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Abstract

Cosmic inflation is a phase of accelerating, nearly exponential expansion of the spacetime
fabric of the Universe, which is assumed to have taken place almost immediately after the
Big Bang. Inflation possesses the appealing property that it provides solutions to deep
cosmological problems, such as the flatness and horizon problems, and also gives a natural
origin for the formation of the large scale structures we observe today.

In this thesis we set out to investigate the role quantum corrections play for some
simple models where inflation is driven by a single scalar field. It is essential that here the
quantum corrections are calculated via curved space field theory. In this technique one
quantizes only the matter fields, the dynamics of which take place on a curved classical
background. This approach is rarely used in mainstream cosmology and it has the benefit
that it allows the quantum fluctuations to back-react on classical Einsteinian gravity.

The curved space quantum corrections are studied first in the effective action formal-
ism via the Schwinger-DeWitt expansion and then by constructing effective equations of
motion by using the slow-roll technique. We also focus on consistent renormalization and
show how to renormalize the effective equations of motion without any reference to an
effective action for an interacting theory in curved spacetime. Due to a potential infrared
enhancement in effective equations in quasi-de Sitter space, we also perform a resumma-
tion of Feynman diagrams in curved non-static space and observe that it regulates the
infrared effects.

Concerning implications for actual inflationary models, we focus on chaotic type mod-
els and observe the quantum corrections to be insignificant, but nevertheless to have
theoretically a non-trivial structure.
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Units and conventions

Throughout this thesis we will use natural units, where the speed of light, the Planck
constant and the Boltzmann constant are set to unity, i.e

c ≡ ~ ≡ kB ≡ 1.

Furthermore we will frequently make use of the reduced Planck mass defined as

M2
pl ≡

~c
8πG

≡ 1

8πG
,

with G being Newton’s constant. Our signs are chosen according to the (+,+,+) con-
vention in the classification of [1]. This means that the Minkowski metric, the Riemann
tensor and the Einstein field equation are defined respectively as

ηµν = diag(−1,+1,+1,+1)

Rδαβγ = Γδαγ,β − Γδαβ,γ + ΓδσβΓσγα − ΓδσγΓσβα

Gµν =
1

M2
pl

Tµν .

The spatial parts of vectors are denoted with boldface letters, x and k in position and
momentum space respectively and for the length of the position space components we
simply write |k| ≡ k. Derivatives with respect to time are denoted with dots,

d

dt
f(t) ≡ ḟ(t).
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Chapter 1

Introduction

The current understanding of the evolution of the early universe includes a phase of almost
exponential expansion, named inflation. The inflationary past of our universe is not invis-
ible to current observers since some aspects of inflation leave their imprint in the cosmic
microwave background and thus can be probed with today’s observations. Experiments
seem to be providing evidence in support of early universe inflation. Because of this it is
important to understand all its predictions, including the ones that may be currently con-
sidered unobservable, if only for the sake of theoretical consistency. Among other things,
this motivates the inclusion of quantum effects for inflationary dynamics. However, quan-
tum corrections in an inflationary setting are not a question of purely theoretical interest.
Now, in the wake of the Planck results [2] and in the run-up to the Euclid mission [3], one
may argue that cosmological research has entered an era where deriving high-precision
results is becoming increasingly relevant also due to the high accuracy of the available
experimental data. This is especially true in the context of inflation, where distinguishing
the correct model is still at the moment an open issue. Currently, there are a number of
models that are in accord with the most up to date results [4], a fact that may be chal-
lenged by the precision of proposed future missions [5, 6]. Until recently it has not been
very typical to perform cosmological calculations in a consistent field theory setting, as
quite often the classical results are assumed to suffice. From a quantitative perspective this
is understandable, since often such efforts are of little importance for measurable results.
It is also often the case that the amount of work required in deriving the fully quantum
field theoretic result surpasses greatly that needed for the classical derivation. This is
especially true if one wishes to perform the quantum calculations in a consistent setting
where back-reaction of quantum effects on spacetime geometry is calculated without the
assumption of flat spacetime.

The main motivation behind this thesis was purely theoretical interest of performing
quantum field theory calculations consistently in curved spacetime with a special emphasis
on inflation. An almost equally important motivating factor was studying the magnitude
of these effects for actual simple models and comparing these quantum corrected results
to the classical predictions in the context of inflation. We believe that, at least for some
models, such considerations will become relevant in the future when more accurate mea-
surements become available. Even if in the simplest scalar field models studied here the
quantum effects are by and large insignificant, this might not be the case for other models.
Hence showing the theoretical path to implementing this for scalar fields provides impor-
tant information for anyone seeking to perform similar calculations for more complicated
models, especially when a re-summation of the quantum diagrams is used.
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1.1. SUMMARY OF THE RESEARCH

The framework adopted for this thesis is that of quantum field theory in curved space-
time [7, 8], which corresponds to performing quantum field theory calculations in a space
with classical Einsteinian gravity as a background. Consistently including gravity in our
calculations would in principle mean that gravity should also be quantized, but due to the
well-known complications of forming a fully quantized field theory of gravity and other
interactions we decided to bypass these issues and opt for the use of classical gravity in-
stead, at least for the time being1. This choice can also be motivated by the expectation
that the quantum effects of gravity become significant only at a very high energy-scale.
However, it may turn out that our approach fails at describing some important phenomena
that result from the quantum nature of gravity. If this is true, we may still argue that
viewing gravity as a classical background serves as reasonable middle ground between the
classical and fully quantum approaches.

1.1 Summary of the research

The initial idea for this project was to use the standard tools of curved space field theory
for inflationary calculations. The most commonly used approach for calculating and renor-
malizing the equations of motion for an interacting curved space quantum field theory is
the Schwinger-DeWitt expansion [9], which was chosen as the method for I. After this
calculation, the need arose to perform similar derivations, but with an expansion more
suited for de Sitter space. This is something not easily incorporated in the Schwinger-
DeWitt approach since it is based on an expansion around a flat spacetime. This led to a
procedure that could in its entirety be done at the level of the equations of motion thus al-
lowing an implementation of the slow-roll expansion. However, the standard curved space
renormalization techniques operating at the equation of motion level are not well-suited
for interacting theories. This issue was resolved in II by introducing a new renormaliza-
tion method for curved space calculations. With the help of the slow-roll expansion and
the renormalization technique of II, the inflationary quantum corrections were calculated
in a quasi-de Sitter space in III. The calculation introduced an important infrared contri-
bution that was not included in the Schwinger-DeWitt approach of I. It was also noticed
that such a contribution might require a resumming of the loop expansion in order to
regulate infrared divergent behavior. For this purpose the 2-particle-irreducible Feynman
diagram expansion [10] was then implemented, a method that has not often been used for
a non-static space-time.

1.2 Organization of the thesis

We will begin this thesis in chapter 2 with a brief introduction of the calculational technol-
ogy and background information relevant for chapters 3 – 5. This chapter is by no means
meant to be exhaustive and it is assumed that the reader is familiar with the basics of
general relativity and quantum field theory as well as inflationary cosmology. Chapters 3
– 5 are organized in linear order according to the research carried out. We feel this to be
the most natural choice since the topic of II was heavily motivated by the research done
in I and in III we used the method derived in II. Hence, chapter 3 paraphrases the work

1There already exist works without this simplifying assumption. This, and other approaches are
discussed in section 2.5.1.
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1.2. ORGANIZATION OF THE THESIS

done in I, chapter 4 does the same for II and finally chapter 5 focuses on the findings of
III. We finish with concluding remarks in chapter 6.
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1.2. ORGANIZATION OF THE THESIS
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Chapter 2

Basic features of curved space
calculations

2.1 Classical equations of motion in curved space-time

Let us start by deriving the classical field equations of motion. Our action will consist of a
scalar field ϕ, which couples to standard Einsteinian gravity with a Friedmann-Robertson-
Walker type metric (FRW). In terms of the line element the metric can be written as

gµνdx
µdxν = −dt2 + a2dx2, (2.1)

where the scale factor a has only dependence on time, a ≡ a(t). The action includes a yet
undefined potential and the standard Einstein-Hilbert action for gravity

S[ϕ, gµν ] ≡ Sm[ϕ, gµν ] + Sg[g
µν ]

Sm[ϕ, gµν ] = −
∫
d4x
√−g

[
1

2
∂µϕ∂

µϕ+ V (ϕ, gµν)

]
(2.2)

Sg[g
µν ] =

∫
d4x
√−g

[
Λ + αR

]
. (2.3)

According to the principle of least action, the equations of motion can be derived via
variation. Varying with respect to the field we get the equation of motion for the scalar
field

δS[ϕ, gµν ]

δϕ(x)
= 0. (2.4)

Varying with respect to the metric yields the Einstein equation

2√−g
δS[ϕ̂, gµν ]

δgµν(x)
= 0 ⇔ 2√−g

δSg[ϕ̂, g
µν ]

δgµν(x)
= − 2√−g

δSm[ϕ, gµν ]

δgµν

⇔ 2αGµν − Λgµν = Tµν . (2.5)

We can write the above for the theory defined by (2.2) and (2.3) by using the expressions for
the Einstein tensor in a FRW space from the formulae (A.11) and (A.12). For simplicity we
are assuming no metric dependence for the potential, and we can then write the equations

5



2.2. INFLATION

of motion as1

−�ϕ+
∂V (ϕ)

∂ϕ
= ϕ̈+ 3

ȧ

a
ϕ̇+

∂V (ϕ)

∂ϕ
= 0 (2.6)

3

(
ȧ

a

)2

=
1

M2
pl

[
1

2
ϕ̇2 + V (ϕ)

]
+ Λ (2.7)

−
[(

ȧ

a

)2

+ 2
ä

a

]
=

1

M2
pl

[
1

2
ϕ̇2 − V (ϕ)

]
− Λ, (2.8)

where we also used (A.7). These are the Friedmann equations [11] and in principle de-
termine the classical dynamics of the fields, which often is assumed to be a sufficient
approximation. Indeed, the will to improve upon the classical results was the main moti-
vation for this thesis.

We can solve the acceleration ä from (2.8)

ä

a
= −1

3

[
ϕ̇2 − V (ϕ)

]
+

Λ

3
. (2.9)

For ϕ = 0 and V (0) = 0 this gives the important special case where:

ä

a
∝ Λ. (2.10)

The solution for (2.10), when supplied with (2.7), is an exponentially increasing scale
factor of the form

a ∝ eHt (2.11)

for some constant H. This solution is called de Sitter space [12] and its accelerating
behavior holds the keys to important and difficult questions in cosmology.

2.2 Inflation

Supernovae observations [13] tell us that the current universe is expanding. Considering
only the observable universe, we can extrapolate backwards in time and eventually reach
a state of extremely hot and dense plasma. During this hot and dense epoch the universe
was filled with highly energetic particles and radiation, and was opaque to photons. Due
to the expansion of space, this hot and dense plasma eventually cooled to a point where
neutral atoms could form thus making the universe transparent for radiation that has
been traveling freely ever since. This chain of events implies that some relic radiation
should be still observable. This radiation is known as the cosmic microwave background
(CMB). The CMB has most notably been measured by the COBE [14], WMAP [15] and
Planck [16] missions. However, a naive interpretation of these observations also leads to
severe problems. The observed CMB is extremely homogeneous and isotropic, which for
the current age and expansion rate of the universe could have never been possible: the
size of the region that was causally connected – and hence could reach an equilibrium – at
the time when the CMB was formed is minuscule compared to the size of the horizon from
which we observe it currently. This is known as the horizon problem. Another equally

1In order to match with standard conventions one must set
Λ→ −Λ/(8πG) and α→ 1/(16πG)
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2.2. INFLATION

important problem is the observed almost critical density of the universe. Critical density
describes the density which is precisely in between an ever expanding or an eventually
contracting solution: an infinitesimal increase of energy content in a universe possessing
critical density would in the end reverse the expansion leading to a so-called big crunch.
This reveals that the critical density is not a stable configuration and hence an initial
small perturbation from the critical density will in time increase to become a large effect.
The currently observed almost critical density suggests that in the past this value has to
be fine-tuned in order to be compatible with the observed value. This is generally known
as the flatness problem since a universe with critical density has no curvature i.e. is flat.
A third problem of a naive extrapolation of the current scenario is that many theories
predict the formation of exotic particles, such as magnetic monopoles, during the early
stages of the universe. Thus far no such exotic relics have been observed.

For the reasons mentioned, it is widely accepted that the Universe at some stage went
through a period of rapid, almost exponential expansion commonly known as inflation.
Inflation provides natural explanations for why the universe is almost completely flat,
why the CMB is so isotropic and homogeneous, and why we have not seen any exotic
particles. Inflation was invented in the early eighties in [17] and [18] (see also [19]). It
was realized that an early period of exponential expansion causes the size of an initially
small causally connected region to increase dramatically. After a sufficiently long period
of inflation the CMB observed today would have originated from a region that at one time
was just one small causally connected patch of a much larger universe. During inflation
we also notice the remarkable feature that the event horizon, i.e the physical region that
may in the future causally interact with an observer, is roughly constant2. Since space
during inflation is rapidly expanding while the physical event horizon remains constant,
immediately after inflation the region inside the event horizon appears essentially flat, as
long as inflation lasts long enough. Similar considerations lead to the attractive conclusion
that the density of exotic particles is diluted by inflation to an unobservably small fraction
of the total number.

The early models of inflation were based on the idea of the universe remaining in
a metastable vacuum, where inflation ends by a phase transition. While stuck in the
metastable state the potential acts as a cosmological constant as may be seen from (2.7
- 2.8). The first proposal [19] is generally categorized as "old inflation". In this model
inflation ends via tunneling from the metastable state to the proper vacuum, but it turns
out that this scenario is incompatible with the Universe which we observe [20], namely it
suffers from the "graceful exit" problem: the tunneling operates by a process of bubble
nucleation, but due to the expansion of the universe the bubble collisions do not occur
sufficiently rapidly.

The "new inflation" scenario [21, 22] was devised to overcome the issues of [19]. In this
proposal inflation ends not by tunneling through a barrier, but by a slow transition from
the metastable state to the actual vacuum state. New inflation is still a popular model
for inflation, but typically involves fine-tuning of initial conditions [23].

Most of the currently popular models fall under the banner of slow-roll inflation, where
inflation includes a phase where a field slowly rolls towards a minimum of a potential and
during this phase the potential acts almost as a cosmological constant. Usually the field
responsible for inflation is a scalar field and is generally known as the inflaton. We can
roughly categorize these models as small field and large field models, with inflationary field
values smaller or larger than Mpl, respectively. Small field models are often motivated by

2This does not mean that regions outside the event horizon cannot have interacted in the past.
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2.2. INFLATION

beyond standard model physics such as string theory, supersymmetry and supergravity
(for examples, see [24, 25, 26]). In small field models there is the benefit that the standard
tools of quantum field theory may be assumed to apply, because of the sub-Planckian
field value. Unfortunately, these approaches often suffer from fine-tuning issues for the
initial conditions [27]. For large field models the most popular scenario is chaotic inflation
[28]. In chaotic inflation the inflationary potential is assumed to have a simple polynomial
form, such as (2.38). There is no need to fine-tune the initial conditions [29], but since
we are dealing with trans-Planckian field values it is not obvious what types of terms one
should include in the tree-level Lagrangian. The model we are interested in this thesis
belongs to the class of chaotic inflation and currently, at least for a potential dominated
by a quadratic mass term, is in reasonable agreement with current data [30].

The rapid expansion of the universe is commonly assumed to evolve the universe into
a non-thermal state, which lasts until the end of inflation. This means that thermal effects
are relatively small during inflation. There also exist models where thermal equilibrium is
maintained throughout inflation [31]. Such "warm inflation" models will not be discussed
in this thesis.

When the field responsible for inflation has reached the minimum of its potential, it
begins to rapidly oscillate about its equilibrium value. During this oscillatory phase the
field decays into various standard model particles which, due to interactions, eventually
reach thermal equilibrium. This process is generally called reheating3 [32, 33]. Thus, a
complete model of inflation and reheating requires fields in addition to the inflaton, but
with the exception chapter 3 we will not consider such processes in this thesis.

