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Abstract. We explore the phase transitions of the ideal relativistic neutral
Bose gas confined in a cubic box, without assuming the thermodynamic
limit nor continuous approximation. While the corresponding non-relativistic
canonical partition function is essentially a one-variable function depending on
a particular combination of temperature and volume, the relativistic canonical
partition function is genuinely a two-variable function of them. Based on an
exact expression for the canonical partition function, we performed numerical
computations for up to 105 particles. We report that if the number of particles
is equal to or greater than a critical value, which amounts to 7616, the ideal
relativistic neutral Bose gas features a spinodal curve with a critical point. This
enables us to depict the phase diagram of the ideal Bose gas. The consequent
phase transition is first order below the critical pressure or second order at the
critical pressure. The exponents corresponding to the singularities are 1/2 and
2/3, respectively. We also verify the recently observed ‘Widom line’ in the
supercritical region.
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1. Introduction

A spinodal curve, by definition, consists of points in a phase diagram where the isothermal
volume derivative of pressure vanishes [1, 2]:

∂V P(T, V ) = 0. (1)

The curve corresponds to the border line between thermodynamic stable and unstable regions,
∂V P(T, V ) < 0 and ∂V P(T, V ) > 0, respectively [3]. Moreover, if it exists, the spinodal curve
amounts to a first-order phase transition under constant pressure. The temperature derivative at
fixed pressure acting on an arbitrary physical quantity, which is a function of temperature and
volume, is given by the chain rule of calculus:

∂

∂T

∣∣∣∣
P

=
∂

∂T

∣∣∣∣
V

−

[
∂T P(T, V )

∂V P(T, V )

]
∂

∂V

∣∣∣∣
T

. (2)

On the spinodal curve, the denominator of the second term vanishes, and the temperature
derivative of a generic physical quantity along the isobar diverges [4]. This provides a possible
mechanism for a finite system to manifest genuine mathematical singularities, without taking
the thermodynamic limit [5].

If we fill a rigid box with water to full capacity and heat the box, the temperature will
increase but the water hardly evaporates. According to a well-known standard argument against
the emergence of a singularity from a finite system that is based on the analytic property of the
canonical partition function [3], no discontinuous phase transition should occur. Nevertheless,
opening the lid will set the pressure as constant or at 1 atm, and the water will surely start to boil
at 100 ◦C . The point is that the usual finiteness of physical quantities in a canonical ensemble is
for the case of keeping the volume fixed. Once we switch to the alternative constraint of keeping
the pressure constant, a first-order phase transition featuring genuine mathematical singularities
may arise from a system possessing a finite number of physical degrees. The question is then
the existence of the spinodal curve.

In our previous work [4], we investigated the thermodynamic instability of the ideal non-
relativistic Bose gas confined in a cubic box, based on an exact expression for the corresponding
canonical partition function. The result was that if the number of particles is equal to or greater
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than a certain critical value4 that turns out to be 7616, the ideal Bose gas subject to the Dirichlet
boundary condition indeed reveals thermodynamic instability characterized by a pair of spinodal
curves and consequently undergoes a first-order phase transition under constant pressure.
The two spinodal curves are identified as the supercooling and the superheating of the ideal
Bose gas,

kBTsupercool = τ ∗

P × [π2h̄2/(2m)]3/5 P2/5,

kBTsuperheat = τ ∗∗

P × [π 2h̄2/(2m)]3/5 P2/5,
(3)

where kB is the Boltzmann constant, m is the mass of the particle, P is an arbitrary given
pressure and τ ∗

P and τ ∗∗

P are dimensionless constants the numerical values of which depend on
the number of particles, N , as follows [4]:

N τ ∗

P τ ∗∗

P

7616 1.054 369 4113 1.054 369 4116
104 1.052 70 1.052 77
105 1.041 0 1.042 4
106 1.034 1.036

