x 1074
B — K} g% = 6GeV? g% = 10GeV? q% = 14 GeV?
Z1(g%) —3.57 x 1072 —6.27 x 1072 —9.30 x 1072
Z>(g%) —2.28 x 1073 —231x1073 —6.05 x 1074

Table 6 The values of by and b, for the form factors of B — D3 and B — K7 transitions within the truncation-scheme N = 2. The values given

in the parenthesis are the results obtained within the truncation-scheme N = 1

B — D; \% Ao A Ao T T T3

by —6.59(—6.20) —6.64(—6.20) —3.19(-3.00) —6.44(—6.10) —6.61(—6.30) —2.47(-2.40) —5.85(—=5.91)
b 5.94 6.51 2.44 5.93 4.87 1.17 0.50

B — K; \%4 Ao Al Ar T T T3

by —6.49(—5.50) —6.62(—5.60) —2.69(—2.50) —6.20(—5.20) —6.64(—5.60) —2.30(—2.20) —5.78(—5.20)
by 6.55 6.55 1.02 6.30 6.55 0.31 0.13

e Firstly, we would like to test the legality of the truncation-
scheme N = 1 employed in this paper. In the expansion,

Eq. (78), the values of Z;(¢2) = z(¢2, 10)* — z(0, t)* in
general satisfy Zy,1/Zr ~ O(10~1~=2), which can be

found from the values listed in Table 5 (for convenience

of discussion, we mainly study the effect of k = 2 term, °
and take B — D3 and B — KJ transitions as exam-
ples). Therefore, the k = 2 term can be neglected except
for by > by.From Table 6, it can be found that the values
of b; and b, are at the same level. Thus, the truncation
N = 1 employed in this paper is acceptable. It can be
also clearly seen from Fig. 6 that the effect of truncation-
scheme N 2 on the g2-dependences of form fac-
tors are not significant compared with truncation-scheme
N = 1. Such finding can be easily understood because
the CLF result for the form factors can be well repro-
duced within the truncation-scheme N = 1, and thus
the higher-order terms are trivial. Some discussions on
the effects of higher-order terms have been made in, for
instance, Refs. [54,64].

e Just like the n — 1’ mixing in the pseudoscalar case, the
physical isoscalar tensor states f>(1270) and f;(1525)
also have a mixing. In order to exhibit their flavor com-
ponents, the mixing relation can be written as

1 _
— (uit + dd) cosf + s5sin6 ,

f2 5

(79)

(uii + dd) sin@ — s5cos0 , (80)

-

where 6 is the mixing angle. It is obvious that the mixing
angle should be small because f>(1270) and f2’(1525)

@ Springer

decay predominantly into 77 and KK, respectively.
Numerically, it is found that &6 = 9° 4 1° [1]. There-
fore, in our calculation, the possible mixing effect is
neglected, i.e., f2(1270) and f2/(1525) are assumed to
be pure (uu + dd) and (s5) states, respectively.

From Table 4 and Fig. 5, it can be clearly found that all
of transitions respect the relation

T1(0) = 12(0), 81)

which is essential to assure that the hadronic matrix ele-
ment of P — T is divergence free at g> = 0. How-
ever, their dependence on ¢? is different, which can be
applied further in the relevant phenomenological studies
of meson decays.

Some B — T transitions have been studied by employ-
ing other approaches. For instance, the form factors of
B — (az , K3) transitions have also been evaluated with
the LCSR [36] and the PQCD approach [41]. These the-
oretical predictions are collected in Table 7, the tradi-
tional CLF QM (type-I) results given by Cheng [3,57]
and our results with self-consistent type-II CLF QM are
also listed for comparison. Through comparison of these
results listed in Table 7, it can be found that our cen-
ter values are generally larger than the results obtained
by the LCSR and the PQCD, but are smaller than the
traditional CLF QM results, while they are still in con-

. e B—K3
sistence within errors except for T3 —h (0). Our result

for T;BHK2 (0) agrees well with the results obtained by
LCSR and PQCD, however Cheng’s CLF result has a dif-
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Fig. 6 The q2 dependence of form factors of b — (q, s, c¢) induced B — (ap, K;‘, D;‘), B, — (K; fz,’ D.:z)’ B, — (Dikv D:z’ xea (1P)),
np(1S) — (B3, B,) transitions

ferent sign. This finding indicates again that the type-II
corresponding scheme can improve the CLF predictions.
e Compared the numerical results of P — T transition
with the ones of P — V transition obtained in our
previous works [46,48] at q2 = 0, it is found that: (i)
For the ¢ - g and b — ¢q (¢ = u,d,s) induced
transition with a light spectator quark, the former are

smaller than the later, which is favored by the experi-
mental data of radiative decays. For instance, our result

