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Abstract: In this paper, we study the localization of the five-dimensional U(1) gauge field coupled

with a background scalar potential on symmetric and asymmetric degenerate Bloch branes. By

decomposing the U(1) gauge field AM into its vector part (ÂM) and scalar components, we found

that the Lagrangian of the five-dimensional U(1) gauge field can be rewritten as two independent

parts: one for the vector field and the other for two scalar fields. Regarding the vector part, the

effective potential exhibits a volcano-like shape with finite depth. We obtain a massless vector field

on both types of Bloch branes and a set of massive KK resonances. For the scalar part, their massless

modes are coupled with each other, while two sets of massive scalar KK modes are independent.

Similar to the vector effective potential, the scalar potentials create infinite wells for both types of

degenerate Bloch brane solutions. Therefore, there is only one independent massless scalar mode and

two sets of massive scalar Kaluza–Klein resonances. Furthermore, we also observed that, for the two

types of Bloch brane solutions, the asymmetric parameter c0 has different effects on the localization

of scalar modes.

Keywords: brane world; localization; gauge field

1. Introduction

In the past two decades, extra dimension theory has been a widely studied and re-
searched field. Among others, the Randall–Sundrum (RS) model [1,2] and ADD model [3,4]
have attracted widespread attention. A primary motivation behind these brane world
models is to tackle the hierarchy problem, which involves addressing the 16 orders of
magnitude disparity between the Planck scale and the electroweak scale. In the context of
brane world theory, the bulk space is often described as a five-dimensional AdS (anti-de
Sitter) spacetime, establishing a potential connection with the AdS/QCD framework. Con-
sequently, this study may enhance our understanding of the intricate interplay between
extra dimensions and their potential implications in the realm of strong interactions and
hadron physics. In the RS models and ADD model, the branes are infinitely thin, which
could lead to a singularity on the brane. Therefore, the thick brane generated by a back-
ground was proposed [5–8] and further generalized into the Bloch brane model with an
internal structure, generated by two interacting scalar fields [9]. In the Bloch brane model,
it was found that the variation of a parameter associated to the domain wall degeneracy
can control the thickness of the brane. This specific model is called the degenerate Bloch
brane [10]. The acceleration of the universe was investigated in the degenerate Bloch
brane [11].

An essential condition for these brane world models is to provide an explanation for
why our observed world, at the energy scales currently explored, seems to possess only
three spatial dimensions. The answer, which has been given in these brane world models,
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is that all particles/fields in the standard model should be localized on a 3 + 1 dimensional
brane in higher dimensional spacetime. Hence, we need localization mechanisms for
various matter fields to make our universe appear effectively 3 + 1 dimensional up to some
energy scale. Free scalar fields can usually be localized to branes [12,13]. On the other
hand, fermion fields typically necessitate Yukawa couplings with background scalar fields
to achieve localization on branes [14,15]. Nevertheless, the localization of vector fields on a
flat brane in five dimensions is generally considered to be challenging. Attempts have been
made to solve the problem of localizing the vector field on a brane, with the main methods
including the following: assuming that the vector field interacts with the background
scalar field [16], considering models such as the Weyl geometry brane world [17], and
assuming that the vector field has a nonminimal coupling with spacetime metric [18]. In
Ref. [19], it was found that the vector field can be localized by adding a dynamical mass
term into the standard five-dimensional action of the vector field, which is proportional to
the five-dimensional scalar curvature. It was shown that the vector zero mode is localizable
if the five-dimensional spacetime is (asymptotic) anti-de Sitter. Moreover, the massive
tachyonic modes can be excluded [19].

On the other hand, the Stueckelberg action was proposed to restore the gauge sym-
metry of the massive gauge field by introducing an auxiliary scalar field [20]. Recently,
inspired by the Stueckelberg mechanism, the localization of the vector field is facilitated
by the incorporation of Stueckelberg-compensating fields into the 5D action of a gauge
field. In this setup, the quadratic coefficient of the gauge fields is designed to mimic a
Yukawa-like brane–gauge coupling [21]. It was found that the zero mode of the gauge field
can be localized on the brane through the establishment of an appropriate coupling function
between the brane and the gauge field, and this mechanism is also studied for the local-
ization of the Kalb–Ramond field [21]. Moreover, localization of abelian gauge fields with
Stueckelberg-like geometrical coupling on an f (T, B)-thick brane was also investigated,
and it was found that the Stueckelberg-like geometrical coupling can localize the massless
mode of the transverse component of the gauge vector and the Kalb–Ramond fields.

Furthermore, it was found that, due to the internal structure of the Bloch branes and
degenerate Bloch branes, the localization of matter fields exhibits new features [22–26].
Therefore, we will investigate the localization of a Stüeckelberg-like vector field on the
symmetric and asymmetric degenerate Bloch branes.

The layout of the paper is as follows: In Section 2, we briefly provide a review of
the Bloch brane model. In Section 3, we explore the localization of an abelian gauge field
on the symmetric and asymmetric degenerate Bloch branes. Finally, we conclude with a
discussion of our findings in Section 4.

