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Abstract

We are witnessing the evolution of cosmology into a precision science. When the universe cools
after the big bang, hydrogen atoms eventually form releasing the cosmic microwave background.
Measurements of this, combined with direct observations of fully formed galaxies through tele-
scopes inform us about the seeding of structure across the cosmos. In-between these milestones
there is little-to-no observational data, particularly regarding the first stars and their growth
into mature galaxies. Primordial hydrogen must eventually progress into everything we see
today, and we know from local observations of galaxies that the remaining hydrogen must also
become ionised again. A new generation of radio telescopes aim to detect the cosmological
21cm line of these hydrogen atoms in order to observe these events directly. This will provide
unmatched insight into the formation of the first stars and their progression into the early
galaxies responsible for reionisation. As never seen before, these new instruments will pro-
vide tomographical maps of our universe that fill in a significant proportion of the unobserved

universe. Scientists across the globe hope to witness the cosmic dawn within the next decade.

This work is focused on improving the statistical analyses techniques that probe the first star
formation and when the early universe is being reionised - the cosmic dawn and epoch of reion-
isation respectively. The majority of this work looks at Bayesian model selection, which is a
robust method for quantifying how well models fit observations. We apply it within the context
of high redshift 21cm power spectrum observations, comparing a variety of scale and morpho-
logical implementations of the reionisation process. We also use it to look into distinguishing
effects caused by the remnants of the first stars and the statistical benefits of including UV
observations. We then turn to improving the likelihood statistic, required for Bayesian analy-
ses. The Morlet transform is implemented as an alternative to the Fourier transform within the
power spectrum to enable the whole observational light-cone to be analysed at once. Bayesian
analyses are incredibly promising and with this work we are a step closer to statistical machin-
ery that provides objective conclusions about the quality of models when presented with data.
Synergy between observational methods is important to maximise the discerning power of any
Bayesian method. Now that observations are becoming more precise within cosmology, we can

begin to constrain primordial astrophysics.
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has been re-styled from Watkinson & Pritchard (2014). . . . ... .. ... ..

Slices of the redshift 8 coeval brightness temperature cube for the toy models.
Figures 3.2(a), 3.2(b), 3.2(c), 3.2(d), 3.2(e), and 3.2(f) represent the FZH, Inv
FZH, MHR, F Inv MHR, F MHR, and Inv MHR models respectively. Please see

Table 3.1 for a summary of the models. . . . . . .. .. ... ... ... ... ..

A summary of the toy models used. 3.3(a) EoR histories for each toy model,
produced with zyr ~ 0.5 at z = 8. Blue and purple represent the 21CMFAST
models (FZH) and MHR based models respectively, with dotted lines to indicate
the inverse the models. Please note that all MHR based models are constructed
to have the same EoR history, hence there is only one purple line. 3.3(b) 21em PS
for the 6 constructed toy models, corresponding to the ionisation histories. Red
indicates adding the filter scale to the MHR models. The models are summarised
in Table 3.1 (see Section 3.2.1 for more detail), the brightness temperature slices
from the full coeval cubes for each of these models are plotted in Figure 3.2.

Despite very similar EoR histories for all models, the 21lcm power spectra are

vastly different. . . . . . . .. Lo
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3.4

3.5

The 21cm PS error with LOFAR, HERA-61, SKA and HERA-331 on the f1 power
spectra (defined in Section 3.2.1) calculated by 21CMSENSE (See Section 3.2.2.
Only the values between the black vertical lines are used for the y? calculation
in the likelihood. The upper and lower limits (in k) are respectively defined by

foreground contamination and shot noise limitations from the box size. . . . . .

Here we show agreement between parameter posteriors from 21CMNEST (red)
and 21CMMC (blue) for the 3 and 4 parameter 21CMFAST models. 3.5(a) The
simple model can re-obtain its own fiducial parameters (shown by the pale blue
lines). 3.5(b) When fitting for the f2 mock observation, the 3p model requires ¢
to compensate. This is seen by an offset which between the blue fiducial value
and the ¢ posterior (and is quantified in Section 3.4.1). 3.5(c) Fixing a = 0.4
allows the 3p model to easily recover the 4p fiducial parameters used for the
f2 mock observation. As expected the 4p parameter can easily fit both mock
observations, due to the flexibility provided by (’s dependency on the halo mass
(Figures 3.5(d) and 3.5(e). See Table 3.5 for MAP parameters corresponding to
these plots. The ‘islands’ of points away from the modes (only in blue) are a
pitfall of using EMCEE. Walkers have become stuck in regions of low likelihood
(expected in the EMCEE API for more detail). Typically they contain ~ 2% of
the total samples. Publications involving EMCEE typically have these removed

with a likelihood cut. . . . . . . . . . .

3.6 Bayes factors for the MHR based models. Only the input model is able to retrieve

the mock power spectrum (created by Inv MHR). FZH has been included as this
shares morphology with Inv MHR. See Section 3.4.2 for detail. . . . . .. . . ..
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3.7 MAP power spectra (for z = 8) and Bayes factors are shown respectively in
3.7(a) and 3.7(b) when using LOFAR-48 with 1080 hours of observation. In
3.7(a) the dotted lines represent the inverse of the model stated with colours in
the legend and the observational error is shown in grey. In 3.7(b) the white,
light and dark grey regions represent strong, moderate, and weak respectively on
the Jeffreys’ scale; Blue/red points indicate outside-in/inside-out morphology,
while </+ shapes indicate a global/local implementation. Note that the error
power is much larger than the 21cm signal power spectrum. This is reflected in
the Bayes factors as no models are strongly ruled out (all points exist within the
grey regions). The fit of the mock observation can vary vastly due to the poorly
constrained mock observation, except for the case of the Inv FZH model which

is disfavoured moderately in 3.7(b). . . . . ... Lo 90

3.8 3.8(a) shows the Bayes factors of 3pFZHf1 against F Inv MHR{1 at with different
LOFAR-48 observation lengths. Each Evidence value of 3pFZHf1 corresponds
to integrating a posterior in Figure 3.9. The red line(s) shows the Bayes factor
(Evidences) using the SKA-512 with 1080 observing hours. In order to score
strong on the Jeffreys’ scale, ruling out the toy models, LOFAR must observe for
21600 hours (indicated by the marker passing into the white disfavoured region).
3.8(b) shows the Evidence values obtained with 3pFZHf1 (F Inv MHR) in with
black (grey) points. This comparison is chosen as these models share morphology
and scale (and are the hardest toy models to distinguish). The red lines represent
values obtained using SKA-512 (light and dark corresponding to 3pFZHf1 and
F InvMHR Evidences respectively). . . .. .. .. ... ... ... 90

3.9 Posterior distributions for the 3pFZH parameters used to recover the f1 mock
observed power spectrum with LOFAR-48 at with various observation lengths.
Figures 3.9(a), 3.9(b), 3.9(c), 3.9(d), and 3.9(e) use 1080, 2160, 4320, 10800
and 21600 hours respectively. Only the 21600 hour observation provides the
posterior distributions with the fiducial parameters comfortably within the 1o
contour. At 6 observing hours per night 21600 hours corresponds to ~ 10 years of
use with LOFAR-48 (assuming constant good weather and no other instrumental

intricacies). . . . . ... 92
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3.10

3.11

3.12

Parameter posteriors produced by 21CMNEST for each toy EoR model (as they fit
for the f1 mock observation) using HERA-331 with 1080hrs of observation. The
MAP values of these distributions are shown in Table 3.6, and the MAP power

spectra are shown in Figure 3.11. The blue lines correspond to the parameter

values used to produce the f1 data set, they are only comparable to the 3pFZH.

MAP 2lcm power spectra at redshifts 8, 9 and 10 (3.11(a), 3.11(b) and 3.11(c)
respectively) for the FZH (blue), Inv FZH (dashed blue), MHR (magenta), Inv
MHR (dashed magenta), F MHR (red), and F Inv MHR (dashed red) models.
The MAP parameter values are shown in Table 3.6 and their posteriors are shown
in Figure 3.10. In the likelihood, the y? combines these three measurements
between k£ = [0.15, 1.0] Mpc (the vertical lines). The f1 mock-observed power
spectrum, created by 21CMFAST (3pFZH), are shown in black with the grey
region identifying the addition of the 1080 hour HERA 331 noise PS shown in
grey. Note that these power spectra have very different shapes i.e. only FZH
model which created the mock observation is within the error bars for every

redshift. Because of this, there are a vast range of Bayes factors shown in Figure

The Bayes factors for the toy models when using a 1080 hour observation with
HERA-331. Blue/red colours indicate an inside-out/outside-in morphologies
respectively. The points < and + represent implementation of the ionisation
threshold on global and local scales respectively. All toy models are distinguished
with strong evidence (all competing models are in the white region). Inv MHR
(local inside-out) and the Inv FZH (global outside-in) are easy to distinguish
because they differ in scale or morphology to the mock simulation (global inside-
out). The corresponding power spectra and parameter posteriors are plotted in

Figures 3.10 and 3.11 respectively. . . . . . . .. . . . ... ... ... ..

94
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3.13 This plot is similar to that for LOFAR in Figure 3.8 but with varying number
of HERA dipoles. 3.13(a) and 3.13(b) show the Bayes factors and Evidence
respectively for F Inv MHR against 3pFZH (both fit for the f1 mock observation
produced by 3pFZH). The dotted and solid lines represent values obtained using
LOFAR (blues, dotted) and SKA-512 (reds, solid) respectively; with dark and
light colours representing the values obtained for 3pFZH f1 and F InvMHR f1
respectively. LOFAR and HERA-19 score weak on the Jeffreys’ scale. All other
telescope configurations (including HERA-61) score strong results. Above 217
dipoles HERA gains more sensitive to the 21cm PS over the selected redshift
range than the SKA. . . . . . . . . .. 97

3.14 A summary the results for SKA-512. 3.14(a) shows the Bayes factors obtained
with SKA of each toy model against 3pFZH as they fit for the f1 power spectrum.
All toy models are strongly ruled out (by margins similar to those obtained by
HERA-331). For details of the plot style in 3.14(a) please see Figures 3.7(b)
and 3.12. 3.14(b) shows the MAP parameter PS at z = 9. for the toy models
fit against the f1 mock data set with 1080 hours of observation. This shows the

SKA achieving similar error bars in comparison to HERA-331 in Figure 3.11. . 98

3.15 3.15(a) Bayes factors for comparing 3pFZH and F Inv MHR as the produce the f1
mock observation (produced by 3pFZH). 3.15(b) the Evidence values obtained
for 3pFZH/F Inv MHR in black/grey. Both follow the same conventions as
Figures 3.8 and 3.13 but varying SKA-512 observing times. Note that in order
to obtain a strong ruling out between the toy models, SKA must observe for at
least ~ 324 hours (the minimum observation for the most similar toy model to

pass out of the grey Jeffreys’ scale region). . . . . . ... ... ... ... .. 99
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3.16

3.17

3.18

3.19

An analysis of the contributions to the likelihood (Equation 3.1). In 3.16(a) we
quantify the Bayesian Evidence for the 21cm power spectrum alone compared
to the observational priors separately (with a 1080 hour observation of HERA-
331). The Evidence from the observation priors (blue) are negligible since their
scores lay close to zero compared with the 2lcm PS only (red) and combined
cases (black). This becomes apparent in 3.16(b) where the reionisation histories
for all the toy models are plotted (dotted lines represent inverse models for the
colours in the legend). The yellow points at z = 5.9 and 7.1 are the McGreer and
Greig observations respectively. Since all the error bars on the neutral fractions

obtained are large, they have a negligible effect on constraining the models in

comparison to the 2lem PS. . . . . . . .. ..o

Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing ¢ as a set of models nested from 3pfl. 3.17(a) and 3.17(b) show the
variation of the 21lem PS and Bayes factors respectively. The colour coding is
consistent across both plots in this and subsequent figures: the green indicates
the fiducial simulation, black (blue) are values over (under) the fiducial. In
3.17(b) strong, moderate and weak inference scores are indicated by the white,
light and dark grey regions respectively. 3.17(a) is shown for z = 8 (z = 9 and

10 are similar). ¢ shows strong results rejecting all but the fiducial values.

Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing Logo[Tvi:] as a set of models nested in 3pfl. Plots 3.18(a) and 3.18(b)
show the (z = 8) power spectra and Bayes factors respectively (See Figure 3.17
for a full plot description). As can be seen, Log,,[7vi] varies the power spectral

tilt, leading to strong inference against values outside Log,,[Tvi;] < 4.1 and

AT < Logo[Tols « o o oo

Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing Rung as a set of models nested in 3pfl. Plots 3.19(a) and 3.19(b) show
the (z = 8) power spectra and Bayes factors respectively (See Figure 3.17 for a
full plot description). Notice that for R, > 10Mpc, the Bayes factor provides

weak inference. Above this parameter value there is no additional inference to

be gained. . . . . . L

101
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3.20 Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing « as a set of models nested in 4pFZH fitting for f1 (top row) and {2
(bottom row). Plots 3.20(a)/3.20(c) and 3.20(b)/3.20(d) show the (z = 8) power
spectra and Bayes factors respectively (See Figure 3.17 for a full plot description).
Without the use of the power-law in (f1, o = 0), there are less allowed values for
Ceir(C, @), hence a narrower peak in 3.20(b) compared to 3.20(d). The ability to

pin down « depends on the fiducial parameter choice in the mock observation. . 105

3.21 The Bayes factors for all of the 21cMFAST, FZH based models (in ratio against
3pFZHf1 with o = 0.). Weak, moderate and strong inference scores on the Jef-
freys’ scale are indicated by the dark, light greys and white region respectively.
The black points represent the prior volumes chosen (i.e. using sensible moti-
vations, Section 3.3) - all models here score weak results on the Jeffreys’ scale.
Firstly this is evidence towards being unable to distinguish a power law in halo
mass for the ionisation efficiency with the 21ecm PS. The secondary aim of this
plot shows the effect of using a prior to skew the Evidence values and therefore
the Bayes factor results. Red indicates the use of a J-function across either the
fiducial values (starred point - 3pFZH{f1 only) or the MAP values (red arrows).
Blue points have widened priors to skew against the models. Note that it is
possible to achieve for this skewing of Bayes factor to achieve strong evidence
scores with narrow enough priors. We emphasise that the Jeffreys’ scale is a

guide only, see Section 3.4.8 for the discussion. . . . . . . . ... ... ... .. 107

4.1 Slices through each model’s mock observed 21cm brightness temperature signal
light-cone. The fiducial parameters are given in Table 4.1. At z = 8, the left-
hand end of each light-cone respectively, gy = 0.61, 0.61, 0.55, and 0.55 at
z = 8. The power spectra in Figures 4.2 and 4.3 are calculated from these

light-cones. The white lines indicate the chunks (~ 170 Mpc h™! in size). . . . 117

4.2 Mock observed 21cm PS data for the models in this chapter. They are simulated
with the fiducial parameters given in Table 4.1. The observation is performed
in between a foreground corruption limit (See Section 4.3.6) and shot noise cuts
(k = 0.1 and 1.0 Mpc™! respectively). The left and right grey vertical lines
represent these, within which the 21cm PS y? is calculated. . . . . .. ... .. 118



LIST OF FIGURES

XxXvil

4.3

4.4

4.5

Fiducial mock 21cm PS data but plotted at a given k-scale [Mpc™!] per redshift.
As above, these are simulated with the fiducial values given in Table 4.1. The
discretisation caused by chunking the light-cone is increased from 3 chunks to 10
(for z € [8,10]) to visibly capture the shape of the 21cm PS. Our x? uses three
chunks (as in Figure 4.2) from the light-cones in Figure 4.1. . . . . . . ... ..

The observed UV LF for redshifts 6,7,8, and 10 as well as those simulated by
Model C (dotted lines). Evaluation of the UV LF likelihood is done only at the

observed data points (where the error bars are). See text for more detail.

MAP 21cm PS fit for each model (A, B, C, and D are blue, red, magenta and
orange respectively) with the mock fiducial data set (in black, one row for each
respective model). The shaded grey region represents the 21CMSENSE error
estimate for a ~ 1000 hour SKA-512 observation (Section 4.3.6). The 21lcm PS
for models A and C, with saturated spin temperatures, are fit well by models B
and D (rows 1 and 3), although some large scale structure is gained in removing
post heating approximation at the highest redshift (chunk 3, low k rises out of
the telescope error region). For the fiducial mock data B (2nd row) the 21cm PS
of models A and C are unable to fit the mock 21cm PS without including X-ray
heating: Model A’s attempts fit to the heated gas at high redshift have caused
reionisation to end by chunk 1, resulting in heavy penalties from the fiducial
mock data and observational priors; Model C is able to fit closer but at the cost
of heavy penalties from the observed UV LF. Model D is capable of fitting the
mock B 21lem PS; when Ly is not included (not shown, but can be interpreted
from the bottom row where B is fit to the 2lem PS mock data for D). When
both likelihoods are used 4.5(e) shows that D must compensate its fit on the
21cm PS to correctly fit the UV LF data (see also Figure 4.13(a)). . . . . . ..

. 123
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4.6 The Bayes factor models A, B, C and D (C, and D without the UV LF likeli-
hood), as they recover the fiducial mock 21cm PS data produced by model B.
Blue represents models that include spin temperature fluctuations; red represents
models in the post-heating approximation (however both of these fall below the
axis, represented by the arrows). A summary of the models and the fiducial
parameters used can be found in Table 4.1. The grey regions represent the weak
(dark), moderate(light), and strong (white) Evidence outcomes on the Jeffreys’
scale. Lo 136

4.7 4.7(a) The UV LF likelihood calculation (InZ in blue) is providing more infer-
ence, (but importantly of comparable magnitude) to those obtained with the
21lcm PS (and observational prior checks, red) with the post-heating approxi-
mation applied. 4.7(b) shows the UV LF contribution becoming negligible in
comparison to that of the 21cm PS when spin temperature fluctuations are in-
cluded (the black points are negligible in the lower plot). Models that include
spin temperature fluctuations require the 21cm PS to distinguish them (the huge
difference between the red points for models B and D). See Section 4.5.3 for more

detail and discussion. . . . . . ... 139

4.8 The posteriors for model C’s parameters when reproducing only the 21cm PS
(and observational prior checks, purple) and for reproducing only the observed
UV LF data (blue). In the notation discussed under Section 4.5, these are the
parameter posteriors for C-noLF|C (purple) and C-onlyLF|C (blue) respectively.
The parameter posterior from the full likelihood (Figure D.1(c)), is approxi-
mately a convolution of these two distributions. M., and t,, in particular,
look to require a combination of both posteriors to obtain the fiducial model
parameter. It is clear that the UV LF likelihood dominates the constraints on
parameters that dictate the power-law in ¢. This can be seen by the sharp peaks

for both a, and f, 1o in blue but not purple. . . . ... ... ... ... 139
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4.9

4.10

4.11

Bayes factors for each model for fits of the fiducial mock data set from C. This
plot follows the colour conventions of Figure 4.6, the + sign indicates the use of
the UV LF likelihood, with vertical dotted lines separating like-for-like analyses.
Without the UV LF the simple model (A) shows moderate Evidence but since
it cannot produce the UV LF there is no comparison for the full likelihood (due
to no halo mass dependence in the UV LF). B is rejected by the Lo with strong
Evidence however this is largely to do with the increase parameter space being
redundant (particularly from Ej). Model D is able to fit the UV LF data better
than C but again the extra parameter space is largely redundant resulting with
a weak conclusion. The full model D (i.e. (D|C/CJ|C) on the far right) is rejected

with strong Evidence due to the same reasons as B. See 4.5.3 for more detail.

Figure 4.10(a) shows the Bayes factors (Jeffreys’ scale in grey) calculated with
the SDDR for ax, with the corresponding variety in 21lcm PS plotted below
(4.10(b), with telescope noise in grey for the SKA). The colour coding of the
21cm PS is consistent between plots, with the fiducial parameter for the mock
data in green, and values of ax above (below) the fiducial indicated by black
(blue). The 21cm PS’s in 4.10(b) all fit within our telescope error margin at any
value of ax € [—2.,3.]. Chunks 1 and 3 are similar (not shown). Figure 4.10(a)
clearly shows rejection of ax < —1 via the McGreer likelihood. We therefore
conclude with the SDDR that ax is redundant within the range [—1, 3], given

our telescope assumptions in Section 4.3.6. . . . . . . .. ... ... ... ...

The SDDR results for ¢, (Section 4.5.4). 4.11(a) contains the Bayes factors B(t.)
for the following values of £, = [0.0001, 0.01, 0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0],
with the corresponding UV LF shown in 4.11(b). Colours are consistent between
the two plots, with the red dotted UV LFs falling well below the axis on 4.11(a).
The corresponding 21cm power spectra cannot be distinguished, lying within the
telescope error region (similarly to Figure 4.10(b), not plotted). The UV LF on
the other hand, lies within or close to the observational error bars, resulting in
(at most) moderate results for 0.8 > t, > 0.3. For low values of ¢, however (red,
dotted), the fit is rejected with strong Evidence. This motivates adjusting its

uniform prior to ¢, € [0.05,1]. . . . . ..

. 140
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4.12 Bayes factors for models A, B, C, and D as they recover the mock fiducial data
from model D. The conventions of this plot are described in Figure 4.6 and
4.9. Only model D, with the double power law for (, is able to reproduce both
its own fiducial 21cm PS and the UV LF data (shown in Figures 4.5 and 4.13
respectively). The single power-law in ¢ (A & C) is so heavily disfavoured that

it is below the axis (red arrow). See Section 4.5.5 for the related discussion. . . 144

4.13 UV LFs at redshift 6 produced by models C (purple) and D (orange) for their
MAP fits against the mock fiducial data sets from B, C, and D, 4.13(a), 4.13(b)
and 4.13(c) respectively. The corresponding 21cm PS are plotted in Figure 4.5,
with the MAP parameters used in Table 4.5. Fits for fiducial mock data set from
A are similar to 4.13(b), as are redshifts 7, 8, and 10 with their corresponding
fiducial mock data set (not shown). . . . ... ... ... 145

5.1 A cartoon illustration of the light-cone effect. The coeval cubes have the sizes of
near side HIT bubbles shrunk and further bubbles exaggerated while the light-

cone represents the true evolution of the ionised regions. . . . . . . ... .. .. 153

5.2 A toy comparison of treating the light-cone with the Fourier power spectrum
(left) and the Morlet power spectrum (right). The MPS k&, modes are averaged
but the k| are not, unlike the FPS in which a 3d angular average is performed
across all £ modes in each chunk of light-cone. The line-of-sight Gaussian pack-
ages (that are the Morlet wavelets) have their widths defined using k| in Equation
5.6. After performing the FPS we are left with a power per averaged k-mode at
a given redshift. Using the MPS provides a power per (kj, k) at various differ-
ent locations within the light-cone, defined by 7. If the MPS Gaussian envelope
was replaced by a top-hat function and 7 was chosen to provide no overlap, the
method would be the same as the FPS. Appendix E.1 shows a comparison of

these on simulated 21cm brightness temperature light-cones. . . . . . . . . . .. 156

5.3 Posteriors from using simple two parameter test model with reduced redshift
range for testing. 5.3(a) and 5.3(b) show the obtained posteriors when using the
FPS (as in 21cMMC) and MPS respectively. Notice the MPS produces tighter
posteriors than those obtained by the FPS. . . . . .. .. ... ... ... ... 165
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5.4

Al

A2

A3

Each row calculates the covariance along the light-cone for three differing method-
ologies. The first row calculates the covariance of the MPS from 1000 light-cones
with differing randomly seeded density fields - this covariance has been measured
from the Morlet wavelet of each light-cone. The second row utilised Equation
5.35, estimating the covariance between the Morlet wavelets. The third row uses
k) = 0 for every implementation of Equation 5.35, regardless of the wavelet. The
columns dictate different selected values of (|k.|, k), the majority of matrices
show qualitative agreement in between all three rows, similar to those shown in

the first two columns. See text for discussion. . . . . . . . . . . . . ... ...

The geocentric view of the universe in comoving coordinates (coordinates which
compensate for cosmic expansion). Due to the finite speed of light and the
sheer scale of the universe, signals (and therefore images) detected are up to
~ 13.8 billion years old. The first detectable signal is the CMB, a 2-dimensional
snapshot of the universe as hydrogen atoms are able to form for the first time
since the big bang in Recombination. Beyond this the universe is opaque. Here
the logarithmic nature of redshift and its relevance to the age of the universe

becomes apparent (Loeb & Furlanetto, 2013). . . . . . . ... ... ... ...

The density ratios (mass-energy budgets) of the present day (z = 0) and during
the formation of the first galaxies (z = [10,50]). As the universe expands the
densities of matter and radiation decrease, meaning the vacuum density of the
universe will eventually dominate causing the expansion to accelerate. z =0 —
z = 1 corresponds roughly to the most recent 6 billion years in the universe

(Loeb & Furlanetto, 2013). . . . . . . . . ...

Two example random walks in density perturbation as a function of mass vari-
ance, as part of the excursion-set formalism. The critical density for the struc-
ture’s collapse threshold is represented by the dotted line (which depends on
redshift, Equation A.11). The PS model can be solved with this approach by
analysing random walks which cross the black line. Due to the random nature
of the walk, just as many trajectories will touch the threshold as pass it, see text

for discussion (Loeb & Furlanetto, 2013). . . . . . ... ... ... ... ...
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A.4 The currently known epochs of cosmology. The big bang begins on the left,
with the Cosmic Microwave Background represented by the ‘Afterglow Light
Pattern’. The cosmic dawn (the formation of the ‘1st stars’) leads to reionisation,
as the radiation form the first stars ionises intergalactic hydrogen (represented
by the fading of the purple shade from left to right) (NASA/WMAP (2012),
https://map.gsfc.nasa.gov/media/060915/index.html). . . . ... ... ... .. 195

A.5 The power spectrum of the CMB temperature anisotropy as measured by the
Planck Collaboration et al. (2016a). Distances between the amplitude peaks in
this statistical space are directly related to the clustering that provides the BAO
scale (https://sci.esa.int/web/planck/). . . . . . . ... oL 197

A.6 SDSS (Sloan Digital Sky Survey) data on 19 quasars z ~ [5.74,6.42]. The Gunn-
Peterson trough is evident in all cases as the lack of signal to the blue (left) end of
each spectrum’s maximum. These maxima occurs at the observed Ly-a emission
for each quasar hence they scale with redshift. Notice that as redshift decreases,
the roughness of the trough decreases - implying more neutral hydrogen in the
IGM existed at earlier times. The red damping wing is the gradient of the red
(right) side of each trough which contains information about each individual
quasar’s Stromgren sphere (Loeb & Furlanetto, 2013). (Fan et al. (2006), Figure
1 - © AAS. Reproduced with permission). . . . . . ... ... ... ... .... 201

A.7 The radio telescope used by Ewen & Purcell (1951a) to detect the neutral hydro-
gen signal from within the Milky Way. Due to the unorthodox design of the ‘horn
antenna’ their office at Harvard University became particularly susceptible to
flooding during rainstorms (NRAO/AUI/NSF, https://public.nrao.edu/gallery /horn-
oplenty-discoveries/). . . . . . .. L 203

B.1 A simplistic Dicke radiometer with a switch between the antenna, collecting
the signal, and a known reference load. 7T, is the antenna temperature and
T} the temperature of the reference load. The Dicke radiometer or Dicke switch
alternately measures the antenna and reference load in order to reduce systematic

from the receiver itself. . . . . . . .., 215
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B.2

C.1

C.2

C.3

C4

The typical limitations of instruments like PAPER and MWA. The configuration
of the array must be thought through carefully to balance U-V coverage and the
signal-to-noise on any pair of voltage measurements. This figure is taken from

Liu et al. (2014a) with permission. . . . . . .. ... ... .. ... ...

An illustration of nested sampling (Skilling, 2004). (a) shows 4 iterations of the
isolikelihood contours as the algorithm hones in on the posterior peak. In this
example the volume of the (uniform) prior distribution is the square. (b) plots
the same likelihood points against the parameter volume within the isolikelihood
contour as a ratio with the prior volume, X'. The integral under the curve is the
Bayesian Evidence. In MULTINEST, Section 1.5.2) this is evaluated with the
trapezium rule as in equation C.23 (this figure is recreated from Feroz et al.

(2009) with permission) . . . . . . ... Lo

The posteriors obtained by MULTINEST for a 3D Gaussian likelihood. We vary
the number of sample iterations performed whilst using 2000 live points (and
otherwise default settings). The colours indicate different numbers of sample

erations. . . . . . .

For the same 3D Gaussian in Figure C.2, but here the colours indicate different
numbers of livepoints. We set the sample iterations to infinity to ensure the
algorithm reaches the Evidence tolerance stopping criterion. Above 500, the
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Chapter 1

Background

1.1 Introduction

This chapter introduces the specific context necessary for applying Bayesian statistical analyses
in the EoR. We begin with the cosmological influences on the 21cm signal in Section 1.2. This
includes an introduction to the cosmic dawn and epoch of reionisation, including an overview
of where they fit into the cosmological picture. Section 1.3 contains the astrophysical recipes
for simulating observations of the 2lcm brightness temperature and the galaxy ultra-violet
luminosity functions that we use in later chapters. Simulation of a noise power spectrum for a
given radio telescope when observing a specific mock 21cm power spectrum is also detailed here.
We then turn to the fundamentals of Bayesian analyses in Section 1.4, describing the role of the
likelihood statistic and the importance of prior considerations in the context of model selection.
Finally, detailed descriptions of the MCMC algorithms implemented throughout this work are
provided in Section 1.5. A summary of these topics is provided in Section 1.6. Introductory
material for astrophysics, radio observations and statistical analyses are provided in Appendices

A, B, and C respectively.

1.2 21cm application in cosmology

The field of cosmology has a reasonable agreement between observation and theory. In-between

the CMB (z = 1100) and direct observations of QSOs at late times (z < 7) however, there is a

1
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void of data. After recombination, the first stars must form and a reionisation of intergalactic
hydrogen must occur. The formation of the first stars and galaxies is known as the cosmic
dawn. Before QSOs can be observed in plenty, the phase of our universe changes from being
predominantly neutral to ionised during what’s defined as the epoch of reionisation or EoR.
The cosmological 21cm differential brightness temperature is our best hope for filling this gap
with observation. Here we discuss the physics underlying the cosmic dawn and EoR, which the

cosmological 21cm signal will probe in the near future.

1.2.1 The cosmic dawn

The cosmic dawn occurs when the universe was only a few hundred million years old. These
stars formed from gas composed mainly of molecular and atomic hydrogen. Large, short lived
(so called Population III) stars are theorised to form because of this. Eventually they die
in supernovae, enriching the surrounding gas within the dark matter halos in which they are
embedded. Stellar processes are how the universe gains its complexity. Through various stellar
feedback mechanisms the metallicity of the universe increases, leading to the rich variety of
structure on all scales. The detail of how the first stars form is therefore important on many
levels - it is even relevant in astro-biology, where the presence of specific elements enables the

possibility for life to develop.

In our current construction, after recombination we have a roughly uniform distribution of
hydrogen atoms and molecules (in ratio of approximately 1000:1). The universe can be described
by the over and under densities of linear perturbation theory as well as the dark matter halo

distribution from the P-S formalism as discussed in Section A.l.

Baryonic gas accretes onto the dark matter halo, heating the gas to a virial temperature. To
quantify this we consider what are known as the Jeans mass, M, and the Toomre criteria, ()
(equations 1.1 and 1.2). The Jeans mass is the criteria for a stationary cloud of gas (of density

n and temperature T') to collapse and begin forming a proto-star,

M T\ Ry 1.1
5 %700 <200K) <1o4cm—3> e (1.1)

A proto-star is young star that is growing star via accretion, prior to nucleosynthesis. For the
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surrounding accretion disc that feeds the protostar we have the Toomre criteria,

Csk
s Sl

@ TGY ’

(1.2)

describes the stability of a rotating gaseous accretion disc with sound speed, c;, epicycle fre-
quency, k, and surface density, >. If the criteria is broken, the disc will fragment into multiple

proto-stars leading to potential binary systems or clusters of stars.

To get from proto-stars to stars we need to consider the radiative feedback mechanisms that
occur between the proto-stellar radiation and the surrounding gas. The accretion disk can be
heated by the radiation produced by the proto-star, causing gas to evaporate from it. If the
star is massive enough (~ 150My) it will be bright enough to remove the whole disc, however
this mass is very close to the threshold required to collapse into a black hole - the precision
of the first generation of stellar mass functions are vital. Multi-body dynamics combined with

these sorts of subtle thresholds, quickly lead to complexity in the early universe.

The first generation of stars are known as population (Pop)-IIT and are defined by containing
only hydrogen. This category can be subdivided into Pop-II1.1 and Pop-II1.2 by their formation
process. Pop-II1.1 are formed initially with mostly atomic hydrogen but crucially including
enough molecules to benefit from molecular cooling. Hence a larger range of gas cloud masses are
available since the gas can be cooled, allowing stars to form more efficiently (m ~ [1,1000] Mg,
see Figure 1.1). Pop-II1.2, on the other hand, are formed out of predominantly HII regions
where the molecular cooling is negligible and there is limited atomic cooling, hence a much
smaller range of gas cloud masses is available (m ~ [10,50] My). Other than the initial mass

functions of these two categories, their properties are the same.

After the first stars, the cooling mechanisms available to next generation of stars is changed
by the presence of ionising photons. The photo-dissociation of Hy molecules will outweigh the
ionisation of HI atoms exponentially, due to the drop in black body radiation intensity from
emission at 4.5 eV (for Hy) to 13.6 eV (for HI). Hence the cooling mechanisms available to the
first group of star formation will be different to the stars forming shortly afterwards (See Figure
1.1). The first generation of stars can be a result of cooling via the vibrational and rotational
lines of the Hy molecules (and the HI atoms), while the second generation gas will only have

been cooled by atoms. Pop-III.1 stars born in the first generation will therefore have a larger
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Figure 1.1: Cooling rate as a function of Temperature for atomic (red solid line) and molecular
(blue dashed line) cooling. Peaks in the atomic cooling curve are characteristic to the collisional
excitation of hydrogen and helium atoms. The temperature with which a proto-star can cool
to influences the maximum mass a star can have. For reference, ng; = 0.045cm ™ and ny, ~
nmr/1000 at z = 10. (Barkana & Loeb, 2001)

range of masses than the Pop-II1.2 stars formed in the second generation.

The end state of Pop-III stars is particularly sensitive to their mass. Stellar remnants (and the
processes by which they form) impact their surroundings and therefore the future generations of
stars. Below we summarise the mass dependent end states of Pop-I1I stars (Loeb & Furlanetto,

2013):

e m < 10 Mg - a white dwarf will form, any metallicity changes of the surroundings are

well beyond the formation timescale of galaxies and are therefore unimportant.

e 10 My < m < 25 Mg, - Type II (core collapse) Supernova occur, leaving behind a neutron

star. This provides a large contribution of surrounding metallicity.

e 25 My <m < 40 Mg, - Type II Supernova but resulting in a black hole, which the heavy
elements will fall into meaning they will not be recycled into the next generation of star

formation.

e 40 M, < m < 100 Mg, - The star will collapse into a black hole without a supernova, this

will have no direct impact on the surrounding metallicity.
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e 100 My < m < 140 Mg, - After helium burning, the star will become unstable due to pair
production from the thermal pressure energy. This is not enough for the star to explode,
so it will pulsate ejecting the outer layers until it proceeds as a lower mass star. Since
only the outer layers are ejected it is mainly hydrogen and not metals that contribute to

the surroundings.

e 140 My < m < 260 Mg, - After helium burning, a pair-instability supernova will occur as
the instability from the thermal pressure energy is enough to explode the star. This has
never been observed but would leave a very specific metallicity signature - only elements

with even atomic numbers and no elements heavier than Zinc (Heger & Woosley, 2002).

e m > 260 Mg, - The star will collapse straight into a black hole (possibly with an accretion

disc), meaning no metallicity input into the surroundings is performed.

The cosmic dawn is thought to occur between redshifts ~ 18 and 35. Intricacies such as the
mass of the first stars will dictate when precisely this occurs and have an influence on how

reionisation progresses.

1.2.2 The epoch of reionisation

The reionisation of inter-galactic hydrogen likely progresses slowly at first with small faint
galaxies. It is likely that it then speeds up, as ionised regions percolate, with the bulk of
reionisation occurring between z ~ 6 — 10. By the end, a combination of large bright galaxies
(that form slowly through mergers or accreting gas from the IGM) and multiple small faint

galaxies will together ionise hydrogen in the IGM.

As phrased in Loeb & Furlanetto (2013), ‘How was the primordial gas transformed to an
ionised state by the first galaxies within merely hundreds of millions of years?’ Galaxies are the
fundamental objects that drive reionisation. To gain some insight into the above question, let
us consider the simplest possible case: a single isolated galaxy that ionises its surroundings. By
treating the ionisation front as a sharp cut off and assuming each photon ionises one hydrogen

atom we can write down,

(zun) V = Qi (1.3)
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where (xyr) is the mean neutral hydrogen number density, V is the volume of the ionised sphere

(of radius r) and Q; is the total number of ionizing photons produced by the source.

The size of this region depends on several things, the total dark matter halo mas My, the
baryonic fraction of the structure €2,/Qy\; we also need to define an efficiency of the star
formation f, the fraction of ionizing photons that are actually released into the IGM, fe., and
Nion is the number of ionising photons per stellar baryon. We are now in a position to consider

an ionising efficiency, ¢, which combines these quantities as,

C = AHef*fescNion- (14)

Since the average ionising photon is also energetic enough to ionise helium atoms (which are
non negligible in absorbing ionising radiation) we must attenuate our ionizing efficiency by a
factor Age ~ 1.22. Typical fiducial estimates for the escape fraction of quasars are in the range
fese ~ [0.08,0.10] however it is still under debate. A recent observation as shown can be as high

as fosc ~ 0.21 (Borthakur et al., 2014).

Equation 1.4 can be used to calculate a maximum comoving radius of the ionised region however
we have not yet considered recombinations. Defining the recombination rate, «, allows us to

write down the Stromgren sphere as,

dQ;

dt = rec <xHI>2 V. (15)

This is the steady state volume of an ionizing source embedded in a recombining gas (recom-

bining at rate cyec).

By considering a variable ionising source we can model the expansion of our HII region as,

a0, 1
dt 4mr?

= <$H[>2 ur, (16)

where the source produces an ionisation front from its peculiar velocity ur, and s is the number
of ionizing photons that reach the ionisation front. Combining these concepts together with

the expansion of the universe leads to Equation 1.7,
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Figure 1.2: A toy model of the three phases of reionisation mentioned in the text. (a) Preoverlap:
prior to galaxies, isolated HII regions grow slowly. (b) Overlap: galaxies form, bubbles begin to
intersect rapidly. (c¢) Postoverlap: reionisation in the IGM is nearly over, photons can stream
across intersected HII regions unless they are absorbed by sparsely populated dense HI clouds.
The dashed lines remind us that the photon mean free path is finite. (Loeb & Furlanetto,
2013).

dQ;
dt

— a{zmre) V = (o) (‘;—Z - 3HV> . (1.7)

Solving this equation gives an idea of the proportions of ionized hydrogen atoms surrounding
ionizing sources. This very crude model can be taken further by producing a similar version
of Equation 1.7 but averaged over the entire universe and by considering a clumping factor
((2;) / (zm1)?). The clumping factor is necessary due to the non-uniformity of the IGM and is

typically done numerically on full radiative transfer simulations.

In practice galaxies are only initially isolated like the example above. This leads to phases of
overlap that are illustrated in Figure 1.2. Once overlap of the ionised regions has occurred the
ionisation fronts propagate more easily and cumulate, accelerating the process once HII regions
overlap. Despite this, dense pockets of HI will exist in-homogeneously throughout the largest
ionised regions absorbing ionizing radiation in the post-overlap phase. Since this is entirely
dependent on the clustering of structure formation this leads us to two possible reionisation

models:

e Inside-out - where high density regions ionise first, because the galaxy population traces

the density fields.

e Qutside-in where low density regions ionise first, due to the high recombination rate of

dense patches of hydrogen.
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Clearly the three phases are not unique and are hard to distinguish at the cross overs. A
mixture of both inside-out and outside-in reionisation will occur depending on the statistical
distribution of matter throughout the universe. The ‘patchiness’ of reionisation, or morphology,

therefore depends on the distributions of galaxies.

Reionisation is thought to progress slowly at first, starting around z ~ 18. Observations suggest
that HI in the IGM is ionised by z ~ 6, and the bulk of it thought to occur after z ~ 10, however
this is yet to be confirmed with data. Models of reionisation can also vary in the mechanisms of
radiation production in galaxies, causing variation in the ionising efficiency and photon mean
free path. The UV photons will typically depend on the stars, therefore their spectra will be
distributed as a black body however this is not the only influence at play. Exotic reionisation
models refer to including the radiation from quasars of various sizes, dark matter particles
annihilating to X-rays, high mass X-ray binaries, and primordial black hole effects. The non-
thermal ionizing spectra produced by the accretion onto the compact object will not lead to a
smooth ionisation front, potentially altering the reionisation morphology. There is also helium
reionisation to be considered. Here we have only scratched the surface of reionisation galaxies,
please see e.g. (Loeb & Furlanetto, 2013; Dayal et al., 2014; Ellis, 2014), or Wise (2019) for

more details.

1.2.3 The spin-flip background

With the physics of the 21-cm radiation and the astrophysical context we wish to probe in place,

we now consider what actually drives these mechanisms and how they can be interpreted.

After z < 70, the universe becomes too sparse for collisional coupling to maintain thermal
equilibrium between the spin temperature of HI and the CMB (z}, < 1). In order to prevent the
coupling of the spin temperature and the CMB, we need another mechanism - the Wouthuysen-
Field effect (Wouthuysen, 1952; Field, 1959). This is the resonant scattering of Ly-a photons
that has the profound effect of driving T,, ~ T}. This is a subtle process which must be broken
down into its steps to be understood. Firstly, we must pay attention to the electric dipole
selection rules from quantum mechanics: AF = 0,1 and FF =0 4 F = 0 (see Figure 1.3). In
the context of Ly-a photons, the hyper-fine splitting of the 1s and 2P states are bound by these

selection rules. When the electron absorbs and re-emits the photon this will result in a mixing
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Figure 1.3: The hyper-fine splitting of the hydrogen 1s and 2p states. Solid lines represent
the transitions that mix the 21cm excited and ground states. Dashed lines are the quantum
mechanically allowed transitions that do not contribute to the mixing (notation of the energy
levels is the form, n pL;). The relationship between these transitions leads to the WF effect.
(Pritchard & Furlanetto (2006), Figure 1)

of the hyper-fine splittings of the ground states: F' = 0 and F' = 1, i.e. the mechanism increases
the proportion of excited states of the 21cm emission. During this absorption and re-emission,
in order to conserve momentum the kinetic energy of the hydrogen must decrease. This drives
the colour temperature to be in equilibrium with the gas temperature T, ~ T}, provided that
the medium is optically thick. More simply, the scattering of the background field cools the

spin temperature in order to find the equilibrium as,

AFE co; T
recoil hv (1 i _k) ‘ (18)

E my,c? T,

The full calculation of this coupling contributes to justifying the form of the UV coupling in
Equation A.33, and therefore implies the form of the UV coupling coefficient x,, used in the

spin temperature calculation (Equation A.36).

Figure 1.4 shows the evolution of the different temperature scales that drive the 21cm brightness
temperature. The CMB temperature (blue line) decreases with (1+4z) and is the reference point,
which we will now discuss in detail. Since our observations will be related to the CMB black
body radiation, the timing of thermodynamic events involving the HI gas become important.
While the HI gas is colder than the CMB, CMB radiation will be absorbed; while HI is hotter,

stimulated emission will boost the CMB intensity in comparison to the black body distribution.
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Figure 1.4: Evolution of the different temperature scales relevant to the cosmic dawn and EoR
from redshifts 500 to 10, see text for more detail. Tyos = T, Tspin = Ts (Zaroubi, 2013).

At z ~ 200 the gas (green line) begins to cool adiabatically, decoupling from the CMB, until
the first objects begin to form. The first objects will result in the heating the gas around z ~ 30
(Loeb & Zaldarriaga, 2004). Due to equilibrium thermodynamics, the spin temperature must
be in between the gas and CMB temperatures at all times. Collisional coupling keeps the spin
temperature in equilibrium with the gas during the initial adiabatic cooling. As the collisional
coupling coefficient drops as the universe expands, the spin temperature begins to return to
equilibrium with the CMB. Eventually the spin temperature will return to equilibrium with
the gas temperature, but the timing of this is crucial. Whether this occurs before or after
the gas temperature rises above the CMB temperature, will lead to very different patterns in
the globally averaged 21cm brightness temperature. The red solid line shows the ‘after’ case,
which will lead to only an emission 21cm signal. On the other hand the dotted red line shows
re-coupling ‘before’ the emission phase, and hence an absorption signal (before the emission
signal) will be seen somewhere in z ~ [10,30] (Pritchard & Loeb, 2008; Baek et al., 2010;
Thomas & Zaroubi, 2011).

The global signal of the 21cm brightness temperature contains a vast amount of information
about cosmic history (see figure 1.5). The regimes that are expected to be particularly impor-
tant are summarised below (Furlanetto, 2006; Pritchard & Loeb, 2012). Events with unknown

redshifts are stated in brackets next to the respective symbols.
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Figure 1.5: A possible brightness temperature history. (Top) This image is created from red-
shift slices of a simulated box, as it evolves with time. Red (blue) indicates 2lcm emission
(absorption). (Bottom) The dashed line is 67}, = 0 and the solid line is the sky averaged 75,
corresponding to the specific history of the universe above. The SKA is sensitive to the redshift
range z ~ [7,30], and will hopefully see from the formation of the first galaxies to the end of
reionisation. (Pritchard & Loeb, 2012)

e 1100 > z > 200 - After recombination, the high density of the universe drives an equilib-

rium of the CMB, spin temperature and gas temperature. 07}, = 0, therefore no signal.

e 200 > z > 40 - As the universe expands, concentrations of particles decrease. Compton
scattering decreases enough for the gas to adiabatically cool ~ (1 + z)2. Collisional
coupling keeps the spin temperature in equilibrium with the gas, an absorption signal is

received.

e 40 > z > z, (when the first stars form) - Continued expansion of the universe leads
to collisional coupling being ineffective. The spin temperature couples to the CMB, the

absorption signal decreases.

e 2, > 2z >z, (UV coupling saturates) - First stars emit X-ray and UV radiation, heating
the gas. The WF coupling drives T}, =~ T, how quickly this happens defines whether the

signal is absorption of emission at this stage (the example in figure 1.5 is absorption).

e 2, > z > z, (the moment when Ty > Tomp) - Brightness temperature fluctuations are

characterised by the gas temperature, which is being heated by UV, X-rays and possible
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exotic sources. The brightness temperature is still negative (meaning absorption), and z,

is defined when the brightness temperature crosses 67, = 0.

e 2, > z > zr (Fluctuations in the T} become unimportant) - 21cm signal is seen in emission
for the first time. The brightness temperature is driven by the fluctuations of the neutral

fraction, baryon density perturbation and gas temperature.

e zp > z > z, (reionisation ends) - Heating continues, driving the gas temperature signif-
icantly higher than the CMB. This implies Ts ~ T} > Tcums, meaning the brightness
temperatures dependence on the spin temperature is removed. The signal is dominated

by fluctuations in the neutral fraction.

e 2. > 2 - Reionisation is complete, any HI left is negligible or in isolated small (m < M)

clouds.

Current experiments aim to observe the 21lcm signal for z ~ [6,12], where the limitations are
mainly due to background noise (human and astrophysical) and the ionosphere, which becomes
opaque to frequencies v < 30 MHz. This redshift range will be particularly insightful into the
mechanisms driving reionisation and high redshift astrophysics. The observational intricacies

are introduced at the end of the next section and discussed further in Appendix B.

1.3 Astrophysical simulation

Here we detail the recipes that are used in all the chapters for simulating the 21ecm brightness
temperature. Simulations are performed with a wide variety of techniques. Those providing
the best detail involve hydrodynamic, N-body, and radiative transfer simulations combined,
however they come at great computational cost (Zahn et al., 2011). Some examples of these
comprehensive codes include C2RAY (Mellema et al., 2006), ATON (Aubert & Teyssier, 2008),
EMMA (Aubert et al., 2015), and many more (Wise et al., 2012b,a, 2014; Feng et al., 2016;
Finlator et al., 2018) or Ocvirk et al. (2016, 2018). These are designed to run on N-body simula-
tion such as PMFAST (Merz et al., 2011) or CUBEP3M (Harnois-Déraps et al., 2013), however
they take at least an order of weeks on today’s supercomputers. This is far from practical for

use with a statistical sampler. As discussed in Appendix C.2.1, MCMC (Markov Chain Monté
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Carlo) algorithms require ~ 10* simulated samples necessary for convergence. Because of this,
simulations that are computationally expensive and have long time constraints cannot be used.
Alternatives to MCMC (e.g. a grid-search) are significantly more expensive. We are in need of a
balance of accurate and efficient simulations. So-called hybrid simulations (Ocvirk et al. (2016,
2018) such as CoDA), try to speed this up by combining multiple computational techniques.
Hydrodynamic and gravitational steps are run on CPU’s while multiple radiative transfer and
ionisation rate calculations are done in parallel on GPU’s. These are promising in the detail
they provide, but the speed increase is still not suitable for statistical analyses. Semi-numerical
simulations provide a better alternative for exploring the statistical properties of the signal.
Here, Gaussian initial conditions are computed and the results of the simplified models are set
to match the full N-body simulations within ~ 10%. Examples include 21CMFAST (Mesinger
& Furlanetto, 2007; Mesinger et al., 2011), SIMFAST21 (Santos et al., 2010), or the simulations
used in e.g. Fialkov et al. (2014b). Emulating simulations with neural networks is becoming
increasingly fashionable with an impressive increase in speed once the network has been trained
e.g. (Kern et al., 2017; Schmit & Pritchard, 2018; Hassan et al., 2019; Cohen et al., 2019) (and
Ghara et al. (2020) for a recent application that interprets LOFAR data).

In the context of 21cm EoR observations, a state of the art parameter estimation code which
we use extensively is 21CMMC. This is built a pon 21cMFAST and the following subsections

detail them both.

1.3.1 21CcMFAST: semi-numerical cosmic 21 cm signal

21CcMFAST (Mesinger et al., 2011) is a semi-numerical modelling tool that combines spatial
field realisations of spin temperature, peculiar velocity, ionisation and evolved density via a
combination of linear perturbation theory and the excursion-set formalism. The evolved den-
sity calculation is taken from the predecessor! code DEXM (Mesinger & Furlanetto, 2007).
21cMFAST numerically implements the EoR model developed by Furlanetto, Zaldarraiga and
Hernquist (FZH) (Furlanetto et al., 2004) which uses the excursion set formalism to identify HII
bubbles (rather than for identifying virialised dark matter halos as in Appendix A.1). Doing
this allows a simultaneous treatment of baryons and dark matter to calculate a 3D coeval box

of 21cm brightness temperature field. The ‘semi-numerical’ part refers to using approximate

thttp://homepage.sns.it/mesinger/DexM _ 21emFAST.html
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physics within the code in comparison to a hydrodynamic N-body simulation of reionisation
(referred to as numerical). 21CMFAST is specifically used instead of other EoR simulation codes
for two main reasons. Firstly for speed, the full radiative transfer codes can take up to months
to run. Above scales of 1 Mpc, 21CMFAST is in agreement with radiative transfer simulations
for z = [6,250] (Zahn et al., 2011). For use in preparing statistical analyses for radio inter-
ferometers that aim to detect the 21cm signal, these scales are adequate. Secondly, the path
for implementing Bayesian parameter estimation has already been paved in Greig & Mesinger

(2015) with 21cMMC which will be discussed in the next section.

The initialisation of 21CMFAST begins with a linear density field, 6(x), which is defined in
Fourier space so that the discrete simulation cube (of length L) contains a finite set of wave-
numbers in each spatial dimension,

o*(k)

o(k) = 5 ok + by, (1.9)

where the tildes indicates Fourier space, the o2 is approximated by the matter power spectrum
of Eisenstein & Hu (1999) corresponding to a matter dominated universe (CDM cosmology),
and the density field Fourier coefficients a; and b, are drawn from a Gaussian distribution
(mean zero and standard deviation 1 in the range [—L/2, L/2]). Note that since we are in

2 can be replaced by a power spectrum

the linear regime (Section A.1), the cosmic variance o
without losing information about the statistical properties of the field. A corresponding velocity
field is then calculated from the density field as,

. ik .«

v(k,z) = ﬁD(Z)(S(k), (1.10)
where D(z) is the growth factor which is proportional to a(t) for z = [1,1000]. Once initialised,
the simulation starts by using linear perturbation theory, where the Zel’dovich approximation
for gravitational collapse is applied (Zel’Dovich, 1970; Mesinger & Furlanetto, 2007). In other
words, the linear density field is evolved using the field velocities but no deviation to the
particles’ initial trajectories are allowed. This means the fields evolve with separable solutions
in Lagrangian space (reducing the required computing power significantly). The initialisation

is taken at 2 = 300 on a 1536 Mpc® co-moving cube, which needs to be large to account for the

mean properties of reionisation later on (Iliev et al., 2006). Our resulting field is then smoothed
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onto a lower resolution grid.

The ionisation field is identified by selecting regions (groups of pixels) for which the number of
ionizing photons is larger than that of HI atoms. The excursion-set formalism is now applied
to identify HII regions (Furlanetto & Piran, 2006). Pixels are labelled as fully ionised regions
if,

CfC()]](X,Z,R) Z 1, (111)

where ( is the ionising efficiency of UV radiation and f.. is the collapsed mass fraction. The
scale R moves from large to small values (in cMpc) smoothing the above threshold and ranging
from the ionizing photon horizon (mean free path) down to the cell size. A minimum virial

mass, M., for a dark matter halo to host an ionising galaxy in the simulation is used to define
fcoll as,

o dn
fcoll - /]\/[ MWdM; (]_]_2)

where dn/dM , the halo mass function (see Section A.1), is a Press-Schechter function multiplied
by a Sheth-Tormen correction factor (Bond et al., 1991). The neutral fraction per redshift
is calculated by counting the ionised pixels within the volume of the cube i.e. by setting
THI = feoll per voxel tO Tegions as the excursion set formalism iterates down scales. Initially, the

UV ionising efficiency ( is defined,

— fese f* N7 1.5
=0 (5%) (o55) (aom) (52 n

where f,, is the fraction of galactic gas in stars; fes, the fraction of ionising photons escaping

form the host galaxy into the IGM; N,, the number of ionising photon per baryon within pop
III stars; n.e., the typical average number of recombinations per hydrogen atom. f, is taken
to be 0.05 however both f, and fe. are observationally uncertain (Gnedin et al., 2008; Wise &
Cen, 2009; Ferrara & Loeb, 2013). The variability in fes. is primarily what varies (. Since pop
IT stars are assumed to be the dominant stellar type during reionisation, we take IV, ~ 4000
(Barkana & Loeb, 2005). In the case of a photon-starved end point to reionisation we assume
Nrec = 1 (Sobacchi & Mesinger, 2014). The virial mass (implemented in Equation 1.12) is linked

to virial temperature via,

Mo — 105 ()P (T N o 1.14
vir = 10 (@) T8 x 10k ) 7 Mo (1.14)
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where p is the mean molecular weight i.e. g = 1.2 for HI and 0.6 for HII, and the atomic
cooling threshold of 10*K corresponds to a halo mass of 10® M, (Barkana & Loeb, 2001). The
cosmological dependency has been packaged together in F(z), defined,

_3
1+ 2 2
10 ’

Work by Barkana & Loeb (2005) claims that halos need to be calculated to 108M, > M in

O H3 ONH2\?
F(z) = |18n% + 82 ;[20—39( 2120)

order to include the atomic cooling processes allowing structures to achieve temperatures below

their virial temperatures.

Combining all of the above via Equation A.29 provides us with our desired result - the 21cm
brightness temperature field. Initially (in Chapters 2 and 3) we implement 21CMFAST under
the assumption that Ts > Tovp, known as the ‘post-heating regime’. During the latter stages
of the EoR the post-heating approximation is believed to be a good approximation (Furlanetto,
2006; Baek et al., 2010; Chen & Miralda-Escudé, 2004) (this is relaxed in Section 1.3.3). The
most dominant factors in driving the signal are therefore the ionised fraction and the underlying

density field (first and second terms of Equation A.29).

Since we are in the linear regime, the redshift space distortions in the 21cm signal are treated
analogously to the Kaiser effect (Kaiser, 1987), i.e. all scales of clustering in redshift space are
distorted by peculiar velocities (the 3rd bracketed term in equation A.29). The assumption
that dv,/dr < H(z) is implicit in the form of this term however in order to avoid divergence,
21CcMFAST imposes a maximum value of |dv,/dr| = 0.5H(z) which is necessary due to the
pixel re-scaling that happens as each co-moving box evolves. Gaussian and non-Gaussian
contributions to large-scale flow can theoretically alter the Kaiser terms (and pairwise velocity
distributions) outside of this constraint, but the imposed limit has a negligible effect on the
results (Scoccimarro, 2004). The peculiar velocity gradient field is most prominent in small
scale over-densities, which are the first HI regions to be ionised in an the inside-out reionisation

implemented here. Because of this, they are often ignored and smoothed over.

21CMFAST aims to be predictable from z = [6, 250] to incorporate the long term effect of
the gas coupling to the CMB temperature field. This in an impressive range of predictability,
which extends well beyond the cosmic dawn and is larger than most competing simulations.

For interpreting the signal the tool of choice is the spherically averaged version of the power
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spectrum defined in Appendix C.4 (detailed before its application in Chapters 3 and 4). The
results produced agree closely with numerical simulations for an impressive range of relevant

scales, but with significant improvements in duration and memory restrictions.