An important prediction of many models of inflation is that the CMB will have tiny
fluctuations due to quantum mechanical effects. Measurements of these CMB anisotropies
are one of the best methods of verifying the predictions of inflationary models and hence
provide crucial information for inflationary model building.

2.2.1 Cosmic microwave background

The cosmic microwave background is our most robust evidence for the fact that in the
distant past our Universe started from a very hot and dense state. Moreover the CMB
bears clear signs of the inflationary scenario. Even though the CMB is observed to be
almost homogeneous, its temperature contains tiny variations which can be linked to
inflation, a fact which was first showed in [21, 34, 35]. The idea is that quantum effects of
the field responsible for inflation, whatever it may have been, would cause tiny fluctuations
in the energy-density. These will ultimately be seen by today’s observers as the CMB
fluctuations. Indeed, perturbations that were originally microscopic will eventually grow
into the large-scale inhomogeneities we observe today, such as planets, stars, galaxies and
so forth. So according to current understanding, inflation is essential not only for the
resolution of the horizon, flatness and monopole problems, it is also vital in providing the
seeds for structure formation.

The cosmic microwave background anisotropies were successfully measured by a num-
ber of missions [14, 15, 16]. For our purposes the most important observable of the CMB
is the amplitude of the temperature perturbations, which can be characterized by the cur-
vature perturbation denoted with R. This object essentially describes the perturbation in
space, but not in time and it is precisely this quantity with which one often differentiates
between various inflationary models. The standard way of deriving the prediction for R

3In many standard scenarios, reheating begins with a highly non-perturbative phase dubbed preheating.
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2.3. NEARLY EXPONENTIAL INFLATION AND THE SLOW-ROLL EXPANSION

in a given theory is to use the free field approximation of a quantum theory of matter and
gravity with which one may derive an equation of motion for R [36, 37, 38, 39]4. The
most important quantity involving R is the power spectrum P(k), which is defined from
the two-point momentum space correlator as

〈RkR∗k′〉 ≡ (2π)3δ3(k− k′)
2π2

k3
P(k). (2.12)

Current observations have produced a number of constraints that any inflationary theory
must meet and two of the most important ones are adiabaticity of the perturbations
and scale invariance of the spectrum. The first one essentially means that there are no
relative perturbations among the various particle species produced after inflation, i.e all
particle density perturbations can be related to the same power spectrum. The nearly
scale invariant behaviour of the spectrum can be written as the condition

d logP(k)

d log k
≡ ns ∼ 1, (2.13)

with the current value at ns = 0.9624 ± 0.0075 [4]. The adiabaticity condition is always
satisfied for single field inflation [40], but also may be respected by multifield models if
certain conditions are met [41]. The scale invariance condition is satisfied in slow-roll
inflation, which we will study in the next section.

As a final note we stress that not all models of inflation predict that the spectrum of
perturbations originates during inflation from the field responsible for inflation. A popular
model for the spectrum is the so called curvaton scenario [42, 43, 44], where the spectrum
originates from a field that is subdominant during inflation, but dominates the energy-
density after inflation, thus giving rise to the observed power spectrum. In this thesis
we will also briefly comment on the implications of curved space loop corrections for the
curvaton scenario.

2.3 Nearly exponential inflation and the slow-roll expansion

A more detailed exposition to the slow-roll expansion can be found in [45]. In slow-roll
models inflation is caused by a field slowly rolling towards a minimum of a potential,
during which inflation occurs and a nearly scale invariant spectrum is formed. From (2.7)
we immediately see that if

1

2
ϕ̇2 � V (ϕ), (2.14)

then we get

H2 ≈ V (ϕ)

3M2
pl

(2.15)

and the potential behaves nearly as a cosmological constant and we have defined the
Hubble constant analogously to the exponential solution in (2.11)

ȧ

a
≡ H. (2.16)

4In fact for the leading terms one may use a de Sitter space approximation for gµν where only matter
is quantized, as is done in [38]
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2.3. NEARLY EXPONENTIAL INFLATION AND THE SLOW-ROLL EXPANSION

From (2.7) and (2.8) by using (2.14) we can write a relation for the first Hubble slow-roll
parameter,

− Ḣ

H2
≡ ε =

ϕ̇2

2M2
plH

2
� 1, (2.17)

where the last inequality follows from the condition (2.14).
In addition to having an exponential solution of the form in (2.15) we also must require

that such a condition is maintained for a sufficiently long period of time in order to have
a large enough amount of inflation. We can quantify this statement by assuming that
during a small time step ∆t, which in this case is characterized by 1/H since it is the only
time scale in the problem, the change in the potential is small compared to the potential
itself, i.e

|∆V (ϕ)| ∼ |H−1V̇ (ϕ)| � V (ϕ) ⇔
∣∣∣∣aV ′(ϕ)ϕ̇

ȧ

∣∣∣∣� V (ϕ). (2.18)

We can meet this condition by postulating that the field ϕ has reached terminal velocity
i.e. is moving at nearly constant speed so that the scalar field equation (2.6) can be written
as

ϕ̇ ≈ −V
′(ϕ)

3H
. (2.19)

From the above condition we can understand the name "slow-roll" since the field has con-
stant velocity and the kinetic energy of the field is much smaller than its potential energy.
Assuming that relation (2.19) holds exactly, we can write the first slow-roll parameter as

ε =
1

2

∣∣∣∣V ′(ϕ)ϕ̇

HV (ϕ)

∣∣∣∣ (2.20)

and hence condition (2.18) is met by our solutions. We can quantify the approximation
made in (2.19) if we define the second Hubble slow-roll parameter

ϕ̈

ϕ̇H
=

Ḧ

2ḢH
≡ δH � 1. (2.21)

It is in practice often beneficial to use another set of slow-roll parameters defined in terms
of the potential alone. We can write the first potential slow-roll parameter by using in
(2.20) again (2.14) and (2.19) giving

εV =
M2

pl

2

(
V ′(ϕ)

V (ϕ)

)2

� 1. (2.22)

In order to derive the second potential slow-roll parameter, we can take a time derivative of
the condition (2.19) and use the first potential slow-roll parameter to deduce the relation

δV = M2
pl

V ′′(ϕ)

V (ϕ)
� 1. (2.23)

It is important to realize that in deriving the potential slow-roll parameters we must
assume that (2.19) holds and hence from the smallness of (2.22) and (2.23) alone the
desired form of the solutions does not follow.

Using these parameters one can efficiently expand the equations of motion, which
provides an indispensable tool for solving and analyzing inflationary dynamics. It is quite

10



2.4. INCLUSION OF QUANTUM EFFECTS

often useful to rewrite the two Friedmann equations (2.7) and (2.8) as an equation for H
and the first Hubble slow-roll parameter ε

3H2 =
1

M2
pl

[
1

2
ϕ̇2 + V (ϕ)

]
+ Λ (2.24)

2εH2 =
ϕ̇2

M2
pl

=
1

M2
pl

[
T00 +

Tii
a2

]
, (2.25)

for a potential with no dependence on the metric. In the above equations the second one
can be viewed as the dynamical one, i.e the one that is responsible for the time evolution
and the first one only fixes the initial conditions.

The slow-roll expansion parameters can also handily be used to express important
relations. Assuming roughly exponential inflation we can define the number of e-folds
corresponding to a value for the scale factor a0 as

N ≡ log

[
a(t)

a(t0)

]
, (2.26)

which can be written in terms of the slow-roll parameters as a function of the field values
for ϕ

N ≈
∫ ϕ0

ϕ

dϕ/Mpl√
2εV

. (2.27)

It is generally assumed that one requires around 60 e-folds of inflation to resolve the
horizon problem [46]. Similarly, for the spectral index (2.13) we may write [38]

ns = 1 + 2δV − 6εV , (2.28)

from which it is apparent that approximate scale invariance of the spectrum is a natural
prediction of slow-roll inflation. We will make extensive use of the slow-roll expansion in
the quantum setting in chapter 5.

2.4 Inclusion of quantum effects

In principle it is known how to promote a classical field into a quantum object and write
the equations of the previous section in the quantum setting. If we have a theory which is
expressed with a generic field variable ψ, which is not necessarily a scalar, in standard field
quantization we promote it into an operator denoted as ψ̂ possessing certain commutation
relations. The measurable quantities in this context are expectation values, which can be
expressed via the generating functional as

〈ψ(x1)ψ(x2) · · · 〉 =

(
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)
· · ·
)
Z[J ]

∣∣∣∣
J=0

. (2.29)

In the Feynman path integral approach the generating functional has the representation

Z[J ] =

∫
Dψ eiS[ψ]+i

∫
d4xJψ. (2.30)

In practice it is impossible to calculate analytic expressions for the correlators without
making use of approximate methods, at least for the theories we are interested in, and we

11



2.4. INCLUSION OF QUANTUM EFFECTS

will use standard perturbative approximations. In particular, in this thesis we will make
use of the loop expansion to first order, with the exception of chapter 5.

Performing the loop expansion is a standard calculation [47], which we now show for the
action defined in (2.2). We start by quantizing the scalar field variable ϕ and defining the
fluctuation operator as ϕ̂→ ϕ+ φ̂, where we used a simplified notation for the expectation
value 〈ϕ̂〉 ≡ ϕ. Next we expand (2.2) around φ̂ = 0 giving to quadratic order5

Sm[ϕ, φ̂, gµν ] =−
∫
dnx
√−g

[
1

2
∂µϕ∂

µϕ+ V (ϕ, gµν)

]
− 1

2

∫
dnx
√−g φ̂

[
−�+M2

]
φ̂+ · · · , (2.31)

where we have defined the effective mass

M2 ≡ ∂2V (ϕ, gµν)

∂ϕ2
. (2.32)

The effective mass is an essential concept when using a one-loop approximation. From the
expansion (2.31), we can write an equation of motion for the fluctuation operator[

−�+M2

]
φ̂ = 0, (2.33)

which can be expanded via the creation and annihilation operators

φ̂ =

∫
dn−1k

[
akuk + a∗ku

∗
k

]
, (2.34)

with the standard commutation relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δn−1(k− k′). (2.35)

When applying perturbative quantum field theory the core object around which the cal-
culation is based is the propagator, which can be expressed via the fluctuation operator
and the time ordering operator T̂ as

G(x, x′) = 〈0|T̂
{
φ̂(x)φ̂(x′)

}
|0〉, (2.36)

where |0〉 is a state annihilated by âk from (2.34). This shows the important role of
the effective mass in the one-loop approximation that the entire field dependence of the
quantum loops is given by the effective mass.

The equation of motion for ϕ, referred to as the field equation of motion, can also be
derived from (2.31) and in comparison to (2.6) now includes an important quantum term

ϕ̈+ 3
ȧ

a
ϕ̇+

∂V (ϕ, gµν)

∂ϕ
+

1

2

∂3V (ϕ, gµν)

∂ϕ3
〈φ̂2〉 = 0, (2.37)

which for example for a theory with

V (ϕ, gµν) =
1

2
m2

0ϕ
2 +

1

2
ξ0Rϕ

2 +
λ0
4!
ϕ4, (2.38)

5In the one-loop approximation, the terms linear in φ̂ can be discarded. This can be seen by using the
classical equation of motion and discarding higher loop effects.
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2.4. INCLUSION OF QUANTUM EFFECTS

which will be the choice for our calculations in chapters 4 – 5, gives.

ϕ̈+ 3
ȧ

a
ϕ̇+m2

0ϕ+ ξ0Rϕ+
λ0
3!
ϕ3 +

λ0
2
ϕ〈φ̂2〉 = 0. (2.39)

Suppose for a moment that one has a solution for φ̂ and also that the behavior of the
scale factor a as a function of time is known. There is then one more step before we can
derive solutions for ϕ from the equation of motion in (2.39). A generic feature of quantum
field theories is that initially most correlation functions, 〈φ̂(x1)φ̂(x2) · · · 〉, are infinite. The
process of removing these divergences, i.e. renormalization6 is known for most of the stan-
dard field theories in Minkowski space and its implementation is straightforward, although
often requires tedious calculations. In order for this procedure to follow through, we must
require that a redefinition of the constants introduced by the original action is enough to
cancel all the appearing divergences to all orders in the perturbative expansion. A theory
with this property is generally called renormalizable. The most popular renormalization
method is to introduce a counter term for each parameter of the original action and then
tune these in such a way that the divergences are canceled. The practical implementation
of the renormalization procedure requires one to first modify the theory in such a way that
the infinities are transformed into numbers, so that standard algebra may be used. This
step is known as regularization. We will here implement dimensional regularization [48],
where we analytically continue our spacetime from 4 dimensions to n, which successfully
removes the divergent behavior.

In this thesis the inclusion of counter terms will be denoted by writing each constant
of the classical action with a subscript "0". So a generic constant c0 will include a finite
physical contribution and an infinite counter term as

c0 = c+ δc, (2.40)

where δc signifies the counter term. If, for simplicity, we neglect the counter term for the
kinetic term �, we can write (2.39) with the prescription (2.40) as

ϕ̈+ 3
ȧ

a
ϕ̇+m2ϕ+ ξRϕ+

λ

3!
ϕ3 + δm2ϕ+ δξRϕ+

δλ

3!
ϕ3 +

λ

2
ϕ〈φ̂2〉 = 0. (2.41)

Should it occur that the counter terms introduced by the classical action are not enough
for cancelling the quantum infinities, then the theory has little predictive power, at least
in the perturbative sense. This is because at each order in the loop expansion one must
introduce additional experimentally determined constants, a process which will continue
ad infinitum. In the above case this means that δm2, δξ and δλ must cancel the infinities
introduced by 〈φ̂2〉. In the one-loop approximation renormalizability requires that in (2.31)
the first line, which can be considered zeroth order or classical, the constants include
counter terms, but in the second line there are no counter terms. This is because it is
already of one-loop order and a counter terms times a one-loop term is effectively a two-
loop correction and hence beyond the one-loop approximation, which is visible in (2.41)
having no term ∝ δλ〈φ̂2〉.

One of the most important consequences of renormalization is that the physical param-
eters of the theory, such as m and λ, may be viewed to have a dependence on the energy
scale. The exact form of this dependence is specific to the particular theory in question

6In fact, even for a completely finite theory some kind normalization of quantities would still be
required.
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2.4. INCLUSION OF QUANTUM EFFECTS

and may lead to surprising and important consequences, such as an asymptotically free
theory at high energy limit in the case non-Abelian gauge theory [49]. A transformation
between various energy scales at which the parameters of the theory are defined is called
a renormalization group transformation7, which provides a useful tool for field theory. For
example, it can be used as a means of improving the perturbative expansion [50].

What we so far have not discussed is that one also gets quantum corrections to the
Friedmann equations (2.7) and (2.8), and it is not at all trivial that the renormalization
procedure can be implemented for the energy-momentum. A related matter is that we have
now merely quantized the field ϕ, but a completely consistent approach would also include
a quantum theory of gravity. Unfortunately, no such theory exists. The fundamental
reason behind this issue lies in the lack of consistent perturbative renormalizability of
quantized Einsteinian gravity, shown to one-loop order in [51]. This is not to say that
at the moment it is not possible in some form to include effects of quantum gravity the
calculations and in fact several works already exist where these effects have been considered
in the context of inflation. We will briefly return to this issue in section 2.5.1.

As a first approximation one could calculate the quantum corrections in flat spacetime
where the renormalization procedure and solution for the mode equation are known and in
general the whole procedure is straightforward. This approach suffers from some inconsis-
tencies, since it completely neglects the gravitational effects for the quantum fluctuations
but nevertheless can be viewed as the first approximation for the inclusion of quantum
effects. A step closer to a complete quantum formulation would be to assume that gravity
is classical, but the quantum effects take place in the presence of classical gravity. In this
approach there is again no need to worry about quantizing the metric, but renormaliza-
tion becomes a non-trivial issue, since the quantum divergences back-react on classical
gravity. Fortunately, consistent renormalization is possible in this approach [7]: it turns
out that with the addition of new terms in the gravity Lagrangian in (2.3) all divergences
can be consistently removed. This construction is often called quantum field theory in
curved spacetime or curved space quantum field theory. This will be the framework for our
calculations.

