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ABSTRACT: We present the official release of the EFfective Field theORy surrogaTe
(Effort.jl), a novel and efficient emulator designed for the Effective Field Theory of
Large-Scale Structure (EFTofLSS). This tool combines state-of-the-art numerical methods
and clever preprocessing strategies to achieve exceptional computational performance without
sacrificing accuracy. To validate the emulator reliability, we compare Bayesian posteriors
sampled using Effort. j1 via Hamiltonian MonteCarlo methods to the ones sampled using
the widely-used pybird code, via the Metropolis-Hastings sampler. On a large-volume set of
simulations, and on the BOSS dataset, the comparison confirms excellent agreement, with
deviations compatible with MonteCarlo noise. Looking ahead, Effort. j1 is poised to analyze
next-generation cosmological datasets and to support joint analyses with complementary tools.
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1 Introduction

In the era of precision cosmology, the analysis of Large Scale Structure (LSS) surveys play a
pivotal role in understanding the universe’s contents and dynamics, from its birth to late-time
accelerated expansion. Forthcoming datasets from collaborations such as the Dark Energy
Spectroscopic Instrument (DEST) [1-3] and Euclid [4] promise to probe the universe’s LSS with
unprecedented accuracy. These datasets present opportunities to explore both the standard
cosmological model and its potential extensions with unparalleled precision. However, they
also impose new computational demands because of the increased dimensionality of the
posterior distribution to explore, requiring tools that can efficiently handle the scale and
complexity of these analyses.

One promising technique that has emerged to address these computational challenges
is emulation. An emulator is a surrogate model that can approximate the outputs of
computationally expensive models, but at a significantly lower computational cost. This
approach offers a twofold benefit: it accelerates the computation and allows for the application
of more advanced optimization and sampling techniques, in particular gradient-based methods.



In recent years, emulators have proven to be highly successful in domains with computationally
demanding theoretical models, such as in cosmology.

After the first seminal papers on this topic [5-7], several emulators have been produced
in the literature, emulating the output of Boltzmann solvers such as CAMB [8] or CLASS [9],
with applications ranging from the Cosmic Microwave Background (CMB) [10-14], the linear
matter power spectrum [11, 15-19], galaxy power spectrum multipoles [17, 19-22], and the
galaxy survey angular power spectrum [23-29].

While the acceleration of likelihood evaluations through emulation marks a significant
step forward, it is only one facet of the broader efficiency gains that emulators can bring
to cosmological analyses. Emulators enable the use of gradient-based samplers, which
are particularly well-suited to high-dimensional and complex parameter spaces. These
samplers, such as Hamiltonian Monte Carlo (HMC) [30, 31] and its variants, exploit the
differentiability of the model to explore parameter spaces more efficiently than gradient-
free methods. As a result, they significantly reduce the number of evaluations required to
reach chain convergence, especially for complex target distributions, offering substantial
improvements in computational performance.

This capability has led to a growing body of work employing gradient-based samplers in
cosmology, with applications to CMB and LSS analyses [12, 14, 25, 32-44]. The increasing
adoption of these approaches reflects the potential of gradient-based methods to accelerate
inference in challenging, high-dimensional models.

The primary method for computing log-likelihood gradients is known as algorithmic
differentiation (AD), or automatic differentiation [45-47]. At its core, AD is built on
a straightforward concept: any computer program can be interpreted as a sequence of
elementary functions, each with a known analytical derivative.! The task of an AD engine is
to apply the chain rule to combine these derivatives systematically. While AD is capable of
differentiating highly complex programs, it can still benefit from higher-level mathematical
insights. When custom, hand-written derivatives are provided, significant speed improvements
can be achieved. A classic example is matrix multiplication; although this operation can
be broken down into individual sums and products, each of which is differentiable, it is far
more efficient to express its derivative as another matrix product, which achieves the same
result with fewer computational resources [50].

Several codes have already been developed to efficiently compute quantities relevant
for galaxy clustering analyses. Notable examples include Comet [20], Matryoshka [21], and
EmulateLSS [51]. These frameworks have been successfully applied to a variety of cosmological
datasets, demonstrating their effectiveness in this field. However, while all these frameworks
are differentiable, none of them has yet been explicitly used in synergy with gradient-based
samplers.

In this context, we introduce Effort.jl, a Julia [52] package that builds on these
previous works with a focus on computational performance and integration with gradient-
based algorithms. One of the key strengths of Effort. jl is its adaptability: observational
effects — such as the Alcock-Paczynski (AP) effect and the survey mask — can be either

' A possible exception is represented by programs with discrete stochastic behavior; in order to deal with
this scenario, tailored approaches have been developed as in [48, 49].



incorporated into the data generated to train the emulator or included a posteriori. While the
former approach is computationally more efficient, as no post-processing of the emulator output
is required, the latter is more flexible as the output can be adapted without the need to retrain
the emulator. Furthermore, great care has been devoted to ensure Effort. j1 compatibility
with AD engines, enabling efficient differentiation throughout the entire workflow. While
previous codes have laid the groundwork, Effort. j1 offers a distinct advantage for analyses
centered on gradient-based techniques, providing a robust and flexible toolkit tailored to
the evolving needs of modern cosmological research.

Through its interface with the probabilistic programming language (PPL) Turing. j1,?
Effort.jl can be used in conjuction with gradient-based sampling and optimization tech-
niques, making it suitable for computing posteriors in Bayesian analyses as well as profile
likelihoods (and best-fit points) for frequentist constraints.

The design of Effort. j1 prioritizes computational efficiency without sacrificing accuracy,
enabling the rapid exploration of parameter spaces for the analysis of big cosmological datasets.
To validate the performance of Effort. j1, we applied it to the PT-challenge simulations [53]
and the BOSS data [54], finding no significant deviations from more traditional pipelines
that combine CLASS or CAMB with an EFTofLLSS code.

This paper presents the technical details of Effort. j1, the methodologies behind its
implementation, and its application to both current and future cosmological surveys, with
particular emphasis on the upcoming datasets from DESI and Euclid.

This paper is structured as follows: in section 2, we introduce the core features of
Effort. jl, detailing its architecture, preprocessing strategies, and the implementation of
observational effects. Section 3 describes the probabilistic programming framework and the
gradient-based sampling methods employed for cosmological inference. In section 4.1, we
validate the performance of Effort. j1 through applications to the PT-challenge simulations
and the BOSS dataset, comparing its results against standard pipelines. Finally, in section 5,
we present our conclusions and outline potential future developments, including applications
to upcoming surveys and extensions of the emulator framework.