Between the two temperatures on the isobar, every physical quantity zigzags or becomes
triple valued, implying the existence of three different phases during the discontinuous
phase transition. This includes the volume as well as the number of particles occupying
the ground state. Hence, the corresponding first-order phase transition coincides with the
Bose–Einstein condensation (BEC) in both the coordinate and the momentum spaces. This
result is comparable with the well-known BEC temperature of the ideal non-relativistic Bose
gas in the thermodynamic limit:

kBTconti. approx. = [2π h̄2/m]3/5[P/ζ(5/2)]2/5
' 1.0278×[π 2h̄2/(2m)]3/5 P2/5, (4)

where ζ is the Riemann zeta function. In standard textbooks, e.g. [3], [6]–[9], this temperature
is typically obtained by treating the ground state separately and applying the continuous
approximation to all the rest of the excited states. From the comparison of equations (3) and (4),
it appears that the continuum limit smooths out some details of the thermodynamic quantum
structure.

In this paper, we generalize our previous work to the relativistic case. We investigate
the spinodal curve of the ideal relativistic quantum gas of neutral bosons confined in a
cubic box subject to the Dirichlet boundary condition. While the non-relativistic canonical
partition function is essentially a one-variable function depending on a particular combination
of temperature and volume, the relativistic canonical partition function is genuinely a two-
variable function of them. We show that if the number of particles is equal to or greater than
the critical number 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a
critical point where the supercooling and the superheating lines converge. Further, we verify the
recently observed ‘Widom line’ [10] emanating from the critical point as the crossover between

4 The number 7616 can be regarded as the characteristic number of a cube. For a sphere we obtain the critical
number 10 458.
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liquid-like and gas-like behaviour in the supercritical region [11] (see also [12] and [13]). The
critical number coincides with that of the non-relativistic system and hence the present paper
confirms our previous numerical results [4].

The main motivation for us to consider the relativistic ideal Bose gas in this paper
as a generalization of the non-relativistic system we studied previously is, by letting the
corresponding canonical partition function be a two-variable function, to observe a more
intriguing phase diagram such as a critical point and the Widom line. After all, quantum
mechanics and relativity are two cornerstones of modern physics. For pioneering earlier works
on the ideal relativistic Bose gas—via the continuous approximation—see [14]–[17]. For a
recent discussion, see [18] and references cited therein. In the present paper, we restrict
ourselves to neutral bosons. The inclusion of anti-bosons, as in [19]–[21], will be treated
separately elsewhere [22].

The rest of the paper is organized as follows. In section 2, we present a model-independent
analysis of a canonical ensemble. We first review three different expressions for the canonical
partition function of generic non-interacting identical bosonic particles. We then, simply by
assuming the existence of a spinodal curve, show that under constant pressure, first-order phase
transitions feature singularities of exponent 1/2, while second-order phase transitions have the
critical exponent 2/3. Section 3 is exclusively devoted to the ideal relativistic neutral Bose gas
confined in a cubic box. After analysing non-relativistic and ultra-relativistic limits, we present
our numerical results. When the number of particles is equal to or greater than 7616, the ideal
relativistic Bose gas reveals a spinodal curve with a critical point. We draw the corresponding
phase diagram. Section 4 summarizes our results with comments.

2. General analysis

2.1. The canonical partition function: a review

When a single particle system is completely solvable, each quantum state is uniquely specified
by a set of good quantum numbers, which we simply denote here by a vector notation, En.
With the corresponding energy eigenvalue EEn and β = 1/(kBT ), we define for each positive
integer a,

λa :=
∑

En

e−aβEEn , (5)

where the sum is over all the quantum states. In particular, when a = 1, λa coincides with the
canonical partition function of the single particle.

For an N -body system composed of the non-interacting identical bosonic particles above,
we may write the corresponding canonical particle function in three different ways:

• As first obtained by Matsubara [23] and Feynman [24],

Z N =

∑
ma

N∏
a=1

(λa)
ma/(ma! ama), (6)

where the sum is over all the partitions of N , given by non-negative integers ma with
a = 1, 2, . . . , N satisfying N =

∑N
a=1 a ma.
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• By a recurrence relation first derived by Landsberg [25],

Z N =

(
N∑

k=1

λk Z N−k

)/
N , (7)

where we set Z0 = 1.