B—K
Tl

2 (0) /TE=K(0) = 0.72 £ 0.18 agrees well with

the result 0.71 obtained by PQCD [41], both of them
are also consistent with the experimental data 0.53 £
0.08 extracted from the radiative decays of B meson,
B~ — K; (1430)y and B~ — K*~y [1]. Such result
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implies again that the CLF prediction can be improved by
employing the self-consistent type-II scheme since the

traditional CLF results give TIB_)K; 0) /T]B_’K *(O) =
0.97 [57], which conflicts with the data. (ii) For the
b — (s, c) induced transitions with a heavy spectator
quark (c or b), the form factors of P — T transition are
generally larger than the ones of P — V transition, for

. B.—D* B.— D* .
instance, T 2T, TE =037 /0.20. It is expected
that our results in this work can serve as a useful reference

for relevant studies of meson decays.

The semileptonic decays play an important role in test-
ing the perditions of form factors, but unfortunately, most
of semileptonic decays induced by (B, D) — T transi-
tion have not been measured except for the decay chains
B — Dj(2460)€ve(D3(2460) — Dm) (¢ = e, ). The
averaged experimental results are [1]

B(BT = D% v)B(D3® - D )

= (1.53+£0.16) x 1073, (82)
B(BT - D3’ v)B(D3* — D* )

= (1.01 £0.24) x 1073, (83)
B(B® — D3~ ¢Tv)B(D;™ — D7)

= (1.21 £0.33) x 1073, (84)
BB — D3 ¢ v)B(D;~ — D*n™)

= (0.68 +£0.12) x 1072, (85)

given by PDG. Theoretically, for the relevant strong decays,
the relation I'(D3? — D®~x*) = I'(D;~ — D™O7™)

@ Springer
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is required by the isospin symmetry. Further considering the
relation I'(B* — D3%*v,) ~ I'(BY — Dy ttvy), itis
expected that

B(BT — D%t v)B(D3® — DWW -7 )
B(BY — D3 ttv)B(D;~ — DWOx—)
_TBHT(D;)
- I(BHT(D)

1.06 , (86)

where, 1.06 is obtained by using the PDG results for decay
widths. This relation is allowed by current experimental
data, 1.26 + 0.37 (1.49 £ 0.44) obtained from Egs. (82,
84) (Egs. (83, 85)), within lo error. It is also noted that
the SM result obviously deviates from the central values of
data (1.06vs. 1.26, 1.49), thus the future refined measure-
ments may present a strict test on the SM prediction.

In order to extract the experimental results for B(B —
D’;E"’Dg), the decay widths of relevant strong decays are
essential. However, these decays have not been measured
experimentally for now, and the current theoretical evalu-
ations involve large uncertainties. Using the QCD SR pre-
dictions I'(D3? — DW=x+) = 7.91730(3.99722) MeV
[65,66] and Eqs. (82, 83), we can obtain the following exper-
imental results,

(0.92%107535) x 1072,

12037830 x 1072,

B(BT — D%t vy = (87)

where, the upper and the lower values are extracted from
Eq. (82) and Eq. (83), respectively; for each result, the first
and the second errors are caused by Egs. (82, 83) and QCD
SR predictions for I'(D3? — D®~xT), respectively.
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Table 7 Theoretical predictions for the form factors of B — ap and B — K transitions at q2 = 0 in this work, LCSR [36], PQCD [41] and
traditional CLF QM [3,57]

B — a B — KJ
This work LCSR [36] PQCD [41] CLF [3] This work LCSR [36] PQCD [41] CLF (3,57
V(0) 0.247004 0.187022 0.1870% 0.28 0.2870.02 0.22704% 0.2170:0¢ 0.29
Ao(0) 0.217903 0.307008 0.18790¢ 0.24 0.24700 0.3070:0¢ 0.1879% 0.23
A1(0) 0.19%003 0.161002 0.1175.03 0.21 0.22001 0.1970.07 0.13%003 0.22
A>(0) 0.1770% 0.077098 0.06700 0.19 0.207003 0.11790 0.087003 0.21
T1(0) 0.197903 0.1570:02 0.15790 0.23700 0.1979:%9 0.1779% 0.28
7(0) 0.197903 0.1570:02 0.15790 0.23700 0.1979%9 0.1779% 0.28
73(0) 0.16%0°0} 0.0779:9 0.13790 0.127903 0.0979:0¢ 0.14790 —0.25

Table 8 Numerical results for the branching fractions of B — [);K*W (¢ =e,n)and B — l_)i‘rJrvr decays. The errors are caused by the form
factors given in Eqgs. (89,90)