This is the common grounding used in every subsequent chapter and the starting point for the
developments in the next sections. An example of a competing simulation is Baek et al. (2010)
- where the EoR 21lcm signal uses a different range of virial masses (10" M, > M) without
the assumption Tg > Tomp and the chemistry of Helium is also partially included. The results
of this simulation show that no level of X-ray heating will prevent the 21-cm absorption phase,
however QSO contribution ranging from [0.0, 10.0]% can change the skewness measure between
the brightness temperature signal and HI fraction around the middle stages of reionisation. The
addition of Hel reionisation is negligible on the behaviour of HI reionisation, however it should
occur at lower redshift around around z ~ 3, since a higher energy radiation background is
needed for helium’s ionisation threshold. Detecting Hel reionisation directly would be a useful
independent probe of the re-ionising universe and might be easier to detect than for HI because

it occurs later (Furlanetto & Oh, 2008).

Unfortunately, all of the simulations we have referenced in this section miss detail in some form
or another. For example, no numerical simulation can include the radiative transfer of X-rays
and Lyman-a photons in parallel with the cooling from atomic and molecular hydrogen that
influences star formation within the cosmic dawn (Loeb & Furlanetto, 2013). It is also unknown
how much contribution QSOs provide (Garaldi et al., 2019) - and this would certainly vary the
range in virialised halos that need to be simulated. Ciardi et al. (2006) argues that simulations
will need to be done down to M ~ 10*M,, in order to include circum-galactic regions of high
hydrogen recombination rate, referred to as ‘photon sinks’. In order to probe these objects
radio observations deep into the cosmic dawn are likely necessary. Photon sinks play a large
role earlier in the cosmic dawn, and so does modelling of the spin temperature fluctuations
due to X-ray heating. X-ray heating effects are included in detail in Section 1.3.3, while the
effects of photon sinks are subtle and will likely only be measured in relation to VAO scales
alluded to in Section A.1. Simulations and mock observations of these processes in the context
of 21CMFAST are underway (Gordon & Pritchard, 2009; Munioz, 2019; Cain et al., 2020; Hotinli
et al., prep) but detailed discussion of this is beyond the scope of this work. For analytical

calculations of comparable ionisation fields, please see Furlanetto et al. (2004); Barkana & Loeb
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(2004); and for more details on the specifics of ionisation fields and an in-depth comparison of

simulating reionisation models, please see Zahn et al. (2011).

We have outlined of the basic implementation in 21CMFAST that is streamlined into 21cMMC.
The capabilities of 21CMFAST do go beyond what is described here. In particular each step
is modular and applicable at the will of the user. Since we are interested in its use in the
context of Bayesian statistics we have focused on explaining what is used in the closely related
code 21cMMC in the next sections. The following sections follow the chronology of 21cMMC
publications. Each includes more of the physics that 21CMFAST is capable of simulating (with

further detail provided before their application in Chapters 3 and 4).

1.3.2 21cMMC: parameter estimation in the EoR

21cMMC (Greig & Mesinger, 2015) combines a streamlined version of 21CMFAST with the sta-
tistical analysis code COSMOHAMMER (detailed in Section 1.5). The latest version of 21cMMC
has emerged from a progression of works, which we will build up to in the following sections.
Here we outline the basis of 21cMMC referring ahead to Section 1.4.1 for an introduction to

parameter estimation.

The spherically averaged 21cm brightness temperature power spectrum is used in the likelihood
statistic. A mock observation must be simulated with 21CMFAST using pre-selected fiducial
parameters that are to be retrieved via the methodology. A larger box is used for the mock
data in order to minimise cosmic variance issues, we need to be confident that the mock data
is not victim to sample limitations. The sampled box is also simulated with 21cMFAST but
with sampled parameters and can be reduced a little to increase speed and memory in the
computation - as long as the parameters recovered do not suffer as a consequence. In reality
the observed patch of sky from the real telescope will be larger than the simulated box, we
therefore include this effect in the testing phase. 250Mpc boxes with 128 pixels are used for

the simulated samples and the mock observation is taken from a 500Mpc box with the same

dvy
dr

resolution. To speed the process further, a matter density (0) and velocity field (£*) has been
pre-calculated and is read in during each sample. Importantly these initial conditions must be

calculated with a different random seed to the mock observation.

The selected likelihood statistic is a x? between the power spectra from the mock data and
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the streamlined model dependent simulation. Noise estimates from the radio telescope on
measuring the 2lcm power spectrum can be calculated by 21CMSENSE (Pober, 2016), taking
into account the layout of the desired telescope and specific assumptions about foreground noise
as described in Section 1.3.7. Figure 1.6 summarised the process in calculating the likelihood
within 21cMMC. The construction of the machinery means any model of the 21cm brightness
temperature power spectrum can be swapped in and out, we take advantage of this in later
chapters. This structure includes the input of three observational measurements as priors. The
calculation of the neutral fraction in Section 1.3.1 is used in three checks against observations

within the likelihood construction:

e The CMB optical depth observed by Planck is: 7 = 0.058 4+ 0.012 (Planck Collaboration
et al., 2016b). 21CMFAST estimates 7 by interpolating the neutral hydrogen fraction

across the coeval cubes. This allows testing between the observed and simulated values

of 7 at each MCMC call.

e The Gunn-Peterson trough location : McGreer et al. (2015) shows that the EoR must be
> 90% complete by z = 5.9. Therefore xy; = 0 is set for all 2 < 5.9. For z > 5.9 the
estimated neutral HI fraction is compared with an half-Gaussian of mean zx; = 0.06 and

variance o2 = 0.05.

e The Red Ly-a damping wing: Greig et al. (2017) estimates the xy; surrounding QSO
ULASJ112040641. At z = 7.08 the neutral fraction is checked against the observational

measurement of Zgy = 0.4703 at 20.

A x? for each of these is combined linearly into the likelihood (see ‘Observational Checks’ in

Figure 1.6).

The three free parameters are initially R, Tvir, and ¢. The photon mean free path, Ry is
implemented as the largest scale at which the excursion set formalism is performed (a maximum
R in Equation 1.11). This is not strictly a mean free path, this is the maximum photon path
due to the methodology. Although there is known to be some spherical bias of the ionised
regions we would expect Ry,g, to gravitate around the mean bubble size. The minimum virial

temperature T, is implemented in two places. Firstly it dictates the size of galaxies that start
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Figure 1.6: A summary of the likelihood computation chain used in 21cMMC, where M is a user
defined model uncertainty, and A3, is the spherically averaged 21cm power spectrum introduced
in Chapter 3. In order to streamline 21CMFAST for use in 21cMMC the modular nature
(described in Section 1.3.1) is reduced in order to have one callable function. The arrangement
of a callable simulation driver means different elements of the 21CMFAST algorithm modules
can be selected with the use of global parameters in the MCMC setup. This is particularly
handy for comparing models with different physics.
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ionising the IGM (with efficiency () as,

CO; if T/' 2 Tvir

vir

(= . (1.15)
0, otherwise

Secondly, T, is used as minimum limit on the integral in Equation 1.12, used to calculate fe.oy
which is then used in the ionisation criteria defined in the previous subsection. The galaxy
ionising efficiency, ¢, uses Equation 1.4 but we must relabel ( — (y, as this parameter value is
directly input into Equation 1.15. This form of ¢ implies the assumption of a constant mass to

light ratio for our ionising sources. This is the simpler of two models that are implemented in

Greig & Mesinger (2015).

On top this 3 parameter model, a 4th parameter is introduced so that ¢ can also be a power-law
in halo mass. The model is adapted so that, { (%—&:)a, where « is included as an optional
4th parameter that dictates the strength of the power-law scaling. It is worth emphasising that
the 3 parameter reionisation model is the simplest, while this 4 parameter model (including )
is the simplest model that includes a model for stellar feedback. This will clearly effect the f.on
(Equation 1.12) as ¢ is now a function of M,;,. More detail (including a similar step-function
in place of Equation 1.15) is provided in Chapter 3 (before this model is implemented). Both
of these similar parameterisations assume Ts > Teyp for zgp < 0.8. Implementing the post-
heating approximation in this way limits the applicable redshift range used, motivating the

choice of evaluating coeval cubes for redshifts (z < 10).

These three and four parameter models of 21CMFAST are referred to as 3pFZH and 4pFZH
respectively in Chapters 2 and 3. We will return to the discussion of prior range motivations
for each parameter in Chapters 3 and 4, as well as details about how the likelihood statistic is

implemented in each case.

1.3.3 21cMMC: the epoch of heating

Here we detail the background for relaxing the post-heating approximation, in order to model
spin temperature fluctuations. The 21cMMC implementation (Greig & Mesinger, 2017b) in-
troduces the concepts that lead into Model B in Chapter 4. Not including X-ray heating
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in parameter estimation can lead to a ~ 10 o skewing of the parameters depending on the

magnitude of the temperature changes and intensity of the primordial X-ray sources.

Up until now we have assumed that the spin temperature overwhelms the CMB background
(Ts > Tewvs). This is thought to be true during the latter stages of reionisation i.e. z < 9. (Mec-
Quinn et al., 2011). Prior to this, Ts offers a lot of insight into the formation, growth, and evolu-
tion of structure in our universe. The production methods of X-rays are varied, but they consist
mainly of supernova remnants from Population III stars. These predominantly contribute via
high mass X-ray binaries or dust content in the inter-stellar medium. Bremsstrahlung from
supernova radio remnants can heat the ISM, absorbing the remnant emission spectrum and
causing sparse patches of the ISM itself to emit in a different portion of the spectrum (Eide
et al., 2018). Mini-quasars will also contribute (Qin et al., 2020) but we do not include mini-
haloes in this work. The recipes used for the soft-band X-ray emission is robust to observations

of nearby galaxies (Pacucci et al., 2014).

Here we look to calculate the spin temperature, (75 in Equation A.35) from Section A.3.3. To
implement this calculation of the spin temperature the approximation, T, =~ Ty is used. In
other words the colour temperature is coupled closely to the kinetic gas temperature due to the
Wouthuysen-Field effect mentioned earlier (Section 1.2). The collisional coupling coefficient
used here is calculated in Furlanetto & Furlanetto (2007) and Zygelman (2005). T, is calcu-
lated, via Tk, following the kinetic theory analysis developed by Hirata & Sigurdson (2007). The
primary source for this heating of the gas is theorised to be high redshift X-rays (Furlanetto &
Pritchard, 2006; Pritchard & Furlanetto, 2007). The ionisation, temperature and Ly — a back-
ground can be considered by looking directly at, ex, the X-ray specific emissivity (detailed when
the model is used in Equation 4.4). For now we can simply state ex ~ Lx X [light cone volume],
where Lx represents X-ray luminosity. The absorption cross section for this radiation scales
with ~ E3 as redshift decreases, hence there are specific signatures in the heating of the gas

that relate to the contents of the first galaxies.

In order to compute our angle-averaged specific UV intensity, J(x, E, z), we must add up the
contributions from earlier times (2’). This is done with respect to the probability, e ™ that an
X-ray photon will survive from 2z’ until z. Namely the angle-averaged specific X-ray intensity

is calculated by integrating the co-moving X-ray emissivity, ex, throughout the observed light-
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cone to produce,

1+2)3 [Ccdt
J(x,E,z) = %/Z Texe >dz (1.16)
where 7x,
/ > dt = N\ = / / /
~(E,z,2) = / cﬁxm(z Y (2o (2, E)dZ, (1.17)
. z

is the scattering optical depth for X-rays (Mesinger et al., 2011). This relates to the attenuation
of hydrogen (and helium) due to reionisation as, e~™. The species weighted photo-ionisation

cross-section used is given by, o. as,

Oc = fH(l - fe)O-H + fHe(l - je)aHeI + fHeje)O-Her (118)

where fx and ox represent the fraction and cross sections for the respective species. The
conversion of X-ray photon energy from the emitted (E,) frame to the observed frame (F)

needs to be included, and is given as,

_E1+z

— Bz 1.19
1+ 2 ( )

We now need the photo-ionisation rate, I'x(x, z) which is calculated by integrating J across all
frequencies that can reach nearby gas clouds and for all species that interact with the radiation
(HI, Hel, HelI). Once calculated we then infer the evolution of the IGM free electron fraction

as,

W = 3—2(1“)( — aaCzenp), (1.20)
where C'is the clumping factor for the pixel; a4 is the recombination for optically thin gas (re-
combining radiation can escape and is ignored); ny; is the number density of neutral Hydrogen;
and as before, the Helium contribution can be ignored (Zahn et al., 2011). Tk is then solved for

in tandem with Equation 1.20 by using the comoving UV energy density and electron number

density.

Here, Greig & Mesinger (2017b) expand upon the previous 3 parameter model to include X-
rays produced in the first galaxies because they result in an inhomogeneous heating of the gas
at EoR redshifts. The free parameters introduced are: ax, the X-ray luminosity power law
index which describes the hardness of the radiation; Lx.oxev/SFR, the normalisation of the

X-ray luminosity for photons of E < 2keV normalised to the star formation rate; and FEjy, the
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minimum escape energy for an X-ray photon. The mean free path of X-ray photons is a strong
function of photon energy, as the spectrum hardens and resultant heating through the IGM
becomes more uniform. In galaxies the ISM HI column density and metallicity will effect the
release energy of X-rays into the IGM. It is certainly true that low redshift (local) galaxies
have higher metallicities than the simulated high redshift analogues. The X-ray SEDs of these
simulated galaxies are dominated by the HI column density, motivating a step function cut off
for the soft band X-ray luminosity. Typically during most of the EoR it is a good assumption
to say that these high redshift galaxies are metal free. All assumptions used in the modelling
here agree with observations of the soft-band X-ray spectrum from local star-forming galaxies
(McQuinn et al., 2011; Das et al., 2017). More parameter discussion is included in Chapter
4 under the context of Model B. For full detail, please see Mesinger & Furlanetto (2007) and
Mesinger et al. (2011).

1.3.4 21cMMUC: introducing the light-cone

Up until now we have been dealing solely with coeval cubes. As discussed earlier (Section
B.1.2) a radio telescope will take images of the night sky with a depth dictated by its frequency
bands. For an accurate tomographical image the resolution of these discrete measurements will
have to be better than the evolution rate of the comoving gas in the observed redshift range.
At mid EoR redshifts (e.g. z = 8) our 8 MHz bandwidth stretches ~ 125Mpc, motivating a
bare minimum of box sizes that should be simulated for access to a volume averaged statistic,
such as the power spectrum. In Chapter 4 we move from statistical analysis on coeval cubes
(as in Chapters 2 and 3) to measuring the 21cm power spectrum from a light-cone. The coeval
cubes of the 21cm brightness temperature are combined into a light-cone as detailed below.
When compared to using coeval cubes, using the light-cone in a parameter estimation context
can cause some parameter posterior distributions to change by ~ 10 ¢ in cases where the 21cm

signal evolves rapidly (Greig & Mesinger, 2018).

Initially, coeval cubes are simulated as before. These cubes are then stitched together to
emulate the evolution of structure along the line-of-sight. Flexibility on which redshifts are
sampled as coeval boxes is dictated by the user. The inputted step size (Azgep) relates to a
linear interpolation in cosmic time and the light-cone is constructed by interpolating properties

between two of these coeval boxes at every point. These coeval boxes all have the same random
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seed but are evolved to specific points in time dictated by the redshift step size. Each coeval
box is evolved and stitched to itself along the light-cone in-between a user defined minimum
and maximum redshifts. This provides N coeval pieces (where N is the number of redshifts
simulated, defined by Az.,). Each piece represents a periodic sample of the overall (simulated)
evolution. Now for each pixel in the light-cone, its properties are dictated by a weighted mean
between the properties of the two coeval pieces it is between. If z.. is the redshift of the pixel
and Zpiece 1s the redshift at which that strip was evaluated, then the weightings are determined
as | Zeell — Zpicce|- This means that for a pixel that is specifically at one of the simulated redshifts,
the original properties are used; and for anything in-between, a weighted mixture is obtained
depending on the location of the pixel relative to the two simulated coeval pieces. If the end
of the coeval box is reached before the next box starts, the properties of the nearest box wrap
around. Since the random seed is the same for the coeval boxes at all redshifts, the same
essential structure is repeated with a period relating to original coeval box length. Major
structures in the light-cone will appear visibly periodic because of this. One should note that
the periodicity of the simulated structure (caused by the wrapping) is also a function of box
length, even if an infinitesimally fine grid of redshifts are sampled. The result is a brightness
temperature light-cone that provides statistical properties that are similar to those which a real

radio telescope might observe. Deviation from this should be inversely proportional to Azgep.

For implementation in the 21cMMC likelihood, equal co-moving distance chunks of the light-
cone are separated out. Effectively this is running a hard edged (non-overlapping) top-hat filter
accross the light-cone, not dissimilar to observing with the discrete frequency bands dictated by
a radio telescope’s bandwidth. Each chunk then has its power spectrum calculated separately in
order to capture the signal’s evolution. The use of chunks also enables easy comparison between
the statistics from the coeval cubes produced earlier. Since the power spectrum is now valid
1

to larger scales, the 21cm y? is implemented within an increased range of k € [0.1,1.] Mpc™

when using light-cones.

Calculating a summary statistic from a light-cone is a tall order. Applying the box-car sampling
technique as described here is not void of the light-cone effect, where the evolution of the
universe accross the size of the observation may effect the results (Datta et al., 2012, 2014).
Ignoring the light-cone effect (as is done here) should not bias the parameter posteriors obtained,

but it will worsen the associated uncertainty (La Plante et al., 2014; Mondal et al., 2017).
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Currently, the field contains no unanimous way to remedy this. A novel method known as the
wavelet transform (Trott, 2016) is thought to be able to decrease this uncertainty by taking
advantage of the full radio interferometer’s bandwidth at once rather than using individual

chunks. In Chapter 5, we look at furthering this analysis.

1.3.5 Inhomogeneous recombinations

So far we have considered a reionisation with inside-out morphology. In Chapter 3 we introduce
a toy outside-in model based on Miralda-Escudé et al. (2000) for comparison, but in reality
the EoR will progress via a combination of both the inside-out and outside-in morphologies
as discussed in section 1.2.2. Here we include a mechanism for including inhomogeneously the
recombination rate of HI, that will dictate the morphology of the IGM depending subtly on
the astrophysical parameters. Simulations dominated by bright galaxies will remain entirely
inside-out and simulations with mostly dim galaxies will be mainly outside-in. Sobacchi &
Mesinger (2014) is implemented in all of the models used in and after Chapter 4. Prior to this
change, recombinations are homogeneously included as a constant (n...) within ¢ in Equation

1.13.

Assuming the density distribution of the gas responds instantaneously to heating, the fraction

of volume in which the IGM gas is at over-density, Py is expressed,

(5—2/3_cy2

Py(6,2) = Ae 2@L37 §7F (1.21)

where ¢ and Jj, are fitted for a CDM universe (the latter loosely scaling as the Jeans length
in the ionised IGM); and, 8 is obtained from an iso-thermal sphere profile for a high-density

absorber.

Our ionisation threshold is then adapted to,
fcollC Z 1+ ﬁreca (122)

where the inhomogeneous recombinations are calculated as,

z = 180
_ ngop 2 2 dt
= 1-— P — ) 1.2
Nrec </Z 1 T 5 |:/0 ( xHI) V(S d5:| dZdZ>R ( 3)

ion
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The angular brackets denote a spherical average within a bubble of radius R; ¢ is the non linear
over-density; proper time is denoted, t; xyy is the fraction of Hydrogen that remains neutral;
Zion, 1S the redshift at which the given cell was first ionised; and, A = n/n represents the
sub-grid over-density of gas. The upper limit of the integral, 180 is from the mean over-density
within the spherical top hat collapse model, realistic values during reionisation should not
challenge this. Py is the volume averaged PDF for gas in a given volume to be an over-density.
Its in a near-Gaussian form (Miralda-Escudé et al., 2000), including necessary corrections for
self-shielding (Furlanetto & Oh, 2005; Sobacchi & Mesinger, 2014). ap is the recombination-
coefficient calculated at 10K assuming any subsequent ionising recombination radiation is re-
absorbed by the same region. In other words an effective recombination rate is approximated by
excluding transitions that emit ionising photons (Osterbrock & Ferland, 2006). This is eligible
in regions of high gas density (Rahmati et al., 2013) e.g. in McQuinn et al. (2011) when the
IGM is optically thick.

The neutral fraction produced, xy;(d, 'y, 2) depends on the over-density, the reduction of gas
from the local inhomogeneous ionisation rates, as well as redshift respectively. The uncertainty
in ['x increases at lower redshifts due to the patchy end to reionisation. There exists evidence
that it could scale as a power law with emissivity but local areas can easily be changed by the
density of Lyman limit systems (McQuinn et al., 2011). Here I'y is quantitatively obtained
from smoothed-particle hydrodynamic simulations, please see Rahmati et al. (2013) for more
detail. Hutter (2018) show that semi-numerical techniques that vary the ionisation rate show
similar results on global statistics like the power spectrum, despite photon non-conservation
being an issue for localised detail (leading to patches of accelerated reionisation). When a
photo-ionisation equilibrium is assumed, the form of Equation 1.23 contains the self-shielding

contributions of the gas within the neutral fraction calculated as,

QJHIFX = 1.08 x nHI(l — LEHI)2CYB, (124)

where the gas column density is taken to agree with observations (Furlanetto & Oh, 2005).
Omitting this effect can suppress the 2lcm power spectrum by factors of 2-3 at large (k <
0.2 Mpc™!) scales at the tail end of reionisation (z < 8). Since this naturally influences
the size of the ionised regions, a photon mean free path is redundant. This means Ry, is

no longer a variable, however a maximum scale for identifying bubbles is necessary in the
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excursion set formalism. A constant Ryg = 50 h™'Mpc is used by default when inhomogeneous

recombinations are included.

1.3.6 21cMMC: including the UV luminosity function

This section introduces three main improvements developed in Park et al. (2020) that are
beyond the work found in 21CMFAST. Firstly, the parameterisation of { in Equation 1.13 as a
constant does not agree with observations of high redshift galactic data. Here this is accounted
for by expanding ¢ into two power-laws: one for the UV escape fraction (fes.) and one for the

baryonic mass fraction that has collapsed into stars (f.).

Secondly, we move away from using f.n (Equation 1.12) for the collapsed fraction of baryonic
mass stars in favour of M., a turnover mass that dictates the abundance active star forming
galaxies. This update moves away from the parameterisation of galaxy populated halos via
Tyir. Instead more physics is encapsulated via a suppression motivated by the galactic duty
cycle. Small galaxies (below the threshold of My, ) have their star formation stalled by feedback
mechanism that are dependent on the duty cycle of galactic emission. Functionally this provides
a smoother output from the simulated galaxy clusters which is comparable to hydrodynamic
simulations e.g. (Paardekooper et al., 2015; Ocvirk et al., 2016). Typically the star formation in
small galaxies is suppressed by various mechanisms such as supernova feedback, photo-heating
feedback, or inefficient gas accretion - however the mechanism of suppression is less important
for EoR modelling than the initial scale and shape of the suppression (Wu et al., 2019). This
parameter increases the complexity of the relationship between halo mass and star formation

based processes accessible to semi-numerical EoR modelling.

Finally, a star formation timescale, ¢, which is used to calculate a UV luminosity function for
the high redshift galaxy clusters. Up until now 21cm literature has included three observa-
tional checks. As shown in Binnie & Pritchard (2019), these add little to no inference to the
constraining power of the 21lcm power spectrum. Luminosity functions (LFs) contain a lot of
information about the nature of galaxies at different redshifts. This parameterisation allows a
prescription for the star formation rate (SFR), estimated as a the total stellar mass in stars

divided by the new critical timescale.

In Chapter 4 we detail these mechanism (as implemented in 21cMMC), including the UV LF
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calculation and how it is combined into the likelihood function. The detailed descriptions for
producing and implementing t,, M;,n, and the double power law in halo mass for { are also

included in Chapter 4.

1.3.7 21CMSENSE: simulating interferometer noise with foreground

avoidance for the EoR

Chapters 3 and 4 make use of 21CMSENSE (Parsons et al., 2012; Pober et al., 2013, 2014;
Pober, 2016) - a code that simulates radio interferometer noise specifically for observing the
21lem power spectrum in the EoR and cosmic dawn. Here we apply our knowledge of noise
theory (Section B.1.2) to 2lcm power spectrum simulation (Section 1.3). 21CMSENSE is a
foreground avoidance algorithm and operates in two halves: Firstly, it generates the properties
of the telescope array - known as the array file (Alg 1); secondly, this is then used in parallel
with the clean 2lcm brightness temperature PS (from the simulation box) to calculate the

observed signal - this is the sensitivity calculation (Alg 2).

The array file receives telescope details: name, central location? [WGS], antenna locations
|[ENU]J, antenna collecting area, beam type, dish size [A] and receiver temperature [mK]. 21cMm-
SENSE then performs a fast Fourier transform resulting in the U-V-W distribution which is

flattened for the U-V distribution of the desired telescope array.

In the sensitivity calculation, the produced array file is then inputted into the sensitivity cal-
culation along with the frequency of the observation [GHz| and the length of the observation
[hours per day, number of days|. Equation B.48 is used to calculate the visibility measurements
for observing the field, including the noise fluctuation from the telescope. Finally, we are left

with an array of the power spectrum errors® for each [|k|, Tops)-

Radio telescopes can operate in two observational scanning modes: track or drift. Track is
performed by recording a time difference between each end of the interferometer (on top of
Equation B.46) which has the same effect as tilting a physical dish. Tracked scans will measure

fewer unique baselines, and therefore have a poorer quality U-V space to interpolate with, but

2WGS (World Geodetic System, sometimes WGS84) is a spherical polar coordinate system based form the
centre of the Earth; ENU (East-North-Up) is a Cartesian flat Earth equivalent of WGS.

321CcMSENSE contains the capability to include a 2D array for errors where only the parallel k modes are
averaged, in this case the output is [|kL|, k||, Terrs] and algorithm 2 has two k loops.
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the signal to noise of the desired source will be reduced as the observation of the source is longer.
Drift scans allow the source to move accross the telescope beam as the Earth rotates. The side
lobes of a radio telescope beam are hard to pin down, both methods can be unpredictable in
cases where the noise is dominant over the desired source. Using multiple drift scans can reduced
this effect (since only the sky should change), leading to a more precise measurement of the
beam response. Within old ‘dome-style’ radio telescopes drift scanning is favoured (Barvainis,
1997) since its own structure scatters radiation into the detector. For new technology, ground
based antenna should immediately remove this effect meaning a drift scan should measure the
foreground sources better while tracking is vital for optimising the signal to noise for a specific
target. Choosing a drift or a tracked scan is a trade off between the speed of measurement and

the precision of measuring the non-desired objects in the sky.

For avoiding the foreground wedge, 21CMSENSE contains three levels of increasing severity:

e Pessimistic: all baselines are added incoherently and no k modes are included in the

horizon or the buffer zone.

e Moderate: all baselines are added coherently but no k modes from the horizon or buffer

zone are included.

e Optimistic: All k modes in the primary field of view are used.

The buffer parameter can be changed to cater for larger horizon effects along the foreground
wedge but we set this to the default value of 0.1 hMpc~! throughout our analyses. Other
possible parameter changes are the cosmological bandwidth (default 8Mhz), which captures
the redshift range that can be considered coeval; and the number of channels (default 82),
giving 1024 channels per 100 MHz of bandwidth - both are left unchanged throughout this

work.
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Algorithm 1: 21CMSENSE: The array file
Convert antennae distances to wavelength;

Calculate Baseline - i.e. vector distances between each antenna;
Fast Fourier transform the baseline distribution;

Flatten the resulting u,v,w, producing a grid of U-V bins;

(bin size is bandwidth dependent);

if Track then
| Time for U-V coverage is specified by the observation parameters;

end

if Drift then
Time set by drifting sky accross the estimated beam - typically this is 0.15/v for the

full width half maximum of a 2D Gaussian;

end

The receiver temperature, Trx, and distribution of the U-V bins are then passed to the sensi-

tivity calculation.

Before proceeding with the sensitivity calculation, we need to get to grips with a few quantities.

To convert between observational and cosmological units using the redshift dependent scalar,

X2Y (z), is defined,

1 5 _1

1.9 1+2)\?2 1.7 (14 = Qn 2
X2V (2) = = 1000 ( ~m 1.25
(2) <2.91x1o—4 10 ) 8 [0.1( 10 > x 10 O(o.15) ] (1.25)

where the first term (left bracket) converts the angle on the sky to proper distance [h~'Mpc],

and the second (square bracket) represents, dD./dv, changing a bandwidth [GHz| to a line-of-
sight distance in h™*Mpc (both for a given redshift) (Furlanetto et al., 2006b,a; Parsons et al.,
2012). Equation 1.25 contains, dk/dn(z) = 2n/ (dD./dv), which converts a baseline length in
A to k mode to transverse k-mode [hMpc '] at a given redshift. The effective beam solid angle,
Qef, is defined in reference to the amplitudes received by the telescope (Equation B.48) as,

([ |B,(1,m)|dldm)*

Qo = , 1.26
T B, (1, m)[2dldm (1.26)

i.e. it is the ratio of the power-square beam to the square of the beam’s integrated power

(Parsons et al., 2012, 2014) and we refer to Equation 1.26 as, Qg = Qf)/Qpp, in Chapter 5.
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This is specific to use in the power spectrum as the numerator comes from measuring two
visibilities and the denominator from the volume in the desired integral. In the limit of a
top-hat beam model the power-square beam and the beam’s integrated power squared are the
same. The nature of using units of A and having two discrete halves easily allows changing
the observing wavelength since this will effect the relative size of the dish, and therefore the
nature of .. Continuous galactic HI emission dominates the foreground and is modelled from

observation (Jacobs et al., 2013) to be,

U —2.55
Tuew = 60 x 10° ( ) K, 1.27
ky = P02 0.3GH m (1.27)

before being combined into the system temperature as,

Tsys = T'sky + TRX' (128)
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Algorithm 2: 21CMSENSE: The sensitivity calculation

lu| = u* + v? for u, v do
if pess, mod then

‘ horizon limit = @(z)@ + buffer ;

dn
end
if opt then
‘ horizon limit = g—l;(z)sin (2 x first_null) ;
end
for k£ do

Trms - Tsys/\/2B X 109 X tobs ;
Noise = X2Y(z) x Qeg x k3/27% ;
Sense = [Noise x T2+ A%L] 7% ;

rms

end

end

where sense is the visibility sensitivity, which must be normalised by the observing scale to
become the telescope sensitivity, Tsense, which we desire.

The errors are added in inverse quadrature, and we still need to normalise for the number
of independent fields observed:

for k) do

sense(k) = sense(k)’% ;

for k£, do
Tsense = Tsense + 1/sense(k‘||)2 )

k= ,/k*+ k’|2;
Tsense(k) = Tsense(k, )2 ;

end

end

Undoing the inverse quadrature leaves us with the final result:

for k£ do
Tsense(k) = Tsense(k)™2 ;

N

end

We now have a telescope’s measurement sensitivities per k; for a given 2lecm power spectrum

and observing frequency. The noise sensitivity of a radio telescope power spectrum measurement

roughly scales as (Btobs)_%, where B originates in the limits of the integral in Equation B.48
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Figure 1.7: 1.7(a) Each blue point represents a station location for LOFAR-48 (photographed
in 1.7(b) by ASTRON, https://www.astron.nl/telescopes/lofar/). These locations are fed into
21CMSENSE, which estimates the sensitivity of the interferometer by Fourier transforming the
vector baselines between each station.

and t,ps from the thermodynamics of signal from the observed source dominating over the
instrumental noise (which will saturate, see Section B.2). By assuming Gaussian errors on
cosmic variance, we have expressed the total uncertainty with an inversely weighted summation

across all the k modes as,

N

2 o 1 )
Pl = {Z 2,00+ A%W} ’ 29

where A3 (k) is represented by Noise x T2 . product within Alg 2.

For accurate implementation of 21CMSENSE a balance between overcoming both cosmic vari-
ance and thermal noise from the telescope must be done. Medium-deep observations are the
best i.e. 100hr observations of 10 independent fields favours 1000hr (1hr) observations of 1
(100) field(s) (Greig et al., 2020c), however cuts are conventionally made to ensure the results
are accurate. Within Chapters 3 and 4 we utilise the observed power spectrum between [0.15, 1]

and [0.1, 1]AMpc~! to account for observing coeval cubes or the light-cones respectively.

We implement 21CMSENSE with three up and coming radio interferometers, which show promise
in using the 21cm power spectrum a parameter estimation setting (McQuinn et al., 2006). These

are LOFAR-48 (The LOw Frequency ARray?), HERA, and the SKA-512, where the number

4http://www.lofar.org
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Figure 1.8: Configurations of HERA dipoles. Figures 1.8(a), 1.8(b), 1.8(c), 1.8(d), 1.8(e), and
1.8(f) represent the array with 19, 61, 127, 331, and 469 dipoles respectively.

represents how many dipole stations exist in the array. HERA is built in a hexagonal structure
which is easily extendable and so we vary the number of antennae used in its observation as
HERA-N where N € [19,61, 127,217,331, 469] - each with [3,5,7,9, 11, 13] dipole stations along
each side. Figures 1.7, 1.8 and, 1.9 plots the locations of the antenna for LOFAR-48, HERA-N,
and SKA-512. The three telescopes are located in the Netherlands (North of Exloo ‘52:54:32,
‘6:52:8”), South Africa (North of Capetown ‘38:25:59.24", -79:51:02.1’), and Australia (Miluera
-26:42:117, ‘116:40:14’) respectively. LOFAR does tracked scans, HERA drift and SKA can
perform both. The receiver temperatures used are 140K, 100K, 30K respectively. We have

assumed a 2D Gaussian fit for each of the three telescope beams.

Of these three telescopes LOFAR is the only currently operational one and so it serves as a
modern day comparison against the future developments that are HERA and the SKA. HERA
and the SKA both test two different methods for noise reduction which boil down to how well
the delay spectrum can be obtained from interpolating U-V space. The HERA station layout
has multiple repeated measurements of the same baselines, and so each U-V measurement
will increase with accuracy as the telescope increases in size. This enables the thermal noise
on each measurement to reduce 1/ V/N. SKA on the other hand has a much larger variety

of independently sized baselines, providing a well covered interpolation into U-V space. The
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argument here is that the better established the Fourier transform from visibility space, the
more accurately the measurement of the wedge will be and as a result the fidelity of the 21cm
signal estimation will be increased. This roughly corresponds to being able to subtract a more
precise sky map from the image created by the instrument, if the Fourier dual of the image is
better measured the resulting subtraction will be more accurate. It is an active area of research
as to which of these techniques will be favoured (Dillon & Parsons, 2016; Byrne et al., 2019;
Dillon et al., 2019). HERA is optimised for the power spectrum as its sparse measurement of
the U-V space will not likely allow statistics of higher order to be measured. However there is
also an active area of research into what order poly-spectra can be accurately reached, given
the presence of such large foregrounds in the first place (Watkinson et al., 2020). A balance

between the two methods is likely required.
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Figure 1.9: The SKA will be the world’s largest FM radio consisting of 10 antennae by 2030,
after its secondary upgrade. Figures 1.9(a), 1.9(b), 1.9(c) represent the full, central and core sta-
tions. The spiral arms in the full array stretch ~ 40km accross and the core is ~ 400m accross.
1.9(d) shows an artist’s impression of the finished construction (SKA Organisation/Swinburne
Astronomy Productions, https://www.skatelescope.org/multimedia/image/ska-low-frequency-
aperture-array-close-up-australia/).
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1.4 Bayesian analysis

The statistical analyses in this work are Bayesian. Bayesian inference comes in three forms:

e Parameter Inference (Section 1.4.1), where a model is assumed true and we desire that

model’s best fit to the data.

e Model Selection (Section 1.4.3), where we have (at least) two competing models. Odds

are calculated for which model best fits the data.

e Model Averaging (briefly discussed in C.2.3), where we accept that no single model is
as descriptive as the data. We then look to see what can be learnt by combining the
posteriors from all the models for each parameter. We are left with a total uncertainty

on the parameter under question.

1.4.1 Parameter estimation

The key to answering any problem in a Bayesian framework is summed up by the following

bullet points:

What are the data?

e What is the model?

What are the model’s parameters?

What is the likelihood function?

What prior should be used?

To approach this we write, D, as data and M, the model which has a parameter vector, 8. We
desire the distribution of our parameters (the posterior), given the data set at hand and the

model we are using. We can then rewrite Bayes’ theorem (Equation C.1) as,

P(D|6, M)P(6|M)
P(DIM)

P(6|D, M) = (1.30)
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where each of these four terms plays a fundamental part of the Bayesian process. P = P(8 |
D, M) are the parameter posterior distributions; £ = P(D | 6, M;) is the likelihood; the prior
distribution IT = P(0 | M;) is our knowledge from before this experiment; and the Bayesian
Evidence, Z = P(D | M;) (also known as the marginal or model likelihood). Giving P = LI/ Z,
for short. With this laid out we can decide what we really want from parameter estimation -

i.e. the MAP (maximum a posteriori) parameters and their variance.

To briefly touch on the prior distribution, before discussing it in depth in Section 1.4.4, we can

differentiate Bayes theorem with the chain rule as,

oP 0 [cn} _loc con (131

90 00| Z) Zo0  Zoo
since the Evidence has had its parameter dependence marginalised out (discussed further in

Section 1.4.3). Rearranging, and inputting a uniform prior distribution gives,

oL L 0Il
e 1.32
00 IT 06 0 (1.32)
hence motivating the peak finding exercise in Section C.1.5. For uniform priors the peak of the

posterior is the peak of the likelihood. This shows that in a parameter estimation context, the

likelihood takes the fundamental role.

1.4.2 Likelihoods

Before diving in to discuss the intricacies, it is worth mentioning a few conventional traits that
are taken advantage of regularly. Namely, since parameter estimation is a peak finding exercise
of the likelihood (given uniform priors, see Section 1.4.4), we lose no information dealing the

log of £ rather than £. In a lot of scenarios this is significantly more convenient.

Second is the form of the likelihood, which is taken to be Gaussian since we are often dealing
with Gaussian errors due to the CLT (Section C.1.3). Conventionally a x? is used to implement
this. For application in astronomy, z is a measure of the simulated data set, (simulated with

parameter ¢), compared with the same statistical measure applied to our data set zp, which
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has an observation with error op. We then have,

o 2
Y o)

2
205

(1.33)

The statistic used for = is the choice of the user and this is often a non-trivial choice. It may
not be obvious how best to interpret measurements depending on the nature of the observing
technique, the desired observed quantity, or both. One must be particularly careful not to
confuse the likelihood statistic as the probability of hypothesis validity. We need to be able
to interpret the chosen statistic in a way that enables proper interpretation of the desired
hypothesis. For example with a Gaussian likelihood, the mean (and associate variance), may
be all that is necessary. Any deviations from perfect Gaussianity however would require higher
order statistical moments. Leaving these out could limit the analysis, even if the information

exists within the data set.

The Anderson-Darling test (Anderson & Darling, 1952) would be another potential likelihood
(and is used in Section 1.5.2 within the MULTINEST algorithm later on). It is useful for testing
a distribution, f, by comparing its cumulative distribution functions against a set of points
x. Since the integration of f is required it is less useful for observational science as data sets

cannot always be written analytically. In this case one would look to minimise A? in the form,

A= N — i 21; ! {m U f(a:i)} +1In {1 - /f(xnﬂi)} } : (1.34)

where the value for success is defined by a user defined confidence interval.

Statistical functions are often defined by moments of the pdf or poly-spectra, if more detail is

required. Single point moments are defined as,

(™) = /xnpdf(ac)dx, (1.35)

where n = 1, 2, 3, and 4 represent measurements of the mean, variance, skew, and kurtosis
(tailed-ness) of the distribution. In some real scenarios these moments will lose information
(similar to cutting off a Taylor expansion at the first order), and hence the use of poly-spectra

becomes necessary.
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The more complex (typically the more non-Gaussian) the distribution the higher order moment
is necessary to adequate describe the underlying features of the data set. The Fourier transform
of the n-point correlation function are known as poly-spectra (discussed in detail in Section C.4).
The power spectrum, bi-spectrum and tri-spectrum are respectively defined for n = 2,3, and 4,
and it follows from the moments that each is specifically aimed at looking towards contributions
within the target distribution’s variance, skew, and tail respectively. Chapters 2, 3, 4 and 5 all

make use of the power spectrum directly.

Now not every situation can have these statistical moments formulated, (the example in Section
C.1.5 shows this via the Cauchy distribution) but as we have established in Section C.1 - there
is no one tool for answering statistical questions, familiarisation with the hypothesis under

question is key.

1.4.3 Model selection

A full approach to model selection requires us to rewrite Bayes theorem (Equation C.1) again,

but this time with a posterior for the model in mind,

P(D|M;, T)P(M;|T)

(1.36)

Here the Bayesian Evidence Z = P(D|M;,T) takes the roll of the likelihood (i.e. measuring
how likely it is that model ¢ has produced the data set at hand). T describes the theory space
that the model is derived from. The details of 7" need not be a concern for implementation, it

is included for completeness. The Bayesian Evidence,
Z = /E IT db, (1.37)

takes the central role in model selection. Bayesian model selection can be summarised as the

exercise of finding M; so that Z is maximised.

Notice that, in comparison to parameter estimation, we must now be more careful with the use
of the prior distribution since Z includes II in its definition in Equation 1.37. The result in
model selection is always dependent on the prior distribution. A particularly useful aspect of

the Bayesian Evidence is that it rewards models for how well they predict data. The form of the



42 Chapter 1. Background

prior in this integral implies that similarly redundant parameters are inherently penalised. A
concept known as Occam’s Razor® (Ockham, 1318). Unless the more complex model constrains
the posterior distribution noticeably better than the simpler model, the extra parameter will
acquire a penalty for containing parameter space that is redundant. The presence of Occam’s
Razor is implicit in Bayesian model selection, due to the factor of 1/Vj, within Equation
1.37. If implemented correctly, this is one of the major benefits of testing models with this

methodology.

1.4.4 Priors

Returning to the general picture, the prior distribution of each parameter provides the oppor-
tunity to input user knowledge into the hypothesis at hand. If the bounds of the parameter
priors cannot be meaningfully set, the physics that has gone into the model is not detailed
enough. One must be absolutely certain these are valid, or they are capable of skewing the

results.

We have just shown that the Bayesian Evidence is the key to model selection, and in order
to calculate the Evidence the prior-likelihood product must be integrated. It therefore follows
that the choice of prior has more potential to skew results here than in parameter estimation

scenarios.

Choosing an uninformative prior is usually the best way to go. This way it is comparatively
easy to interpret the influence of the data, and the risk of the user influencing the results will

be minimised. Conventionally this can be done in two forms:

e Uniform - p(#) = constant,

e Log - p(f) x

S

Where the latter is also known as the Jeffreys’ prior, and is used when parameters scale ac-
cross multiple orders of magnitude (when uniform distributions stretch orders of magnitude,

significantly more parameter space exists towards the larger end).

SWilliam of Ockham (1287-1347) was an English Franciscan friar, theologian and philosopher. His text is
originally in Latin and can be translated as: ‘More things should not be used than are necessary’.
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In Section 1.4.1 we have showed that the use of a uniform prior distributions, II = const,
simplifies Equation C.1 to,
P x L. (1.38)

The Evidence is a marginalisation of the likelihood times the prior, so it is also a constant with
respect to the model’s parameters. In this case the integration of the likelihood can simply be
scaled by the parameter space volume Vo, however this is not entirely fool proof in model
selection as two similar competing models may have their results swayed if the priors are not

chosen fairly.

If we briefly return to the context of our quantitative example in Section C.1.5, Equation C.11
has already made use of an uninformative uniform prior (via the proportionally signs, similar
to Equation 1.38). Since we desired the MAP parameters and their variance, this problem was
simplified to measuring the maximum of the likelihood and its variance due to our choice of
prior. It is not always possible to use completely uninformative priors. In Section C.1.5, the
lighthouse could have been anywhere along the coast, i.e. between [—o00, 0o] however this would
nullify any influence of the likelihood as the pdf contribution from II would be infinitesimal.
Here, and in most cases, a sensible cutoff should be applied by the user. By sensible we mean
absolutely justify-able i.e. in the case of the lighthouse, at some point the curvature of the
Earth would get in the way or the luminosity of the source would diminish beyond detection.
This further illustrates the point that user discretion must be used, but above all else the data

must overwhelm the priors.

In practice, it is worth testing® how robust the results are with respect to a wider IT distribution
and d-function in order be aware of the potential skew a poorly chosen prior can inflict. For

the case IT = §(6 — Oyap), we are taking the limit df — 0 around the MAP value,

1 Onap+%
Z = / Ldf. (1.39)
[%

vprior MAP — %

As the the prior volume is reduced Vpior — df, resulting in,

do
‘/;arior

lim Z = [c(e)

Vprior —0

} = L(Omap), (1.40)

5We do this as a test to the methodology on the toy EoR models in Chapter 3.
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i.e. the likelihood evaluated at the MAP is the maximum Bayesian Evidence obtainable.

One way of dealing with the possible variety in prior distributions is to define an Evidence
with multiple different priors per model likelihood (Martin et al., 2014). Then the Prior is a
characteristic of the model (in this context) and the Bayesian Evidence (per model) is dependent

on integrating the prior-likelihood combination as before.

When experiments iterate it can be sensible to input the posterior from a previous experiment
as the prior for the next iteration. For example, fits to the CMB Planck data can use the
WMAP results as a prior since they follow similar methodologies. This is a simple subset
of Hierarchical Bayesian modelling. In general, Bayes theorem is adapted to contain latent

variables of the model at hand to avoid measurement of parameters that are hard to obtain,

p(f]s,t) o /p(s,t,x,y|6’)p(9)dxdy. (1.41)

For unknown parameters s and ¢, where the known (latent variable) parameters are z and
y. These must therefore be marginalised out during Equation 1.38. A typical example of
this is obtaining photo-metric redshifts from multiple different colour plates. The distribution
obtained by each colour must produce a joint flux distribution when the plates are marginalised
over. This is a powerful tool, since Bayes theorem need only be marginalised to infer information
about parameters that indirectly influence observed data sets. In most cases (e.g. Section C.1.5)
the prior distinguishes the frequentist estimator distribution from the Bayesian posterior. Here
it is not so simple, the MAP is not necessarily the same as the maximum likelihood (e.g.
if each separate distribution has a uniform prior, the weighted sum may change this for the
joint distribution). The inclusion of multiple distributions can be easily written down for the
Bayesian case (as we have done, Equation 1.41), however for the frequentist more information is
necessary to do so. A rigorous application of the frequentist approach in this context is beyond

the scope of this work.

The interested reader should refer to Jaynes (2003) which contains quantitative examples of
how priors can move posterior distributions. Examples of applying Bayesian methods within

cosmological contexts are available in Hobson et al. (2009).
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1.4.5 The Bayes factor

As we have established in Section 1.4.3, the Evidence, Z = p(D|M), takes the key role in the
Bayesian model selection. However we have not discussed how it is used formally or how to
interpret the results. In order to proceed we derive what’s known as the Bayes factor from the
ratio of two different model-posteriors (Equation 1.36) both fitting the same data set,

_ P(M|D, Ty) _ P(D|My, Ty) P(M:|T3)
P(My|D,T5)  P(D|My, Ty)P(Ms|T3)’

B (1.42)

here the models are not necessarily derived from the same theoretical motivations, however the
observed data should be independent of the theoretical motivations and will therefore cancel.
We are left with the ratio of the Bayesian Evidences and a model-prior where the user can
implement how likely they think a model is representative of a data set. Throughout this work
we assume all models have an equally fair chance, i.e. they have access to similar physics. We

therefore simplify Equation 1.42 and define the Bayes factor to be,

812 == = . (143)

The Bayes factor is then simply interpreted as a betting odds. In the form of Equation 1.43,
Bis > 1 (< 1) represents model 1 (2) having a better chance at reproducing the data and is

therefore considered favoured.

1.4.6 The Jeffreys’ scale

For the non-trained statistician, interpreting the odds produced by the Bayes factor analysis
can be non-trivial. To ease interpretation we adopt the Jeffreys’ scale as prescribed in Hobson

et al. (2009). Namely,

e Strong - Bis > 150 then model 1 has objectively outperformed model 2 at describing the
data at hand.

e Moderate - 10 < B1y < 150 care must be taken to assure no skew is added via redundancy

in the prior ranges, however the two models are likely to be distinguishable.
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o Weak - Bis < 10 the two models are indistinguishable given the quality of data.

We emphasise that this is ad hoc and that the true results are the odds. Despite any user’s
best efforts, there will be some leeway in choosing the prior distribution. Therefore it is wise

to require the results reach a threshold in order to draw justifiable conclusions.

1.4.7 The Savage-Dickey density ratio

The Savage-Dickey density ratio (SDDR) is defined as the ratio of a model’s Bayesian Evidence
to that of the same model but with a certain parameter fixed (Dickey, 1971). This sub-
model (with the parameter fixed) is referred to as ‘nesting’. By varying the nested parameter
throughout its allowed prior range we can gauge that parameter’s impact on the model under
scrutiny. In chapters 3 and 4 this is used as an analysis of how effective a parameter, 6,, is in
a model selection setting. Thinking of the SDDR as a parameter dependent Bayes factor, we

can write,

B(6,) = , (1.44)

where the chosen nested (fixed) parameter is labelled, 6.. Using our definition of the Bayesian

Evidence in Equation 1.37 we can expand Equation 1.44 into,

B(6,) = % / L(0)T1(8)do™ ! (1.45)

_ / P(O)IOV ! x P(0.) .

Here dV 10 refers to the differential d6” without the df, term. To reiterate df;...d0x = dOY =
dV=10df,. As can be seen on the right hand side of Equation 1.45, the SDDR shares the shape
of the parameter posterior for 6,. If this is not the case, the sampler has either incorrectly
integrated the parameter space or the incorrect posterior distribution has been found. Plotting
the profile of the likelihood is significantly easier to do than calculating the Evidence (and
therefore the SDDR), and for a single parameter the computational overhead of a grid-search
isn’t expensive compared to sampling. A simple cross check for the sampler is then easily
performed to see if this profile and the posterior match (in the case of uniform priors). If they

don’t the sampler has incorrectly integrated the likelihood space.
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When the priors and likelihoods are completely separable, the SDDR can also be used to reduce
computation time, since only the Evidence of the models with the larger number of parameters

needs evaluating”.

A novel method developed by Mootoovaloo et al. (2016) attempts to use the SDDR more broadly
for model selection. This can be done by creating what is referred to as a supermodel, where
hyperparameters are used to select the constituent model within the supermodel. Unfortunately
in our context computation is the main overhead, which worsens with increasing dimensionality.
We do not consider it further as adding this would increase the overhead, out-weighing any

added convenience.

1.5 Applying MCMC algorithms

Throughout this work the posteriors shown will be produced by one of the two following al-
gorithms. EMCEE (Foreman-Mackey et al., 2013) is the conventional algorithm of choice for
parameter estimation. As MCMC algorithms go it is very robust for the majority of likelihood
spaces, however it does not calculate the Bayesian Evidence. In cosmology, the well known
CosMOHAMMER (Akeret et al., 2013) is a framework which implements EMCEE for use on
large computing clusters when combining multiple experiments into the likelihood. 21cMMC
is the combination of COSMOHAMMER and 21CMFAST (discussed in Section 1.3). MULTINEST
is the other algorithm, geared at model selection. The bulk of Chapters 3 and 4 is the appli-
cation of MULTINEST in place of COSMOHAMMER within 21cMMC. In brief, MULTINEST

efficiently integrates the likelihood space to obtain the Bayesian Evidence.

The following subsections detail these two algorithms. Since the use of implementing EMCEE
is well established and that MULTINEST in the EoR is the bulk of chapters 3 and 4, there is

significantly more discussion of this sampler and the variation of its possible implementations.

"For more information on this please see Hobson et al. (2009). This was not used as we found in Chapter 2
that the EoR models have correlation between the parameters and are therefore non-separable.
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1.5.1 EMCEE

EMCEE (Foreman-Mackey et al., 2013) is an affine invariant ensemble sampler. The ensemble
refers to a group of so called ‘walkers’, where each walker is a chain of samples similar to
individual M-H algorithms (Section C.2.1). Every time a walker updates, it does so dependent
on the other walkers within the ensemble. The walkers are allocated into pairings at random
and it is along this bisector that the walker will move in order to create the next sample in that

walker’s chain.

Affine invariant means the method does not depend on the geometry of the likelihood space
i.e. it is insensitive to linear transformations and unaffected by awkwardly shaped parameter

covariance distributions (Goodman & Weare, 2010). To illustrate this, the example likelihood,

—(91-02)% _ (01+62)2
2

p(f) occe” = , (1.46)

is very ellipsoidal in shape. The narrow nature of this means the M-H algorithm’s probabilistic
acceptance step would become very inefficient and is likely not to explore the parameter space
fully. In order for it to succeed, a transformation of the form ¢; = (61 —65)/+/€ and ¢y = 0, + 6,
is necessary to resolve this as the covariance of the new distribution is diagonalised and unitary.
EMCEE implements this by updating the point under consideration (Xj(t), assigned to walker
k) along its bisector to the randomly selected point (X, assigned to a different walker, j, from
the same ensemble). The authors refer to this as the ‘stretch’ move and it captures how EMCEE

performs so well on troublesome likelihood spaces.

Algorithm 3 details the steps in the process, where the adjustable scale parameter, a, dictates
the size of the step S. Walker positions are x, the updated step position is Y, ¢ denotes the

iteration (trial point), and d is the number of dimensions.
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Algorithm 3: EMCEE
Distribute K walkers uniformly throughout the Prior;

while Convergence unsatisfied do
Select half the walkers at random,;

for k in K/2 walkers do
draw the step size S € [\/a,1//al;

draw random walker j (from the other half); z)(t) = Y = z; + S X [z(t) — X;];
Define the acceptance criteria ¢ = ST I(Y)L(Y) /T(zx(t)) L (21 (1));

Draw random number r, form [0,1];

if ¢ <r then
| m(t) =Y
else

| xk(t) = 2 (t+ 1);

end

end

end

In essence the EMCEE algorithm is similar to M-H but with the stretch move implemented on
each iteration for half the walkers. Half the walkers must be used to update the ensemble if
performing the algorithm in parallel, otherwise detailed balance is violated and the algorithm’s
performance varies on its selection of walker j. Detail balance is insured by updating the
walkers half at a time, and the use of the probabilistic acceptance value ¢. In other words as
the ensemble updates the covariance distribution it also converges on the posterior. Detailed
balance is only satisfied generally for the steps once the covariance is near unitary, and the

walkers have populated the posterior peak.

For usage EMCEE recommend?®, a = 2, and the number of walkers must be increased alongside
dimensionality for it to work well. Within 21cMMC K = 16 x d is recommended with 3000
iterations (and 250 discarded burn-in iterations) to satisfy the Gelmin-Rubin convergence check
(Section C.3.2). The 21cMMC settings: walkersRatio=16, burninlterations=250, samplelter-

ations=3000, threadCount=20, reuseBurnin=False; prove to be suitable.

8Please see https://emcee.readthedocs.io/en/stable/ for the full API.
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1.5.2 MULTINEST

MULTINEST is an MCMC implementation of nested sampling, an algorithm designed to cal-
culate the Bayesian Evidence. The tricky part of this is evaluating iso-likelihood contours
(discussed in Section C.2.1). Ellipsoidal rejection sampling is the tool of choice. But this alone
would bias the likelihood space to the shape of an ellipsoid and so a number of ellipsoids are
fit and sampled within. To choose the number of ellipsoids a variant on k-means clustering is
implemented and is detailed below. How MULTINEST deals with multimodal likelihood spaces
and how the statistical errors are calculated are also detailed here. Extensive detail of MULTI-
NEST’s usage and some preliminary tests on few toy models are shown in Section C.3.1. The

appendices also detail some features within the MULTINEST code that we do not implement.

Ellipsoidal rejection sampling

Within MULTINEST the iso-likelihood contours are approximated with multiple N-dimensional
ellipsoids. The optimum number of ellipsoids is fit via the dinosaur algorithm in Section 1.5.2.
For now lets assume we are fitting one ellipsoid to a number of (live) points labelled, x;, which
are part of the set, S = {x, .., x,} containing N points, please see Mukherjee et al. (2006) for
an example implementation of nested sampling in this way. Their covariance is defined in the

normal way with mean g,
N
1
C=+ > (@i — ) (i — )", (1.47)
i=1

the ellipsoid is then approximated as,
E=z"(fC Y, (1.48)

where f is a buffer factor used to increase the sampling efficiency in Section C.3.1. This is then
the proposal distribution for the rejection sampling (£ < 1), which proceeds as in Algorithm
4.
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Algorithm 4: Rejection Sampling
Pick a point x within II;

Sample a random number r € [0, max(T1L)]
(where the maximum is dictated by the live points in the ellipsoid);

if II(z)L(xz) > r then
| accept x;

else
reject x;
repeat;

end

Since multiple ellipsoids are fit (see 1.5.2) the acceptance probability of each sample is penalised
1/ne (n. being the number of ellipsoids) in order to account for the sampling of overlapping

ellipsoids.

The ellipsoidal fit of the isolikelihood contours is not perfect and this worsens in higher dimen-
sion. As the isolikelihood contours contract on the posterior the sampling efficiency lowers.
Multiple sampling attempts are often required in the latter stages of the algorithm, and this
effect scales geometrically with dimension. For D > 30 this methodology becomes too ineffi-
cient to converge and alternatives (such as those in Section C.3.3) are required. The authors

recommend the switch to POLYCHORD for D > 10.

The dinosaur algorithm

MULTINEST does not use one ellipsoid to fit the live-points. The number is chosen by a
combination of algorithms to best fit the shape of the likelihood space. The basis of this is
called k-means clustering (Hartigan & Wong (1979) detailed in Algorithm 5), which determines
k subsets within the set of live points. These subsets of the live points each have an ellipsoid
fit to them and the total volume of these is used as the rejection sampling proposal function in

the previous section.