• From [4],

Z N = det(�N ) (Z1)
N/N !, (8)

where �N is an almost triangularized N × N matrix the entries of which are defined by

�N [a, b] :=


λa−b+1/λ1 for b 6 a,

−a/λ1 for b = a + 1,

0 otherwise.

In particular, every diagonal entry is unity.

The first expression (6) implies that, compared with the ideal Boltzmann gas, the ideal Bose
gas has a higher probability for the particles to occupy the same quantum state [4]. The last
expression (8) is useful for us to see when the canonical partition function reduces to the
conventional approximation [26]:

Z N −→ (Z1)
N/N !, (9)

which would only be valid if all the particles occupied distinct states, as in the high temperature
limit. Indeed, in this limit we have λ1 → ∞. Hence, det(�N ) → 1 and the reduction (9) holds.

According to the Hardy–Ramanujan estimation, the number of possible partitions grows
exponentially like eπ

√
2N/3/(4

√
3N ), and this would make any numerical computation based on

expression (6) practically hard for large N . Among the three above, the recurrence relation (7)
provides the most efficient scheme of N 2 order computation.

2.2. Critical and non-critical exponents: universal results

When the energy eigenvalue of the single particle system EEn (5) depends on volume, the
canonical partition function depends on temperature and volume and so does the pressure:

P(T, V ) = kBT ∂V ln Z N (T, V ). (10)

We consider, at least locally5, inverting P(T, V ) to express the temperature as a function of P
and V like T (P, V ). Plugging this expression into ∂V P(T, V ), let us define a quantity 8 as a
function of P and V :

8(P, V ) := − ∂V P(T ′, V )
∣∣

T ′→T (P,V )
. (11)

As we change the volume keeping the pressure constant, 8 indicates whether the
thermodynamic instability develops or not on the isobar. With the minus sign in front, now
negative 8 corresponds to the thermodynamic instability.

5 Since the vanishing of ∂V T (P, V ) implies the divergence of ∂T V (P, T ), inverting P(T, V ) to express
the volume as a function of P and T is not conceivable close to the spinodal curve, as we see shortly from
relation (14).
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In a similar fashion to (2), we write

∂

∂V

∣∣∣∣
P

=
∂

∂V

∣∣∣∣
T

+ 8 ∂P T (P, V )
∂

∂T

∣∣∣∣
V

, (12)

from which it is straightforward to obtain

∂V 8(P, V ) = −∂2
V P(T, V ) − 8 ∂P T (P, V ) ∂T ∂V P(T, V ), (13)

and relate the first and second volume derivatives of T (P, V ) to 8(P, V ) as

∂V T (P, V ) = 8 ∂P T (P, V ),

∂2
V T (P, V ) = ∂V 8(P, V ) ∂P T (P, V ) + 8 ∂P∂V T (P, V ).

(14)

Further, on the spinodal curve (8 = 0)—if it exists—we have

dT

dV

∣∣∣∣
8=0

= −
∂2

V P(T, V )

∂T ∂V P(T, V )
. (15)

Now the critical point can be defined as follows. At the critical pressure P = Pc, the system is
generically stable, i.e. 8 > 0, except at only one point that is the critical point. This implies that
the critical pressure line is tangent to the spinodal curve, such that at the critical point, 8 and
∂V 8 vanish:

8(Pc, Vc) = 0, ∂V 8(Pc, Vc) = 0. (16)

Moreover, from (11), (13) and (14), these two conditions are equivalent to

∂V P(Tc, Vc) = 0, ∂2
V P(Tc, Vc) = 0 (17)

and also to

∂V T (Pc, Vc) = 0, ∂2
V T (Pc, Vc) = 0. (18)