Type-11 Type-1 Ref. [67] Ref. [36]
B(B — Dit*vy) (1237538 x 1072 (0637039 x 1072 (1.01753%) x 1073 (3.807074) x 1072
B(B — Dittv,) (0.4970:1%) x 1073 0227019 x 1073 (0.1675:96) x 1073 (1507038 x 1073

Theoretically, the differential decay widths of semilep- 2, 22 s 2 o V(g?)
tonic B — Dj1v; decays can be written as [67,68] —|—§(m£ +2q7) 2 imp, "py 4 ) mp(mp + mp;)
2 .2 2 2
d_r_)»(mgam[);vq ) (gz_m%) (mB+mD;)A1(q2)
da 2 2 -
q 4mD2 q mp /A(m%,még,:ﬁ)
[n(m3y, m3. q*)GLV]
2 2
x Vi(g? (mp +mps)Ai1(q7)
384m3, 73 + (@) Dy 1
e e F D) mp, Jhmy, mh. q°)
L Cy0,2 2 2 2,72 2
1
2 2 2 2 2
+(my +2497) —2—[(m3 —mpe —4q°) where A(a, b, ¢) = a® + b* + ¢* — 2ab — 2ac — 2bc is the
Mmpxmp 2

Kallén function. Using the CLF results for (V, Ag, Ay, A2)
in type-I and -II schemes,

(075512, 0.647 11, 0.637011, 0.585012) . ype-ll

F(0) = (89)
(0704635, 0.375517, 0434017, 0.545630 ) . type-t
~6.20,-6.20,—3.00, —6.10) ,  type-II
by = ( ) ype (90)
(—6.42,-4.79, —0.75,-6.22) ,  type-l

and the values of the other input parameters given by PDG, we
summarize our results for B(B — D3¢ vy, B — D3t v;)

x(mp + mD;‘)Al(‘I %) in Table 8, in which the results obtained in Refs. [36,67]
)»(m% ’ m% .. qz) 2 are also listed. It can be found that our results are much
- = Az(qz)] larger (smaller) than the ones given in Ref. [67] (Ref. [36])

mp =+ mp; due to the different form factors. Comparing our results with
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experimental data given in Eq. (87), we find that the type-II
results are in good consistence with data, while the type-
I results can not be excluded due to the large theoretical
and experimental errors. More theoretical and experimen-
tal efforts are needed to improve the accuracies of results
and further test the legality of such two schemes. The errors

caused by form factors can be well controlled by evaluating
I'(B—Djttur)

the ratio R Dy = VRS SGa)

. Our prediction is

Rps = 0.04070:003 (0.035%0:00%) . type-II (type-I) (91)
which are consistent with the LCSR prediction 0.041+0.002
[36], but are different from the result 0.16 4= 0.04 [67]. Such
ratio is expected to be measured in the future, it will test
whether the Rp.) anomalies in the pseudoscalar (vector)
channels exist also in the tensor channel or not, and play a
similar role as R in testing the lepton flavor universality.

4 Summary

In this paper, the matrix elements and relevant vector, axial-
vector and tensor form factors of P — T transition are
calculated within the CLF approach. The SLF results are
also calculated for comparison. The self-consistency and
Lorentz covariance of the CLF QM are analyzed in detail.
It is found that the CLF QM with the traditional corre-
spondence scheme (type-I) between the manifest covari-
ant BS and the LF approaches has two kinds of self-
consistence problems: one is caused by the non-vanishing
w-dependent spurious contributions associated with the B
functions, which also violate the strict Lorentz covariance
of CLF QM; another one is caused by the different strate-
gies for dealing with the trace term in the calculation of
matrix element. The self-consistence and Lorentz covariance
problems can be resolved by employing the improved self-
consistent type-II correspondence scheme which requires
an additional replacement M — M, relative to type-
I scheme. Within the self-consistent type-II scheme, the
zero-mode contributions to the form factors exist only in
form but vanish numerically, and the valence contribu-
tions are exactly the same as the SLF results. Theses find-
ings confirm again the conclusion obtained via P — V,
P — A and V' — V” transitions in our previous works.
Finally, we present our numerical predictions for the vec-
tor, axial-vector and tensor form factors of ¢ — (g, s)
induced D — (a2, K}), Dy — (K3, f3), n.(1S) —
(D3, D},), B — (B, B},) transitions and b — (g, s, ¢)
induced B — (a2, K3, D3), B — (K}, f;, D5), Bc —
(D3, D}y, X2(1P)), np(1S) — (B}, B,) transitions by
employing a self-consistent CLF approach. These numeri-
cal results are collected in Tables 3 and 4. Some form factors