Determining how many subsets of data to fit (or what k to use) is a non-trivial question. Here
a method called an expectation minimisation scheme (Shaw et al., 2007; Choi et al., 2006) is

used.
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Algorithm 5: K-means Clustering: fitting K distributions within a data set.
Pick k locations in the parameter space;
Assign each data point to its nearest neighbouring k location;

Move each k position to the mean of each assigned set of data points;

while Ak # 0 do
Reassign the data set to each nearest neighbouring k location;

Recast each k location to the mean of each assigned data set;
end

Once an ellipsoid is fit we test to asses the quality of that fit, and in particular whether two
ellipsoids would provide a better fit. First lets consider the true volume of the isolikelihood
contour we are trying to replicate V.. We must define a metric, T' to test how well we have

replicated the truth with the ellipsoids,
1 &

T=
‘/:crue .
J

V(E;), (1.49)
=1
where the volume of the ellipsoidal fit in Equation 1.48 becomes V(E;) o /fC; for the jth
ellipsoid. Now we seek AT between a k and k-+1 iteration of the ellipsoidal fit. To approximate
this we say V(S5) X V(X) since the full likelihood space will exist inside the suitably chose prior
distribution, where V' (X) is the volume related to the prior fraction X (assuming a uniform

prior). We then weight the volume ratios to add some accountability for a poorly fit ellipsoid,

(1.50)

ATy k1 & <V(Ek)dk — V(Ek+1)dk+1)

V(X) V(X")

where the Mahalanobis distance metric, dy, = (£ — py,)” (Cr) ' (@ — py), is the aforementioned
weight, and X’ is the prior volume fraction for the set of points where the k+1 ellipsoids have
been fit. Equation 1.50 is particularly subtle and must be calculated for each combination of
livepoints assigned within the FEj ellipsoid. The assignment of points to each half of the split
ellipsoid is tested intrinsically by including the Mahalanobis distance in Equation 1.50. At each
iteration, each half is tested against being split again, whilst the assignment of points within
each half is optimised. The split of the kth ellipsoid is kept if the sum of the volumes of these
two new ellipsoids becomes less than the volume of the previous ellipsoid or the separation
of the two new ellipsoids is below a different user defined value (in order to prevent overlap
of modes). This is a costly algorithm, and for optimisation only likelihood spaces that score

T > 1.1 are partitioned using the above scheme.
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To try and explain a simpler application, we have one ellipsoid, E (found within prior volume
X) which is being tested against a split into two, F; and Fy. To test E; and FE,, points
are assigned to each ellipsoid as to minimise Equation 1.50. If V(E;) + V(E;) < V(E) or
V(E) > 2V (X) the ellipsoidal split is kept, and the test is repeated on each new ellipsoid.

The expectation minimisation scheme, k-means clustering, and ellipsoidal rejection sampling
are packed together (along with the algorithms in the appendix) and labelled the dinosaur (or

D-means) algorithm within MULTINEST.

Multi-modality

Once the posterior is well sampled, so that each mode is approximately established, an algorithm
created by Alfano & Greer (2003) is implemented to test whether the ellipsoids overlap. First
we consider two neighbouring ellipsoids fit via Equation 1.48 which have separate sub sets of
the total live points (labelled j, k). First we rewrite the ellipsoid equations with a shared
matrix, M as,

0=M"(fC;")M, and 0=M"(\fC, )M, (1.51)

where A scales the ellipsoid without a loss of generality. These are rearranged and factorised

to give the eigenvector equation,
MC;H (M = C;C M =0, (1.52)

where A is selected to produce a singular bracketed matrix. This recasts the problem as the
intersection between two quadratic surfaces. If X exists in a way that produces real solutions

then the two ellipsoids must share parameter space and therefore intersect.

When multimodal = T'rue, this process is iterated in parallel with the sampler. The first live
point fit (with 1 ellipsoid) is labelled the active group and as the sampler proceeds any splits
from this are labelled as independent modes until there are no live points left in the active
group. These are then integrated using the trapezium rule as (Equation C.23) and summed per
mode, m, with an adjusted weighting, w;(X;_1 — X;), so that the ratio of the prior volume used
incorporates the split from the active group (i.e. Gp and G4 are the numbers of live points in

the group before and after the split respectively), and each mode m will contain a different Nj.
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These adjustments to the trapezium rule are expressed as,

Ny—1
1] G4

g 5 ZZI (X1 +1)L( )GB (1.53)

Note that the sum will stack contributions in the order that the modes are found. Since this is

done in parallel it incorporates the factor based on the prior volume in the active group from

the iteration before the subdivision.

Uncertainty

The statistical uncertainty on the Evidence comes from stochasticity between the points and
from the use of the trapezium rule. For the trapezium rule, the error scales as the square
inverse of iterations and is therefore easily reduced. To proceed estimating the stochastic noise

we calculate the negative relative entropy,
dP
H= [ In—dX 1.54

allowing us to write X ~ e . Inputting Equation C.23 and Bayes theorem gives,

1 2(x)

L
H > = (Xion = Xipn)n—. (1.55)

i

Now InX; depends on the iteration as (—i + v/4)/N,, assuming Poisson variability. From our
definition of relative entropy we directly have this as equivalent to NgH + «N;H. We can

see that as NNy scales it will be the ratio of InX; and N that drives the relative entropy down,

H
AlnZ = +4/ —. 1.
n “N (1.56)

Therefore, as one should expect, the stochastic error decreases as the number of samples in-

resulting in,

creases. Convergence is achieved when enough samples are gathered so that the stochastic error

has become negligible.
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1.6 Summary & Outlook

In Section 1.2, we covered astrophysical detail of the EoR and cosmic dawn. We defined two toy
scenarios of reionisation morphology and discussed how the properties of the first galaxies will
depend intricately on the masses of the first (Pop-11I) star formation. The 21cm signal has now
been introduced as a promising way to trace events throughout cosmological history. If supple-
mentary material is required, we present an introduction to cosmological theory in Appendix
A.1. Appendix A.2 shows observations relevant to cosmology and highlights when cosmological
observations need improving. This appendix also contains more detail on observations of the
red Ly-a damping wing, the Gunn-Peterson trough and the Planck reionisation optical depth
- these are referred to as the observational priors in later chapters. For a derivation of the
21cm brightness temperature, detail about what astrophysical phenomena contribute towards
the 21cm spin temperature, and the mechanism behind the hydrogen 21cm signal can be found

in Appendix A.3.

Section 1.3 introduced the semi-numerical recipes used in 21CMFAST. By implementing the
excursion set formalism to identify ionised regions of the IGM on a simulated density and ve-
locity fields, we can simulate the 21cm power spectrum for different reionisation scenarios fast
enough for statistical analyses. 21CMMC unites 21CMFAST with EMCEE to enable parameter
estimation in the EoR. Detailed improvements of the basic 21CMFAST model have been de-
scribed chronologically - including: simulating the light-cone by joining coeval cubes; including
spin temperature fluctuations; and including inhomogeneous recombinations in the IGM. Fur-
ther detail will be provided when relevant adaptations are made to the basic 21CMFAST model
described here (particularly when varying morphology in Chapter 3, and when including X-ray
heating and UV luminosity functions in Chapter 4). The foreground avoidance code 21CM-
SENSE is also introduced as well as a detailed description of three telescopes - LOFAR, HERA
and SKA. For an introduction to radio observations and observing the 21cm power spectrum
with radio interferometers, see Appendix B. We have introduced the methods used to simulate

cosmological observations, we then turned to analysing them.

We have looked at how to construct a Bayesian analysis in Section 1.4, including an introduction
to likelihoods and priors. Parameter estimation has been framed as finding the peak of the

likelihood function, and we have use a x? as the likelihood function (justified in Appendix C.1
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by the derivation of the CLT). In model selection, the Bayesian Evidence Z = p(D|M) is key
and must be maximised. We also discuss the importance of choosing carefully the parameter
prior in order to avoid skew within model selection. To implement model selection we use
the so called Bayes factor (Section 1.4.5), an odds ratio determining which of two competing
models has higher odds at producing an observed data set. The Jeffreys’ scale is conventionally
used for interpreting these odds ratios. Even though the Jeffreys’ scale is a bit ad hoc it
is a good starting place. Ultimately familiarisation with the problem at hand is necessary
to accurately assess the odds. The Bayes factor can also be used for analysing parameters
with the SDDR. Please see Appendix C.2 for supplementary material on Bayesian analyses,
including how to implement these techniques with MCMC algorithms. Statistics is a powerful
tool in astrophysics and cosmology, the development of Bayesian statistics has allowed a robust
analyses for model selection and parameter estimation when applicable. For an introduction to
Bayesian techniques and specific information of the role of the power spectrum in cosmology,

see Appendices C.1 and C.4 respectively.

Finally, we have introduced a statistical toolbox in Section 1.5. EMCEE (Section 1.5.1) and
MULTINEST (Section 1.5.2) are our tools of choice for parameter estimation and model selection
respectively. One, or both of these are used in each subsequent chapter. For supplementary

material about convergence tests and the implementation of MULTINEST please see Appendix

C.3.

In the next chapter we turn to applying Bayesian model selection the EoR.



Chapter 2

The Bayesian Evidence Calculated from

MCMC chains

2.1 Introduction

Here we experiment with calculating the Bayesian Evidence directly from MCMC chains. In
Chapter 1 we discussed the importance of the Bayesian Evidence for model selection and we
presented MULTINEST, a nested sampling algorithm designed for calculating the Evidence. We
also introduced 21cMMC, an MCMC analysis tool for fitting parameters within 21CMFAST by
implementing EMCEE. Since the literature already contains an MCMC parameter estimation
framework for the EoR, calculating the Evidence directly from these chains would be a useful
cross check for when we apply MULTINEST in Chapters 3 and 4. We also know that MULTINEST
performs significantly worse in high dimensions than EMCEE and it would therefore be useful
for the future, when the number of parameters within models like 21CMFAST are expanded to

capture more complex astrophysics.

In this chapter we implement MCEVIDENCE (Heavens et al., 2017a) which uses the number
density of a converged MCMC chain to estimate integration of the target posterior. A properly
converged MCMC chain will have a density of points that represents the target posterior. Given

uniform priors this will match the likelihood and be the Bayesian Evidence we desire.

Heavens et al. (2017b) shows the success of the methodology in a cosmological context, favouring

o7
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A—CDM over other models when using the CMB data from Planck. We apply this methodology
to the EoR.

Section 2.2 details the MCEVIDENCE method; Section 2.3 compares analytic solutions of toy
models to both MULTINEST and MCEVIDENCE; Sections 2.4 and 2.5 apply MULTINEST and
MCEVIDENCE to toy EoR models before we conclude in Section 2.6. The toy EoR models im-
plemented in this chapter are labelled 3pFZH{f1 and 4pFZHf1 (Furlanetto et al., 2004; Mesinger
et al., 2011) (as used in Chapter 3). Chains in this section are run with 32 walkers, producing
320000 samples in total. Long chains are needed here to cater for thinning, which we will
discuss. The usable samples from each chain are slightly lower than this as some points in
the EMCEE posteriors form islands away from the posterior peak (described in more detail in
Section 3.4.1). Before the MCEVIDENCE calculation is performed, we removed these islands
from the chains by only using points with likelihood, InL > —10. Throughout this chapter, we
compare the results from MCEVIDENCE with the output of MULTINEST. In Appendix C.3.1,
we found that integration with MULTINEST is more efficient and as accurate as integrating
analytically. We include the analytic result also for the toy models in Section 2.3 but for effi-
ciency reasons, we only compare with MULTINEST when using the toy EoR models in Sections

2.4 and 2.5.

2.2 MCEVIDENCE

Using the conventions from Section 1.4, we follow closely the derivation of Z from Heavens

et al. (2017a).

We begin relating the number density of points in a selected MCMC chain, n, to our target

posterior distribution as,

n(©|D, M) x P(0|D,M) x P(©|D, M), (2.1)

where the tilde represents an unnormalised distribution; ®, D, and M represent the parameter
vector, data, and model respectively. By representing the ‘N’ points in the chain with Dirac

d-functions we can express the Evidence as,
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z- a/n(@\p, M)do — a/ié(@ — @) —aN. (2.2)

We need only be concerned with finding the proportionality constant, a - relating the number
density to the unnormalised posterior. In particular we desire a MAP value for, a, given our
distribution of points, n. To proceed we assume the points in the chain are not correlated.
Due to the MCMC methodology, this is known to be false to various degrees (depending on the

algorithm) but with adequate thinning of the chain, this is a satisfactory approximation.

Heavens et al. (2017a) use a kth nearest neighbour method to approximate the target distribu-
tion with Bayes theorem. To avoid a dimensional nearest neighbour distance we transform the
nearest neighbour vector x;, from the original parameter space to r, the Mahalanobis distance

(also known as a pre-whitening step),

T = \/(Xk — i)chl(Xk — )_(), (23)

where we calculate the covariance matrix C and mean X;, from the chain. The pdf of the absolute
distance, r; to the nearest neighbour point is assumed to be Poisson distributed. Expressing

this as a hyper-spherical infinitesimal shell of radius [ry, ri + dry] gives,

nkvdk—le—nvd d‘/d
(k’ — 1)' dT’k ’

p(ren) = (2.4)

where d is the dimensionality of the parameter space and Vj is the volume of said hyper-sphere
given by Vy(ry) = Wgr(%%/z)- We then take advantage of using Poisson statistics allowing n
(if sufficiently large) to be uniformly distributed along the desired scales. The next step is to
combine this into a Bayesian likelihood from all the points in the chain. For a selected point

indexed with «, we get the distribution,

plafr) o [Hp(ﬁmln) [(a), (2.5)

in terms of a vector, r containing each nearest neighbour arrangement within our sample set,

n. II(a) is the prior on the proportionality constant which we want to find. Keeping in mind
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we can rewrite a = Z/N (or a = P/n), we can express the posterior for the Evidence as,

N
N 3
In p(Z|r, M) = constant — NkInZ — Z E Vi(rk,a)Pa + Inll(a). (2.6)
a=1

In the case of a uniform prior on a (and therefore Z) we can finally write a MAP Evidence

value as,

Zivzl Va(Tk,0)Pa
’ )

Zyap = (2.7)
The question is whether suitable thinning of the chain can reduce the correlation enough for

our approximations to hold.

2.3 Application to a toy model

To test this methodology we apply MCEVIDENCE to a simple toy model. We use a three-
dimensional Gaussian likelihood about mean, g = (0,0,0) with variance, o = (1,1, 1) across
a uniform prior ranging ([—5,5],[—5,5],[—5,5]). Figure 2.1(a) shows the posteriors of this
distribution as obtained by both EMCEE (blue) and with MULTINEST (magenta). Next to
Figure 2.1(b) we have InZ as produced by MCEVIDENCE for & = 1,2,3,4 as a function of
thinning fraction used on the chain. The thinning fraction is implemented as follows: a value of
1 implies the use of the full chain; 10~* implies 1 in every 10* samples is used. Comparison InZ
values are also plotted: the black solid line is the analytically integrated value; and the black
dotted lines are the error bars produced by Multinest. Even here, with perfectly orthogonal
parameters, a chain thinning fraction of 0.01 is required for MCEVIDENCE to produce the
correct result. Too little thinning and the correlation in the parameters from the MCMC
chain causes the result to be incorrect - InZ is a function of the chain thinning. Too much
chain thinning however and the number density is not representative of P (Equation 2.1 fails)
- the posterior on InZ (Equation 2.6) is no longer tightly constrained. Notice that towards
the left-hand side of 2.1(b), the variance on InZ increases sharply for every nearest neighbour

evaluations. We recommend implementing a thinning fraction in the range € [0.003, 0.03].
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Figure 2.1: This illustrates the success of MCEVIDENCE in the case of a model with orthogo-
nal parameters. 2.1(a) shows agreement between the posteriors of MULTINEST (Magenta) and
EMCEE (blue) on our toy Gaussian model (detailed in Section 2.3). 2.1(b) shows agreement
between MCEVIDENCE (coloured lines), MULTINEST (upper and lower limits marked by the
dotted black lines), and the analytically integrated results (black line). We recommend imple-
menting the thinning fraction in the range € [0.003,0.03] for three orthogonal parameters. See
text for the discussion of how InZ varies with the thinning of the MCMC chain.

2.4 Application to toy EoR models

After showing the success of the methodology in the previous section, we now apply it to toy
models of the EoR. We start with the three-parameter version of 21cMMC (Greig & Mesinger,
2015) (referred to as 3pFZHf1) which we will briefly summarise here.

The three parameters are:

e ( - an ionising efficiency of the galaxies;
e R, - @ maximum photon mean free path; and

e LogT, - a minimum virial temperature.

For the fourth parameter (used in 4pFZHf1), the ionising efficiency is expanded to a power law

in virial temperature as ¢ ~ (Tyi)*.



62 Chapter 2. The Bayesian Evidence Calculated from MCMC chains

The Hydrogen ionising threshold is defined as,

% dn(R
/ ¢ an Vm dm > 1, (2.8)

Mvir (Tvir)

where Rg is the maximum value of R, the scale at which the excursion set formalism is
performed. Notice that they are not independent of each other (due to the nature of the
greater than or equal sign). And in the case of 4pFZH they are not separable from each other,

as ¢ cannot be factored out of the integral.

The posteriors produced in Figure 2.2(a) shows ellipsoidal contours between all three of the
parameters - their relationship is more complicated than in the previous section, as indicated
by Equation 2.8. Each of the parameters has a slightly ellipsoidal shape, hinting that they
might be correlation. For both R4 posteriors of the ellipsoidal posteriors are mostly parallel
to the plane of the Ry, indicating correlation with this parameter is minimal. For Ty, and
¢ the ellipsoidal posterior is diagonal, indicating a direct correlation. Luckily in this case the
posterior is only slightly ellipsoidal, and not enough to be a problem for MCEVIDENCE. The
¢ parameter produces a near circular posterior (similar to the toy cases) because it can be
factored out of the integral in Equation 2.8. As a result, the corresponding Evidence values
converge for all k on the upper limit of MULTINEST’s error bar in Figure 2.2(b). Regardless of
these pitfalls in calculating InZ for 3pFZHf1; we proceed in analysing 4pFZHf1 with the hope

of ruling it out in a model selection context.

In the 4pFZHf1 case, pitfalls are significantly worsened. This can be seen both in the wider
contours in the parameter posteriors of Figure 2.3(a); and in the dependence of InZ with
thinning fraction in Figure 2.3(b). It is also worth noting that for no values of thinning fraction

do the four nearest neighbour values converge on each other (unlike the 3pFZHf1 case).



2.4. Application to toy EoR models 63

-8.25 PR
k=2
-8.50 1 -
-8.75 k=4
21/l —9.00 -
s )
< 0 g -925
LRI
-9.50
© . N - V |
-9.75 1 | I VPRV A
_54)'." N Ar A aeeras
Ew® Y o -10.001
S o = : : :
= = 104 1073 1077 10-1 100
N . Thinning fraction
P WS P \,QUO RN og’ b:? b:b c;’
( Rmfp Loglo[Tvir]
(a) (b)

Figure 2.2: This shows a semi-successful attempt at applying MCEVIDENCE to the 3pFZHf1
toy EoR model. The parameters are not orthogonal (See Equation 2.8) but the correlation is
minimal, resulting in an approximately correct MCEVIDENCE values for InZ in Figure 2.2(b)
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Figure 2.3: Here we illustrate the failure of MCEVIDENCE when applied to 4pFZHfl. The
parameters ¢ and T,; are correlated by the addition of the power-law index « resulting in large
posterior contours (in comparison to Figures 2.1(a) and 2.2(a)). InZ and thinning fraction have
become a function of each other. MCEVIDENCE is not reliably applicable to this situation.
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2.5 Attempted remedy

In order to prescribe the failure of this methodology as an impact of correlated parameters, we
recreate the behaviour in the previous section using toy models. We then attempt to remove

this correlation by selectively slicing the likelihood space before the pre-whitening step.

2.5.1 Replicating correlated behaviour

We endeavour to recreate the failure of MCEVIDENCE by using the three dimensional toy

Gaussian model of Section 2.3. We correlate the parameters of a toy model as follows,

z=Ay+(l.—A) =z (2.9)

Here x remains the same as in Section 2.3, and A has followed values of

0.001, 0.01, 0.1, 0.12, 0.13, 0.14, 0.15, 1/5, 1/2, and 1. Figures 2.4, 2.5, and 2.6 show
A= 0.01, 0.1, 0.12, 0.13, 0.14, and 0.15 respectively in pairs. Each figure shows a parameter
posterior produced by EMCEE (left) and an InZ against thinning of the chain (right). In the
case of A = 0, we retain the results in Section 2.3. For A > 0.15 the posteriors and Evidence

plots are indistinguishable to A = 1.

As can be seen, MCEVIDENCE agrees with MULTINEST when the parameters are mildly corre-
lated (Figures 2.4(a)). Figure 2.4(b) has a mild correlation with A = 0.01, and shows a result
within MULTINEST’s error bars, however it is already on the cusp. By the time the correlation
has reached A = 0.1 (Figure 2.4(d)) the approximations that the chain is uncorrelated no longer
holds. As A increases (Figures 2.5(b), 2.5(d)) the InZ values of the nearest neighbour begin
to switch order. It is clear that there is a turning point in this behaviour (Figure 2.6(b) - the
last plot where all 4 nearest neighbour points agree). The steep slope in InZ against thinning

fraction shown by the 4pFZHfl EoR model (Figure 2.3(b)) is replicated when A = 0.2.

As A values are the only change between these models - correlation is responsible for violating
the assumptions used in Section 2.2. But we have been unable to offer a deeper explanation as

to why the Evidence value has become a function of thinning.
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Figure 2.4: These plots refer to the correlation applied to the toy Gaussian model via Equation
2.9. Figures 2.4(a)/2.4(b) and 2.4(c)/2.4(d) are EMCEE’s parameter posteriors and InZ against

thinning fraction referring to A

0.01, and 0.1, respectively. These Figures show the cross

over from MCEVIDENCE behaving appropriately to when the algorithm breaks down due to
correlation between the parameters. Figure 2.4(b) shows MCEVIDENCE producing Evidence
values in agreement with MULTINEST; 2.4(d) shows that InZ has become a function of the

chain’s thinning fraction.
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Figure 2.5: A continuation of Figures 2.4 and 2.6. These plots refer to the correlation applied to
the toy Gaussian model via Equation 2.9. Figures 2.5(a)/2.5(b) and 2.5(c)/2.5(d) are EMCEE’s
parameter posteriors and InZ against thinning fraction referring to A = 0.12 and 0.13,
respectively.
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Figure 2.6: A continuation of Figures 2.4 and 2.5. These plots refer to the correlation applied to
the toy Gaussian model via Equation 2.9. Figures 2.6(a)/2.6(b) and 2.6(c)/2.6(d) are EMCEE’s
parameter posteriors and InZ against thinning fraction referring to A = 0.14 and 0.15,

respectively.
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Figure 2.7: This shows a failed attempt at remedying the results in Figure 2.3(a). We have
applied a d-function prior on the fiducial value of ¢ (hence plotting the other three parameters
only). The InZ values are better than in Figure 2.3(b) however this method remains unusable
in the EoR context.

2.5.2 Likelihood cuts

To salvage some information on the Bayesian Evidence from the 4pFZHf1 chain, we attempt
to perform MCEVIDENCE on the 4pFZHf1 model with a Dirac é-function in place of the prior
distribution for the { parameter. The resulting three parameter posterior and corresponding
Evidence plots are shown in Figure 2.7. We are able to obtain some convergence between the
nearest neighbours value, but only at the cost of broadening the posterior on InZ. As can be

seen we are unable to remedy the situation consistently.

We also note that the posteriors produced by 21cMMC are truncated. The R, in particularly
cannot be untruncated by extending the prior. To probe this we truncated the toy Gaussian
model from Section 2.3 but found no deviation to the MCEVIDENCE’s performance unless the

MAP parameter was included in the truncation®.

"'We did not re-run the MULTINEST or EMCEE with truncated priors since the MAP parameters are captured
in each 21cMMC posterior. We therefore cannot ensure convergence within this test.
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2.6 Conclusion

MCEVIDENCE can produce the Bayesian Evidence from MCMC chains if the parameters are
orthogonal, as shown in Section 2.3. In the context of the EoR, we are unable to obtain reliable
values of the Bayesian Evidence directly from MCMC chains (Section 2.4). Heavens et al.
(2017a) state that correlations within the MCMC chain are problematic in the MCEVIDENCE
method (detailed in Section 2.2). We can recreate MCEVIDENCE’s behaviour when failing on
toy EoR models by correlating the parameters of the toy Gaussian models used in Section 2.5.1.
Unfortunately we are unable to produce sensible results by selectively slicing the parameter

space in an attempt to limit the correlation (Section 2.5.2).

We conclude that we are unable to calculate the Bayesian Evidence directly from MCMC chains
in the context of EoR analyses. Even with toy EoR models, the correlations between parameters
are significant and prevent the methodology from being successful. In the next chapters we use

MULTINEST to calculate the Bayesian Evidence.



Chapter 3

Bayesian Model Selection with Future

21cm Observations of The EoR

3.1 Introduction

In this chapter we show the foundations for using Bayesian model selection in the context of the
EoR. We have introduced an example semi-numerical simulation, 21CMFAST which is used for
parameter estimation in 21CMMC in Chapter 1. Here we present an attachment to 21cMMC
called 21CMNEST!, which tests toy models of the EoR by implementing MULTINEST (detailed
in Section 1.5.2) in place of COSMOHAMMER. The highlights of this Chapter are used in Binnie
& Pritchard (2019)%.

The models tested in this chapter are based on the approximate descriptions touched on in
Section 1.3 and they are detailed in Section 3.2.1. To recap, we split these via the morphology

of percolated ionised regions:
e [nside-out - High density gas is ionised first, due to star formation being most dominant
in dense regions of gas. The density field and radiation field correlate.

e Qutside-in - Low density gas is ionised first, due to dense gas recombining faster than it

is ionised by the radiation. The density field and radiation field anti-correlate.

'Publicly available at https://binnietom@bitbucket.org/binnietom/21cmnest 1.0.git
2 Available at https://arxiv.org/pdf/1903.09064

70
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And by the scale that these behaviours are associated:

e Local - There is no dependency on the surrounding area. The ionisation threshold is

implemented pixel by pixel.

e Global - The ionisation criteria is scale dependent. Each pixel has a sphere of influence

limited by the mean free path of a photon.

These are approximate descriptions. In theory reionisation progresses with a variety of these
qualities at various different times, as seen in detailed radiative transfer simulations (Finlator

et al., 2018).

Data is starting to become available with instruments such as LOFAR (Patil et al., 2017),
MWA (Dillon et al., 2015), PAPER (Ali et al., 2015), and HERA (DeBoer et al., 2017). With
a little luck one of them will soon detect the 21cm power spectrum (Chapman et al., 2012). In

the meantime we proceed with a mock observation simulated semi-numerically.

The main aim of this chapter is to look at how feasibly three selected radio interferometers
can rule out toy models (representing the above properties). We summarise these with three

questions:

e What length of observation is needed to distinguish between the toy models with LOFAR?
(Section 3.4.3)

e For a fixed observing timescale (1080 hours), what number of dipoles are necessary to

distinguish between the toy models with HERA? (Section 3.4.4)

e What is the minimum observation time required to distinguish between the toy models

using SKA? (Section 3.4.5).

In order to effectively distinguish toy models all the results are compared with the Jeffreys’

scale discussed in Section 1.4.6.

The structure of the chapter is as follows: firstly we detail the toy EoR models, continuing
from Chapter 1, including the details of telescope noise implementation. We discuss the con-

siderations of the parameter priors in Section 3.3. Then we show agreement between 21cMMC
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and 21CMNEST in parameter estimation (Section 3.4.1). We then proceed in distinguishing
the toy models with various radio telescopes. For each telescope, we try and answer the spe-
cific questions as above. We would like to know how long a LOFAR observation would need
to be distinguish between the toy models (Section 3.4.3). For HERA (Section 3.4.4) we set
a 1080 hour observation and see how many dipoles in the array are necessary to answer the
same question. Section 3.4.5 looks into how short the observation would need to be with SKA-
512. We also analyse the contributions to the Evidence calculation from the various likelihood
constituents in Section 3.4.6. Within the FZH, model we then use the SDDR to analyse the
inference obtainable from each parameter (Section 3.4.7). Finally, we are unable to distinguish
a power-law from constant in halo mass for the ionising efficiency ¢ with just the 2lcm power

spectrum and observational prior checks (Section 3.4.8). We draw conclusions in Section 3.5.

3.2 21CMNEST

In this Chapter we use the likelihood structure in Greig & Mesinger (2015). We calculate a x?
statistic between a mock 21cm observed power spectra from fiducial parameters and a simulated
one dictated by the sample. This is combined with the observational priors introduced in Section

1.3.2 as,

InL = X;l + Xéreig + Xi/ICGreer + X%lanck' (31)

In this (and the previous) chapter y3, is calculated for 8 k bins from a foreground corruption
limit of £ = 0.15 Mpc™! to a shot noise limit of k¥ = 1.0 Mpc™! (discussed in more detail in
Section 3.2.2). The spherically averaged power spectrum, A%, is used in the likelihood statistic.
It is defined,

S —
27T2V5Tb (2)(091(k, 2)|?) mK?, (3.2)

Agl(k’)2 =

via deviations to the mean brightness temperature as,

where the bar and angular brackets denote a spatial average and a k-space average respectively.
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3.2.1 Toy EoR models

Initially, these models are taken from Watkinson & Pritchard (2014) which are motivated by
Furlanetto et al. (2004) (FZH) and Miralda-Escudé et al. (2000) (MHR). As this is a proof of
concept work, we follow the literature for selecting toy EoR models. These are very different
models that provide a qualitative bracket on the range of possible morphologies. The physical
behaviour of all EoR models should exist within these models and they are therefore used here.
If our observations are unable to distinguish the physics of these morphological extremes, the

concept has failed.

We also add a few of our own (namely 1p MHR, F MHR, and F invMHR) which change the
number of parameters used in the basic MHR model without changing the 21cm power spectrum
calculation. These permutations are included to test specifically how the statistical machinery
scales in calculations with different numbers of parameters. Figure 3.1 illustrates the 4 differing
ionisation thresholds used in this chapter. A summary of these models is provided in Table 3.1
and we stress that some of the permutations are unphysical and have been created to test the
statistical methodology. Once models of definitive morphologies can be successfully ruled out,
only then does it makes sense to consider more physical models containing more complicated
morphologies. For example, Pagano & Liu (2020) discuss parameterising the correlation of

ionisation and density field as a possible follow up to Binnie & Pritchard (2019).

Figure 3.2 shows a brightness temperature field slice given at z = 8 with xy; ~ 0.5. Before
proceeding with the 2lem PS, all models were run with just the observational priors (i.e.
INL = X&reig T XRicGreer T Xblane).  The MAP values, MAP power spectra and reionisation
histories are shown in Table 3.2 and Figure 3.3. In all models UV radiation will eventually
dominate and is assumed to drive reionisation (Garaldi et al., 2019). In reality, it is likely that

the reionisation morphology will begin outside-in and end inside-out.

FZH - the 21cMFAST models

Furlanetto, Hernquist and Zaldarriagan (FZH), is summarised in Section 1.3. This implements
the simplest scenario (Barkana & Loeb, 2001), i.e. that the mass of the collapsed object relates

to the mass of the ionised region via the ionising efficiency ( as,
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Mion = Cmgal . (3 : 3)

To implement this we use the collapse fraction (Equation 1.12), feon, for a Press-Schechter mass

function (Equation A.10) which allows us to write,

Soi — &
coll — erfc et . 3.4
I {ﬂ[o%mmm) = a%mn} 34

Rearranging Equation 3.4 allows us to express an ionisation criteria with respect to the density

field as,

5 > Suie = 20020 (M) — 02(m)] exfc™ (1 - %) | (3.5)

The factor of 2 in Equations 3.4 and 3.5 comes from the symmetry of random walk excursions
discussed in Appendix A.1. For every random walk that reaches this critical density barrier,
half will continue their walk above the barrier. Therefore half will collapse to form virialised

objects.

FZH is applied numerically by smoothing from large to small scales, incorporating the global
behaviour surrounding each pixel. Should Equation 3.5 be achieved before the filter scale
reaches the pixel size, these central pixels are flagged as ionised. Some sub-grid regions will
have a mixed combination of ionised and neutral hydrogen. To incorporate this, after the
filtering scale has reached the pixel size the neutral fraction of zur = 1 — ¢ feol—per—pixel to €ach

pixel that is yet to be fully ionised®. Pixels are defined to be fully ionised if,

Cfcoll > 1. (36)

Throughout this chapter we refer to 3pFZH and 4pFZH. These refer to the number of param-
eters implemented in the FZH model. In particular it refers to the ionising efficiency. When
( is a constant (3p), or when this option is relaxed in the form of a power-law dependency in

halo-mass (4p). The 4th parameter, is «, enabling relationship between ¢ and 7%, as,

3This includes rounding to 0 if xgr < 0 and 1 if zgp > 1.



3.2. 21cMNEST 75

C CO (%)a ) if Txiir Z Tvir

vir (37)
0, otherwise.
The ionising efficiency ( is effective as,
Jar,, dmgEm ((m)
Ceff = MVlroo ; dn (38)
vair m%m

where the mass function is Press-Schechter with a Sheth-tormen correction factor (Press &
Schechter, 1974; Bond et al., 1991; Sheth & Tormen, 1999) and T;, is integrated out. We make
note of this here as it is implemented in various ways. For the constant form, the integrals

cancel and we are left with (. = (.

The mock observations labelled f1 and {2 are created with 3pFZH and 4pFZH respectively using
the parameters in Table 3.5 - these are the faint and bright galaxy models respectively from
Greig & Mesinger (2015). In the context of comparing all the toy models (rather than just the
21cMFAST models detailed here), FZH refers specifically to 3pFZH.

Inverted (Inv) FZH

Inverting the ionisation threshold for FZH (Equation 3.5) produces an outside-in model sensitive
to global scales. Here underdense regions are ionised first to form bubbles, with the edge of
these bubbles remaining in equilibrium?. The ionising radiation will increase as star formation
progresses, until eventually the UV background will dominate over the recombination rate
in overdense regions anticipating the completion of reionisation. To detail InvFZH we first
redefine  as ¢’ in order to keep the parameter framework within 21cMMC unchanged. (’ is
the background ionising radiation efficiency. This inverts the critical barrier as 6., = —0eit. As
is done for the FZH models, we assume Gaussian perturbations for our regions of over-density.

/

wit; Which requires a new

Now we need to calculate the fraction of matter that satisfies § < ¢

collapse fraction f! . Below this HI structures are sparse enough to be ionised, and all that

4Similar to a Stromgren sphere but on galactic scales.
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needs doing is to change the limits of the original f.,; integral as,
m — dm (3.9)

— erfe [ 5crit + d ]
V2(02(min) — 0%(m)) |

We now have an analogous ionisation threshold, f! ¢’ > 1., that can be implemented easily

(3.10)

within the 21cMMC framework. As before, we assign zp; = 1 — (' f/,, to any partially ionised

pixels.

MHR

For a local scale implementation of reionisation we implement the work of Miralda-Escudé,
Haenelt and Rees (Miralda-Escudé et al., 2000). This is a local outside-in model - underdense
regions of the IGM ionise first due to a recombination rate that is dependent on the density
of the gas. In contrast, the denser regions of gas recombine quickly and therefore ionising
radiation struggles to permeate these regions meaning they are the last IGM regions to be
ionised. Circumgalactic gas, within the halo, becomes ionised first before ionising photons
infiltrate into the IGM. HII regions expand in the direction of low gas density and the EoR
is defined to end when these regions overlap. Typically this is achieved by a background of
X-ray photons which heat the gas due to their large mean free paths. Since we do not directly
calculate the X-ray background here (introduced in Chapter 4), we equate this background to
(. We therefore define the MHR ionisation threshold via a neutral fraction zg; = 1 — feon(. To
implement this we first order the pixels by HI density, ensuring consistency between the xyi,

then we find the i’th pixel (of total NV,) that satisfies the ionisation criteria as,

(3
S §< b 311
Np THrI , ( )

The ionisation criteria is a function of density. In summary the only deviation from 21CMFAST
is the definition of ionisation via this new density threshold. It is worth noticing that this no

longer depends on R, making MHR a 2 parameter model.

Prescribing the Zyy directly is referred to as the 1-parameter (1p) MHR model. This is included
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only for testing how using different parameter numbers can skew the Evidence.

Inverted (Inv) MHR

Here we produce a local inside-out model of reionisation by following the same procedure as

above. The choice of the j’th pixel then follows by using,

j=Ny,—i, §>6; . (3.12)

Notice the greater than sign is reversed to produce an over-density threshold. The use of ¢
(from Equation 3.11) ensures that the neutral fraction remains consistent between the MHR

models.

Filtered (F) MHR

In order to test 21CMNEST more thoroughly, a third parameter is added to the basic MHR
model. Due to the Occam’s razor effect inherent in calculating the Bayesian Evidence (see
Section 1.4.3), we want to be aware of any possible skewing effect that arises from a change in
prior volume when comparing models with different numbers of parameters. Here, the added
parameter is a Gaussian k-space filter performed across the density field. The integrated volume
of this Gaussian is equivalent to a real space top-hat with radius Rpjje,. This smoothing reduces
the range of values within the density field, which has an effect on the number and density of
ionised structures. We expect this added flexibility to relax the local scenario, allowing some
fitting flexibility on the reionisation scale from this new parameter. This means the model has
a global scale when fitting for an FZH fiducial power spectrum, but has a redundant parameter
when fitting for an MHR fiducial power spectrum (Section 3.4.2). In the F MHR model ¢,
the background ionising efficiency, is pushed below that of the original MHR model, with the
opposite being true for the F Inv MHR. For the filter scale itself, we found this tended roughly
to the mean size of HII bubbles accross the boxes. The F Inv MHR shares morphology and
scale with FZH, and is therefore the most challenging toy model to distinguish from f1.
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Figure 3.1: An illustration of the ionisation thresholds for the 4 models detailed Table 3.1.
Blue (red) region are for the mass variance dependent criteria for FZH (Inv FZH) detailed
by Equation 3.5 (Equation 3.10). Purple (green) represent the critical density threshold for
the pixel-by-pixel implementation of MHR (Inv MHR) in Equation 3.11 (Equation 3.12). See
Section 3.2.1 for the full detail. This Figure has been re-styled from Watkinson & Pritchard
(2014).
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Figure 3.2: Slices of the redshift 8 coeval brightness temperature cube for the toy models.
Figures 3.2(a), 3.2(b), 3.2(c), 3.2(d), 3.2(e), and 3.2(f) represent the FZH, Inv FZH, MHR, F
Inv MHR, F MHR, and Inv MHR models respectively. Please see Table 3.1 for a summary of
the models.
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Model || Physical motivation lonisation criteria Resulting type of
reionisation
FZH Over-dense regions collapse to form stars. As stars | Over-density increases | Global  inside-
form UV radiation increases and is the driving | until above the critical | out
force behind ionised bubbles. The size of these | barrier (Oc)-
bubbles dictates the the brightness temperature
and reionisation history.
Inv Over-dense regions remain neutral due to a high | Over-density de- | Global outside-
FZH recombination rate, therefore reionisation begins | creases until below | in
in underdense regions. As star formation pro- | the critical barrier.
gresses, under dense regions grow and dominate
as hard UV radiation becomes the dominant radi-
ation background and the IGM becomes ionised.
MHR | Star formation ionises circum-galactic gas. lonisa- | An  under density | Local outside-in
tion proceeds through underdense regions as atoms | threshold is imple-
in dense regions recombine faster than they are | mented pixel-by-pixel.
ionised. As background radiation increases it be-
comes dense enough to dominate.
Inv Star formation ionises the circum-galactic gas and | An  over  density | Local inside-out
MHR || over-dense regions become ionised. It is easy to im- | threshold is imple-

plement rather than being physically viable since
even dense regions ionise despite not hosting star
formation or having a line of sight to a radiation
source.

mented pixel-by-pixel.

Table 3.1: A summary of the main four EoR models tested in this work (Watkinson & Pritchard,
2014). It is worth noting that filtering the density field (referring to F MHR) allows the pixel-
by-pixel implementation of the ionisation threshold to change the scale of reionisation from
local to global. See Figure 3.1 for an illustration of the ionisation criteria.

Model C Rmfp IOglo [Tvir]
FZH 954+ 619 123 +£4.3 517 £ 0.29
Inv FZH 71.8 £68.5 149 +£54 472+ 0.34
F MHR 413 £289 93 +£43 5.80 £ 0.31
F Inv MHR 268 =290 18.3 £4.4 5.61 + 0.34
MHR 404 £+ 293 - 5.72 £ 0.33
Inv MHR 799 £ 291 - 5.88 = 0.33

Table 3.2: The MAP parameter values (f1o, standard deviation) for the toy models using
the three observational prior checks (and no 2lcm data). Each standard deviation is large
(compared to each respective parameter prior) hinting that this data will not be constraining
in the context of distinguishing toy EoR scenarios (discussed further in Section 3.4.6).
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Figure 3.3: A summary of the toy models used. 3.3(a) EoR histories for each toy model,
produced with Ty ~ 0.5 at z = 8. Blue and purple represent the 21CMFAST models (FZH)
and MHR based models respectively, with dotted lines to indicate the inverse the models. Please
note that all MHR based models are constructed to have the same EoR history, hence there is
only one purple line. 3.3(b) 21lcm PS for the 6 constructed toy models, corresponding to the
ionisation histories. Red indicates adding the filter scale to the MHR models. The models are
summarised in Table 3.1 (see Section 3.2.1 for more detail), the brightness temperature slices
from the full coeval cubes for each of these models are plotted in Figure 3.2. Despite very
similar EoR histories for all models, the 21cm power spectra are vastly different.

3.2.2 Telescope assumptions

In this chapter we make use of 21CMSENSE with moderate foreground settings for the instru-
ments LOFAR, SKA, and HERA, as detailed in Section 1.3.7. A summary of the 21CMSENSE
settings can be found in Table 3.2.2. For LOFAR and SKA we vary t;,; and hence expect the

int ®_ Figure 3.4 shows example error on a 2lcm power spectrum (f1

noise to scale roughly as ¢

to be precise).

The k-range for Y3, is dictated by cosmic variance, shot noise and foreground corruption.
We use a coeval box size of 250 Mpc, which leads to limitation in the k-scale of the volume
averaged statistic below 0.15Mpc~'. For shot noise, our pixel resolution is 128 per box, or
~ 2Mpc meaning we have little resolution on low scales, motivating the cut at & = 1Mpc™'.
Given that we are not using the light-cone, we are effectively running a non-evolving box-car
average along the light-cone, we would start to see deviations in our power spectrum around
k = 0.8Mpc~'. Applying the light-cone in place of this is done in Chapter 4. Signal corruption

due to foregrounds not prominent within these constraints, given we are using the moderate

21CMSENSE assumptions (which are ambitious in the authors opinion).
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Figure 3.4: The 21cm PS error with LOFAR, HERA-61, SKA and HERA-331 on the fl1 power
spectra (defined in Section 3.2.1) calculated by 21CMSENSE (See Section 3.2.2. Only the values
between the black vertical lines are used for the x? calculation in the likelihood. The upper
and lower limits (in k) are respectively defined by foreground contamination and shot noise
limitations from the box size.

The noise power from HERA-331 with 1080 hours of observation is used throughout this Chap-
ter unless specified otherwise. In Sections 3.4.3, 3.4.4, and 3.4.5, the results use LOFAR-48,
multiple HERA configurations, and the SKA-512 respectively. A comparison of power spectrum
error on the f1 mock observation is shown in Figure 3.4 for LOFAR, HERA-61, HERA-331 and
the SKA at z = 9. The SKA has longer baselines than HERA and is therefore more sensi-
tive at small scales. But due to HERA-331 having many more smaller baselines it has greater
sensitivities to large scales, making it comparable to the SKA at model selection via the 21cm

power spectrum.

3.3 Prior distribution considerations

As discussed in Section 1.4.4, a potential source of bias in Bayesian model selection is a poor
choice of prior distribution for each parameter. Here we discuss the limitations and steps
taken to ensure the results are robust. The results in Section 3.4 implement uniform prior
distributions for all parameters. Similar assumptions to the original 21cMMC publication

(Greig & Mesinger, 2015) are implemented.

Within the 21C¢MFAST models, we adapt the upper end of the ( parameter to ensure the bright-
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Telescope LOFAR HERA  SKA-Central
Number of dipoles Stations 48 331 296
Station Diameter [m]| 31 14 35
Collecting Area [m?] 35,762 50,953 492,602
Tr[K] 140 100 40 +
Observing Range [MHz| [110,240]  [50,250] [50,350]
Observation Time [hrs| 1080 1080 1080
Scan Type 1-hr Track  Drift 1-hr Track

Table 3.3: The different telescope specifications used with 21CMSENSE in this chapter. Of the
SKA’s 512 stations, we simulate using the ‘central’ 296 stations since the sensitivity to the
EoR frequencies is dominant here and the longest baselines add significant computation time
for negligible increase in sensitivity.

est galaxies are included: i.e. ¢ € [5.,100.] is changed to [5.,250.]. It is impossible to measure
the ionisation flux directly but since the release of 21cMMC so called ‘leaky’ galaxies (with
¢ > 100) have been discovered (Borthakur et al., 2014). Due to the lack of observational data
surrounding high redshift astrophysics, we err on the side of caution when deciding statistical
limitation. To really understand how this limit is implemented we must break down ( into its
constituents. The variation typically comes from fes which is set within [0.05,1.0]. f. = 0.05is
used due to motivation of the theoretical modelling in (Dayal et al., 2014). This value has been
confirmed to be adequate by the existing observational constraints in Gorce et al. (2018), which
are similar to the observational prior checks used here. However developing a fully satisfactory
model for ( that can be pinned down is tricky due to it being related to so many astrophysical
variables. This is motivation for leaving ¢ behind as a parameter in favour of f.. and f, them-
selves (discussed in Park et al. (2019), and implemented in Chapter 4). As discussed in Section
1.3, N, and n are taken to be 4000 and 1 respectively (Barkana & Loeb, 2001; Sobacchi &
Mesinger, 2014).

For Log;0[Tyi;], we implement within the range [4.0,5.3] corresponding to Ty, € [10%,2 x 109)].
The atomic cooling threshold defines the lower bound. The upper bound is set via Lyman break
observations, these stem from the ionised gas threshold that the Lyman radiation must overcome
to be observed. Feedback mechanisms are relevant here as above this threshold galaxies are too
small to continue hosting star formation (Fialkov et al., 2014b). The exponential drop off of
the halo-mass function used in calculating f.,; means that changes to the top end of this prior

distribution cause insignificant changes to the Evidence.
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The parameter R, is motivated via simulation as the excursion-set formalism is scale depen-
dent. In this context, a photon’s mean free path should depend only on the recombination
rate of the IGM HI at that instant. Therefore we must identify the neutral hydrogen fraction
within these scales to accurately capture each galaxy cluster’s sphere of influence. Since typical
bubbles in the 21CMFAST simulation are ~ 10h™'Mpc, we expect Ry, to lie around this (dis-
cussed further in 3.4.7). To ensure this captures the typical variance of bubbles and to allow
flexibility for the scales at which the percolation can proceed, we set Rng € [5.,20.] as in

Greig & Mesinger (2015). For the majority of this chapter « is fixed to zero for simplicity.

To test the impact of these choices, we explore the skewing results via tampering with the
choice of prior distribution. We use both a widened prior and a §-function (discussed further in
Section 3.4.8, Figure 3.21). The widened prior extensions are: Ry € [0.,30.], ¢ € [0.,1000.],
Logo[Tvic], and o € [—3.0,3.0]. For R, nothing was gained beyond 20 Mpc - the posterior
peak extended linearly to whatever value was set (not shown). Once the excursion set scale
is large enough to capture all the bubble sizes in the box, the simulation is unchanged and

produces similar results.

For the toy models, the priors are expanded so that the peak of the posteriors are included. This
is not physically motivated and some bounds have been selected to prevent machine limitations.
From a statistical standpoint, this provides enough information to estimate a minimum and
maximum skew that can be introduced to each model’s Evidence. If our results can be robust
regardless of this skew, these results are a testament towards Bayesian model selection in this
proof-of-concept work. We need to know the maximum likelihood point if we are to estimate the
maximum Evidence for each model, and since the priors are uniform the constant volume can
be used to estimate a lower limit. In Section 3.4.4 (Figure 3.12 in particular) the differences in
Bayes factors are large and well beyond any possible skew obtained from altering the parameter
priors. Any Occam’s razor based penalty due to redundant parameter space from increasing

the prior is overwhelmed by being able to integrate the full shape of the likelihood distribution.

Since we have actively tried to skew our results, and have been unsuccessful - we are confident
that the conclusions drawn from any Bayes’ factor results are valid and that we have chosen
sensible prior distributions. Figure 3.21 does show points scoring strong on the Jeffreys’ scale
(in the case of the d-function prior), however these can easily be disputed by physical moti-

vation. Table 3.4 shows the prior distributions used to calculate the Evidence results used in
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Model ¢ R Log[Tyi] «a
3pFZH [5.,250.]  [5.,20.] [4.0,5.3] -
4pF7ZH [5.,250.]  [5.,20.] [4.0,5.3] [-3.,3]
InvFZH [5.,5000.] ]0.1,10. [4.,7.] -
MHR [5.,4000.] - [4.,7.] -
Inv MHR [5.,1200.] - [4.,6.] -
F MHR [5.,1000.] {0.1,10. [4.,6.] -
F Inv MHR [5.,1200.] [0.1,10. [4.,6.] -

Table 3.4: The uniform prior ranges used for the Evidence values calculated in this chapter.
See Section 3.2.1 for a detailed description of these models and their parameters.

this chapter. In general, as long as the peak of the likelihood has been captured by the prior,
the Bayes factor results are easily repeatable. For the MHR models we add in two reparame-
terisations (detailed in Section 3.2.1) in order to cross-check whether or not Occam’s razor is
implemented in a satisfactory way. These are: 1p MHR - the one parameter version, dependant
only on the neutral fraction; and F MHR - the 3 parameter version, where a Gaussian filter is
initially run accross the density field. These results are discussed in 3.4.2. Finally we calculate
the Evidence for (.(¢, @) when comparing the 4pFZH and 3pFZH mock data sets in Section
3.4.8.

Priors are best when uninformative. Typically the choice is therefore between a uniform and a
Log (Jeffreys’) prior. To cross check our choice of uniform prior distribution the Z calculation
for 3pFZHf1, 3pFZHf2 and 3pFZH(with o = 0.4)f2 was repeated with a log (Jeffreys’ prior)
accross the same boundaries as discussed above. Identical posterior distributions and Z values

within the computational error bars provided by MULTINEST were obtained.

3.4 Results

All results (unless specified) are tested against a mock power spectrum observation simulated by
FZH with one of two sets of fiducial parameters, namely: f1 [( = 20., Ry = 15. Mpc, Ty =
30000 KJ; and f2 [( = 15., Rugp = 15., Ty = 50000, a = 0.4]. These respectively represent a
bright and faint galaxy population as is done in Greig & Mesinger (2015), the original 21cMMC.
We emphasise that f1 is made by 3pFZH and {2 by 4pFZH.

In this chapter, the 21CMFAST models collectively refer to the use of FZH simulations, with
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3p referring to those with o = 0 (therefore implying Equation 1.15) and 4p to any with o # 0
(Equation 3.7). The toy models refer specifically to FZH, Inv FZH, MHR, Inv MHR, F MHR
and F Inv MHR collectively, where FZH and Inv FZH refer to the 3p case (with a constant
ionising efficiency). For example, the notation 3pFZHf1 (or FZHf1) refers to a 3 parameter FZH

model fitting for the f1 mock power spectrum simulated with the first set of fiducial parameters.

3.4.1 Direct comparisons of 21CMNEST and 21cMMC

We first reproduce the results of 21cMMC as the main check of our methodology, i.e. can
21cMNEST produce the same posteriors. These are done in comparison to the two mock
observations (f1 and f2) measured across three redshifts (z = 8,9,10). As is done in Greig &
Mesinger (2015), we recover the faint and bright galaxy parameter sets successfully. Figure 3.5
shows the overlaid posterior distributions from 21cMMC and 21CMNEST for all the 21CcMFAST
model results. Table 3.5 shows the relevant parameter statistics. The small areas in blue away
from the posteriors are called islands and are referred to in the EMCEE API. They are regions
where small groups of walkers have pooled together enabling detailed balance to be solved locally
without finding the posterior peak. They typically cost EMCEE a 2% reduction in efficiency.
We include them here for transparency in our comparison of the posteriors produced by each
algorithm. Importantly when these islands are ignored with a likelihood cut, the posteriors of

EMCEE and MULTINEST are matched within statistical errors.

Given we have a small number of parameters, MULTINEST is a more efficient sampling algo-
rithm than EMCEE. Less likelihood evaluations are necessary due to the weighting of points
calculated by the change in prior volume in the algorithm. In comparison, EMCEE has obtained
the parameter posteriors with more likelihood evaluations and it does not directly provide the
Evidence required for model selection. To implement model selection from MCMC chains di-
rectly an additional algorithm such as MCEvidence (Heavens et al., 2017a) must be used. Since
MCMC chains are correlated by construction (discussed in Appendix C.2.1), this is already an
uphill battle and it requires an order of magnitude more points than nested sampling. As we
found in Chapter 2, correlation between the parameters worsens this and any Evidence values
becomes too unreliable to use. At low dimensionality (up to 4 is considered in this chapter)
MULTINEST performs as well as Emcee for parameter estimation purposes also. On a 20 core

machine, EMCEE produced 39000 likelihood evaluations in 32 hours while MULTINEST ob-
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tained 50031 samples in 15 hours (both with 3pfl). For the problems at hand in this chapter,
MULTINEST is more efficient and therefore faster. Beyond these toy models however this is
no longer the case due to the increase in dimensionality penalising the methodology in nested

sampling (discussed in Appendix C.2.1).

Cross-check: the effective ionising efficiency, (.

Here we cross check the physics methodology by analysing (¢ from the 21CMFAST models
(Section 3.2.1). We recapitulate that the 3pFZH model (o = 0) is identical to the relationship
in Equation 1.15, while the 4pFZH model use Equation 3.7 (« # 0).

Figure 3.5 in the previous section shows agreement between the two statistical algorithms well.
However in 3.5(b) both posteriors peak at a value that is different from the fiducial (shown by
the pale blue lines). This is because the FZH model prescribes the aforementioned effective
ionising efficiency (o¢. Since the f2 mock observation was created with o # 0 the 3p model

cannot retrieve the exact fiducial ¢ value that satisfies this specifc power spectrum.

The consistency between the ¢ of 3pfl and the (g of 4pfl in Table 3.5 shows the reverse of
this skew. Adding the o parameter allows a compensation between ¢ and logyo[Tyi;]. Therefore
the standard deviations of ¢ (o) are much larger when « is included as a parameter in the 4p
models. In particular we note that when the { posteriors do not match the fiducial, the (.¢ do

(within o).

On top of this, any deviations from recovering the exact fiducial values are due to the obser-
vational priors inputted in the likelihood. However these do not sway the parameters much
since all the 21cm power spectra used fit within the current EoR constraints. We look at this

directly in Section 3.4.6.

3.4.2 (Cross-check: varying parameter number with the MHR models

To cross-check our statistical methodology we created a third mock fiducial data set using Inv
MHR with [¢ = 30, Log[T,;;] = 4.5]. Figure 3.4.2 clearly shows the input model has been
recovered with strong evidence. This is further proof of concept that Bayesian model selection

is successful in distinguishing simple models of the EoR.
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Figure 3.5: Here we show agreement between parameter posteriors from 21CMNEST (red) and
21cMMC (blue) for the 3 and 4 parameter 21CMFAST models. 3.5(a) The simple model can
re-obtain its own fiducial parameters (shown by the pale blue lines). 3.5(b) When fitting for
the f2 mock observation, the 3p model requires { to compensate. This is seen by an offset
which between the blue fiducial value and the ¢ posterior (and is quantified in Section 3.4.1).
3.5(c) Fixing a = 0.4 allows the 3p model to easily recover the 4p fiducial parameters used for
the 2 mock observation. As expected the 4p parameter can easily fit both mock observations,
due to the flexibility provided by (’s dependency on the halo mass (Figures 3.5(d) and 3.5(e).
See Table 3.5 for MAP parameters corresponding to these plots. The ‘islands’ of points away
from the modes (only in blue) are a pitfall of using EMCEE. Walkers have become stuck in
regions of low likelihood (expected in the EMCEE API for more detail). Typically they contain
~ 2% of the total samples. Publications involving EMCEE typically have these removed with a
likelihood cut.
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q log1o[Tyir] a Ceft
3pFZHfl | 187+ 2.0 43664009  (0.0) | 187
4pF7ZH{f1 .8 £27.6 4.148 &+ 0.16 0.36 = 0.52 6.6
f1 20. £+ 5. 4447 + 1.1 (0.0) 20.
3pFZHE2 || 34.9 + 32 4747 +0.05  (0.0) | 349
3pFZH{f2 122 +4.2 4576 +£ 0.13 (0.4) 066.1
4pFZH{f2 5.3 £ 27.3 4473 4+ 0.15 0.624 + 0.40 7.8
2 15. £3.8 4.699 + 1.2 0.40 =+ 0.10 | 39.6

Table 3.5: The MAP parameter values +10 for the 5 simulations performed with permutations
of 3pFZH and 4pFZH fitting for their mock observations f1 and f2 (Section 3.4.1). The posteriors
are shown in Figure 3.5. (. is the actual ionisation efficiency parameter (that the ensemble
of galaxies produces, via Equation 3.8). This inclusion of the power law in halo-mass causes
this to deviate from ( (the input parameter) when a # 0. For the fiducial values, fl and {2,
o has been approximated by using 25% of each value as suggested in Mesinger et al. (2011),
motivated by the discrepancies between semi-numerical and radiative transfer simulations.
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Figure 3.6: Bayes factors for the MHR based models. Only the input model is able to re-
trieve the mock power spectrum (created by Inv MHR). FZH has been included as this shares
morphology with Inv MHR. See Section 3.4.2 for detail.
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We also assess the choice of prior width with the reparameterisations of MHR here. The 1p
Inv MHR is a simplified version of Inv MHR. Since it has a vastly reduced prior space (reduced
from ~ 2000 to 1) it seems a good place to check how heavily the Occam’s razor has been
implemented by the methodology. It is clear in Figure 3.6 that the reduction in predictive
power is not dominated by the reduction in prior volume. Without the use of f.., there is no
intrinsic redshift dependence in 1p Inv MHR and it is comfortably rejected. The cosmological
parameters required to calculate Equation 1.12 make redshift dependence implicit in the other
MHR models. It is therefore comforting that we reject a model whose neutral fraction does not

decrease with redshift as reionisation progresses.