Equation (17) corresponds to the usual definition of the critical point as an inflection point in the
critical isotherm on a (P, V ) plane [3]. With (15), equation (17) implies that the critical point
is an extremal point on the spinodal curve. On the other hand, equation (18) implies that the
expansion of T (P, V ) near the critical point on the critical isobar starts from the cubic order in
V − Vc (for related earlier works, see [27] and references cited therein):

T (Pc, V ) − Tc =
1
6(V − Vc)

3∂3
V T (Pc, Vc) + higher orders. (19)

Clearly, this leads to the following critical exponent:

V/Vc − 1 ∼ |T/Tc − 1|
β, β = 1/3. (20)

Similarly, from (13) and (17), the expansion of 8 on the critical isobar starts from the quadratic
order in V − Vc such that

8(Pc, V ) ∼ (V/Vc − 1)2
∼ |T/Tc − 1|

2/3. (21)

Thus, from (2), any physical quantity given by the temperature derivative along the critical
isobar diverges with the universal exponent 2/3. This includes the critical exponent of the
specific heat per particle under constant pressure:

CP ∼ |T/Tc − 1|
−α, α = 2/3. (22)

New Journal of Physics 13 (2011) 033003 (http://www.njp.org/)

http://www.njp.org/


7

On the other hand, since the specific heat per particle at constant volume is finite for any finite
system, the corresponding critical exponent is trivial:

CV = finite, i.e. α = 0. (23)

Note that our conclusion does not exclude the possibility for CV to develop a peak. We merely
point out that the peak will be smoothed out if it is sufficiently zoomed in. Further, from (21), the
inverse of 8 gives the critical exponent of the isothermal compressibility on the critical isobar:

κT := −V −1∂P V (Pc, T ) ∼ |T/Tc − 1|
−γ , γ = 2/3. (24)

Finally, from (17), we also obtain an isothermal critical exponent at the critical temperature,
T = Tc:

P/Pc − 1 ∼ |V/Vc − 1|
δ, δ = 3. (25)

On a generic isobar below the critical pressure, P < Pc, the thermodynamic instability given
by 8(P, V ) < 0 appears naturally over an interval in volume and hence in temperature as well.
The two ends then correspond to a supercooling point and a superheating point. At these points
8 vanishes and between them 8 is negative, as depicted in figure 1 from the van der Waals
equation of state as an example6:[

(P/Pc) + 3(Vc/V )2
][

(V/Vc) −
1
3

]
=

8
3(T/Tc). (26)

It is crucial to note that the volume assumes triple values between the supercooling and the
superheating temperatures at constant pressure less than Pc.

In the derivation of the critical exponents above, we tacitly assumed ∂2
V 8(Pc, Vc) 6= 0. In

fact, the equivalence among (16), (17) and (18) generalizes up to an arbitrary order, say n: for
all k = 1, 2, . . . , n, the vanishing of ∂k

V P(T, V ) is equivalent to that of ∂k
V T (P, V ) as well as

that of ∂k−1
V 8(P, V ). Hence, if the first non-vanishing multiple volume derivative of 8 occurs

at the order n as ∂n
V 8(Pc, Vc) 6= 0, the exponents in (20), (22), (24) and (25) assume the general

values:

α = γ =
n

n + 1
, β = δ−1

=
1

n + 1
. (27)

Clearly these satisfy the following ‘scaling laws’ [3, 29]:

Rushbrooke : α + 2β + γ = 2,

Widom : γ = β(δ − 1).
(28)

In particular, the case of n = 1 corresponds to the first-order phase transition at non-critical,
supercooling and superheating points. Even at these points our analysis shows the existence of
the universal exponent:

α = β = γ = δ−1
=

1
2 , (29)

which agrees with the mean field theory result [30] (see also [31]). Around the supercooling or
superheating point in figure 1, the constant pressure lines can be approximated by a parabola
straight up or down, respectively. The possibilities of n > 3 correspond to exceptional critical
points.

In the next section, we show that the ideal relativistic quantum gas of neutral bosons indeed
features a spinodal curve similar to figure 1.