@ Springer

are first predicted in this work. Our predictions for the form
factors of B — a and B — K7 transitions are generally in
consistent with the results obtained by employing LCSR and
PQCD approaches, and show that the self-consistent type-II
scheme can significantly improve the CLF prediction. Com-
pared with the form factors of P — V transition, it is also
found that the form factors of P — T transition are smaller
than the ones of P — V at g> = 0 point when T is a light
tensor meson, which is in consistence with the experimen-
tal data. Using the obtained form factors, we also present
the predictions for B — D3}(2460)¢Tv, (¢ = e, ) and
D;‘ (2460)7 T v, decays. It is expected that our results for the
form factors of P — T transition can be applied further to
the relevant phenomenological studies of meson decays.
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Appendix A: Input parameters

The constituent quark masses and Gaussian parameters j are
essential inputs for computing the form factors. The quark
masses are model dependent, and their values obtained in
the previous works [45,58-63] are different from each other
more or less. In this work, we take

my =230+ 40MeV
me = 1600 + 300 MeV ,

my =430+ 60MeV
mp = 4900 £400MeV. (92)

which suggested values given in the previous works [49], it
covers properly the others values and therefore can reflect
roughly the uncertainties induced by the model dependence
of quark mass. Then, the parameters § listed in Table 9 [46],
in which it have been assumed that 8,5 is same for V and


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2022) 82:451

Page 23 of 24 451

T due to the lack of tensor meson decay constant data . In
addition, the type-II correspondence scheme is employed in
the fits, while the fitting results do not affect following com-
parison between type-I and -II schemes.

Appendix B: The CLF results for the tensor form factors
of P — T transitions obtained in the previous paper

The tensor form factors of P — T transition in the CLF QM
have also been calculated by Cheng and Chua, the results can
also been written as Eq. (50) with the integrands [50],

FOLE <q2> _ M/{Z(AEI) _A®
B A§2))|:M/2 M zm/lz
- ZNi + q2 + 2(m’1m2 + m’{mz
—mim) | 8 — 4 - af
+a—a®P - A;D)[(mg +ml)?
+ N+ 8] = 2
+aM? = uH (AP — AP — 4P + 4P
+4g2 (AP 4 AN 4 AP 4 AP 24P
— AP + 49 =24 4240 —24)
_ Di/‘;[(m’l +m) AP —a® - Aé”)]}, (93)
fZCLF (qz) _ TICLF (qz)
/.2
- M" —2m? 2N} + ¢*

{2(A§1) _Agz) —Af))[M/Z
2 / 4 ! 1 (2)
+ 2(mymy +mymy —mymy) | — 8(A]
3 3 1 1
=AY = AP+ -t - afh[ - 2m?
+2m 4 () +m)? + 2(my — 2m)my + 3N
. qz] + 2[22(1 — D)

Table 9 The values of Gaussian parameters 8 (in units of MeV)

ﬂqé ,Bsé ,Bsf ﬁcc] lgd
P 348 + 1 365+2 384+3 473 £ 12 543 £ 10
T 312+6 313+ 10 348 £ 6 429 + 13 530 £ 19
Bez Brg Brs Bre By
P 753 + 14 552+ 10 606 + 12 939 + 11 1394 £+ 12
T 703 +7 516 &£ 15 568 + 10 876 + 20 1390 £+ 12

P-q,e 2
- AP+ 4(q* —2M" — 2" (4T
—Agz)—Ag3)+A§3))—4(M’2

2y A 4 4D 4D 4O 5,
M (=AD AP 4 AP 4 AP 24l
— 4D + 40 + 24 + 24

3) 8 /" /
—2A57) — —- [(m —m
2 1 1
D"j
+amp) (AP — AP — AQ)] } , (94)

o~ 1 2 2
X [M/2 -M" - 2m’12 - 2]\7{ +q2
+2(m/1m2 +m’{m2
2 3 3 1
—mim)] + 8P - 4 - 4P - - a’
- Aél))[ —2M" +2m + (m)
+m) 4+ 2ma = 2myma + 38 + N = ¢?]
1 P - 2
- 2[22(1 —all) - q—quﬁ )}

+A49) —2(4® 124D —249)
4

2 3
+ D—/‘/l{(m/{ —ml + 2m2)[2(A§ ) a®

. A§3)) + (M/Z _ M//2)(_A§l) +2A(22)

+248 =A% =247 — A |+ o} + w1
— M)A — 24P — 24P

+AY +249 + 4D + m|

— M) (—1 424" 240

— AP —24P — Af))}}. (95)
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