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Abstract.
We resort to the concepts of realism and indefiniteness introduced in Ref. [40], and based on

the exploitation of ideal quantum tomography procedures. These concepts are connected to the
existence of nonlocal correlations, and moreover allow to introduce a measure of nonlocality. In
this paper we apply and test the approach of Ref. [40] in the physically relevant phenomenon of
two-flavor neutrino oscillations, both in the plane-wave approximation and in the wave-packet
approach, finding meaningful confirmations of the validity of the methodology, which allows
to discriminate among distinct characters of different observables, and consequently on their
physical relevance.

1. Introduction
The study of quantum correlations, developed in the field of quantum information and
communication, has been recently translated and applied to other scientific areas such as
elementary particles and structure of matter [1]–[36]. Particular attention has been devoted to
define measures aimed to quantify the quantumness, and to identify a hierarchy among quantum
correlations [37]–[39] with the nonlocal advantage of quantum coherence (NAQC) being the
strongest. The quest is much simple if one considers pure bipartite quantum states, because in
this case the concept of entanglement, quantified by the von Neumann entropy, encompasses all
measures of quantum correlations. More challenging is the case of pure multi-partite states or
of mixed states, or even more the case of mixed multi-partite states.

It is worth to be reported that for bipartite (pure or mixed) states one can identify the
precise hierarchy among quantumness quantifiers that has shown in Fig.1, and many authors
have studied these measures in different contexts.

In this paper we consider the approach of Ref.[40] in which the presence of nonlocal quantum
correlations is associated to the dicotomy realism/irrealism (or indefiniteness), in terms of which
a quantified content of nonlocality can be defined. The authors focus their attention not only
on the quantum state, but also on observables and their measurements. In fact, starting from
the premise than an observable is real after it is signal-measured, they envisage a thomography-
based protocol that, given a quantum state, allows to propose a quantifier for the degree of
indefiniteness of an observable. This allows to investigate quantum correlations and to signal
nonlocality even for separable states, thus revealing nonlocal aspects that are not captured by
Bell inequality violations [41]–[43]. Here we test the approach of Ref.[40] for a phenomenon
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of remarkable interest as the neutrino oscillations, which we describe both in the plane-wave
approximation (pure state) and in the wave-packet approach (mixed state).

Figure 1: Hierarchy of quantum correlations (Figure adapted from Ref.[37]).

The paper is organized as follows. In Section 2 we briefly sum up the content of Ref.[40].
In Section 3 we test this approach for the phenomenon of neutrino oscillations, investigating
nonlocal features. Conclusions follow. Finally, in Appendix some examples to clarify the topics
are included.

2. Defining realism and indefiniteness
In Ref. [40] the following elements are considered: a state ρ of a generic quantum system
associated to a separable Hilbert space H, a subsystem of this global system associated to a
Hilbert subspace H1 ∈ H, and an observable (Hermitian operator) Ô1 on H1. The first step

is to provide a definition of realism for the operator Ô1 and, using the complementary point
of view, to quantify the amount of its possible indefiniteness. Then the final goal is to show
that the presence of nonlocal quantum correlations implies a difference between the amount
of indefiniteness of Ô1 with respect to the global state ρ, and with respect to the state of the
subsystem.

Very roughly speaking, one can say that the observable Ô1 on H1 is “real” relative to the
state ρ of the global system if “it allows the complete reconstruction of this state”. To obtain a
more precise definition of this criterion, in Ref. [40] two procedures are compared, both based
on state tomography. Quantum state tomography is a tool to reconstruct the density matrix
of an unknown ensemble of particles through a series of measurements [44, 45]. In order to
eliminate statistical errors, a complete and exact reconstruction of a state would require an
ideal tomography, realized by performing an infinite number of measurements on identically
prepared systems. Although unrealistic, such a procedure can be considered in principle to
obtain, as in Ref. [40], some physically sound concepts.