2 The Effort.jl emulator

In this section, we describe the core features of the Effort.jl emulator, highlighting its
architecture, preprocessing strategies, training approach, and the implementation of observa-
tional effects. Effort.jl enables fast computation of the galaxy power spectrum at 1-loop in
the EFTofLSS (we refer the reader to appendix A for a brief review) and seamless integration
with AD systems. We discuss its efficient handling of bias parameters, its neural network
(NN) architecture, and the methods used to incorporate observational effects, ensuring high
precision and computational performance.

2.1 Neural network architecture and core functionalities

Effort.j1% is a software package developed in Julia [55], a high-level, high-performance pro-
gramming language tailored for technical computing. The choice of Julia allows Effort. jl

https://turinglang.org/.
3https://github.com/CosmologicalEmulators/Effort.jl.
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to achieve exceptional performance, with the ability to compute the power spectrum multi-
poles in approximately 15 us.* Additionally, Julia’s support for various AD systems plays
a crucial role in enabling efficient sampling, a key feature of the use of Effort.jl for
cosmological parameter inference.

The key functionalities useful for building emulators, such as commands for the instanti-
ation and execution of trained emulators and postprocessing of the emulators output, are
abstracted in an external package, AbstractCosmologicalEmulators.j1.> This allows us
to build other emulators such as Capse. jl, a surrogate model for CMB observables [14],
with minimal effort.

The AbstractCosmologicalEmulators. j1 package integrates two different NN libraries,
SimpleChains. jl6 and Lux. jl.7 SimpleChains. j1 offers superior performance on central
processing units (CPUs), while Lux. j1 extends compatibility to graphics processing units
(GPUs).

Moreover, AbstractCosmologicalEmulators. j1’s methods for emulator instantiation
via JSON configuration files eliminates the need for pickling or serialization of trained NNs. This
approach ensures robustness, portability, and compatibility across different computational
environments.

In addition to the NN architecture, Effort. j1 handles observational effects such as survey
window masking and the Alcock-Paczynski (AP) effect. These effects are implemented using
tools from the Julia ecosystem, ensuring that all steps are compatible with the AD framework.

Thanks to these design choices, Effort. jl is easy to train even using standard hardware
such as CPUs, making it particularly efficient and accessible, avoiding the need for large-scale
hardware setups typically required for more resource-demanding models.

2.2 Bias treatment and emulator structure

Effort.jl is designed to emulate the galaxy power spectrum multipoles at 1-loop in the
EFTofLLSS. The computation is carried out as follows:

Pg(k; 0) = Z bibjfpijj(k; 9) + Sg(k) (2.1)
iJ

Here, Py(k;0) represents the power spectrum multipoles as a function of wavenumber &k and
cosmological parameters and redshift 6, which control the cosmological model. The terms
Pije(k; 0) are the individual components of the power spectrum multipoles, b; are biases and
counterterms, Sy(k) represents the stochastic terms. By treating biases and counterterms
analytically, Effort.jl (as pybird does) decouples the elements depending on cosmological
parameters from the other ones, significantly reducing the dimensionality of the emulated
space. Regarding the stochastic part, this is constructed analytically by the code and does

not require to be emulated.
Other packages, such as EmulateLSS [51], incorporate bias parameters directly into the
emulation process, which can lead to the need for more complex NNs. In contrast, Effort. j1

4All the benchmarks of this paper are performed locally using a single core of an i7-13700H CPU.
Shttps://github.com/CosmologicalEmulators/ Abstract CosmologicalEmulators.jl.
Shttps://github.com/PumasAT/SimpleChains.jl.

Thttps://github.com/LuxDL/Lux.jl.


https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl
https://github.com/PumasAI/SimpleChains.jl
https://github.com/LuxDL/Lux.jl

follows a strategy similar to Comet [20] and Matryoshka [21], where bias parameters are
handled analytically. This reduces the complexity of the NNs, allowing for faster training
and inference, while the small computational overhead of bias inclusion remains negligible.

2.3 Preprocessing strategy

Effort. jl employs a carefully optimized preprocessing pipeline to ensure both accuracy and
efficiency in the emulator. The linear matter power spectrum is given by:

ns—1
Pin(k, 2) = Ak (lf"o) T2(k, 2)D(2), (2.2)

where Ag and ng set the initial power spectrum conditions, kg is the pivot wavenumber,

T'(k, z) is the matter transfer function, and D(z) is the scale-independent growth factor.

The Py and counter-term, P, components are linear in Py, (k, z), and therefore scale
proportionally with A(z) = A;D?(z), while the loop component is quadratic in Py, (k, 2),
making it proportional to .A?(2), up to the infrared (IR) resummation [56, 57] and the effects
of massive neutrinos. To account for this structure, we rescale the P;; and P, terms by
A(z), and the loop term by A(z)2.

While this rescaling significantly reduces the complexity, it is not perfect due to the IR
resummation. To address these residuals, Effort. j1 combines the analytical rescaling with
machine learning, allowing the NNs to learn the remaining non-factorizable dependencies on
AgD(z). This hybrid approach ensures high precision with negligible computational overhead.
As shown in [14], this method enhances the emulator’s accuracy.

This rescaling is particularly effective for extended models with additional parameters,
which primarily influence the amplitude of the linear matter power spectrum (e.g. modifications
to the dark energy equation of state), which primarily influence the amplitude of the linear
matter power spectrum. The analytical rescaling efficiently captures their impact on the
background evolution.

In Comet a similar method is used, known as evolution mapping, which exploits parameter
degeneracies that primarily affect the amplitude of the linear power spectrum [58]. While
Comet’s approach is used to reduce the number of input features, Effort. j1 leverages it
primarily to reduce the dynamic range of the output features. This is especially advantageous
in cases with scale-dependent growths, such as when accounting for massive neutrinos or
considering modified gravity theories [59], where Effort.jl’s NN learns the residual effects
not captured by the rescaling, offering flexibility in modeling non-linear phenomena. The
impact of this approach is assessed and shown in section 4.1.

The growth factor D(z) is thus used to postprocess the output of the NNs, and its
computation will be described in the next subsection.