As a practical point, so far we have assumed that we were able to solve the mode
equation in (2.33) for some given gµν . In principle this equation is coupled to the quantum
corrected versions of (2.6 – 2.8) forming a highly non-linear set of equations, especially if
one wishes to include gravity in the quantum dynamics. Indeed, even for simple interacting
theories, the effective mass in (2.33) has a dependence on the field expectation value ϕ,
which in general is not a constant. Similarly, the derivative term � introduces additional
dependencies to gµν . It is often very challenging to solve the mode equation (2.33) and
finding the approximation suited for ones purposes usually forms the core of the problem.

When using quantum field theory in curved spacetime, there are roughly two paths
to the quantum corrected versions of the equations (2.6 – 2.8): The first is to derive a so
called effective action [47], usually denoted as Γ[ϕ, gµν ], which gives the quantum corrected
equations of motion by variation just like the classical action in (2.4) and in (2.5) i.e.

δΓ[ϕ, gµν ]

δgµν
= 0,

δΓ[ϕ, gµν ]

δϕ
= 0, (2.42)

with the first being the Einstein equation and the second the equation of motion of the
field. Here it must be borne in mind that now ϕ represents the expectation value of the
field, 〈ϕ̂〉 ≡ ϕ. The second way would be to vary the quantized action S[ϕ̂, gµν ] with

7Formally the above mentioned operations do not form a group [47].
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respect to the metric gµν and the operator ϕ̂ and only afterward calculate the expectation
value as8 〈

δS[ϕ̂, gµν ]

δϕ̂

〉
= 0,

〈
δS[ϕ̂, gµν ]

δgµν

〉
= 0. (2.43)

The first of these approaches is implemented in chapter 3 and the latter in chapters 4 and
5.

2.5 Quantum field theory in curved spacetime

Quantum field theory in curved spacetime in general means a prescription with quantum
fields with a classical curved background [7, 8]. This means that no fluctuations of the
metric are considered, which in turn for the functional integral approach means that the
generating functional Z[J ] has path integration over only the matter fields. For a theory
with a single field ϕ and a classical matter action as in (2.2) we can write the generating
functional (2.30) as

Z[J ] =

∫
Dϕ eiS[ϕ,g

µν ]+i
∫
d4x
√
−g Jϕ, (2.44)

where the action has a matter part and a gravitational part

S[ϕ, gµν ] ≡ Sm[ϕ, gµν ] + Sg[g
µν ], (2.45)

with

Sm[ϕ, gµν ] = −
∫
d4x
√−g

[
1

2
∂µϕ∂

µϕ+ V (ϕ, gµν)

]
(2.46)

Sg[g
µν ] =

∫
d4x
√−g

[
Λ0 + α0R+ β0R

2 + ε1,0RαβR
αβ + ε2,0RαβγδR

αβγδ

]
. (2.47)

As explained in section 2.2 there are many choices for a tree-level inflationary potential,
even for models with just one scalar field. The models studied in this thesis belong to the
class of chaotic models introduced in [28] with a single scalar field. In order to encompass
the most popular chaotic models with only a quadratic or a quartic potential with possible
non-minimal coupling to gravity, the choice for our tree-level potential is

V (ϕ, gµν) =
1

2
m2ϕ2 +

1

2
ξRϕ2 +

λ

4!
ϕ4. (2.48)

In chapter 3 where we study a model with two fields ϕ and σ, where, in addition to the
above, we include also an interaction term between the two fields proportional to σ2φ2.
These choices correspond to a renormalizable theory and thus all of our models may be
studied via curved space field theory.

In comparison to classical field theory defined by the action (2.2) and (2.3) there is
now a major difference: in the gravity contribution for the action we have introduced
higher order tensors, which are needed for consistent renormalization of the theory [7].9

8Mathematically a more concise way of deriving the field equation is to first vary with respect to ϕ
and then quantize the resulting equation.

9We assume that we are in an unbounded space and hence one can leave out terms that are total
derivatives. For a more general action with out this requirement see I.
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Our assumption is that these terms are only needed for renormalization i.e. the physical
coupling constants for these higher order terms are negligible

β0 = 0 + δβ (2.49)

and similarly for the constants ε1,0 and ε2,0. So even when keeping gravity as a purely
classical field, quantum corrections generate non-Einsteinian interactions which have to
be included for the consistency of the results. For example when deriving the effective
action in section 3, we see that there is no way of removing certain infinities if such terms
are not included.

The energy-momentum tensor, which now includes quantum corrections, is still defined
via variation as in (2.5). If we calculate the energy-momentum from a renormalized
effective action as in (2.42) we can simply write

2αGµν − Λgµν = 〈T̂µν〉 ⇔ − 2√−g
δΓ[ϕ, gµν ]

δgµν
= 0. (2.50)

In this approach the difficult part of the calculation lies in finding an expression for
Γ[ϕ, gµν ]. If, on the other hand we derive the Einstein equation without performing any
renormalization, we can do it simply by taking expectation values of the varied action as
in (2.43), giving us

2αGµν − Λgµν = 〈T̂µν〉 ≡ −
2√−g

〈
δSm[ϕ̂, gµν ]

δgµν

〉
− 2√−g

δSδg[g
µν ]

δgµν
. (2.51)

The equation now has a divergent quantum piece and counter terms from the matter action
(included in Sm) and a gravitational counter term contribution coming from the general-
ized gravitational action in (2.47). The gravitational counter terms can be expressed with
the tensors from (A.1 – A.5) as

2√−g
δSδg[g

µν ]

δgµν
= −gµνδΛ + 2δαGµν + 2δβ (1)Hµν + 2δε1

(2)Hµν + 2δε2Hµν ≡ δT gµν .
(2.52)

In the one-loop approximation, which is used in this thesis throughout except in chapter
5, we can conveniently split the energy-momentum tensor into classical, quantum and
counter term parts respectively as

〈T̂µν〉 ≡ TCµν + 〈T̂Qµν〉+ δTmµν − δT gµν
≡ TCµν + 〈T̂Qµν〉, (2.53)

where we have introduced the underline to symbolize a finite quantum contribution. Since
the gravitational counter term includes variations of the higher order tensors, e.g R2,
RµνR

µν coming from (2.47) one might wonder whether these higher order contributions
would also introduce extra degrees of freedom, since in higher order tensors one has third
and fourth derivatives of the scale factor a. This would require one to impose more
boundary conditions than in the classical scenario. However, as was shown in [52] the
third and fourth order derivative terms in the equations of motion can be expressed with
ä and ȧ to any order in perturbation theory.

After these introductory remarks we are now ready to proceed to discuss the work
done in I, II and III, but first we will briefly review work that is complementary to that
of ours.
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2.5.1 Related models and approaches

Inflationary quantum corrections have been previously calculated for many models using
a variety of techniques. Below we list some of the relevant studies and note that due to
the large volume of work in this field it is virtually impossible to present an exhaustive
list.

A popular model slightly different from what were are interested in here and where
traditionally quantum corrected effective equations have played a significant role, is where
inflation is caused by the standard model Higgs particle [53]. This is because the couplings
of the model are fixed to be the standard model ones, and one must carefully analyze their
running behaviour in order to deduce the respective sizes at the scale of inflation. In this
framework the Lagrangian is essentially of the form (2.48), with a non-minimal coupling
ξ ∼ 105 in order to find agreement with current observations. The inclusion of quantum
corrections usually proceeds in a slightly different manner compared to us because of the
large non-minimal coupling. Relevant works include [54, 55, 56, 57, 58, 59, 60, 61, 62],
where, with the exception of [61, 62], the quantum corrected effective equations were
calculated in flat spacetime. For Higgs inflation an expansion in terms of the slow-roll
parameters of section (2.3) is questionable, again because of the largeness of ξ10.

Another inflationary model sometimes studied using (nonequilibrium) field theory in
a curved background is "new inflation". For example, in [63, 64, 65, 66] the inflationary
quantum corrections are calculated consistently in a curved background, including back-
reaction of the quantum dynamics on the gravitational field, with the exception of [63].
For a related use of nonequilibrium techniques, see [67]. Since new inflation is assumed to
start in a thermal equilibrium state and inflation is driven by vacuum energy, the initial
conditions and hence the conclusions in this setting differ from those from our studies.

There are of course other approaches to inflationary quantum corrections than our
method of using curved space field theory. The fact that we have included no fluctuations
of gravity is a choice that is well-motivated by the desire to obtain a renormalizable
theory, but significant steps have already been taken in terms of including also the gravity
fluctuations. Ever since the classic paper [51], there has been much interest in quantum
effects of gravity. For inflation, they have been studied for example in [68, 69, 70, 71,
72, 73, 74, 75]. In this approach one necessarily encounters the non-renormalizability of
gravity and the conceptual problems it poses.

Another method for studying inflationary quantum corrections is the stochastic quan-
tization approach [76, 77, 78, 79, 80, 81]. In the stochastic approach one divides the
dynamics of the field into a long wave-length part that is treated as a classical (but
stochastic) variable and a small wave-length part where the quantum properties are main-
tained. With this approximation, one may write the quantum corrected field equation
of motion as a Langevin-type equation with a Gaussian random noise representing the
quantum effects. It may be argued that the stochastic approach gives very similar results
to a full quantum approach and recently this view was supported by [82] where it was
discovered that to two-loop order stochastic quantization gives identical results to a field
theory calculation for the infrared part of the two-point function.

Renormalization group methods have also been used in the cosmological context [83,
84, 85, 86, 87, 88]. It has been shown that the running of constants, and especially of the

10Because of this fact it is often argued that before the quantum effects may be calculated one should
perform a Weyl scaling on the metric, gµν → Ω2gµν in order to remove the non-minimal term from the
Lagrangian.
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cosmological constant, potentially leads to important effects, for example that an epoch of
inflation can solely be caused by a running cosmological constant. Recently, it was shown
by using nonperturbative renormalization group techniques [89] that quantum corrections
restore classically broken symmetries in a n dimensional de Sitter space with scalar fields
[90].

Additionally, we should stress that in our approximation the quantum corrections enter
only through the effective equations of motion. This means that the expression for the
power spectrum (2.12) or the spectral index (2.28) is the canonical one that can be found
from standard literature, e.g. [36, 38]. However, after the work presented in [91, 92]
there has been increasing interest in calculations where loop corrections are calculated
for the power spectrum and other n-point correlators of Rk. Recently they have been
studied by a number of authors [93, 94, 95, 96, 97, 98, 99]. In this approach there are still
some open questions concerning infrared divergences and secularity [100]. As it happens,
the calculation of III gives precisely an example of how re-summing loop diagrams may
cure infrared divergences at the one-loop order and this fact leads us to believe that
the calculations presented there potentially provide a novel angle on the problem. Some
comments on this matter will be given in the concluding section of this thesis.
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Chapter 3

Effective action in curved spacetime

The effective action formalism has for a long time been a standard part of the particle
physicists’ calculational techniques. It was used most notably in [50], where it was shown
that quantum corrections may significantly alter the naive classical predictions. The effec-
tive action provides a systematic method for calculating the quantum corrections to the
classical equations of motion and properly renormalizing the result, so a priori it seems
well-suited for our purposes. Unfortunately, the most uses of this approach have been
in Minkowski space applications and when one wishes to include spacetime curvature,
generalizations of the flat space techniques are needed. In curved spacetime the action’s
dependence on the metric gµν makes explicit calculations highly complicated.

Probably the most widely used method for calculating the effective action in curved
space is a gradient expansion, commonly known as the Schwinger-DeWitt expansion [101,
102]. This method was used in the curved space setting in for example [103, 104, 105, 106,
107, 108, 109, 110, 111]. With this approach one may calculate the result in principle to
as high an order as one pleases, but only the first few orders are soluble in practice [112].
In our calculation we truncated the expansion at the second order, which is where the last
divergence occurs. This means that our renormalized result contains all the important
logarithmic running terms.

In this calculation the only approximation made is that fields and their derivatives are
small with respect to the effective mass, indicating the possibility of applying the results to
problems outside the context of inflation and possibly even outside cosmology altogether.

We chose to implement the Schwinger-DeWitt procedure for a model of two scalar
fields that couple to one another, in addition to having mass and self coupling terms. This
way our solutions include two particle models.

Our aim in this chapter is to show how to derive the effective action and analyze the
results. The quantum corrected equations of motion will then follow by variation just like
for a classical action as in (2.42), where again we emphasize that ϕ now represents the
expectation value of the field. It is a simple calculation to show that the effective action
can be derived via a functional Legendre transformation of the generating functional with
respect to the source J ,

Γ[ϕ, gµν ] ≡
∫
d4x
√−g Leff [ϕ, gµν ] ≡ −i logZ[J ]−

∫
d4x
√−g Jϕ, (3.1)

which can be proven by operating on the right hand side of (3.1) with δ/(δϕ). Since we have
managed to express the effective action with the generating functional (2.30), we can use
standard loop expansion as in (2.31) in order to find an explicit expression. An effective

19



3.1. SCHWINGER-DEWITT EXPANSION

action formed in the above manner can be shown the consist of only Feynman graphs
that are one-particle-irreducible [47], which means that they cannot be made disconnected
by cutting a single line. For this reason it is often referred to as 1PI effective action.
This alone still does not provide us with enough simplification in order to calculate an
explicit result in curved space for Γ[ϕ, gµν ]. This is mostly due to the arbitrariness of gµν .
Because of this we will next use the Schwinger-DeWitt expansion technique for finding an
approximation for the one-loop result to Γ[ϕ, gµν ].

3.1 Schwinger-DeWitt expansion

We now show the steps for finding an expression for the effective action via the Schwinger-
DeWitt expansion. We start from (3.1) by using the definitions for the generating func-
tional (2.30) and the 1-loop expansion for the action from (2.31), which allow us to write
the effective action to 1-loop order as

Γ[ϕ, gµν ] =

∫
d4x
√−gLeff = Γ(0)[ϕ, gµν ] + Γ(1)[ϕ, gµν ] + · · · , (3.2)

with
Γ(0)[ϕ, gµν ] = S[ϕ, gµν ]0, Γ(1)[ϕ, gµν ] = − i

2
Tr log G(x, x′), (3.3)

where the subscript "0" signifies that all the constants are considered bare and can be split
into a finite part and a divergent counter term as in (2.40). We also used the symbolic
notation for the functional determinant

1√
detM

=

∫
Dϕ e−

1
2
ϕMϕ, (3.4)

the formula
detM = eTr logM (3.5)

and the fact that the propagator can be derived by inverting the equation[
−�x +M2

]
G(x, x′) = −iδ(x− x

′)√−g . (3.6)

The above formula can be proven by operating with −�x + M2 on the propagator defini-
tion (2.36) and using the commutation relation for the field φ̂ and its momentum conjugate
π̂ =

˙̂
φ [

φ̂(t,x), π̂(t,y)
]

= iδ(n−1)(x− y). (3.7)

So if we can find an expression for the trace logarithm of the propagator in (3.3), we have
our result for the 1-loop the effective action.