In the first procedure described in Ref. [40] one just repeats a state tomography as many times
as necessary to obtain at last an ideal tomography that completely determines the density matrix
ρ of the state. The second procedure is again based on state tomography, but it is modified
in such a way that the observable Ô1 plays a “disturbing” role. In fact now, in every run of
the procedure one places a secret measurement of this observable in between the preparation
of the state and the tomography. In practice, the state is prepared, a secret measurement of
the observable Ô1 is performed, and then the tomography is realized. Subsequently, this step
is repeated again and again. Obviously, in general the disturbing role of the observable Ô1 can
limit the precision with which the quantum state is reconstructed. To understand this point, we
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express the secretly measured observable Ô1 as

Ô1 =
∑
k

λ1k p
(Ô1)
k (1)

where λ1k and p
(Ô1)
k = |v(Ô1)

k ⟩⟨v(Ô1)
k | are, respectively, the k-th eigenvalue and the projector

(projectors) associated to to the eigenstate (eigenstates) |v(Ô1)
k ⟩ relative to this eigenvalue.

According to Quantum Theory, without any information on the secret measurements, the best
description of the state of the system after the state tomography will be [46]

ΦÔ1
(ρ) =

∑
k

p
(Ô1)
k ρ p

(Ô1)
k =

∑
k

P
(Ô1)
k p

(Ô1)
k

⊗
ρ2|λ1k

, (2)

where

P
(Ô1)
k = Tr(p

(Ô1)
k ρ p

(Ô1)
k ) (3)

is the probability associated with this particular outcome of the measurement, and

ρ2|λ1k
=

Tr1(p
(Ô1)
k ρ p

(Ô1)
k )

P
(Ô1)
k

(4)

is the state of the rest of the system given the outcome p
(Ô1)
k .

On the basis of this approach, one thus can see that the best description of the state of the
system obtained by following the second procedure provides a complete reconstruction of the
quantum state if and only if

ΦÔ1
(ρ) = ρ. (5)

In this case the secret measurement of the observable Ô1 does not forbid the complete
reconstruction of the state, and thus in Ref. [40] the observable Ô1 is defined as an “element

of reality”. When condition (5) is not satisfied, to the observable Ô1 can instead be associated
a certain degree of indefiniteness, quantified in terms of entropic distance by the indefiniteness
measure

J (Ô1|ρ) = S(ΦÔ1
(ρ))− S(ρ). (6)

The interesting point is that this definition can be connected to the presence of nonlocal quantum
correlations, and can lead to a measure of nonlocality.

First of all, one can exploit definition (6) to show that the presence of nonlocal quantum
correlations between the subsystem, labeled 1, and the rest of the global system, labeled
2, implies different values for “global” and “local” indefiniteness of an observable. In fact,
one can evaluate indefiniteness of the observable Ô1 both with respect to the global state
ρ (global indefiniteness) and with respect the reduced state ρ(1) = Tr2ρ associated to the
subspace H1. If one defines the quantity D[Ô1]

in terms of the mutual information I1:2 as

D[Ô1]
(ρ) = I1:2(ρ)− I1:2(ΦÔ1

(ρ)), it can be proved the relation [40]

∆J (Ô1)
.
= J (Ô1|ρ)− J (Ô1|ρ(1)) = D[Ô1]

(ρ). (7)

From this relation eventually follows the inequality

∆J (Ô1) ≥ D1(ρ), (8)
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where D1(ρ) = min[Ô1]
D[Ô1]

(ρ) is nothing but the quantum discord. Inequality (8) shows that

the presence of nonlocal correlations (i. e. D1(ρ) > 0) has consequences on the indefiniteness

property of the observable Ô1, and this prove the thesis of Ref. [40]. Incidentally, it is worth to
be reported that in Ref. [47] it is shown that the concepts of local realism and local indefiniteness
can lead in the case of pure states to complete complementarity relations. In fact, if one defines
the amount of local realism as

R(Ô|ρ1) = log2d1 − J (Ô|ρ1), (9)

due to the fact that ΦÔ(ρ1) = ρdiag1 , one has

R(Ô|ρ1) = Pvn(ρA) + Svn(ρA), (10)

and
J (Ô|ρ1) = Cre(ρA). (11)

In Ref. [40] it is further shown that the property of indefiniteness implies a degree of
nonlocality which can be quantified. In fact, one can consider two space-like separated
subsystems 1 and 2, and investigate how a physical action on one subsystem influences the
reality of the other. This leads to the concept of minimal nonlocality [40] defined by

Nmin(ρ) = min
Ô1,Ô2

N (Ô1, Ô2|ρ), (12)

where Ô1, Ô2 denotes operators on subsystems 1 and 2, and

N (Ô1, Ô2|ρ) = J (Ô1|ρ)− J (Ô1|ΦÔ2
(ρ)). (13)

In later articles [41, 48] it is shown that this concept of nonlocality have interesting properties:
it is is more resilient with repsect to local and bilocal weak measurements, and the set of states
possessing this type of quantumness forms a strict superset of symmetrically discordant states
and, therefore, of discordant, entangled, steerable, and Bell-nonlocal states.