2. Review of Bloch Brane Model

In this work, we consider the thick branes generated by two real scalar fields, φ and ξ,
with a potential V(φ, ξ), which describes the interacting between the two scalar fields. The
action for such a system is given by

S =
∫

d5x
√

−g

[

1

4
R − 1

2
(∂Mφ∂Mφ + ∂Mξ∂Mξ)− V(φ, ξ)

]

, (1)

where g is the determinant of the metric tensor gMN , R stands for the scalar curvature
of the bulk, and the capital letters M and N range from 0 to 4. The two scalar fields φ
and ξ depend solely on the physical coordinate y in the case of a static flat brane. It is an
interesting model that gives rise to an internal structure in the energy density of the brane,
depending on the specific choice of the potential V(φ, ξ).

The line element describing a flat brane is assumed to be

ds2 = e2Aηµνdxµdxν + dy2, (2)
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where e2A represents the warp factor, and the four-dimensional Minkowski metric ηµν =
diag(−1, 1, 1, 1). With this metric, we can obtain the equation of motion:

φ′′ + 4A′φ′ − ∂V(φ, ξ)

∂φ
= 0, (3)

ξ ′′ + 4A′ξ ′ − ∂V(φ, ξ)

∂ξ
= 0, (4)

A′2 − 1

6

(

φ′2 + ξ ′2
)

+
1

3
V(φ, ξ) = 0, (5)

A′′ +
2

3

(

φ′2 + ξ ′2
)

= 0, (6)

where the prime denotes the derivative with respect to the extra dimension coordinate
y. Solving the above equations analytically is not easy, since there exists the couplings
between the functions involved in the model and some of them are of second order. In
Refs. [27–29], the authors introduced a superpotential W(φ, ξ) and implement a first-order
formalism; thus, one can obtain the following first-order differential equations:

φ′ =
∂W(φ, ξ)

∂φ
, ξ ′ =

∂W(φ, ξ)

∂ξ
, A′ = −2

3
W(φ, ξ), (7)

and the potential of the background scalar fields is determined in terms of W(φ, ξ) by

V =
1

2

[

(

∂W(φ, ξ)

∂φ

)2

+

(

∂W(φ, ξ)

∂ξ

)2
]

− 4

3
W2(φ, ξ). (8)

In this work, we consider degenerate Bloch branes. We will briefly review two type of
degenerate Bloch brane solutions, and the detailed derivation can be found in Ref. [28]. We
assume a superpotential of the following form with four parameters: v, a, b, and β [10,28]

W(φ, ξ) = φ

[

a

(

v2 − 1

3
φ2

)

− bξ2

]

+
3

2
β (9)

The corresponding solutions represent two kinds of asymmetric degenerate Bloch branes
for the a = b and a = 4b, respectively. And the parameter β is related to the asymmetry of
the branes.

2.1. Case I: Degenerate I Bloch Brane

To obtain the degenerate I Bloch brane solution, we assume c0 < −2 and a = b. The
asymmetric degenerate Bloch brane solutions are solved as follows [10,28]:

φ(y) =

√

c2
0 − 4 v sinh(2bvy)

√

c2
0 − 4 cosh(2bvy)− c0

, (10a)

ξ(y) =
2v

√

c2
0 − 4 cosh(2bvy)− c0

, (10b)

A(y) =
2v2

(

−
√

c2
0 − 4 c0cosh(2bvy) + c2

0 − 4
)

9
(
√

c2
0 − 4 cosh(2bvy)− c0

)2
−

2v2(c2
0 −

√

c2
0 − 4 c0 − 4)

9(
√

c2
0 − 4 − c0)2

+log





√

c2
0 − 4 − c0

√

c2
0 − 4 cosh(2bvy)− c0





2v2

9

− βy (10c)
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2.2. Case II: Degenerate II Bloch Brane

To obtain the degenerate II Bloch brane solution, we assume c0 < 1/16 and a = 4b.
The asymmetric degenerate Bloch brane solutions are solved as follows [10,28]:

φ(y) =

√
1 − 16c0 v sinh(4bvy)

1 +
√

1 − 16c0 cosh(4bvy)
, (11a)

ξ(y) =
2v

√

1 +
√

1 − 16c0 cosh(4bvy)
, (11b)

e2A(y) =

{

1 +
√

1 − 16c0

1 +
√

1 − 16c0 cosh(4bvy)

}
8v2

9

× exp

[

4v2(1 + 8c0 +
√

1 − 16c0)

9(1 +
√

1 − 16c0)2

]

×exp

{

− 4v2
[

1 + 8c0 +
√

1 − 16c0 cosh(4bvy)
]

9
[

1 +
√

1 − 16c0 cosh(4bvy)
]2

− 2βy

}

(11c)

Note that for both two cases, β is the asymmetric parameter, as β → 0, the above
asymmetric solutions reduce to symmetric ones. These solutions reveal that the Bloch brane
has a rich internal structure. The details of these solutions can be found in Refs. [9,10]. In
addition, since A(y)− βy should be a finite value as y → ±∞, the parameter β must satisfy
the constraint

|β| ≤ 4av3

9
. (12)