Finally, to enhance numerical stability, Effort. j1 applies min-max normalization to
both input and output features. This ensures consistent scaling across all features, preventing
any feature from dominating due to differences in magnitude, which leads to a more stable
and efficient NN training process, resulting in improved overall performance [60]. The
impact of the normalization has been assessed by retraining the emulator without the
normalization procedure. In that case, the emulator performance was greatly worsened, leading



to residuals increased by almost two orders of magnitude, hence showing the importance
of the normalization procedure.

2.4 Observational effects

In this subsection, we describe the treatment of key observational effects in Effort.jl,
including the computation of required quantities such as the growth factor, the inclusion of
the Alcock-Paczynski (AP) effect, and the window mask convolution.

2.4.1 Computation of additional quantities

The accurate calculation of background quantities is fundamental for interpreting large-scale
structure data. In Effort. j1, we compute several key cosmological background quantities:
the Hubble factor H(z), the radial comoving distance r(z), the growth factor D(z), and the
growth rate f(z). These quantities are essential inputs for the inclusion of the AP effect (and,
in the case of f(z), redshift-space distortions), as we will discuss in the next subsection.
There are two main approaches to handling background quantities in cosmological
analyses. One approach, adopted by packages such as Matryoshka and CosmoPower [11], is
to emulate the background quantities. Once such an emulator has been trained an validated,
can be effectively used to replace numerical integration routines, speeding up the calculations.
In contrast, Effort. j1 computes these background quantities dynamically by integrating
the relevant equations at runtime. Albeit more time consuming, as the numerical integration
is more expensive than using a NN, this approach avoids the need for additional emulators,
simplifying the pipeline and reducing dependency on pre-computed models. With a careful
implementation, these calculations can be performed efficiently, providing precise results for
a little overhead that is amortized when performing the computations for multiple redshifts.
When computing the Hubble factor, Effort. j1 accounts for contributions from non-
relativistic matter, evolving DE, radiation, and massive neutrinos. In particular, for massive
neutrinos, we incorporate the transition from relativistic to non-relativistic regimes, follow-
ing the treatment described in [61, 62]; here we review the most important equations for
completeness. The dimensionless Hubble factor E(z) = H(z)/Hy is given by

3wez

E2(2) = Qy0(1 4 2)* + Qeo(1 + 2)3 + Q,(2) + Qppo(1 + 2)30Fwotwe) oxp _1 (2.3)

+2z
Q40, Qcp, and OQpgo are the abundances of radiation, non-relativistic matter, and DE,

respectively, and the DE equation of state is parametrized as w(a) = wy + wq(1 — a) [63, 64].
The contribution from massive neutrinos is given by

0, (a) = 15 4 Zf(kgﬂa) (2.4)

where m; is the mass of each neutrino eigenstate, and T}, is the current temperature of

the neutrino background, I', = T,,0/T 0 is the neutrino-to-photon temperature ratio today
and the function F(y) is defined as

x2+y
dx . 2.5
/ 1+e (2:5)



The parameter I', takes into account corrections to the instantaneous decoupling and it
is given by

1 4 4/3
I =N (— , 2.6
where we take Neg = 3.044 [65-67].

The comoving distance r(z) is computed as

z d
r(z) =c —_—. 2.7

We implement two numerical approaches to solve the integral for r(z). First, we employ an
adaptive integration Gaussian quadrature scheme, which ensures a high-precision calculation
but is more computationally expensive. This method is ideal for cases requiring extremely
accurate results. Second, we use a Gauss-Lobatto rule with a fixed number of points (9),
which provides sufficient precision for most practical purposes, yielding a relative accuracy
better than 10~° compared to the adapative quadrature scheme.® We further validated our
results with CAMB, CLASS, and pyccl [68], finding an agreement up to the fifth digit.

The growth factor D(a) is computed by solving the following second-order differential

E'(a)

D"(a) + (2 + E(a)> D'(a) = %Qm(a)D(a) , (2.8)

equation:

We start solving this equation at high redshift, nominally z = 138, deep in the matter
domination regime. The appropriate initial conditions in this regime are given by:

D (Z,J) = Qa;

2.9
D/ (Zl) = Qq, ( )

where a; corresponds to the initial scale factor.

To integrate this equation, we use the Tsitouras algorithm [69], a Runge-Kutta method
known for its efficiency and accuracy.

The solver is implemented in the DifferentialEquations.jl? package, part of the
Julia ScientificMachineLearning (SciML) suite, which provides a high-performance envi-
ronment for solving differential equations [70].

The solver is made fully differentiable, supporting both forward and backward automatic
differentiation (AD) systems. This ensures that gradients can be computed accurately and
efficiently during optimization processes that require differentiation of the solver output, such
as when integrating Effort. j1 with gradient-based pipelines.

The growth rate f(z) is related to the evolution of the growth factor through

dln D(z)

fz) = —— (2.10)

8The adaptive Gaussian quadrature scheme is used within our suite of unit tests to verify that the faster

Gauss-Lobatto method is accurate enough for typical cosmological applications.
“https://github.com/SciML /Differential Equations.jl.
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where a is the scale factor. The solver also retrieves the first derivative of the growth
factor, D'(a), which can be used directly to compute f(z). These background quantities are
dynamically computed for each cosmological model considered in Effort.jl, providing a
flexible and precise foundation for modeling galaxy clustering. A comparison between the
growth rate computed by CLASS and Effort. j1 shows residual smaller than 0.1%.

2.4.2 Alcock-Paczynski (AP) effect

The Alcock-Paczynski (AP) effect is a geometric distortion that arises when converting redshift
space into physical space, since one must assume a reference cosmological model [71]. This
effect causes anisotropies in the observed galaxy clustering, affecting the inferred distances
along and across the line-of-sight. In this work, we follow the notation used in [72, 73].

To account for the AP effect in Effort. j1, we calculate the distortion factors as follows:'®

. Da(2)H(z = 0) _ H™(2)/H™ (2 = 0)

= Dfélef (Z)Href (Z — O)’ q1 = H(Z)/H(Z _ O) (211)

Here, ¢ and g, represent the distortions along and transverse to the line-of-sight,
respectively. These scaling factors adjust for the differences between the reference and true
cosmology, where D 4(z) is the angular diameter distance, and H(z) is the Hubble factor.