On the other hand, F MHR has an increased parameterisation and can smooth the density
field. The addition of Rpjer allows F MHR to adapt to the scaling of the ionised bubbles but
since the prior of Rpje restricts it from becoming zero, the added parameterisation worsens
the fit. When fitting for f1 this added parameter makes the F MHR and F Inv MHR harder
to distinguish than the unfiltered MHR and Inv MHR. But in the context here the mock data
from Inv MHR is made with no filter scale, therefore increasing the flexibility of this model
increases the prior volume without any improvement to the fit. The added space is therefore

redundant and F Inv MHR is appropriately penalised.

1p Inv MHR and F Inv MHR models achieve respective Bayes factors of 1072 and 1072,
illustrating the points above. For reference 3pFZH obtains 1072® and Inv MHR has B = 1 by

definition.

3.4.3 FEoR model selection with LOFAR-48

We now proceed in answering the main questions of this chapter. Namely: what length of

LOFAR observations is needed to perform Bayesian model selection with the toy EoR models?

We initially use 1080 hours of observing time (Table 3.3). Each observation is a 1 hour tracked
scan with 6 hours of observing time per day, corresponds to 6 different fields - which average
together to produce the fl1 power spectrum. The Bayes factors and MAP power spectra (z = 8)
are shown for the toy models in Figure 3.7. Due to large error regions on each power spectrum,

weak results are obtained for all except the InvFZH model.
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Figure 3.7: MAP power spectra (for z = 8) and Bayes factors are shown respectively in 3.7(a)
and 3.7(b) when using LOFAR-48 with 1080 hours of observation. In 3.7(a) the dotted lines
represent the inverse of the model stated with colours in the legend and the observational error
is shown in grey. In 3.7(b) the white, light and dark grey regions represent strong, moderate,
and weak respectively on the Jeffreys’ scale; Blue/red points indicate outside-in/inside-out
morphology, while </+ shapes indicate a global/local implementation. Note that the error
power is much larger than the 2lcm signal power spectrum. This is reflected in the Bayes
factors as no models are strongly ruled out (all points exist within the grey regions). The fit of
the mock observation can vary vastly due to the poorly constrained mock observation, except
for the case of the Inv FZH model which is disfavoured moderately in 3.7(b).
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Figure 3.8: 3.8(a) shows the Bayes factors of 3pFZHf1 against F Inv MHRf1 at with different
LOFAR-48 observation lengths. Each Evidence value of 3pFZHf1 corresponds to integrating a
posterior in Figure 3.9. The red line(s) shows the Bayes factor (Evidences) using the SKA-512
with 1080 observing hours. In order to score strong on the Jeffreys’ scale, ruling out the toy
models, LOFAR must observe for 21600 hours (indicated by the marker passing into the white
disfavoured region). 3.8(b) shows the Evidence values obtained with 3pFZHf1 (F Inv MHR) in
with black (grey) points. This comparison is chosen as these models share morphology and scale
(and are the hardest toy models to distinguish). The red lines represent values obtained using
SKA-512 (light and dark corresponding to 3pFZHf1 and F InvMHR, Evidences respectively).
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The InvFZH model obtains moderate results because of penalties from the observational priors
(see Section 3.4.6, for more discussion). Many different power spectra are capable of fitting
within the grey error region of the LOFAR-48 mock signal, and this is reflected in the width
of the posteriors in plot 3.9(a). Note that with this 1080 hour observation, the posteriors for

Ry and Logyo[Tyi] have not peaked at the fiducial parameter values.

To remedy this, we vary the observation timescale. LOFAR achieves signal to noise ratios (to
the nearest integer) of 1, 2, 3, 7, and 11 with 1080, 2160, 4320, 10800, and 21600 hours of
integration time respectively at z = 8. Posteriors for 3pFZHf1 are shown in Figure 3.9. We
require a total of 21600 hours of observing time to obtain strong conclusions when distinguishing
the toy models - Figure 3.8(a). The posterior shown in Figure 3.9(e) (for a 21600 hour LOFAR-
48 observation) agree with the posteriors from the 1080 hour HERA-331 observation in Figure
3.5(a). These selected observing timescales increase along a very ambitious trajectory since
LOFAR has observed a total of ~ 1300 hours of the NCP field in its 7 years of EoR activity.
To summarise, we think model selection is unlikely to be achievable with LOFAR because of

the limited k-range in which it is sufficiently sensitive.

These calculations use 21CMSENSE’s moderate foreground settings (Section 1.3.7) for LOFAR
to ensure our analysis is fair when comparing these results with HERA and SKA. However,
LOFAR aims to observe within the foreground wedge (i.e. in a k range that extends lower than
k = 0.15 Mpc™!) - the results published in Patil et al. (2017) are within & = [0.05, 0.13] Mpc™.
This implies these results are conservative estimates, and for the sake of argument we repeated
our 1080 hour LOFAR analyses with an extended range of k = [0.05, 1.] Mpc™! (but still
with moderate foreground removal). The obtained parameter posteriors are comparable to the
21600 hour observations in the previous k range ([0.15, 1.] Mpc™'). In the context of model
selection, the results gain moderate but not strong inference in ruling out F Inv MHR (B = 148)
and so decisive model selection would still be challenging for LOFAR. Ideally LOFAR will be
operational without any foreground contamination (the optimum 21CMSENSE setting) in the
extended k range used above. If these criteria are achievable, LOFAR can obtain B = 120000
and is likely able to perform model selection on the same timescales as HERA and SKA. Our
conclusions stick within the conservative estimates in order to maintain a consistent analysis

between the telescopes.



92 Chapter 3. Bayesian Model Selection with Future 21cm Observations of The EoR

» ® IU—WM ®
e \f’ k=3 é’ 3 47
< E s 9
o1 o o
© © ©
~ ~ b\! -~
N T g - @
2 S = ﬁf 2w
g © S /\/\ g o
S W S W J_’_,_.-"J S w
NG w g
LR S SR I NN N N
¢ Rmip Log1o(Tvir)
(a) 1080 hrs (b) 2160 hrs (c) 4320 hrs

=

Rentp
% 6 9% %

® |~
oo
< 9
5
©
= i e
S SR
Ng / ( b NG
PR CP R 22 DR R PO ODORD o0
4 Rt Log1o(Tvir) 4 Rmp Logao(Tvir)
(d) 10800 hrs (e) 21600 hrs

Figure 3.9: Posterior distributions for the 3pFZH parameters used to recover the fl1 mock
observed power spectrum with LOFAR-48 at with various observation lengths. Figures 3.9(a),
3.9(b), 3.9(c), 3.9(d), and 3.9(e) use 1080, 2160, 4320, 10800 and 21600 hours respectively. Only
the 21600 hour observation provides the posterior distributions with the fiducial parameters
comfortably within the 1o contour. At 6 observing hours per night 21600 hours corresponds to
~ 10 years of use with LOFAR-48 (assuming constant good weather and no other instrumental
intricacies).
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3.4.4 FEoR model selection with HERA

Here we attempt to distinguish the toy models against the mock observed fl1 power spectrum
(generated with 3pFZH). We show the obtained parameter posteriors and MAP power spectra
in Figures 3.10 and 3.11 respectively. As mentioned in Section 3.3 the prior ranges shown
in Table 3.4 go beyond physical bounds to contain the peaks of the likelihood distributions.
Referring to the posteriors, adding the filter scale to the MHR models smooths the density
field, producing over-densities that are fewer in number but larger on all scales. Therefore the
(background) ionising efficiency ¢ must compensate by increasing in the F Inv MHR case (plot
3.10(f) has a larger ¢ than 3.10(d)) so that over-densities can be ionised at a similar rate. The
opposite is true for the MHR and its F MHR (plot 3.10(e) has a smaller ¢ than 3.10(c)). In
this case, the background ionising radiation is less efficient when ionising the smoother density
field. A qualitative reflection can be interpreted from the sizes of the bubbles (signal-less
regions, Figure 3.2), forming smaller and more numerous bubbles requires a surplus in faint
small galaxies. By construction, all models contain some degree of degeneracy between ( and
Logio[Tyir]. This is observed by the arcs of varying length in the corresponding 2d posterior
plots.

The toy models predict vastly different reionisation morphologies and therefore all can be
distinguished with strong evidence on the Jeffreys’ scale. This is shown by the Bayes factors
in Figure 3.12. The hardest to distinguish model proved to be F Inv MHR. This is because
FZH (creating the mock observation) and F Inv MHR share both morphology and scale of
reionisation. Visibly, they are also the most similar in Figure 3.2. In contrast, Inv MHR has
the inside-out morphology, but is local rather than global in scale - this explains why it is
rejected more heavily than its filtered version in Figure 3.12. The addition of a filter scale
within the MHR models clearly increases the flexibility of our local based models. To reiterate,
the local inside-out Inv MHR model proves a challenging test when the local constraint is
relaxed by smoothing the density field. We also add that when the morphology is different,
the relative similarity of Inv FZH, MHR and F MHR (red points) implies little compensation

is achievable by varying the scale of reionisation.

Next we varied the number of HERA dipoles for the 1080 hour observation (maintaining mod-
erate 21CMSENSE foreground settings). In particular we looked to find what number of dipoles

are required for HERA to attain the model selection capabilities of LOFAR or the SKA. As
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Figure 3.10: Parameter posteriors produced by 21CMNEST for each toy EoR model (as they fit
for the f1 mock observation) using HERA-331 with 1080hrs of observation. The MAP values
of these distributions are shown in Table 3.6, and the MAP power spectra are shown in Figure
3.11. The blue lines correspond to the parameter values used to produce the f1 data set, they

are only comparable to the 3pFZH.

Model ¢ R Log[Tyi|

FZH 188 2.0 144 4.38 &+ 0.09
Inv FZH 1680 £ 1080 1.05 6.16 £ 0.1
MHR 1690 £ 470 6.02 4+ 0.04
Inv MHR 71. £ 15 5.12 £+ 0.07
F MHR 432 £ 80 4.65 5.56 £ 0.06
F Inv MHR 203 £ 170 435 53 +0.1

Table 3.6: The MAP values (£10) for every toy model’s fit to the FZH mock observation (f1).
These results correspond to those plotted in Figures 3.10, 3.11, and 3.12 when observing for

1080 hours with HERA-

331.
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Figure 3.11: MAP 2lcm power spectra at redshifts 8, 9 and 10 (3.11(a), 3.11(b) and 3.11(c)
respectively) for the FZH (blue), Inv FZH (dashed blue), MHR (magenta), Inv MHR (dashed
magenta), F MHR (red), and F Inv MHR (dashed red) models. The MAP parameter values
are shown in Table 3.6 and their posteriors are shown in Figure 3.10. In the likelihood, the
x> combines these three measurements between k& = [0.15, 1.0] Mpc (the vertical lines). The
f1 mock-observed power spectrum, created by 21CMFAST (3pFZH), are shown in black with
the grey region identifying the addition of the 1080 hour HERA 331 noise PS shown in grey.
Note that these power spectra have very different shapes i.e. only FZH model which created
the mock observation is within the error bars for every redshift. Because of this, there are a
vast range of Bayes factors shown in Figure 3.12.
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Figure 3.12: The Bayes factors for the toy models when using a 1080 hour observation with
HERA-331. Blue/red colours indicate an inside-out / outside-in morphologies respectively. The
points < and + represent implementation of the ionisation threshold on global and local scales
respectively. All toy models are distinguished with strong evidence (all competing models are
in the white region). Inv MHR (local inside-out) and the Inv FZH (global outside-in) are easy
to distinguish because they differ in scale or morphology to the mock simulation (global inside-
out). The corresponding power spectra and parameter posteriors are plotted in Figures 3.10
and 3.11 respectively.

mentioned in Section 1.3.7, HERA’s structure is organised as hexagonal with redundant base-
lines aligned to take repeated measurements of each unique baseline in order to reduce the noise
on the collective measurement (Dillon & Parsons, 2016). HERA achieves signal to noise ratios
of 3, 9, 18, 28, 39, and 50 with 19, 61, 127, 217, 331, and 469 dipoles respectively at z = 8 on

the f1 power spectrum.

Figure 3.13 shows that HERA-19 (the lowest dipole configuration) performs similarly to LOFAR
at model selection. From the use of 61 dipoles, the observation is able to distinguish the toy
models with strong evidence. HERA-217 becomes comparable to the SKA (see Section 3.4.5),
while HERA-331 (and higher) are able to produce larger Evidence values than the SKA (when

just using the power spectrum).
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Figure 3.13: This plot is similar to that for LOFAR in Figure 3.8 but with varying number of
HERA dipoles. 3.13(a) and 3.13(b) show the Bayes factors and Evidence respectively for F Inv
MHR against 3pFZH (both fit for the f1 mock observation produced by 3pFZH). The dotted
and solid lines represent values obtained using LOFAR (blues, dotted) and SKA-512 (reds,
solid) respectively; with dark and light colours representing the values obtained for 3pFZH f1
and F InvMHR f1 respectively. LOFAR and HERA-19 score weak on the Jeffreys’ scale. All
other telescope configurations (including HERA-61) score strong results. Above 217 dipoles
HERA gains more sensitive to the 21cm PS over the selected redshift range than the SKA.

3.4.5 FEoR model selection with SKA-512

The MAP PS and Bayes factors for the toy-models when observing with the SKA-512 are shown
in Figures 3.14(b) and 3.14(a) respectively. As with HERA, these are a 1080 hour observation
for a 1 hour tracked scan of the f1 power spectrum with 6 hours of observing time per day
(across 6 fields). The results found are similar to the observation for HERA-331 (i.e. the
posteriors obtained by SKA512 are also similar to the HERA-331 distributions in Figure 3.10).

We then repeat the analyses that were done for LOFAR-48 in Section 3.4.3 but with observing
time decreasing instead of increasing. At z = 8 SKA achieves signal to noise ratio of 4, 7, 10,
14, and 22 with 108, 216, 324, 540, and 1080 hours of integration time. Figure 3.15(a) shows the
Bayes factors and Evidences obtained for the different observation times used. As before, we
have assumed the moderate foreground model for the wedge and buffer within 21CMSENSE and
the Bayes factors are calculated between 3pFZHf1 and the F Inv MHR{1 since this toy model is
the hardest to distinguish. We find that 324 hours of observation is enough to distinguish the
toy models with strong evidences. The posterior distributions obtained are not shown (they

behave in a similar way to those from LOFAR in Figure 3.9 but for the five selected observing
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Figure 3.14: A summary the results for SKA-512. 3.14(a) shows the Bayes factors obtained with
SKA of each toy model against 3pFZH as they fit for the f1 power spectrum. All toy models
are strongly ruled out (by margins similar to those obtained by HERA-331). For details of the
plot style in 3.14(a) please see Figures 3.7(b) and 3.12. 3.14(b) shows the MAP parameter PS
at z = 9. for the toy models fit against the f1 mock data set with 1080 hours of observation.
This shows the SKA achieving similar error bars in comparison to HERA-331 in Figure 3.11.

times in decreasing order).

In comparison to HERA, SKA has significantly more independent baselines but they are each
measured with a marginally lower signal to noise. It is still an active area of research as to
whether a more richly populated U-V space or a precisely measure sparse U-V space will be
better for practical measurement so the power spectrum. Despite this SKA does not achieve
higher Evidence values than HERA-331, when considering the power spectrum however this may
not remain the case when including higher order statistics such as the bi-spectrum (Watkinson
et al., 2019). Using a well interpolated U-V space will certainly be necessary if statistics of
higher order than the power spectrum are to be utilised fully. For a direct comparison of the
error PS from HERA-331 and SKA’s observation on the f1 mock power spectrum see Figure
3.4. In conclusion, SKA performs similarly to HERA-217 at EoR model selection with the
21cm PS (Figure 3.13(a)).
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Figure 3.15: 3.15(a) Bayes factors for comparing 3pFZH and F Inv MHR as the produce the
f1 mock observation (produced by 3pFZH). 3.15(b) the Evidence values obtained for 3pFZH/F
Inv MHR in black/grey. Both follow the same conventions as Figures 3.8 and 3.13 but varying
SKA-512 observing times. Note that in order to obtain a strong ruling out between the toy
models, SKA must observe for at least ~ 324 hours (the minimum observation for the most
similar toy model to pass out of the grey Jeffreys’ scale region).

3.4.6 The Evidence as an inference measure: the 21cm power spec-

trum vs alternate reionisation data

In this section we discuss the contributions to the Evidence from the observational priors.
These are the Greig, McGreer and Planck contributions to the likelihood in Equation 3.1 and
we compare them with the f1 21cm PS mock observation with 1080 hours of HERA-331 working
at moderate foreground avoidance. Since the observational priors are linearly input as part of
the likelihood they are easily separable. When the 21cm likelihood or the likelihood constructed
from the observational prior checks are allowed to vary individually they can all fit the neutral
fraction checks well. By separating out the 2lcm power spectrum contribution, x3,, from the
Planck and QSO data, Xpjane + XaeGreer + Xéreig» it becomes apparent how little quantitative
impact these observations have on model selection in the EoR. This is observed as the lack of
deviation of the blue points from the black dashed line in Figure 3.16(a). These blue points
have been run separately from the simulation with only the 21cm power spectrum and can be
fit easily by all of our toy models (Table 3.2), which follows from all of the toy models having
similar reionisation histories in Figure 3.3(a). All of the toy models posses parameter space
that agrees with the constraints of the observational priors. To break this model degeneracy

for each model, more data or different data are necessary - the 21lcm power spectrum being
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a viable tool for the job. The Inv FZH is seen to be the least physical, as it has the most
tension between the observational priors and the 21cm PS. The MAP parameters of the Inv
FZH model differ significantly (by a few o, see Figure 3.10) depending on what contributions
to the likelihood are included. When recovering 1, we indirectly observe this via ¢ values that
are of a comparable size in ratio to the MAP parameter value (see Table 3.6). Although the
observational priors do not do much when Y3, is present (due to the fiducial parameters in f1
being a physical choice), they are capable of ruling out vastly wrong reionisation models. It
is fair to say the observational prior checks definitely constrain a larger region than the 21cm
power spectrum, so although they are capable of producing heavy penalties our sensibly chosen
prior ranges prevent this from happening. The discrepancies of the black (full likelihood, Figure
3.16(a)) Evidence points compared with the red (only the 21cm Likelihood) show when models
are un-physical as they are penalised by the measured data used in these observational prior
checks. A better way of harnessing the non-21cm data is required if a fair cross check is to be
performed against the 21lecm PS. A visualisation of why our redshift dependent neutral fraction
measurements from the QSO data are so poorly constraining is shown in Figure 3.16(b). In this
Figure, the plotted points are the redshifts from the coeval simulations which are interpolated
together to obtain each reionisation history. The error bars on the McGreer and Greig neutral
fraction checks (yellow) are simply too large to separate out any of the simulated reionisation
histories. It is therefore difficult for them to add any constraining power to our toy models of
the EoR. Similarly small likelihood contributions come from the Planck prior (which uses the
optical depth). This should be interpreted such that other data (including more numerous and
precise neutral fraction measurements), as well as the 2lcm power spectrum, is necessary to
pin down the inference of model parameters in the EoR. For completeness, we found that the
observing telescope has a negligible effect on the variance of neutral fractions obtained. Also,
the 4p FZH model fit within the 3pFZH error bars (the blue solid line) i.e. a power law in

ionising efficiency has a small impact on the neutral fraction.

We defer a model selection analysis including this improved framework to Chapter 4, where
we implement galaxy UV luminosity functions to harness more information (Park et al., 2020).
Equation 3.7 is no longer used due to its inadequacy at reproducing observed UV luminosity
functions. In the UV LF case, the parameterisation of (; is expanded via power laws in fes.
and f, instead. We conclude by emphasising that this quantitative approach is in agreement

with the qualitative discussion in Greig & Mesinger (2017a).
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Figure 3.16: An analysis of the contributions to the likelihood (Equation 3.1). In 3.16(a) we
quantify the Bayesian Evidence for the 21cm power spectrum alone compared to the observa-
tional priors separately (with a 1080 hour observation of HERA-331). The Evidence from the
observation priors (blue) are negligible since their scores lay close to zero compared with the
21cm PS only (red) and combined cases (black). This becomes apparent in 3.16(b) where the
reionisation histories for all the toy models are plotted (dotted lines represent inverse models
for the colours in the legend). The yellow points at z = 5.9 and 7.1 are the McGreer and Greig
observations respectively. Since all the error bars on the neutral fractions obtained are large,
they have a negligible effect on constraining the models in comparison to the 21cm PS.

3.4.7 Identifying redundant parameters with the SDDR

The Savage Dickey density ratio is detailed in Section 1.4.7. Since we have constructed a
framework for calculating the Bayesian evidence for EoR models, nesting parameters within the
models can be achieved easily with 21CMNEST. In the following sub-subsections we proceed to
test each of the four parameters used in 4pFZH: ¢, Ry, Logio[Tvir], and a. We explore whether
the parameter under question is redundant in being able to reach meaningful conclusions from

Bayesian inference.

The results are displayed in similar Figures (3.17-3.20) where the left shows the variation of the
power spectrum while the right shows the parameter dependency of the nested Bayes factors.
In all cases the colours are consistent with blue (black) representing below (above) the fiducial
value (shown in green). The black and blue lines meet above the green line at B = 1 due to the
reduction in prior volume when a parameter is nested. This discrepancy is therefore related
to the prior width of the parameter under question. In the ¢ case (which has the widest prior
Figure 3.17(b)) the Bayes factor rises into the moderate Jeffreys’ scale threshold. This draws

light on the implicit nature of Occam’s razor when implementing Bayesian Model selection,
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Figure 3.17: Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing ¢ as a set of models nested from 3pfl. 3.17(a) and 3.17(b) show the variation of the
21em PS and Bayes factors respectively. The colour coding is consistent across both plots in
this and subsequent figures: the green indicates the fiducial simulation, black (blue) are values
over (under) the fiducial. In 3.17(b) strong, moderate and weak inference scores are indicated
by the white, light and dark grey regions respectively. 3.17(a) is shown for z = 8 (2 = 9 and
10 are similar). ¢ shows strong results rejecting all but the fiducial values.

as mentioned in Section 1.4.3. If in doubt, the variability of the power spectra quantitatively

reveals the dynamic range of each parameter.

SDDR with ¢

The Bayes factor results plotted in Figure 3.17(b) show a distribution for B(({) that has a
sharp peak on the fiducial parameter which agrees with the fiducial parameter result shown
in green. This is because ( produces no degenerate power spectra throughout any of its prior
distribution (Figure 3.17(a)). It is therefore a very useful parameter. When ( values are small,
the power spectra shows the simulation trying to compensate by increasing the number of small
structures (the blue power spectra are largest at the small scale end of Figure 3.17(a)). On the
other hand, when galaxies have a high ionising efficiency the simulation responds decreasing
the size of structures on all scales (the shape of each black power spectrum is maintained as the
amplitude decreases). Within all of (’s prior range, there are dynamic changes to the simulation

that are observable with the power spectrum.



3.4. Results 103

SDDR with LOglO [Tvir]

_g--3:: 3--F
- i C-f--e- " e -
PPT L S tox o EE FEL R oEE
‘;;4’ <"’ ‘l";'i.,_._>‘ - --e--e
P2 <-g % - - - e _a .
101:,(/,1 . /;r/ .- “‘-;,_. 3 . 10
i ¥ e Tt e e 10©
H .59
= "", o 198
o -
“ 10'10 L
0
100} |
B Logy[Ty)> 4.4 el
I Logi[T.:|<4.4 .
10 -
W Logio[T,i] =4.477 (fiducial)
107 L T L L L L . L
101! 10° 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

K[Mpe ) Loguo[Tve]

(a) (b)

Figure 3.18: Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing Logo[Tvi;] as a set of models nested in 3pfl. Plots 3.18(a) and 3.18(b) show the (z = 8)
power spectra and Bayes factors respectively (See Figure 3.17 for a full plot description). As
can be seen, Log,,[Tvi;| varies the power spectral tilt, leading to strong inference against values
outside Logyo[Tvir] < 4.1 and 4.7 < Logyo[Tvic]-

Figure 3.18(b) shows a smooth peak in the distribution of B(Log,,[Tvi:]) that agrees with
the fiducial results shown in green. Although the peak is not as sharp as for (, it is still
a very useful parameter. Log,,[Tvi;] produces no degenerate power spectra throughout any
of its prior distribution (Figure 3.17(a)), but its prior distribution is smaller than for ¢ and
adjacent to the fiducial parameter there are similarities in the power spectra. When Log;y[7 V]
values are small, there are less small scale structures and the power spectrum is suppressed on
larger k (blue 3.18(a)); the opposite is true for large Log,q[Tvi] (black). In aesthetic terms the
parameter describes the tilt of the power spectrum slope. The structures are formed from the
same density field, so it makes sense that an increase in structure on a certain scale leads to
a decrease elsewhere. Within all of the Log,,[Tvi;] prior range, there are dynamic changes to

21cm power spectrum.

SDDR with R,

The R..g parameter is not really a physical parameter at all. It is in fact the maximum scale
with which the excursion-set formalism can identify ionised bubbles (the maximum radius of

the top-hat filter in k-space). Above a model dependent threshold, increasing the maximum
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Figure 3.19: Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing Ry, as a set of models nested in 3pfl. Plots 3.19(a) and 3.19(b) show the (z = 8) power
spectra and Bayes factors respectively (See Figure 3.17 for a full plot description). Notice that
for Ry, > 10Mpc, the Bayes factor provides weak inference. Above this parameter value there
is no additional inference to be gained.

smoothing scale will not capture any extra structural detail in the simulation. Below this
threshold the model is unable to capture the relevant physics, leading to a poor performance
with the SDDR against a larger R, threshold. It is therefore an obvious target for scrutiny
with the SDDR. Figure 3.19(a) clearly shows a loss of large scale (blue, small k) structure
from the power spectrum as R, decreases below the fiducial value, while the small scale
structure remains intact (large k). The nested Bayes factor results for B(Rpng) in Figure
3.19(b) follow suit. All values of Ry, > 10 agree with the fiducial results in green by scoring
weak discrepancies on the Jeffreys’ scale. Negligible inference is provided by varying R,.¢, above

this.

SDDR with «

As before, we plot the nested Bayes factors for B(«a) in Figures 3.20(b), 3.20(d) and the variation
of the power spectrum with a in Figures 3.20(a) and 3.20(c). The top row uses f1 (with the fidu-
cial values fixed to @ = 0 and the remaining parameters [(,logo[Zvi], Rumsp) = [20.,4.477,15.])
and the bottom row 2 (with the fiducials fixed to @ = 0.4 and the remaining parameters
(€, logo[Tvic], Rutp] = [15.,4.699,15.]). We firstly note o has narrower peak when fitting for

f1 than f2. This is mainly because of (g in Equation 3.8. The power law parameter allows
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Figure 3.20: Using the Savage-Dickey density ratio - The impact on the Bayes factor when
fixing a as a set of models nested in 4pFZH fitting for fl1 (top row) and 2 (bottom row).
Plots 3.20(a)/3.20(c) and 3.20(b)/3.20(d) show the (z = 8) power spectra and Bayes factors
respectively (See Figure 3.17 for a full plot description). Without the use of the power-law
in (f1, @ = 0), there are less allowed values for (.((,«), hence a narrower peak in 3.20(b)
compared to 3.20(d). The ability to pin down « depends on the fiducial parameter choice in
the mock observation.
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a widening in the applicable ¢ values. To be specific, In fl the degeneracy here arises from
the behaviour of (g((, a = 0). In {2 the degenerate parameter space has increased since the
ionising efficiency now also depends on halo mass, (e (¢, «, log;o[Tvi]). Since the relationship
between a and the 21cm power spectrum is clearly different depending on the values of ¢ and
logyo[Tvir]. We cannot be certain on the effective range of o because of this. Given the two
sets of fiducial values, it is clear in both B(«a) figures that there is a fast drop off outside a
total of @ € [—1.5,1]. Hence we have been lenient with the limitations of the prior (currently
a € [—3,3]) which result in (g € [2.15,582] given the influence of the other parameter ranges.
It is certainly possible to observe changes in the 21lcm power spectrum from varying o but we
emphasise that unless we include more than just the current data used in the statistic, we will
not be able to distinguish the power-law parameters for the ionisation efficiency’s dependency

on halo mass.

Within the prior when a values are lower, the blue power spectra lose large scale structure
until quickly all structure is lost, this is akin to reducing the input (. When increasing «, the
behaviour of the black power spectra mimic an increase in (. However in both directions, an «
of large magnitude causes the power spectra to quickly fall off the scales of the plot entirely as

reionisation is either ended prematurely or too dim to progress.

To reiterate, since the degeneracy of our parameter’s fit to the power spectrum depends on the
choice of the fiducial parameters in the mock observation, we cannot decisively evaluate the
influence of this parameter with the 21lcm power spectrum. This conclusion follows into the
next section where we are unable to distinguish an ionising efficiency that is a constant from

one that is a power-law in halo-mass.

3.4.8 Can we distinguish a constant ¢ from a power law in halo mass?

We have shown in previous sections that HERA & SKA can easily determine the most suitable
reionisation scenario. We now explore refining the number of parameters, testing the ability to

determine the use of the 3 or 4 parameter FZH model detailed in Section 3.2.1.

Figure 3.21 shows the Bayes factors for 3p and 4p FZH models tested with the priors used in
Table 3.4. The black triangles show that the different parameterisations of 21CMFAST that we

consider scored weakly on the Jeffreys’ scale when observed with HERA-331. In other words,
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Figure 3.21: The Bayes factors for all of the 21cMFAST, FZH based models (in ratio against
3pFZHf1 with o = 0.). Weak, moderate and strong inference scores on the Jeffreys’ scale are
indicated by the dark, light greys and white region respectively. The black points represent
the prior volumes chosen (i.e. using sensible motivations, Section 3.3) - all models here score
weak results on the Jeffreys’ scale. Firstly this is evidence towards being unable to distinguish
a power law in halo mass for the ionisation efficiency with the 21cm PS. The secondary aim of
this plot shows the effect of using a prior to skew the Evidence values and therefore the Bayes
factor results. Red indicates the use of a o-function across either the fiducial values (starred
point - 3pFZHf1 only) or the MAP values (red arrows). Blue points have widened priors to
skew against the models. Note that it is possible to achieve for this skewing of Bayes factor
to achieve strong evidence scores with narrow enough priors. We emphasise that the Jeffreys’
scale is a guide only, see Section 3.4.8 for the discussion.
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the power spectrum from this 1080 hour observation is not sensitive to the chosen changes in
the fiducial parameters - motivated by the faint and bright galaxy models in Greig & Mesinger
(2015). The change of fitting with a constant ¢ to a power law in halo mass (Equations 1.15
and 3.7) is also negligible. Both SKA (not shown) and HERA obtain similar results that score
weak Bayes factors when recovering the fl and {2 power spectra with the 3p and 4p FZH
models. Applying larger values of o makes these models more distinguishable, however this
produces unphysical results. Evidences produced with larger @ values are therefore dominated
by contributions from the observational priors. Increasing a also increases the ionising efficiency
(Equation 3.8) and therefore the EoR finishes too early if « is largely positive. This can be
seen by the sharp cut on the right hand side of the « posterior in Figure 3.5(e), the bump in
the power spectra as o changes in Figure 3.20, and is particularly challenged by the McGreer
prior in Figure 3.16(b). In summary, the two versions of the basic 21CMFAST model cannot
be distinguished on the Jeffreys’ scale. We cannot tell from the 21cm power spectrum which
of 3pFZH or 4pFZH has produced the mock observation when observing for 1080 hours with
HERA-331 or SKA-512.

We then use this context to inspect the effect of skewing these results with a naive choice of
prior. Figure 3.21 also contains the information obtained when attempting to skew our own
results with prior choice (discussed in Section 3.3) - d-function and widened uniform priors
are the red and blue points respectively. Expanding (reducing) the prior width will decrease
(increase) the posterior density and therefore the Evidence. As we have established in Section
1.4, attempting to skew results is the only way one can be sure the results are not prior
dependent. The blue results use prior ranges that include unphysical parameter values. These
produce Evidences that still fall short of the strong Bayes factor score meaning we have been
unable to skew the result - we consider this a success of the machinery. In other words if one
naively chose too wide a uniform prior distribution (a sensible approach for a first attempt), the
skewed result would be moderate at worse. This user, in their own prior analysis, should look
closer at the physics at hand and try to reduce the wide priors to those resembling Table 3.4 -
which were chosen via physical reasoning and familiarisation with the problem (black points).
It is worth noting that each of the black points translates down to the blue points in a uniform
manor as the parameter prior volume is factored out of the Evidence integral as a constant.
For the red shapes (using ¢ function priors), the maximum possible Evidence is obtained by

choosing the MAP parameters, Z = L(fyap). This is observed by the alignment of the red
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triangles in Figure 3.21. The starred red point (only above 3pfl) is calculated with the fiducial
parameters (f1), this point deviates down from this line of maxima because no consideration of
the observational priors were made when choosing the fiducial values (but this is not a concern
here®). It is worth noting that a clear give-away of a prior being chosen to be too narrow is the
posterior plots will show distributions that either are close to uniform distributions or have no
clear peak. In these cases either the parameters dynamic range is not expressed by the chosen

prior (the case here), or the parameter is redundant (the case with Ry, in Section 3.4.7).

The choice of o and (y in the fiducial values impacts whether the power-law in halo mass
for ¢ can be distinguished from a constant (. Since this chapter is aimed at distinguishing
morphology and scale we refrain from deviating too far off course and stop here. More physical

models already exist and we will proceed with their model selection in the next chapter.

3.5 Conclusions

First we discuss comparisons of 21cMMC and 21CMNEST, in particular showing that MULTI-
NEST can produce matching posterior distributions to those produced by COSMOHAMMER
(Section 3.4.1). The ‘moderate’ foreground wedge model within 21CMSENSE is used to calcu-

late the telescope noise in all cases.

When using Bayesian model selection, the literature discussed in Section 1.4 warns of two
potential heffalump traps: these are a skew of results from dependency of the prior and an
overcompensated penalty against redundant parameters via Occam’s Razor. We carefully ad-
dress these issues in Section 3.3 to show the validity of the Bayesian model selection in this
chapter. For the non-statistician and to check sensible thresholds for the results, we adopt
the Jeffreys’ scale to distinguish weak, moderate and strong conclusions allowing a qualitative

interpretation of our results.

This chapter considers toy EoR models as well as the models in the original 21cMMC and
Watkinson & Pritchard (2014). Namely these are: an inverted version of the original 3 parame-

ter FZH (global inside-out) model used in 21CMFAST (within which the excursion set formalism

5Mild disagreements between the fiducial power spectrum parameters and those satisfying the observational
priors has been addressed when cross checking the methodology against the Inv MHR fiducial data set in Section
3.4.2 and in Section 3.4.6 when analysing the contributions to the likelihood separately.
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solves for reionised bubbles); a simpler model MHR (local outside-in), in which ionisation is
defined via a density criteria; then both of these models have their ionisation criterion math-
ematical inverted (Inv FZH, global outside-in; and Inv MHR, local inside-out); and finally we
add a 3rd parameter to the MHR and Inv MHR models in the form of a Gaussian density field
filter creating - F MHR, global outside-in; and F Inv MHR (global inside-out). We show that
using the specifications of HERA-331 (or SKA-512, see Table 3.3 for the telescope details) 1080
hours of observation is easily enough to distinguish these toy models with strong evidence on

the Jeffreys’ scale (Section 3.4.4).

We calculate Evidences for the separate contributions to the likelihood in Equation 3.1 to
quantitatively test evaluations of the neutral fraction (surrounding high z quasars) and the
reionisation optical depth (Section 3.4.6). This shows that more reionisation data is required
if observational checks are to provide comparable inference to the 2lcm power spectrum. In
the next chapter, we repeat this quantitative analysis of the inference capabilities of the UV

luminosity function data as prescribed in Park et al. (2019).

On a subtler level the considered version of 21CMMC contains the addition of a 4th parameter
which enables the ionising efficiency to have dependency on the halo mass. In other words this
relaxes the assumption of a constant mass to light ratio for the simulated ensemble of galaxies.
We show in Sections 3.4.7 and 3.4.8 that these cannot be unquestionably distinguished with
1080 hour observations from HERA-331. For the two mock observation choices (f1 and {2) that
represent faint and bright populations of galaxies we find only weak scores on the Jeffreys’ scale.
This result becomes easier to conclude if the fiducial parameters used in the mock observation
are chosen the more unphysical. We therefore cut our losses and progress to more physical EoR

models in the next chapter.

Using the Savage-Dickey density ratio we proceeded to show the redundancy of Ry, > 10h~! Mpc
in 21cMMC (Section 3.4.7) - hence justifying its omission from the newest parameterisations
of 21cMMC and 21CcMFAST. The inhomogeneous recombinations discussed in Section 1.3.5

(Sobacchi & Mesinger, 2014) are used instead in Chapters 4 and 5.

The most difficult to distinguish of the toy models is F Inv MHR because it shares scale and
morphology with FZH. It is therefore used as a bench mark for answering our primary questions

about feasibility:
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e LOFAR-48 would struggle to perform model selection in the EoR. We require 21600 hours

of observation to provide strong disfavouring of the toy models (with odds ~ 400 : 1).

e Using 1080 hours of observation, HERA would require at least 61 dipoles in its configura-
tion to rule out the toy models with strong evidence on the Jeffreys’ scale (scoring odds

of ~ 600 : 1).

e Finally, with the SKA-512: the toy EoR models can be distinguished with strong evidence

quickly, with only 324 observing hours needed to obtain odds of ~ 500 : 1.

With 217 dipoles HERA becomes comparable to the SKA at observing the 21cm EoR power
spectrum. As can be seen in Figure 3.4, SKA has more observational clarity on small scales
while HERA dominates the sensitivity on larger scales. Assuming the moderate noise settings
within 21CMSENSE can be achieved, the redundant baseline instrumental method shows a lot

of promise in performing model selection with the 21cm EoR power spectrum (Byrne et al.,

2019; Dillon et al., 2019).

We have now set the scene for ruling out toy models of the EoR with Bayesian Model Selection.
This work shows that modest 21cm experiments, such as HERA-61, are likely able to use
their observations to pin down the correct morphology and scale of reionisation. In the next
chapter we look more closely at the level of precision that can be obtained from more involved
models of the EoR using the newer versions of 21CMMC. Once the desired reionisation scenario
can be quantitatively chosen, parameter inference should be performed to infer the involved

astrophysics.



Chapter 4

Bayesian Model Selection for

Astrophysical Scenarios in the EoR

Simulations of the 21cm light-cone that include spin temperature fluctuations require larger
boxes than those used in this chapter. The coeval cubes we stitch into the light-cones here
are 125Mpc in each dimension - this is a mistake. Evidence calculations and MAP param-
eters presented in the results of this chapter are currently being redone with 250Mpc boxes.
Any power spectra and light-cones presented in this chapter have been re-calculated with the
250Mpc boxes however the MAP parameters, Evidence values and Bayes factors are likely to
change a little. Although a box length of 125Mpc is a suitable minimum box size for the ob-
servational bandwidth used here, it will not allow X-ray heating to be appropriately captured.

The subsequent publication will not be released until the corrected simulations have finished.

4.1 Introduction

In the previous chapter we addressed the application of Bayesian model selection to toy scenarios
of the EoR (Binnie & Pritchard, 2019). We addressed the two possibilities of morphology and
scale within which reionisation can progress. In reality, nature is likely to use a combination
of both and so in this chapter we turn to performing model selection between more realistic

models of the EoR.

The EoR is driven by a variety of objects including quasars (Garaldi et al., 2019) and the

112
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remnants of the first stars, which are likely to create to a diffuse background of X-rays (~
0.1 — 2 keV). These X-rays will heat the IGM causing a unique signature that influences the

21cm spin temperature and can therefore be observed.

The star forming galaxies that drive reionisation are commonly characterised by the UV lu-
minosity function (LF). These have been targeted in high-redshift galaxy surveys, particularly
by observations from the Hubble Space Telescope (HST!) (Bouwens et al., 2015; Oesch et al.,
2018). The UV LF are determined by a galaxy’s baryonic mass in stars, star formation history,
and the surrounding dust in the inter-stellar medium (ISM) - they contain a lot of information
about galaxy evolution. Only the brightest end has been observed in the EoR, but this enables
constraints on the UV LF up to z < 10 (Rojas-Ruiz et al., 2020). We apply these in combi-
nation with more complete constraints of the faint end (e.g. Yue et al. (2018) from lensing)
that reach to z < 6. With the onset of next generation galaxy surveys like JWST (James
Webb Space Telescope?) (Gardner et al., 2006), and next generation 2lcm experiments like
HERA (Hydrogen Epoch of Reionization Array®) (DeBoer et al., 2017) and the SKA (Square
Kilometer Array?) (Mellema et al., 2013; Koopmans et al., 2015), plentiful observations of the

EoR seem likely in the near future.

We extend from the previous chapter by building on the 3pFZH model. We include param-
eterisations for X-ray heating and UV LFs in the models that are tested. Bayesian inference
has proven to be a powerful tool for analysing the EoR so far and we look to test it on more
detailed physical scenarios. Parameter estimation can already apply constraints to these mod-
els using data from MWA and LOFAR observations (Greig et al., 2020a,b), we are working
towards achieving similar things with model selection. As before, we build upon 21cMMC, the
parameter estimation for semi-numerical EoR simulations (Greig & Mesinger, 2015) - a state
of the art code combining the affine-invariant EMCEE sampler (Foreman-Mackey et al., 2013)
with 21CMFAST (Mesinger et al., 2011), the semi-numerical 21cm signal simulation within the
CosSMOHAMMER framework (Akeret et al., 2013). COSMOHAMMER is then replaced with the
nested sampling algorithm MULTINEST (Feroz et al., 2009) to produce 21CMNEST® which ap-

plies Bayesian model selection to distinguish models of the EoR. With this technique we aim

Thttp://hubblesite.org

2https://www.jwst.nasa.gov

3https://reionization.org

“https:/ /www.skatelescope.org

5An updated version of 2lcmNest containing the models from this chapter will soon be available at
https://binnietom@bitbucket.org/binnietom/21cmnest 2.0.git.
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to objectively distinguish models using observations.

As we increase the variety of physics that is included in the selection of EoR models, we
aim to give a realistic idea as to which of the phenomena can be distinguished by applying

Bayesian model selection to upcoming observations. We proceed by investigating four models

in 21cMMC:

A - Reionisation with a constant ionising efficiency, ¢, a simple scenario (sharing properties

with the 3pFZH model in the previous chapter).

e B - Including X-ray heating from stellar remnants (and therefore spin temperature, T
fluctuations).
e C - Including a single power-law in halo mass for ¢ and modelling of UV LFs (sharing

properties in the 4pFZH model from the previous chapter).

D - Including X-ray heating, Ts fluctuations, UV LFs, and a double power-law in halo

mass for ( - a model combining all of the new physics introduced in this chapter.

We use these four models in an attempt to answer three questions:

e Can SKA observations of the 21cm PS measure the fluctuations of the 21cm spin tem-

perature from X-ray heating?

e Does the high redshift UV LF provide comparable inference to the EoR 21cm PS in a

Bayesian context?

e Can the 21ecm PS and UV LF distinguish models with a double power-law in halo mass

for the ionising efficiency?

While these questions have been investigated previously, there are two main distinctions.
Firstly, we answer them with Bayesian model selection rather than with parameter estima-
tion, as in Greig & Mesinger (2017b) and Park et al. (2019). The other distinction is that our
inference is specific to the backbone of the EoR only (8 < z < 10), since this is where the
bulk of reionization occurs. It is also where observational endeavours currently aim to detect

the 21cm PS. But wherever this focus is aimed, it is likely that the 21cm PS will be observed
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in parts. We therefore deem it a useful and interesting proof of concept to restrict the full
cosmological 21cm signal, just in-case an instrumental complication gets in the way at certain
bandwidths. Finally, since saturation will likely occur at some point accross this specific period,
distinguishing the properties of X-ray heating via the spin temperature will be a challenge for

the methodology.

The chapter is structured as follows: Section 4.2 contains a description of 21CMNEST, and the
recipes from 21cMMC used for the 21cm signal; Section 4.3 details each of the four EoR models
as well as the observational error for the 21cm power spectrum; in Section 4.4 we discuss the
physical motivations behind choosing the parameter prior distributions; Section 4.5 presents
the results; Section 4.6 contains a full discussion of proposed questions before we summarise in

Section 4.7.

4.2 21CMNEST

This chapter follows on from the previous one, here we will only highlight the differences. Please
see the detail surrounding 21cMMC and 21CMFAST in Chapters 1 and 3 for the full recipes
used for the 21cm PS. All the models in this chapter are based on FZH (Furlanetto et al., 2004),

the most physical model from the previous chapter.

The first difference to Chapter 3 is the use of inhomogeneous recombinations (Sobacchi &

Mesinger (2014), detailed in Section 1.3.5). This is incorporated in the ionisation threshold as,

Nion (T, 2| R, 0R) > (1 4 figee) (1 — Ze), (4.1)

where the maximum excursion set scale (maximum bubble size), R, is set to R < 50 Mpc;
Nion (X, 2| R, 0 R), is the number density of ionising photons at a position, x, and redshift, z; f,ec,
is the spatially averaged number density of inhomogeneous recombinations; z. is the spatial

average of the free electron fraction in the IGM - assumed to be the ionised fraction.

The other difference is calculating the 21cm PS from chunks of light-cone rather than from
coeval cubes of brightness temperature (Greig & Mesinger (2018), detailed in Section 1.3.4).
Equation 3.2 remains the same but with V' representing the volume of the chunk rather than

the cube. To produce the light-cone we stitch coeval cubes together with logarithmic steps of
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Model A B C D
Parameters || Logio[Tvir], ¢ Logio[Tyir], ¢, Logyo[Mium), fe 10, frr fesc,105 O, Qoge
Ey, ax, Lx<oev Qy, Ty Log o[ Miurm], Eo, Lx<okev, ts
0Ty(Ts) No Yes No Yes
L(xip) No No Yes Yes
Fiducial values | [4.7, 30] [4.7, 30, [8.69807, —1.301,  [-1.301, —1, 0.5, —05,
500, 1, 40.0] 0.5, 0.5] 8.69897, 500, 40.5, 0.5]

Table 4.1: A summary of the four models analysed in this chapter. B and D relax the post-
heating approximation; C and D produce UV LFs. See Section 4.3 for details of the parameters
in the top row. The fiducial parameters used to simulate each model’s mock data are listed in
the bottom row. The fiducial parameter choices for C and D are motivated by consistency with
the UV LF data. B and D have more freedom, their fiducial parameter choices are consistent
with the observational priors (as well as the UV LF data for D).

Azgep = 1.04 between redshifts 6 and 35. We then calculate the 21cm PS from three chunks

evenly spaced between redshifts 8-10.

Binnie & Pritchard (2019) showed that the improvement in inference gained from the observa-
tional prior checks provide negligible inference in comparison to the mock 21cm PS observation
(see Chapter 3 for detail). With the introduction of more realistic model prescriptions we can
apply UV LF constraints at given redshifts via the prescription detailed in Section 4.3.3 (Park
et al., 2019). The likelihood from the last chapter is used with the addition of a UV luminosity

function term,

InL = X%lcm + X%lanck + Xi/[cGreer + Xéreig + X%F? (42)

where, x%, measures the UV LF directly against data from Bouwens et al. (2015) for 2 = 6,7,8
and Oesch et al. (2018) for z = 10.

4.3 EoR models

We now detail the 4 models used in this chapter. For x3., in Equation 4.2, each model
produced a mock observation by simulating the 21cm power spectrum data from a cube of side

500Mpc using the fiducial parameters in Table 4.1.
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Figure 4.1: Slices through each model’s mock observed 21cm brightness temperature signal
light-cone. The fiducial parameters are given in Table 4.1. At z = 8, the left-hand end of
each light-cone respectively, zy; = 0.61, 0.61, 0.55, and 0.55 at z = 8. The power spectra in
Figures 4.2 and 4.3 are calculated from these light-cones. The white lines indicate the chunks
(~ 170 Mpc k™! in size).
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Figure 4.2: Mock observed 21cm PS data for the models in this chapter. They are simulated
with the fiducial parameters given in Table 4.1. The observation is performed in between a
foreground corruption limit (See Section 4.3.6) and shot noise cuts (k = 0.1 and 1.0 Mpc™?

respectively). The left and right grey vertical lines represent these, within which the 21cm PS
x? is calculated.
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Figure 4.3: Fiducial mock 21cm PS data but plotted at a given k-scale [Mpc™!] per redshift. As
above, these are simulated with the fiducial values given in Table 4.1. The discretisation caused
by chunking the light-cone is increased from 3 chunks to 10 (for z € [8,10]) to visibly capture

the shape of the 21cm PS. Our x? uses three chunks (as in Figure 4.2) from the light-cones in
Figure 4.1.
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4.3.1 Model A - simple scenario

Model A is closely related to the 3pFZH model in the previous chapter (Furlanetto et al., 2004;

Mesinger et al., 2011). Ionised regions are identified using the excursion set formalism.

This basic model uses the two main parameters from before: ¢ an ionisation efficiency of UV
radiation, and Log,[Tvi;| the minimum virial temperature for halos to host galaxy formation.

Both parameters are implemented in,

Qb /OO dn :|
Nion = m—dm 5 4.3
o [ ) 43)

where M, T3 (Barkana & Loeb, 2001). feon, the fraction of dark matter collapsed into

vir

halos from before is contained in the square brackets (Greig & Mesinger, 2015).

Inhomogeneous recombinations are accounted for by the ionisation threshold, instead of in-
cluding it as a constant in the prescription for ¢ (Equation 1.13). Therefore ¢ = f fese/Nys,
no longer includes a spatially-averaged factor to represent the contribution of IGM recombina-
tions into the model. We have moved away from using a photon mean free path and instead
a maximum bubble size is fixed to R, = 50Mpce. This is the maximum scale with which the
excursion set formalism can identify HII regions. Therefore the neutral fraction, xy;(d, 2), is

expressed as a function of density and redshift.

4.3.2 Model B - the epoch of heating

Three new parameters are introduced in Model B to detail X-ray production early in the cosmic
dawn. These X-rays cause inhomogeneous heating signatures in the IGM after they have been
redshifted enough to interact with HI gas. This causes an observable change in the 2lcm
brightness temperature via fluctuations in the spin temperature. Hence Model B relaxes the

post-heating approximation which was used in Model A.

We continue the use of parameters Log,,[Tvi;] and ¢ for calculating nio, (as with Model A).

X-ray emission is given by,

x(x, By ') = 225 [(1 P } .

- (4.4)
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Ey, is the minimum escape energy for an X-ray photon to penetrate into the IGM; and
Lx <oxev/SFR, normalises the soft-band X-ray emission below 2keV. These are the first and
second new X-ray parameters introduced from Greig & Mesinger (2017b). There is no free
parameter that controls time-scale, hence we use f.on (see model C, Section 4.3.3). The third
free parameter in this model is implemented within the X-ray luminosity as a power-law index,

ax, where,

Lx o« B~ (4.5)

This radiation is likely dominated by the properties of a single X-ray source prior to the EoR.
Here the mechanism of production is less important than the X-ray flux itself. HMXB are
expected to emit X-rays with power law ax = 1. Other sources, such as mini-quasars, may
have a steeper emission profile. The fluctuations in the 2lcm PS from its spin temperature
provides insight into the first X-ray sources. This parameter therefore provides insight into
what species drives the inhomogeneous gas heating that precedes reionisation (Pritchard &
Furlanetto, 2007; Greig & Mesinger, 2017b). Beyond 2keV the X-ray photon mean free paths
are longer than the universe (Pritchard & Furlanetto, 2007). The normalised X-ray luminosity
is,

2keV LX
LX<2keV/SFR = / dE67 (46)

. SFR
where Ej is dictated by the inter-stellar medium (ISM) column hydrogen density. Since Ly is
X-ray luminosity is given per star formation rate (SFR). The square brackets in Equation 4.4
denote the SFR density along the light-cone, equivalent to expressing the X-ray emissivity per

volume.

The spin temperature is calculated as Equation A.35. To elaborate, T, corresponds to the
colour temperature of the Ly-a background; x, corresponds to the Wouthuysen-Field coupling
strength; and z. is the collisional coupling coefficient. The kinetic gas temperature, T, is
solved in tandem with the redshift dependency of free electrons (Mesinger & Furlanetto (2007);

Mesinger et al. (2011), see Section 1.3.3 for details). Tx is evolved in each pixel as,

dTK (X, Z) . 2@ dt 2TK dnb TK d]}e

dz  3kg(l+z.)dz  3ny, dz  (1+z.) dz

(4.7)

where the heating rate per baryon, (), contains the sum of contributions from X-ray and

Compton heating (see e.g. Back & Ferrara (2013); Madau & Fragos (2017); Eide et al. (2018)
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for the full calculation). The Ly-a background is produced by the cosmic dawn (between z ~ 20
and 35), filling the Lyman continuum. These are the photons that are absorbed by lower Lyman
lines after being redshifted by the Hubble flow. Background radiation densities are constructed
by HI X-ray excitation (from J, Equation 1.16) and stellar emission of photons in the Lyman
bands. Composite stellar spectra are scaled with the SFR estimates from modelling (Barkana

& Loeb, 2005).

4.3.3 Model C - UV luminosity functions

Model C implements a saturated spin temperature (similar to model A) as well as a halo mass
dependency via a power law in ionising efficiency (specifically in the fraction of mass in stars),
it therefore shares some similarity with 4pFZH in Chapter 3. A fourth parameter is also added
to characterise a star formation timescale, enabling the simplest calculation of the UV LF that
agrees with observed high redshift galaxies. The observed UV LF data we use combines 10,000
galaxy observations from the HST Legacy fields (Bouwens et al., 2015; Oesch et al., 2018). This

enables a constraint on stellar mass at each of the redshifts that we have galactic UV LF data.

We now have a star formation timescale, hence model C introduces a more detailed star for-
mation prescription. Rather than using ( as before, we start with the halo mass function. We
then calculate both n;,, and the galaxy SFR allowing both the 21cm and UV LF to be used
as constraints simultaneously. Different mass halos have their star formation described by four
free parameters: ., the power-law scaling of f.; f. 10, the normalisation of f, for 10'°M, halos;
My, the turn-over mass; and t,, the time-scale for star formation. This is the model used in

Park et al. (2019) but with fe. set constant.

The number density of ionising photons is calculated as,

1 [ dn(My,z|R,0R
== / ( b | )thfdutyM*fescny/ba (48)
0

Njon = —
Pb dMy,

where M), is the mass of dark matter halos; the duty cycle, f4uy, represents the suppression
of ionising radiation from low mass halos due to their lower star formation rate; fe. is the
fraction of UV photons that escape from the galaxy into the IGM; and N,/ is the number of
ionising photons per baryon, set to 5000 for the case of the Salpeter initial mass function for

stars (Salpeter, 1955; Barkana & Loeb, 2005). The stellar mass within a halo, M., is defined
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as,

Q
M, = My f,—>. (4.9)
Oum
Equation 4.9 is dependent on the fraction of baryonic mass in halos f, as well as the halo mass.

We move away from ( as a constant parameter to incorporate a power-law in halo mass for f,,

M, \*
¢~ fe (—) , (4.10)
O\ 101001,

where IV, , and fesc remain constant. We introduce ¢, as a dimensionless time scale (as a fraction
of the Hubble time) on which mass is converted into stars. Since we now have a timescale, 1o,
is calculated fully (Equation 4.8), including a suppressed contribution from low mass halos via

the duty cycle,

_ IVIturn

fduty(Mh) =€ Th (411)

Calculation of the SFR, M*(Mh, z), is also dependent on t, as,

. M. H
M.( My, z) = t—(Z) (4.12)
To calculate the UV LF (¢) we relate the UV luminosity to M, (M,, z) as,
Luy = kM, (M, 2), (4.13)

where the constant, Kk = 8.70 x 1027M51yr erg s~ Hz™!, is calculated for a Salpeter initial mass
function while ignoring dust extinction (Sun & Furlanetto, 2016). This agrees with the data
obtained during WFC3/IR field observations which are selected from Hubble to specifically

represent star forming galaxies at redshifts 7 & 8.

The LF is given by,
dn

iy dMy, dLuy
— Jduty d Mh

dLyv dMuy

¢<MUV)

, (4.14)

where Lyy is related to the UV magnitude (Myy) using the AB magnitude relation (Oke &
Gunn, 1983).

When calculating ¢(Myy), for the UV LF likelihood the bright end of these simulated LFs is
known to underestimate the number of galaxies and is therefore cut to Myy > —20. The faint

end is poorly constrained because of the difficulty in observing faint galaxies. Unfortunately



4.3. EoR models 123
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Figure 4.4: The observed UV LF for redshifts 6,7,8, and 10 as well as those simulated by Model
C (dotted lines). Evaluation of the UV LF likelihood is done only at the observed data points
(where the error bars are). See text for more detail.

for us faint galaxies are believed to dominate the photon budget for reionisation (Wise et al.,
2014). Error and data values are taken from Bouwens et al. (2015) for z = 6,7,8 and Oesch
et al. (2018) for z = 10. As with the observational prior checks, % is linearly inputted to the
likelihood.