One way of finding an expression for Γ(1)[ϕ, gµν ], is to use the Schwinger-DeWitt
expansion, otherwise known as the heat kernel method, introduced for curved spacetime
in [113] (see references for other uses). We must first write the trace of a logarithm in
(3.3) as a proper-time integral over a yet undefined kernel function K

i

2
Tr log G−1(x, x′) = − i

2
µ4−n

∫
dnx
√−g

∫ ∞
0

dτ

τ
K(τ ;x, x). (3.8)

Because of the divergent behaviour that occurs in four dimensions for Γ(1)[ϕ, gµν ], we
have dimensionally regularized the above integral to have the dimension n = 4 − ε, as
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discussed in section 2.4. We have also added an arbitrary scale µ in order to maintain
the proper dimension of the action. In the appendixes of I one may find the Schwinder-
DeWitt method in explicit detail, but for the purpose of this text we simply state the
result, which is

K(τ ;x, x) = i
Ω(τ ;x, x)e−iM

2
SDτ

(4πiτ)n/2
, (3.9)

where MSD is an effective mass parameter that is different from the definition in (2.32)

M2
SD = M2 − R

6
(3.10)

and the Ω has a small proper-time expansion

Ω(τ ;x, x) =
∞∑
k=0

ak(x, x)(τi)k. (3.11)

All the essential physical information is now contained in the expansion coefficients ak(x, x).
These coefficients have been known for many years [101, 102], and results for the first four
can be found for example in [112]. In our calculation we will truncate the expansion after
the third ak(x, x). Explicitly the needed coefficients are then

a0(x, x) = 1,

a1(x, x) = 0,

a2(x, x) = −1

6
�M2

SD +
1

180

(
�R+RαβγδR

αβγδ −RαβRαβ
)

(3.12)

Here we would also like to point out that the above procedure is not restricted to the case
of real scalar fields, but can be equally well applied to a large class of operators. This
includes fields of higher spin, gauge theories and quantum gravity, see [114] for a detailed
account. The result for the effective action can now be written as

Γ(1)[ϕ, gµν ] =

∫
dnx
√−g 1

2(4π)n/2

(
MSD

µ

)n−4 ∞∑
k=0

M4−2k
SD ak(x, x)Γ(k − n/2). (3.13)

From the argument of the gamma function, we see that at the n = 4 limit, we have
divergent behavior for the first three terms. From the expressions in (3.12) we see that we
have divergences multiplying not just R but also the higher order tensors such as R2 and
RαβγδR

αβγδ. This is the reason why one is forced to introduce the non-Einsteinian tensors
in the gravity action in (2.47): without them, we do not have the necessary counter terms.
We also see that in order for the expansion to be sensible, the effective massMSD must be
much larger than the coefficients ak(x, x), which can be shown to consist of an increasing
number of derivatives of the matter fields and the gravitational tensors [9].

This derivation seems suspiciously simple, after all we are doing quantum field theory
consistently in a curved background. The steps shown here are of course not the whole
story and here we have left out precisely the non-trivial parts of the calculation, namely
the derivation for the coefficients ak(x, x). The great power of the Schwinger-DeWitt
expansion lies precisely in the fact that most of the steps need not be repeated, but one
may simply implement the already existing – and very general – results for the scenario
of particular interest.
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3.2 Renormalization of the effective action

Before we can write down a finite, well-defined expression for our effective action, we must
first use a consistent renormalization procedure for removing the divergences in (3.13).
Since we have already dimensionally continued our spacetime to n dimensions, we can
algebraically manipulate the expression (3.13) in such a way that all infinities, which for
the dimensionally regularized result appear as terms with (n−4)−1 type poles, are removed
from the result by tuning the counter terms introduced by S[ϕ, gµν ]0 in (3.3). After this
subtraction we may formally take the limit n → 4. The need to remove the divergences
still does not completely fix the procedure, since to a counter term δc one could in principle
add any finite portion and still obtain a result that is perfectly finite. The crucial difference
between various subtraction schemes, which are separated from one another by different
finite parts of the counter terms, is that they ultimately define different physical constants
for the theory. The objective of course is that the constants of the quantum theory are
such that their physical interpretation coincides with the classical constants as much as
possible, for the scenario of interest. The method adopted here is that for some scales
ψi = µi

1 we match each constant to equal the classical result. When written explicitly for
a single scalar field model, this means that the renormalization conditions are2

∂2Leff [ϕ, gµν ]

∂ϕ̇2

∣∣∣∣
µi

=
∂2L[ϕ, gµν ]

∂ϕ̇2

∣∣∣∣
µi

,
∂2Leff [ϕ, gµν ]

∂ϕ2

∣∣∣∣
µi

=
∂2L[ϕ, gµν ]

∂ϕ2

∣∣∣∣
µi

,

∂4Leff [ϕ, gµν ]

∂ϕ4

∣∣∣∣
µi

=
∂4L[ϕ, gµν ]

∂ϕ4

∣∣∣∣
µi

,
∂3Leff [ϕ, gµν ]

∂ϕ2∂R

∣∣∣∣
µi

=
∂3L[ϕ, gµν ]

∂ϕ2∂R

∣∣∣∣
µi

,

Leff [ϕ, gµν ]
∣∣
µi

= L[ϕ, gµν ]
∣∣
µi
,

∂Leff [ϕ, gµν ]

∂R

∣∣∣∣
µi

=
∂L[ϕ, gµν ]

∂R

∣∣∣∣
µi

,

∂2Leff [ϕ, gµν ]

∂R2

∣∣∣∣
µi

=
∂2L[ϕ, gµν ]

∂R2

∣∣∣∣
µi

,
∂Leff [ϕ, gµν ]

∂RαβRαβ

∣∣∣∣
µi

=
∂L[ϕ, gµν ]

∂RαβRαβ

∣∣∣∣
µi

,

∂Leff [ϕ, gµν ]

∂RαβγδRαβγδ

∣∣∣∣
µi

=
∂L[ϕ, gµν ]

∂RαβγδRαβγδ

∣∣∣∣
µi

. (3.14)

One usually imposes the requirement that the scales µi are constrained to form a proper
solution of the equations of motion: they are not completely arbitrary. After deriving
expressions for the counter terms via the conditions (3.14), we can write down a well-
defined expression for the effective action (3.2). Next we may proceed to study the explicit
results.

3.3 Some results for a two scalar field model

Implementing the Schwinger-DeWitt expansion for a model with more than one scalar field
comes as a natural generalization from the discussion in section 3.1. The only complication
that might arise is that if the action has terms that couple different fields together, one
must first disentangle these mixing terms so that the result can be written as a sum of
various trace logarithms. In this manner the Schwinger-Dewitt expansion can be used
for each contribution separately. This process comes about via diagonalizing the action,

1ψ1 = ϕ̇, ψ2 = ϕ, ψ3 = R, ψ4 = RαβR
αβ and ψ5 = RαβγδR

αβγδ.
2One may also include linear and trilinear conditions.
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3.3. SOME RESULTS FOR A TWO SCALAR FIELD MODEL

which is a question of simple linear algebra. We performed the above analysis for a model
with the following matter action

Sm[ϕ, σ, gµν ] ≡
∫
d4x
√−g

[
− 1

2
gµν∂µϕ∂νϕ+ ηϕ�ϕ

2 −
m2
ϕ

2
ϕ2 − 1

2
ξϕRϕ

2

−1

2
gµν∂µσ∂νσ + ησ�σ

2 − m2
σ

2
σ2 − 1

2
ξσRσ

2

−gϕ
2σ2

4
− λσσ

4

4!
− λϕϕ

4

4!

]
. (3.15)

In I we have a fully general result for the effective action for the theory in (3.15), but the
numerical studies were done for an unbounded space – which means that total derivatives
vanish – and with the choices

ξσ = ξϕ = λσ = λϕ = 0 (3.16)

and furthermore assuming that only one of the fields develops an expectation value, i.e,

ϕ = 0. (3.17)

The renormalization scale was chosen as zero for all matter fields and Minkowski space for
the metric. This means that the constants of the theory correspond to the classical ones
at the point ϕ = σ = 0 and gµν = ηµν . This gives the effective Lagrangian3

Leff = −∂µσ∂
µσ

2
− m2

σ

2
σ2 + Λ + αR

+
1

64π2

{
1

24

(
R− 3gσ2

)(
R− 3gσ2 − 4m2

ϕ

)
+

[
−
(
m2
ϕ −

R

6
+
gσ2

2

)2

+
G

180

]
log

(
m2
ϕ − R

6 + gσ2

2

m2
ϕ

)}
, (3.18)

where we have used the Gauss-Bonnet density, defined as

G = R2 − 4RµνRµν +RµνρσRµνρσ. (3.19)

In the above we have only included contributions up to terms of type O(R2/M2). The
Lagrangian can now be used to derive all the results we are interested in and in particular,
there are two important special cases that we wish to address:

• How do the quantum corrections change the behavior of the field in the situation
where there field itself is not responsible of the curvature of spacetime, but behaves
only as a spectator for various choices for the scale factor a(t)?

• How do the quantum corrections change the dynamics of spacetime when we allow
quantum back-reactions, especially for the case of inflation?

3.3.1 Spectator field dynamics in de Sitter space

For the spectator field case the assumption is that there exists some other type of matter or
energy that completely dominates the energy density and, because of this, determines the

3The choice gµν = ηµν is problematic in terms of a non-zero cosmological constant, since it does not
exist in Minkowski space. Even though we include Λ in the results, we assume it to be negligible.
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Figure 3.1: The evolution of the spectator field σ(t) for different values of σ0 and different
approximations, in a de Sitter Universe. We use mϕ/mσ = 2, g = 1, and H0/mσ =

√
1/2.

The classical results for initial values of σ0/mσ = 1, 10, 20, 30 are represented by the
dashed lines and the curved space quantum corrected ones by the solid lines.

evolution of the scale factor. The matter field σ merely evolves in this given background
metric. This is for example how the curvaton field mentioned in section 2.2 is assumed to
behave during inflation. Here we only explicitly show the de Sitter universe case, which
corresponds to the scale factor

a(t) = eHt, H = H0. (3.20)

The equation of motion derived via variation is now

σ̈ + 3Hσ̇ +m2
σσ =

1

64π2

{
gσ

2

(
2m2

ϕ −R+ 3gσ2
)

+ gσ

(
G
180 −

(
m2
ϕ − R

6 + gσ2

2

)2)
m2
ϕ − R

6 + gσ2

2

−2gσ
(
m2
ϕ −

R

6
+
gσ2

2

)
log

(
m2
ϕ − R

6 + gσ2

2

m2
ϕ

)}
, (3.21)

which at least at the theoretical level has very non-trivial terms coming from the effects
of curved space field theory, as is evident from the right hand side of (3.21). In order
to make the analysis more comprehensive, we distinguish three levels of approximation:
the classical level means simply neglecting the right hand side of (3.21), order H0 ignores
gravitational operators in the quantum corrections, order H2 includes all occurrences of
R and finally order H4 also includes the non-Einsteinian tensors, namely G. We choose
the parameters mϕ/mσ = 2, H0/mσ =

√
1/2, g = 1 with the driving idea being obtaining

the maximal effect possible from the quantum contributions.
In Fig. 3.1, one can find the evolution for the inflationary, de Sitter type background

where the initial conditions are chosen as σ0/mσ = 1, 10, 20, 30, denoted with black, red,
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green and blue curves respectively; the dashed lines signify the classical tree level result and
the full lines the quantum corrected ones, calculated without neglecting any gravitational
contributions.

We observe that the quantum corrections are small for small initial field values, which
is simply due to the overall factor 1/(64π2), which is expected. We also find that by far
the dominant contribution to the quantum dynamics comes from the Minkowski space
contributions and curved space effects are insignificant. In fact, curves including back-
reaction from curved space effects are indistinguishable in Fig. 3.1 from the Minkowski
quantum results, i.e. the mentioned three different levels of approximation in practice
make no difference. The same behavior was verified for the matter dominated and radiation
dominated cases in I.

3.3.2 Quantum corrected dynamics for the inflaton

Now we proceed to solve the complete quantum corrected dynamics of the scale factor a
for slow-roll inflation. Classically our potential in (3.21) is now of a simple quadratic form
and we can write the first potential slow-roll parameter in (2.22) as

V (σ) =
1

2
m2
σσ

2, εV =
2M2

pl

σ2
. (3.22)

Hence if we neglect quantum corrections, inflation will arise for σ0 >
√

2Mpl since then
we have εV < 1, and we are assuming of course that condition (2.19) holds. Including the
curved space quantum corrections also in the Einstein equations is now a simple task of
varying the effective action formed from the Lagrangian (3.18). The quantum corrected
version of the first Friedmann equation is

3
ȧ2

a2

{
1− 1

96π2M2
pl

[
gσ2

2
−
(
m2
φ +

gσ2

2

)
log

(
1 +

gσ2

2m2
φ

)]}
+

1

36π2M2
pl

{
ȧ

a

σ̇

σ
gσ2 log

(
1 +

gσ2

2m2
φ

)}
= Λ +

1

M2
pl

(
σ̇2

2
+
m2
σ

2
σ2
)

− 1

32π2

[
gσ2
(
4m2

φ + 3gσ2
)

16
− 1

2

(
m2
φ +

gσ2

2

)2
log

(
1 +

gσ2

2m2
φ

)]
(3.23)

and the second one is

ä

a

{
1 +

1

192π2M2
pl

[ (
2m2

φ + gσ2
)

log

(
1 +

gσ2

2m2
φ

)
− gσ2

]}
+

1

192π2M2
pl

{
ȧ

a

σ̇

σ
gσ2 log

(
1 +

gσ2

2m2
φ

)}
= − 1

3M2
pl

[
σ̇2 − 1

2
m2
σσ

2

]
+

Λ

3

− 1

192π2M2
pl

{
gσ2
(
4m2

φ + 3gσ2
)

8
−
[(
m2
φ +

gσ2

2

)2

−
(
gσ̇2 + gσ̈σ

)]
log

(
1 +

gσ2

2m2
φ

)}
(3.24)
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Figure 3.2: The evolution of the scale factor when σ0 = 10Mpl, for different values of g
for Mpl/mσ = 100.

Neglecting the quantum contributions4, the above equations reduce to the standard
classical Friedmann equations in (2.8) and (2.9) for the potential in (3.22). The quantum
corrections to the gravity equations are indeed very non-trivial. In contrast to the classical
equations, we immediately see that it is no longer apparent that we can divide the equa-
tion into contributions from the matter fields and contributions from purely gravitational
dynamics, as there are mixing terms of type ȧσ̇. An equally interesting observation is that
there are now contributions from odd powers of ȧ. From this we see that for the quantum
dynamics the direction of the expansion, i.e. increasing or decreasing a, may in some cases
be meaningful. This is purely an effect of performing the quantum calculations in curved
background, i.e. had we approximated spacetime to be flat for our quantum dynamics,
none of this would be visible.

Solving the coupled equations (3.21), (3.23) and (3.24), we get the result for consistent
quantum corrected dynamics. Due to the highly non-linear and coupled nature of the
equations this must be done numerically. In Fig. 3.2 the evolution of a(t) is presented
for σ0 = 10Mpl for early times. The red line represents the non-interacting g = 0 case
where inflation is prolonged and leads to standard exponential growth of the Universe. If
we then tune g towards unity, represented by the full, black lines, we see that inflation
becomes increasingly weaker as we get close to g ' 1, which is denoted with blue. We can
therefore deduce that quantum effects may significantly weaken inflation. This effect is
again due in large part to the Minkowski space quantum corrections. However, it is open
to debate, whether our renormalization point, chosen to be at zero scale, can be used for
constructing a theory valid all the way up to the start of inflation.

4Since in our calculations ~ = 1, the quantum corrections are identified by the π−2 prefactors.

26



3.4. DISCUSSION

3.4 Discussion

We can infer from the results in section (3.3) that even at the very limit of validity of
the perturbative regime i.e. with a coupling constant set to unity, the curved space quan-
tum corrections make little difference. It would appear that using the Minkowski space
approximation for the loop calculations is completely adequate for all practical purposes.
However, for the spectator field scenario and for the completely self-consistent solution
for the matter and gravitational fields, there is a visible difference between the classical
and the quantum predictions. This conclusion might still be slightly premature, since it
neglects a potentially significant and a rather intricate detail concerning renormalization.
Supposing one chooses to match the quantum theory to the classical theory at some scale
µ, then the quantum corrections will have logarithms containing (schematically) the value
of some field ϕ and the scale to form a dimensionless number as ϕ/µ. So the further one
is from the renormalization point, the larger the absolute value of the logarithm appears.
Since a loop expansion to a higher order will contain higher powers of logarithms, multi-
plied by a coupling constant, we realize that implementing our effective action for cases
where |g log(1 + gσ2/(2m2

φ))| > 1 is questionable. However, since inflation spans a large
range of scales it is very possible that these problems surface, no matter what one chooses
as the renormalization point. It may be that implementation of renormalization group
improvement techniques [47] is needed. However, we have not studied the issue further
in this context and it turns out that in the approach of chapter 5 RG improvement is
automatically included.