The shapes of the background scalar potential for the symmetric and asymmetric
degenerate Bloch branes are plotted in Figures 1 and 2. The thickness of the degenerate
branes could be described by the parameter δ as

δ =

{

1
bv ln −2c0

u1
for the degenerate I Bloch brane solution (10) as c0 → −2

1
2bv ln 6

u2
for the degenerate II Bloch brane solution (11) as c0 → 1

16

, (13)

where we defined the constants u1 and u2 as follows for convenience:

u1 ≡
√

c2
0 − 4, u2 ≡

√

1 − 16c0. (14)

-15 -10 -5 5 10 15
y

-0.6

-0.4

-0.2

0.2

V IHyL
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Figure 1. The shapes of the background scalar potential V(y) for the symmetric (β = 0, (left)) and

asymmetric (β = 1/16, (right)) degenerate I Bloch branes with a = b. The parameters are set to

b = 1, v = 1, c0 = −2 − 10−8 for the thick blue lines, c0 = −2 − 10−4 for the dashed red lines, and

c0 = −2.5 for the thin black lines.
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Figure 2. The shapes of the background scalar potential V(y) for the symmetric (β = 0, (left)) and

asymmetric (β = 1/16, (right)) degenerate II Bloch branes with a = 4b. The parameters are set to

b = 1, v = 1, c0 = 1
16+10−8 for the thick blue lines, c0 = 1

16+10−4 for the dashed red lines, and c0 = 0.01

for the thin black lines.

Note that the single brane is localized at y = 0, while the two sub-branes are localized
at y = ± δ

2 and the thickness of the double brane is δ. In the following, we mainly discuss
the degenerate Bloch solutions in the case of double branes. The degenerate I double Bloch
brane corresponds to u1 → 0, and the degenerate II double Bloch brane corresponds to
u2 → 0. Furthermore, the thickness of degenerate double Bloch branes is independent of
the asymmetric parameter β.

In this work, we focus on the localization of the gauge vector field coupled to the
background scalar potential V(φ, ξ) in both asymmetric and symmetric degenerate Bloch
solutions, referred to as degenerate I and degenerate II Bloch brane solutions, respectively.

3. Localization of Abelian Gauge Field

Inspired by the paper [21], we explore the Stüeckelberg-like vector field action with
the coupling to the background potential in the five-dimensional spacetime as follows:

S =
∫

d5 x
√

−g

[

−1

4
FMN FMN − ηV(φ, ξ)(∂MB − AM)2

]

, (15)

where η is a coupling constant, and V(φ, ξ) is the background scalar potential. AM is the
five-dimensional gauge vector field and B is the Stüeckelberg scalar field. This action
exhibits gauge symmetry under the following transformations:

AM → AM + ∂MΛ, B → B + Λ. (16)

In this part, we mainly investigate the existence of the zero mode and the massive Kaluza–
Klein (KK) modes of U(1) vector field on degenerated Bloch branes by choosing the partic-
ular coupling parameter η.

3.1. Equation of Motion and Decoupling Actions

The equations of motion for the fields AM, B can be obtained by varying the action
(15) with respect to the corresponding fields:

∂M[
√

−g FMN ] = −2η
√

−g V(φ, ξ)(∂N B − AN), (17)

∂M

[

√

−g V(φ, ξ)(∂MB − AM)
]

= 0, (18)

where Equation (18) is consistent with the Noether’s identity obtained by taking the
divergence of Equation (17).
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In the following, our analysis was used to fix the gauge. Instead of imposing an
explicit gauge fixing condition, we performed an analogous analysis as in Ref. [30], where
the five-dimensional field AM is parameterized as

AM = (Aµ, A4) = (Âµ + ∂µψ, A4) (19)

with Âµ and ψ as the transverse (∂µ Âµ = 0) and longitudinal components of Aµ, respec-
tively. Under gauge transformation (16), these components behavior are

Âµ → Âµ, A4 → A4 + λ′, ψ → ψ + λ, B → B + λ. (20)

We can redefine the scalar degrees of freedom as follows:

λ = A4 − ψ′, ρ = B − ψ, (21)

which remain invariant under the gauge transformation (20). The parameterization defined
by Equations (19) and (21) is equivalent to choosing the gauge condition ∂µ Aµ = 0.

Then, considering the parameterized fields Âµ, λ, ρ, Equations (17) and (18) can be
rewritten as

{

�+ e2A
[

∂2
y + 2A′∂y − 2ηV(φ, ξ)

]}

Âν = 0, (22)

∂y(e
2Aλ)− 2e2AηV(φ, ξ)ρ = 0, (23)

e2A
�λ + 2e4AηV(φ, ξ)(ρ′ − λ) = 0, (24)

2e2AηV(φ, ξ)�ρ + ∂y

[

2e4AηV(φ, ξ)
]

= 0. (25)

Moreover, we can reformulate the action, as denoted in (15), using invariant compo-
nents. It can be demonstrated that the transverse vector Âµ becomes decoupled from the
scalar fields as follows:

SA = SÂ + SS, (26)

SÂ =
∫

d5x

[

−1

4
F̂2

µν −
1

2
e2A(Â′

µ)
2 − ηV(φ, ξ)e2A Â2

µ

]

, (27)

SS =
∫

d5x

[

−1

2
(∂µλ)2 − e2AηV(φ, ξ)(∂µρ)2 − e4AηV(φ, ξ)(λ − ρ′)2

]

. (28)

It is evident that the equation for the vector degree, as shown in Equation (22), can be
readily derived from SÂ. Similarly, the equations for the scalar degrees, as expressed in
Equations (24) and (25), originate from SS.