The transformation of the power spectrum multipoles due to the AP effect is given by:

Pg(kmf) — Zt;”—;il /_11 duref P (ki (kref ,Mref) U (Mref )) LZ (Mref> ] (212)

This equation expresses the power spectrum multipoles Py(k), where p™f is the cosine of
the angle between the wavevector k and the line-of-sight in the reference cosmology. The
function Ly(p™") is the Legendre polynomial of order ¢, and the transformation adjusts the
power spectrum to account for differences between the true and reference cosmology.

The relations between the wavevector k and angle i in the true and reference cosmologies
are given by [74-76]:

14 (Mref)Z (}7112 _ 1)}1/2’ = N;f [1 n (Mref>2 (;Q _ 1)}_1/2 (2.13)

Here, F' = q)/q. is the anisotropy factor, capturing the relative stretching between

ref

k=

qL

the line-of-sight and transverse directions due to cosmological distortions. These trans-
formations ensure that the clustering signal is correctly interpreted in terms of the true
cosmological model.

We implemented two methods to integrate the AP effect. We use an adaptive Gaussian
quadrature scheme for high precision, although this approach is more computationally
expensive. Alternatively, we use a Gauss-Lobatto quadrature with 5 points, which achieves
near floating-point precision with reduced computational cost.

The main challenge arises when incorporating AD. To compute the AP effect, we need
to interpolate the emulator’s output onto a new k-grid, whose specific values depend on
cosmological parameters. For this, we employ a quadratic spline interpolation, as in pybird.

9These are the appropriate definitions when using wavenumber units of h/Mpc, which we assume throughout.



However, calculating the Jacobians of the splines with respect to their input leads to a sparse
Jacobian matrix, which the AD system does not naturally optimize for.

Although the AP calculation itself takes approximately 30 us, backward propagation of
gradients through the AP calculation initially took around 100 ms, significantly degrading
Effort. jl’s performance.

To resolve this, we reimplemented the spline interpolation and wrote custom backward
differentiation rules that take advantage of the sparsity pattern. This optimization reduced
the time for calculating the Jacobians to approximately 200 us, representing a three-order-
of-magnitude improvement.

We validated the correctness of these custom differentiation rules using reverse and
forward mode AD systems'! and finite differences derivatives as well. Differences were always
smaller than 0.01%, both when giving input that were spanning the cosmological parameter
space considered and both when providing randomly generated arrays.

2.4.3 Window mask convolution

The finite size and irregular geometry of surveys introduce an observational window function
that modulates the observed clustering signal. Accounting for this requires a multiplication
of the theory correlation function with a window mask in real space, or a convolution of the
window mask with the theory power spectrum in Fourier space.

In Effort.jl, we adopt the approach of [78], implementing the window convolution
as an efficient array contraction. The window function, derived from the survey mask, is
applied to the theoretical predictions at each step of the MCMC sampling, ensuring that
observational effects are consistently incorporated into the analysis.

The convolution is executed using Tullio. jl [79], a high-performance framework for
array operations. The entire process is completed in a few us. To further enhance performance,
we have written custom differentiation rules, enabling the automatic differentiation (AD)
system to efficiently manage the convolution operation. We validated the window-convolution
rules using the same procedure applied to the AP-differentiation rules, comparing them against
reverse-mode and forward-mode automatic-differentiation systems as well as finite-difference
derivative approximations.

By accurately incorporating these observational effects, Effort. j1 delivers precise pre-
dictions for the power spectrum, supporting robust cosmological parameter inference.

3 Cosmological inference framework

3.1 Probabilistic programming with Turing.jl

For cosmological parameter inference, we employ a probabilistic programming language (PPL)
which is built in Julia, namely Turing.jl [80]. PPLs allow users to specify probabilistic
models that include the necessary priors and likelihoods, streamlining the process of drawing
samples from the posterior distribution. This flexibility is particularly useful for complex
models, such as those involving cosmological parameters, as it enables integration with
advanced samplers and AD frameworks.

"Specifically, we used Zygote. j1 and ForwardDiff.j1 [77].
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Turing. j1 provides a straightforward way to define probabilistic models by allowing
users to declare their priors and construct the likelihood function. Once the model is defined,
Turing. j1 takes care of deriving the posterior and can utilize various sampling algorithms
for inference. A key strength of Turing. j1 is its compatibility with gradient-based samplers,
such as the Hamiltonian Monte Carlo (HMC) and its variants, including the No-U-Turn
Sampler (NUTS) and MicroCanonical Langevin Monte Carlo [81].

In this work, we use NUTS and MicroCanonical Langevin Monte Carlo [81] as samplers,
all of them accessed through the Turing. j1 interface. This approach has been successfully
employed in various cosmological studies, as demonstrated in [14, 25, 39]. These samplers
efficiently explore the posterior distributions of cosmological and nuisance parameters, taking
full advantage of the differentiability of Effort. jl.

3.2 The Hamiltonian MonteCarlo sampler

The Hamiltonian Monte Carlo (HMC), also known as Hybrid Monte Carlo, is a state-of-the-art
method for drawing samples from a probability distribution [31]. It is particularly useful
when the distribution is over high-dimensional spaces and/or with complex geometries.

The key idea behind HMC is to introduce momentum variables, p, for each parameter in
the model, which is instead represented as a position variable q. A potential energy V (q) is
introduced, given as minus the logarithm of the joint-likelihood log L:

—logP(q) =V(g) H(g,p) =V(g)+Ul(gp), (3.1)
where the kinetic term is given by:
U(g,p) =p" M~ 'p. (3.2)

These momentum variables, together with the original parameters, form a Hamiltonian
system. The system evolves according to Hamilton’s equations, which in the vanilla case read:

dp 9V _ OlogP
at ~  dg  dg
aw_ o (3.3)
a T P

In the vanilla HMC, the system evolves deterministically for a fixed amount of time,
following a trajectory that is likely to stay in regions of high probability under the target
distribution. The trajectory is usually numerically integrated with a symplectic integrator.

The deterministic evolution in HMC allows it to explore the target distribution more
efficiently. However, it requires the ability to compute gradients of the log-probability of the
target distribution, which can be computationally expensive for complex models.

Vanilla HMC is a powerful sampling method that combines ideas from physics and
statistics and can efficiently draw samples from high-dimensional distributions, but requires
tuning and may be computationally expensive for complex models. One of the main challenges
with the vanilla HMC is the need to carefully choose and tune the step size and the number
of steps. If these parameters are not set correctly, the HMC can either miss important regions
of the parameter space or waste computational resources by taking too many steps.