The fit to the UV LF is used to produce the corresponding 21cm PS mock observation for model
C (the fiducial parameters are given in Table 4.1). Using the above prescription allows the
luminosity functions to obtain consistent UV emissivities, as shown in Figure D.2 for varying
values of t.. Bouwens et al. (2011) fit Schechter functions to obtain analytic forms of the
observed UV LFs, which are comparable to those simulated here. Model C is the simplest

implementation of an EoR model that is capable of fitting these data, as shown in Figure 4.4.

Gaussian random noise is added to all simulated UV LFs to approximate modelling uncer-
tainties. The mean is taken along each implementation of Equation 4.14 with unit variance,
the resulting value is used in the y? calculation. Our statistical methodology had no trouble
identifying the input parameters and increasing the variance above unity simply increased the
number of samples required for convergence. All UV LFs shown in Figures have the variance

reduced to 0.01 for clarity.
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4.3.4 Model D - double power-law parameterisation

Model D is the most descriptive model used in this chapter. We relax the post heating regime,
and makes use of the above UV LF calculation. The ionising efficiency is characterised by two
power laws, one in the fraction of mass in stars, as before. And now there is a second power
law in halo mass for the UV escape fraction. All the preceding physics is included as well as a

double power-law in halo mass for the ionising efficiency,

My My,

=N xJesc ™ Jx STV esc Tal0AT ) 4.15

where IV, , is the number of ionising photons per stellar baryon. It differs from N, in previous
chapters only so that our units are consistent with the new ionisation threshold presented in
Equation 4.1. Model D is the full parameterisation used in Park et al. (2019). The 8 free®

parameters are: f*7 fesca Ay Qesc, LOglO[Mturn]a E07 LX<2keV7 and L.

4.3.5 Model discussion

To understand the key features of the models in this chapter we plot the 21cm mock observations
in a variety of ways (using the fiducial parameters in Table 4.1). First, Figure 4.1 shows the
brightness temperature light-cone slices for the full calculation (z < 35). Ionised bubbles begin
to percolate around z ~ 10, with all models heading for a reionisation ending around z ~ 6.
Note that including the history of the light-cone (redshifts above those used in the likelihood)
is only important for the models using the spin temperature. Each model uses the same
underlying density field and hence contains structures (and the surrounding ionised bubbles in
black) which form at the same spatial locations in each slice. The introduction of the X-ray
heating is very apparent as the gas begins to cool and is then heated rapidly in of the middle of
the Model B light-cone (red/yellow patch around 11 < z < 21). This behaviour appears in the
model D light-cone also, but is extended and delayed (roughly to 9 < z < 15) due to the double
power-law in halo mass adding more flexibility to (. Secondly, we look at the power spectra
from each of these light-cones. The white vertical lines (from redshifts 8-10) on the light-cones
indicate the chunks where each 21cm PS is calculated. Figure 4.2 shows these fiducial power

spectra plotted per chunk, as used in the 21cm PS likelihood. The discrete dots indicate which

6A fixed ax = 1 is implemented in the X-ray calculation within model D.
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k values are used for the y? calculation. The likelihood is calculated between the vertical lines
in Figure 4.2, these are dictated by the telescope assumptions and simulation sizes (detailed in

Section 4.3.6).

The fiducial parameters used for each mock observation in Table 4.1 are in agreement with the
observational priors for all four models. For Model A and Model B, these parameters are selected
from the literature (Greig & Mesinger, 2017b). Models C and D have their fiducial parameters
selected in agreement with the UV LF data. While these data constrain the parameters in
Model C well, the X-ray heating parameters in Model D are left to be sampled from within
their uniform prior ranges. The brightness temperature realisations shown in Figure 4.1 show
Model D to have significantly colder gas than in the other realisations. There is heating in
Model D, but in this realisation it is delayed and reduced in comparison to the X-ray heating
that occurs in Model B’s realisation. Across the redshifts analysed (z € [8,10]): the brightness
temperatures from Model D are progressing from absorption to emission; Model B’s more
extreme heating has almost saturated the spin temperature by z = 10 and has certainly done

so by z = 8.

Most of the models (A, B, and C) have comparable brightness temperature amplitudes in the
light-cone but the power spectra reveal that B has significantly brighter 21cm signal. However
the inhomogeneous heating of the gas causes ionisation to progress faster on smaller scales. In
comparison to B, model D has its heating epoch delayed. The model D 21cm PS begins (chunk
3) dimmer on all scales, before rising with a broader peak (Figure 4.3) that spans accross a
large portion of both chunks 1 and 2. To help interpretation, Figure 4.3 shows the same fiducial
21em PS evolving with redshift at a given scale. We must be careful with what inference we
can be obtained when using chunks, their size will influence how well the different 21cm PS
represent the evolution of the signal throughout the light-cone. This Figure has the number
of chunks increased from 3 to 10 to illustrate the underlying physics, the points used appear
significantly more jagged when interpolated (approximately the average of every three points
plotted). When comparing Figures 4.2 and 4.3, the brightness temperature fluctuates more
in the direction of redshift than in k. In Figure 4.3 Models A and C fluctuate a lot less than
models B and D. The 21cm signal amplitude in model D has begun to diminish by z = 8 (chunk
1, lowest redshift), but it is still brighter than in models A, B, and C. The delayed impact of the

heating epoch on model B compared with model D are particularly apparent here. Model D is
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nearly an exact translation of model B on the scales used, except for an increase in absorption
just below redshift 10. A, B, and C approach the same values at the z = 8 end, as the spin
temperature saturates in model B - this is the post-heating approximation used in models A
and C. The spin temperature in model D will also saturate, but this occurs a later (z < 8, not

plotted here).

4.3.6 Telescopes

The telescope assumptions in this chapter use the moderate 21CMSENSE settings for a 1080

hour observation with SKA-512 as in the previous chapter (Pober, 2016).

The only difference here is that the 21cm PS is calculated from chunks of the light-cone rather
than from coeval cubes. Since we are interested in performing our model selection tests in the
backbone of reionisation, we are using the same redshift range (z = 8 — 10) as the previous
chapter. Our 21CMSENSE simulations are performed with the frequency from the centre of

each chunk.

The light-cone is constructed with coeval cubes calculated with a logarithmic step of Azgep =
1.04. For example, in our light-cone (z = [8, 35]) the redshifts sampled are 8, 9.05, 10.15, 11.31,
12.5 and so on. In the 21CMSENSE calculation the cosmological bandwidth is 8Mhz with 82
channels, all the parameters are shown in Table 4.2. This is the minimum size of signal that can
be considered to have coeval cosmology and means we have 1024 bins per 100MHz. At redshift
8 this corresponds to a ~ 210h~! Mpc distance between redshifts 7.78, 8.23. We therefore are
confident in the box size choice of 250h~! Mpc being able to capture the appropriate physics
in the likelihood (Deep Kaur et al., 2020). This is far from our telescopes’ maximum frequency
resolution, which would dictate a the minimum chunk size being is limited by the cosmological

bandwidth.

There is a caveat from only using three light-cone chunks. Signal shape is potentially missed
depending on how quickly reionisation evolves. Should our analysis fail to obtain the astrophys-
ical parameters with sufficient precision, more chunks may be necessary to accurately pin down
the evolution of the 21cm PS within the light-cone. This is partly a failure of the power spec-
trum as it is a non-ergodic representation of the entire light-cone. We return to this discussion

in Chapter 5.
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Parameter SKA-Central
Number of dipole 296
Stations

Station Diameter |m] 35
Collecting Area |[m?| 492,602

Tr[K] 40 + D
Observing Width [50,350]
[MHz|

Observing Time 1080
[hrs]

Scan Type 1-hr Track

Table 4.2: The telescope parameters used in the 21CMSENSE simulation for SKA-512 with
(Pober, 2016). We only require the central 296 of SKA-512’s planned stations as this is where
sensitivity to the EoR lies. For more detail see Section 4.3.6.

We defer an analysis of which power-law in D is prevalent when including multiple realisations
of the spin temperature fluctuations in models that include the UV LF. We will also be better
equipped to answer this with the improved telescope assumptions as discussed above and in

Section 4.5.

4.4 Considerations of prior sensitivity

All parameters prior distributions in this chapter are uniform accross the ranges shown in Table

4.3.

For model A, since our parameterisation is similar to the previous chapter so are our prior

considerations (Binnie & Pritchard, 2019),

e ( is bound within [10,250]. The bottom end has been increased from 5 to 10 from our
previous work, this eases computation without compromising the physics. we adopt a
maximum of 250 to ensure this current observations are captured, values around 200

should be more than enough but we are cautious.

e Logo[Tvir] € [4.0,6.0]. The atomic cooling threshold sets the lower end, we do not consider
mini-halos in this chapter. 10°K corresponds to the sizes of galaxy clusters, it is unlikely
that galaxies larger than (or near to) this contribute to reionisation (as seen by forward

modelling simulations - Wise et al. (2014); Feng et al. (2016) for example).
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Next is Model B, introducing the affects of X-ray heating and spin temperature fluctuations

(Greig & Mesinger, 2017Db).

e Lx.5 kev/SFR The X-ray spectrum is normalised in Equation 4.6. It is implemented as a

log prior in [10%,10%%] erg s~*M'yr, motivated by observations e.g. (Saitou et al., 2011).

e [ is varied in the range [100, 1500] eV. In principle the top end could be extended to 2000
eV - which would imply no soft extra emission (vx x Ex < 2keV) emerging from the host
galaxy. The used limits are motivated by the ISM HI column density from hydrodynamic
simulations, corresponding to log,o[Nur cm™?] € [19.3,23.0] (Das et al., 2017).

e ax € [—1,3], covers the range of power-laws for typical X-ray sources that populate

galaxies during the EoR. This is discussed further in Section 4.5.4.

The ax parameter is known from Greig & Mesinger (2017b) to be degenerate with E,. To
analyse this we ran 21CMNEST with a reduced model B parameterisation for its mock 21cm
PS data, i.e. just ax, just Ey, and both. We found that the posterior variance on this(these)
parameter(s) in either individual option more than doubled compared to when using both
(discussed further in Section 4.5.4). The changes in A%, are dominated by Ej in the backbone
of the EoR accross the prior ranges above. ax is therefore left constant in model D (ax = 1),

after showing this with the SDDR.

To calculate the UV LF the following parameters (Park et al., 2019) are used:

e t,, the fraction of Hubble time, which cannot exceed [0,1]. See Section 4.5.4 for further

discussion.

® M, is implemented as a log prior across [10%,10'9]M. The upper limit is ruled out by

the UV LF observations, and the lower limit is from the atomic cooling mass in halos”.

e «,, the strength of scaling between stellar collapse fraction and halo mass, arbitrarily set

to [—0.5, 1] (See text below).

"The numerical simulation containing spontaneous emission coefficients and stellar spectra have been per-
formed with RECFAST (Seager et al., 1999). Pre-calculating these speeds up the simulation, allowing MCMC
analysis, we do not explore the statistical influence of expanding this prior.
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e f.10, we implement this with a log prior over [1073,1]. This parameter is normalised at
the 10'°M, scale i.e. f, < 1 means stellar mass cannot exceed the total baryonic mass
in that region. The bottom end of f, > 0.001 removes galaxies that have negligible®

contributions to reionisation.

The number of ionizing photons per stellar baryon, N, is degenerate with f,. Using N/, =
5000 influences the appropriate prior range for this parameter, this value is chosen to be consis-
tent with observations of stellar variation (that the baryons can collapse into) (Sun & Furlan-

etto, 2016).

Finally the second power-law in the ionisation efficiency is implemented with:

® s € [—1.,0.5] is used here, constraining the power-law scaling with halo mass (the same

as a in Chapter 3).

® fesc10, normalised on a 10'°M, the escape fraction is between [1073, 1.]

The upper end should should not exceed 1 as it is a fraction. fus is limited to > 1073 in order
to agree with the observational priors i.e. reionisation finishing by z ~ 6. This is similarly to
the cut at the bottom end of f,, if not enough ionising radiation can escape the galaxy it will
not effect reionisation and it can be safely omitted irrespective of how efficiently it is producing

stars and vice versa.

Table 4.3 contains a summary of the parameter prior distributions for reference. Section 4.5.1

discusses actively changing prior distribution ranges for specific analyses.

4.5 Results

Firstly we found agreement between the UV LFs compared with the observed data (Bouwens
et al., 2015; Oesch et al., 2018); agreement is also found between our parameter posterior
distributions and those produced by 21c¢MMC in most cases (Appendix D.1). Each model is
able to retrieve its own fiducial parameter set (and the observed data for the UV LF calculations)

confirming the basic methodology.

8Intentionally avoiding philosophical discussions of what defines the first galaxy.
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Parameter Model Prior Range
Log[Tvir /K] AB 4.0, 6.0]
¢ A B 10, 250]
Ey B, D (100, 1500] eV
ax [—1,3.0]
Lx corev B, D | [38,42] erg sT'M_'yr
Logyo[Myum/Ms) | C, D 8, 10]
fe0 C, D [—3,0]
Qy C,D [—0.5,1]
by C,D [0, 1]
fesc,lO [—3, 0]
Qesc D [—1,0.5]

Table 4.3: 21CcMNEST distributes each parameter across uniform prior distributions with
the ranges shown here. The total parameter prior volume for each of the four models is
480, 10752000, 9, and 226800 respectively. For use in model D, ax is fixed to 1 and ¢, has its
prior range reduced to [0.05,1.0] (see Section 4.5.4). When fitting models with a heated gas
approximation to those that model the spin temperature fluctuations (A or C to D or B), the
¢ implementation has its upper bound increased with no noticeable benefit (see Section 4.5.1
for detail).

Bayes factors are shown in Table 4.4 where the table axis (I, J) dictate the numerator I|J of
the Bayes factor calculation in question. The corresponding denominator in each Bayes factor
is accross the bottom. The notation I|J, where I, J € Model A, B, C, or D, represents an
Evidence value obtained by a 21CMNEST run simulating model I, when reproducing fiducial
(mock) data produced by model J (with the fiducial parameters given in Table 4.1) e.g. I|J
= P(Model I|MockData J). The MAP values for main analyses are shown in Table 4.5, with
corresponding 21cm PS shown in Figure 4.5. Deviations from the four main models are written
into the corresponding I (or J) e.g. NoLF or OnlyLF, detailed in Section 4.5.3. We now proceed

to answer the main questions of the paper (bullet points in Section 4.1).

4.5.1 Prior range discussion

For reference the prior ranges are shown in Table 4.3 and the MAP parameters are shown in
Table 4.5. To test the robustness of model A’s results we extend the upper bound of the prior
distribution for ¢ from 250 to 103. The MAP values for show ( against the upper bound of
the prior (¢ & 250). ¢ = 103 is well beyond the physical motivations discussed in the previous
section, but here we are only testing the statistical methodology (this value was selected due to

computational limits). The posteriors obtained while calculating A|B and A|D are inhibited by
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Mock Fiducial

Model A B C C-NoLF ObsLF D D-NoLF
A 1.0 | e %5 | (23000) 0.027 (e 71 o 920
B 0.0028 | 1.0. (670) 0.00077 (0.93) 0.0066
C (1077) | (e o1 10 o 1105

C-NoLF 44 | 79688 | (370000) 1.0 (e71273) 1278
C-OnlyLF (290) 1.0 (420)

D 10°) [ (%) | 10°° 1.0

D-NoLF 105 | 0.33 | (600) 0.00069 (140) 1.0
D-OnlyLF (410) 1.4 (600)
Comparison | A[A | BB | C|C | C-NoLF|C |C-OnlyLF|ObsLF | DI|D | D-NoLF|D

Table 4.4: The complete list of Bayes factors used in this work (2 s.f. or nearest integer
power if large), key values are shown in Figures 4.6, 4.9, and 4.12 (identified in bold). We
include the calculation for models C and D for calculations with and without the UV LF, the
brackets to indicate unweighted comparisons (see Section 4.5.3) i.e. like-for-like likelihoods
must be compared for sensible Bayes factor calculations. The notation (model I fit for fiducial
mock data set J, as in Section 4.5) shows each Bayes factor calculated with the Evidence I|J
from this Model|Fiducial Table in ratio with the Evidence of the Comparison row (J|J on the
denominator). The unweighted calculations provide insight into the washing out of the UV LF
depending on the realisation of the 21cm signal. From a theoretical perspective to accurately
analyse these different methods of likelihood requires weighting the likelihood contributions
differently, they are included mainly for completeness and pedagogy. Empty spaces are for
calculations that cannot be performed (e.g. models A and B do not produce UV LFs). The
notation (described under Section 4.5) includes ‘NoLE’ for using both the observations prior
checks and the 21cm PS likelihood, while ‘OnlyLF’ have Z calculated with just Lpr. The
symmetry of the table is not exact due to different models having different fitting flexibility (in
terms of the shape of the UV LF, 21lcm PS or both). See text for discussions of these results.
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Figure 4.5: MAP 2lcm PS fit for each model (A, B, C, and D are blue, red, magenta and
orange respectively) with the mock fiducial data set (in black, one row for each respective
model). The shaded grey region represents the 21CMSENSE error estimate for a ~ 1000 hour
SKA-512 observation (Section 4.3.6). The 2lcm PS for models A and C, with saturated spin
temperatures, are fit well by models B and D (rows 1 and 3), although some large scale structure
is gained in removing post heating approximation at the highest redshift (chunk 3, low k rises
out of the telescope error region). For the fiducial mock data B (2nd row) the 2lcm PS of
models A and C are unable to fit the mock 21em PS without including X-ray heating: Model
A’s attempts fit to the heated gas at high redshift have caused reionisation to end by chunk
1, resulting in heavy penalties from the fiducial mock data and observational priors; Model
C is able to fit closer but at the cost of heavy penalties from the observed UV LF. Model D
is capable of fitting the mock B 21cm PS, when Lpp is not included (not shown, but can be
interpreted from the bottom row where B is fit to the 21lecm PS mock data for D). When both
likelihoods are used 4.5(e) shows that D must compensate its fit on the 21em PS to correctly
fit the UV LF data (see also Figure 4.13(a)).
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Mock Fiducial Data
Model Parameters A B C D
A ¢, 32.7+ 4.5, 250 4+ 0.07, 31.1+4.1, 250 4 0.6,
Logo[Tvir] 4.66 £+ 0.08 4.20 4+ 0.0002 4.63 £ 0.08 5.05 £ 0.06
Lxcokev/SFR, | 41.240.14, 40.0 £ 0.09, 41.2 + 1.5, 40.0 + 0.07,
Ey, 885 + 240, 440 + 136, 765 + 254, 481 £+ 110,
B ax, —0.304 £1.2, 0.93 £1.2, —0.737 £ 1.2, 292+1.1,
¢, 34.7 £ 4.6, 33.6 £6.0, 31.3 £4.3, 183 4+ 22.4,
Logo[Tvir 4.66 £ 0.08 4.68 £0.9 4.69 £ 0.08 5.46 £0.01
Oy, 0.477 £ 0.071, 0.815 £ 0.013, 0.484 + 0.07, 1.00 4 0.03,
C f105 —1.19 £ 0.07, —1.71 £ 0.06, —1.2 4 0.06, —1.02 £ 0.03,
M, 8.92 +0.17, 10.0 £ 0.04, 8.84 + 0.18, 10.0 £0.02,
t, 0.586 £+ 0.093 0.054 + 0.011 0.523 + 0.09 0.998 + 0.019
lesc 0.498 £+ 0.10, 0.469 £ 0.04, 0.184 £0.178, | —0.588 £ 0.196,
Qly, 0.538 £ 0.08, 0.147 £ 0.025, 0.545 + 0.074, 0.508 + 0.64,
f10 —1.26 £ 0.29, —1.29 4+ 0.326, —0.304 £0.315, | —1.20 £0.34,
D Jesc,10 —1.194+0.27, —0.922 £ 0.322, —1.94 + 0.30, —1.13+£0.27,
Lxcokey/SFR | 41.0 £0.14, 40.3 + 0.20, 40.9 £ 0.1, 40.0 £ 0.2,
M 8.62 + 0.23, 8.00 £ 0.01, 8.58 + 0.20, 8.69 + 0.16,
Ey 631 + 143, 639 + 270, 560 + 170, 516 + 340,
t, 0.638 £ 0.27 0.992 + 0.350 0.112 + 0.268 0.699 + 0.265

Table 4.5: The MAP values found by 21CMNEST for each full model (3 s.f. £10 with matched
d.p.). The corresponding 21cm PS are shown in Figure 4.5. Example MAP UV LFs for C and
D are shown in Figure 4.13.
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the parameter priors, we want to be sure this has not influenced the Bayesian Evidence values.
We found an increase in InZ to be ~ 700, resulting in a rejection on model A (in comparison to
model B) of order InB ~ 6000, i.e. the expanded prior range does not change the conclusions

discussed in Section 4.5.2.

C|B and C|D also produced parameter posteriors pushing against the upper end of prior ranges.
To explore exaggerating the ionising efficiency (as above does with () we expand the parameter
priors ranges for fi 1o and a. to [—3.,3.] and [—1.,2.]. The MAP values for both parameters
remained within the original prior distribution bounds. As a cross check the o value on either
parameter remained unchanged (as a percentage of the used prior range). The MAP parameter
values for t, and M., show similar behaviour. t, is explored further in Section 4.5.4, and
My has its upper prior range limited by UV LF observations (M, ~ 10). We interpret
this further with the context of Section 4.5.2 i.e. Model B’s mock 21cm PS data could be an

unphysical X-ray heating realisation, and hence this needs to be looked into further.

4.5.2 Are models with spin temperature fluctuations distinguishable?

For the parameter set chosen for the fiducial mock data (model B, Table 4.1), the effect of the
spin temperature is objectively distinguished. Models A and C do not have access to the spin
temperature fluctuations, and score strong disfavouring in Figure 4.6. This figure plots the
Bayes factors for models A, B, and C as they each fit a 21cm PS to the fiducial mock 21cm PS
data produced by model B (using the parameters in Table 4.1). For ease of interpretation the
grey shaded regions indicate the Jeffreys’ scale described in Section 1.4.6.

The log Bayes factor for these three models under question the are —6685, 0, and —6144 for A|B,
B|B, and C-NoLF|B respectively (in ratio with B|B). The simple model (A), and single power-
law model (C, ((My)) both score strong disfavouring. This indicates that the spin temperature
fluctuations should be detectable, given the assumptions we have used for our ~ 1000 hour
observation with SKA-512. The Log factors in the 1000’s are large since they do not include

important physics and can never reproduce the spin temperature models.

As the spin temperature is approaching saturation, the change in amplitude of the 21cm PS
is different on multiple scales. In particular, C & A struggle with the increase in power on all

scales at higher redshift (z ~ 10, 4.5(f)), and the lack of mid-scale power in the middle chunk
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(k ~ 0.5Mpc™!, 4.5(e) - the visible dip in the red 21cm PS) introduced by spin temperature
fluctuations. Most of the fitting attempts cause large penalties from the observational priors
(particularly from Lyegreer, €8 A’s fit shows reionisation ending in chunk 1, Figure 4.5(d)).
Here, 21CMNEST has validated the results of 21cMMC by using Bayesian model selection
instead of parameter estimation. Greig & Mesinger (2017b) show that including the detail
in IGM heating should produce 21cm PS that differ noticeably in a parameter estimation
framework. When model B tries to reproduce the simpler models’ 21cm PS it can. The Bayes
factors for B|A, B|B and B|C are 0.74, 1.0 and 2.01, both falling within the weak Evidence
score on the Jeffreys’ scale (not plotted, Table 4.4). This shows that the detail added by these
extra parameters is not redundant?, and not every redshift in reionisation need be observed to

do so.

X-rays have a large mean-free path, which is longer depending on the hardness of the radiation
(Pritchard & Furlanetto, 2006). They heat the hydrogen in the IGM after being redshifted by
the Hubble flow, which enables their interaction with the Lyman series (Furlanetto & Pritchard,
2006). Approximating this heating mechanism with a saturated spin temperature (Ts > Toyg)
will not be valid until very late in reionisation. Because of the inhomogeneous nature of the
heating, the percolation of ionisation is subtly different between the two models. Greig &
Mesinger (2017b) show that in z € [8,10], the variety in bright or faint realisations of EoR
galaxies will have a different impact in how closely their 21cm PS follows the approximated
equivalent. It is therefore comforting that Bayesian model selection is able to distinguish models
which use the post-heating approximation (A & C) from models using full calculation (B) close
to the saturation of the spin temperature. Figure 4.5 shows the 21cm PS for model B (in Red)
as it fits for each of the four fiducial data sets (Each row representing each mock fiducial data

set).

How distinguishable X-ray heating is from ionisation alone depends intricately on the 21cm
PS amplitude, and the telescope observation. If the fiducial parameter set we have selected is
the real observational truth, the 21cm PS will have a large variety of amplitudes (at multiple
scales) enabling us to identify model B’s parameterisation of X-ray heating. Should this not be
the case, then a larger observational range will be necessary to break parameter degeneracies

and the full observational capabilities of the SKA will be a necessity (making this hard to cross-

9apart from oy, see Section 4.5.4.
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Bayes Factors: Including Ts fluctuations
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Figure 4.6: The Bayes factor models A, B, C and D (C, and D without the UV LF likelihood), as
they recover the fiducial mock 21cm PS data produced by model B. Blue represents models that
include spin temperature fluctuations; red represents models in the post-heating approximation
(however both of these fall below the axis, represented by the arrows). A summary of the models
and the fiducial parameters used can be found in Table 4.1. The grey regions represent the
weak (dark), moderate(light), and strong (white) Evidence outcomes on the Jeffreys’ scale.

check with smaller experiments). Should this have been a problem with the fiducial parameters
used, we could extend the 21cm PS likelihood to include more redshifts (maximally [6-25]).
These should be chose to provide a variety in 2lcm PS amplitudes from the X-ray heating
realisation which will be done in future work, when more precise models for telescope noise and

foreground removal are applied.

4.5.3 Inference from the UV luminosity function

Model C is the simplest parameterisation that can produce UV LFs in agreement with the
observations (Figure 4.4). C also contains a power-law in halo mass for the collapsed baryon
fraction in stars (Equation 4.9). In our previous work (Binnie & Pritchard, 2019), we showed
that the 21cm PS alone was not enough to distinguish a power-law in halo mass for the ionising
efficiency in the post-heating approximation. This remains the case here with Bayes factors 4.4,
and 1.0 for A|C and A|A (not plotted, see Table 4.4), i.e. weak favouring of the simpler model
when only the 21cm PS is used. In contrast, when including the UV LF in the likelihood (Lyr)
the power-law parameters (f, 10, @) are constrained to o ~ 0.1 (1 s.f.). Tightly constrained

posteriors are obtained when the UV LF is included (C|C, Figure D.1(c)).
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We calculated the Bayesian Evidence with alternate combinations of the likelihood (identified
by different colours in Figure 4.7). InZ was calculated with: InLa; = X3, + XPranck + XoteGreer T+
X&reig (1abelled noLF, blue); InLyp = X7y (onlyLF, black); and the full version from Equation
4.2 (red). Figure 4.7 corresponds to integrating the likelihood space of model C as it reproduces
the observed UV LF data and fiducial 21cm PS mock data made by each model. In particular
the deviations of the black points down from the dotted line in 4.7(a) comfortingly infer that
the InZ is non-negligible in comparison with the 21cm PS (~ 3 orders of magnitude difference).
To analyse the UV LF further we plot the C|C posteriors with only L£rr and without the use of
the Lrr in Figure 4.8 (blue and purple respectively). Here it is clear that the pinning down of
the power-law parameters has come from L (as it should, Section 4.3.3), but the synergy of
21cm and UV observation is necessary to pin down every model C parameter. Bayes factors for
these are plotted in Figure 4.9. Each Bayes factor is measured against the mock observation
produced by model C’s fiducial parameter set, including ratios between Evidence’s of similar

likelihood construction only.

Model C can be distinguished from model D with just the 21cm PS and both the UV LF and
21lem PS (Figure 4.9). Strong disfavouring of D is achieved with the 21cm PS and both the
UV LF-21cm PS synergy. The fiducial parameters for model C’s mock 21cm PS data is set by
fitting C to the UV LF data. Without the UV LF data model C shows similar flexibility to the
4pFZH model fitting for f1 or {2 in the previous chapter. Penalties for D’s extra parameters are
exaggerated when both are used, D is rejected more heavily with both likelihoods than just the
21cm PS as a result. The change in parameter prior volume between models C to D (In ratio of
—10.13, See Table 4.3) influences the strong rejection of DnoLLF|C. When only using Ly, both
C and D fits produce UV LFs via the same mechanism, hence C and D are approximately the
same in Figure 4.9. However, when reproducing the mock fiducial 21cm PS from C, the X-ray

heating parameters are redundant causing a penalty against model D.

Including the spin temperature (given our parameterisation in Section 4.5.2), Figure 4.7(b)
shows that the Evidences obtained with the X-ray heating models differ from those without by
~ 1000s of orders of magnitude. Here the UV LF likelihood is providing negligible inference
in context of the 21cm PS’s input towards model selection (black points remain on the dotted
line in Figure 4.7(b)). Since the clarity of the observation (signal to noise) depends on the

amplitude of the 21ecm PS; the X-ray heating realisation is important - particularly if we are
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constrained to using only the backbone redshifts of the EoR. If the X-ray heating influence is
small (smaller than in Model B’s mock fiducial observation), it is likely that observations of the
21cm PS will need to be deeper into the cosmic dawn than just the EoR backbone if decisive
statistical results are desired!®. Furthering this point, the X-ray heating can produce 2lcm
PS amplitudes which are larger than physically viable from the constraints from including the
UV LF data. The UV LFs respond mainly to the galaxy parameterisation (M, M*), while
the X-ray parameters (Ey, Lx<okev/SFR, ax) depend mainly on the 21cm PS. Since there is
some degeneracy between these, their dependency on the choice of fiducial parameters must
be looked into further. A closer analysis is needed relating to the behaviour of the UV LF
depending on the realisation of the X-ray heated spin temperature fluctuations. We defer this

to future work, when we are using the aforementioned improvements on telescope assumptions.

It is worth noting here that the differing likelihood constructions are not directly comparable. A
weighting analysis'! would be necessary to cross compare these likelihoods individually (hence
multiple large bracketed values in Table 4.4). But since we are interested in their model selection

synergy the conclusions in this work source from like-for-like comparisons of the likelihood only.

4.5.4 Parameter analysis with the SDDR

The SDDR is detailed in Section 1.4.7 and has already been implemented in Chapter 3 (Binnie
& Pritchard, 2019).

We test ax and t, since the posterior variance on these parameters are comparable to their
respective to prior distribution ranges (the B|B and D|D posteriors are visibly flatter than for
the other parameters in Appendix D.1). The posterior shape directly relates to the shape of
the SDDR Bayes factor plots (in Figures 4.10 and 4.11).

07deally the full redshift range used in (Greig & Mesinger, 2018, 2017b) will be observed, but we would like
to know how much of that portion is necessary to decisively select the most authentic astrophysical scenario.

HEach likelihood contribution would have to be weighted as InL = Y a;x? e.g. Trotta (2008), requiring a
separate Bayesian analysis (beyond the scope of this work) to pin down each «;. We have no reasons to believe
the inherent weighting in each x? due to observational noise is inadequate.
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Evidence Contributions: Model C
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Figure 4.7: 4.7(a) The UV LF likelihood calculation (InZ in blue) is providing more inference,
(but importantly of comparable magnitude) to those obtained with the 2lcm PS (and obser-
vational prior checks, red) with the post-heating approximation applied. 4.7(b) shows the UV
LF contribution becoming negligible in comparison to that of the 2lem PS when spin tem-
perature fluctuations are included (the black points are negligible in the lower plot). Models
that include spin temperature fluctuations require the 21ecm PS to distinguish them (the huge
difference between the red points for models B and D). See Section 4.5.3 for more detail and

discussion.
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Figure 4.8: The posteriors for model C’s parameters when reproducing only the 21lcm PS
(and observational prior checks, purple) and for reproducing only the observed UV LF data
(blue). In the notation discussed under Section 4.5, these are the parameter posteriors for
C-noLF|C (purple) and C-onlyLF|C (blue) respectively. The parameter posterior from the full
likelihood (Figure D.1(c)), is approximately a convolution of these two distributions. M, and
t., in particular, look to require a combination of both posteriors to obtain the fiducial model
parameter. It is clear that the UV LF likelihood dominates the constraints on parameters that
dictate the power-law in ¢. This can be seen by the sharp peaks for both a, and f, ;o in blue

but not purple.
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Bayes Factors: UV LF Analysis
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Figure 4.9: Bayes factors for each model for fits of the fiducial mock data set from C. This
plot follows the colour conventions of Figure 4.6, the + sign indicates the use of the UV LF
likelihood, with vertical dotted lines separating like-for-like analyses. Without the UV LF the
simple model (A) shows moderate Evidence but since it cannot produce the UV LF there is no
comparison for the full likelihood (due to no halo mass dependence in the UV LF). B is rejected
by the Lo with strong Evidence however this is largely to do with the increase parameter space
being redundant (particularly from Ej). Model D is able to fit the UV LF data better than
C but again the extra parameter space is largely redundant resulting with a weak conclusion.
The full model D (i.e. (D|C/C|C) on the far right) is rejected with strong Evidence due to the
same reasons as B. See 4.5.3 for more detail.

How informative is ax?

The X-ray spectral energy distribution is Lx o E~**, where ax can vary as [—1.,3.] (Greig
& Mesinger, 2018). Soft X-rays are used, as this minimises the ax and Ey degeneracy (with
respect to the 21em PS). This also allows the X-ray constraints to be compared with nearby
observations (e.g. Fragos et al. (2013); Lehmer et al. (2016), see Greig & Mesinger (2017b) for

a fuller description and reference list).

The range of ax represents different source types that produce X-ray radiation. A sensi-
ble range for this parameter could be [—2,3] encapsulating high/low mass X-ray binaries
(HMXB/LMXB), mini-quasars, diffuse ISM emission, and supernovae remnants (Eide et al.,
2018). We see in Figure 4.10(a) that below ax € [—1.,3.] this parameter scores strong dis-
favouring on the Jeffreys’ scale. Figure 4.10(b) shows negligible changes to the 21cm PS for
ax € [—2.,3.]. For ax < —1, the rejection comes almost entirely from the observational prior
checks (Lyicgreer t0 be specific). In Binnie & Pritchard (2019) we showed that these observa-
tional prior checks only have influence in particularly unphysical regimes. Therefore it is likely

that the QSO constraints in the observational priors can rule out the particular sort of X-ray
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source that correspond to ax < —1. For ax > —1, we are unlikely able to distinguish between

X-ray sources.

Since we have been using redshifts [8, 10], we are near the post-heating regime, and the effect
of ax fluctuating the 21cm PS is minimal. Between redshifts [10, 18], ax is likely to have more
impact on the 21cm PS'. To test the degeneracy between E, & ax, we simulated model B
with only ax, only Ey, and only both [ax, Ey| as the free parameters (the other parameters
were fixed to fiducial parameters for the mock fiducial data set from model B). We looked at
the ratio of posterior variances (not shown) to uniform prior distribution width, obtaining 13%,
20%, and [27%, 40%)] respectively to the nearest integer. During the backbone of the EoR, the

Ey parameter has more influence on the 21cm PS.

The SDDR results for ax are shown in Figure 4.10. Figure 4.10(a) shows the Bayes factors and
Figure 4.10(b) the variety in 21lcm PS with respect to ax. The constant behaviour of B(ax)
in Figure 4.10(a) indicates that this parameter is not providing any additional inference given
the observations. This is reflected in Figure 4.10(b) by all power spectra lying within the grey
telescope error region. To conclude we omit ax as a free parameter for the X-ray heating within
model D. For simulation purposes we proceed with ax = 1, prescribing the dominant X-ray

background producer as HMXBs (Das et al., 2017).

How informative is ¢.7

The time scale for star formation t,, is used to calculate the SFR (Equation 4.12), and is
conventionally interpreted as however long is needed to form the stars'® necessary for the
produced UV LF. It is implemented assuming the dynamical timescale of our universe scales as
1/H (z); and that the fraction of mass collapsed in stars, does so linearly. t, cannot exceed [0, 1],
as it is a fraction of the Hubble parameter. The minimum timescale for star formation to occur
is ~ Myr (crudely estimated with the Jeans time), which would correspond to ¢, > 0.0001.
Estimates for the cosmic dawn happen around z ~ 35, implying ¢, ~ 0.5. This agrees with the

behaviour of Figure 4.11(a) which shows the SDDR analysis for .

The B(t.) with corresponding luminosity functions are in Figures 4.11(a) and 4.11(b) respec-
tively. B(t,) is broadly redundant for 0.8 > ¢, > 0.3, the model agrees with the theoretical

12Greig & Mesinger (2017b) shows this for redshifts [6,20] (their Figure 1, using ax = —0.5,1.,2.5).
13 Assuming one ensemble of galaxy in reionisation, made entirely from Salpeter IMF stars.
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Savage-Dickey Density Ratio: Model B Power Sectrum for chunk 2
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Figure 4.10: Figure 4.10(a) shows the Bayes factors (Jeffreys’ scale in grey) calculated with the
SDDR for ax, with the corresponding variety in 21em PS plotted below (4.10(b), with telescope
noise in grey for the SKA). The colour coding of the 21em PS is consistent between plots, with
the fiducial parameter for the mock data in green, and values of ax above (below) the fiducial
indicated by black (blue). The 21cm PS’s in 4.10(b) all fit within our telescope error margin
at any value of ax € [—2.,3.]. Chunks 1 and 3 are similar (not shown). Figure 4.10(a) clearly
shows rejection of ax < —1 via the McGreer likelihood. We therefore conclude with the SDDR
that ax is redundant within the range [—1, 3], given our telescope assumptions in Section 4.3.6.
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Figure 4.11: The SDDR results for ¢, (Section 4.5.4). 4.11(a) contains the Bayes factors B(t,)
for the following values of ¢, = [0.0001, 0.01, 0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0], with the
corresponding UV LF shown in 4.11(b). Colours are consistent between the two plots, with
the red dotted UV LFs falling well below the axis on 4.11(a). The corresponding 21cm power
spectra cannot be distinguished, lying within the telescope error region (similarly to Figure
4.10(b), not plotted). The UV LF on the other hand, lies within or close to the observational
error bars, resulting in (at most) moderate results for 0.8 > ¢, > 0.3. For low values of t,
however (red, dotted), the fit is rejected with strong Evidence. This motivates adjusting its
uniform prior to ¢, € [0.05,1].
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constraints mentioned above. Within this region ¢, is incapable of providing further inference
given the sensitivity of the data used. Looking closer at the separated posteriors in Figure 4.8,
the lower end penalty for ¢, < 0.4 is from the UV LF (and not from the 2lcm PS at least
when using z < 10). This can be observed in Figure 4.11, since the UV LF shift brighter
exponentially as ¢, decreases (blue solid, then red dotted). However at the very low ¢, (< 0.05,

red dotted) we face computational struggles as the likelihoods produced are extremely small.

To conclude, t, captures an interesting question and has regions of influence. We would rather
a seek better/additional data source than removing it completely. We therefore cut the lower
end of the parameter prior to remove vastly wrong UV LFs. In conclusion to this section, we
advise the adaptation of the ¢, prior range from [0, 1] to [0.05,1.]. The details of SF timescales
within reionisation galaxies are poorly constrained. We think there is more to be gained from
this parameter in pinning down the behaviours of star formation timescales within the EoR
galaxy ensemble. More precise modelling as well as other observational synergy is needed to

do so.

4.5.5 Resolving the ionising efficiency double power-law in halo mass

The double power-law in halo mass for ¢ provides a significant improvement in the fitting
flexibility of the EoR model. A good fit of both a X-ray heated 21cm PS and the observed UV

LFs is now obtainable.

The variances of each power-law related parameter are ~ 10% (as a % of the prior range) in
D|D, (Tables 4.3 and 4.5). But ¢, is no longer constrained (in comparison to the posterior
variances for C|C. Within the posterior of C|C the variance is 10%, while for D|D it becomes
28%. This consolidates the final point in Section 4.5.4, we think more observational synergy,

or improved statistical analyses of the 21cm signal will remove degeneracy in this parameter.

Variety in brightness temperature intensity is seen clearly, for model D compared to A, B,
or C, at the high redshift end of the light-cone slices in Figure 4.1. The power spectra for
D (containing the double power law, orange coloured) reflects this in Figures 4.2 and 4.3, by

reaching both higher and lower amplitudes in the 21cm PS than any other model.

Although the majority of the flexibility in the 21 ¢cm PS is from the X-ray parameterisation
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Bayes Factors: ¢ Double Power-law
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Figure 4.12: Bayes factors for models A, B, C, and D as they recover the mock fiducial data
from model D. The conventions of this plot are described in Figure 4.6 and 4.9. Only model D,
with the double power law for (, is able to reproduce both its own fiducial 21lecm PS and the
UV LF data (shown in Figures 4.5 and 4.13 respectively). The single power-law in ¢ (A & C)
is so heavily disfavoured that it is below the axis (red arrow). See Section 4.5.5 for the related
discussion.

shared with model B, the second power law causes subtle deviation visible in the over-predicting
large scale structure of chunk two (z ~ 9, small k, Figure 4.5(k)) and under-predicting the
middle scales of chunk 1 (z ~ 8, Figure 4.5(j)). The Bayes factors calculated without the UV
LF reflect this producing strong odds of 1:151 in recovering model D in favour of B (Figure
4.12). This is extremely borderline, highlighting the dangers of interpreting results strictly
from the Jeffreys’ scale. Firstly B contains the ax which we have shown to be redundant in
Section 4.5.4. Secondly, B has a larger prior volume than D due to ax and its parameterisation
of the ionisation efficiency being constant, see Table 4.3). Since B would not be able to fit
any redshift dependency on the UV LF (because ( is constant), we accept the Jeffreys’ scale

conclusion here.

Figure 4.13 shows the MAP UV LFs produced when C and D are simultaneously constrained
by the observed UV LFs and the 21cm PS mock fiducial data (for A, B and C). Model D is
capable of fitting the UV LF data regardless of which mock 21cm PS data is chosen, however
the fit worsens for the realisation used in the mock 21cm fiducial set B. In contrast model C is
heavily disfavoured by poor fits on both the UV LF and 21cm PS when fitting B or D (purple
line in Figures 4.13(a) and 4.13(c)). In 4.13(b), both C and D fit the observed UV LFs well.

However when model C is also trying to fit for the mock data 21cm PS from D it can no longer
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Figure 4.13: UV LFs at redshift 6 produced by models C (purple) and D (orange) for their
MAP fits against the mock fiducial data sets from B, C, and D, 4.13(a), 4.13(b) and 4.13(c)
respectively. The corresponding 21cm PS are plotted in Figure 4.5, with the MAP parameters
used in Table 4.5. Fits for fiducial mock data set from A are similar to 4.13(b), as are redshifts
7, 8, and 10 with their corresponding fiducial mock data set (not shown).
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fit the observed UV LF data. Figure 4.13(c) shows this as the purple line is too low by an order
of magnitude within Myy € [—16, —14].

The addition of the second power law in halo mass to the model is not fool proof. 4.13(a) shows
the orange line for model D over and underestimates the dim and bright respective ends of the
UV LF only in the case of fitting the X-ray heating prescribed in the mock observation created
from fiducial set B. M, and ¢, are close to the edges of their prior distributions in Table 4.3
(lower and upper end respectively). Because My, is bound by observational data, this likely
hints that the mock 21em PS fiducial set in B is an unphysical realisation. But we proceed
with an open mind and emphasise that t,, the star formation timescales within EoR galaxies,

needs to be pinned down further.

4.6 Discussion

This work is a continuation of 21CMNEST (Binnie & Pritchard, 2019), applying Bayesian model
selection to the epoch of reionisation (EoR). In brief, 21CMNEST is constructed by replacing
the sampler, COSMOHAMMER (Akeret et al., 2013), from 21cMMC, with the nested sampling
algorithm MULTINEST (Feroz et al., 2009).

21CMNEST uses four astrophysical models of the EoR (labelled A, B, C, and D, Section 4.3).
Each is designed with a specific purpose in mind, specifically attempting to answer three ques-
tions stated in the bullet points below. To recapitulate the models: A is a simple scenario
(Furlanetto et al., 2004; Greig & Mesinger, 2015); B contains an X-ray heating parameterisa-
tion, representing Ts fluctuations driven mostly by HMXBs (Greig & Mesinger, 2017b); C has
no X-ray heating, a single power law in halo mass for the ionising efficiency, and is the simplest
model capable of producing UV LFs that fit observational data (see Park et al. (2019), Figure
4.4). Finally, in D the ionising efficiency has a double power-law in halo mass as well as all

physics from the previous models.

On top of using realistic EoR models, every model measures the 21cm PS from the light-cone
(Greig & Mesinger, 2018) and include inhomogeneous recombinations in the IGM (Sobacchi &
Mesinger, 2014). The 21cm observations are performed with 21CMSENSE (Pober, 2016) using

moderate foreground assumptions for SKA-512’s central stations (detailed in Section 4.3.6).
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The full list of Bayes factors obtained are shown in Table 4.4. A MAP 2lcm PS for each
model’s fit for each model’s mock observational data is shown in Figure 4.5. MAP parameters

are shown in Table 4.5.

e Can observations with SKA-512 observe the impact of fluctuations in the 21lcm spin

temperature from the 21cm power spectrum?

Spin temperature fluctuations in the 21ecm brightness temperature power spectrum are distin-
guishable close to the post heating regime (Section 4.5.2) with the redshift range z € [8,10],
smaller than has been previously proposed (e.g. Ewall-Wice et al. (2016) suggest z € [5, 25]).
The large amplitudes of the 21cm PS in chunk 3 (Figure 4.5(f)) and on a variety of scales in
chunk 2 (small and large k, Figure 4.5(e)) lead quickly to strong Evidences. 21CMNEST has
produced odds of LogB ~ 6000 in separating models with a saturated spin temperature (A
and C) from model B (containing X-ray heating). The results are in agreement with (Greig
& Mesinger, 2017b) - a large IGM temperature leads to a very different 21cm PS compared
with a more detailed modelling of the heating. Large differences in Evidence values are related
to similar changes in the magnitude of maximum likelihood points of posterior distributions.
The assumptions we have used show that the SKA-512 will comfortably detect the presence of

inhomogeneous heating with a ~ 1000 hour observation.

To improve the robustness of this result, more attention is needed in the precise modelling of
our telescope observation. Nasirudin et al. (2020) for example show how telescope noise mod-
elling can move parameter posteriors by ~ 5o, subject to some movement upon convergence.
Future work might better explore more detailed X-ray heating scenarios by using more detailed
instrument simulations. Alternate foreground mitigation methods and various magnitudes of

the X-ray heated mock fiducial 21cm PS data will be considered in future work.

In Section 4.5.4 we showed that the ax parameter is redundant within [—1, 3.] for use in Bayesian

inference due to its lack of influence on the 2lcm PS during the EoR backbone (z € [8,10]).

e Does the high redshift UV LF provide comparable inference to the EoR 21cm PS in a

Bayesian context?

The UV LF likelihood is important for constraining reionisation parameters and does so com-

parably to the 21cm PS. However more work is necessary to better understand this synergy.



148 Chapter 4. Bayesian Model Selection for Astrophysical Scenarios in the EoR

Binnie & Pritchard (2019) found that a halo mass power-law for ( was indistinguishable from
a constant using just 2lcm PS data and the observational prior checks (described at the end
of Chapter 3). Park et al. (2019) show that inclusion of the UV LF can break this degen-
eracy. We can confirm this, identifying the power-law parameters (o, and f.10) to o = 0.07
and 0.06 respectively (1 s.f.). Section 4.5.3 discusses this and shows the posteriors obtained by
separately using the UV LF and 21lcm PS (and observational prior) likelihoods (Figure 4.8).
21CcMNEST was used with, without, and with only the UV LF in the likelihood (for models
C and D). Like-for-like comparisons of likelihood constructions are shown in the Bayes factor

plots (Figures 4.6, 4.9, and 4.12).

As can be seen in Figure 4.7, the Evidence value from the UV LF (compared to the 21lcm
PS) change depending on the realisation. In the post heating regime, the UV LF inference
dominates (there is a 10* difference in the Evidences in Figure 4.7(a) - comparing only /without
using the UV LF likelihood). However, the increase of 21cm PS amplitude when including the
IGM gas heating carries across to the Evidence values and washes out the contribution from
the UV LF (Evidence values from the UV LF only likelihood 4.7(b)). This dependency on the
mock fiducial 21cm PS makes it unrealistic to quantitatively measure one value for the inference

of these likelihoods.

Reiterating from the results of the previous question, the spin temperature model can fit mostly
down to the post-heating approximation power spectra (red line in the 1st and 3rd row, Figure
4.5). It follows here that a more intricate analysis of the spin temperature fluctuations is neces-
sary to quantify the inference of the UV LF Evidence (since the magnitude of the x3, depends
on the telescope noise precision, which depends on the brightness temperature signal magni-
tude). Despite this intricacy, Figure 4.9 shows strong Evidence in telling apart a constant from
single-power law ionisation efficiency with the 21cm PS, when spin temperature fluctuations

are included (odds ~ 1300 : 1). Section 4.5.3 contains the full model selection discussion.

In Section 4.5.4, we analysed the ¢, parameter within model C. It has negligible influence on
the 21cm PS, but is powerful in keeping the UV LF from the unphysical ends of its uniform
prior range. We recommend a minor adjustment of its prior range to ¢, € [0.05, 1.] based
on estimates from the Jeans time for a minimum star formation timescale (as well as the
computational issues within MULTINEST). It is a useful parameter that provides insight into

the star formation time-scales of EoR galaxies. Separate observation will be necessary to pin
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down this parameter further.

e Can the 21em PS and UV LF distinguish a double power-law in halo mass for the ionising

efficiency?

Yes - given the model choices and telescope assumptions we have used, however not every
parameter’s variance is reduced when comparing model D to models C or B. Figure 4.12 shows
the double power-law being recovered with strong conclusions in all cases with and without the
UV LF. The Bayes factors for B|D against D-noLF|D is rejected with odds of ~ 151 : 1, however
(as discussed in Section 4.5.5) this result is marginal (e.g. the redundant parameter space from
ax remains in Model B but not D). As a point of interest, it appears we can tell apart power-
laws from a constant ¢ with the 21cmPS only when IGM gas heating is modelled (as opposed
to assuming a saturated spin-temperature). If B had the UV LF included (with a constant f;)
it would be heavily penalised by the observed data. This may be resolved by including more
light-cone chunks for the 21cm PS likelihood, however precise telescope foreground mitigation
is required in order for us to match these chunks with an instrument’s frequency resolution -
too small and line-of-sight effects may dominate the 21cm signal variation, too large and we

are not optimising the inference gained from the 21cm PS likelihood.

The power of including the UV LF in the likelihood becomes apparent in Figure 4.13. The MAP
UV LF fits for D|C and D|D show that the single power law in C is unable to fit the UV LF
and the mock fiducial 21cm PS of D, respectively Figures 4.13(c) and 4.13(b). Figure 4.13(a)
suggests that intricate study of different realisations of X-ray heating parameterisations can
influence the model selection process because this will influence the model’s fit to the UV LF
data. There is more insight to be obtained here from the play off between various realisations
of X-ray heating parameters before their influence on the UV LF violates the observational
data (due to the mild parameter degeneracies within the 21lcm PS). Future work will contain
more redshift chunks related to the telescope assumptions, enabling us to pin this down. Our
analysis of the galaxies that drive the EoR must include detail about the prevalence of each

power-law and break down the ionising efficiency into further, more manageable, constituents.

Park et al. (2019) have shown that the observational synergy between the UV LF and 21cmPS
is necessary to constrain the parameters used here. We consolidate this by showing that the

power-law parameters in model D’s posteriors are constrained with variances of < 20% (with
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respect to the uniform prior range, Table 4.5, Figure D.1(b)). My, and t, are significantly
less peaked (and have larger variances) in the posteriors for model D than for C where they
are tightly constrained (Figures D.1(b) and Figure D.1(c) respectively). Without the UV LF
the double power-law parameter variances are broader ~ 30%. However we lose precision (in
comparison to model C) on ¢, a result. It is likely that more avenues of synergy will be necessary

if all the parameters in model D are to be more precisely pinned down.

4.7 Summary

21CMNEST has validated the results shown in Greig & Mesinger (2017b) and Park et al. (2019)
in a Bayesian model selection setting, using only the backbone of reionisation. This is a reliable
test of Bayesian model selection in the context of realistic semi-numerical EoR models. But
even for a single ensemble average for the species of EoR galaxy, model selection in the EoR
is tricky. We have largely been able to answer the desired questions, although some are set by

construction.

To conclude, we specify two main avenues for future work in improving the use of Bayesian
model selection in the EoR. The first is improving our telescope modelling capabilities in line
with Nasirudin et al. (2020). This would allow redshift chunks to be more accurately associated
with the frequency resolution of the interferometers, and in turn capture the 21cmPS more
reliably in the likelihood. Bayesian data analysis averaging, as Gillet et al. (2020) have done for
combining UV LF observations, should be applied to 21cm experiments - potentially combining
the variety in foreground mitigation techniques, maximising the data from each telescope, as
well as producing a combined constraint from multiple telescopes. Secondly, further analysis of
different X-ray heating scenarios is needed to better understand the influence these parameters
have on the UV LF and 21cm PS throughout the EoR. This will provide insight into when the
spin temperature will saturate, as well as how important the timing of this event actually is
for EoR inference. Some inference may be possible on by the timing of the cosmic dawn, here
taken to be fixed at z = 35. It may be interesting to better investigate the role of the timing

of IGM heating relative to reionisation.

This ends the model selection portion of this thesis, however it is a work in progress. In the

next chapter we turn to improving the 21cm power spectrum measurement.



Chapter 5

The Morlet Transform as a Power

Spectrum

5.1 Introduction

In Chapter 1 we detailed treatment of 21cm brightness temperature light-cones in the 21cMMC
likelihood. To recap, the power spectrum (detailed in Appendix C.4) is implemented on coeval
cubes (as in Chapter 3) or on chunks of a light-cone created from stitching together coeval cubes
(as in Chapter 4). Previously we needed the power spectra from each chunk to be ergodic within
the light-cone - i.e. each chunk needs to be large enough that the power spectrum is a valid

representative of the full light-cone, but small enough not to smooth over the signal evolution.

Here we present the Morlet power spectrum, a statistic based on the two point correlation
function. We replace the Fourier transform in the power spectrum with a Morlet transform
- built up of multiple Fourier bases each wrapped in a non-ergodic wavelet. In Chapters 3
and 4 we have used coeval cubes and light-cone chunks respectively. Greig & Mesinger (2018)
show the pitfalls of calculating the power spectrum from the coeval cubes rather then the light-
cone. Namely the power spectrum can contain bias of up to 100 in the desired parameter
posterior distributions. We aim to show the pitfalls of analysing that light-cone with Fourier
power spectrum (FPS) compared to a Morlet power spectrum (MPS). If possible, we look to
remove the light-cone effect from EoR parameter estimation entirely. This is motivated by

Trott (2016), who implemented this wavelet transform on a toy wide-bandwidth observation to

151
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show improved performances in 21cm signal estimation.

In this chapter, we describe the problems of the light-cone effect in Section 5.2, before going
into the detail of the Morlet transform in Section 5.3. Section 5.4 contains the implementation
of the Morlet power spectrum within the 21cMMC framework. Our preliminary results are
shown in Section 5.5 and we emphasise that this Chapter is a work in progress. Appendices
E.2 and E.1 respectively contain a comparison against real MWA data and a discussion on
interpreting the properties of a brightness temperature light-cone from the MPS. We conclude

and discuss future directions for the MPS in Section 5.6.

5.2 The light-cone effect

The light-cone effect (LCE) is the measurable difference between reference frames when the
finite speed of light is accounted for. This typically arises in the context of comparing simulated
and observed power spectra, since the simulation is typically in a coeval cube while the observed
universe exists in comoving light-cones. At high redshift, the sizes of coeval boxes are necessarily
large and the light-cone effect is prominent. It has been observed in galaxy surveys (Yamamoto
et al., 1999), where the galaxy power spectrum from simulations requires a correction due to
the non-linear evolution of space. For the 21cm power spectrum, the observed distribution of
bubble sizes relates to the collapse fraction, f.n (see Section 1.3.1) and is therefore different
from the observed reality because it is evaluated instantaneously. This effect of the finite speed
of light imposes a maximum observable bubble size which we can quantify by assuming large
scales and early times. We consider a simple case that includes only the photons generated

within a region of radius R. With small deviations this gives,

(1 + Z) 6crit( 0'2

min

6z _ 532)_[1_ 1_%]’ (5.1)

where, z, represents the observed redshift that occurs when the universe reaches the collapse
fraction on average (different by, 0z, to the redshift at which the the mean over-density in
the region, dr, reaches the critical collapse fraction). All other symbols retain their previous
definition. The timing of reionisation is not prominent here, but Equation 5.1 shows that the

duration, dz, can dictate an upper limit to this effect. As the radius of bubbles (R) increases
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Figure 5.1: A cartoon illustration of the light-cone effect. The coeval cubes have the sizes of
near side HII bubbles shrunk and further bubbles exaggerated while the light-cone represents
the true evolution of the ionised regions.

the distribution of over-densities diminishes, but the time it takes ionising photons to traverse
the bubble increases. We are left with an approximately constant maximum bubble size which

is &~ 10cMpc when evaluated with the cosmology defined in Appendix A.1.