This concludes the overview on Ref. [40], and in the following we will investigate
realism/indefiniteness and nonlocality in the case of neutrino oscillations, where the relevant
quantum correlation will be the quantum discord (see Fig.1).

3. Neutrino oscillations
Neutrino oscillations are a rare example of a macroscopically extended quantum phenomenon,
due to the fact that a neutrino flavor state is a superposition of mass eigenstates with slightly
different mass values. A neutrino which starts with a definite flavor (electronic νe, muonic νµ
or tauonic ντ ) subsequently evolves in time as a superposition of different flavors, among which
it oscillates. The oscillations can be described in plane-wave approximation, where the neutrino
state is a pure quantum state and only a time dependence is present. This description can be
effective under some conditions, but in other cases is required a more realistic approach [23],
where localization effects can be accounted for, namely the wave-packet approach [49, 50] where
one starts with a dependence both on time and space, but where, due to the long time exposure
of the detectors, it is convenient to consider an average in time of the density matrix operator.
In this case a mixed state is obtained, and the ultimate dependence is on space.

Since the density matrices in the two approaches share the same general form, it is possible
to follow a common procedure which we develop in the subsection 3.1. In subsections 3.2, 3.3
we will describe results in the case of plane-wave approximation and of wave-packet approach,
respectively.
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3.1. Common Procedure
In order to apply the concepts of the previous section, the two-flavor neutrino system can be
described by a two-qubit system: |νe⟩ ≡ |10⟩ , |νµ⟩ ≡ |01⟩ [1]. Adopting this correspondence,
the density matrix, associated to the bipartite neutrino state |να(t)⟩ = aαα(t) |να⟩+ aαβ(t) |νβ⟩,
in the plane-wave approximation is

ρ
(α)
αβ (t) =


0 0 0 0
0 |aαα(t)|2 aαα(t)a

∗
αβ(t) 0

0 a∗αα(t)aαβ(t) |aαβ(t)|2 0
0 0 0 0,

 (14)

where α, β = e, µ, β ̸= α, and the time-dependent terms aη,η′(t) η, η′ = α, β, denote the
transition probability amplitudes. Then, obviously:

|aαα(t)|2 = Pαα(t), |aαβ(t)|2 = Pαβ(t) (15)

and Pαα(t), Pαβ(t) are the transition probabilities. Eq.(14) is referred to the situation in which
a neutrino starts in the flavor α and then gives rise to a superposition of flavors α, β, β ̸= α.

The density matrix1 in the wave packet approach is given by [4]:

ρα(x) =
∑
k,j

UαkU
∗
αjfjk(x) |νj⟩ ⟨νk| , (16)

where fjk(x) = exp

[
−i

∆m2
jkx

2E −
(

∆m2
jkx

4
√
2E2σx

)2]
. We express ρα(x) in terms of flavor eigenstates

by establishing the identification |να⟩ = |δαe⟩e |δαµ⟩µ |δατ ⟩τ . By using the relation |νi⟩ =∑
α Uαi |να⟩, we can write:

ρ(α)eµτ (x) =
∑
βγ

Fα
βγ(x) |δβeδβµδβτ ⟩ ⟨δγeδγµδγτ | (17)

where α = e, µ, τ and

Fα
βγ(x) =

∑
kj

U∗
αjUαkfjk(x)UβjU

∗
γk. (18)

For example, the explicit form for the density matrix associated to an initial electronic
bipartite neutrino state (two flavors), is given by:

ρ(e)eµ (x) =


0 0 0 0
0 F e

ee(x) F e
eµ(x) 0

0 F e
µe(x) F e

µµ(x) 0
0 0 0 0

 . (19)

We note that we can write with shorthand notation both density matrices (14), (19) in the
common general form