,10,



The No-U-Turn Sampler (NUTS) is a self-tuning variant of the Hamiltonian Monte Carlo
(HMC) method, designed to address some of the shortcomings of the vanilla HMC [30]. The
name “No-U-Turn” comes from the sampler’s unique feature of stopping its trajectory once it
starts to turn back on itself, hence avoiding unnecessary computations.

NUTS tunes HMC hyper-parameters by adaptively choosing the trajectory length. It
starts with a trajectory of length 1, and then doubles the length as long as the trajectory
does not make a U-turn. A U-turn is detected when the current position and the proposed
new position are moving in opposite directions along the gradient of the log-probability.

This adaptive algorithm ensures that NUTS spends more time exploring new regions of
the parameter space and less time retracing its steps. It also removes the need for manual
tuning of the trajectory length, making NUTS more user-friendly than vanilla HMC.

However, like HMC, NUTS requires the ability to compute gradients of the log-probability,
which can be computationally expensive for complex models. In our case, the computation of
the log-likelihood gradient is performed using one of the Julia AD systems.

3.3 MicroCanonical Hamiltonian Monte Carlo sampler

The MicroCanonical Hamiltonian Monte Carlo (MCHMC) sampler [81, 82], is a variation of
the traditional HMC method. Unlike standard HMC, which relies on a Metropolis-Hastings
correction step to ensure detailed balance, MCHMC operates within the microcanonical
ensemble, where the Hamiltonian energy H(q, p) is conserved throughout the entire trajectory.
Removing the need for Metropolis corrections, reduces computational overhead and increases
sampling efficiency.

MCHMC also employs a variable mass Hamiltonian in eq. (3.2), which adapts to the
geometry of the posterior distribution. In regions of higher probability density, the particle
moves slower, improving the sampler’s capacity to explore complex and high-curvature
posterior distributions.

This method is especially well-suited for cosmological inference tasks, where the pa-
rameter space is often large and complex. MCHMC has been demonstrated to outperform
traditional HMC methods in terms of sampling efficiency for such high-dimensional prob-
lems, providing faster convergence while maintaining accuracy in the estimation of posterior
distributions [14, 81, 83].

4 Results

4.1 Accuracy checks and preprocessing impact

Having laid out the structure of Effort. jl, we can now discuss a concrete implementation.
Given its flexible structure, it is possible to use Effort. j1 with two different approaches,
i.e. including redshift as a free parameter or working at a specific redshift. While the former
approach is more flexible, as it enables us to train one generic emulator that can be used
in more situations, the latter option naturally leads to a more precise surrogate, as we are
removing one of the input parameters. Considering that surveys like DESI and Euclid divide
galaxy in only a handful of bins with a specific effective redshift, the second approach is
useful in case one needs to increase the accuracy of the surrogate, as was done in [84]. Here
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Parameter Min Max

z 0.25 2.0

In 100 4 25 35
Ng 0.8 1.10

Hy [km/s/Mpc] | 50.0 80.0
W, 0.02 0.025

We 0.08 0.2

M, [eV] 0.0 0.5

Table 1. Parameter bounds for redshift and cosmological parameters.

we focus on an emulator of the former kind, since we want to provide a tool that does not
require additional training; in case it was required a higher level of precision, users can
employ our flexible emulator for a preliminary analysis and train one at a fixed redshift only
in the relevant region of parameters space, in an active learning approach [85]. The training
dataset contained 60,000 couples of input parameters and Py(k)s; the linear power spectra
were computed using CLASS while the EFT predictions are based on pybird. A description of
the EFTofLLSS as implemented in pybird is presented in appendix A, while the code used to
compute the elements of the training dataset is reported in appendix B. We input to the NN
the redshift and cosmological parameters distributed according to the Latin Hypercube in
the parameter range described in table 1. We employ NNs with 5 hidden layers, each of them
with 64 neurons. We used a batch size of 128, and trained for 100,000 epochs using an ADAM
optimizer with an initial learning rate of 10~%; when using an 8-core CPU, this process took
around one hour of wall-time. We employed a vanilla mean square error loss function for the
emulator presented in this section and used in the BOSS analysis, while for the PT-challenge
we used a modified loss function which included a 1/k? weight. The dataset as been split in
80% and 20% for, respectively, the training and test sets. To prevent overfitting, we save the
weights only when the loss on the testing dataset shows improvements.

Before showing a few applications of trained emulators, we want to gauge the impact
of the preprocessing procedure outlined in section 2.3.

The question we aim to answer is: how can we improve the performance of our emulators?
The straightforward approach is to use a bigger dataset and/or a bigger NN, according
to the approximation theorem [86]. The second approach which we want to investigate
here is a rescaling of the output features which depends on the value of the input features;
this method has already been applied in [14], where the CMB spectra where rescaled by
As, leading to a reduction of the residuals by a factor of 3, clearly showing the benefits
of this strategy. Here we can make a further step, dividing the output features by D(z)

as already outlined in section 2.3.

In order to assess the impact of rescaling strategies on the observables considered here
in a quantitative manner, we study the distribution of the percentage residuals in the
following scenarios:
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Figure 1. 95% distribution of the percentage errors, averaged over 10 realizations. We show the
impact of the different rescaling schemes employed. The dot-dashed and solid lines refers respectively to
a training dataset with 20,000 and 60,000 elements. As can be seen, a bigger dataset helps in enhancing

the performance, but the rescaling is even more impactful in reducing the residuals. For this test,
we fix the EFT parameters, using a combination obtained from the measurements employed in [43].

e No rescaling is employed
e We rescale by Ag
o We rescale by D?(z)

o We rescale by A;D?(2)

Furthermore, we consider two training datasets, with 20,000 and 60,000 samples. The results
of this comparison are shown in figure 1; in order to suppress the variance inherent to such
a process, we repeat the procedure 10 times with different random seeds and average the
results. As can be seen from the comparison of the dashed and solid lines, which represents
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respectively the 20,000 and the 60,000 samples training dataset, getting a bigger dataset
helps in improving the accuracy of the emulator. However, we want to emphasize that the
rescalings have a much bigger impact. This shows how it is possible to get a high-precision
emulator even when using a small NN: in other studies, like [11, 21, 22], the NNs employed
had a significantly higher number of neurons.