Another matter we should comment is the validity range of the effective action, or
more accurately the Schwinger-DeWitt expansion. To be precise, there are other methods
besides the heat kernel expansion for deriving an expression for the effective action [115]
(and references therein), but their mathematical complexity makes them laborious to use
in practice (see [116] for an example). In deriving the result (3.13), we used the expansion
(3.11) which is an expansion around small proper time τ . It can be seen by inserting (3.9)
into (3.8) that the divergences in the integral occur at τ = 0 when n = 4 and so the region
near τ = 0 corresponds to the ultraviolet region of the theory. We can thus conclude
that a small proper time expansion is only correct in terms of the ultraviolet behavior
of the theory and the infrared contributions corresponding to large τ are exponentially
damped as can be seen from the ansatz (3.9). Conversely as already stated, the terms in
(3.13) are formed from an increasing number derivatives of the matter and gravitational
fields, which is also evident by dimensional reasons from the increasing inverse power of
the effective mass (3.13). So a more descriptive way of expression the validity of this
expansion is that on the scale of the effective mass the fields must be small and slowly
varying. If our physics is dominated by the ultraviolet dynamics - which is sometimes
assumed - then the heat kernel approach will be a trustworthy approximation for the ef-
fective equations of motion. In a situation where the contribution of the infrared region
plays a significant role we must find another method to suit our purposes. But if one
wishes to be certain of the dominance of the ultaviolet regime, and hence the validity of
the Schwinger-DeWitt expansion, we must know the size of the infrared contribution. The
most desirable method for determining this would of course be to actually perform the
calculation of the infrared portion for the quantum corrections. This is done in III (see
references for previous works), but it first required some tools that were developed in II.
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The key observation for this was realizing that if we could consistently perform the entire
calculation at the equation of motion level, there we can acquire a significant simplification
by setting gµν to be of the FRW form.
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Chapter 4

Renormalization of the equations of
motion in curved spacetime

Since in we are interested in calculating corrections to inflationary physics, we can restrict
ourselves to a homogeneous and isotropic space. This immediately gives the idea that we
might hope to find a significant simplification if we can find a way to constrain our metric
to be of the FRW form throughout the calculation. Unfortunately the effective action
Γ(1)[ϕ, gµν ] is defined with respect to a general metric. This stems from the fact that we
must vary with respect to a general metric, as in (2.42), in order to get to the Einstein
equation. Imposing constraints – or boundary conditions – on the metric at the level of
the action gives additional complications. This implies that, instead of working with the
effective action, one should perform the entire analysis for the equations of motion, where
the restriction to FRW type metric is perfectly allowed. So instead of first calculating the
effective action one may vary the quantized action S[ϕ̂, gµν ] with respect to the operators
as (2.43) and only afterwards calculate the expectation values.

This leads to a problem. If we wish to perform the entire calculation at the equation of
motion level, then there are not many renormalization techniques available for the curved
equations of motion, especially when interactions are included. Renormalization is such
an important process in interacting theories, giving rise to intricate phenomena such as
the running of the couplings, that in order to derive robust predictions for the quantum
corrections we insist on being able to perform it consistently in curved spacetime.

The early work on renormalization in curved backgrounds in most cases concen-
trated on the consistent cancellation of divergences, without explicitly calculating the
finite remainder of the counterterms [113, 117, 118, 119, 120, 121] (however, see also
[122, 123, 124]). These approaches are of essential theoretical value, but they do not
provide us with a procedure with which to calculate the results with correct finite parts.
Since our main focus is in studying inflationary physics, we are particularly interested
in a method that allows us to derive the correct finite parts of the counter terms for a
spacetime with a de Sitter type of behavior, which is quite distinct from an expansion
around Minkowski space. Also, in order to obtain quantitative physical predictions, the
renormalization scale must be known and one must be able to fix it freely in order to
assign a proper physical interpretation for the constants of the theory at the scales being
studied.

In the past, if renormalizing at the level of the action was not a viable option then
the only practical method available for renormalizing at the level of the equations of
motion was adiabatic subtraction [125, 126, 127, 128] (see also [129]), having recently
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been applied in [130, 131, 132]. However, adiabatic subtraction has been primarily used
for non-interacting theories and is, strictly speaking, a regularization method. When
implemented for interacting theories it has limitations. Such as, a lack of an explicit
renormalization scale and the fact that for an interacting theory the counter terms cannot
be reduced to a redefinition of the constants in the classical action.

Finding a method for renormalization at the level of the equations of motion, with
finite parts suitable to a de Sitter space and adjustable renromalization scale for each
constant led us eventually to the procedure explained in II. In addition to introducing
the renormalization method in II we also used it in practice, for calculating the fourth
adiabatic order equations of motion for the standard ϕ4 scalar field theory with the po-
tential (2.38) in the adiabatic vacuum. The adiabatic vacuum is an expansion in terms of
derivatives, so it is closely related to the Schwinger-DeWitt expansion of section 3.1 for
a metric of the FRW form. The reason for choosing the adiabatic vacuum was to show
that it is generally simpler to perform the calculation at the equation of motion level and
that this approach gives equivalent results to the Schwinger-DeWitt expansion. Results
for the physical quantities in the adiabatic vacuum also provide a consistency check of
the validity of adiabatic subtraction for interacting theories. We start by discussing the
adiabatic vacuum.

4.1 Adiabatic vacuum

We must first of course define what we mean by an adiabatic vacuum. Again, as in chapter
2, we define the fluctuation of the operator ϕ̂ as ϕ̂ → ϕ + φ̂ with 〈ϕ̂〉 ≡ ϕ. We can start
with a field equation of motion, similar to (2.33) of the form[

−�+M2

]
φ̂ = 0, (4.1)

where M is some arbitrary and possibly time- and ϕ-dependent mass parameter, in our
case the effective mass in (2.32). We can solve this in terms of mode functions by using
an ansatz

φ̂ =

∫
dn−1k

[
akuk + a∗ku

∗
k

]
, uk =

1√
2(2π)n−1an−1

hk(t)eik·x,

hk(t) =
1√
W
e−i

∫ tWdt′ , (4.2)

with the standard commutation relations (2.35). Assuming that our metric is of the FRW
form (2.1), we can write W as an adiabatic expansion, i.e an expansion in "dots"

W = c0 + c1
ȧ

a
+ c2

Ṁ

M
+ c3

ȧ2

a2
+ c4

Ṁ2

M2
+ c5

ä

a
+ c6

M̈

M
+ c7

ȧṀ

aM
+ · · · , (4.3)

with ci being functions of M and a. As the above clearly shows, this expansion is mean-
ingful only when ϕ and a are slowly varying. As can be seen from the appendixes of
II, the coefficients ci have increasing inverse powers of the momentum variable k, so the
approximation works better for the high momentum modes. Hence this procedure gives
correct results at the ultraviolet limit and thus has very similar behavior (and limitations)
to the Schwinger-DeWitt technique introduced in section (3.1).

The solution for uk will naturally also be an expansion in the number of time deriva-
tives and the Ath order approximate solution will include all terms with an A number of
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derivatives1 and it will be denoted as u(A)k . Similarly, the vacuum it defines is written as
|0(A)〉 and any correlator calculated in this state is called the Ath order approximation of
this quantity. These approximate modes can be used to define an exact solution to the
equation of motion (4.1) through the relation

uk = αk(t)u
(A)
k + βk(t)u

(A)∗
k , (4.4)

where αk and βk must be constant in t to order A, but they may have dependence in k.
We can then choose to fix the exact mode uk at some point t = t0 to be the Ath order
positive solution:

αk(t0) = 1 +O(A+ 1) βk(t0) = 0 +O(A+ 1) (4.5)

This defines the Ath order adiabatic vacuum.

4.2 Adiabatic subtraction

Adiabatic subtraction [125, 126, 127, 128] is one of the most used renormalization methods
for curved spacetime calculations, which is due in large part to its practicality. Strictly
speaking, adiabatic subtraction is a method with which one may render the quantum
contributions finite, i.e. a regularzation method, but it is often also used as a complete
renormalization prescription. It has found the most use in renormalization of the energy-
momentum tensor. The renormalized quantities are defined at the level of the equations
of motion by subtracting an Ath order derivative approximation, explained in section 4.1,
of the quantity of interest from the divergent quantum expression.

The order of the expansion A depends on the adiabatic order of divergences in the
bare quantity. Thus in this procedure one only calculates a single subtraction term that
includes all the divergences appearing in a particular expression thus making it finite, and
counterterms such as δm2 or δλ never explicitly enter the picture. As an example we use
the adiabatic subtraction procedure to renormalize the variance of a field and the quantum
part of the energy-momentum tensor. The renormalized expressions defined via adiabatic
subtraction read

〈ϕ̂2〉 = 〈ϕ̂2〉0 + δϕ2 ≡ 〈ϕ̂2〉0 − 〈0(A)|ϕ̂2|0(A)〉
∣∣
A=2

(4.6)

〈T̂Qµν〉 = 〈T̂Qµν〉0 + δTµν ≡ 〈T̂Qµν〉0 − 〈0(A)|T̂Qµν |0(A)〉
∣∣
A=4

. (4.7)

The argument is that all the constants are taken to be renormalized since the divergences
are taken care of by the adiabatic subtraction terms.

Because this procedure operates at the equation of motion level, it has all the ad-
vantages discussed at the beginning of this chapter. Also, since the counter term is an
energy-momentum tensor calculated in some particular state, it poses no problems for co-
variant conservation of energy-momentum, which is often not the case when a subtraction
term is introduced by hand.

This method has some drawbacks, however. Because the renormalized expression is
derived by a single subtraction, the renormalization conditions for each constant including
the renormalization scale, are not explicit. This was not a problem when the renormal-
ization conditions were defined at the level of the action (3.14). Not clearly stating the

1This means that ȧ2 and ä are of the same adiabatic order, for example.
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renormalization scales leaves the finite part of each counterterm implicit and thus the
physical interpretations for the renormalized constants become more difficult, especially
when interactions are included. Furthermore, it is not immediately obvious that this one
big subtraction term defined via an expectation value corresponds to a consistent renor-
malization scheme, where in the one-loop approximation all the counter terms are terms
of the classical action, with possibly divergent coefficients.

In fact, as was shown in II, for a non-constant mean field the subtraction term defined
by (4.7) can be reduced to a redefinition of the classical action only when the theory is
non-interacting. In the alternative method introduced in II to be discussed in the next
section, these issues are not present.

4.3 Consistent renormalization via the energy-momentum
tensor

In this section we present a renormalization procedure that gives explicit control over the
finite parts of the counterterms while working at the level of the equations of motion. In
order to make the procedure more concrete, we will perform our calculation for the theory
defined in (2.48), i.e. for a theory with the action

Sm[ϕ, gµν ] = −
∫
d4x
√−g

[
1

2
∂µϕ∂

µϕ+
1

2
m2ϕ2 +

1

2
ξRϕ2 +

λ

4!
ϕ4

]
. (4.8)

We would now like to find a generalization of the equations (3.14) for the energy-
momentum tensor, so that we can determine each counterterm in the action separately.
For this we can use equations very similar to those in (3.14). The only difference being
that we use matching between the expectation value of the energy-momentum tensor -
instead of the effective action - to the classical one for determining the counterterms. In
the Einstein equation defined in (2.51), with the parametrization in (2.53),

〈T̂µν〉 ≡ TCµν + 〈T̂Qµν〉+ δTmµν − δT gµν , (4.9)

we now have the following results for the classical contribution TCµν

TCµν = −gµν
2

[
∂ρϕ∂

ρϕ+m2ϕ2 + 2
λ

4!
ϕ4

]
+ ∂µϕ∂νϕ

+ ξ
[
Gµν −∇µ∇ν + gµν�

]
ϕ2 (4.10)

and the quantum contribution 〈T̂Qµν〉

〈T̂Qµν〉 = −gµν
2

[
∂

∂xρ

∂

∂yρ
+M2

]
G(x, y)

∣∣
x=y

+
∂

∂xµ
∂

∂yν
G(x, y)

∣∣
x=y

+ ξ
[
Rµν −∇µ∇ν + gµν�

]
G(x, x), (4.11)

with the propagator defined in (2.36). The matter counter term part for the theory (4.8)
is

δTmµν = −gµν
2

[
δZ∂ρϕ∂

ρϕ+ δm2ϕ2 + 2
δλ

4!
ϕ4

]
+ δξ

[
Gµν −∇µ∇ν + gµν�

]
ϕ2

+ δZ∂µϕ∂νϕ, (4.12)
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and the gravitational part of the counter term δT gµν comes from (2.52)

δT gµν = −gµνδΛ + 2δαGµν + 2δβ (1)Hµν + 2δε1
(2)Hµν + 2δε2Hµν (4.13)

As already discussed, when working at the level of the equations of motion we can constrain
the metric. Therefore we can choose that we are in a homogeneous and isotropic space
with a FRW type metric (2.1), and use this accordingly in the renormalization conditions.

Now we are ready to write the renormalization equations for the coupling constants in
(2.46) and (2.47). Since in section 4.4 we will calculate the energy-momentum tensor in
the adiabatic vacuum, which we then wish to compare to the Schwinger-DeWitt results
of chapter 3, we will here use the same renormalization scale choices of Minkowski space
with a vanishing field,

ϕ ≡ 0, a ≡ 1. (4.14)

From (4.10) we get the classical energy-density with the help of the tensor formulae from
appendix A

TC00 =
1

2

[
ϕ̇2 +m2ϕ2 + 2

λ

4!
ϕ4

]
+ ξ

[
(n− 1)

(
n

2
− 1

)(
ȧ

a

)2

ϕ2 + 2(n− 1)
ȧ

a
ϕ̇ϕ

]
. (4.15)

We have written the expression in n-dimensions, so that the equations would also be valid
for arbitrary dimensions, which is important if dimensional regularization is used. Analo-
gously to (3.14) we can thus write the renormalization conditions for the "00" component
of the full energy-momentum tensor by matching it to the classical value using

∂2〈T̂00〉
∂ϕ̇2

∣∣∣∣
ψi=µi

= 1,
∂2〈T̂00〉
∂ϕ2

∣∣∣∣
ψi=µi

= m2,
∂4〈T̂00〉
∂ϕ4

∣∣∣∣
ψi=µi

= λ,

∂3〈T̂00〉
∂ϕ∂ϕ̇∂(ȧ/a)

∣∣∣∣
ψi=µi

= 2ξ(n− 1) 〈T̂00〉
∣∣
ψi=µi

= 0,
∂2〈T̂00〉
∂(ȧ/a)2

∣∣∣∣
ψi=µi

= 0

∂3〈T̂00〉
∂(ȧ/a)2∂(ä/a)

∣∣∣∣
ψi=µi

= 0,
∂2〈T̂00〉
∂(ä/a)2

∣∣∣∣
ψi=µi

= 0,
∂4〈T̂00〉
∂(ȧ/a)4

∣∣∣∣
ψi=µi

= 0. (4.16)

The first four conditions in the above fix the counterterms coming from the matter part of
the action and the rest do the same for the counterterms from the gravity part. There are
of course other possible choices for renormalization equations. For example δξ can also be
determined from

∂4〈T̂00〉
∂ϕ2∂(ȧ/a)2

∣∣∣∣
ψi=µi

= 4ξ(n− 1)

(
n

2
− 1

)
. (4.17)

In a similar fashion, we could have chosen other components of Tµν for determining the
renormalization constants. In complete generality, the right hand side of the conditions
could have been written with the classical energy-momentum evaluated at the chosen
scales, paralleling the conditions in (3.14), but here this is not relevant for the scale
choices in (4.14).