During the majority of reionisation, signal from the far end of the chunk will be amplified, and
signal from the near end reduced - an imbalance is created in the 21cm power spectrum within
the light-cone due to the way it is measured. Figure 5.1 is a cartoon illustrating this effect.
Note that larger bubbles will correspond to a lower power for larger k£ values. In the literature
Datta et al. (2012) follow this effect through to the calculation of the 21cm power spectrum
showing that using the spherically averaged 1d power spectrum reduces this effect (compared
to a 2d power spectrum for example). In an attempt to mitigate this, (Datta et al., 2014) shows
that there is an optimal bandwidth for each frequency that can balance the signal bias in the
observation. Mondal et al. (2017, 2018) verify this and show that not properly accounting for
the light-cone effect can cause a bias in the 21cm PS of up to a factor of 4 at k ~ 0.1 Mpc™!
for B ~ 15 Mhz across z € [7.5,8.5].

Current state of the art analyses of the LCE do not include research into foreground and
telescope noise effects. Experiments (e.g. LOFAR, HERA and the SKA discussed in Section
1.3.7) apply specific bandwidth sizes (discussed above), but with a taper function to account for
the noise. Although this method should be accurate, it reduces the used quantity of raw data
by a further 50 — 75%. It is likely that including the mitigation of telescope and foreground

noise will cause losses on top of this. Splitting the data this way also loses sensitivity to large
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scale modes which are essential for pinning down accurate astrophysics (Greig & Mesinger,
2017b). The Fourier analyses only has access to the longest modes that fit within the frequency
channels available in the bandwidth, rather than the longest modes that exist. Hence we need
new machinery in order to adapt the observational bandwidth along the light-cone at the same

time as transforming the signal into a Fourier-like space.

5.3 What is a Morlet transform?

In order to avoid the pitfalls discussed in the previous section we turn to using Morlet wavelets
(Goupillaud et al., 1984). Each wavelet is a non-ergodic statistic, the idea being that the
Fourier basis adapts to the evolution to the light-cone as it evolves through redshift space. The

wavelets are therefore an ergodic representation of the light-cone when combined.

The Morlet wavelet basis function, T, is described in terms of a line-of-sight Gaussian packaging,
dictated by the scale 7,
Yl ) = s ), 52)

where the centre of the wavelet package is associate with a frequency at a given redshift v,
and 7 has Fourier space units 77 [Mhz]~!. These centres will be positioned evenly through the

bandwidth (B = NAv), for N spectral channels giving,

= [0,Av,2Av, ..., (N — 1)Av], and (5.3)

12 N
77— B7Ba"'723 I

which is motivated by the Nyquist sampling frequency. For a signal T'(v) we can implement

the Morlet transform as,
VnlAv |77|AV
T(n,v.) = E T(vi) Y (viln, ne), (5.4)

where the normalisation of the wavelet scales with the wavelet’s energy content.

In the FPS case we measure brightness temperature signal, 07,(v|u,v), averaged across the

scales given by the Fourier modes of the interferometer at a given frequency, k, o< vu? + v2.
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Here we obtain an MPS for each angular mode, k. This disguises the evolution of the light-
cone by including the warping of the square relationship of v, — 1 within a non-square z — kj

space,
Va1

2(v,) = — —1, (5.5)

Ve

27TH0V21 \/QM(l + 2)3 + QA
c(1+2)? '

ki =mn (5.6)

Hence the evolution which causes the light-cone effect is contained within the wavelet’s Fourier
basis. To reiterate, the coordinate basis of the Morlet transform intrinsically caters for the

distortion of the light-cone effect. Our treatment of preparing a MPS is otherwise similar to

that of the FPS.

To recapitulate, the absolute square of the observed modes is used after being normalised by

the bandwidth. The volume of the observed light-cone is,

2 1 2
Ve ky) = Bxy? St 2 sy, (5.7)
Vo1 Aett
where the &k bandwidth (B)) is,
V2T
By(z, k) = o Mpc, (5.8)
and for completeness the k; bandwidth (B)) is,
V2
Bi(z,n) = Tﬂ MHz. (5.9)

Finally we have the angular average of the Morlet Power spectrum (MPS) as,

1

W|T|2 szh_gMpC3. (510)

Pyps(z, ky|ky) =

The output of each transform is described in terms of an amplitude, and position in the wavelet’s
Fourier space. We therefore have an array of these separated by a distance in the light-cone,
i.e. between each mean wave-packet. Figure 5.2 shows a toy construction of the FPS and MPS

in tandem for comparison.
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Figure 5.2: A toy comparison of treating the light-cone with the Fourier power spectrum (left)
and the Morlet power spectrum (right). The MPS £k, modes are averaged but the k are not,
unlike the FPS in which a 3d angular average is performed across all £ modes in each chunk
of light-cone. The line-of-sight Gaussian packages (that are the Morlet wavelets) have their
widths defined using kj in Equation 5.6. After performing the FPS we are left with a power per
averaged k-mode at a given redshift. Using the MPS provides a power per (k, k) at various
different locations within the light-cone, defined by n. If the MPS Gaussian envelope was
replaced by a top-hat function and n was chosen to provide no overlap, the method would be
the same as the FPS. Appendix E.1 shows a comparison of these on simulated 21cm brightness
temperature light-cones.
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5.4 Application within MCMC

As discussed in Section 1.4.2, we take the form of the likelihood to be Gaussian,
1 T -1
InC = —5 [log2m + log|C| + (x — p)"'C ™ (x — )], (5.11)

however we have not had to worry about parameter dependence within the covariance, C, until

now. This term can be split up into three component covariance matrices,
C = Coy1 + Cpg + Crn, (5.12)

where the subscripts 21, FG, and TN represent the sample light-cone, foreground signal, and the
noise from the telescope respectively. We are assuming for now that we are in the regime where
foregrounds have been successfully cleaned to the wedge (including a buffer) and therefore we

may omit Cpg from Equation 5.12.

In earlier chapters (with the FPS), we have been able to add thermal noise and sample variance
into the likelihood assuming each 3D k-mode is independent. Here it is not quite that simple,
since each neighbouring Morlet wavelet will share some of the modes in the adjacent packet.
We can assume that 2D modes are independent here (with the same assumption), but there is
correlation between the line of sight modes. Assuming the foreground are accurately cleaned

we can write,
B (ku(zc,i—%,j))Q
C = [O‘%N(Sz‘j + Cgl] (& ’ s (513)
where z. are distance representations of v. and oy is the 21CMSENSE output for example. We
have a block diagonal covariance form when applying this to the light-cone - diagonal terms are

from thermal noise and each block depends on the overlap in neighbouring wavelet distributions.

For analytic expressions of the full data covariance of toy signal models please see Trott (2016).

This calculation of the covariance is the only difference to the MCMC framework used in
previous chapters. The following subsections detail this via calculation of the cosmic variance

and thermal noise before we justify it with simulations in Section 5.5.2.
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5.4.1 Obtaining the MPS

We are working in the flat-sky approximation and with the delay spectrum (discussed in Ap-
pendix B). To briefly reiterate, this means that we can obtain an unbiased estimate of the
21lcm FPS simply by Fourier transforming the visibility measurements (and their temporal
information) defined to be the cross product of temperature fluctuations as,

(777 (1)) = % / %% (T T () ) Kk~ KR (k') (5.14)

where a measured visibility is defined,

/ K )Rk — k). (5.15)

providing us with,

/A% (5.16)

Since we have assumed the foreground temperature contribution to the signal are successfully
cleaned, the signal is therefore the sum of the telescope noise and brightness temperature:
T = 6T, + Tx. The constant, r, represents the relationship T oc I,/v?, providing units of

[mk sr/Jy]. K is the convolution kernel,
K(r) = (X2v,) 7 2A,(r)e(v), (5.17)

dependent on the redshift to cosmological angular distance conversion, X2Y and the effective
aperture, A, (both discussed in Section 1.3.7). The taper function ¢(v), is typically a top-
hat function (returning to the chunk divisions of light-cone given a user defined bandwidth,
as discussed in Section 5.2). Here it will be Gaussian with a width that varies depending
on its location along light-cone’s line of sight. For reference the auto-correlation of the 21cm

brightness temperature dual defines the 21cm FPS as,

(5TyoT,) = (27)35(k — K') Py (K). (5.18)

Equation 5.16 is only true if 7" is homogeneous (i.e. the expectation of its mean is constant

with respect to spatial variation). We note that this is not strictly true of the 073, field which
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varies with frequency/redshift and location in the sky (and therefore so does this field’s ex-
pected mean), however this is precisely the non-ergodicity which we are trying to solve. The
wavelet-based estimator formalism if applied here will contain an inconsistency when using this
covariance formalism in the case of the MPS. We assume this inconsistency is a second-order
effect and proceed without it but we note that this calculation can only be applied to the 21cm

temperature field and not to the noise temperature because of this assumption.

5.4.2 Estimate of the sample covariance

To detail the covariance we must expand the signal temperature contributions in full. Taking
i»’ = ﬁ; —I—i’vl and fj{/ = ﬁg +T1’\%j? we have,
~ ~ ~ 1 ~ % ~ ~ ~ ~IIx ~
(TT) = (OT40T ) + (0T, Ty ) + (T 0Ty )+ (T T ) (5.19)

where the subscripts ¢ and j represent antennae. All terms containing T ~ are assumed negli-
gible (as discussed in the previous section). The linearity of Fourier transforms, Vi="Vay + Ni,

allows us to write,

¢ [P P)] = a%c mffm

dl

where @ is defined as, k?/ [ d®rK?(r), from Equation 5.16. Since noise terms produce expected

2 ~ ~ ~ ~ ~ ~
+ Vor, VN ; + Vi, Vi + VN,Z-VI\TJ)

~ 2 ~ ~ ~ ~ ~ ~
Vi |+ Vi Ty 4 Vin T+ W%, )| (5.20)

values of zero we obtain,
C | P PC)| = %€ { Vo, Vi, I + 2Re | (Var, Vi) (VR | + (AT (5.21)

This is the 21-cm signal covariance, regardless of the statistical analysis method. The appli-
cation of the covariance within the FPS and MPS are detailed in the following subsections in

reference to Equation 5.21.
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Covariance for the FPS

We look at the covariance in detail here because conventionally cross-correlation terms are
ignored in its calculation, however these are needed for accurate interpretation of the MPS in

the Section 5.4.2.

First we deal with the signal covariance. Making use of Equation 5.16 the first term in Equation
5.21 becomes,

VC Vo, Vi, 12] = @V, Vi, [2) = PPy (5.22)
Fully expanding the remaining visibilities gives,

~ ~ 1
<|V5Tb’2|V5/Tb|2> = F/d3X1d3X2d3X3d3X4T(X1)T(Xz)T(Xs)T(XzL)

X (T TH Ty Ty e e Camxe) i Gamxall, (5.23)

where the antenna temperatures are labelled 1-4 for simplicity. From here, we will assume that
the temperature field is Gaussian (up until now the treatment has been general). We note that
the temperature field is definitely not Gaussian (Watkinson et al., 2019), however we expect that
the Gaussian approximation is a good approximation as we are interested in only the covariance
and the power spectrum. We can now apply Isserlis’ theorm®: (TyToT3Ty) = (T1To)(T3Ty) +
(\T5)(ToTy) + (ThTy)(T>T3); knowledge that the PS must be symmetric (P(—k) = P(k)); as

well as a homogeneous temperature field to obtain,

2

4 Sk ~ .
. +‘/ K F ik~ W — k)T (K

P(k)P(k')
P2 (27)3

(Vo PV ) = ——

+ / K’ T(k+ Kk —kK")T(K")
(2m)3

2] . (5.24)

For the purposes of simplicity, we only consider correlations between k and k’, which is valid for
large values of |k|. This implies a symmetry between k' and k” leaving the cosmic covariance

as,
2

J 55Tk =K = KT (k)
U d3XT2(X>‘2

OC Vi, Vi, |2] = PR)P(K) (5.25)

1A zero mean Gaussian vector field can be expressed as the sum of the contributions to its covariance only.
This is known as Wick’s theorem in the context of quantum mechanics.
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The numerator is a sharp peak at k = k’, and therefore contains very little correlation between

distant k-modes in this limit. Applying this symmetry gives,
$*Var (\ffmﬁ) ~ P2 (k), (5.26)

where the approximation is due to the assumption that the temperature field is Gaussian.

We note that the noise statistics belong to visibility space, but here we approximate the noise
to be independent per baseline and per frequency. This justifies our assumption that the noise

is a zero-mean complex Gaussian variable. The noise covariance is then defined from,

K
Tsys = Lsky + T‘rec = VN,rmsm V Btobszob (527)
P

with B the full bandwidth of the observation, ¢, the duration of the observation, €2, the solid
angle of the effective telescope aperture, Vy ms is the root-mean-square of the visibility voltage
and IV, the number of polarisation states recorded by the correlator. To ensure the frequency
dependence of the visibility potential during the MPS is not confused with the FPS frequency
dependence, v, defines the conversion factor for running the Y, kernel through the visibility
space. This means our system temperature in the MPS case is subtly different, but both are
represented as: Ty = Vi rmsVv/ BtobsVpol. Since, in practice, observations deal with discrete

bins we write the discrete Fourier transform,

(Vav(w, ) Vi (u, 1)) = (Av) Zgb 03 d(0) (Viv (, 1) Vi (w, ) e 2milma—n'wa)
Av 2 TS%/S 2miv; (n— 77)
A 5.28
Ntobszol Z ¢ ’YV ( )

For use in the Morlet transform the number of filters, Ny is defined via Equation 5.3. Ty is
assumed independent of frequency allowing us to write,

- - T2 Av

* Sys ¢2 V —27iv;
(Vn (Vi (a) = 2 12 1) g2mivs o) (5.29)
obs po

This shows that the visibilities are obtained via the Fourier transform of the taper function in

each observational frequency band (or Fourier transform of Morlet kernel between the Gaussian
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centres, 7 — 7’ given the assumptions made in this chapter). We consider only the variance and
we consider all functions of frequency to be much broader than the taper, ¢, and therefore can
be evaluated at the central frequency of the taper, v., giving,

- . T2 02

o y ~ X2y — TP KM ‘
(Vv(u,n)Vy(a,n)) NigeNoy 0 ™ pc. (5.30)

Where (2, and (2, are the beam squared power and beam power squared respectively integrated
from the antenna response. Since band width information remains in the form of this equation
(compared to Pober et al. (2014) as shown in Section 1.3.7), this cancels with the form of the

system temperature providing a result that is only depend on the taper function ¢(v).

For the cross term we need only calculate the dual of visibilities using the Morlet wavelet kernel,

~ 1 ' ,
<‘/6Tb‘/5Tb> ,‘-4;2 /d3X1d3X2’I‘(X1)T(X2)<T1T2>e—l(k-x1—k “X2)

1 ~
= PK'T(k — k)T (K — K")PK"). (5.31)

~ 2

This takes advantage of the definition of the power spectrum as the Fourier transform of the
correlation function as discussed in Appendix C.4.2. However Equation 5.31 is only applicable
to the temperature domain and not the noise domain because we have assumed the temperature
field to be homogeneous in Equation 5.24, which is not strictly true as the 21cm signal itself

evolves with frequency as well.

Finally these are combined (along with the variance from Equation 5.26) as

Var(]s) _ {Pm(k)—i— sys) )2 [dv Q2 (v)v 4¢2(V)} (5.32)

tobszol fd3X TQ(X)
X and Y are assumed to be frequency independent across each channel (or wavelet) allowing

us to write,

T2 0217

Var(P) = | Py (k) + X2y %5 "7 5.33

ar(P) = | Pu(k) + N | (5.33)
obs< Ypo PP

This allows us to match the form in Section 1.3.7 and the literature (Parsons et al., 2012; Pober
et al., 2014). Estimates of the effective beam, Q. are given by Qf) /€pp and are typically ~ 0.5

for an interferometer (Parsons et al., 2014).
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Covariance for the MPS

As mentioned earlier, we now apply a similar methodology to the above section, but with
the Morlet kernel (Equation 5.10) as the taper function (Section 5.4.1). This causes each of
the terms in Equation 5.21 to include a covariance between wavelets, hence evaluation of this
equation is different between the MPS and FPS. The resulting form of the signal covariance is

block-diagonal, as shown in Section 5.5.2.

Since we are aiming to reproduce ergodic and isotropic power within each wavelet, we assume
these to be true. Note that each individual wavelet will be only roughly ergodic and should
combine to be exactly ergodic. If the sample is sufficiently large, we are able to interchange the
wavelet ensemble average and signal spatial average. Therefore cosmic variance is catered for
by assuming each (ki , k) vector to be an independent realisation. If this assumption causes a
bias in the estimation of the MPS, then more k modes are needed in the observation to ensure

their distribution does not introduce discretisation effects.

Instrumental noise follows analogously to the previous section as,

Ny
(Vi (k, ve) Vi (k, 12)) = B(Av)* > (1) () (Viv (k) Vi () (5.34)
J
2 2 2 2 2
X YTsyst dl/¢(l/)¢,(l/) ~ X YTsysQeff e—kﬁ(xc—xé)Q/‘l

B ‘N’fQPIDtObS]\fpo1 By thobszol

k2 ()2
— Pye kH(:cc zl,) /4’

note that /Ny has dropped out of the integral unlike Equation 5.28. This is in anticipation that

B is instead ~ Apn, i.e. the range between the wavelets.

Combining the noise and cosmic variance gives,

2 12742
CI0, ) = { V/CTPor, Ph] + P Mo/t 17, (5.35)

which we implemented throughout the rest of this Chapter. Note that P in this section is as
before (Equation 5.16) but with ¢ as the Morlet kernel in Equation 5.17.
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5.5 Results

In this Section we discuss the results obtained so far. Section 5.5.1 shows a direct comparison
between MCMC with the FPS and the MPS on toy models before discussing its application to

more realistic cases. We also check the assumptions used for Equation 5.35 in Section 5.5.2.

5.5.1 Comparison of the MPS and FPS

In these analyses, Model A from Chapter 4 is used for the 21cm light-cones throughout. To
recap, this is a simple scenario with two parameters (¢ € [5.,250], Log[Twi] € [4,6]) as well
as inhomogeneous recombinations. Both parameters use uniform priors across the ranges (as

before).

We performed the MCMC with likelihoods using the MPS and FPS within z € [8,10] on
250 x 250 Mpc? boxes with 128 pixels per box. Both MCMC runs were implemented with 8
walkers calculating 8000 samples. The resulting posteriors are shown in Figure 5.3 with the
original 21cMMC on the left and 21cMMC with wavelets on the right. We cannot directly
compare the values of the likelihood from the FPS and the MPS since they have fundamentally
different methodologies (via the differing kernel in Equation 5.31). But what is important is the
shape of the posterior distributions obtained through the likelihood. Using the MPS obtained
a reduction in posterior variance by a factor of 5 for both ¢ and Log,[Zvi,] with changes of

O'g = 0.05 — 0.01 and o2 = 0.01 — 0.002.

Attempting to calculate the MPS on larger light-cones has proven difficult. In order to repro-
duce the posteriors used in Greig & Mesinger (2018) we need to use a light-cone that ranges
z € [6,25] and is of size 600 x 600 Mpc?. Preliminary tests on light-cones of this size caused

prompt machine crashes, with requests of RAM in the terabytes.

Interpretation of the MPS has proven more difficult in comparison to the power spectrum, but
there is definitely promise for its use in the future. This is discussed in Appendix E.1 using

Model A with a variety of parameterisations for sample models of reionisation.
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Figure 5.3: Posteriors from using simple two parameter test model with reduced redshift range
for testing. 5.3(a) and 5.3(b) show the obtained posteriors when using the FPS (as in 21cMMC)
and MPS respectively. Notice the MPS produces tighter posteriors than those obtained by the
FPS.

5.5.2 Cross-check: covariance

Writing down the form of the covariance for the Morlet wavelets on a light-cone in Section
5.4.2 has been a lengthy process. In particular, we have had to make the assumption that the
temperature field is homogeneous within each wavelet, which is not strictly true. In this Section,
we attempt to check the form of the streamlined MPS covariance estimate in Equation 5.35 to
justify its use in the MCMC via Equation 5.11. We calculate 1000 light-cones with differing
random seeds (1-1000 inclusive) and measure the covariance between the Morlet wavelets from
these light-cones directly from the line-of-sight pixels for every value of |k, | and kj. Figure 5.4
shows a comparison of the measured covariance and the estimate we have produced in rows one
and two respectively. The third row implements Equation 5.35 with, &k = 0, so as to show the
behaviour of the covariance of a single light-cone for a Morlet wavelet without the Gaussian
envelope. The k; and kj modes are consistent across each column and are representative of
the total behaviour seen within the larger set. The majority of the matrices look similar to the
first two columns, with a good qualitative agreement between all three of the methods. The
final column is an example of when the single light-cone method (in the third row) is no longer

representative of the measured covariance form multiple light-cones (in the first row). In this



166 Chapter 5. The Morlet Transform as a Power Spectrum

0 136 0 21 0 1e19
20
10
50 50 50 18
16
09
100 100 100 14
12
08
150 150 150 10
08
200 07 200 200
06
50 0 B0 50 04
0 0 100 150 200 250 0 0 100 150 200 250 0 0 100 150 200 250

=]

wn

=

]

]

—

(a) |kL| =0. k'” = 0.002 (b) |kL| =0.15 k'” =0.04 (C) |kl| =0.3 k“ =0.24
o 1e33 o 1e18 o 1el6
10 ; 175
50 50 50 150
09 3 125
100 100 100
4 100
150 08 g5 5 150 075
200 07 200 2 200 030
025
0 50 Tomo
[} 50 00 150 200 250 o [} 50 00 150 200 250 [} 50 00 150 200 250
(d) [kL| = 0. ky = 0.002 (e) |ki|=0.15 k; = 0.04 (f) ki =0.3 ky = 0.24
o 1e33 o 1e18 1el6
1o 18
50 50 & 16
09 5 14
100 100 . 12
150 08 150 3 :::
200 07 200 2 06
04
0 0 50 !
0 50 100 150 200 250 1} 50 00 150 200 250 =0
(g) |kL|=0. ky = 0.002 (h) |kL|=0.15 k; = 0.04 (i) |kL| =0.3 ky =0.24

Figure 5.4: Each row calculates the covariance along the light-cone for three differing method-
ologies. The first row calculates the covariance of the MPS from 1000 light-cones with differing
randomly seeded density fields - this covariance has been measured from the Morlet wavelet of
each light-cone. The second row utilised Equation 5.35, estimating the covariance between the
Morlet wavelets. The third row uses k| = 0 for every implementation of Equation 5.35, regard-
less of the wavelet. The columns dictate different selected values of (|k.[, k), the majority of
matrices show qualitative agreement in between all three rows, similar to those shown in the
first two columns. See text for discussion.
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case the Gaussian envelope visibly suppresses the covariance off the diagonal of the matrix,
removing the adverse effect. When the resolution of the box and the limitations of sample
variance (from using one random seed) begin to impair the covariance of the Morlet wavelets,

the MPS suppresses the covariance. This is seen by the apparent diagonal shape in Figure

5.4(f).

In the majority of the estimated covariances matrices, including the Gaussian envelope in
Equation 5.35 produces smoother version estimates of the covariance, giving closer agreement to
the measured covariance (comparing the second and third rows with the first row in Figure 5.4).
Neither approximation is as smooth as calculating the covariance directly however the direct
calculation is too cumbersome for statistical use. Correlation between the light-cone coordinates
changes depending on the k| used but Equation 5.35 is a qualitatively good comparison below
kj ~ 0.20 Mpc™'. We notice that the covariance estimate is significantly worse at large k|
(with the largest shown in the third column of Figure 5.4). We emphasise that the MCMC has
performed well in the previous sub-section, even with the differences in the large k) covariance.

More work is needed to be done on larger light-cones to see if this effect persists.

The cross/checked pattern consistent across all covariance figures appears due to the stitching
of the light-cone’s constituent coeval cubes, as described in Section 1.3.4 (Greig & Mesinger,

2018).

5.6 Discussion

We detail the light-cone effect in Section 5.2 and present a solution in form of the Morlet
transform in Section 5.3. We then look at applying the Morlet power spectrum to MCMC
analyses in Section 5.4, paying particular detail to treatment of the covariance in Section 5.4.2,

before proceeding to the results in Section 5.5, which we emphasise is a work in progress.

In Section 5.5.1 we showed that the application of the MPS in place of the FPS in the 21cMMC
likelihood as prescribed in Section 5.4 reduces the variance on the parameter posteriors, improv-
ing the constraints on the toy reionisation model we have used. We have also cross checked our
results in Section 5.5.2 by showing that our approximations surrounding the covariance hold.

Appendix E.1 shows that the MPS can provide information on the neutral fraction evolution
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as well as the brightness temperature in a similar way to the FPS. However we encountered
computational issues when trying to include a fuller analysis since the MPS requires processing
of the entire light-cone in one go - a light-cone of similar size to those calculated in Greig &

Mesinger (2018) was unfeasible.

To try to remedy the computational limits encountered in Section 5.5.1 when calculating the
MPS on larger, realistic, light-cones we introduced an integer ‘stride’ parameter. Rather than
calculating a Morlet wavelet for every line of sight light-cone pixel, we calculate the wavelet at
every stride value, i.e. stride=1 represents the MPS we have used, stride = 2 every other pixel
and so on. Since there is correlation between the wavelets we initially thought that this would
not be a large effect whilst reducing the memory requirements as a function of 1/stride. It
changes the MPS posteriors obtained in Figure 5.3 negligibly below a value of 5 before a small
increase in the variance and a shift in the MAP parameter occurs. Above stride values of 2, the
MPS no longer represents the detail in light-cone as in Appendix E.1. We realise that having
a constant stride is somewhat naive since the covariance between wavelets will vary along the
line of sight, the wavelets are designed to do this. Future work consists of trying a logarithmic
spacing to reduce the memory, while still capturing information about the light-cone quantities
we wish to probe. Particularly for the far end of the light-cone the Gaussian wavelet envelope
will be steep (the envelopes will have a smaller variance than due to the larger values of 7) and
sampling will need to be every pixel. Neighbouring wavelets at low 7 should share significant
information, so we should be able to increase the stride to find a balance between reducing the
memory requirements and maintaining the quality of the parameter estimation and analysis of
the light-cone quantities. If this is unsuccessful we will also try calculating the MPS on chunks

of the full light-cone, as is done with the FPS.

So far we have ignored the telescope noise term (we’ve implemented Py = 1 in Equation 5.11)
for simplicity but this must be improved in future work. Our first attempts will consist of
running a Gaussian filter across the noise power spectrum output from 21CMSENSE as shown

in Equation 5.35 and repeating the methodology developed in Section 5.4.

As discussed in Section 1.3.7, 21CMSENSE is a foreground avoidance algorithm. One advantage
of using an ergodic statistic like the Morlet transform is that the entire light-cone can be treated
at once. This opens up possibility for improving foreground suppression since techniques ideally

need as much bandwidth as possible to accurately mitigate the foregrounds and noise. For ex-
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ample Gaussian Process Regression (GPR) (Mertens et al., 2018) and Blind Source Separation
(BSS) algorithms (Alonso et al., 2015) take advantage of the continuity in astrophysical fore-
ground signal to separate it from imprints of the instrument, such as mode-mixing (Cunnington
et al., 2020). However in GPR, the signal evolution across the observed bandwidth worsens the
fit of an accurate coherency scale, limiting the noise structure that can be produced by the co-
variance kernel. This poses an interesting question as to which foreground mitigation method
will perform best when the bandwidth can be increased to the entire light-cone. Currently
GPR is the mitigation technique of choice for interferometers (Mertens et al., 2020) however
the success of the method relies on the accuracy of the noise covariance (Offringa et al., 2019;
Kern & Liu, 2020). GPRs current success may be mildly benefited by slicing the light-cone into
chunks since this allows a different coherence scale to be fit per chunk. It is not obvious how one
could implement a coherence length that varies along the light-cone without significant change
to the method, and it is therefore unclear which of these two methods will be more effective
over extended bandwidths. Once the MPS is developed further, it will be interesting to see
how foreground mitigation can progress when one single statistic can ergodically represent the

entire light-cone.

Finally, with the introduction of this framework, there is the possibility to try various different
transforms within the power spectrum. We have tried Gaussian wavelet envelopes only?, but
other wavelets could certainly be experimented with. A possible alternate is the Daubechies
wavelet (Daubechies & Bates, 1993). This includes a scaling function to ensure the maximum
number of vanishing moments, ensuring the transform is done using the smallest (sparsest)
possible set of wavelet coefficients in the chosen basis. But we must not lose sight that the
aim of this is to retrieve unbiased astrophysics from the observation. We have furthered the
concept of wavelets from toy power spectrum models (Trott, 2016) to simple models of the
EoR, reducing the light-cone effect. Once the light-cone effect is removed, peculiar velocities
(Chapman & Santos, 2019) and the Alcock-Paczyniski effect® are the only observational sources

of non-isotropy that remain.

2C. Trott tried a set of Blackman-Harris envelopes to find they exaggerate covariance between wavelets
making it significantly worse than with the Gaussian envelopes used here (private communication).

3Distortion of the light-cone through the geometry of the universe observed through the ratio of angular
distance to redshift (Alcock & Paczynski, 1979).
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Thesis Conclusion

The cosmic microwave background (CMB) is the earliest observable signal in our universe. It
signifies the formation of the first hydrogen atoms as the universe enters the dark ages before
stars form for the first time in the cosmic dawn. It also shines through these primordial hydrogen
atoms to excite the 21cm emission line which scientists today are looking to measure before
that hydrogen becomes ionised during the epoch of reionisation (EoR). These first stars hold
the secrets to how the universe populates itself with such a rich variety of species - ranging from
stellar remnants that emit X-rays to the galaxies that drive reionisation and even the mature
galaxies we see today. The EoR and cosmic dawn are a vast subject and the 21cm signal is
sure to be revolutionary in shedding light on the deepest depths of our universe. With the
upcoming of huge collaborative efforts, revolutionary instruments like the SKA will be able to
put our most beloved theoretical models to the test. A new generation of precision cosmology

is becoming a reality.

Summary

This work aims at improving the statistical analyses techniques used to probe the epoch of
reionisation and cosmic dawn. All of the necessary literature is covered in the first chapter, with
extensive supplementary material contained in the appendices. The next three chapters apply
model selection to reionisation and the remaining work is aimed at improving the likelihood

statistic used to constrain reionisation models.

170
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Chapter 1 began with an introduction to the cosmic dawn and cosmic reionisation. Particular
attention is given to how observations of the 21cm signal can be used to infer astrophysical
properties about these cosmological epochs. We also introduced the simulation techniques and
the specific algorithms used in later chapters. These include: 21CMSENSE, a foreground avoid-
ance code that we use to estimate errors on simulated 21cm power spectrum observations; and
21cMMC, a state of the art EoR parameter estimation code which we use heavily in this work.
The latter of these combines the semi-numerical reionisation simulation from 21CMFAST with
the MCMC sampling algorithm EMCEE. An introduction to Bayesian analysis is also provided,
along with a detailed description of the MULTINEST algorithm. EMCEE and MULTINEST are

used extensively in this work for parameter estimation and model selection analyses respectively.

The research began in Chapter 2 with attempts to utilise MCMC chains from parameter estima-
tion for the purpose of model selection. We introduced MCEVIDENCE, an algorithm designed
to estimate a posterior for the Bayesian evidence from the density of points in the chain. The
method has been shown to work on cosmological models and we showed that it works well on
a model made from toy Gaussian likelihoods. Unfortunately when applied to EoR models the
method was unable to match the results of MULTINEST. By recreating the behaviour within
our toy model we conclude that the correlation of parameters is what causes assumptions in
the method to breakdown. This explains how the method works for cosmological models, but
not in the context of reionisation. It would have been a nice shortcut to performing Bayesian

model selection but this was not to be and we quickly moved on.

Successful model selection begins in Chapter 3 via the development of 21CMNEST. By using
MULTINEST within the framework of 21cMMC we are able to apply Bayesian model selection
to multiple reionisation models in a flexible way. We test models of reionisation varying in
morphology, from inside-out to outside-in; as well as scale, from global to local implementations.
In each case we are able to distinguish the fiducial model with decisive results on the Jeffreys’
scale. Distinguishing the fiducial parameters of the models proved tricky, particularly in the case
of distinguishing galaxies with a constant versus power law mass-to-light ratio parameterised
through the ultra violet ionising efficiency. Once model selection was achieved, an analysis of
the observational priors found that neutral fraction checks at specific redshifts add little to no
inference in comparison to the 2lcm power spectrum (PS). We are also able to identify the

photon mean free path parameter (R, a maximum scale for the excursion set formalism) as
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redundant via the application of the Savage-Dickey density ratio.

Chapter 4 is a continuation of the work started in Chapter 3. We move from simulating the 21cm
PS with the coeval cubes to slices of the light-cone and introduce inhomogeneous recombination
in the inter galactic medium. The models we test range from a simple model as in the previous
section; a model that includes X-ray heating via high mass X-ray binaries produced by the
remnants of the first generation of stars, this causes fluctuations in the 21cm spin temperature;
a model with a power law in halo mass for the UV ionising efficiency via the star forming
efficiency, this model can also produce accurate ultra violet luminosity functions (UV LFs) at
high redshift; finally a model that combines both these attributes as well as a 2nd power law
in ionising efficiency representing the UV escape fraction’s scaling with halo mass. Although
there is a major caveat in the work in this chapter, it appears as though we will be able to
decisively distinguish models that include X-ray heating using 21cm PS observations ranging
from redshifts, z € [8,10]. The UV LF shows significantly more promise than the observational
prior checks used in Chapter 3, and we can decisively distinguish models with a single power
law in halo mass for the ionising efficiency. We then used the Savage-Dickey density ratio to
analyse the influence of the X-ray spectrum power law and the star formation timescale via the
parameters ax and t, respectively. We conclude that ax has little influence over the back-bone
of reionisation but can be pinned down with observations of the 21cm PS that reach into the
cosmic dawn. On the other hand, ¢, would require more precise observational data from the UV
LF or another observational synergy. These conclusions will be reassessed when the simulations

with more appropriate box sizes have finished.

Chapter 5 looks at improving the statistical analyses used for constraining models with obser-
vations of the 21cm signal. The Morlet power spectrum (MPS) is new to the field and shows
an increase to the constraining capabilities of the 21cm light-cone. In the previous chapter
we perform our likelihood calculation by slicing the lightcone into chunks before calculating
the 21ecm PS. However this ignores evolution accross the chunk and leads to bias within the
statistic. Here we replace the Fourier transform with a Morlet transform, enabling wavelets
to sample the entire light-cone in an ergodic manor. Our results show a vast improvement to
the parameter posteriors for the simple model from Chapter 4, however these results are very
preliminary. Using a redshift range greater than two resulted in computational problems and

so we defer a more complete analysis to future work.
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Appendix A introduces astrophysical material, bridging the gap in astrophysical theory between
undergraduate cosmology to the application of research in this field. We briefly recap the
A—CDM model, highlighting where the gaps in observations lie before introducing the hydrogen
21cm line as a mechanism for resolving these gaps. Emphasis is drawn on the Gunn-Peterson
trough, red Lyman-a damping wing, and the CMB optical depth since they provide a constraint
on the end and duration of reionisation. These are referred to as the observational priors later
on. The fundamentals of radio astronomy are included in Appendix B as a preparation for
observing the 21cm line with interferometers. Here we also discuss the foreground wedge as
well as different foreground mitigation techniques for calculating observational errors on the
spherically averaged 21cm power spectrum. In Appendix C, we introduce Bayesian statistical
methods and their implementation via MCMC algorithms. A derivation of the central limit
theorem is provided as motivation for using a x? as the Bayesian likelihood. Material that is
supplementary to the material in Chapter 1 is provided here. Definitions of the power spectrum
as the Fourier transform of the two point correlation function are provided in Appendix C.4 as
this is used for the 21cm likelihood statistic. Supplementary analysis material for the research

in Chapters 4 and 5 are included in Appendices D and E respectively.

Outlook

This work contains multiple unfinished parts that provide obvious places for its continuation.
The most obvious being with the Morlet spectrum - for the current capabilities of computers it
needs to be implemented in a way that uses significantly less memory. Naturally the method
requires holding a statistic in RAM for each pixel along the line-of-sight of the light-cone,
and then calculating a covariance between these. Possible solutions include slicing the light-
cone into smaller chunks, as for the Fourier power spectrum; or using a logarithmic stepping
of the wavelet centres throughout the light-cone. Since the covariance calculation could be
parameterised as matrix multiplications, this could be an interesting avenue to apply GPU

programming.

Once the Morlet power spectrum is running it may be possible for the 2lcm light-cone to
constrain a vast array of reionisation models. With model selection there are lots of options for
continuing this research. For example, 21CMFAST now contains the capability to simulate mini-

halos - adding a second species to the simulation’s galactic ensemble. Observational synergy is
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also an avenue that can be expanded. The constraints from neutral fraction checks at specific
redshifts, the UV LF, and the Planck optical depth will only improve as more high redshift
objects are discovered and more detailed CMB observations will be improved by the likes of
the James Webb space telescope and the Simons observatory. The global 21cm signal has
not been utilised here either, and soon instruments such as REACH will be able to verify
the EDGES results. Creating synergy between different observational methods within the
Bayesian likelihood is, in the author’s opinion, the most effective way to improve statistical
analyses. Once the appropriate astrophysical model has been quantitatively selected, precisely

constraining that model’s parameters is necessary to infer the relevant astrophysics.

The cosmological 21cm line is set to be unrivalled in the information content it will provide due
to the sheer volume that it will be able to probe. However its detection should be not taken
for granted since the foregrounds outweigh the signal by several orders of magnitude. Current
research surrounding foreground removal methods take advantage of the smooth nature of the
spectra from the foreground signal. Having access to the entire light-cone in one statistic (which
the MPS enables) has the potential to revolutionise the precision of interpolated foregrounds

throughout an instrument’s bandwidth.

It has been a pleasure contributing, even a little, towards the unveiling of the first galaxies in

the universe.
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Appendix A

Introductory Astrophysics

This appendix provides the astrophysical and cosmological context necessary for interpreting
probes of reionisation. The intention here is to bridge the gap to this work from a typical
undergraduate course, which might overlap with Sections A.1 and A.2 in a typical cosmology
module. We introduce the theory behind calculating quantities in the early universe as well as
detailing the current gap in observations and how the cosmological 21cm signal can fill this gap.
Then we introduce the hydrogen 21cm line and its theoretical intricacies, leaving the reader

up-to-date with the cosmological material required in Section 1.2.

We begin with the foundations of cosmology in Section A.1, including an overview of the
A — CDM cosmological model used throughout this work. Section A.2 discusses well established
cosmological observations focusing on how they confirm the theoretical work in the previous
section and highlighting the areas in-which they need improving. Observations of the red Ly-«
damping wing, the Gunn-Peterson trough and the Planck reionisation optical depth are partic-
ularly detailed as they are implemented in a Bayesian framework in every chapter (introduced

in Section 1.3.2).

Section A.3 details the derivation of the 21cm signal as the hype-fine splitting of hydrogen’s
atomic line spectra. This is then applied to the radiative transfer that occurs within clouds of
primordial hydrogen gas - resulting in the 21cm brightness temperature. Finally, to track the
evolution of the 21cm brightness temperature in a cosmological context, we derive the 21cm
spin temperature in terms of a UV coupling, a kinetic coupling, and coupling to the CMB.

These results lead into the material used in Section 1.2.

186
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A.1 Cosmological theory

In 1915 Albert Einstein, with the help of the mathematician David Hilbert, developed the
general theory of relativity (Einstein, 1915), the most precise theory of gravity to date. Due to
the equivalence principle, where gravitational mass is assumed equivalent to inertial mass, the
trajectories of matter are identified as following geodesics along the surface of what is known
as space-time. This holds true to any currently obtainable precision (Speake & Will, 2012). In
brief, matter itself describes how the 4-dimensional space-time is shaped. The motion along

this surface is described in Einstein’s field equations (EFE) as,

8rG
g/u/ - 7774V + Agum (Al)

where G,,,, the Einstein tensor, describes the curvature of space-time; 7, is the energy-
momentum tensor, i.e. the distribution of energy density (multiplied by the constants 87G /ct);
A is the cosmological constant which represents the vacuum energy density of space and is
often referred to in relation to dark energy. The origin of the cosmological constant is unknown
but at late times it is responsible for accelerating the expansion of the universe. At earlier
times, matter and radiation dominate the energy density of the universe however these dilute
as the scale of the universe increases. The expansion of the universe gives rise to the con-
cept of redshift, which can be thought of as the effective Doppler shift caused by the receding
source in the context of an expanding universe, z = M /Vops — 1 (Figure A.1). Redshift is
commonly used to catalogue the age of sources. As John Peacock phrases it: ‘cosmology is the
task of finding solutions to Einstein’s field equations that are consistent with the large-scale
matter distribution in the universe’ (Peacock, 1999). The EFE are a set of 10 simultaneous
partial differential equations, which are not easy to solve. Since Einstein developed this before
computers even existed, some simplifying assumptions were necessary, i.e. that the universe is
homogeneous and isotropic when viewed on and above a large enough scale (~ 250 x 10°ly).
This is known as the ‘cosmological principle’; which is still a valid assumption today (Lahav,
1999). The solutions to the EFE take the form of a metric tensor, g which represents the
geometry of space-time. Metric tensors can be used to express a displacement interval in the
context of space-time as, ds* = X*g,, X", where X are position 4-vectors. Robertson, Walker,
Friedmann and Lemaitre (Peacock, 1999; Loeb & Furlanetto, 2013) implemented the cosmolog-
ical principle with the EFE to produce what is known as the FLRW metric. The displacement
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Figure A.1: The geocentric view of the universe in comoving coordinates (coordinates which
compensate for cosmic expansion). Due to the finite speed of light and the sheer scale of the
universe, signals (and therefore images) detected are up to ~ 13.8 billion years old. The first
detectable signal is the CMB, a 2-dimensional snapshot of the universe as hydrogen atoms are
able to form for the first time since the big bang in Recombination. Beyond this the universe
is opaque. Here the logarithmic nature of redshift and its relevance to the age of the universe
becomes apparent (Loeb & Furlanetto, 2013).

interval of this metric is expressed as,

2

1—kr

ds* = —c*dt* + a(t) { + r?d6* + 7‘23m20d¢2} : (A.2)
and this is the simplest solution to the EFE that is consistent with today’s matter distribution
in the universe. Note that this is based on a Minkowski (flat) metric other than for the addition
of the scale factor, a(t), which represents the rate of spatial expansion with respect to time and

the possibility for spatial curvature, k.

To gain some physical insight into Equation A.2, we introduce what are known as density
parameters, ; = p;/peris, which represent the content of the universe occupied by species .
These are defined as the ratio between the energy density of the species present, p; to the
critical energy density required to halt the universe’s expansion, p.i. By manipulating some

algebra we can represent how the relevant quantities evolve with the scale factor as,

LN\ 2
a Oy Q o
H2z(—) :H@(—M+a—}f+m+§). (A.3)

a asd

Equation A.3 contains the definition of the Hubble parameter H, as a function of the scale
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parameter as well as the density parameters for matter (M, non-relativistic species including
dark matter), radiation (relativistic energy density), the cosmological constant and the energy
density in spatial curvature respectively. Each density parameter is in units of a critical density,

i.e. the energy density required to balance the local universal expansion and therefore satisfies,
Qv+ Qr + Q0 =1+ Q. (A.4)

The spatial curvature has been measured by Planck to be: || < 0.005 (Planck Collaboration
et al., 2016a). The necessity of precise cosmology becomes apparent when an astronomer wishes
to work with two equidistant objects objects between two separated by, r,, where this vector
is perpendicular to the line of sight. In this example, this distance subtends an angle 6 on the
sky. To maintain some geometrical sense, we know that |r | = D.0 must hold for a distance
scale, D., which is consistent despite the evolution of the universe due to cosmology. This is

known as a comoving distance,
c dz
Di=— [ ——, A5
H, / E(2") (A.5)

where E(2) = /Qu(1 + 2)3 + Q(1 4+ 2)% + Qr(1 + 2)* + Q4). From Equation A.3 it should be

clear that the universe evolves with the expansion. Different epochs are defined depending on
which energy density component is dominant as this defines the nature of the expansion that
occurs at that time. For example, at early times (z > 3300), radiation pressure is thought to

dominate but in contrast today Qg ~ 0.0003 which is negligible (see Figure A.2).

Since the cosmological principle is not precisely true at all scales, we must add the small scale
structure with linear perturbation theory. The departure from homogeneity requires studying
the evolution of energy density, pressure and gravitational potential (p, p and ® respectively).
By perturbing the FLRW metric with a weak gravitational potential (consistent with Newtonian

limits) we gain a schematic picture of the EFE, as shown in,
ds® = —c*[1 + 2®]dt* + a(t)[1 — 2®]dr?, (A.6)

and,

0Gu < 0T - (A.7)
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z=0 1<<Z<<100
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Figure A.2: The density ratios (mass-energy budgets) of the present day (z = 0) and during the
formation of the first galaxies (z = [10,50]). As the universe expands the densities of matter
and radiation decrease, meaning the vacuum density of the universe will eventually dominate
causing the expansion to accelerate. z = 0 — z = 1 corresponds roughly to the most recent 6
billion years in the universe (Loeb & Furlanetto, 2013).

Applying the conservation of mass and momentum respectively to the perturbed EFE gives,

d=—14+w)(V- -v—-3D")—3aH (cs — w)o, (A.8)
and,
2k? )
Vv) = —aH(l — 30)V - v+ " 4 k20 A.
(V-v) aH (1 — 3w) V—|—1+w+ ; (A.9)

where ¢, = 0P/dp is the sound speed and w = p/(pc?) is the dark energy equation of state.
These provides some key insights into structure formation. The Planck team have measured the
expansion of the universe with type la supernovae to constrain w = —1.006 £ 0.045 consistent
with the properties of a cosmological constant, A (Planck Collaboration et al., 2016a). v is the
spacial component of the velocity four-vector for the perturbing fluid, and the prime indicates a
comoving rate of change. Most importantly, on all scales these equations can be used to study

the evolution of perturbations at any epoch - due to their dependence on H.

With an overview of the behaviour of structure, we now turn to look at how structure forms,
which we approach chronologically. After the big bang, the universe is radiation dominated, a
soup of baryons, photons, and dark matter that steadily cools as the universe expands. As the
universe expands, the energy of radiation decreases and baryons of increasing mass condense out
of this primordial mix. The first detectable signal occurs at z ~ 1100, when the universe cools

enough for the first atoms to form. Prior to this, the universe is opaque due to the large number
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of Compton scattering events that occur. The rate of these scattering events is proportional
to the free electron density, which decreases as the hydrogen atoms start to combine. As the
universe expands, the average energy density of the photons decreases too, until they cannot
ionise the hydrogen atoms as they try to form. This is known as recombination, which gives rise
to the cosmic microwave background (CMB). The CMB is snapshot of the universe as it cooled
past this threshold, and is detectable today (we will return to this in Section A.2). Interestingly
~ 1% of the static picked up by old televisions and radios comes from the CMB. After the CMB
the universe continues to expand, the newly formed hydrogen continues to cool, and the epoch
known as the dark ages begins. This period earns its name due to a theorised lack of detectable
signals - since no stars have formed yet, the universe is literally dark. Although there is little
to be detected here, the over and under densities of energy in the CMB seed the distribution

of matter later on.

We describe the distribution of large scale structure with the Press-Schechter (P-S) halo mass
function (Press & Schechter, 1974),

2

n(m)dm = — \/gp—Mi)e20?51)2d1n(0(m))7 (A.10)

T m o(m

where n(m)dm is the number of objects that have a mass [m, m + dm]; py, is the mean matter
density of the universe (baryonic and dark), and o(M) is the standard deviation of the mass
distribution. The abundance of halos at a given redshift are obtained by integrating the mass
over-densities that can collapse into virial objects, given the density field is Gaussian and
therefore described fully by the linear matter power spectrum. Considering purely spherical
perturbations, or a ‘top-hat’ model, allows us to calculate what over-density (density fraction
above the mean) is required for a density field to collapse into a halo - within which star forming
galaxies will be able to form. During a matter dominated era, where z. is the redshift at which

the structure is collapsing, the critical over-density is,
de = 1.686(1 + 2). (A.11)

This mathematical approach determines the statistical distribution of structure in a cold (non-
relativistic) dark matter dominated universe, but it double counts over-densities that already

exist within larger virialised structures. To remedy this, the integral of over-densities needs
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Figure A.3: Two example random walks in density perturbation as a function of mass variance,
as part of the excursion-set formalism. The critical density for the structure’s collapse threshold
is represented by the dotted line (which depends on redshift, Equation A.11). The PS model
can be solved with this approach by analysing random walks which cross the black line. Due
to the random nature of the walk, just as many trajectories will touch the threshold as pass it,
see text for discussion (Loeb & Furlanetto, 2013).

to be halved in the P-S to obtain the result in Equation A.10. It is therefore beneficial to
explain the mechanism using the ‘excursion set formalism’ (Bond et al., 1991), where we view
the density field at a given point with a random walk. This implies the smoothing of different
mass scales as the random walk in over-density steadily reaches the critical over-density. The
mass scale at which the critical over-density is reached counts as the formation of a halo of that
mass (see Figure A.3). Running lots of these random-walk excursions leads to the distribution
of dark matter halos, i.e. the set of these random walk excursions. At the point of crossing the
critical over-density threshold the random walk has an equal chance of crossing the threshold or
returning under it - a natural explanation for the factor of two. Another benefit of this approach
is that it provides information about the correlations between halos and their different mass
scales. Despite the logical inconsistency in the P-S model, it provides an important insight
into the physics - the distribution of galaxies closely follows the same distribution as allowing
a pressure-less fluid to spherically collapse around density perturbations which are initially
generated from a Gaussian random field. A well known improvement to this formalism is the
Sheth-Tormen model (Sheth & Tormen, 1999), which uses the collapse of ellipsoidal over-density

perturbations instead of spherical ones.

The amalgamation of the FLRW-cosmology and linear perturbation theory is known as A—CDM
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A — CDM Parameters
Hy | 67.74+0.06 kms~! Mpc™*
O || 0.307 £ 0.006

Qa || 0.689 £ 0.006

ng || 0.966 4 0.004

og || 0.82 4+ 0.006

Qp || 0.0486 £+ 0.00014

Table A.1: The 6 A — CDM cosmological parameters as recently measured by Planck. Hy, the
Hubble parameter is the inverse of the age of the universe; {257, the universe’s fractional energy
density in matter; 2, is the fractional energy density of the vacuum; ng, the scalar spectral
index, which describes how density fluctuations in the CMB vary with scale; og, the matter
power spectrum normalisation, a mass variance calculated across 8 Mpc from the observations of
galaxies; and €, the fractional density in baryons (Lahav & Liddle, 2019; Planck Collaboration
et al., 2016a).

(a cosmological constant and cold dark matter dominated universe, referring to Equation A.3).
This is the concordance cosmology, and is described by six parameters as well as a choice
of matter content. The excursion set formalism is a useful tool for quickly describing the
matter distribution within A — CDM. Throughout this work we implement A — CDM using
the measurements from Planck (Table A.1). The only parameter we haven’t mentioned is osg,
which is the normalisation of the matter power spectrum on a scale of 8 cMpc. Throughout
this work redshift is represented by z, distances are co-moving unless specified and we assume

no curvature, k = 1.

A-CDM predicts our universe’s cosmology with overwhelming accuracy, but it is not without
its pitfalls. We have mentioned the CMB, however its observation is too smooth for a dark
energy based expansion. The horizon for particles to interact at this time horizon is expressed
by Equation A.5 with E o t'/2 x d2’ /dt, representing the radiation dominated early universe.
This leads to ~ 100 Mpc in proper distance, and hence there must be another mechanism to
causally relate the equilibrium thermodynamics suggested by the CMB - this is known as the
horizon problem. Others issues include the flatness problem, where the sum of the density
parameters (Equation A.4) requires k = 1 to correctly predict the evolution of our universe;
the antimatter problem, which draws attention to the asymmetry in baryonic matter compared
to negligible quantities of anti-baryonic matter; the expansion problem where the extreme self-
gravity during the big bang must be overcome; and finally an explanation is required to deviate

from precisely homogeneous structure formation.

These seemingly daunting problems can be solved with a common solution called inflation
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(Guth, 1997). It is theorised that a short inflationary period of the universe’s expansion must
have occurred shortly after the big bang where a small patch of a larger quantity exponentially
grows to become the known universe. If this is the case, the universe can be in thermal
equilibrium with itself across the required scales, overcome its own gravitational pull, and
baryon number does not have to be conserved within the inflated patch. If a scalar field is
responsible, prospects to detect it involve looking for extra heating signatures or a surplus in

baryons that the field could have decayed into.

Detecting evidence of the early universe is a tricky business. Other than direct observations
of the CMB, the distribution of the galaxies themselves is another useful probe. Dynamics in
the early universe lead to a clustering of galaxy distributions known as the baryon acoustic
oscillations (BAO). Long after inflation has ended, sound waves in the primordial plasma form
due to the opposing baryon-photon pressure and gravitational forces. These waves propagate
until recombination occurs (z ~ 1100), which causes the sound speed to drop dramatically
(Tseliakhovich & Hirata, 2010). The correlation between the CMB power spectrum and the
galaxy power spectrum produces a bump around the ~ 100 h~! Mpc scale with width ~
10 h~! Mpc. These represent a characteristic (statistical) scale describing the nature of where
structures cluster together and the Jeans scale respectively (Eisenstein & Hu, 1998). Because
the difference between the baryonic sound wave and dark matter distribution is preserved
through the universe’s expansion, the CMB power spectrum traces the primordial baryonic
sound wave and the galaxy power spectrum traces the dark matter distribution. Large clouds
of neutral hydrogen will contain an imprint of the BAO similarly to the galaxy power spectrum.
Star formation in the cosmic dawn is therefore suppressed by the relative velocity of primordial
hydrogen and dark matter. This is called the velocity induced acoustic oscillation (VAO) and
will be imprinted on the 21cm signal during the cosmic dawn, providing another probe of the
early universe (Fialkov et al., 2014a; Cohen et al., 2016; Munoz, 2019). Precision measurement
of the primordial hydrogen will not only help probe the BAO at higher redshift (through the
VAO), but it can also help decipher inflation. Whether inflation is driven by one or many scalar
fields can be analysed partly by the precise relationships of the photons and baryons that the
remaining potential decays into. Subtle detail in this relationship can leave detectable imprints
on the 21ecm power spectrum during the cosmic dawn (Gordon & Pritchard, 2009; Hotinli et al.,
prep). There are lots of interesting possibilities surrounding inflation however a deeper analysis

into this is beyond the scope of this work, for more detail please see Peacock (1999) or Perkins
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Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation.

Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

Figure A.4: The currently known epochs of cosmology. The big bang begins on the left, with
the Cosmic Microwave Background represented by the ‘Afterglow Light Pattern’. The cosmic
dawn (the formation of the ‘1st stars’) leads to reionisation, as the radiation form the first stars
ionises intergalactic hydrogen (represented by the fading of the purple shade from left to right)
(NASA/WMAP (2012), https://map.gsfc.nasa.gov/media/060915/index.html).

(2005) for example.

An overview of the cosmological epochs is shown in Figure A.4. Inflation is thought to have
occurred when the universe was 1073% seconds years old, lasting for at most 1073 s. By 2z ~ 1090
the expanding universe has cooled enabling 99.9999% of the universe’s baryonic matter to form
into hydrogen atoms, (Peebles, 1968; Zeldovich & Sunyaev, 1969). This is thought to remain the
case until stars start to form ~ 150Myr after the big bang in the cosmic dawn. As generations
of stars grow amidst an increasing background of UV radiation, the neutral hydrogen (HI)
is ionised. By z ~ 6 galaxies have ionised all (99.96 4+ 0.03%) the HI in the surrounding
inter-galactic medium (IGM) (Fan et al., 2006; Gunn & Peterson, 1965). This is the epoch of
reionisation and is the most recent phase change of our universe. Finally we have come to the
current, predominantly ionised, state of the universe. The majority of this thesis is aimed at
the cosmic dawn and reionisation, whose theory we discuss in Sections 1.2.1 and 1.2.2 at the
beginning of the main text. Here, we turn to understanding how such constraints can be made.

For this we need observation, the astronomer’s equivalent to experiment.
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A.2 The current observational picture

The current cosmological picture is bound between two sources of observational data: The
CMB, at z ~ 1100 and high-redshift quasars (QSOs) around! z ~ 7 and below. In between
these two milestones the universe’s first stars form (known as the cosmic dawn), and (re)-ionise
the hydrogen left over from recombination (known as reionisation). The cosmic dawn and epoch

of reionisation (EoR) are largely untouched in terms of direct observation.

One of the furthest observed QSOs is at z ~ 7.1 (Mortlock et al., 2011), meaning the signal
has travelled through the IGM for ~ 10 billion years and hence contains information about the
universe’s history. Their emission also contains large quantities of Lyman-a? which is useful for
probing reionisation. The majority of cosmological observations are performed on quasars due
to their abundance. QSOs also consist of various constituent parts, such as AGN, supernova,
stellar remnants and the stars in the galaxy themselves. This means they can have a variety
of uses - a classic example is the use of the standardisable properties of type la Supernova
emission that Hubble (1929) used to measure the expansion of the universe®. Observations of
the CMB, by definition, pass through all of the observable universe to reach the instrument
and therefore contain a vast amount of information. The Boomerang experiment famously
measured the statistical clustering of hot and cold patches in the signal across enough of the
sky to show the universe as having a flat cosmology (de Bernardis et al., 2000), in favour of an
early inflationary period. The CMB reveals a lot about the universe’s cosmology - the Planck
team have since pinned down the the A — CDM parameters with impressive precision through

mapping CMB anisotropies across the spherical sky (Planck Collaboration et al., 2016a,b).

This CMB anisotropy power spectrum obtained (Figure A.5) even provides information on the
BAO scales mentioned in the previous section, the oscillatory peaks seen help illustrate the
scales at which structures cluster in the early universe. Although temperature anisotropies are
of order ~ 2.7+ 107°K, they map to regions of varying density within the early universe. Over
time these over-densities grow until there is enough mass to form virialised structures for the

first time. In this section, we take a brief look at what cosmology is constrained, as well as the

!Some redshift 10 quasars are beginning to be uncovered with deep surveys (Oesch et al., 2018)

2The first excited state to ground emission of a hydrogen atom, E ~ 10.2eV (UV).