ρ(t) =


0 0 0 0
0 a b 0
0 b∗ c 0
0 0 0 0

 . (20)

1 Eqs.(16)-(18) are presented for the general case of three flavors. However, in the following, we will consider
two-flavor reductions for the various experimental situations.
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Obviously, in the plane-wave case (ρ = ρα(t)):

a = |aαα(t)|2, b = aαα(t)a
∗
αβ(t), c = |aαβ(t)|2, (21)

while in the wave-packet approach (ρ = ρeµ(x)):

a = F e
ee(x), b = F e

eµ(x), c = F e
µµ(x). (22)

The Pauli operators σx, σy, σz and the identity matrix 12 provide a basis for the four-
dimensional space with two-dimensional subspaces2. Then, we can consider the action of these
operators on ρ and investigate the concepts introduced in the previous section. Here, we report
the main results of this analysis. We remark that in all the plots the Pauli matrices are always
referred to a subspace after reduction because we are investigating the influence of observables
defined on a subsystem on the observables defined in the other subsystem.

• σx results to be completely not real when it acts on ρ, i.e. J (σx|ρ) = 1, while its local
indefiniteness is J (σx|ρ1) = 1 + a log2 a+ c log2 c. The difference between global and local
indefiniteness of σx is equal to ∆J (σx) = D[σx](ρ) = −a log2 a − c log2 c, which indeed
coincides with the quantum discord evaluated for ρ.

• σz results to be partially not real when it acts on ρ, i.e. J (σz|ρ) = −a log2 a −
c log2 c + λ+ log2 λ+ + λ− log2 λ−, with λ± =

1±
√

1−4(ac−|b|2)
2 , while its local indefiniteness

is J (σz|ρ1) = 0. The difference between global and local indefiniteness of σz is equal
to ∆J (σz) = D[σz ](ρ) = −a log2 a − c log2 c, which coincides with the quantum discord
evaluated for ρ.

Regarding the nonlocality indicator, we find:

• N (σx, σy|ρ) = N (σy, σx|ρ) = −a log2
a
2 − c log2

c
2 + λ−

2 log2
λ−
4 + λ+

2 log2
λ+

4 .

• N (σx, σz|ρ) = N (σz, σx|ρ) = 1 + a log2
a
2 + c log2

c
2 − a log2 a− c log2 c.

• N (σy, σz|ρ) = N (σz, σy|ρ) = 1 + a log2
a
2 + c log2

c
2 − a log2 a− c log2 c.

In the following sections we discuss these results for pure and mixed bipartite neutrino states in
connection with parameters from some important neutrino oscillation experiments.

3.2. Plane-wave approximation
Now, by using the correspondence in Eq.(21) it is possible to discuss the previous results for the
case of a two flavor pure neutrino state. In Fig.2 we plot the local and global indefiniteness of
σx, σy and σz as functions of L/E for an initial electronic neutrino, by using parameters from
Daya-Bay experiment (see Table).

Daya-Bay MINOS

∆m2
ee = 2.42+0.10

−0.11 × 10−3eV 2 ∆m2
32 = 2.32+0.12

−0.08 × 10−3eV 2

sin2 2θ13 = 0.084+0.005
−0.005 sin2 2θ23 = 0.95+0.035

−0.036

L ∈ [364m, 1912m] L = 735 km
E ∈ [1MeV, 8MeV ] E ∈ [0.5GeV, 50GeV ]

Let us analyze in particular the case of σz operator, which it is locally completely real. So
we can predict with certainty the result of a measurement on the state. However, this realism
is influenced by the other subsystem. In fact, an indefiniteness is introduced when correlations,
quantified by a discord-like measure, between subsystems are present: in this case σz becomes

2 We consider σi = |ψe
i+⟩ ⟨ψe

i+| − |ψe
i−⟩ ⟨ψe

i−|, i = x, y, z, when it acts on the reduced density matrix ρ
(e)
e , while

σ
(e)
i = (|ψe

i+⟩ ⟨ψe
i+| − |ψe

i−⟩ ⟨ψe
i−|)⊗ 1

(µ)
2 if it acts on the global state ρ

(e)
eµ .
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Figure 2: Reality inseparability of σx (a),
σy (b), σz (c) for an initial electronic pure
neutrino state (Daya-Bay).
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Figure 3: Reality inseparability of σx (a), σy
(b), σz (c) for an initial muonic pure neutrino
state (MINOS).

partially not real on the global system. This demonstrates how the reality of an observable
cannot be considered separately by the other subsystems. Similar considerations are valid for σx
and σy, whose local indefiniteness is strongly dependent on the correlations between subsystems3.