Finally, it is worth mentioning that our most effective physics-based preprocessing
procedure, while lowering the emulation error, relies on the solution of an ODE that, although
relatively fast (on the order of 150 us), has now become the main bottleneck of our pipeline
since Effort. j1 computes each multipole in around 15 us. To circumvent this issue, as
already noted in this manuscript, it would be possible to train a NN to emulate D(z) as
well. Since this approach has already been succesfully applied in the literature, we employed
a symbolic regression approach (using SymbolicRegression.jl [87]) to emulate the ODE
solution by directly seeking a closed-form expression for the growth factor. This strategy
offers two main advantages: first, once the symbolic expression is found, it can be ported
to any programming language without loss of precision; second, it greatly speeds up the
preprocessing step. Indeed, evaluating the symbolic expression takes only 200 ns, offering a
dramatic speedup compared to the ODE solution (see also [18, 88-91] for other applications
of symbolic regression related to LSS observables).

Moreover, while joint analyses can partially amortize the ODE cost by solving it once
for multiple redshifts, it remains desirable to reduce this expense further. We show the
residuals for the obtained expression in figure 2; the higher error at low z is due to the higher
dynamical range of the growth factor when the redshift approaches 0.

Substituting the ODE solver with the symbolic growth factor cause a modest increase in
the residuals, that is almost negligible for the hexadecapole emulator, due to their initial higher
residuals. Nonetheless, the symbolic approach proves advantageous in terms of portability,
consistency, and computational efficiency. However, for users who do not want to sacrifice
accuracy, it is still possible to choose to use the ODE solver in Effort.j1.'?

Supported by our findings, we advocate for physics-based preprocessing, as it helps in
improving the accuracy of the emulators by leveraging the domain knowledge of the scientists.

4.2 Application to the PT-challenge simulations and BOSS

In this section we show the application of Effort.jl to two different sets of measurements,
the PT-challenge and BOSS datasets.

The PT-challenge'® was designed to demonstrate the reliability and robustness of the
EFTofLSS as a powerful and trustworthy tool for analyzing cosmological datasets. To achieve
this, a set of high-precision simulations was generated. This approach provided an ideal testing
ground for validating the accuracy and effectiveness of theoretical models like the EFTofLLSS.

The simulations consisted of ten boxes with independent random realizations, each
comprising 3,072% mass elements within a periodic cube of side length 3,840 =1 Mpc,

2We note that, with respect to the first version of this draft, the error increase when using the symbolic
surrogate for the growth factor is higher. This is the case as the previously trained emulators had higher
residuals and hence the relative error induced by the symbolic emulator was lower.

Yhttps://www2.yukawa.kyoto-u.ac.jp/ takahiro.nishimichi/data/PTchallenge/.
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Figure 2. 68, 95, and 99.7 % distribution of the percentage errors, comparing the ODE and the
symbolic regression D(z).

resulting in a total simulated volume of 566 (h~! Gpc)?. Initial conditions were generated
with second-order Lagrangian Perturbation Theory (2LPT) and evolved using GADGET2.
Particle snapshots were recorded at six redshifts: z = 3, 2, 1, 0.61, 0.51, and 0.38.

Halos were identified with the ROCKSTAR halo finder, and galaxies were probabilistically
assigned based on the virial mass of halos, ensuring that mock galaxies were consistent
with observational data.

The resulting mock galaxy catalogs correspond to redshifts z = 0.38 (LOWZ), z = 0.51
(CMASS1), and z = 0.61 (CMASS2), mirroring the observational data sets; specifically, the
measurement employed in this work are those at z = 0.61. These simulations provide a
robust framework for testing cosmological models and statistical methods, owing to their
large volume and the precision of the mock galaxy distributions.'* Here we analyzed these
simulations up to kpax = 0.12h/Mpc.

The Baryon Oscillation Spectroscopic Survey (BOSS) provides publicly available redshift
catalogs that enable galaxy clustering measurements [92, 93]. Power spectrum multipoles
and window function matrices are the ones used in [94].

The BOSS dataset is divided into subsamples based on the Northern and Southern
Galactic Caps (NGC and SGC). We divide them in two redshift bins (CMASS and LOWZ),

14The Julia version of the PT-challenge likelihood is available here.
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Figure 3. 95% distribution of the percentage errors, comparing the ODE and the symbolic regression
rescaling.

corresponding to effective redshifts z.g = [0.57,0.32] respectively. This results in a total of
four sets of multipoles.!® We fit the power spectra with kpax = 0.23 h/Mpc for CMASS
and 0.20 h/Mpc for LOWZ.

We validate the accuracy of our emulators on these datasets by comparing the Bayesian
posteriors produced by Effort.j1 and pybird. Specifically, we present the posterior distribu-
tions for the cosmological and EFT parameters that pybird cannot marginalize analytically,
although Effort.jl does not perform the analytical marginalization. To preserve the secrecy
of the true cosmology of the PT-challenge, axis ticks and labels are omitted from the plots
related to that analysis.

Regarding the prior, we used the same prior and analysis settings used in [53] from
the West Coast Team and we developed a different emulator, tailored to have only 3

15The Julia version of the BOSS likelihood is available here.
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input cosmological parameters.'® The results demonstrate remarkable accuracy, with an
excellent agreement between the two methods, consistent with Montecarlo noise. In terms
of performance, the pybird chains were generated using the MontePython sampler [95] and
required several hours to obtain a very high degree of convergence on multiple CPUs of a
computing cluster. Specifically, we used MontePython adaptive Metropolis-Hastings sampler,
with the covariance matrix and jumping-factor updates; convergence was monitored using
the Gelman-Rubin R statistics [96], ensuring R — 1 < 0.01 for all parameters. Effort.jl
achieved convergence with significantly higher efficiency. We ran four chains for both the
NUTS and MCHMC samplers, using 500 and 10,000 burn-in steps and 2,000 and 200,000
accepted steps, respectively. These chains were initialized using Pathfinder. j1, a variational
inference method that quickly generates samples from the typical set [48, 97]. The entire
analysis with Effort. j1 required approximately 10 minutes on a laptop and converged to the
same posterior distribution as pybird. The Effective Sample Size per second (ESS/s) was 1.2
for NUTS and 5.1 for MCHMC. We stress that, given the large volume of the PT-challenge,
this is a very stringent test of the accuracy our emulator.

A direct comparison of sampling efficiency with pybird was not made, as pybird samples
from a smaller-dimensional parameter space. However, even when analyzing a higher-
dimensional space, Effort.jl achieves a sampling efficiency several orders of magnitude
greater than standard analysis pipelines.