3.2. Localization of Vector Degree Âµ

Next, we examine the localization for the vector degree Âµ by taking into account the
coupling with the background scalar potential ηV(φ, ξ). The gauge field is decomposed
as follows:

Âµ = ∑
n

a
(n)
µ (x)αn(y), (29)

and then the equation of motion for the vector degree (22) reduces to

[

∂2
y + 2A′∂y − 2ηV(φ, ξ)

]

αn(y) = −e−2Am2
nαn(y) (30)

with �a
(n)
µ (x) = m2

na
(n)
µ (x).
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Then, we work in the conformal coordinate xµ, z, and redefine αn(y) = e−
A
2 ᾱn(z) and

substitute the background scalar potential (5) into Equation (30). As a result, the equation
governing the vector degree modes transforms into a Schrödinger-like equation:

[

−∂2
z + UA(z)

]

ᾱn(z) = m2
nᾱn(z), (31)

in which the effective potential UA(z) is given by

UA(z) =

(

1

2
− 3

2
η

)

Ä +

(

1

4
− 9

2
η

)

Ȧ2. (32)

Here, the dot denotes derivative with respect to z. Usually, the Schrödinger Equation (31)
is difficult to solve analytically. A common method for solving equations of this type is
the factorize method, which demands that Equation (31) can be factorized, and we can
factorize Equation (31) as

Q†Qᾱn(z) = m2
nᾱn(z), (33)

where Q = −∂z + pȦ, and p is a constant that is related to the parameter η. After simple
calculations, we can obtain

Q†Q = −∂2
z +

(

p2 Ȧ2 + pÄ
)

. (34)

Comparing the above equation with Equations (31) and (32), we can obtain the condition
under which Equation (31) can be factorized, i.e., p = 5

2 and η = − 4
3 . And the hermiticity

and positive definiteness of Q†Q in Equation (33) ensure that no normalizable negative
energy modes are allowed. Therefore, we will assume this condition in the following since
otherwise the Schrödinger Equation (31) is difficult to solve analytically and tachyonic
modes may exist.

Furthermore, we need to impose the orthonormality condition

∫ ∞

−∞
dy αn(y)αl(y) =

∫ ∞

−∞
dz ᾱn(z)ᾱl(z) = δnl , (35)

in order to obtain the effective four-dimensional action for the gauge field a
(n)
µ (x):

SÂ = ∑
n

∫

d4x

{

−1

4
f
(n)
µν f

µν

(n)
− 1

2
m2

na
(n)
µ a

µ

(n)

}

(36)

with the four-dimensional gauge field strength tensor f
(n)
µν = ∂µa

(n)
ν − ∂νa

(n)
µ . This action

represents an action of a four-dimensional massless gauge field and a series of massive
vector fields on the brane. Therefore, we can utilize the orthonormality condition (35) to
determine if the Kaluza–Klein modes of the gauge field can be localized on the degenerate
Bloch branes.

On the other hand, the massless wave function

ᾱ0(z) = k0e
5
2 A, (37)

is normalizable, and the corresponding the zero-mode α0(y) turns out to be

α0(y) = k0e2A. (38)

Here, k0 is the normalization constant determined by the orthonormality condition (35).
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Given that the function y(z) cannot be explicitly defined for the brane solutions
mentioned in the preceding section, we can represent the effective potential UA(z) as a
function of the physical coordinate:

UA(z(y)) = e2A

{

5

2
∂2

y A(y) +
35

4

[

∂y A(y)
]2
}

. (39)

Then, we can use the numerical relation between y and z, y = y(z), to obtain UA(z) from
above equation.

For the asymmetric degenerate Bloch brane solutions, the explicit expressions of
UA(z(y)) read

UI
A(z(y)) =

{

u1 − c0

u1 cosh(2vby)− c0

}
4v2

9

exp

4v2u1
9

{

u1−c0cosh(2vby)

[c0−u1cosh(2vby)]2
− 1

u1−c0

}

−2βy 5

324[c0 − u1cosh(2vby)]6
{

216b2u2
1v4[c0 − u1cosh(2vby)]2[−3u2

1 + 4c0u1cosh(2vby) + (−2c2
0 + u2

1)cosh(4vby)]

+7
{

− 9c3
0β + u1[27c2

0βcosh(2vby)− 27c0u1βcosh(2vby)2 + 9u2
1βcosh(2vby)3

+bu1v3(9u1sinh(2vby)− 6c0sinh(4vby) + u1sinh(6vby))]
}2

}

, (40)