A few comments are now in order. Here we have renormalized by simply including
counterterms in the constants of the original action, which means that covariant conser-
vation is automatically satisfied2. Also, by assuming the equations (4.16) to work we

2This can be shown by operating with ∇µ on the right hand side side of (2.51) and using the Bianchi
identities and commutator formulae.
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implicitly assumed that all the equations are analytic at the chosen scales µi. Famously
in [50] it was shown that in the ϕ4 theory there is an infrared singularity in the massless
limit. To bypass this issue at the renormalization stage, one may choose non-zero renor-
malization scales µi. However, this is a non-trivial issue, since changing renormalization
scales changes the definitions of the constants and ultimately alters the range in parameter
space where the perturbative expansion can be trusted.

4.4 Deriving the second order adiabatic energy-density

As an example, we now derive the energy-density in the adiabatic vacuum and renormalize
it by using the technique discussed in section 4.3. Using the expressions for the mode in
(2.34) and the commutator formulae in (2.35), we can write the quantum energy-density
from (4.11) as

〈T̂Q00〉 =

∫
dn−1k

{
1

2

[
|u̇k|2 +

(
k2/a2 +M2

0

)
|uk|2

]
+ ξ

[
G00 + (n− 1)

ȧ

a
∂0

]
|uk|2

}
(4.18)

where we have defined
M2

0 ≡ m2 +
λ

2
ϕ2. (4.19)

By inserting in the above expression the adiabatic mode discussed in section 4.1, where the
explicit (and quite complicated) result for the adiabatic phase is found from the appendixes
of II, we get the result for "00" components of the quantum part of the energy-momentum
tensor. This result can then be renormalized with the equations (4.16). After deriving the
counter terms, which may also explicitly be found from II, we can write the finite energy
momentum tensor to second adiabatic order

〈T̂Q00〉 =
1

64π2

{
(1− 6ξ)λϕ2 ȧ

2

a2
− 3

8
λ2ϕ4 − λ2m2ϕ4

4M2
0

+
λϕ2

(
− 3m4 + λϕ̇2

)
6M2

0

+ log

(
M2

0

m2

)[
M4

0 − 2(1− 6ξ)M2
0

ȧ2

a2
− (1− 6ξ)2λ

ϕϕ̇ȧ

a

]}
+O(A)4. (4.20)

If we set ξ → 0, m → mφ, ϕ → σ and λ → g this result coincides with the quantum
contribution of the energy-density calculated with the Schwinger-DeWitt expansion in
equation (3.23)3. Similar results also apply for the pressure density and the field equation
of motion.

4.5 Discussion

In II we used the above technique to derive the equations of motion in the fourth order
adiabatic vacuum. There we also derived the conformal anomaly, without any reference
to an effective action. This was simply for checking that renormalization is implemented
correctly and we also wanted to emphasize the simplification that arises when one may
constrain the metric to be of the FRW form instead of a general gµν . One may get an idea
of how complicated the Schwinger-DeWitt coefficients become after the first few orders
from [133]. The idea put forth was not to advocate the use of the adiabatic vacuum for the
calculation of counter terms in an arbitrary metric. Rather, we merely used the adiabatic

3There is an extra term in (4.20), which is included here, since it is second order in the adiabatic
expansion but third order in the Schwinger-DeWitt expansion.
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vacuum as an example because it gave us a direct way of comparing and checking our
method against well known results since after all, the adiabatic vacuum is an expansion
in gradients just like the Schwinger-DeWitt expansion. The most important element here
is the fact that for the finite parts of the renormalization constants one uses the same
background spacetime for calculating the counter terms, which is used for the respective
problem. For example, renormalizing the cosmological constant to a finite value by using
the effective action calculated via the Schwinger-DeWittt expansion as in section 3 is
problematic since the Schwinger-DeWitt expansion is an expansion around Minkowski
space and in such a space a large cosmological constant does not exist. However, by
using renormalization at the equation of motion level we can simply calculate the energy-
momentum tensor with a spactime ansatz suited for a non-zero cosmological constant and
use that in the conditions (4.16) for obtaining the counter term. This kind of an approach
is challenging when working at the level of the action. Of course, the hope is that besides
inflation our technique could be put to use in other problems of curved space field theory,
such as the cosmological constant (CC) problem [134]. At the moment this is little more
than pure speculation and whether or not our technique provides new insights for the
CC problem requires detailed calculations. We will return to this issue in the concluding
section of the thesis.

The technique described in this chapter was put to use in III where the entire calcu-
lation was performed without any reference to an effective action.

35



4.5. DISCUSSION

36



Chapter 5

Effective equations of motion in the
slow-roll approximation

In the previous section, we derived a renomalization procedure that allows us to perform
consistent renormalization completely at the equation of motion level. Next we seek to
find equations of motion for inflation that would incorporate behavior not seen by the
Schwinger-DeWitt expansion. This means that we hope to gain some information of the
infrared dynamics. Because our main interest is to study quantum effects in inflation, the
natural choice is to use a slow-roll type expansion from section 2.3 for our calculation.
The core difference to our previous calculation in chapter 3 is that we are now using an
expansion around de Sitter space. This is somewhat more challenging than using the
Schwinger-DeWitt or adiabatic approaches.

Several works addressing similar issues and with similar approaches already existed
before III. In particular, in III we generalized the results of [135, 136, 137, 138]. Previously,
a de Sitter calculation was done in [135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147]
and where in [136, 140, 141, 142] nonperturbative summation techniques, to be explained
in section 5.4, were used (see also [148, 149]). In [138, 150], the 1PI approximation was
used to first order in slow-roll.

Initially we were only pursuing the one-loop corrections to first order in the slow-roll
parameters. However, the result showed infrared divergent behavior and forced us to
improve our loop calculation. Here we had merely discovered a version of the already
well-known infrared divergence in de Sitter space, which is reviewed for cosmological cor-
relators in [100]. An infrared divergence is something one frequently encounters in finite
temperature field theory and is usually a sign that one must resum the loop expansion.
In the cosmological context it was first shown in [151, 152] that resummation cures an
infrared divergence for a scalar field theory with a de Sitter background and a quadratic
interaction term. In practice one implements this by instead of using a free propagator for
the perturbation theory, one includes contributions from interactions in the propagator,
in other words "dresses" it. Hopefully, this is enough to tame the infrared poles. There
are a number of schemes with which to do the re-summation and we chose to use the 2PI
technique to first non-trivial order. This truncation is commonly known as the Hartree
approximation.

Due to the highly coupled nature of the equations of motion, we were only able to derive
the leading infrared contribution in addition to the already known ultraviolet terms.
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5.1 Vacuum to first order in slow-roll

Now we proceed to write the equation for the quantum mode in (2.33) for the standard ϕ4

theory defined in (4.8) as an expansion in the slow-roll parameters of section (2.3). As our
expansion parameters we will be using the first Hubble slow-roll parameter from (2.17)

ε ≡ − Ḣ

H2
, (5.1)

the second Hubble slow-roll parameter from (2.21)

δH ≡
Ḧ

2HḢ
(5.2)

and a parameter closely related to the second potential Hubble slow-roll parameter in
(2.22)1

δ ≡ M2

H2
, (5.3)

where M is the effective mass of (2.32). Our aim is an accuracy up to first order in ε and
δ, and the leading infrared contribution. However, as we shall see the infrared momentum
region gives contributions proportional to the inverse of δ and ε, as already noticed in
[138]. Hence we will include higher order terms in our quantum modes in section 5.4 in
order to achieve the desired accuracy.

From the definition (5.1) one can easily see that for the derivative of ε we have the
relation

ε̇ = 2ε
(
ε+ δH

)
, (5.4)

so it is higher order in the expansion and expressible with the first order slow-roll param-
eters. If we then further make the definitions

x ≡ |k|
aH(1− ε) , uk =

1√
2(2π)n−1an−1

hk(t)eik·x, hk ≡
√

π

2H(1− ε) h̄k,

ν2 ≡ (n− 3ε− 1)(n+ ε− 1)

4(1− ε)2 − δHε+ δ

(1− ε)2 , (5.5)

we can write the mode equation (2.33) to quadratic order in the slow-roll parameters as

x2
d2h̄k(t)

dx2
+ x

dh̄k(t)

dx
+
(
x2 − ν2

)
h̄k(t) = 0. (5.6)

If we take the limit ε→ 0 and a constant ν this equation is the standard Bessel equation2,
whose solution can be written as a linear combination of the Hankel functions H(1)

ν (x) and
H

(2)
ν (x). As a boundary condition to fix our mode solutions, we impose that the mode

corresponds to the positive frequency mode at high momentum to first order in ε namely

hk(t)→ e−i
∫ t ω(t′)dt′√
ω(t)

, ω(t)→ k

a
(5.7)

1By using the zeroth order slow-roll version of the first Friedmann one can see that this choice is
proportional to (2.23). i.e. δ ≡ 3M2

pl
V ′′(ϕ)
V (ϕ)

.
2This equation is often written in terms of conformal time dt = adη, which gives

f ′′k (η) +
[
k2 + (ν2 − 1/4)/η2

]
fk(η) = 0, for uk = a

n−2
2 fk(η).
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at k → ∞. Asymptotic behaviour of the Hankel function for large argument then allows
us to write the solution

hk(t) =

√
π

2H(1− ε)

[
C1(k)H(1)

ν (x) + C2(k)H(2)
ν (x)

]
. (5.8)

Completely fixing C1,2 requires an additional boundary condition and we make the stan-
dard choice [36] of setting C2 → 0 and C1 → 1, which corresponds to the Bunch-Davies
vacuum solution [153]. There also exist studies where the effects of different boundary
conditions is analyzed [154] (and references therein), but we will be content with the
Bunch-Davies solution.

5.2 Improvement of the previous result: leading infrared
term

Let us now proceed to quantify the approximation used in this calculation. As we already
discussed at length on several occasions, the Schwinger-DeWitt expansion does not see all
infrared contributions correctly. By using the slow-roll approximation for the mode from
section 5.1 we hope to gain some additional insight of the infrared behaviour. Our aim
is an accuracy up to linear order in the slow-roll parameters for the ultraviolet and the
leading infrared terms.

As can be shown by explicitly evaluating the infrared integrals, evaluated in III, one
obtains terms proportional to

δ

3− 2ν
,

ε

3− 2ν
(5.9)

with ν defined in (5.5). In order to facilitate the analytic use of our results for the above
expression we have approximated it by a series expansion in the slow-roll parameters

1

3− 2ν
≈ 3

2
(
δ − 3ε+ 3ε2 + δHε

) + · · · . (5.10)

In our calculation we will also encounter derivatives of the contribution (3 − 2ν)−1

giving us terms such as

∂t
1

3− 2ν
, (∂t)

2 1

3− 2ν
, (5.11)

and hence the terms in (5.9) are leading only if we have sufficiently small derivatives for
δ, δH and ε, which we assume to be the case in our analysis. So to summarize, the terms
in (5.9) are considered leading and are included, and terms such as (5.11) are considered
sub-leading and are thus neglected. We also neglect leading terms multiplied with powers
of δ and/or ε.

As for the terms that are expressible as a power series in the slow-roll parameters,
i.e. not coming from the infrared, we simply include them up to linear orders in δ and
ε in the quantum corrections. However, for the divergent pieces as a check of consistent
renormalization we have included the δ2 and εδ contributions. Importantly, we make
no approximations for contributions from the classical part. In section 5.4 we use the
same approximations, but for the quantity δ2PI, which is defined as in (5.3), but with the
re-summed effective mass in the numerator, to be discussed in section (5.4.1).
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5.3 1PI effective equations of motion

In this section we will derive the quantum corrected finite equations of motion in the
vacuum defined by the mode in (5.8). We have written the unrenormalized one-loop
equations for the ϕ4 theory already in sections 2.4 and 4.3 but for completeness, we
write them here once more. Note that in this section all the counter terms are defined
to include only the (n − 4)−1 type poles and thus in order to derive the equations with
physical constants one must include a set of finite counter terms, which will be done in
section 5.5.

The field equation is the result of a variation of the quantized action in (4.8) with
respect to the field ϕ and reads[

−�+m2 + δm2 + (ξ + δξ)R

]
ϕ+

λ+ δλ

3!
ϕ3 +

λ

2
ϕ〈φ̂2〉 = 0

⇔
[
−�+m2 + ξR

]
ϕ+

λ

3!
ϕ3 +

λ

2
ϕ〈φ̂2〉 = 0, (5.12)

whereas in (2.53) the underline signifies a quantity which includes the quantum corrections
and the infinite parts of the counter terms. Similarly we can write from the variation of
the action

1

8πG
(Λgµν +Gµν) = Tµν ≡ TCµν + 〈T̂Qµν〉+ δTµν

≡ TCµν + 〈T̂Qµν〉, (5.13)

where the classical and quantum pieces are given in (4.10) and (4.11). The energy-
momentum counter term is divided into two parts, as already shown in section 2.5 as

δTµν ≡ δTmµν − T gµν (5.14)

with the matter piece written in (4.12) and the gravity piece in (4.13).
The next issue is how to obtain expressions for the loop 〈φ̂2〉 = G(x, x) and the

quantum energy-momentum 〈T̂Qµν〉 in equations (5.12) and (5.13). The calculation here
follows closely the steps outlined in [136] and here we only sketch the derivation, where the
details can be found in III. We will essentially use a slow-roll expansion in the parameters
discussed in section 5.1. For example, from the definitions of section 5.1 we can write an
expression for the loop via the first Hankel function

〈φ̂2〉 =

∫
dn−1|k| |uk|2 =

µ4−n
√
π

4Γ[n−12 ]

(
(1− ε)H

2
√
π

)n−2 ∫ ∞
0

dx xn−2|H(1)
ν (x)|2. (5.15)

We then split the integration into three regions

x < κIR, κIR < x < κUV , κUV < x, (5.16)

with the parameters
κIR � 1� κUV . (5.17)

For the infrared region defined we use a small momentum asymptotic expansion of the
Hankel function and, analogously, for the ultraviolet contribution we use a high momentum
asymptotic expansion. As for the intermediate region between κIR and κUV we simply set
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ν → 3/2 making an error of O(ε, δ). For the ultraviolet contribution, which is divergent,
we use dimensional regularization instead of a cut-off, in contrary to [136]. This is because
a cut-off introduces divergences that cannot be removed by covariant counter terms [155]
(and references therein). Our momentum splitting procedure also has the desirable feature
that the infrared region is identical to what one would obtain by using a cut-off. Effects
of a cut-off in curved space are studied in more detail in [156].

Performing the calculation, we find the result for the loop 〈φ̂2〉

〈φ̂2〉 =
H2

8π2

{
(−δ − ε+ 2)

[
1

4− n − log

(
H

µ

)]
+

3

δ − 3ε+ 3ε2 + δHε

}
, (5.18)

where where µ is an arbitrary renormalization scale and according to our approximation
of section 5.2 we have included the leading infrared terms and neglected the linear orders
in ε and δ, except when appearing with the divergence.

Similarly we can write the result for the quantum energy-momentum

〈T̂Qµν〉 = −gµν
H4

32π2

{(
−δ2 − 4δε+ 2δ + 6ε

) [ 1

4− n − log

(
H

µ

)]
+

6δ

δ − 3ε+ 3ε2 + δHε

}
+ ξ
[
Rµν −∇µ∇ν + gµν�

]
〈φ̂2〉, (5.19)

In the above expression the accuracy is to leading order in the slow-roll parameters for the
ultraviolet contributions and the leading infrared term. The infrared effects come from
the (δ − 3ε + O(ε2))−1-type terms in (5.18 – 5.19). The reason we have chosen not to
include any term of type ∝ H2δ or H2ε is that they can always be completely absorbed
in the counter terms and hence are physically irrelevant. For a proof of this statement,
see the appendixes of III.