For the BOSS analysis, the agreement between Effort.jl and pybird is similarly
outstanding, as shown in figure 5. We employed the same priors as in [94], also including
the correlated prior among EFT parameters. The pybird chains, using the MontePython
sampler, required a few days on a computing cluster to obtain chains with a very high degree
of convergence. Using Effort.jl, we ran eight chains for both NUTS and MCHMC, with
the same burn-in and accepted steps as in the PT challenge. Chains were again initialized
from a Pathfinder. j1 run. The total wall-clock time was slightly over one hour, with ESS/s
of 0.4 for NUTS and 2.4 for MCHMC.

Finally, we report the runtime of CLASS and pybird and compare with that of Effort. j1,
to benchmark the code timing. For a DESI-like scenario with 6 redshift bins, the standard
pipeline takes 1.7 seconds to run wereas Effort. jl requires only 650 ps: an improvement
of more than three orders of magnitude. We emphasize that the computational gain when
doing inference comes both from the improved speed and better analysis algorithm.

5 Conclusions

In this work, we introduced Effort.j1,'” a novel emulator for the EFTofLLSS with a strong
emphasis on computational performance. The design of Effort.jl prioritizes efficiency
without compromising accuracy, leveraging state-of-the-art numerical methods and machine
learning techniques to provide robust predictions for cosmological analyses.

16We will not release the trained emulators for this part of the work to ensure the input cosmology remains
undisclosed to the community.

17A repository, with the files to reproduce the plots of the paper, can be found here, while the training and
validation dataset have been uploaded on Zenodo.
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Figure 4. Triangle plot showing the standard pybird chains alongside those obtained using Effort. j1
in combination with Turing. j1, for the PT-challenge analysis,obtained with the NUTS and MCHMC
samplers. To align with the PT-challenge guidelines, axis ticks and labels have been removed to avoid
disclosing the true cosmology.

Great care has been devoted to implementing observational effects, such as the Alcock-
Paczynski effect and window mask convolution, ensuring high computational efficiency. This
rigorous implementation enables Effort.jl to handle the complexity of LSS data while
maintaining precise modelling of observational effects. We checked the accuracy of these
calculations both against standard Boltzmann solvers and pybird, finding an excellent

agreement.

We explored various preprocessing strategies, showcasing their significant impact on
the emulator accuracy. Notably, we combined numerical method, such as solving ODE and
symbolic regression, with NN emulators of cosmological observables. This hybrid approach
demonstrates the potential for improving emulator precision and efficiency by leveraging
domain knowledge readily available to cosmologists.

,18,



B pybird+MontePython
Effort+NUTS
------- Effort+MCHMC

0.18
0.16 [
<o
3 014fF
0.12 |

0.10 |

0.75 F

= 070}

L L L L L L L L L L L L
2.2 2.3 0.10 0.14 0.18 0.65 0.70 0.75 24 27 3.0 33 0.8 1.0

100wy, We h In 1010 A, Ng

@ | . e ® .
£\oN

Figure 5. Triangle plot showing the standard pybird chains alongside those obtained using Effort. j1,
for the BOSS analysis, focusing on cosmological parameters. As in figure 4, we compare the standard
pybird chains with the ones obtained with Effort. j1 coupled with NUTS and MCHMC.

The coupling of Effort.jl with the Turing. j1 framework highlights its versatility,
allowing it to efficiently integrate with gradient-based samplers such as NUTS and MCHMC.
Our results demonstrate the ability of Effort. j1 to sample Bayesian posteriors very efficiently,
reducing computational costs significantly while achieving excellent agreement with standard
pipelines. In particular, this will become of paramount importance when considering scenarios,
like those found in [98-103], where analytical marginalization is not a viable option and we
need to explore the full parameter space.

Looking forward, we plan to apply Effort. jl to the forthcoming datasets from the DESI
survey [3], harnessing its computational efficiency to analyze next-generation cosmological
data with precision. In addition, we foresee significant potential in combining Effort. j1 with
tools such as Capse. j1 [14], which emulates CMB observables, and Blast.j1 [104], which
computes the photometric 3 x 2pt. This integration will facilitate efficient joint analyses
of diverse cosmological datasets and probes.
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The combination of Effort.jl and Blast. j1 is particularly compelling, as it enables the
joint analysis of the Euclid main probes without relying on the Limber approximation, which
can introduce inaccuracies in cosmological inference [105, 106]. Furthermore, as demonstrated
in [36], the use of HMC samplers is expected to play a pivotal role in the analysis of 3 x 2pt
datasets from Stage IV surveys like Euclid. This approach will become even more critical
when combining Euclid’s photometric and spectroscopic datasets for joint analyses.

The capabilities of Effort.jl provide a solid foundation for further enhancements
and expansions. Additionally, we plan to extend the use of symbolic regression to wow,
cosmologies, providing a computationally inexpensive replacement for the ODE computations,
further optimizing the preprocessing pipeline.

The modular structure of Effort.jl is sufficiently general to support compatibility
with other EFT-based codes, such as velocileptors [107], CLASS-PT [108], FOLPS [109], and
CLASS-0OneLoop [110]. This flexibility opens the door for training Effort. j1 to emulate these
codes as well, broadening its application and usability.

Regarding the limitations of our work, we identify two aspects that are worth discussing.
First, as a surrogate model, its applicability is inherently confined to the parameter space
explored during emulator training. This restriction becomes especially critical for extended
cosmological models, where projection effects may drive inferences toward the edges of the
trained domain [94, 111], potentially necessitating a full retraining of the emulators.

Second, Effort.jl’s workflow depends not only on neural-network emulators but also
on high-performance routines for computing background quantities and observational effects.
Adapting Effort.jl to a new model therefore requires either a careful, bespoke implemen-
tation of its governing equations or the development of an additional surrogate model to
handle the relevant background computations. While for some cases, like a scale independent
nDGP analysis this can be easily done [112], it would be more complex for models with
a richer phenomenology, like when considering particle-physics inspired models [113, 114].
Finally, as we have shown for the AP effect and window convolution, achieving both accuracy
and efficient gradient evaluation demands meticulous optimization; any further extensions
will require the same level of care.