UII
A(z(y)) =

{

1 + u2

1 + u2 cosh(4bvy)

}
8v2

9

exp
4v2

9 [
1+8c0+u2
(1+u2)

2 − 1+8c0+u2 cosh(4bvy)

(1+u2 cosh(4bvy))2
]−2βy

× 5

324

{

567β2 +
1008 bv3u2

2

{

3cosh(4bvy) + u2 [2 + cosh(8bvy)]
}

sinh(4bvy)

[1 + u2 cosh(4bvy)]3

− 16 b2u2
2v4

[1 + u2 cosh(4bvy)]6
{

27 [1 + u2 cosh(4bvy)]2 [4 (u2
2 + cosh(8bvy)) + u2 (7cosh(4bvy)

+cosh(12bvy))]− 28v2[3u2cosh(4bvy) + u2
2 (2 + cosh(8bvy))]2sinh2(4bvy)

}

}

. (41)

The corresponding zero mode wave functions for the asymmetric degenerate I and II
Bloch brane solutions are

ᾱI,II
0 (z(y)) ∝ ᾱIS,IIS

0 (z(y))exp−2βy, (42)

where ᾱIS,IIS
0 (z(y)) are the zero mode solutions for the symmetric degenerate Bloch branes

case, given by

ᾱIS
0 (z(y)) =

{

u1 − c0

u1 cosh(2vby)− c0

}
4v2

9

exp
4v2u1

9 [
u1−c0cosh(2vby)

(c0−u1cosh(2vby))2
− 1

u1−c0
]
, (43)

ᾱIIS
0 (z(y)) =

{

1 + u2

1 + u2 cosh(4bvy)

}
8v2

9

exp
4v2

9 [
1+8c0+u2
(1+u2)

2 − 1+8c0+u2 cosh(4bvy)

(1+u2 cosh(4bvy))2
]
. (44)

The zero wave functions ᾱI,II
0 (z(y)) and effective potentials UI,II

A (z(y)) of the vector field with
different parameters c0 for two degenerate Bloch brane solutions are plotted in Figures 3 and 4.
From these profiles, we can observe that, when ui ≪ 1 for both i = 1 and i = 2, the branes

exhibit a dual sub-brane structure. Additionally, the effective potentials UI,II
A feature two

subwells positioned at y = ± δ
2 (as shown in Figures 3 and 4). For the degenerate I Bloch

brane solution, the zero mode ᾱ0(z(y)) remains constant between the two sub-branes in the
case of symmetric branes, while it becomes localized on the left sub-brane for asymmetric
branes. Conversely, in the degenerate II Bloch brane solution, the zero mode ᾱ0(z(y)) does
not remain constant between the two sub-branes, regardless of whether the branes are
symmetric or asymmetric. Instead, it becomes localized at the midpoint between the two
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sub-branes. The zero mode represents the four-dimensional vector field and serves as the
lowest energy eigenfunction (ground state) of the Schrödinger-like Equation (31) due to its
absence of zeros.
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The behavior of ᾱI,II
n (z(y)) is governed by the characteristics of the effective potentials

UI,II
A . The values of effective potentials at y = 0 and y → ±∞ are

UI
A(z(0)) = − 20b2u2

1v4

3(c0 − u1)2
+

35β2

4
, UI

A(z(y → ±∞)) → 0, (45)

UII
A(z(0)) = − 80b2u2

2v4

3(1 + u2)2
+

35β2

4
, UII

A(z(y → ±∞)) → 0. (46)

Given that UA → 0 as z → ±∞ for both degenerate Bloch brane solutions, there
is no discernible mass gap to distinguish the zero mode from the excited KK modes. In
other words, a gapless and continuous spectrum of KK modes exists. The massive modes
propagate along the extra dimension, and those with lower energy gradually dissipate due
to the presence of potential barriers in the vicinity of the brane locations.

The behavior of the potentials depend on the parameter ui (or c0). When ui → 0,
two subwells appear at the locations of the two corresponding sub-branes, which could be
related to the resonances. And the resonances may remarkably affect the modifications of
the four-dimensional Clumb’s law at distances. In what follows, we investigate the massive
modes of the vector field by numerically solving Equation (31) with the effective potentials
(40) and (41). In Refs. [31,32], the relative probability method was introduced to investigate
the resonance of matter fields for the symmetry effective potential. The relative probability
function is of mn, which is defined in a box with borders at ±zmax:

P(mn) =

∫ zb
−zb

|ᾱn(z)|2dz
∫ zmax

−zmax
|ᾱn(z)|2dz

, (47)

where zmax = 10zb and 2zb is about the thickness of the brane.
In this scenario, we are examining the condition where m2

n < UI,II
A max

. The substantial
relative probability of massive KK modes within the interval −zb < z < zb suggests the
presence of resonances. However, due to the symmetry of the potential, the wave functions
exhibit either even-parity or odd-parity. Thus, they give two additional initial conditions to
obtain the solutions of ᾱn(z) from the Equation (31):

ᾱn(0) = 0, ᾱ′n(0) = 1, for odd-parity, (48)

ᾱn(0) = 1, ᾱ′n(0) = 0, for even-parity. (49)

Here, we show the relative probability P(mn) of massive KK resonances with different
parameter v for the symmetric degenerate I and II Bloch branes (β = 0) in Figures 5 and 6,
and the parameters are set to b = 1, c0 = −2 − 10−8.