In order to remove the divergent (4 − n)−1 poles from the results (5.19) and (5.18),
we can again use the equations in (4.16). The scale choices are now irrelevant since we
are only interested in the divergent parts. This calculation is an easy exercise in linear
algebra and gives the result that indeed all the poles are cancelled by the counter terms
coming from the classical action. Hence we can write the divergence-free result for the
field equation of motion (5.12)

ϕ̈+ 3Hϕ̇+ ξRϕ+m2ϕ+
λ

6
ϕ3

+
λϕH2

16π2

{
(δ + ε− 2) log

(
H

µ

)
+

3

δ − 3ε+ 3ε2 + δHε

}
= 0. (5.20)

Similarly, the finite quantum energy-momentum tensor reads

〈T̂Q00〉 =
H4

32π2

{
6

δ − 6ξ

δ − 3ε+ δHε+ 3ε2
+
(
δ2 − 2δ(6ξ + 1) + 24ξ + δ(4− 12ξ)ε

− 6(1− 2ξ)ε
)

log

(
H

µ

)}
. (5.21)

For the energy-momentum tensor we have the property

〈T̂Qii 〉/a2 = −〈T̂Q00〉, (5.22)
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5.4. ONE-LOOP 2PI APPROXIMATION

so, just like in the classical case (2.25) within our approximation we can write from the
Einstein equations (5.13) the dynamical relation

2εH2 =
1

M2
pl

[
TCii
a2

+ TC00

]
=

ϕ̇2

M2
pl

. (5.23)

The reason for this can be understood simply from classical physics. Like a classical
potential is not present in the dynamical equation for ε (5.23) where one only sees the
kinetic contribution, roughly the same argument applies for a quantum potential. Hence it
would have been the quantum kinetic term that would have been present in the equation
for ε, but like classically, the kinetic term is higher order compared to the potential and
thus beyond our leading term approximation.

The Einstein equation involving the energy-density

H2 =
1

M2
pl

[
TC00 + 〈T̂Q00〉

]
+ Λ, (5.24)

can be matched with the classical result at one point by renormalizing the cosmological
constant to exactly cancel the quantum correction. This point can be used as an initial
value for (5.23), so one may argue that most of the quantum corrections enter from the
field equation of motion (5.20). However, since we can only match the energy-momentum
to be the classical one at some point, in principle the first Friedmann equation will always
explicitly include quantum corrected dynamics.

The (δ−3ε+O(ε2))−1-type structure of the infrared contributions was already noticed
in [138]. For some parameter values there exists a risk of obtaining a large quantum
contribution, potentially making the use of the perturbative expansion ill-defined. We
can derive a bound for the validity of the perturbative expansion from (5.20) by requiring
the tree-level result to be much larger than the infrared term. Roughly, this gives the
condition

δ − 3ε�
√
λ

4π
. (5.25)

Infrared divergences are frequently encountered in finite temperature field theory and
usually imply that one must improve the perturbative approximation. We will achieve this
by effectively re-summing the series, which can be done by instead of a free propagator
using one that includes certain amounts quantum effects. What we would like to obtain
is an expression that is regular at the limit ε, δ → 0. For our calculation re-summing the
diagrams means that instead of using an effective mass with only terms from the classical
potential as defined in (2.32), we also include loop corrections in it. For this purpose we
will use a systematic approach where this is achieved by using an effective action formed
with two-particle-irreducible (2PI) Feynman diagrams.

5.4 One-loop 2PI approximation

The 2PI effective action approach is a systematic way of summing to infinite order a finite
number of distinct topological classes of diagrams, shown to be renormalizable in [157].
This is achieved by writing and solving a self-consistent equation for the propagator. In
practice this means that one writes an equation for the propagator and its effective mass
in such a way that a pertubative expansion, like the one used in deriving the one-loop
propagator in (3.6), is not used in any step of the calculation once the approximation
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5.4. ONE-LOOP 2PI APPROXIMATION

+ + + · · ·

Figure 5.1: Graphs to be included in Γ2[ϕ,G, g
µν ] up to four-loop order for the case of

zero mean field ϕ.

scheme is set, i.e. the topologically distinct classes of diagrams to be included are chosen.
In order to find the self-consistent equation for the propagator, one must write an effective
action, with the propagator being a dynamical variable, like the field expectation value
ϕ. It can be shown that the 2PI effective action will only include diagrams that are 2-
particle-irreducible, hence the name. A recent review of the technique may be found in
[10].

The 2PI effective action can be derived in a similar fashion as the effective action we
used in section 3 for the Schwinger-DeWitt expansion. As mentioned, in the 2PI approach
the propagator G(x, y) is a variable of the action having its own self-consistent equation
of motion. In direct analogy with the standard effective action approach in (3.1), one may
derive the 2PI effective action by introducing a source term for the propagator, R(x, y)
and performing Legendre transformation with respect to the two sources J(x) and R(x, y).
The result can be conveniently parametrized as [10]

Γ2PI[ϕ,G, g
µν ] = Sg[g

µν ] +Sm[ϕ, gµν ] +
i

2
Tr lnG−1 +

i

2
Tr
[
G−10 G

]
+ Γ2[ϕ,G, g

µν ], (5.26)

where we now have a dependence on the yet undetermined full propagator G and the
free propagator G0, which is the one-loop approximation from (3.6) and for the ϕ4 theory
defined in (4.8) and can be written as

iG−10 (x, y) =
δSm[ϕ, gµν ]

δϕ(x)δϕ(y)
= −√−g

(
−�y +m2

0 + ξ0R+
λ0
2
ϕ2

)
δ(x− y). (5.27)

We now have three equations of motion all derivable via variation

δΓ2PI[ϕ,G, g
µν ]

δϕ(x)
= 0,

δΓ2PI[ϕ,G, g
µν ]

δgµν(x)
= 0,

δΓ2PI[ϕ,G, g
µν ]

δG(x, y)
= 0. (5.28)

Note that had we set Γ2 = 0, the propagator equation of motion in (5.28) would have
given the solution G = G0 and the 2PI effective action would have coincided with the
one-loop approximation in (3.2).

The quantity Γ2[ϕ,G, g
µν ] depends on the approximation used and contains the essen-

tial non-perturbatice characteristics of the method. We will use a truncation at the first
non-trivial order in the 2PI expansion, which is generally referred to as the Hartree ap-
proximation. At the level of the action, it amounts to including the only 2-loop "figure-8"
vacuum diagram, which is the first diagram in Fig. 5.1. This is the simplest 2-particle-
irreducible approximation, but still gives the right kind of re-summation behavior that is
needed for taming the infrared enhancement. Hence we write

Γ2[ϕ,G, g
µν ] = −λ

8

∫
dnx
√−g G(x, x)2. (5.29)
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5.4. ONE-LOOP 2PI APPROXIMATION

For our ϕ4 theory, the 2PI action from (5.26) is

Γ2PI[ϕ,G, g
µν ] = Sg[g

µν ]− 1

2

∫
dnx
√−g

[
∂µϕ∂

µϕ+m2
0ϕ

2 + ξ0Rϕ
2 + 2

λ0
4!
ϕ4

]
− i

2
Tr lnG− 1

2

∫
dnx
√−g

(
∇x,µ∇µy +m2

1 + ξ1R+
λ1
2
ϕ2

)
G(x, y)

∣∣∣∣
x→y

− λ2
8

∫
dnx
√−g G(x, x)2

≡ Sg[gµν ] + Γ2PI,m[ϕ,G, gµν ] (5.30)

We have explicitly written different bare couplings for each contribution in the 2PI action,
because in general some of these couplings have differing counter term contributions [10].

5.4.1 2PI equation of motion for the field

Next we will solve the propagator equation of motion, whose solution is needed for the
field equation of motion. The equations from (5.28) are[

−�+m2
0 + ξ0R+

λ0
6
ϕ2 +

λ1
2
G(x, x)

]
ϕ = 0 (5.31)[

−�x +m2
1 + ξ1R+

λ1
2
ϕ2 +

λ2
2
G(x, x)

]
G(x, y) = −iδ(x− y)√−g . (5.32)

Consistent renormalization for the bare parameters in equations (5.31 - 5.32) gives a
relation for the divergent counter terms

δm2
0 = δm2

1, δξ0 = δξ1, δλ1 = δλ2, δλ0 = 3δλ1 (5.33)

and we also make the choices

m2
0 = m2

1, ξ0 = ξ1, λ1 = λ2, λ0 = λ+ δλ0, λ2 = λ+ δλ2, (5.34)

so that all the above counter terms have the property ci = c+ δci. The crucial quantity in
this approximation is again the effective mass, which in contrast to (2.32) is now defined
by equation (5.32) as

M2
2PI ≡ m2

1 + ξ1R+
λ1
2
ϕ2 +

λ2
2
G(x, x), (5.35)

If, as in section 5.1, we assume that M2PI is approximately constant it is easy to show
we can use the mode defined in section (5.1) for equation (5.32) with the replacement
M → M2PI. However, before we can write and solve the propagator equation, we must
remove all the divergences coming from the loop G(x, x).

Deriving the 2PI counter terms in the Hartree approximation is a standard calculation
in Minkowski space and the generalization to dynamical space is straightforward. It is
convenient first to use the result from (5.18) to write the loop contribution as

G(x, x) =
−M2

2PI + R
6

8π2(4− n)
+ F , (5.36)
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5.4. ONE-LOOP 2PI APPROXIMATION

where F is a finite contribution. We can then write the algebraic equation for the self-
consistent mass in (5.35) as

M2
2PI = m2 + ξR+

λ

2
ϕ2 + λ

F
2

+

{
δm2

0 + δξ0R+
δλ2
2
ϕ2 − (δλ2 + λ)

M2
2PI −R/6

16π2(4− n)
+ δλ2

F
2

}
, (5.37)

If we impose the condition that the expression in the curly brackets in (5.37) vanishes we
can write the above as[

δm2
0 − (λ+ δλ2)

m2

16π2(4− n)

]
+R

[
δξ0 − (λ+ δλ2)

(ξ − 1/6)

16π2(4− n)

]
−
(
ϕ2

2
+
F
2

)[
(λ+ δλ2)

λ

16π2(4− n)
− δλ2

]
= 0. (5.38)

Setting all the angular brackets separately to zero this gives us a set of counter terms,
which can be used in (5.32) to remove all the divergences coming from G(x, x). Then we
can set n = 4 in (5.35) and derive the equation for the effective mass, also known as the
gap equation

M2
2PI = M̃2 +

(
3λ̃

16π2

)
H2

M2
2PI/H

2 − 3ε+ 3ε2 + δHε
, (5.39)

where we have defined M̃2 = m̃2 + ξ̃R+ λ̃
2ϕ

2 and the running constants3

λ̃ =
λ

1− λ
16π2 log

(
H
µ′

) , m̃2 =
m2

1− λ
16π2 log

(
H
µ′

) , ξ̃ =
1

6
− 1/6− ξ

1− λ
16π2 log

(
H
µ′

) . (5.40)

It is noteworthy that this running behavior is similar to the running constants obtained
when using renormalization group improved effective action in the 1PI approximation [47].
In a sense, the 2PI approximation automatically includes RG improvement and running
couplings. The solution for the effective mass is

M2
2PI = H2

 δ̃ + 3ε− 3ε2 − δHε
2

+

√√√√( δ̃ − 3ε+ 3ε2 + δHε

2

)2

+
3λ̃

16π2

+O(4− n),

(5.41)

where we used the definition δ̃ ≡ M̃2/H2. Having solved for the effective mass, the
renormalized field equation of motion (5.31) now reads[

−�− λ

3
ϕ2 +M2

2PI

]
ϕ = 0. (5.42)

If we take the limits where the perturbative expansion is valid, i.e (5.25) we can write the
effective mass as

M2
2PI ≈M2 +

λH2

16π2

{
(δ + ε− 2) log

(
H

µ′

)
+

3

δ − 3ε+ 3ε2 + δHε

}
(5.43)

and hence equation (5.42) coincides with the one-loop field equation (5.20) in this limit.
3Now we must use the scale µ′ defined as µ′ = µ exp

{
1
4

[1− 2γe + 2 log(π)]
}
, since this is what the

exact calculation gives, as shown in III. We could previously set µ′ to µ, since as mentioned in section
5.3 the additional terms vanish upon renormalization. Now our expansion is in terms of H2δ2PI, so our
previous argument fails.
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5.4. ONE-LOOP 2PI APPROXIMATION

5.4.2 2PI Einstein equation

By variation we get from (5.30) the energy-momentum tensor

T 2PI
µν = − 2√−g

δΓ2PI,m[ϕ,G, gµν ]

δgµν

⇔ T 2PI
µν = ∂µϕ∂νϕ−

gµν
2

(
∂ρϕ∂

ρϕ+m2
0ϕ

2 + 2
λ0
4!
ϕ4
)

+ 〈T̂Qµν〉∗

+ gµν
λ2
8
G2(x, x) +

gµν
2
ξ0RG(x, x) + ξ0

(
Gµν −∇µ∇ν + gµν�

)
(ϕ2 +G(x, x)),

(5.44)

where 〈T̂Qµν〉∗ denotes the one-loop energy-momentum tensor defined in (5.19) with M
replaced by M2PI defined in (5.41) and without the explicitly ξ-dependent piece. In order
to find an explicit result for the energy-momentum, we can use (5.35) to express the
G(x, x) contributions and the 2PI counter terms derived in section 5.4.1 along with the
one-loop expression (5.18). After some algebra this gives

T 2PI
µν = −gµν

[
1

2
∂ρϕ∂

ρϕ− λ

12
ϕ4 − M2

2PI

(
M2

2PI − 2M2
)

2λ

]
+ ∂µϕ∂νϕ+ 2

ξ

λ

[
Rµν −∇µ∇ν + gµν�

]
M2

2PI

− gµν
H4

32π2

[
6δ2PI

δ2PI − 3ε
+
(
δ22PI − 2δ2PI − 6ε

)
log

(
H

µ

)]
, δ2PI ≡

M2
2PI

H2
, (5.45)

where we have neglected all terms that are multiples of the gravitational counter terms in
(2.52) since they only give constant shifts in the renormalization counter terms and are
thus physically irrelevant. Covariant conservation of (5.45) is consistent with the 2PI field
equation of motion (5.42) within our approximation, which may be shown by applying
with ∇µ on (Tµν)2PI. Taking the 1PI limit by writing

M2
2PI ≈M2 +

λ

2
〈φ̂2〉, (5.46)

as in (5.43) and expanding (5.45) to 1-loop order we find agreement with the 1PI 1-loop
results in section 5.3. The surprising thing is that there is no need for any gravitational
counter terms for removing the divergences, as the 2PI counter terms for δλ, δm2 and
δξ are enough to render the energy-momentum finite. Of course we might still need
additional gravitational counter terms in order to have the appropriate finite parts of the
2PI energy-momentum.

We can simplify the above expression by using the gap equation (5.39). Again ignoring
terms that vanish after renormalization, this gives

T 2PI
µν = −gµν

2
∂ρϕ∂

ρϕ+ ∂µϕ∂νϕ+
2ξ

λ

[
Rµν − (∇µ∇ν − gµν�)

]
M2

2PI − gµνW2PI(ϕ,H, ε),

(5.47)

where we have defined the potential

W2PI(ϕ,H, ε) ≡ −
λ

12
ϕ4 +

M4
2PI

2λ̃
+

(
1

λ
− 1

λ̃

)
M2

2PIH
2 +

3εH4

λ̃
. (5.48)
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We note that this potential in general differs from the effective potential that is the non-
kinetic part of the field equation of motion. This is because quantum corrections necessar-
ily introduce terms with metric dependence, which makes the standard formalism defined
via simply one V (ϕ) inapplicable. By using (5.47 – 5.48) we can again derive the 2PI
Friedmann equations from the Einstein equation (5.13)

3H2 =
1

M2
pl

[
1

2
ϕ̇2 + 6

ξ

λ
(H∂t −H2)M2

2PI +W2PI(ϕ,H, ε)

]
(5.49)

a2(−3H2 + 2εH2) =
a2

M2
pl

[
1

2
ϕ̇2 + 6

ξ

λ

(
− 1

3
(2H∂t + ∂2t ) +H2

)
M2

2PI −W2PI(ϕ,H, ε)

]
.