3Interestingly, Lemaitre (1927) discovered this first during his PhD at MIT using pulsating stars known as
Cepheid variables but the data was deemed insignificant for a discovery. The physics of Cepheid variable stars
was not established until the 1940s, when this result was accepted as an agreement of Hubble’s law.
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Figure A.5: The power spectrum of the CMB temperature anisotropy as measured by the Planck
Collaboration et al. (2016a). Distances between the amplitude peaks in this statistical space are
directly related to the clustering that provides the BAO scale (https://sci.esa.int/web/planck/).

limits on the EoR obtained in multiple ways using the CMB and data from QSOs. Please see
Peacock (1999) or Loeb & Furlanetto (2013) for more detail.

A.2.1 The CMB

CMB experiments are split into two different categories: first, the temperature anisotropy in the
microwave signal relative to the black-body spectrum as measured by experiments like Planck
(Planck Collaboration et al., 2016b); secondly, experiments that measure polarisation like the
South Pole Telescope (Benson, 2018). To measure both CMB power spectra correctly in either
experiment requires the CMB radiation to be seen through reionisation. Hence there is a CMB
optical depth that corresponds directly to the timing of reionisation which must be calculated a
nuisance parameter along the line-of-sight when observing the CMB. The CMB optical depth,

T, is estimated as,
T = /nadl, (A.12)

where o is the Thomson cross-section, n is the IGM electron density and dl is the comoving
distance calculated from today to the reionisation redshift. Thompson scattering in the IGM

is caused by the free electrons left after reionisation. These electrons lead to an opacity that
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reduces the observed number of CMB photons (when compared to the number emitted at
recombination). By measuring the resulting optical depth and assuming an instant reionisation,

Planck bounds the midpoint of the EoR as z = 8.8777].

The different polarisation modes of the CMB aim to probe inflation and have the potential
to analyse gravitational wave interactions prior to the surface of last scattering. The largest
effect however is the Thompson scattering from IGM electrons, which causes about 10% of the
CMB radiation to be linear polarised. Recent CMB polarisation observations from the South
Pole Telescope suggested a short reionisation, Az = 1.11,5 with Az < 4.1 at 95% confidence

(Reichardt et al., 2020).

Anisotropies and inhomogeneities in density, ionised fraction, and the velocity field (v) of
clouds of the electrons in the IGM add artefacts to both observations of the CMB. These can
cause secondary effects, such as the kinetic Sunyaev-Zel’dovich effect (Zeldovich & Sunyaev,
1969; Sunyaev & Zeldovich, 1980) where the bulk motion of free electrons will effect the CMB

observation. The CMB’s temperature fluctuations are expressed as,

ATous(B) _ /eTfl v dl, (A.13)
Tems

when observed along the direction n (Park et al. (2013) for example). As reionisation progresses
its ‘patchiness’ (or spatial variability between neutral and ionised hydrogen regions) will increase
the second order anisotropy effects. The longer this patchiness exists, the larger the measurable
effect is on the CMB since v will have more directional dependence. Because this also depends

on the central reionisation redshift (through 7), it can add a constraint on the EoR’s duration.

A.2.2 QSOs

The redshifts of QSOs are identified by least squares fitting various spectra to the observation.
When the redshift is known, lots of information about the IGM region local to the QSO can
be extracted from the QSO spectrum. The examples of QSO probes for constraining the EoR
looked at here are the Gunn-Peterson trough, and the red Ly-a damping wing e.g. Gunn &
Peterson (1965) and Miralda-Escudé (1998) respectively.

The IGM is predominately hydrogen (or ionised hydrogen post reionisation), which causes
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absorption of the QSO emission as it is redshifted on its journey towards us. At some point
the emission that is bluer than Ly-a line will pass through this hydrogen resonance, leading
to a streaky pattern in the QSO emission known as the Ly-a forest. If there is enough IGM
hydrogen along the line-on-sight the emission will be completely absorbed, leading to what is
known as the Gunn-Peterson trough (Gunn & Peterson, 1965). The redshift stamp attached to
the observed QSO emission can provide an estimate on the reionisation end point via the dark
(no signal) pixels in the Ly-« forest observation. Figure A.6 clearly illustrates this by lining up
QSO spectra in order of redshift. Current research (which also include the dark fraction from
Ly-f observations) suggests that by z ~ 6, reionisation is 99.96 +0.03% complete for hydrogen
in the IGM (Becker et al., 2001; Fan et al., 2006; McGreer et al., 2011; Greig & Mesinger,
2017a).

Observations near to the Ly-a line can give information about the size of an HII region, which
depends on the ionising luminosity of the embedded QSOs. This requires information on the
longer (red) wavelength side of the resonance, known as the red-damping wing. Pedagogically
it can be thought of as the QSO emission having to climb through the opacity of its ionised
bubble before reaching the end of reionisation. By ignoring recombinations as well as assuming
the IGM is iso-thermal and the QSO emission is isotropic we can estimate the radius Ry of
the ionised sphere as,

THI

1
Ngsot ’
Ry <M> ; (A.14)

motivated by the ionisation, with a possible maximum of,

[V

R X (NQSO) , (A.15)

where tqso is the age of the QSO, NQSO is the rate the QSO emits ionising photons. The latter
is motivated by the ionisation rate from the UV background becoming dominant over that of
the QSO, defining the QSO’s sphere of influence. However, when using just Ly-a observation
it can be tricky to decipher whether a QSO has reached its luminosity dependant maximum.
Other lines are necessary to decipher this mild degeneracy, for example in the Lyman series
one can use 2.5R.«[Lya] &= Ruyax|[Ly5] to help resolve this. However this does not overcome
sensitivity to scattering throughout the neutral IGM. We have also used a simplistic model to

get here, for example the patch of IGM could be over or under-dense, or there could be Lyman
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limit systems involved too - more observations at multiple different spectral lines are necessary
to do this precisely. Assuming QSO emission is not broadened by the IGM and is far from the
Ly-a resonance, we can write the red damping wing optical depth mrpw as,

A, (142 (1 1
R Ty — - — Al
TROW ™ Ta I A2y, H(z) <Rb Re) (A.16)

where A, and v, are the Ly-a frequency and decay rate (from Quantum mechanics) and 7, is
the resonant scattering optical depth for HI. R, and R}, are the comoving distances from the

observer to the end of reionisation and the nearest edge of the QSO’s ionised bubble respectively.

The red damping wing is observed as the gradient on the red side of Gun-Peterson troughs in
Figure A.6 and can be used to probe the redshift evolution of the sizes of ionised (Strémgren)
spheres around the quasars (assuming a step HI gradient at the edge). Equation A.16 is used
to match the observed and expected emission, and in the process an estimate of the line of sight
neutral fraction is obtained. The variety of different red damping wings in Figure A.6 indicates
a patchy end to reionisation. For more information on what information can be achieved from

analysing Ly-a radiation and QSOs see Loeb & Furlanetto (2013).

A particularly useful way of analysing the night sky is done by application of the 2nd or-
der statistical moment known as the power spectrum. To measure the statistical clustering
(mentioned at the start of this section), one must take a Fourier transform of the correlation
function of the signal. We will discuss the statistical origins and some properties of the power
spectrum-correlation function relationship in Chapter C but for now, it measures a scale de-
pendent clustering of the quantity at hand. For any quantity I, we can define the fractional

perturbation,
[I(z)— < I >]

o) = <I>

, (A.17)

where z is the spatial position vector, the pointy brackets indicates the mean value (or ensemble
average if used upon multiple arguments), bold means vector and the tilde indicates a Fourier
transform where the wave vector is k. The power spectrum, P(k;), is then defined by the
correlation between the two Fourier transformed fractional perturbations at different wave

mode scales as,

P(kl)(SD(kl — kg)(27’l’)3 =<< g(kl)g(kg) >, (A18)

where §p is the Dirac delta function. This is typically done using spectral intensity per frequency
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Figure A.6: SDSS (Sloan Digital Sky Survey) data on 19 quasars z ~ [5.74,6.42]. The Gunn-
Peterson trough is evident in all cases as the lack of signal to the blue (left) end of each
spectrum’s maximum. These maxima occurs at the observed Ly-a emission for each quasar
hence they scale with redshift. Notice that as redshift decreases, the roughness of the trough
decreases - implying more neutral hydrogen in the IGM existed at earlier times. The red
damping wing is the gradient of the red (right) side of each trough which contains information
about each individual quasar’s Stromgren sphere (Loeb & Furlanetto, 2013). (Fan et al. (2006),
Figure 1 - (© AAS. Reproduced with permission).
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inferring a dark matter power spectrum (e.g. when using a constant mass to light ratio, and
assuming the observed emission traces the structure accurately). In the case of the CMB, this
is done in spherical harmonics as the signal is a series of temperature fluctuations distributed

accross the whole 2D spherical sky.

There is a large gap of unobserved universe in between the measurements of the CMB and
the observations of QSO spectra - this is where radio astronomy dominates the picture. To tie
these observational pieces together, we need the detection of the 21cm brightness temperature.
Observing these hydrogen atoms would provide data from when the IGM re-ionises, through
the cosmic dawn, up to the release of the CMB as recombination occurs. Current pathfinder
experiments such as HERA (Hydrogen Epoch of Reionization Array) and LOFAR (LOw Fre-
quency ARray)? are looking for the signal whilst testing technologies and learning about noise
removal optimisation. We look at these instruments in more detail in Section 1.3.7 and in
Appendix B. These do not provide enough signal to noise to produce a redshift dependent
image of reionisation. In contrast the SKA, after its Phase-2 upgrade®, will hope to do this due
to its revolutionary scale. With near to 1000m? of receiving area on the ground in the form
of ~ 1000000 dipole antennae®, and with baselines of ~ 40km across the Western Australian
desert - it will essentially be the world’s most sensitive FM radio. The SKA’s impressive detail
means that storage alone is estimated to be orders of magnitude larger than the current annual
internet stream. This will have to pave the way for big data architectures and machine learning
algorithms in astrophysics (Garofalo et al., 2017). We now move onto detailing the 21cm line

itself.

A.3 21cm Theory

In 1951 Edward Purcell and Harold Ewen discovered a signal from the galactic spectrum at
1,420.405 MHz (Ewen & Purcell, 1951b), or 21.106 cm in wavelength. This corresponds to the
hyperfine transition of atomic hydrogen. Since its discovery the 21cm line has been used as a
tracer of galactic structure, most famously used to map the spiral arms of the Milky way. Using

Purcell and Ewen’s original data, the rotational velocity of the Milky Way was first measured

4http:/ /reionization.org/, http://www.lofar.org/.
Shttp://www.ska.gov.au
6 A typical house’s television antenna is a good example of a type of dipole antenna.
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Figure A.7: The radio telescope used by Ewen & Purcell (1951a) to detect the neutral hydro-
gen signal from within the Milky Way. Due to the unorthodox design of the ‘horn antenna’

their office at Harvard University became particularly susceptible to flooding during rainstorms
(NRAO/AUI/NSF, https://public.nrao.edu/gallery /horn-oplenty-discoveries) ).

by Muller & Oort (1951).

The first successful lab detection of the 21cm line was by J. Wittke and R. Dicke in 1954 using
a microwave absorption technique (Wittke & Dicke, 1956). Today the hydrogen MASER (Mi-
crowave Amplification by the Stimulated Emission of Radiation) is the chosen method for preci-
sion measurements of the hydrogen hyper-fine splitting, giving a value of v = 1420405751.7667+
0.0009 Hz. For more information on the atomic-beam and the hydrogen maser measurement

techniques see Foot (2005).

A.3.1 The hyper-fine hydrogen emission line

In brief, this emission line originates from hydrogen’s electron flipping spin state with respect
to the spin of the proton. The transition is quantified as F =1 — F = 0, where F is the total
sum of quantum mechanical spin in the atomic system (the sum of the electron and nuclear

spin angular momentum, F = J + I, respectively).

The Hamiltonian for the hyper-fine structure (HFS) correction is,

Hyps = —p1 - Be, (A.19)
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where p; = grunI is the magnetic moment of the nucleus and B,, is the magnetic flux density

caused by the motion of the atomic electron,

2
B. = gMO{_gsMBS’¢<T)‘2}> (A'QO)

where s is the spin angular momentum of the electron. The ‘Landé g factor’ for the proton
is labelled, gy, and quantifies its gyro-magnetic ratio, the relationship between the proton’s
spin angular momentum and resulting magnetic field. This magnetic moment is taken as a first
approximation to be the interior of a uniformly magnetised sphere in classical electromagnetism,
with the magnetisation M for the atom contained within the curly brackets. Although s-orbitals
are spherically symmetric, we must be careful in treating the radial dependency of ¢ (r), the
electron’s wave function. To avoid problems we note that there is a constant maximum, B,,
which we obtain via spatially integrating |1 (r)|?d®r. Since r can vary from 0 to co, there must
be a cut-off at r = r, where the distribution outside this sphere no longer contributes to the
magnetic field from the nucleus. Luckily for us this happens to be significantly smaller than

the Bohr radius and we can therefore make the following approximation,

[W(r < m)|* ~ [¥(0)]%. (A.21)

As we are only concerned with hydrogen here, we only need worry about s-orbitals. Therefore
taking the electron’s orbital angular momentum to be 1 = 0 we can use J = 1+s, to equate the
total electron angular momentum to the electron spin angular momentum (since the electron’s
orbit is spherically symmetrical). Now we are ready to apply Schrodinger’s equation to equation
A.19, giving,

Enrs = (Y|Hurs|v) = A WL J|) (A.22)

—A{F(F+1)—II+1)—J(J+1)},

where the constant A = 2giunpogsps|¥(0)]? has been defined for convenience. Now to evaluate
the emission of this transition from Fyetore = 1 to the Flger = 0 we simply evaluate Fypg for

both F values and subtract,

ABEyrps = (Y(F = 1)[Hups|(F = 1)) — (Y (F = 0)|Hups | (F = 0)) (A.23)
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= gA{F(F +1)} = A= E.

Inputting the appropriate constants for a hydrogen atom gives a value of 1.42Ghz, extremely
close to the measured value. This theoretical prediction was first done in 1944 by H. van de
Hulst (van de Hulst, 1951). For more details, and a generalisation of 1 > 0, see (Foot, 2005).

Eo will be referred to in the context of radiative transfer.

A.3.2 Radiative transfer and the brightness temperature

We describe the radiative transfer across an atom with the change in specific intensity at a

given observed frequency I, as,

dl, v)hv
dl = %[nlAlo + (Iynle — IV’ILQB(H)], (A24)

where h is Plank’s constant, ¢(v) is a line profile (or broadening function per frequency nor-
malised to 1), n; is the population density of the atomic energy levels (i=0 being the ground
state); A;; and B;; are the Einstein spontaneous and stimulated transitional coefficients, typi-
cally related by Bigg1 = goBo1 and Aygc? = 2hv®Byg (Foot, 2005). These relate respectively to
the change in radiation intensity (at a transition i — j) over a proper path length di. Hydro-
gen’s 21cm spontaneous emission coefficient is A9 = 2.85 x 1071°s7%, and B is easily calculable
knowing that the transition is from a triplet to a singlet state, giving g1 /go = 3 for the quantum
degeneracy ratio. For the relative population of states, we use the Boltzmann equation to define
the spin temperature 7Ty as,

ny ~E1g

= — 3eFBTs
o

, (A.25)

and since the 21cm emission temperature is significantly smaller than the other temperature
scales of interest (Ts > E19/kp and Toyp > Eio/kp) this equation can be Taylor expanded to
first order as a good approximation. We are also dealing in radio (low) frequencies and therefore
are able to apply the Rayleigh-Jeans approximation to the resulting black body radiation curve.
This enables us to define our specific intensity in a more intuitive way, using its corresponding

brightness temperature as,
I,c?

p RS —.
2]{731/2

(A.26)
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To apply this to cosmology we need to consider the CMB (introduced in Section 1.2). In the
IGM, the hydrogen hyper-fine transition is excited by the CMB. This is the back-light that
drives the 21cm spin-flip transition, but first we define the optical depth as in Equation A.12,
where the opacity 7 of a medium of length [, number density n of particles with cross-section

o. With respect to observed frequency, we can input the radiative transfer information here as,

. / gzﬁ(;)jw

Since our signal is dependent on the intensity of the CMB it makes sense for us to define 075,

(n1310 — noBgl)dl. (A27)

the brightness temperature in difference to the CMB radiation at that redshift. By using the

optical depth (with respect to observed frequency 7,) we can write,
5Tb(1 + Z) = Ts<1 — G_T”) + Tompe ™ =~ (TS — TCMB)Tm (A28)
where Toyg is the temperature of the CMB during the radiative transfer process.

Now all that is required is solving Equation (A.27) for the opacity, which can be done in two
ways. The first method requires relating the differential path length to cosmological expansion
(dl = —cdz/[(1+ 2z)H(z)]) and then using the relationship between observed and light emitted
at a given redshift. Alternatively we can use the Sobolev approximation (Sobolev, 1957), where
we assume the velocity gradient of the gas is high enough so that a local velocity profile is
negligible, hence ldv = vdl when combined with Doppler shift. We also assume some natural
(or lifetime) broadening, ¢(v) o« 1/Av, exists in the emission. The first calculation was done

by Field (1958, 1959) which gives the brightness temperature difference as,

5sz9xHI<1+5b)<1_TCMB)< H )(1+z)

Ts %T—l—H

N[

mK, (A.29)

where 0, is the mass fraction of baryons and xy is the mean fraction of neutral hydrogen in

the IGM (see Zaroubi (2013) or Loeb & Furlanetto (2013) for a modern explanation).

The main influences of the 21cm signal are down to the IGM neutral fraction and the baryonic
density field. The spin temperature is also clearly important in dictating whether the signal is
in emission or absorption. When T, < 0, or equivalently Ts < Toyp this signal is interpreted

as absorption. We need Ts > Typ for emission to occur, and the signal becomes saturated as
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Ts > Tovs. The final two terms show the dependency on the cosmology and peculiar velocities

of the gas. We assume a constant cosmology throughout every chapter.

A.3.3 The 21cm spin temperature

The spin temperature is dictated by several processes. Firstly, the CMB photons cause resonant
scattering and absorption as well as spontaneous emission (represented by the aforementioned
Einstein A and B coefficients). Secondly the scattering of UV photons (similarly represented
with P;) can cause ionisation, and add kinetic energy to each atomic system (heating the hy-
drogen gas in the IGM) in some cases. But on average, the UV photons cause the Wouthuysen-
Field effect - a resonant scatter which couples the kinetic gas temperature to the UV radiation
colour temperature (discussed further in Section 1.2.3). Finally there are also collisions (Cj;)
between hydrogen atoms as well as free electrons or protons. We can equate the transition of

the hydrogen hyper-fine spin-states by summing these contributions as,

n1(Cro + Pio + Ao + Bioloms) = 1no(Cor + Por + Ao + Boiloms), (A.30)

which is solved for the spin temperature using a few approximations. First we Taylor expand

equation A.25 into,

ny Eq
—~3(1-— . A.31
o ( kBTS> ( )

We can also apply the principle of detailed balance to the Boltzmann equation and Taylor
expand a relation for the collisional coefficients using the kinetic gas temperature, Tk, as,

Con ( Eyp )
—~3(1- . A.32
Cho kpTx ( )

The coupling coefficients for the colour temperature, T,,, for the UV radiation field are defined

Py Ey
— = 1— ) A.
’ ( /fBTa) (4.33)

following suit as,

Now turning to the absorption and stimulated emission terms we combine the Einstein A and

B coefficients with the Raleigh-Jean approximation applied to the CMB spectrum to get,

k
By Iems = A10TCMBE—B. (A.34)
10
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Substituting Equations A.34, A.31, A.32 and A.33 into A.30 yields the spin temperature in the

desired form,
T—l — TEI&IB + l‘ka_l + :L‘OéTail (A 35)
S 14 2 + 24 ’ ’

where z, and z; are the coefficients for the UV radiation field coupling and the collisional

coupling respectively, defined as,

_ E10P10

- B Cho
“ 7 kpAyp

and xk:kA )
BA10

(A.36)

Since we have expressed the brightness temperature as a difference from the CMB (Equation
A.29) it is worth mentioning that if the CMB was the only source, then Ty and Tcyp would

reach an equilibrium in the timescale,

E10 ~ 3 X 105
ksTevB Al (1+2)

years. (A.37)

The spin temperature is in equilibrium with the CMB temperature from recombination (when

hydrogen first forms) until the cosmic dawn which we discuss in Section 1.2.1.

We have now covered the detail necessary for looking closely at the role of the 21cm signal
in unveiling the cosmic dawn and reionisation. The behaviour of the spin temperature can be
described by its coupling to the CMB, collisions and Lyman-« radiation (via Equation A.35).
The evolution of the 21cm signal brightness depends heavily on the density field (Equation
A.29) but importantly: it is dominated by IGM neutral fraction at late times; and by the spin
temperature at early times. A detailed description of the physical processes that guide the

21cm brightness temperature signal is provided in Chapter 1.



Appendix B

Introductory Radio Astronomy

Section B.1 introduces radio receivers and their application in interferometers. We provide the
basics of interferometry for use in astrophysical observations, as well as a derivation of the flat-
sky approximation used in calculating the 21cm power spectrum. In Section B.2 we discuss the
application of radio interferometers to observing the 21cm power spectrum and the formulation
of the foreground wedge via the delay transform. A detailed overview of the current endeavours

to observe the cosmological 21cm signal is provided in Section B.2.2.

B.1 Radio observations

Here we introduce the basics of radio observations before looking into the specifics of interfer-
ometers and the simulations of 21cm observations used in the main text. This section is largely

based on the text by Burke & Graham-Smith (2002).

B.1.1 An introduction to receivers

The fundamental principle behind any observing device is that the signal power received, P,

depends on the size of the instrument, A.g (effective collecting area), and the signal flux, S,

Prec = AugS. (B.1)

209
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G(n) is the voltage gain into the instrument which depends on the direction it is pointed, n. It

therefore is normalised to comply with energy conservation when integrated over a solid angle

as,
1 4
— G(n)dQ) =1, (B.2)
4r J,

giving, G = Q%_ﬂ—t’ where (2,4 is defined approximately as the field of view of the instrument.

Unfortunately our instrument will not convert the gain to the desired signal with perfect effi-
ciency. We parameterise this by introducing a transmitted power, P, defined in terms of the

flux as,

47
P — / SdQ, (B.3)
0

and relate the gain to the instrument’s signal as,

G(n) P,

A2

S(n) = (B.4)
where r relates to the instrument via €),;. Now we have a general result for the effective

instrument area,

Ag = 2 (B.5)

Specifically for radio astronomy we must look at the properties of antennae, which collect the
signal. In particular the temperature, 7', of the antennae is influenced by the absorbed radiation

flux and must be considered. We relate the specific flux intensity B,, and the radiation density,

Cuy __

A7

U,, as B,. From thermodynamics we have,

8mh v3dy

B,dv — ,
S exp(hv/kgT) — 1

(B.6)

and since these are radio waves the typical energies are low enough for the Rayleigh-Jeans

approximation,
Qk?BTdV
T

B,dv = (B.7)

Applying this to what we have learnt for a general instrument (Equation B.5), we write the

power per frequency as,

1 U T2
Podv = 5 / B, Agd®Qdy = 2 A g 2B Y

c2

dv. (B.8)




B.1. Radio observations 211

To dig deeper, we now define the contributions to thermal noise in terms of an antenna tem-
perature, T, the 2lcm brightness temperature Tj, (derived in Section 1.2). The T we have
been using is the black body temperature for a specific intensity emitted at v. The attenuation

reduction (signal loss), «, is defined,
T.=(1—-a)T,+ aT, (B.9)

expressing the antennae temperature as a contribution of signal and its own thermodynamics.

Now we turn to interpreting the received signal in terms of the electromagnetic field,
E(x,y) = aEye?mivt=k) (B.10)

where we have assumed the earth is flat so that our antennae align with the z axis (a = 2).
Equation B.10 is then the received electric signal with ak, = (E,, E,, 0) defining the plane of
polarisation. This is required in order to apply the flat sky approximation later on (Equation
B.50). Polarisation is conventionally described via the Stokes parameters, I,Q,U, and V,

defined as,

I=E;
Q = E2 cos 23 cos 20
U = E3 cos 23 sin 21

V = Esin2p,

with orientation angle 1, and axial ration § describing the ellipticity of the polarisation (i.e.
B = £7 for circular polarisation or 8 = 0 for a plane wave). An alternate parameterisation for

the Stokes parameters is,

[=E+E; (B.15)
Q=E.-E; (B.16)
U = 2E,E, cos(¢. — ¢,) (B.17)
V = 2E,E,sin(¢, — ¢y), (B.18)
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which can be obtained using,

E = aEye™t k), (B.19)

Both parameterisations are equivalent and satisfy 1?2 = Q? + U? 4+ V2. Later on, in order to
describe the sampling pattern of the telescope, we use the Fourier transform of the sky’s U-V

plane. As well as taking advantage of what’s called the ‘cross polar product’, defined as,

< RR*> < RL*> I+VvV Q+:U
<LR*> <LL*> Q—iU I-V

(B.20)

where R and L are an orthogonal basis, representing the right and left handed description of

circular polarisation (used for aperture synthesis).

Now that we have an antenna and the theory to analyse it, we look at the quality of signal that
can be detected. The fundamental uncertainty of any measurement cannot be smaller than the
noise within the system. To reduce this uncertainty the observation time, ., effects the total

noise as, (Btons) 2, where B is the bandwidth (discussed in more detail in Section 1.3.7).

Typically the power in noise, N, is modelled as a Gaussian random probability density function,

_yv2
e 202

N = (B.21)

)
o\ 2w

where, V', is voltage. We are only capable of estimating the power spectrum, with errors
dictated by our finite observation. To do this we need to define the auto-correlation as (from
t" =0 at time 7),

t/2

Ri(1) = / vtV (' + 7)dt’, (B.22)

—t/2

i.e. for an instantaneous measurement (7 = 0), we are left with the Gaussian random noise
variance averaged across the instrument (R — (02)). Assuming this time span is long enough,
our Gaussian random noise will not correlate with itself. Using this, we can take the Fourier

transform (tilde) to produce the signal power spectrum as,
R(t) = P,. (B.23)

A typical linear receiver will consist only of an ideal amplifier and a passive filter. Here, we
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write the auto-correlation as a Dirac d-function, R(7) — ¢2§(t). However we have not yet
considered constraints from the bandwidth. We define the impedances with the input load,
Z;, and output load, Z,. For our simple apparatus the impedances are matched, Z; = Z;j. To
follow suite, we define the signal amplitude, V;(t), the output amplitude, V4(¢), and the input
filter amplification, V;(t). Allowing us to write the gain as,

Wz

G— V_ZQZ.

(B.24)

We can relate the signal and output via the definition of a transfer function, H(v) which ac-
counts for undesired phase shifts in the signal. |H| = 1 for a complex H is desired in order
to minimise signal loss and allow an accurate Fourier transform to be performed. Typically
the response of the instrument will result in a ringing structure or beat pattern. The resonant
frequency, 1 of this beat pattern depends on the bandwidth as, B ~ v, hence a larger band-
width will reduce the length of the ringing and provide a more accurate measurement. A time

averaged power, P, is needed, as we can unfortunately never have an infinitely wide bandwidth,

t/2

(P) = / [Vo]2dt. (B.25)

—t/2

By averaging, we can approximate the power spectrum Sy with, N, the detector response for a

white noise signal to give,

Py(v) = N25(v) + 2P(vo) * H(vp). (B.26)

The quality of filter can be associated with the response to unit impulses H (v;), which requires
a response time 7 (the same lag as used in Equation B.22). We can now write the uncertainty

in measurement, AT, for measuring the system noise temperature, T} as,

15

AT = .
VBT

(B.27)

Maximising the bandwidth and response time is necessary for a good measurement (minimising
AT). This is obvious for the, B, but for 7 the subtlety is that we want to maximise the
correlation in the output with 7 in order to measure the power spectrum accurately. The longer

this lag, the longer the instrument has to make the measurement, and the more precisely it can
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be done.

The system noise temperature, T, can be broken down for analysis into constituent parts,
T,=T.+T, +1T,, (B.28)

where T;, comes from the receiver itself (noise); Ti. from the desired (celestial) source; and T,
accounts for the rest, i.e. unwanted observations from foreground objects, atmospheric effects,
as well as system losses. Typically, pointing the radiometer towards and away from the the

desired source is enough to calibrate the system well enough to produce a > 50 detection.

Achieving this in practice is difficult. An ideal radiometer will have an rms (root mean square)
measurement following Equation B.27 (assuming units of temperature). To generalise this we

write the flux sensitivity as,
2kgT,

AS =22
Aeff Br

(B.29)

where we made use of %, the received power density per polarisation. A conventional technique,
applied in what are called ‘heterodyne’ receivers, is to switch between a black body reference
within the device and the detector. The ‘Dicke’ radiometer shown in Figure B.1 is a typical
example if this in application, where T, is the antenna temperature and T,.; the temperature
from the reference load, which is typically a familiar resistor. Phase sensitivity of the detector
is interpreted through, T,.: if T, = T, there is no signal; T, > T, is a positive detection;

and T, < T is a detection with opposite sign.

We now have the basics for a simple radiometer, which can be split largely into two categories:

e Spectrometer - measuring spectra directly (e.g. measuring the intensity per frequency for

the radio lobes of galaxy jets).

e Interferometer - or cross correlation radiometry, which uses interference (e.g. inferring an

object from its shadow with Fraunhofer diffraction).

Generally the simplest ‘digital auto-correlation spectrometer’ needs to be satisfied by two con-
cepts. The first of these is the Nyquist sampling criterion. This is required to validate our noise
assumptions throughout this section as, relating bandwidth to the frequency of measurements

as Unyquist = 2B. Secondly we must try to hide the discrete nature of the measurement in
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Figure B.1: A simplistic Dicke radiometer with a switch between the antenna, collecting the
signal, and a known reference load. T, is the antenna temperature and 7T,. the temperature
of the reference load. The Dicke radiometer or Dicke switch alternately measures the antenna
and reference load in order to reduce systematic from the receiver itself.

order to perform a successful Fourier transform. Therefore we rewrite the correlation function

in Equation B.22 as,
SV w(t)u(t; 4+ nét)
M Y

R, = (B.30)

where M samples, 6t apart, are taken. The Van Vleck approximation is conventionally used
to approximate the Gaussian noise per bit, Ry ,. Using the first term of the summation in

Equation B.30 denoted with the superscript (1), we write,

T

Ry’
Ry = R(0) sin (” ) . (B.31)

If done correctly most of the signal will be contained in the first mode of the sum, meaning
this will provide a good approximation. A discrete power spectrum is now obtained, and its
quality will depend on the number of samples used. To further the effectiveness of this method,
a window function, w can be used to reduced discretisation errors e.g. 22% of a sinc function

will remain in terms ¢ > 1 of Equation B.30. The result is defined via a convolution as,
Ry (1) = /w(T’)R(T' + 7)d7’. (B.32)

The Hanning function, wy = 1 + cos(277’), is the typical window function of choice and is

capable of reducing the aforementioned sinc function losses down to 2.6%.

The simplest interferometer is the cross correlation between two radio receivers, which we will



216 Appendix B. Introductory Radio Astronomy

look at in detail in Section B.1.2. Here we generalise the results we have so far for this case.
Its output will be a complex number, containing angular as well as spectral information. If we
have signal from two antennae, x(t) and y(t), they can be aligned to capture the polarisation
information. The distance between these antenna, or baseline, represents a projection into the
U-V plane (defined in Equations B.11 or B.15). Their cross correlation function is defined as,

Ryy = a(t) @ y(t), (B.33)

)

introducing ® in place of Equation B.22. As before, this is Fourier transformed for their power
spectrum, S, ,(7). In practice interferometers will use lots of antennae which are combined to
produce a cross-correlation data set, R, ,(u,v,7) in U-V space, which is Fourier transformed
to S(0, ¢,v), giving the angular distribution of brightness per frequency for the desired source.
What we have learned in Equation B.23 can be transferred to larger instruments as each antenna
is a radiometer, requiring its own auto-correlation analysis. With the use of geometric means

we can write the noise on interferometer measurements as,

T T
AS, ., = 2k L ) B.34
Sy B\/QAeﬁ,1Aeﬁ,2B7' (B-34)

Similarly, the discretisation of our data cube (analogous to Equation B.30) is represented as,

Zj]\/il vz (t5)vy(t; + ndt)

7 , (B.35)

Raxy,n =

bringing us up-to-date for digital cross-correlation performance.

B.1.2 Radio telescopes

For use in astronomy we need to use the radio receiver as part of a telescope. Radio waves
are typically focused with a parabolic receiver, or dish, with focal length f, aperture opening
of diameter D, and focal point % away from the dish. When the wavelength is long enough,
the ground can be approximated as the parabolic receiver. For a dish, the telescope can be
easily aimed at objects. When antennae are placed on the ground, as is often the case for an
interferometer, this behaviour can be mimicked as part of the correlation timing analysis. A

phase delay is added to one side and subtracted from the other with what is known as the
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Butler matrix. This precisely reproduces the tilted dish scenario with ground based antennae.

The beam is analysed from the geometry of the telescope in the small angle approximation.
The deviation of current along a given aperture (or grading), I(z,y), for a given wavelength,

A, produces the radiation pattern,

F(0,6) = F.(0, ) / A X (g, )dY, (B.36)

where ) represents the solid angle with conventional polar components ¢ and ¢, or x and
y. Polarisation and effects of the instrument are bundled into F,. The radiation pattern
and aperture distribution are related via Fourier transform. So is the power gain and auto-

correlation of the of the aperture current density distribution,

GO,¢)=1®1. (B.37)

The efficiency of a receiver can be expressed as the ratio of observed area Agy(cos @, cos @), to
the geometrical size of the opening. If S(cos @, cos ¢), represents the sky brightness distribution,

the received power in Equation B.5 is generalised to,
P, = / B - Agy dS2, (B.38)
4
which in terms of brightness and antenna temperatures is,

T, = A2 / Ty Agey A2 (B.39)
47

Single aperture telescopes are useful in producing sky maps (like those used in Section A.2).

The loss in detail of scanning the sky be expressed in terms of Fourier coefficients as,
T.=T, A, (B.40)

which is conventionally performed in units of . A(U, V') is known as the telescope transfer
function, e.g. the behaviour of a grating array is obtained by the sum of Dirac J-functions (one

for each small aperture).

We are now equipped to consider the simple two antenna interferometer. With radio frequencies,
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single-aperture telescopes suffer badly from diffraction effects. The interferometer is therefore
the tool of choice for observing radio waves. Using two detectors for interferometry is akin to
Young’s double slit experiment for optical wavelengths - fringe amplitude is desired over total
power. To start we must define the direction of observation (along the antennae), a, and the
baseline vector between the antenna, b. The timing lag between the telescopes due to the

geometry of their aim, 7, is,
b-

C

Q>

(B.41)

Ty =

For a monochromatic source of frequency, v, the two antenna receivers will output voltages,
x(t) = Vi cos(2mvt) and y(t) = Vi cos(2mvt — 7). Using B.33 and time averaging the voltages
we obtain,

Ry (75) = Agy(a)S cos (2mvTy) . (B.42)

Expressing b in units of wavelength (b,) and applying the small angle approximation we define

the cross-spectrum power density as,

Il
N

Suy(V) = T = Agey(a)Sel2mPrs), (B.43)

This is the complex analogue of Equation B.42 and whether this is done in time or frequency
units depends on convenience. Now to include the interferometer’s ability to point, we use a

reference direction or tracking centre, ay,
a=ag+o0, (B.44)

where ¢ must be small (and orthogonal to ay) in order for our geometrical approximations
to hold. The telescope time delay (7;, which has been set to zero until now) can be simply
adjusted in reference to this centre providing an approximate switch between the effective area
of our instrument, A(a), and the observed area on the sky, Aq,. The source will also have an
associated bandwidth, By, which will effect the beam pattern. Assuming the flux varies slowly

in the field of view and the

throughout the bandwidth (centred on 1p); as long as 6, ¢ < Beon
single frequency response (Equation B.43) is generalised by integrating over the range of By to
produce,

Sey(v0,a) = A1, a)S (1) Besine[ Bs(1y — 7;)]e” 2707, (B.45)

Notice the fringe oscillations exponentially reduce the delay beam term (sinc function) if this
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delay is at least 1/B;. The tracking centre is often chosen so its delay is matched to that of the

instrument for this reason. Within this limit, the complex visibility is defined as,
Vij = Say(byj - ag — ), (B.46)

where ¢ and j represent any pair of antenna in a larger array, allowing the techniques learned
here to be applied to interferometry with more than two dipoles. For an array of N antenna,
there will be a set of N(N — 1)/2 visibility measurements. Using Equation B.45 the visibility

are expressed as,

Vij = / B, At (3> Q) (B.47)
A

A0
where deviations from the above methodology are from adjusting the units (i.e. using a relative
antenna area normalised to the tracking centre, and Bs will integrate to 1.). The flux (B,,
assumed to be a point source until now) is integrated over solid angle to capture the finite
size of the source. The amplitude and phase of the complex visibility are the desirable objects
for an interferometric observer. They are recorded directly from antennae as time-stamped
voltages which contain all of the instrument’s information. Conventionally coordinates (I, m, n)

are defined as the cosines of a so that w is perpendicular to the U-V plane as,

Vij(ag, u,v) = / At (E) B, (1, m)e?milultvmtwn) gy (B.48)
47

ap

Since we are already using small angles and small deviations from the tracking centre, it is not

extreme to assume that the sky is flat too (w =~ 0). We can therefore write

dld
A0 ~ dfd = —= (B.49)
V1—12—m?
finally giving,
V(u,v) ~ // B(x, y)e2™ o) dady, (B.50)
Source
conventionally known as the flat sky approximation.
To summarise,
V(u,v) = B(z,y). (B.51)

i.e. the visibility measurements of an interferometer are desirable because they are the Fourier

transform of the observed source’s flux. Interferometry is a powerful technique and this is
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an introduction to its foundation. In order to explore further the astronomical application in
detail, a variety of intricacies are required. To briefly touch on a few examples: the curvature of
the earth must be taken into account in the time delay calculations if long enough baselines are
used; or combining non identical radiometer types requires better mapping of the geometrical
means used in Equation B.34; and most modern low redshift interferometers require relaxing the
flat sky approximation. The rotation of the earth can even be intricately mapped to better fill
the U-V data cube, effectively increasing the number of unique baselines between the antennae.
For more information on radio observations please see Burke & Graham-Smith (2002) or e.g.

Wilson et al. (2013) and references there-in.

B.2 Detecting the 21cm signal

To map the spin-flip background we ideally must observe the redshifted 21cm brightness tem-
perature between redshifts z € [6,50] (Loeb & Furlanetto, 2013). This requires observations in
the range v € [30,200]MHz. The lower end of this range is limited by the ionosphere, which
becomes opaque above this frequency. To measure the 21lcm signal successfully, the radio
sources in the astrophysical foreground must be accounted for accurately. At best one hopes

the astrophysical foregrounds to be,

Too~180 (2 ) 'k B.52
sky ™ 80(180MHz> ’ (B.52)

where this observation would be aimed at a ‘quiet’ patch of high latitude sky!.

Successful detection requires the system (whose temperature is obtained through a resistor),
and the signal power to be matched. Respectively, these are defined as kT, B and B, A.gB/2.

The sensitivity of our detector can therefore be defined as K,,

Ta Aeff
- B.53
S, 2kp’ ( )

K,

and the signal-to-noise estimates are typically T, /T,s. Using Equation B.23 we are able to

!The intensity of the cosmological 21cm signal, compared to the radio emission of HI in the milky way has
been given optical analogies to help intuitively understand the problem - my favourite being from one of N.
Barry’s talks, ‘Its like detecting a light bulb in the centre of a sports stadium, with that stadium being fully lit,
and on Pluto’. The talk also alluded to the latest MWA data measurement being sensitive enough to pick up
TV signals reflected from the bottom of aeroplanes.
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ensure the Gaussian noise is diminished by having the observation time ., > 7 so that the

auto-correlation cycles are negligible. We are therefore left with the error on our source, og, as,

T,

S — B.54
78 Ka Vv Btobs ( )
From geometrical optics we know,
A
Qmin ~ b_7 (B55)

where the best angular resolution, 6;,, is dependent on the maximum baseline magnitude,
bmax. We can now write the noise contribution to our receiver temperature as,
b2 T,

AT, = —max7sys B.56
Aeff,Tot V Btobs ( )

where Aqg o refers to the effective observing area of the total instrument.

Detecting only the 21cm signal (67, ~ 10mK) requires overcoming foregrounds that are ~ 10*
times brighter than the desired signal, even in a ‘quiet’ patch of sky. Having 7%,s matched with

Ty, and following the above prescription, we can obtain,

1+2 20 Btobs B
AT, ~ 0. K B.
n.Global ~ 0.6 ( 10 ) (Mhz - mkK, (B.57)

N

where the redshift dependency is inputted via the observed wavelength A = 21lem(1 + z). To

generalise to an interferometer we write,

Atot bmax ? 1+2z 20 Btobs N
ATn atial ~ 2 K. B.
Spatial (1O5m2> <O.21m> ( 10 ) Mhz hr) (B:58)

In a perfect instrument we could calculate the visibilities from this and, via Equation B.51,

[N

we could obtain a tomographic image of the EoR and cosmic dawn simply with a Fourier
transform. Unfortunately instruments can never be perfect. ‘Gain matching’ is the real puzzle
that needs solving for accurate detection of the cosmological 21cm signal, and it is particularly
tricky to ensure the instrument gain is tuned only to detect contributions from the 21cm signal.
It is comparatively easy to match these temperature equations theoretically, but the intricate
thermodynamics of these detectors is beyond the scope of this work. Not to mention that all of

the temperature contributions are oscillatory in nature, however the cosmological 21cm signal’s
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Figure B.2: The typical limitations of instruments like PAPER and MWA. The configuration of
the array must be thought through carefully to balance U-V coverage and the signal-to-noise on
any pair of voltage measurements. This figure is taken from Liu et al. (2014a) with permission.

slowly varying property may help here. This is very much an active area of research.

B.2.1 Modelling a real interferometer: The foreground wedge

The chromatic effects from the nature of the instrument (Section B.1.1) and the large fore-
grounds that must be overcome (Section B.2) combine to form a ‘wedge’ shape in the conven-
tionally used cylindrical Fourier space. Figure B.2 shows the ‘window’ within which interfer-
ometers try to observe the EoR 21cm signal. In this section we guide its derivation as it is
essential in understanding how foreground noise is treated in Section 1.3.7. This is where the

two dominant techniques of foreground mitigation become involved:

e foreground suppression - aimed at observing within the wedge;

e foreground avoidance - the wedge is ignored and only k-modes outside of it are used.

These are discussed in more detail in Section B.2.3.
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To derive the wedge we must mention quadratic estimator formalism, which in essence is a least
squares fit of the state of our instrument via the continuity of noise in the multiple processes.
This technique is utilised in CMB and Galaxy survey literature (Tegmark, 1997) and has been
brought accross to the context of the 2lecm power spectrum (Bond et al., 1998; Dillon et al.,
2013). The full detailed derivation goes beyond the scope of this text, please see (Liu et al.,
2014a) for more detail.

We can choose to analyse the visibilities with conventional trick known as the delay transform.

Let us rewrite Equation B.48 emphasising the angular dependence of the observation as,

V(b,v) = / 1(0,v)Acg (g) e~ 0q), (B.59)

0

where the vector a has been substituted for its angular counterpart 8, and the flat-sky ap-
proximation has not yet been used. We will see that the foreground wedge will emerge from
the v product in the exponent of Equation B.59. We also must introduce the limitations of
the banded nature of the measurement which we can do with a function, f, that depends on
relative frequencies and the bandwidth, B. The response for each discrete frequency channel is

contained within f, allowing Equation B.59 to be written as,

V(b,v) = / / 1(0,V) A (%) f (”; Y ) e—i%”c'bf’dg%. (B.60)

The previous two equations are a direct result of the experimental machinery. From here we
choose to move into delay space to ease the analysis. This is defined as the Fourier transform of
the frequency measured by each baseline. Continuing from Equation B.60 the delay-transform

is written as,

Vij(b,7) = /V(b, v)$ <V ;VO) ™ dy, (B.61)

where ¢ is known as the tapering function or band-pass which we assume to be a Gaussian
normalised to ¢(0) = 1 for simplicity?. B is the bandwidth within which we would like to know

the power spectrum and it has a central frequency vj.

Now we apply whats known as the ‘delay-space approximation’, i.e. where w =~ 7. Also at

2For the interested reader some examples of real choices for ¢ are the Blackman-Harris function or the
Blackman-Nuttal function (both are weighted sums of cosines).
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u = vo|b|/c we can use [V (b, 7)[> ~ P, enabling us to write,

P(u,w) o< Ay (%,) , (B.62)

where the power spectrum is proportional to the primary beam (in the delay space approxima-
tion). Since the beam has a finite width (for sake of argument this can be the horizon at best)
there will always be value of w that allows the power spectrum measurement to rise above the

instrumental noise. We therefore have the line,

0
w="u, (B.63)
Yo

that dictates a sharp boundary between the measured power spectrum and the limitations of
not only the instrument, but the directional nature of the observing strategy itself. Rewriting

Equation B.63 from angular and spectral coordinates into Fourier spatial wavenumbers gives,

. H()E(Z)Dcao

= 12 ki, (B.64)

where ag represents our previous conventions for the characteristic beam width (Equation B.44).
Equation B.64 shows that below a threshold defined by the underlying cosmology, a certain
portion of the observation will always be dominated by the foregrounds because the frequency
and angular nature of the observation is not orthogonal. In other words the the mode mixing
from the exponent in Equation B.48 can be interpreted as a linear relationship between the line-
of-sight and antenna baseline Fourier modes. Below this line we expect observational trouble
due to the limitations of our power spectrum estimator, the design of the instrument, and

limitations from the bandwidth.

To show that this is valid is a lengthy process. Briefly, the information obtained per delay
mode is able to span accross multiple frequency modes as a function of increasing baseline. We
refer the interested reader to the full derivation in Liu et al. (2014a) for the intricate details.
Please note that the short derivation we have provided is not strictly true however it provides

significantly more intuition than the full derivation whilst obtaining the same analytic result.

By assuming that the 2lcm power spectrum varies slowly accross small scales, various PS

estimator approximations can increase the size of the EoR window increasing the quality of
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measurement (Liu et al., 2014b). Constructing instruments that require narrow window func-
tions can reduce the leakage of foregrounds across the Fourier plane. Since this is was what
caused the foreground wedge in the first place, there is hope for measurement inside the fore-
ground wedge with well thought through instrumental design. Both foreground signal and

thermal noise must be accounted for if successful detection of the 21cm signal is to be made.

B.2.2 The current state of 21cm radio observations

A number of experiments are trying to detect either the globally averaged 21cm signal, with a
radiometer; or the 21cm powers spectrum with interferometers. Both measuring the 21cm radi-
ation as a spectral distortion against the CMB back-light. A first measurement of an absorption
signal in the CMB radiation at 78 MHz has been claimed by the EDGES (Experiment to Detect
the Global EoR Signature®) team (Bowman et al., 2018) in February 2018. This measurement
from the sky-averaged radio spectrum could correspond to a 21cm absorption signal at z &~ 17
(Bowman et al., 2018), however it has fallen under particular scrutiny. The absorption trough
is significantly deeper than previously theorised (Fialkov et al., 2014a). Either the radio back-
ground is brighter (Fialkov & Barkana, 2019); the hydrogen is colder e.g. Barkana (2018); or
the measurement has incorrectly dealt with the observed foregrounds (Hills et al., 2018). Each
argument has a promising case but only in cross-checking the measurement will we know for
sure. REACH (The Radio Experiment for the Analysis of Cosmic Hydrogen*), SARAS (Singh
et al. (2018) Shaped Antenna measurement of the background RAdio Spectrum®), and LEDA
(Large-aperture Experiment to detect the Dark Ages®) all hope to do this in the near future.
Interferometer measurements in the 75-100 MHz band are underway, however poor knowledge
of extended radio sources and the large fields of view at this redshift do not lean in favour of

providing stand-alone measurement with current instruments.

For the 21lcm power spectrum at higher frequencies, LOFAR is providing upper limit mea-
surements: at z ~ 9.1 there is a (2 o) upper limits of 5329 mk® for k = 0.075 hMpc ™'
(Mertens et al., 2020); and within the redshift range 2 = 9.6 — 10.6 the upper bound of
(79.6 mk)? at k = 0.053 h cMpc~! with a 13 hour observation of the NCP field (Patil et al.,

3https:/ /www.haystack.mit.edu/ast /arrays/Edges/
4https:/ /www.kicc.cam.ac.uk /projects /reach
Shttp://www.rri.res.in/DISTORTION /saras.html
Shttp:/ /www.tauceti.caltech.edu/leda/
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2017). MWA (Murchison Widefield Array’) currently support upper limits of 1.8 x 10? mK?
for k = 0.14 hMpc™! at z = 6.5 (Trott et al., 2020); and 3.9 x 10° mK? for k = 0.20hMpc "
at z = 7 using only 21 hrs (Barry et al., 2019). Both show promise in beating down sources of
noise, approaching the precision necessary for the data. Although no detection has been made,
these can be used to put limits on the fiducial parameters of favoured theoretical models in a
parameter estimation framework (Greig et al., 2020a,b). Other interferometers such as GMRT
(Giant Metre-wave Radio Telescope ®) and PAPER (Precicion Array for Probing the Epoch of
Reionization?) are also working towards this endeavour showing marginally worse precision to
those above (Paciga et al., 2013; Ali et al., 2015). The future of radio telescope design is led
with HERA and the SKA. In particular the Square Kilometre Array will be capable of tomo-
graphically mapping primordial hydrogen from z = 6 to 27 (Mellema et al., 2013; Koopmans
et al., 2015). Its sensitivity is so impressive that it would be able to detect a mobile phone
within 10 light years. Already the prototype mid frequency dishes in ASKAP (Australian SKA
Pathfinder'?), are building the sky-map for SKA with unprecedented precision as well as test-
ing the technology. It has already discovered previously unknown radio sources which need
adding to the skymaps (Norris et al., 2020) as well as finding that the polarisation structure
of galactic radio lobes of stretch out (~ kpc) further than previously thought (Anderson et al.,
2018). The main challenge with detecting the cosmological 21cm for the FoR is due to fore-
ground sources. As discussed in Section B.2 foreground-to-signal ratios are of at least ~ 1000
(Barry et al., 2019). Although the current limits are still several orders of magnitude larger
than the theorised power spectra, they pave the way for the first observations of the EoR.
Over time the foregrounds will be better observed, the noise on the observation will reduce
and the technology in the new generation of radio telescope will improve. Plans for a space
bound global signal detection experiment already exist in the form of The Dark Ages Radio
Explorer (DARE!"). This would remove ionospheric concerns and reduce the human sourced
radio interference dramatically. If large scale projects such as the SKA are a success, building
a similar radio interferometer on the moon would allow the probing of z ~ [6,100] and could
lead to some major insights in the evolution of cosmological density fields (Burke, 1985; Lazio

et al., 2009). The prospect of a first confirmed 21cm detection is on the horizon. At this point

"http:/ /www.mwatelescope.org

8http://gmrt.ncra.tifr.res.in

9https://public.nrao.edu/gallery /paper/
Ohttps: / /www.csiro.au/en/Research/Facilities/ ATNF /ASKAP
Hhttps:/ /www.colorado.edu/dark-ages-radio-explorer/
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in time it is difficult to predict whether the fundamental limitations of the instruments will
prevent a detection (Trott & Pober, 2019). More data will reduce systematic error up to a
point, and depending on the redshift chosen, lack of foreground sources, and/or the strength
of signal may act in our advantage. Nevertheless in order to prepare successful data analysis

techniques in time for the completion of the SKA and HERA, simulated data must be used.

B.2.3 Alternate telescope simulations

Throughout the main text we implement 21CMSENSE when simulating telescope errors on mock
observations. However, the methodology behind 21CMSENSE (discussed in Section 1.3.7) has a
few pitfalls. Firstly it only provides the power spectrum while a real radio telescope, which has
access to the raw visibility data, can calculate any desired statistic!?. Secondly, the 21CMSENSE
code iterates per coeval cube and therefore suffers from the light-cone effect. This is discussed
further in Section 1.3.4, when we move from observing the 21cm power spectrum with coeval
cubes to the light-cone; and in Chapter 5, when we attempt to remedy detail lost through

box-car sampling with the Morlet power spectrum.

Foreground avoidance methods (like 21CMSENSE) are obviously not ideal since the modes in
the foreground wedge are lost. Foreground suppression aims to observe within the wedge via a
number of methods and is an active area of research. Promise has been shown in developing
a sky-map, which is then subtracted from the visibility measurements along with telescope
noise. Application of 21CMMC-FG (Nasirudin et al., 2020) within the framework of 21cMMC
(discussed in Section 1.3) shows that parameter estimation results can be skewed by up to 5o if
foregrounds are not accurately predicted. An interesting practical example of this foreground
removal technique is used by LOFAR. The NCP Sky Model Patil et al. (2017) is a map of
the known astrophysical sources constructed around the North Celestial Pole. With every
observation the observed sky is better understood and the observational capabilities of LOFAR
are iteratively increased. Eventually, LOFAR aims to observe the 21cm power spectrum directly

within the foreground wedge.

Most foreground avoidance relies heavily on the density of U-V space measurements which are

12Using visibility measurements directly can also be used in astro-particle physics. Radio telescopes can
directly measure Cerenkov radiation caused by cosmic rays entering the Earth’s atmosphere (Schellart et al.,
2013).
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to be interpolated. The modes at extreme ends of the measurement tend to be the ones most
contaminated, and since they are the anchor points for the interpolation they can have the
most effect in skewing the signal reconstruction. Including these modes incorrectly can lead
to changes in the smoothness of the interpolated Fourier space leading to precisely inaccurate
results. A full analysis of these techniques is beyond the scope of this work. To briefly sum-
marise, avoidance seems to favour small spatial scales (k. > 0.6 Mpc™!) while suppression
(when using simple frequency independent models) favours observing large line-of-sight scales
(small k) (Chapman et al., 2014). The instrumental effects are often largest at large £, modes.
For a full discussion of foreground removal techniques please see e.g. Chapman et al. (2015)

and Chapman et al. (2016).

Foreground cleaning is required to separate out the 21cm signal and is also an active area of
research. This is particularly tricky because of the mixing proportions of the signal, made up
from the noise, foreground sources, and the cosmological signal. The latter of these is unknown
and adds variety in the underlying signal structure, spatial distribution and amplitude. A
promising technique called global morphological component analysis (GMCA) is currently able
to recover the 21cm signal from telescope noise with enough precision to create tomographic
imaging (Chapman et al., 2013). GMCA is a Bayesian method that takes advantage of the
non-Gaussian nature of the 21cm signal and the inherently Gaussian nature of the telescope
noise. Noise structure in the signal is identified by its sparse contributions to the specific Fourier
bases. This method is applicable to all but the smallest spacial scales (< 1Mpc) and doesn’t
require parameterisation, however there is the potential for signal loss if cosmological signal
is mistaken to be noise. For a fully specified simulation of SKA interferometry as well as a
sky model, the interested reader should turn to OSKAR, The Oxford SKA Radio telescope
simulator (Dulwich et al., 2009), however it has a dramatically large simulation time. Deeper

analysis of this is beyond the scope of this text.



Appendix C

Statistical Analyses

This appendix contains the excess statistical material that introduces and supplements the
Bayesian analyses presented in Chapter 1. Bayesian parameter and model selection are both
used heavily in this work. Here we describe the motivation for Bayesian analyses and how to

implement them via MCMC algorithms.

We begin discussing Bayesian and frequentist statistical analyses, including the derivation of
Bayes theorem with qualitative and quantitative examples in Section C.1. We then look at
MCMC methods and how they are implemented via two introductory algorithms - nested sam-
pling and Metropolis-Hastings in Section C.2. These are relevant respectively to the workings
of MULTINEST and EMCEE which are introduced in Chapter 1. One or both of these are used
in every subsequent chapter. Section C.3.1 contains some preliminary tests for MULTINEST;
for EMCEE, these were note required as the framework is already established in the form of
21cMMC. We also present a convergence check for each of these algorithms in Section C.3.2.
Finally we look at how statistics are tied in with astrophysical measurements in Section C.4,
i.e. to make sense of the segue to and from this appendix. Particular attention is applied to

the power spectrum as the Fourier transform of a two point correlation function.

C.1 Introduction

Large amounts of this opening section have been based on the Imperial Centre for Inference

& Cosmology summer school (ICIC) for which I have both been a student and demonstrator.
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More detail can be found online at
https://www.imperial.ac.uk /astrophysics /centre-for-inference-and-cosmology /
seminars-and-events /data-analysis-workshops/, or in the texts Jaynes (2003); Hobson et al.

(2009); Sivia & Skilling (2006).

C.1.1 Frequentist or Bayesian?

Typically problems in physics are approached with forward modelling (also known as using
a generative model). Outcomes are predicted, assuming a combination of physical processes
contribute. Applying Bayes theorem can be thought of as the backwards version of this. Given
data, we try to infer things about how the data was made. This can be performed in terms
of parameter inference, or model selection. If an arbitrary data set is being fit, for example,
y = mx + ¢, may be an adequate model but the values of m and ¢ need to be pinned down with
parameter estimation. Also, perhaps y = ga? + ma + c fits better, or the added parameter, ¢

is unnecessary - either way we can quantify their performance with model selection.

The key difference between frequentist and Bayesian statistics is the interpretation of probabil-
ity. A frequentist requires infinitely long trials to describe the relative frequency of outcomes.
Given prior knowledge, a Bayesian expresses probabilities as a degree of belief. In both cases
detailed information is gained about a desired statistic and its spread (e.g. a mean, p and
variance, ¢%). Our aim in either case is to minimise the distance of our theoretical model to

the data.