3.3. Localization of Scalar Degree Sector

Now, we analyze the properties of the scalar sector in this model. We start with the
decomposition of scalar fields ρ and λ as

ρ(x, y) = ∑
n

ρn(x)γn(y), λ(x, y) = ∑
n

λn(x)βn(y), (50)

where �ρn(x) = m2
Snρn(x), �λn(x) = m2

Snλn(x). For the massless modes, considering
Equations (24) and (25), we have the relation

ρ0(x)γ′
0(y) = λ0(x)β0(y). (51)
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Substituting Equation (51) into (23), we find that the equation of the massless scalar
field ρ coincides with Equation (30) in the massless case, i.e.,

(∂2
y + 2A′∂y − 2ηV)γ0 = 0. (52)
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Therefore, as η = − 4
3 , the zero mode reads

γ0(y) = ks0e2A, (53)

which is of same properties as the massless vector mode for degenerate I and II Bloch
branes.

Now, we should check whether this massless scalar mode satisfies its orthonormality
condition. Therefore, substituting massless scalar modes into the action of scalar degrees
(28) and using the relation (51), we have

SS0
=

∫

d4x

{

−1

2
∂µρ0∂µρ0

}

∫

dy e2A

(

γ′2
0 − 8

3
Vγ2

0

)

(54)

with the background scalar potential V=−3
(

A′2 + 1
4 A′′

)

. From the above equation, it

seems that there is only one massless scalar mode. Since the integral

∫ ∞

−∞
dy e2A

(

γ′2
0 − 8

3
Vγ2

0

)

=
∫ ∞

−∞
dy k2

s0e6A(12A′2 + 2A′′) (55)

is a positive finite value, the conclusion that only one massless scalar mode survives on
the degenerate Bloch branes is consistent with that given before. It is very different from
the result shown in Ref. [21], where the authors indicated no massless scalar mode on the
branes.

In the following, we rely on the equations of motion to analyze massive scalar modes.
Substituting the KK decompositions (50) into Equation (23), we can obtain

∂y(e
2Aβn)λn = 2e2AηV(φ, ξ)ρnγn. (56)

From Equation (24), the massive KK modes of two scalar fields satisfy

βn�λn + 2e2AηV(φ, ξ)(ρnγ′
n − λnβn) = 0. (57)

Combining the above equation and (56), and then canceling the scalar field ρ, we have

−∂2
y(e

2Aβn) +

(

2A′ +
V′

V

)

∂y(e
2Aβn) + 2ηVe2Aβn = m2

Snβn. (58)

Note that the parameter η is fixed to − 4
3 . Switching to the conformal coordinate z, βn(y) =

V1/2e−
1
2 A β̄n(z), and plugging the background scalar potential (5) into the above equation,

the equation for KK modes of the scalar field λ becomes

[

−∂2
z + US(z(y))

]

β̄n(z) = m2
Sn β̄n(z) (59)

with the effective potential US(z(y))

US(z(y)) =

(

35

4
A′2 +

1

2
A′′ +

A′V′

2V
+

3V′2

4V2
− V′′

2V

)

e2A, (60)

where the background scalar potential V=−3
(

A′2 + 1
4 A′′

)

.

Since the expressions of effective potential US(z(y)) are very complex after substituting
the asymmetry degenerate Bloch brane solutions into Equation (60), here we only display
the profile of US(z(y)) with different parameters (see Figures 7 and 8). It is clear that the
effective potential is an infinite single well such as β = 0 for the symmetric degenerate
I and II Bloch solutions, while for the asymmetric degenerate Bloch solutions β = 1/16,
there are infinite wells when c0 − 2 ≫ 0 (asymmetry degenerate I Bloch) or c0 − 2 ≫ 0
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(asymmetry degenerate II Bloch). Therefore, there is a zero mode and a set of massive KK
modes for the scalar λ, which can be obtained by solving Equation (59) numerically. Then,
substituting the KK modes βn into the coupling equations of scalar degrees, we can also
obtain the KK modes of the scalar field ρ, which do not hold up in the following.
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Figure 7. The effective potential UII
S (z(y)) for the scalar field λ with different parameters in the

degenerate I Bloch brane world. The parameters are set to: b = v = 1; c0 = −2 − 10−8 (thick blue

lines); c0 = −2 − 10−4 (dashed red lines); c0 = −2.5 (thin green lines).
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Figure 8. The effective potential UII
S (z(y)) of the scalar field λ with different parameters in the

degenerate II Bloch brane world. The parameters are set to: b = v = 1; c0 = 1
16+10−8 (thick blue lines);

c0 = 1
16+10−4 (dashed red lines); c0 = 0.01 (thin green lines).