Furthermore, it is possible to observe that the terms D[σx](ρ
(e)
eµ ), D[σy ](ρ

(e)
eµ ) and D[σz ](ρ

(e)
eµ )

3 The physical meaning of the Pauli operators in this context can be understood in terms of number operators
for neutrinos with different flavors in quantum mechanics, or in terms of flavor charge operators in a quantum
field theory setting [3].
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Figure 4: Nonlocality indicators for an initial
electronic pure neutrino state (Daya-Bay).
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Figure 5: Nonlocality indicators for an initial
muonic pure neutrino state (MINOS).

coincide among themselves and are equal to the quantum discord evaluated for the state under
examination. Thus, all the operators minimize the discord-like measure, Eq.(7).

In Fig.3 it is possible to observe the local and global indefiniteness of σx, σy and σz as
functions of L/E for an initial muonic neutrino, by using parameter from MINOS experiment
(see Table). In this case, similar considerations as for the electronic case are valid. Here, we only
point out that the different trends are due to the different values of the mixing angles associated
to the experiments.

In Fig.4 we can observe the nonlocality indicators N (σx, σy|ρ(e)eµ ), N (σx, σz|ρ(e)eµ ) and

N (σy, σz|ρ(e)eµ ) for an initial electronic state. We can observe that the only non zero indicator is

N (σx, σy|ρ(e)eµ ). This means that the reality of the observable σx on one subsystem is influenced
by unrevealed measurement of observable σy on the other subsystem and vice-versa. On the

other hand, since N (σx, σz|ρ(e)eµ ) = N (σy, σz|ρ(e)eµ ) = 0, unrevealed measurements of observable σz
on one subsystem cannot influence the reality of observables σx and σy on the other subsystem.
Furthemore, from Figs. 2,4 we can observe that in the particular case of a neutrino bipartite
state:

• N (σx, σy|ρ(e)eµ ) = J(σx|ρe) = J(σy|ρe),

• N (σx, σz|ρ(e)eµ ) = N (σy, σz|ρ(e)eµ ) = J(σz|ρe).

In Fig.5 we can observe the nonlocality indicators N (σx, σy|ρ(µ)µτ ), N (σx, σz|ρ(µ)µτ ) and

N (σy, σz|ρ(µ)µτ ) for an initial muonic state, by using parameter from MINOS experiment. For
the νµ → ντ oscillation, analogous considerations as for the above Daya-Bay case are valid.

3.3. Wave-packet approach
By using the correspondence in Eq.(22) it is possible to discuss the previous results for the
case of a two flavor mixed neutrino state, for which a wave packet approach for oscillations is
considered. In Figs. 6, 7 we plot the local and global indefiniteness of σx, σy and σz as functions
of space for an initial and muonic electronic neutrino, by using parameters from Daya-Bay and
MINOS experiments, respectively. For the electronic case, the spatial extent of the neutrino
wave packet we choose is σx = 5 · 10−6m, while for the muonic case we choose σx = 7 · 10−9m.
These values are perfectly in agreement with the limits indicated in Ref.[51]. In Fig.5 we plot

the nonlocality indicators N (σx, σy|ρ(µ)µτ ), N (σx, σz|ρ(µ)µτ ) and N (σy, σz|ρ(µ)µτ ) for an initial muonic
mixed state.
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Figure 6: Reality inseparability of σx (a),
σy (b), σz (c) for an initial electronic pure
neutrino state in the wave packet approach
(Daya-Bay).
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Figure 7: Reality inseparability of σx (a), σy
(b), σz (c) for an initial muonic pure neutrino
state in the wave packet approach (MINOS).