Finally, we are actively working on a jax-based version of Effort. j1. Since the cosmolog-
ical community is more proficient with python, we thus see advantageous to provide a version
of our software compatible with such a language. While a fully equivalent jax implementation
of Capse. j1 is already complete,'® we are now focussing on translating Effort.jl1 into jax.
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A The galaxy power spectrum in the EFTofLLSS

The Effective Field Theory of Large-Scale Structure (EFTofLLSS) provides a systematic
approach to modeling the redshift-space galaxy power spectrum by thoroughly accounting for
the effects of small-scale physics on large-scale clustering. This framework extends standard
perturbation theory by introducing counterterms that describe how small-scale physics,
including galaxy formation, influences the observed large-scale distribution. We give a concise
overview below and refer readers to [115, 116] for more details.

The one-loop EFTofLLSS expression for the redshift-space galaxy power spectrum is:

2 d*q 2
Py(k,p) = Z1(p)”Pr1(k) +2/(27r)3 Zo(d, k —q, 1) Pri([k — q|) P11(q)
d3q
(27)3

% k2 K2
+2Z1(p) Pra(k) | cet 5 + Cript™ o5 + Crap 5
khd ij kR

+ 621 (,U)Pll (k) / Z3(01, —q, kv /’L)Pll(Q)

—i—i Ce0 + C ]ﬁ—l—c ka—Z (A1)
where we follow the notation of [117]. This includes linear contributions, one-loop Standard
Perturbation Theory (SPT) terms, counterterms, and stochastic terms. Here, pu is the cosine
of the angle between the line of sight (LoS) and the wavenumber k; Pj1 (k) is the linear matter
power spectrum; and f is the growth factor. The scale ky;! characterizes the size of collapsed
objects, while k; ! governs counterterms needed to handle products of the velocity field at
the same point [117, 118], and 7y denotes the mean galaxy number density.
The functions Z,, are the redshift-space galaxy density kernels of order n:

Zy(an) = Ki(a1) + fuiGi(an) = by + fui,
1
Zs(a1,d2, ) = Ko(qr, q2) + fiiaGalar, a2) + 5 fna (Zle((D)Zl(CIl) + perm-) ,
Zs(a1,d2, a3, 1t) = K3(q1, 92, q3) + fuissGs(ai, a2, q3) (A.2)

1
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and K, are the corresponding nth-order galaxy density kernels in real space:

Ky =by,
Ks(ai,q2) = by q1q-2q2 + by <F2(OI1, qz) — q1q'2q2> + by + perm.
1 1
_ b 5 33 5 2 2\3 [k‘ —QD
Ks(k,0) = 550 ( 39Kq + 483K%q° — 18kq” + (k% — ¢*) log | 1 (A.3)
bs 2 2 4 2 2 4 2 214 [k‘ —CID
—— | 2kq(k 3k™ — 14k 3 3(k” — I —_— .
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We omit the full expressions for the second-order kernel F5 and velocity kernels G,, (from SPT)
for brevity. Altogether, the model uses four bias parameters b1, ba, b3, by, three counterterm
parameters cct, ¢ 1,Cr2, and three stochastic parameters cp,ce1,ce2, for a total of ten
parameters:

{bla b2) b37 b47 Cet, CT,]., CT,Q’ CE,O, Ce,lv 66,2} . (A4)

Finally, we employ IR-resummation [56, 119, 120] to account for the large effects of long-
wavelength displacements.

B CLASS and pybird settings

In this appendix we report the python code used to generate the training dataset, in order
to ensure full reproducibility and showing the settings for CLASS and pybird.
def pybird(CosmoDict):

z = CosmoDict["z"]
cosmo_params = {

"output": "mPk", #Request the matter power spectrum (mPk)
"P_k_max_h/Mpc": 20.0, #Maximum k value (in units of h/Mpc)
"z_pk": "0.0,3.", #Redshifts at which evaluate the power spectra
"h": CosmoDict["HO"] / 100, #Hubble parameter

"omega_b": CosmoDict["ombh2"], #Baryon density parameter

"omega_cdm": CosmoDict["omch2"], #Cold dark matter density parameter
"1n10"{10}A_s": CosmoDict["1n10As"],#Amplitude of the primordial power spectrum
"n_s": CosmoDict["ns"], #Scalar spectral index

"tau_reio": 0.0568, #0ptical depth at reionization

"N_ur": 2.0308,

"N_ncdm": 1,

"m_ncdm": CosmoDict["Mnu"],

"use_ppf" : "yes",

"wO_f1ld" : -1.,

"wa_£f14" : 0.,

"fluid_equation_of_state" : "CLP",

"cs2_fld" : 1.,
"Omega_Lambda" : 0.,
"Omega_scf" : 0.

# Initialize Class and compute linear power spectrum
M = Class()
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M.set (cosmo_params)
M. compute ()

# Generate logarithmic k values and compute linear power spectrum
kk = 10 ** np.linspace(-5, 0, 200)
pk_lin = [M.pk_cb(k * M.h(), z) * M.h()**3 for k in kk]

# Compute growth factors
D1 = M.scale_independent_growth_factor(z)
f1 = M.scale_independent_growth_factor_f (z)

# Initialize Correlator

N = Correlator()

dk = 0.004

kd = np.arange(0.005, 0.3, dk)

# Set parameters for the correlator
N.set({
"output": "bPk",
"multipole": 3,
"kmax": 0.3,
"xdata": kd,
"km": 0.7,
"kr": 0.35,
"nd": 3e-4,
"eft_basis": "eftoflss",
"with_stoch": False
"with_bias": False,
"with_resum": Truel})

# Compute the correlator with input power spectrum and growth factors
N.compute ({

"Kk": Kk,
"pk_lin": pk_lin,
nEn: £

»

P111 = N.bird.P111

Ploopl = N.bird.Ploopl

Pctl = N.bird.Pctl

return kk, pk_lin, kd, P111, Ploopl, Pctl

C Fixed redshift emulator

In this appendix we explore the accuracy gain when working with a fixed redshift emulator.
As noted in section 4.1, this class of emulators, albeit less flexible than the one which takes
redshift as an input, has the advantage of a reduced number of input parameters and hence
dynamical range of the output features. For such a reason we expect the accuracy of such
an emulator, as employed in [84], to be higher than its more flexible counterpart. As can
be seen in figure 6, the residuals for the monopole and quadrupole reduce by a factor of 2
whereas the hexadecapole one improve by a factor of 3.
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Figure 6. 95% distribution of the percentage errors for the free (green) and fixed (red) z emulators,
with the A;D(z) rescaling.
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