4. Conclusions

In this paper, we examine the localization of the U(1) gauge field coupled to the scalar
potential on symmetric and asymmetric degenerate Bloch branes. The Bloch brane solutions
are characterized by four parameters (b, v, c0, β), where v influences the thickness of the
brane, β solely determines the degree of asymmetry of the brane, and c0 impacts both the
width and depth of the brane. Moreover, for the asymmetric degenerate I (or II) Bloch
brane, when b = v = 1, c0 − 2 ≪ 0, (or b = v = 1, c0 − 1/16 ≪ 0), these branes are double
(or single).

Firstly, we decomposed the five-dimensional U(1) gauge field AM into one vector
degree of freedom and two scalar degrees of freedom, which are independent of each other.
For the vector part, we obtained the massless vector field on the two types of Bloch branes
and a set of massive KK resonances. As the parameter v increases, more and more massive
KK resonances emerge, since the effective potential of the vector KK modes deepens. For
the scalar part, there are two types of scalar fields. The massless scalar fields are coupled
with each other, while two sets of massive scalar KK modes are independent. Similar to the
vector effective potential, both types of scalar effective potentials are infinite wells for the
two types of degenerate Bloch brane solutions. Therefore, there is only one massless scalar
mode and two sets of independent infinite massive KK resonances.
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Next, we explored the effect of the parameter c0 on the localization of scalar modes.
The results indicated that, for the symmetric degenerate I Bloch brane, the effective potential
becomes narrower as c0 decreases. However, for the II Bloch brane, the opposite is true.
As c0 decreases, the effective potential transitions from double wells to a single well for
the asymmetric degenerate I Bloch brane. This change also applies to the asymmetric
degenerate II brane as c0 increases. We will consider other coupling methods for the gauge
field to obtain the four-dimensional zero mode in future work, such as the coupling with
the Einstein tensor GMN AM AN , with the Ricci tensor RMN AM AN , or with the energy
momentum of matter fields TMN AM AN .

Author Contributions: Writing, review and editing, Y.Z. and Y.-Z.D. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Hunan Province, China

(Grant No. 2022JJ40033), and the National Natural Science Foundation of China (Grant No. 12247101).

Data Availability Statement: Our research data is fully disclosed within the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Randall, L.; Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370. [CrossRef]

2. Randall, L.; Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690. [CrossRef]

3. Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. 1998, 29,

263–272. [CrossRef]

4. Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. New dimensions at a millimeter to a fermi and superstrings at a Tev.

Phys. Lett. 1998, 436, 257–263. [CrossRef]

5. Gremm, M. Thick domain walls and singular spaces. Phys. Rev. D Part. Fields 2000, 62, 044017. [CrossRef]

6. Gass, R.; Mukherjee, M. Domain wall space-times and particle motion. Phys. Rev. 1999, 60, 065011.

7. Gremm, M. Four-dimensional gravity on a thick domain wall. Phys. Lett. B 2000, 478, 434–438. [CrossRef]

8. Afonso, V.I.; Bazeia, D.; Losano, L. First-order formalism for bent brane. Phys. Lett. B 2006, 634, 526–530. [CrossRef]

9. Bazeia, D.; Gomes, A.R. Bloch brane. J. High Energy Phys. 2004, 2004, 012. [CrossRef]

10. de Souza Dutra, A.; de Faria, A.C.A., Jr.; Hott, M. Degenerate and critical bloch branes. Phys. Rev. D Part. Fields 2008, 78, 043526.

[CrossRef]

11. de Souza Dutra, A.; Amaro de Faria, A.C., Jr.; Hott, M. Degenerate and critical domain walls and accelerating universes driven by

bulk particles. arXiv 2009, arXiv:0903.5533.

12. Bajc, B.; Gabadadze, G. Localization of matter and cosmological constant on a brane in anti de sitter space. Phys. Lett. B 2000, 474,

282–291. [CrossRef]

13. Oda, I. Localization of matters on a string-like defect. Phys. Lett. B 2000, 496, 113–121. [CrossRef]

14. Melfo, A.; Pantoja, N.; Tempo, J.D. Fermion localization on thick branes. Phys. Rev. D Part. Fields 2006, 73, 04403. [CrossRef]

15. Liang, J.; Duan, Y.-S. Localization and mass spectrum of spin-1/2 fermionic field on a thick brane with poincare symmetry.

Europhys. Lett. 2009, 87, 40005. [CrossRef]

16. Chumbes, A.E.R.; da Silva, J.M.H.; Hott, M.B. A model to localize gauge and tensor fields on thick branes. Phys. Rev. D 2012, 85,

085003. [CrossRef]

17. Barbosa-Cendejas, N.; Herrera-Aguilar, A. Localization of 4-d gravity on pure geometrical thick branes. Phys. Rev. DPart. Fields

2006, 73, 084022. [CrossRef]

18. Alencar, G.; Landim, R.; Tahim, M.; Filho, R.C. Gauge field localization on the brane through geometrical coupling. Phys. Lett. B

2014, 739, 125–127. [CrossRef]

19. Zhao, Z.-H.; Xie, Q.-Y.; Zhong, Y. New localization method of u(1) gauge vector field on flat branes in (asymptotic) ads5 spacetime.