The considerations made in the previous section continue to apply even in the case of a
neutrino mixed state. We observe the different long distance behavior for the initial electronic
and the muonic cases, due to the different values of the mixing angles associated to these
oscillations.
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Figure 8: Nonlocality indicators for an initial
electronic pure neutrino state in the wave
packet approach (Daya Bay).
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Figure 9: Nonlocality indicators for an initial
muonic pure neutrino state in the wave packet
approach (MINOS).

4. Conclusions
In this paper, we have analyzed the nonlocality associated to neutrino oscillations by exploiting
the approach of Ref.[40], in which the concept of reality/indefiniteness of an operator is
introduced. We have considered both pure and mixed neutrino bipartite states, for which we
use a plane wave approximation and a wave packet approach, respectively. In both cases, it has
been possible to conclude that the presence of correlations influences the realism of an operator
for the neutrino system. In other words, the reality of an observable acting on one part of the
neutrino bipartite system cannot be considered separately from the other part.

Again, we observe that the realism of an operator when it acts on one subsystem can be
influenced by unrevealed measurements of another operator on the other subsystem. Whether
this happens or not, it depends on the chosen operators. In particular, for the case at hand,
a measurement of σz on one subsystem cannot influence the reality of operators σx, σy on the
other subsystem and vice-versa, while a measurement of σx(σy) influences the reality of σy(σz).

These concepts and tools can be useful to identify physically relevant observables when one
aims to go in to detail in investigating properties of quantum correlations in the physics of
neutrino oscillations, with also an eye on possible future applications in quantum information
protocols.

Appendix A.
First example
For pure states the discord coincides with entanglement, and it signals the absence of nonlocal
correlations if it is zero. For the following separable pure state:

|Ψ⟩ = 1√
2
[|00⟩+ |01⟩].

For this state we obtain:

• J (σx|ρ) = 1, J (σx|ρ1) = 1.

• J (σy|ρ) = 1, J (σy|ρ1) = 1.

• J (σz|ρ) = 0, J (σz|ρ1) = 0.

In the end, we can conclude that ∆J (σx) = ∆J (σy) = ∆J (σz) = 0. Again:

• N (σx, σy|ρ) = 1.

• N (σx, σz|ρ) = 0.
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• N (σy, σz|ρ) = 0.

To conclude, the minimum non-locality is given by Nmin = 0.

Second example
As second example we choose the Bell state

|Ψ⟩ = 1√
2
[|00⟩+ |11⟩].

For this state we obtain:

• J (σx|ρ) = 1, J (σx|ρ1) = 0.

• J (σy|ρ) = 1, J (σy|ρ1) = 0.

• J (σz|ρ) = 1, J (σz|ρ1) = 0.

In the end, we can conclude that ∆J (σx) = ∆J (σy) = ∆J (σz) = 1. Again:

• N (σx, σy|ρ) = 1.

• N (σx, σz|ρ) = 1.

• N (σy, σz|ρ) = 1.

To conclude, the minimum non-locality is given by Nmin = 1.

Third example
As third example we consider the maximal discord-separable mixed state:

ρ =
1

6


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 .

For this state we obtain:

• J (σx|ρ) = 1
3 , J (σx|ρ1) = 0.

• J (σy|ρ) = 1
3 , J (σy|ρ1) = 0.

• J (σz|ρ) = 1
3 , J (σz|ρ1) = 0.

In the end, we can conclude that ∆J (σx) = ∆J (σy) = ∆J (σz) =
1
3 and coincide with the

quantum discord [52]. Again:

• N (σx, σy|ρ) = 1.25.

• N (σx, σz|ρ) = 1.25.

• N (σy, σz|ρ) = 1.25.

To conclude, the minimum non-locality is given by Nmin = 1.25.
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J (eds) Quantum State Estimation. Lecture Notes in Physics 649 114
[46] Nielsen M A and Chuang I L 2003 Quantum Computation and Quantum Information (Cambridge University

Press)
[47] Basso M L W and Maziero J 2021 EPL 135 60002
[48] Gomes V S and Angelo R M 2019 Phys. Rev. A 99 012109
[49] Giunti C and Kim C W 1998 Phys. Rev. D 58 017301
[50] Giunti C 2004 Found. Phys. Lett. 17 103
[51] Smolsky J et al. [arXiv:2404.03102v2 ]
[52] Bellomo G and Plastino A 2015 Int. J. Quantum Inf. 13(2) 1550015