(5.50)

These expressions also give the classical dynamical (5.23) relation at ξ = 0.

5.5 Finite renormalization

Up until this point, in all the calculations of this section, as far as renormalization is
concerned, we have only been interested in making the expressions finite. Next we proceed
to obtain a physical interpretation of the constants. We now use the method of II explained
in section 4 in order to fix the finite parts of the counter terms. To achieve this we may
split all the constants to a physical part and a finite counter term as c→ cph + δ̃c. Since
in the end we are interested only in the minimally coupled case, we will set ξph = 0

To begin, we write the field equation of motion for the field symbolically as

ϕ̈+ 3Hϕ̇+
∂V (ϕ)

∂ϕ
= 0, (5.51)

where the potential V (ϕ) is split into a physical part and finite counter terms:

V (ϕ) ≡ Vph(ϕ) + δ̃V (ϕ), (5.52)

with

δ̃V (ϕ) = δ̃σϕ+
δ̃m2

2
ϕ2 +

δ̃ξ

2
Rϕ2 +

δ̃η

3!
ϕ3 +

δ̃λ

4!
ϕ4. (5.53)

For consistency we have introduced counter terms for one- and three-point couplings, even
though these terms are not present classically and they are not needed for removing the
quantum divergences. Nevertheless, they will give non-zero contributions when renormal-
ization is performed at non-zero scale choices for ϕ and ȧ.

Here, in contrast to section 4.3, the quantity of interest is the scalar field potential
V (ϕ) instead of the energy-density, which we match to the classical potential

VC(ϕ) =
1

2
m2

phϕ
2 +

λph

4!
ϕ4 (5.54)

at the renormalization point

µ0 = (ϕ0, H0, ε0, ϕ̇0, ϕ̈0), (5.55)
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expressible with the conditions

∂V (ϕ)

∂ϕ

∣∣∣∣
µ0

= m2
phϕ0 +

λphϕ0
3

6
,

∂2V (ϕ)

∂ϕ2

∣∣∣∣
µ0

= m2
ph +

λphϕ0
2

2
,

∂3V (ϕ)

∂ϕ3

∣∣∣∣
µ0

= λphϕ0,
∂4V (ϕ)

∂ϕ4

∣∣∣∣
µ0

= λph,

∂4V (ϕ)

∂H2∂ϕ2

∣∣∣∣
µ0

= 0. (5.56)

With this procedure we can solve for the finite parts of the counter terms to get the
renormalized equation of motion for both the 1PI equation in (5.20) and the 2PI equation
in (5.42). The important difference in the two approaches, in addition to using different
potentials, is that in the 1PI approximations the counter terms enter only through the
classical contribution, where as in 2PI every constant will contain a counter term. In the
1PI approximation, we can conveniently parametrize the result as

ϕ̈+ 3Hϕ̇+ ∆σ + (m2
ph + ∆m2)ϕ+ ∆ξRϕ+

1

2
∆ηϕ2 +

λph + ∆λ

6
ϕ3

+
λphϕH

2

16π2

{
(δph + ε− 2) log

(
H

H0

)
+

3

δph − 3ε+ 3ε2 + δHε

}
= 0, (5.57)

where δph denotes δ with all the constants replaced by the physical ones: m2 → m2
ph, etc.

The quantum induced ∆-terms are finite constants depending on the physical parameters
m2

ph and λph and the renormalization point µ0. In general, expressions for the ∆’s are
rather complicated, as one may see from the appendixes of III.

Next, we consider the Friedman equations, which upon including finite counter terms
read

3H2 =
1

M2
pl

[
T00 + δ̃T00

]
, (5.58)

a2
(
− 3H2 + 2εH2

)
=

1

M2
pl

[
Tii + δ̃Tii

]
. (5.59)

We choose to renormalize the cosmological constant such that at the renormalization point
ϕ = ϕ0 the energy density coincides with the classical result:

T00
∣∣
µ0

= TC00
∣∣
µ0

=
1

2
ϕ̇2
0 + VC(ϕ0). (5.60)

If we further choose the natural condition that the counter term for Gµν vanishes, we can
write the 1PI Friedmann equations as

3H2 =
1

M2
pl

[
TC00 + ∆VC(ϕ) +

3H2δph
16π2(δph − 3ε+ 3ε2 + δHε)

− TQ00
∣∣∣
µ0

]
, (5.61)

εH2 =
ϕ̇2

2M2
pl

, (5.62)

where we have defined

∆VC(ϕ) = ∆σϕ+
∆m2

2
ϕ2 +

∆ξ

2
Rϕ2 +

∆η

3!
ϕ3 +

∆λ

4!
ϕ4 (5.63)
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and for simplicity have left out the (sub-leading) logarithmic terms.
Implementing equations (5.56) is in principle perfectly possible in 2PI, but due to the

highly non-linear structure of the resulting equations this may require the use of numerical
methods. Fortunately for the standard chaotic inflation models we are interested in, we
can easily show that the 1PI approximation gives sensible results.

5.6 Size of the quantum corrections

As discussed in section 2.2 for chaotic inflation, which is under study here, the physical
constants must be extremely small in order to have a sufficiently flat potential. We can
give a rough estimate for the constants for theories with a quadratic or quartic potential
by using the amplitude of the spectrum (2.12) given in terms of slow-roll parameters [38]
including only the leading 1/ε contribution

P(k) ≈ V (ϕ)

24π2M4
pl

ε−1V (5.64)

and current Planck data [4] at 60 e-folds before the end of inflation. For a massless (λ/4!)ϕ4

potential by using the formulae of section (2.3) we get roughly λph ∼ 10−12, from which
we can deduce with the help of (5.25) that the 1PI results are perfectly adequate.

For our renormalization scales, we first approximate that at the renormalization point
we can use the terminal velocity condition ϕ̈ = 0 in order to express all the scales in
(5.55) as functions of just one scale ϕ0 and then make the choice ϕ0 = 22Mpl, such
that ϕ0 corresponds to approximately 60 e-foldings before the end of inflation. For the
field equation of motion (5.57) we can study the magnitude of the quantum correction
by comparing the quantum induced terms to the tree-level ones. With these choices, for
example we have ∆λ/λph ∼ 103λph, which is negligibly small. The other ∆’s and the
quantum terms in the second line of the field equation (5.57) give similar size corrections,
so we can conclude that the quantum corrections may be ignored to a good approximation.
Similarly, for chaotic inflation with a potential (m2/2)ϕ2 we trivially obtain the classical
field equation of motion, since all quantum corrections are proportional to the interaction
constant λph.

It would thus seem that for the standard models of chaotic inflation the quantum
corrections are by and large unobservable, at least for the field equation of motion. To be
sure that a similar result is valid also for the Friedmann equations, we will calculate the
quantum correction for the slow-roll parameter ε. Using the slow-roll formulae of section
2.3, we can write ε as

ε =
(∂ϕV )2

18M2
plH

4
. (5.65)

An easy way of getting a first approximation for the size of the quantum corrections is
to split the effective potential in (5.51) into classical and quantum parts: V = VC + VQ,
with a similar split for the energy density given by the right hand side of (5.58), and then
using the tree-level results inside the quantum contributions. This allows us to express
the slow-roll ε as a classical and a quantum correction from (5.65)

ε = εC + εQ (5.66)
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where the leading quantum correction is given by

εQ =

[
2

M2
phϕ−

λph

3 ϕ3

(
∆V ′C(ϕ) +

3λphϕH
2
C

16π2(δph − 3ε+ 3ε2 + δHε)C)

)

− 2

VC

(
∆Λ + ∆VC(ϕ) +

3H4δph
16π2(δph − 3ε+ 3ε2 + δHε)C)

)]
εC (5.67)

with the definitions ∆Λ ≡ −TQ00
∣∣
µ0

and ∆VC(ϕ) from (5.63). As for the field equation
of motion, we will evaluate the size of the quantum corrections in two opposite limits for
the potential with either only a mass term (m2/2)ϕ2 or a quartic self-interaction term
(λ/4!)ϕ4. Again from (5.64) and [4] we get the estimate m2

ph ∼ 10−11M2
pl for the massive

non-interacting theory. Furthermore, in this limit we find that

δC − 3εC ∼ O(ε2C). (5.68)

The leading correction comes from the last term of (5.67) and with the help of the tree-level
slow-roll parameters, it can be written as

3

16π2(δph − 3ε+ 3ε2 + δHε)C
· H

4
Cδph
VC

≈ 1

16π2
m2

ph

M2
pl

(2NC + 1)2

3
, (5.69)

where NC is the (classical) number of e-folds from (2.26). Again this is totally negligible
for the physically interesting scales N . 100. For the massless self-coupled case we have
λph ∼ 10−12 which give for the IR enhancement factor

1

(δph − 3ε+ 3ε2 + δHε)C
≈ 2

3εC
. (5.70)

Again tree-level slow-roll considerations give us the estimate for the largest terms of (5.67),
which can be approximated as

3λph
16π2(δph − 3ε+ 3ε2 + δHε)C

· H
2
C

M2
ph

≈ λph
16π2

4(NC + 1)2

9
. (5.71)

When this procedure is implemented for δH , one obtains a similar size estimate for the
quantum correction. Hence, unless we study effects deep within inflation4, NC ∼ 106, all
the quantum corrections are negligible for the standard models of chaotic inflation.

5.7 Discussion

One of our main conclusions is that for the standard quadratic and quartic models of
chaotic inflation curved space quantum corrections make little difference in practice. In
hindsight, this was to be expected. After all, quantum corrections usually include addi-
tional powers of the tree-level coupling constants and for chaotic inflation they are very
small. This should not overshadow the theoretical significance of III. We were able to
generalize the previous works in [135, 136, 137, 138] for a non-static spacetime with 2PI

4In that region the 1PI approximation cannot be trusted due to the smallness of the slow-roll parameters
and hence the results in this section are not applicable.
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re-summation and provide information about the non-trivial aspects of the infrared be-
havior not seen by the heat kernel expansion of chapter 3. Additionally, the calculation
gives a blue-print that can likely be extended to more complicated models and it is not
trivially obvious that quantum corrections can always be neglected. In particular, already
in III we saw hints that for the curvaton model the 1PI approximation leads to a diver-
gent loop contribution, thus potentially signifying a non-trivial quantum correction and a
need for improving the perturbative expansion, possibly via re-summation techniques. At
the moment this is only a preliminary observation and naturally requires a detailed study
before a conclusion may be reached.

Much work still lies ahead. On the phenomenological side due to the large number
of various inflationary models, there are many ways of generalizing our results to more
complicated models or including quantum fluctuations of the metric. These and other
matters are discussed in the final chapter of this thesis.
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Chapter 6

Conclusions and outlook

In this thesis we have studied the effects of quantum corrections for simple scalar field in-
flationary models within the framework of curved space field theory. We have approached
the problem via the effective action formalism, and also at the equation of motion level, for
which we devised an approach for consistent renormalization. What we were able to show
was that such calculations, including the implementation of the 2PI re-summation tech-
nique in a non-static background, are perfectly feasible to perform in practice, although
significantly more laborious than in the flat space context. In terms of actual models, our
main focus was on chaotic inflation driven by a single scalar field with a renormalizable
potential of the form (2.48). For such models, we concluded that quantum corrections are
by and large unobservable. Despite of this, the curved space quantum corrections have
theoretically a very interesting structure, which is not present when using field theory in
Minkowski space. Hence, the natural next step would be to implement these techniques
for more complicated models than the standard single field chaotic inflation, starting from
the curvaton scenario. The fact that quantum corrections may be significant for curvaton
models has already been observed via the stochastic method in [158].

In general, inflationary models with multiple scalar fields provide a much wider range
of possibilities than single field models [159] validating their study in the hopes of exper-
imental verification by future measurements. Generalizing our approach to models with
more than one scalar field is straightforward, as should be the study of models where in-
flation is driven by spinors [160] or vector fields [161]. This assertion stems from realizing
that the quantization of vector and spinor fields in curved spacetime has been understood
for quite some time already [7, 8]. Furthermore, by having a model with more – not
necessarily bosonic – fields is required by the universe to properly re-heat after inflation,
making such considerations a natural generalization. Another important class of models
that could be studied by the means presented here is where gravity includes higher order
tensors, in particular the so-called f(R) models [162]. In f(R) models the gravitational
action contains an arbitrary function of R. In fact, as we saw in section 2.5 in curved
space field theory the higher order tensors are required for the theory to be consistent.

Potentially an even more important generalization of our results would be to include
also fluctuations of the metric. It is standard knowledge that including the gravity fluc-
tuations in the calculation of the primordial spectrum gives corrections at first order in
slow-roll [38] and hence in principle these effects should be included if one wishes to ob-
tain an accuracy at leading slow-roll order. Of course, one then needs to address the issue
of nonrenormalizabilty of Einsteinian gravity. This matter is even more involved if one
wishes to perform resummations also in this context. However, the possible reward for a
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successful resummation of also gravity fluctuations is significant as it may provide a new
solution to the problem of infrared divergences in cosmological correlations [100], just like
it solved the potential infrared enhancement for scalar fields in quasi-de Sitter space in
chapter 5.

The renormalization procedure of chapter 4 may also be applied to problems outside
of inflationary physics and it is our hope that it provides a fruitful new tool for other areas
cosmology where quantum corrected curved space calculations are needed. A particularly
interesting application would be the very difficult cosmological constant problem (and
related matters such as its possible running [163]), where one of the main open questions
is providing a renormalization condition with a clear physical interpretation for all of the
constants of theory at a specific renormalization scale [134]. All in all, we hope that
the calculations presented in this thesis, and more importantly in the articles I – III, will
serve as not just an academic exercise, but a welcome new angle on problems of early
universe physics and quantum fields in curved spaces in general. Whether or not this will
turn out to be the case is, of course, for the future to decide.
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Appendix A

Tensor formulae

In this thesis we will frequently need the following n-dimensional geometric tensors, defined
via variation with respect to the metric gµν

Gµν ≡
1√−g

δ

δgµν

∫
dnx
√−g R = −1

2
Rgµν +Rµν , (A.1)

1√−g
δ

δgµν

∫
dnx
√−g Rf(x) =

[
− 1

2
Rgµν +Rµν −∇µ∇ν + gµν�

]
f(x), (A.2)

(1)Hµν ≡
1√−g

δ

δgµν

∫
dnx
√−g R2 = −1

2
R2gµν + 2RµνR− 2∇µ∇νR+ 2gµν�R, (A.3)

(2)Hµν ≡
1√−g

δ

δgµν

∫
dnx
√−g RµνRµν

= −1

2
RαβR

αβgµν + 2RρνγµR
ργ −∇ν∇µR+

1

2
�Rgµν +�Rµν , (A.4)

and

Hµν ≡
1√−g

δ

δgµν

∫
dnx
√−g RµνσδRµνσδ

= −gµν
2
RασγδRασγδ + 2Rµ

ρασRνρασ + 4RσµγνR
γσ − 4RµγR

γ
ν + 4�Rµν − 2∇µ∇νR.

(A.5)

We will often use a spacetime with the line-element

gµνdx
µdxν = −dt2 + a(t)2dx2 (A.6)

and therefore we will need explicit expressions in this spacetime for the term with covariant
derivatives in (A.2) and the Ricci scalar R and tensor Rµν . They can be respectively
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written as

� ≡ 1√−g∂µ(
√−g∂µ) = −∂20 − 3

ȧ

a
∂0 (A.7)

(−∇0∇0 + g00�)f(t) = (n− 1)
ȧ

a
ḟ(t), (A.8)

(−∇i∇i + gii�)f(t) = a2
[
(2− n)

ȧ

a
ḟ(t)− f̈(t)

]
, (A.9)

R = 2(n− 1)

(
ȧ2

a2
+
ä

a

)
+ (n− 1)(n− 4)

ȧ2

a2
, (A.10)

G00 =
(n− 1)(n− 2)

2

(
ȧ

a

)2

, (A.11)

Gii = a2(2− n)

[
(n− 3)

2

(
ȧ

a

)2

+
ä

a

]
. (A.12)
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