Class. Quantum Gravity 2015, 32, 035020. [CrossRef]

20. Stueckelberg, E.C.G. Interaction energy in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta 1938, 11,

225–244.

21. Vaquera-Araujo, C.A.; Corradini, O. Localization of abelian gauge fields on thick branes. Eur. Phys. J. C Part. Fields 2015, 75, 48.

[CrossRef]

22. Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S. Localization of abelian gauge fields with stueckelberg-like geometrical

coupling on f(t, b)-thick brane. Eur. Phys. J. C Part. Fields 2023, 83, 388. [CrossRef]

23. Correa, R.A.C.; de Souza Dutra, A.; Hott, M.B. Fermion localization on degenerate and critical branes. Class. Quantum Grav. 2011,

28, 155012. [CrossRef]

24. Cruz, W.T.; Lima, A.R.P.; Almeida, C.A.S. Gauge field localization on the bloch brane. Phys. Rev. D Part. Fields 2013, 87, 045018.

[CrossRef]

http://doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1103/PhysRevD.62.044017
http://dx.doi.org/10.1016/S0370-2693(00)00303-8
http://dx.doi.org/10.1016/j.physletb.2006.02.017
http://dx.doi.org/10.1088/1126-6708/2004/05/012
http://dx.doi.org/10.1103/PhysRevD.78.043526
http://dx.doi.org/10.1016/S0370-2693(00)00055-1
http://dx.doi.org/10.1016/S0370-2693(00)01284-3
http://dx.doi.org/10.1103/PhysRevD.73.044033
http://dx.doi.org/10.1209/0295-5075/87/40005
http://dx.doi.org/10.1103/PhysRevD.85.085003
http://dx.doi.org/10.1103/PhysRevD.73.084022
http://dx.doi.org/10.1016/j.physletb.2014.10.040
http://dx.doi.org/10.1088/0264-9381/32/3/035020
http://dx.doi.org/10.1140/epjc/s10052-014-3251-2
http://dx.doi.org/10.1140/epjc/s10052-023-11567-y
http://dx.doi.org/10.1088/0264-9381/28/15/155012
http://dx.doi.org/10.1103/PhysRevD.87.045018


Universe 2023, 9, 450 15 of 15

25. Xie, Q.-Y.; Zhao, Z.-H.; Yang, J.; Yang, K. Fermion localization and degenerate resonances on brane array. Class. Quantum Gravity

2019, 37, 025012. [CrossRef]

26. Zhao, Z.-H.; Liu, Y.-X.; Zhong, Y. U(1) gauge field localization on a bloch brane with chumbes-holf da silva-hott mechanism.

Phys. Rev. D Part. Fields 2014, 90, 045031. [CrossRef]

27. Bazeia, D.; Ferreira, D.A.; Marques, M.A. Internal structure of cuscuton Bloch brane. Eur. Phys. J. C 2021, 81, 619. [CrossRef]

28. Xie, Q.-Y.; Yang, J.; Zhao, L. Resonance mass spectra of gravity and fermion on bloch branes. Phys. Rev. D Part. Fields 2013, 88,

105014. [CrossRef]

29. Guerrero, R.; Melfo, A.; Pantoja, N.; Rodriguez, R.O. Close to the edge: Hierarchy in a double braneworld. Phys. Rev. D Part.

Fields 2006, 74, 084025. [CrossRef]

30. Batell, B.; Gherghetta, T. Yang-mills localization in warped space. Phys. Rev. D Part. Fields 2007, 75, 025022. [CrossRef]

31. Almeida, C.A.S.; Casana, R.; Ferreira, M.M.; Gomes, A.R. Fermion localization and resonances on two-field thick branes. Phys.

Rev. D Part. Fields 2009, 79, 125022. [CrossRef]

32. Liu, Y.-X.; Zhao, Z.-H.; Wei, S.-W.; Duan, Y.-S. Bulk matters on symmetric and asymmetric de sitter thick branes. J. Cosmol.

Astropart. Phys. 2009, 2009, 003. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-6382/ab5b74
http://dx.doi.org/10.1103/PhysRevD.90.045031
http://dx.doi.org/10.1140/epjc/s10052-021-09434-9
http://dx.doi.org/10.1103/PhysRevD.88.105014
http://dx.doi.org/10.1103/PhysRevD.74.084025
http://dx.doi.org/10.1103/PhysRevD.75.025022
http://dx.doi.org/10.1103/PhysRevD.79.125022
http://dx.doi.org/10.1088/1475-7516/2009/02/003

	Introduction
	Review of Bloch Brane Model
	Case I: Degenerate I Bloch Brane 
	Case II: Degenerate II Bloch Brane 

	Localization of Abelian Gauge Field
	Equation of Motion and Decoupling Actions
	Localization of Vector Degree 
	Localization of Scalar Degree Sector

	Conclusions
	References 