C.1.2 Bayes theorem

In order to use Bayes’ theorem we must derive it, requiring a brief summary of some probability
rules. Firstly, p(z) is defined as the probability of an event, x, occurring, and p(Z) represents
the same event z not occurring. The sum rule is then defined as, p(z) + p(z) = 1. Taking
the sum rule further a probability p(xz) must be normalised: [p(zx)dz = 1 (also true for
probability density functions). For combining probabilistic events we have the product rule:
p(z,y) = p(x|y)p(y), where p(x|y) represents the probability that event x has happened given

event y has occurred in the past. This encodes the possible correlation between the two events,
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if © & y are independent for example, p(z|y) = p(x) and p(x,y) = p(x)p(y). Each parameter
in a joint probability can be marginalised as: p(x) = [ p(x,y)dy. By symmetry, we must have
p(z,y) = p(y, x) and by rearranging both sides via the product rule we come to Bayes theorem

(Bayes & Price, 1763),
p(y|x)p(:c)' (C.1)

p(zly) = o)

C.1.3 The normal distribution and the central limit theorem

In general most (but not all) applications of probability will follow a Gaussian, or normal
distribution. To show this, consider a one dimensional random variable. We can estimate a
desired location [ from a set of (n + 1) observations, [z, ..., Z;, ..., T,]. Assuming the sampling
process is independent between samples it can be factorised: p(z;|l) = p(zo|l)...p(x;|l)...p(x,|1),
is the likelihood distribution. Since we desire the maxima, we can take a logarithm without

losing any information,

" 0
; alogp(yci\l) = 0. (C.2)

The most likely (maximum likelihood) estimate for [, labelled [, will satisfy Equation C.2. It
may seem obvious to take the arithmetic mean, = > jx;/(n+1), for the estimate [ but this
does not solve Equation C.2 by substitution. To remedy this we can consider a set in which only
xg is nonzero. Since these are distances, we can use the change of variables logp(x;|l) = f(l—x;),

and also d = [ — x; to give,
N R 0
Z g/ =2 =35, /(d) =0, (C.3)

The set under consideration is then expressed by, =g = (n +1)2 = (n + 1)d = (n + 1)I, and
Tizo = 0 (i.e. the whole length [ is represented as the first sample). With the mean [=d= l

and | — 29 = —ncz, this gives,

d(—nd) N a(d)

2l = =0, (C4)

for n > 0. Using n = 1, f must be asymmetric, and the only possible solutions to these

simultaneous equations is linear: f(d) = 1¢;(z — 1)® + ¢, with constants ¢; and ¢,. Finally,
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normalising and returning to our original coordinates gives the desired Gaussian,

lalh) = e T (C.5)

This is the Gauss derivation of the normal distribution (Gauss, 1809). However, since we have
used a special data set a more rigorous derivation is required to prove this distribution is true
in general. Despite this the principles here remain true: if Equation C.5 satisfies the data,
then the peak of the likelihood always has the unique solution of being equal of the sample
mean. We have shown that for the maximum likelihood point to be the mean the sampling
distribution must be Equation C.5, with freedom only in the scale, . If this is not the case,
it is likely that the samples are not independent (the first assumption) or there are simply not
enough samples. We take advantage of this in the particular form of the likelihood statistic

used later on (Section 1.4.2) when detailed application of Bayesian theory is looked at.

To explain the central limit theorem we must first define the characteristic function?!,

= / N fy)e™vdy, (C.6)

where f(y) is the pdf of data, y. If we now consider N independent and identically distributed
samples drawn as x; ~ (i, 0?). We can transform this set of data by, y; = (x; — u)/0o, so that
the sample mean becomes standardised with (u = 0,02 = 1) as

Nx—Np
AN — —————F—

(C.7)

where zy represents the standardised sample mean. By taking the characteristic functions for

zn and N samples of y, we can write,

bnla) = [0, (%)]N (©38)

where we have expanded the exponential in Equation C.6. We also know that §y = 0 and

L Characteristic functions are often used to easily generate the statistical moments.
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y2 = o2 + §? = 1 due to our transformation from z;. We therefore have,

o2

i [ (@) = ¢ %, (C.9)

where the large N causes moments of order, m, to vanish above m > 2 (i.e. terms of order
higher than, yAQ, vanish due to the, Nz, on the denominator). Finally we use Equations C.9

and C.6 to infer the form of the pdf as,

N—oo

lim [zN = M] =N(u=0,0>=1), (C.10)

where N is the normal distribution (similar to the form derived in Equation C.5).

We have found that as N — oo our distribution of independent random variables, x;, has
become the normal distribution with mean p and standard deviation o. Hence for large data
sets, samples that are independent and from identical distributions can be entirely represented
by a mean and variance through the normal distribution. This is known as the central limit

theorem (CLT) and is regularly used in statistics (Jaynes, 2003).

C.1.4 Qualitative examples

Both statistical methods require a fundamental assumption: in frequentist scenarios this is the
hypothesis which should be tested; for the Bayesian it is prior knowledge of the scenario. To
approach any problem, one must be equipped with the correct toolbox. Using Bayesian and
frequentist methods outside of their respective comfort zones can lead to drastic misinterpre-

tation.

Cosmology is an obvious place to apply a Bayesian approach. Examples include, Heavens et al.
(2017b) using Bayesian model selection to show that the A — CDM cosmological model is the
most likely fit to the Planck CMB data. We look further into this methodology in Chapter 2.

Famously within physics, the BICEP and BICEP-2 experiments? lost the Nobel prize by mis-
applying Bayes theorem (BICEP2 Collaboration et al., 2014). They claimed first evidence of

cosmic inflation with the effect of primordial gravitational waves on the CMB, in the form

Zhttp:/ /bicepkeck.org
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of a large cold patch. Unfortunately this had to be retracted, the dust contribution in the
foreground of the observation had not been fully marginalised over (Gott & Colley, 2017).

With only one universe, frequentist methods are not straightforward to apply within cosmology.
Particle physics, on the other hand, is naturally frequentist. In order to obtain adequate
certainty in a frequentist scenario, a large numbers of data samples must be collected. The idea
behind this being from the CLT, where error will reduce as \/LN Frequentist approaches are
particularly suited for collider experiments since events are repeated frequently. Experiments
are easily repeatable and hypothesis testing is done to check signals are not noise. At CERN,
the ATLAS and CMS experiments discovered the Higgs boson to 5 standard deviations (o)
above the noise background of other particles. This means that ¢f the specific signature of the
Higgs was observed by chance, then it would occur once every 350 million collisions - similar

odds to winning the national lottery jackpot for all 6 numbers, on every successful observation

(Flechl, 2015).

Application of statistics within medicine is a situation where noise is not easily measurable.
Here the conventionally known p-number test is used. This asks whether the sample under
question happens to be in the tail of the distributed census. In this case that would be a
small sample of clinical trials for a new drug (e.g. a vaccine), compared to the untreated census
population known as the control group. Assuming the sampling is plentiful and unbiased (tricky
in qualitative science), the p-number is related to a x? = Y. (x;—u)?/o? for the trial and control
groups. The p-number is defined as p(Xgample > Xeontro) and gives a measure of how effective
the sample is reletive to the control. The so called T-test is a simplification of this where the
variances of the test distribution and census data are matched. T-tests orient around matching
the means of the distributions. When using a T-test, p < 0.05 is needed for medicine to be
approved for use within the health system, and given our assumptions are met, this will be
an adequate test. If enough patients are selected randomly from the population, the sample
is an accurate distribution of the population, matching the Bayesian posterior. But sets of
samples that are small and only in the tail of the true distribution could have catastrophic
reaction when applied to the census population. Another caveat of the p-number test is that
the hypothesis is assumed true by default. The doctor knows little about how an exact trial
treatment will initially effect a patient (although trial medicine is designed to have similar bio-

chemical properties to successful medication). If the hypothesis is objectively false, the method
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will always by swayed by the suggestion that more data is necessary to prove this. In the case
of trial medicine, the aspect of patient safety outweighs the desire for a rigorous result - trials

with non-negative results are therefore abandoned quickly.

Both Bayesian and frequentist applications require responsibility from the user. When there is
knowledge of the scenario, the influence of the prior can make Bayesian inference a powerful
tool. But both methods can be susceptible to skewed results if misused - the hypothesis must
be legitimately plausible, and so must the prior knowledge. A bad example of this occurred
in 1810, Samuel Hahnemann assumed arsenic is good for the human body. Today arsenic is
known to be poisonous. As any statistician should with either approach, patients were tested
in order to gain data. Quickly the conclusion that less arsenic is better for you is reached, and

that consuming diluted poisons is therefore good for you® (Hahnemann S., 1810).

Particular attention must be given to the prior knowledge applied to any problem. Neither
method is fool-proof. In either approach the amount of data must outweigh the hypothesis
or priors. The aim should always be to minimise the distance of our theoretical model to the

observational data.

C.1.5 Quantitative example

Consider, in Cartesian coordinates, a lighthouse on a straight coastline (y = 0) at an un-
known position Zirue, Yuue- A series of N flashes are recorded (without direction or intensity)
at x1,..,2;, ..,xx. In a Bayesian approach we set up what we want to know, p(Zre, Yirue| {Zi}),

where curly brackets indicate the set of data. We can then apply Bayes theorem as,

p(xtruea ytrue|{xi}) X p({xi}|xtruea ytrue)p(xtruea ytrue) (Cll)

X H p(xi|xtrue7 ytrue)7

(2

3Samuel Hahnemann is actually the founder of homeopathy. This is its true grounding although poisonous
quantities diluted today are statistically negligible (and the book contains the use of many other remedies too).
The related hydration, nutrition, and placebo convolute this problem away from decisive conclusions against
the methodology.
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assuming no prior knowledge (an uninformative prior distribution for iy, and Y4 see Section

1.4.4). If we now perform a coordinate transform to polar co-ordinates,

Li — Bowe _ tanfi e, (C.12)

ytrue

allowing a change of variables as,

do;
d.CL’i

p(xi’xtruea ytrue) = p(9z|$07 yO) . (C13)

The signals are therefore uniformly distributed, 6; € [—m/2,+7/2], independent of the true

lighthouse position. The chain rule gives,

do; 1
20— = — 14
sec . (C.14)

where from trigonometry we get made use of sec?0; = [1 + MJ} , to produce the likelihood

true

per sample,
1
p($i|xtrue>ytrue) = (1 —irme)? y (015)
T Ytrue [1 + ﬁ}
which are inputted to Equation C.11 to produce,
1
p(mi|xtrue7 ytrue) = H (C16)

i TYtrue |:1 + —(mi_xtme)2:|

2
Ytrue

the unnormalised posterior. Now that we have this, answering the question becomes a peak

finding problem as we simply maximise the likelihood for the true position.

In contrast the frequentist approach requires the definition of an estimator. A sensible choice

would be the mean,
| N

with the hope that as N increases 1 — x¢,4.. However the form of Equation C.15 is known as the
Cauchy distribution. This is particularly troublesome as it has no mean and infinite variance.

To give the frequentist approach a fair chance, we can approach this with a characteristic



C.2. Supplementary detail for Bayesian analysis 237

function (Fourier transform of the pdf),

(33_-77t1rue)2
thrue

o] eik;t " .
¢ — / |:1 dl. — e'l Ttrue — ytrue‘ (C18)

With convolution theory, the summing the means of the set, {x;}, are combined to give the
characteristic function 1~. We can return to real space to obtain the pdf of the estimators

collectively as,

1
p(Np) = . (C.19)
Nzi—Nztrue)?
TN Ytrue |:1 + (Nai N (Ngtrae)? ) :|
Finally a change of variables Nx — x and Ny — y reveals,
1
p(n) = (C.20)

T Ytrue |:1 + '(xi_;%rue)Q]

Ytrue

In this scenario, we have found that a single data point is as good as any number. Nothing
is improved in this scenario by using an average due to the infinite variance of the Cauchy
distribution. This does not mean the frequentist approach is wrong, we have simply shown a

situation where the Bayesian tool box is the right thing to do (Gull, 1989).

C.2 Supplementary detail for Bayesian analysis

C.2.1 Markov Chain Monté Carlo (MCMC) methods

In astrophysics, posterior distributions are rarely analytic functions and evaluating grid searches
of the parameter space is too computationally expensive to be a viable option. The solution is
to implement a group of algorithms known as MCMC. In essence we are looking for a ‘chain’
of points that, although they are correlated locally, describe ergodically the distribution of the
likelihood as the model at hand fits for the observational data. This is satisfied if consecutive

points in the chain satisfy detail balance,

L(s:)IL(s:)p(sita]si) = L(si+1)IL(si41)p(85]si41), (C.21)
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where p(s) is the probability of selecting sample s. If this is done successfully it is the idea
of physical equilibrium that drives the algorithm to provide an ergodic representation of the

parameter space.

The MCMC family consists of a large range of algorithms that can be used for a variety of
different purposes. We saw in Sections 1.4.1 and 1.4.3 that parameter estimation is essentially
peak finding, and model selection is essentially integrating. Each method implements one
of these tasks in a different way, suitable for different intricacies. The following subsections
introduce the Metropolis-Hastings algorithm, a simple parameter estimation algorithm designed
to find fyap; before introducing nested sampling, a model selection algorithm which calculates

Z.

The Metropolis-Hastings algorithm

A simple example of an MCMC algorithm is known as the Metropolis-Hastings (Metropolis
et al., 1953; Hastings, 1970). It is summarised in Algorithm 6.

Algorithm 6: Metropolis-Hastings (M-H)
Initially draw a sample point s from the prior;

Si = S0,

while Convergence unsatisfied do
Sample a ‘trial’ point si;a1, based on a Gaussian pdf

with a mean of the current point s; and a user determined covariance;
Calculate the ratio r = II(S¢ria1) £(Stria1) /I1(8:) L(s) ;

Draw a random number n € [0, 1]; if » > n then
Strial = Si+1;

else
| Si = Sit1,

end

end

Here, p in Equation C.21 would be the Gaussian pdf. The convergence criteria in this case
could be n number of consecutive rejections. Typically these algorithms are run for a number
of iterations (~ 10*) and a convergence test (discussed in Section C.3.2) is then implemented

afterwards on the resulting chains.
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At the start of the algorithm there is a congregation of points which are more sensitive to
the initial position rather than the shape of the posterior. Since it is equilibrium that drives
the chain, this starting point of the chain might not initially satisfy Equation C.21. This
phase is referred to as the ‘burn-in” and needs to be removed if the sample is to be an ergodic
representative of the posterior. Removing it prevents exaggerating the information content

within low likelihood regions of the parameter space.

Nested sampling

Nested sampling (Skilling, 2004) is a Monté Carlo algorithm, aimed primarily at easily pro-
ducing the Bayesian Evidence. This is done by reducing the dimensionality of the integral
(Equation 1.37) to one - that one being a fraction of prior volume, X'. The resulting transfor-
mation gives,
1
Z :/ L(X)dX. (C.22)
0

which can be easily updated via the trapezium rule as,
Ny—1
Zro Y (X — X)) L(X)). (C.23)

=1

Its implementation is shown in algorithm 7. Within each iteration, the updated prior volume

is the new region defined by the isolikelihood contour.
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Algorithm 7: Nested Sampling
Initially scatter N ‘live points’ throughout the prior distribution;

The first (i = 0) prior volume and Evidence values are Xy = 1 and Z = 0 while

Convergence unsatisfied do
1 — 1+ 1 Select the live point with lowest likelihood s;;

Draw an isolikelihood contour intersecting s;;
Remove s; from the live points and save it;
Update the prior volume,

X; =X
Update the Evidence calculation with £(s;) via Equation C.23, Z — Z + L(s;);
Check convergence: satisfied if £,,.,X; = AZ < Threshold;

N .
INF1D

Re-sample s; from within the isolikelihood contour (which is now the updated prior

volume, X;);

end

Include the remaining live points in the calculation, Z — Z + X Z;Vﬂ L(s;)/N

Figure C.1 illustrates this for the isolikelihood contours of a simple two dimensional example.
It is worth noting that as the algorithm progresses the prior volume will have shrunk, X ~

exp(i/N) where, i is the number of iterations.

The simplest form of this is in essence a Metropolis-Hastings algorithm, but with a hard ac-
ceptance criteria rather than a probabilistic one. However this implementation becomes hor-
rendously inefficient at high dimension, and will need impractically long run times to achieve
ergodicity. Other algorithms must be added to find the iso-likelihood contour (discussed further
in Sections 1.5.2 and C.3.3).

A successful application of nested sampling uses Galilean Monté Carlo (Skilling, 2012), where

the system is evolved dynamically with Hamilton’s Equations,

00 0H 00 OH
E = —8—07 and 8QZ = 6—0, (024)

where the canonical momentum, p represents particles instead of walkers. These particles typ-
ically have normally distributed velocities, a user defined mass and travel along the parameter
space to create the chains according to the Hamiltonian H = InL. This differs from Hamilto-

nian Monté Carlo as when the chain trajectories heading outside of the iso-likelihood contour
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1 X1 X X3 Xa 0
(a) (b)

Figure C.1: An illustration of nested sampling (Skilling, 2004). (a) shows 4 iterations of the
isolikelihood contours as the algorithm hones in on the posterior peak. In this example the
volume of the (uniform) prior distribution is the square. (b) plots the same likelihood points
against the parameter volume within the isolikelihood contour as a ratio with the prior volume,
X. The integral under the curve is the Bayesian Evidence. In MULTINEST, Section 1.5.2) this
is evaluated with the trapezium rule as in equation C.23 (this figure is recreated from Feroz
et al. (2009) with permission)

have their momentum reflected. It is shown to work on a remarkably varied set of toy models

(Feroz & Skilling, 2013), however it requires a differentiable likelihood space.

C.2.2 Alternatives

Before commencing with the implementation of full Bayesian methods, we explored using the
maximum likelihood point (L.x) as a model selection test. Typically the maximum likelihood
point, L.y, is combined with a penalty for the number of parameters, d, with higher values

favouring certain models (in an attempt to implement Occam’s razor).

The Bayesian information criterion (BIC) (Schwarz, 1978) is an attempt to approximate the
Bayesian Evidence directly and is used later on within within MULTINEST (Section 1.5.2). It
is designed for use in data sets with orthogonal parameters (dimensions = parameters), and

with the same number samples N,

BIC = —2log(Lynax) + 2d logN. (C.25)

There is evidence that this works well on Gaussian likelihoods that are well constrained within
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their prior distributions. However we immediately see that that with the same number of
samples higher parameters will have their distributions less well sampled. There is also no

facility for penalising redundant parameters.

The AIC (Akaike information criterion) (Akaike, 1974) is a similar idea defined as,

AIC = —2log(Lmax) + 2d. (C.26)

The AIC is an approximation to the Kullback-Leiber divergence (Kullback & Leibler, 1951) or

relative entropy, defined as,

i, — / PO) <logP ](f<|£ )) o), (C.27)

which measures the difference between competing probability distributions. The AIC tries to
capture the information lost from fitting the model to the data by estimating their entropy

content.

The MML (minimum message length) (Wallace, 2005) is based on the Shannon information
entropy, H = — [ p Inp. Applied here, this would be, H = — [II £ (logII 4 logL), however
implementing it would be significantly more complicated than just using Equation 1.38, where
the prior is easily disentangled. This is not to say it could not be done, but at significantly

more effort than the Bayesian framework set out it Section 1.4.3.

Despite these options being simpler than a full calculation of Z, they can be inconsistent due
to their differing implementation. They perform badly when the peaks appear near the edge
of the prior distributions, or if there are dependencies between the parameters in the model.
On top of this, they have no preparation for multi-modal likelihood distributions as only the
single maximum likelihood point is considered. Both the AIC and BIC work well in the testing
of A — CDM (Szydtowski et al., 2015), however both have been shown to disagree on WMAP
data (Magueijo & Sorkin, 2007; Liddle, 2007). We will not consider them further.
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C.2.3 Future analyses

Some of the techniques that we consider for future work are discussed in this section. Namely
the Bayesian complexity as well as the Bayesian model averaging we mentioned at the start of

this Section.

Once model selection is used and a selection of models are well established, the most detailed
inference that can be obtained in the Bayesian framework is model averaging. Here the pos-
teriors from each model are averaged together. To do this a relative Evidence is constructed
from multiple data sets,
P(D;|M)
P(D;|D,M) = =————+——, (C.28)
>_; P(DjIM)

which is then used as a weight to provide a concordant posterior,
P(6|D, M) = P(6|D;,M) x P(D;|D, M), (C.29)

providing the most precise constraint on a parameter under question. Bayesian analysis aver-
aging will be looked at in the context of 21cm physics once there is data to average over. In
the context of the reionisation this has been done for the high redshift UV luminosity function

(Gillet et al., 2020).

The Bayesian complexity, C, is designed to measure how many parameters are necessary to fit
the mock data produced by a model. Using the Kullbeck-Leiber divergence defined in Equation
C.27 it is defined,

C = =2 | Hiw (P, ) = (Hictly,,, )| (C.30)

where, Hyp | bapap is a single point evaluation of Hyj, at fyap. The idea being that the more
descriptive the data, the tighter the posterior and Hgj, distribution becomes closer to its single
point equivalent - minimising the complexity. Rearranging (with the use of Bayes theorem) we

can write,

C = —Q/p(eu), M)InL(0)d + 2InL (Oyiap). (C.31)

Since most cases the likelihood is a Gaussian x? distribution we can then write,

C=X*(8) — X*(nar), (C.32)
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providing a measure for the effective number of parameters in the data. This has been shown to
work well on A — CDM (Kunz et al., 2006), but more work is necessary for its implementation

on non-Gaussian data sets.

C.3 Supplementary detail for MCMC algorithms

C.3.1 MULTINEST testing

MULTINEST only really has 2 tuning parameters - n_live points and a tolerance criteria on the
Evidence used for ending the algorithm (for the full list of possibilities see Section C.3.1). The
variation of these has a significant impact on the quality of posterior distributions produced

and the calculation of the Evidence.

Should the reader be interested in implementing MULTINEST, we recommend leaving all except
these two options fixed. The literature recommends infinite number of sample iterations (ensur-
ing the stopping criterion is used) and 2000 live points. Figures C.2 and C.3 show the variety
in posterior distributions as these parameters vary respectively for a 3D-Gaussian likelihood
(u =0, o =3) and uniform priors ([—10, 10]). Clearly when the live points are too low, or too

few sample iterations are performed the posteriors obtained are patchy and inaccurate.

The Evidence values obtained also have their error bars reduced as the number of live points
increases, as can be seen in Figure C.4. In this Figure the results are calculated with respect
to the FZH 3 parameter model from 21CMFAST (discussed heavily in Chapter 3). The use of
2000 live points produces suitable accurate and precise results. Note that if too few live points
are used MULTINEST does not disagree with itself, but to ensure this is the case the error bars

become uninformatively wide.

Now that we are happy with the MULTINEST settings, we test MULTINEST with two compli-

cated toy functions. Firstly, the Eggbox function,

InL = (2 + cos(z/2) x cos(y/2))° (C.33)
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Figure C.2: The posteriors obtained by MULTINEST for a 3D Gaussian likelihood. We vary

the number of sample iterations performed whilst using 2000 live points (and otherwise default
settings). The colours indicate different numbers of sample iterations.

with uniform priors (z,y) € ([0, 307], [0, 307]). Secondly, a pair of Gaussian shells,

1 —2 2
r— 05w (|r—ei 1) (C.34)

where w = 0.1 represents the width of the cylinders, » = 2 their radius, and each is centred at
c; = [3.5,0] and ¢ = [—3.5,0]. The uniform prior here is r = (x,y) € ([—6, 6], [—6, 6]) Both of

these are included within MULTINEST as test functions.

We plot the posteriors obtained in C.5, and all thought they are not perfect (e.g. the heights of
the eggbox peaks or the smoothness of the Gaussian shell centres), the Evidence values agree

with the analytic results* within error bars (Table C.1).

With enough live points, we are confident the parameter posteriors are as accurate and precise
as EMCEE - given our likelihood space does not succumb to jagged edges. The GAMBIT
collaboration try a variety of samplers to obtain awkwardly shaped likelihood spaces that arise

from particle physics (Martinez et al., 2017). They show MULTINEST can miss small islands in a

4The analytic integration here is with the QUADPACK algorithm from SCIPY QUAD.
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Figure C.3: For the same 3D Gaussian in Figure C.2, but here the colours indicate different
numbers of livepoints. We set the sample iterations to infinity to ensure the algorithm reaches
the Evidence tolerance stopping criterion. Above 500, the number of livepoints are in undeniable
agreement in this toy scenario.

Multinest progression of Evidence against Live Points

-11.0}

-11.5

0 500 1000 1500 2000
Number of Nested Live Points

Figure C.4: An example of how the MULTINEST Evidence calculation varies with live points.
Notice that the statistical error bars are larger for lower number of live points. Although in
Figure C.3, using 500 live points was deemed suitable, this is performed on the toy reionisation
model (3pFZH Chapter 3), where the parameters are no longer orthogonal, here around 1000
live points would be suitable for reproducible results. For reference the dotted green line
represents a value produced with 4000. The authors recommend the value of 2000 live points,
above this there is little to be gained.
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Figure C.5: Posteriors of the Gaussian-Shell and Eggbox test likelihoods as found by MULTI-
NEST. In order for these histograms to resolve the egghox, this posterior has been scaled in
comparison to Equation C.33.

Function ‘ MULTINEST Samples Analytic (2 d.p.)
Egg-box 235.884+0.06 51894 235.88
Gaussian Shells | —1.71+0.04 30375 —1.75

Table C.1: We found results within error bars of those produced in Feroz et al. (2009) for the
two test functions. See section C.3.1 for function details and Figure C.5 for the parameter
posterior distributions.

jagged posterior space due to the ellipsoidal bias brought by the rejection sampling implemented
in Section 1.5.2. In this case significantly more expensive algorithms are required to obtain the
correct posterior distribution. In subsequent chapters we observe smooth posterior distributions
with both EMCEE and MULTINEST in the parameter spaces relevant to the EoR, so we are

confident this is not an issue in this work.

Parallelisation

MULTINEST is parallelised with MPI in two places. Firstly when filling the initial set of live
points. Secondly, as the acceptance ratio decreases due to the nature of ellipsoidal rejection
sampling (discussed in Section 1.5.2) multiple samples are taken to increase the chance that
a sample is drawn within the time-span of a single likelihood call. The reciprocal of sampling

efficiency is recommended for the number of cores. Particularly as dimensionality increases,
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this is the main bottle neck of the algorithm.

Usage

We have used the following settings for MULTINEST throughout this work: live points=2000,
max _iter=0, multimodal=True,
evidence _tolerance=0.5, and sampling_efficiency=0.3. All of the other possible variations are

left at default®.

The MULTINEST algorithm interface has the following main inputs:

e ndim - the number of dimensions (parameters in our cases).

e sampling efficiency - recommend 0.3 or 0.8 for parameter estimation or model selection
respectively. The reciprocal of this value represents the buffer added to the proposed ellipsoidal
fit to the live-points.

e evidence tolerance - 0.5, once AZ reaches this value per iteration the algorithm is stopped.

e n_live points - the number of ‘live points’ (used to estimate each isolikelihood contour).

e max _iter - sets the maximum number of sample iterations, to be sure the algorithm has
hit its stopping criterion we set it to unlimited (max_iter = 0).

e multimodal = True - Runs the clustering algorithm discussed in Section 1.5.2. In brief it
performs Equations C.22 and C.23 separately on multiple modes (requires importance nested sampling =

False).

These outputs are useful for book keeping but have no significance statistically:

en_iter before update - how many iterations to perform before writing the output (default
100).

e outputfiles basename - Define the strings for the output locations. Must be less than 100
characters (hard-coded into the FORTRAN90 memory allocation).

e resume - to continue from the previous run or overwrite (live points must match).

e write output - Save output to file (default True).

e verbose - how much output to write (bool).

e dump _callback - (default None) A callback function can be defined separately and inputted

SFor the full details please see https://github.com/JohannesBuchner /MultiNest and
https://github.com/JohannesBuchner/PyMultiNest
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here to analyse information on the current iteration.
e context - (default None) Options for the user to pass extra information to MULTINEST e.g.

should an extra algorithm be included any extra information that is needed one can do it here.

The following options were found to be superfluous for our purposes. and are included for
completeness:

e importance nested sampling - Include importance nested sampling (discussed in Appendix
C.3.1) (default False).

e seed - (default -1) The random seed for the sampling, default uses the system clock.

e wrapped params —=None, if parameters have periodic boundary conditions this can applied
here.

e const_efficiency mode=False, the buffer on the ellipsoidal fit the live points varies to en-
sure a constant sampling efficiency if set to true.

e nparams - should some parameters not be orthogonal and exist in the subspace of other
parameters, this can be specified.

e log zero - likelihood values smaller than this will be ignored (default -1e+100).

e mode _tolerance - the rigour within which points are assigned to modes (if multimodal =
True).

e n_clustering params - only used if the clustering of multimodal posteriors occurs in a
subset of the initial parameter space (if multimodal = True).

e max_modes - Iteration maximum for the G-means algorithm (requires multimodal = T'rue)

e null log evidence - minimum Evidence value to define a posterior peak as a mode. (default
-1e+90, requires multimodal = True)

e init MPI - initialising MPI. This is only necessary if the user is activate initialising
MPI before the call to the sampler - if you are not, MULTINEST will do it for you (with
init MPI = False).

Importance nested sampling

Importance nested sampling (Feroz et al., 2019) is a method for including the discarded live
points into the Evidence calculation. Although we do not use importance nested sampling in

this work directly, we have used it as a cross-check for our Evidence calculations. The error in
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the nested sampling algorithm is reduced by including more points in the integration. Namely

if we consider a sampled estimate of the posterior f, a successful representation of the posterior

will yield,
P
1= [ —=<f(0)deo. C.35
[ s (C.3)
We can therefore write,
_ S
/f(@)dO-/HEdO X/Hﬁpde' (C.36)
and with some rearranging,
[ f(0)II(6L(6)d6 /
= [ 1ILd6 C.37
| f(@)Pd6 ’ ( )

i.e. the rejected samples (sampled directly from the TIL) are summed separately to the P
values (which are calculated with the prior weightings from the live and dead points) and then
combined to give an estimate of Z. If both methodologies are successful the value of Z will be

unchanged by including the extra points.

Although including these extra points reduces the error on the calculation it prevents MULTI-
NEST’s multimodal capabilities from working (Section 1.5.2). It also slows down MULTINEST
(significantly so in our high, 8 parameter model). Its usage in our work is limited because of
this, and only in the toy models testing of MULTINEST. When used, the results show agreement

with regular nested sampling in Chapter 3, it has not been used in any other chapter.

See Numerical Recipes (Press et al., 2007) for general detail on the algorithm and Feroz et al.

(2019) for its implementation within MULTINEST.

Algorithms in older versions of MULTINEST

The predecessors to the MULTINEST of today don’t implement the expectation minimisation
scheme discussed in Section 1.5.2 (Feroz & Hobson, 2008). Instead either G-means (Hamerly &
Elkan (2004); Pham et al. (2005), Algorithm 8) or X-means (Pelleg & Moore (2000), Algorithm
9) clustering is used to decide the how many k’s with which the k-means algorithm should

proceed.
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Algorithm 8: G-means Clustering: deciding the number of Gaussian data subsets within

a data set. The resulting distribution will be k£ Gaussian’s will be each data point saved

within a Gaussian shaped mode.

Run the k-means (Algorithm 5) with & = 1,

Test the resulting distribution with the Anderson Darling test, (Equation 1.34) where f is
a Gaussian;

while Data points unsaved do

if Anderson Darling = Passed then
| Assign data to set and save it;

end

Split the failure mode in half;

Repeat k-means on this unsaved modes set with k=k+1;
end

Algorithm 9: X-means Clustering: deciding the K in K-means. Here k, is estimated as
the optimum number of data subsets.

Run two sets of k-means (Algorithm 5)

with k’'s set as k, =1 and k, = 2 ;

Calculate the BIC, and BIC; for each set (Equation C.25);

while BIC, < BIC, do
Increase k, =k, + 1 and k, =k, + 1 ;
Repeat K-means algorithm £, times, with new mode started in each 1/k, th;
Recalculate the BIC, and BIC; ;

end
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Both produce results similar to a Voronoi cell distribution. X-means was found to be more
reliable, but implementations of the k-means algorithm are prepared within MULTINEST up to

k=T1.

C.3.2 Convergence checks

To check the convergence of any set of MCMC chains we perform a Gelman-Rubin test (Gelman
& Rubin, 1992). If all of our chains have converged, they will all be in the posterior’s global
maxima. Therefore the variance on any chain of points selected at random (o;), should be
the same as that calculated accross all chains (o,y). Our algorithm passes the Gelman-Rubin

convergence test if,
Tall
Oi

< 1.03, (C.38)
where 1.03 is a threshold defined by the user.

For nested sampling algorithms there is no chain, a different convergence test is required. We
implement the the algorithm called NESTCHECK developed by Higson et al. (2019) for this task
specifically. Figure C.6 shows the diagnostic plot produced by NESTCHECK. This illustrates
the uncertainty on the posterior between multiple runs, as well as the changes in posterior mass
against change in prior volume (X). For a well converged run these posteriors will agree and

the majority of the sampling will have occurred at the posterior peak.

As a final cross check other methods of calculating the Evidence can be used to insure conver-
gence. For example, importance nested sampling and the standard nested sampling method
will agree on the Evidence when the algorithm is converged (as long as the posterior is not

multimodal).

C.3.3 Alternatives

Here we briefly explore some alternative methods of Evidence calculation.

BaAMBI (Graff et al., 2012) implements MULTINEST however as the likelihood space is explored
a neural network is trained. Once the network can give as good likelihood values as the original

model, costly computation can be cut saving computation by ~ 30%.
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Figure C.6: An example convergence check for nested sampling. Here MULTINEST has been
iterated 4 times on a 3D Gaussian likelihood with uniform priors. Since all four runs show
similar posteriors (with deviation indicated by the thickness of the red lines on the left) we
are confident this has converged. The closest analogy to the MCMC chain are the evaluations
along each thread, in this 16 core example the black line indicates the samples produce by one
thread selected at random.

As mentioned in Section 1.5.2, MULTINEST suffers from the curse of dimensionality above
n = 10, becoming unusable by d = 30. Above d = 10 this the authors recommend the use of
PoLYCHORD (Handley et al., 2015), where slice sampling (Neal, 2000) is implemented in place
of the ellipsoidal rejection sampling. Samples are drawn along the bisectors between live points
ensuring the iterations draw points of increasing likelihood. Although this is an effective way
of emulating iso-likelihood contours as the prior region reduces, it can become inefficient in the

case of correlated parameters.

DYNESTY (Speagle, 2020), implements nested sampling but with a variable number of live
points. As the algorithm progresses, functions decide if more live points need sampling or
whether the sampler can iterate inwards to the next iso-likelihood contour. The user can also
choose one of four methods to approximate the iso-likelihood contours: uniform sampling,
random walks, multivariate slice sampling, and Hamiltonian slice sampling. In practice it

performs similarly to MULTINEST.

A different approach altogether is PRISM by van der Velden et al. (2019). In brief, the likeli-
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hood space is sampled loosely, with the gaps covered with Gaussian regression. The Evidence
is them numerically integrated easily from the resulting function, however the likelihood space

is biased towards Gaussian shapes.

Heavens et al. (2017a) have developed an approximate method for calculating the Bayesian
Evidence directly from MCMC chains called MCEvidence. This is looked at in detail in Chapter
2.

We are considering using BAMBI and POLYCHORD in future work.

C.4 Statistics in Astrophysics

In this section we discuss how the likelihood is created in the context of astrophysics in rest
of this work. Namely this is done with a power spectrum, which is detailed in the following

sections.

C.4.1 The correlation function

To begin, lets consider the cosmological assumptions made in Chapter A, namely that the
universe is homogeneous and isotropic. Considering the distributions of galaxies, if this were
exactly the case the number of galaxies, n, would be Poisson distributed around a selected

galaxy. This can be written,
(rx)"e "™

n!

, (C.39)

Ppoisson<n|w> -

where r is the mean number of galaxies per distance interval & (in any spatial direction). Since
this is not exactly the case, we require whats called the correlation function, £&. This can be
defined as the excess probability required to correctly measure the clustering of galaxies when

their distribution is compared to Poisson statistics,
Priwe(n|x) = Pooisson(n|x)[1 + &(x)]. (C.40)

As long as our observation is large enough to be ergodic, we can describe precisely the deviation

from the cosmological principle.
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C.4.2 The power spectrum

A power spectrum is defined as the Fourier transform of the two point correlation function,

P(k ¢~ ike C.41
) e Ay
where k = 27” is the wave-number of the distribution and the \/%7 factor is a normalisation

choice. To Fourier decompose the correlation function, as above, accesses valuable information
about clustering. If the signal from galaxies is used (following the example in the previous
subsection), we obtain the galaxy clustering power spectrum. This illustrates the number
density of galaxies on any particular scale. Another common application is using the power
spectrum to measure the temperature oscillation accross the CMB. This is how the BAO scale

is measured in Chapter A.

For the 21cm signal in the cosmic dawn and reionisation the brightness temperature is used in
the power spectrum. In all subsequent chapters, a spherically averaged analogue is implemented
per cube of brightness temperature signal. This is defined per redshift (or line of sight /frequency

mode) as
]{73

A2(k) = 537

P(k). (C.42)

As we will see in Chapter 5 this runs in to observational intricacies involving observations of

the light-cone.

For more information, Peacock (1999) contains a plethora of Cosmological statistics as well as

full detail on the power spectrum, correlation function and their applications.

C.4.3 Further astrostatistics

It is an open question as to is whether the power spectrum will capture enough information to
satisfy the questions at hand about the EoR and cosmic dawn. Clearly when forward modelling
this is not an issue (since it can be measured via an analytic calculation). However the inverse
is not obviously true, and so we need be sure that what we put into the likelihood function
can determine enough of the system to answer our desired questions. Two 21lcm brightness

temperature maps with the same power spectrum can appear vastly different (Mondal et al.,
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2016, 2015). In the context of 21cm tomography, if reproducing the exact image is desired more
information is required than just the power spectrum. To end, we allude the interested reader
in three cosmological directions within which the bi-spectrum is showing promise in measuring
the non-Guassianity emerging from various signals. Firstly, the clean 21cm bi-spectrum can
probe the magnitude and evolution of X-ray heating in the IGM (Watkinson et al., 2017).
Secondly, the gravitational and lensing-ISW effect bi-spectrum (Schmit et al., 2019) can improve
constraints on cosmological parameters, testing modifications to Einstein’s gravity. Finally, the
kSZ-kSZ-21cm bi-spectrum shows promise in detailing the reionisation history at scales where
the 21cm signal alone would typically suffer from foreground contamination (La Plante et al.,

2020).



Appendix D

Supplementary 21CMNEST Analysis

This appendix contains material that supplements Chapter 4.

D.1 Cross-check: retrieval of fiducial parameters

The posteriors obtained by both 21CMNEST (magenta) and 21cMMC (blue) as each model
fits the mock data set to find the fiducial parameters in Figure D.1. Mock fiducial 21cm PS
data is simulated for each model with the parameters in Table 4.1. All Figures D.1(a)-D.1(b)
show parameter posteriors and contain blue lines to indicate the fiducial parameter used for

the mock observation.

The Bayes factors and MAP parameter sets are shown in Tables 4.4 and 4.5, MAP 21lcm PS
are plotted for the MAP parameters in Figure 4.5, including every models’ best fit against each

mock data set.

Note the posterior masses in D.1(d) and D.1(c) for ax and t, respectively are not peaked, but
they contain the fiducial mock data set values within their posterior masses (validating the
results). However we are sceptical of their shape and this motivates using them for the SDDR
analyses in Section 4.5.4. We will address this again when the posterior distributions calculated

using the corrected box size have finished.

257
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Figure D.1: Posterior distributions as each model fits for the fiducial parameters from their
own mock data set. When the posterior has a clear peak, agreement is obtained in all the cases
between the MAP parameters in 21CMMC (blue) and 21CMNEST (magenta) with the fiducial
parameter choices indicated by the blue lines.
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Figure D.2: Integrating the UV Luminosity functions to obtain the specific emissivity of the
galactic ensemble. By construction Equation 4.13, our UV luminosity produce emissivity values
in agreement with high redshift observation of reionisation galaxies.

D.2 Cross-check: integrating the UV luminosity function

The specific emissivity of the galactic ensemble species are obtained by integrating the UV LFs.
Since the recipe described in Section 4.3.3 is closely linked to observations the emissivities share
a similar shape for each redshift. For a given value of ¢, the specific emissivity is decreasing with
redshift and therefore agrees with the observational data thanks to Equation 4.13 (Bouwens
et al., 2015; Oesch et al., 2018). Figure D.2 shows the integrated luminosity functions as t,
is varied throughout the parameter prior. Each curve is smooth until a sharp drop off as ¢,
becomes unphysical below 0.05. This confirms the conclusions established with the SDDR in
Section 4.5.4.



Appendix E

Supplementary Morlet Power Spectrum

Analysis

This appendix contains material that continues the analyses in Chapter 5.

E.1 Interpreting the Morlet wavelet data cube

In an attempt to interpret the Morlet wavelets relationship to physical quantities, we calculate
both the FPS and the MPS for five differing light-cones ranging from redshifts z € [8,10]).
These are produced using the simple scenario in Chapter 4 (Model A). Slices of the brightness
temperature, density field and ionisation field for each light-cone is plotted in Figure E.1. The
choices of fiducial parameter are [, Log,,Tvic]): [30,4.7], [5,4.7], [60,4.7], [30,4.0], and [30, 5.3].
Throughout all the Figures in this section these are colour coded light blue, red, blue, green,
and magenta respectively. Although this model is simplistic we have chosen it for its ease of use
in these preliminary tests, the parameters are selected to approximately cover the parameter
flexibility within the prior distributions used in Chapter 4. The third and fourth parameter
selections in particular have a reionisation that finishes unphysically early and are therefore

visibly different from the other selections in Figure E.1.

For ease of comparison we have included the power spectra from five chunks of each light-
cone in Figure E.2, as well as the averaged quantities themselves directly in Figure E.3. We

have included the Fourier power spectra for each quantity, please note that the brightness

260
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Figure E.1: Slices of brightness temperature, density and ionisation through test light-cones pro-
duced by a simple two parameter 21CMFAST model (for more detail see Model A in Chapter 4).
Each slice is produced with 128 pixels across a 250 Mpc box with redshifts 8-10.
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Figure E.2: Fourier power spectrum calculations from each of the light-cone quantities in Figure E.1.
As can be seen, the average amplitude of each power spectrum in each light-cone chunk (column)
follows closely the behaviour of the light-cone quantities shown in Figure E.3. See text for more
discussion.

temperature power spectrum is the one desired for practical use.

The others are included

to show that the power spectrum is excellent at tracing the behaviour of the quantity it is

measured from. Between each chunk the average of the power spectrum for each quantity follows

the trajectories of the quantity average directly for both the neutral fraction and brightness

temperature. The density field quantity is measured with, § = % — 1, hence it remains constant

throughout, the power spectra reflect this until limitations of the box size appear around

k < 0.025Mpc™! (= 27/250Mpc) when power is lost.
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Figure E.3: Averages of the light-cone quantities in Figure E.1. From left to right these are
21cm brightness temperature [mK], density field (in fluctuations from the mean), and neutral
fraction.

Every possible slice of the Morlet power spectrum data cube for each of the five light-cones is
shown in Figure E.4. This has been done before any normalisation of the k& modes, meaning
the full data cube consists of MPS[mK?](k, k,,ky,n). For the extreme cases of the light-cones,
when reionisation finishes early, it is clear that signal is lost in slices containing kj. Other than
this obvious diagnosis, the figure is more aesthetically pleasing than it is useful within this

range of toy light-cones. Figure E.4(a) is normalised across the k; modes before being shown

in Figure E.9(a).

Subsequent figures are created after averaging across the k£, modes, and selecting the first mode
in the array. Figures E.5 and E.6 show the MPS plotted against k| for various steps of the
central wavelet coordinate n as it moves throughout the light-cone. The latter (E.6) has the
MPS normalised with a factor of k:ﬁ to reduce spacial dependency. Evolution across the line of
sight of the light-cone is not apparent in E.5 and E.6 but the ordering of the MPS magnitudes
resembles that of the FPS brightness temperature plots for chunks 3 and 4. To elaborate at the
larger k modes the light-blue, red and magenta lines are grouped at high %k, with the light-blue
and red lines overlapping. At low k the light-blue and blue lines are significantly lower than
the others and becomes negligible when normalised, as is expressed in both the FPS and the
averaged brightness temperature quantity. The green light-cone undergoes the fastest change in
ionisation field within the selected redshifts, it therefore changes the most between FPS chunks
and has the largest change in magnitude across Figure E.5. Consequently a larger magnitude is
seen in chunk 5 of the FPS plots than characterised by the averaged quantity, and this becomes

zero in chunks 1 and 2 when the average quantity approaches zero. When normalised, Figure
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Figure E.5: Here the MPS wavelets are plotted against k). Moving left to right increases the wavelet
centre (n) along the light-cone line-of-sight. See text for the discussion (involving Figures E.6, E.7, and
E.8).
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Figure E.6: As in E.5 however the MPS are plotted with a normalising factor of kﬁ The dark blue line
(the third light-cone with parameters [( = 200, LogTy;, = 3.7]) has the smallest signal by several orders
of magnitude and becomes negligible when normalised with k:ﬁ’ This Figure is the closest of the MPS
figures to reproducing the information presented with the FPS.

E.6 shows significantly less signal per mode as is the case with the FPS and the averaged

quantity.

Figures E.7 and E.8 are the MPS and MPSx kﬁ‘ plotted against n for various steps through

the k modes. The k| normalisation causes the models to separate a little however the increase

in clarity is minor. These Figures show the evolution of the MPS per position of the wavelet

centre along the light-cone line-of-sight. More signal comes from the furthest wavelet in all

cases. For a constant signal each mode should contain equal amounts of MPS signal because

the wavelets are adapting as they move along the light-cone (see Trott (2016) or Equation 5.2).

The lack of evolution in the zeroth mode (kj = 0) is therefore evidence that the light-cone effect
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Figure E.7: As in Figure E.5 but here the wavelets are plotted against the centre of the wavelet
(n, along the line-of-sight). From left to right the plots show an increase in kj mode which the
data cube has been sliced along.

has been removed from the signal. At larger values of k||, the patchiness of the signal in a late
reionisation scenario causes significant decreases to the MPS values. Plotting the MPSx kﬁ
against 7 is a useful in diagnosing when the end of reionisation is near, or that the wavelets

envelope is not correctly adapting to correct for the light-cone effect.

The evolution of Figures E.7 and E.8 follow closely the progression of xy;. The red and ma-
genta lines (light-cones 2 and 5) overlap almost exactly throughout since they have the least
progression of xy; across Figure E.3. Light-blue (light-cone 1) is initially among this pair but
loses MPS power when the wavelet centres approach 0 Mpc, i.e. the near side of the light-cone
(or low n). Similarly when comparing the three brightness temperature light-cone slices for
these three models, light-cones 2 (red) and 5 (magenta) are visually similar across the redshift
range while 1 (light-blue) visually progresses the most of these three. In comparison light-cone
4 (green) has a drastic change in gy which is more visible in the large scale line of sight modes
in Figure E.8 (small k). When the light-cones are close to the end of reionisation (as in the
case of light-cones 3 and 4, the green and blue lines), it is clear that there is a larger power
drop from the larger modes. This is the precisely the behaviour of the inside-out morphology
prescribed by the FZH toy model since smaller bubbles ionise first. Light-cone 3 (blue line) has
a noticeably lower magnitude because reionisation has essentially finished. The signal is not

exactly zero because there is a tiny bit of xyr below 130Mhz.

So far, the power spectrum is a better reflection of the light-cone brightness temperature average
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Figure E.8: As in Figure E.7 however the wavelets are plotted with a normalising factor of kﬁ This
Figure shows the signal evolution throughout the light-cone across a given mode and resembles the
neutral fraction in Figure E.3.

quantity. Although the MPS is ergodic across the light-cone, interpreting the light-cone all at
once is difficult. Since the FPS is measured on well defined chunks of the light-cone, the
evolution between these chunks is easy to interpret. That’s not to say that the MPS can’t
express similar information to the FPS, but the information content of the MPS is closer to
trying to interpreting an average of FPSs made from ~ 100s of chunks (precisely the number of
pixels). In future work we would try to interpret smaller chunks of light-cone with the Morlet
transform for example. Since we have also only taken the first |k, | mode for Figures E.5, E.6,
E.7, and E.8 it is likely there would be a better choice. From Figure E.1, the (k, k) direction
clearly has some structure however we are currently unable to elaborate on this conclusively.
One possibility is that the peaks of each Gaussian wavelet envelope are stacked in the same

place causing the increase in power in the centre for each light-cone.

Once the k modes have been cylindrically averaged (k. |, k) we learnt that it is better to include
the kﬁ factor when plotting the wavelets in both cases. Figure E.6 is the the most informative
single Figure for interpreting the light-cone structure with the MPS. The MPS per k| expresses
the evolution per scale in a similar way to averaging the FPS over all the light-cone chunks
used. Figure E.8 expresses information on how much signal content is within each wavelet and
is a useful check for the speed of ongoing ionisation and as cross-check for the consistency of
power in each wavelet. These lines follow a similar behaviour to the neutral fraction average
in Figure E.3. Future analyses could include looking into the relationship of ionisation rate

and the slope the MPSx k| per n relationship. A combination of these two figures is therefore
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the most useful in expressing the information within the five reionisation models. Finally we
emphasise that we have experimented with a very limited range of reionisation models. This

will need to be expanded in future work if the MPS is to be better understood.

E.2 Comparison with real data from MWA

A comparison of the 5 toy models described in Appendix E.1 are shown next to real MWA data
(C. Trott, private communication) in Figure E.9. We include this section somewhat prematurely
since the simulation and observation do not undergo the same treatment. The MWA data is an
upper limit combining 110 hours of high-band observations with 55 hours of low-band (Trott
et al., 2020). Missing bands are filled in with spectral cleaning algorithm CLEAN (Zhang et al.,
2016) and the full MWA band is tapered with a Blackman Harris filter before being corrected
for flux lost during normalisation. The simulated MPS plots have significantly lower MPS
power at all scales, and are therefore in agreement with the MWA upper limits. In future work
we will analyse whether tighter constraints on reionisation model parameters can be obtained

than with the FPS (Greig et al., 2020Db).
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under a non-commercial Creative Commons license.

If you are happy to grant me all the permissions requested, please return a signed copy of this letter.
If you wish to grant only some of the permissions requested or you have specific terms you wish for me to abide by, please list
these and then sign.

Yours faithfully,
Tom Binnie

Prof. Saleem Zaroubi

1. Dept. of Natural Sciences, Open Univ., Israel. Tel (office): +972-9-7783376
2. Kapteyn Institute, Univ. of Groningen, Netherlands

Web Page: www.saleemzaroubi.info
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Thursday, January 7, 2021 at 10:59:19 Eastern Standard Time

Subject: Permission for figure reproduction in PhD thesis
Date: Thursday, January 7, 2021 at 10:49:11 AM Eastern Standard Time

From: Thomas Binnie
To: Adrian Liu

Dear Prof. Liu,

| wonder if you’d be able to help me.
I am currently completing my PhD under the supervision of Jonathan Pritchard at Imperial College London entitled

‘Towards Improved Statistical Analyses of the Cosmic Dawn and Epoch of Reionisation’.
| seek your permission to include figures from your work that significantly improve the explanations | provide in the

introductory sections of my thesis.

The figure in question is Figure 1 from "Epoch of reionization window. I. Mathematical formalism' (Liu et al. 2014).
The Figure will contain a reference to this in the caption.

My thesis will be added to Spiral, Imperial’s institutional repository http://spiral.imperial.ac.uk/ and made available
to the public under a non-commercial Creative Commons license.

If you are happy to grant me the permission requested, please return a signed copy of this letter.
If you wish to grant only part of the permission requested or you have specific terms you wish for me to abide by,
please list these and then sign.

Yours sincerely,
Tom Binnie
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Catherine Watkinson

Re: Permission for figure reproduction in PhD thesis
7 January 2021 at 19:19

Binnie, Thomas J

This email from catherine.watkinson@googlemail.com originates from outside Imperial. Do not click on links and attachments
unless you recognise the sender. If you trust the sender, add them to your safe senders list to disable email stamping for this
address.

Dear Tom,

| am very happy for you to reproduce this figure in your thesis. Good luck with getting it finished and in all your future
research.

All the very best!
Catherine

Catherine Watkinson

Postdoctoral Research Associate

Queen Mary London - Astronomy Unit
https://catherinewatkinson.weebly.com
+44 (0) 791 776 8600

On Thu, 7 Jan 2021 at 18:25, Binnie, Thomas J <t.binnie16 @imperial.ac.uk> wrote:
Dear Dr Watkinson,

| hope you are well.

| was wondering if you could give me permission to recreate a figure from one of your publications for use in my thesis.

The figure in question is Figure 1 from "Distinguishing models of reionization using future radio observations of 21-cm 1-point
statistics’ (Watkinson & Pritchard 2014).

It will help massively in explaining the different ionisation thresholds for within toy EoR models.

If you are happy to grant me all the permissions requested, please return a signed copy of this letter.
If you wish to grant only some of the permissions requested or you have specific terms you wish for me to abide by, please list
these and then sign.

Yours sincerely,
Tom Binnie
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Farhan Feroz

Re: Permission for figure reproduction in PhD thesis
8 January 2021 at 10:05

Binnie, Thomas J

Mike Hobson

This email from farhan.feroz@gmail.com originates from outside Imperial. Do not click on links and attachments unless you
recognise the sender. If you trust the sender, add them to your safe senders list to disable email stamping for this address.

Hi Tom,

| have no objections to you using this figure in your thesis. Are you referring to a letter in a specific format that | need to sign?

Best regards,
Farhan

On Thu, 7 Jan 2021 at 18:18, Binnie, Thomas J <t.binnie16 @imperial.ac.uk> wrote:
Dear Dr Feroz,

| wonder if you'd be able to help me.

| am currently completing my PhD under the supervision of Jonathan Pritchard at Imperial College London entitled ‘Towards
Improved Statistical Analyses of the Cosmic Dawn and Epoch of Reionisation’.

| seek your permission to recreate a figure from your publication that significantly improves the explanations | provide in the
introductory sections of my thesis.

The figures in question is Figure 1 from “MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle
physics’ (Feroz et al. 2008). The Figure will contain a reference in the caption.

My thesis will be added to Spiral, Imperial’s institutional repository http://spiral.imperial.ac.uk/ and made available to the
public under a non-commercial Creative Commons license.

If you are happy to grant me all the permissions requested, please return a signed copy of this letter.
If you wish to grant only some of the permissions requested or you have specific terms you wish for me to abide by, please list
these and then sign.

Yours faithfully,
Tom Binnie
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Pritchard, Jonathan R

Re: Permission for figure reproduction in PhD thesis
11 January 2021 at 15:11

Binnie, Thomas J

Dear Tom,
I’'m very happy for you to make use of these figures for this purpose.

Best regards,
Jonathan

Dr Jonathan Pritchard
Reader in Astrostatistics
Imperial College London
Blackett Laboratory 1018C

j-pritchard@imperial.ac.uk
Office: +44 (0) 207 594 7557
Mobile: +44 (0) 751 841 8007
http://pritchardjr.github.io

On 11 Jan 2021, at 13:44, Binnie, Thomas J <t.binnie16 @imperial.ac.uk> wrote:

Dear Dr Pritchard,

| wonder if you'd be able to help me.

| am currently completing my PhD under your supervision at Imperial College London entitled ‘Towards Improved Statistical
Analyses of the Cosmic Dawn and Epoch of Reionisation’.

| seek your permission to include figures from your publication that significantly improve the explanations | provide in the
introductory sections of my thesis.

The figures in question are Figure 1 from "21-cm cosmology' (Pritchard & Loeb 2012); Figure 1 from “Descending from on high:
Lyman series cascades and spin-kinetic temperature coupling in the 21 cm line’ (Pritchard & Furlanetto 2006) and all the
Figures from our own work "Bayesian model selection with future 21cm observations of the epoch of reionization’ (Binnie &
Pritchard 2019).

Each Figure will contain a reference in the caption.

My thesis will be added to Spiral, Imperial’s institutional repository http://spiral.imperial.ac.uk/ and made available to the public
under a non-commercial Creative Commons license.

If you are happy to grant me all the permissions requested, please return a signed copy of this letter.
If you wish to grant only some of the permissions requested or you have specific terms you wish for me to abide by, please list
these and then sign.

Yours gratefully,
Tom Binnie
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F.2 Figures reproduced where no permission is needed

Figure 1.3 from (Pritchard & Furlanetto, 2006) is under copyright from Oxford University
Press, who request that no more than two figures are used and the figure number be stated in

supplement to the citation and permission from the author.

Figures 1.7(b), 1.9(d), A.4, A.5, and A.7 are from official websites. These websites contain
copyright clauses that request the link and citation (if applicable) be provided, this is done in

each figure caption.

Figures A.1, A.2, and A.3 from Loeb & Furlanetto (2013) are under Princeton University Press

copyright, permission from the authors as in the previous appendix is all that is required.
Figure A.6 from (Fan et al., 2006) is under similar copyright from the Institute of Physics.

Figure E.9(b) is unpublished, permission has been gained via private communication with C.

Trott.

Figures 3.2, 3.3, 3.4, 3.5(a), 3.5(b), 3.7(b), 3.8, 3.9(a), 3.9(e), 3.10, 3.11, 3.12, 3.13, 3.14, 3.15,
3.16, 3.17, 3.19, and 3.21 are from my own publication (Binnie & Pritchard, 2019). I grant
myself permission; IOP and OUP request these figures are stated with the publication: these
are redistributed from figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

All other figures are my own unpublished work.