6 For a modern exposition of van der Waals forces, see e.g. [28].
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VV Vc
V

T

T
Tc

T

P Pc

P Pc

P Pc

0
0

0

Figure 1. The van der Waals equation of state. The dashed lines are constant
pressure lines of three different values, and the thick solid line is the spinodal
curve satisfying 8 = −∂V P(T, V ) = 0. When P < Pc the constant pressure line
crosses the spinodal curve twice, at the supercooling point (V∗, T∗) and at the
superheating point (V∗∗, T∗∗). Between the two temperatures the volume is triple
valued. If P = Pc the constant pressure line comes in contact with the spinodal
curve only once at the critical point (Vc, Tc). Otherwise, i.e. P > Pc, the constant
pressure line does not undergo thermodynamic instability and hence no first-
order phase transition arises. On the spinodal curve the critical point has the
highest temperature.

3. The ideal relativistic neutral Bose gas

3.1. Algebraic analysis

Hereafter, exclusively for the ideal relativistic neutral Bose gas, we focus on N particles with
mass m, confined in a box of dimension d and length L ≡ V 1/d . Hard, impenetrable walls
impose the Dirichlet boundary condition7.

With positive integer valued good quantum numbers,

En = (n1, n2, . . . , nd), (30)

the spatial momentum is quantized as Ep = π h̄En/L , such that the single particle Boltzmann factor
in (5) assumes the form

e−βEEn = exp(− T −1
√

1 + En · En V−2/d ). (31)

Here we have introduced, for simplicity of notation and the forthcoming analysis, dimensionless
temperature:

T := kBT/(mc2), (32)

7 We recall that nevertheless enforcing the periodic or Neumann boundary condition leads to thermodynamic
instability at low temperature close to absolute zero for arbitrary N [4].
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as well as dimensionless volume:

V := [mc/(π h̄)]d V . (33)

The canonical partition function is then a two-variable function of them, Z N (T ,V). We further
define dimensionless pressure by

P := [(π h̄)d/(md+1cd+2)] P = T ∂V ln Z N (T ,V), (34)

and a dimensionless indicator of the thermodynamic instability, as for 8 in (11):

φ := −(1/N )V2∂2
V ln Z N (T ,V). (35)

Other physical quantities we are particularly interested in this paper are specific heats per
particle at constant volume or under constant pressure:

CV = (kB/N )
[
(T ∂T )

2 + T ∂T
]

ln Z N (T ,V),

CP = CV − kBT [∂T P(T ,V)]2/[N∂VP(T ,V)].
(36)

Non-relativistic limit. The non-relativistic limit corresponds to the limit of low temperature and
large volume with T V2/d held fixed. For larger volume, the Boltzmann factor (31) reduces to
that of the non-relativistic particle, up to the shift of the energy by mc2:

e−βEEn → e−β[mc2+Ep · Ep/(2m)]
= e−1/T −En · En/(2T V2/d ). (37)

Physical quantities such as φ, CV and CP become one-variable functions depending on the
single variable T V2/d , or alternatively T P−2/(d+2) [4]. The constant energy shift is irrelevant to
them. Furthermore, at extremely low temperature only the ground state energy matters and the
canonical partition function reduces to

Z N → e−βN E0 = exp(− NT −1
√

1 + d V−2/d). (38)

Hence close to absolute zero temperature, we obtain

N/P = V1+1/d
√

d +V2/d , (39)

and also

φ = ∞, CV = 0, CP = 0. (40)

For large volume, equation (39) further leads to V = (N/P)d/(d+2) and this agrees with [4].
Apparently the volume assumes a finite value at absolute zero temperature, essentially due to
the Heisenberg uncertainty principle. It is worthwhile to recall

PV = NkBT, φ = 1, CV /kB = d/2, CP/kB = 1 + d/2, (41)

in the large T V2/d limit of the non-relativistic case [4]. Note that the first relation is equivalent
to PV = NT .

Ultra-relativistic limit. The ultra-relativistic limit corresponds to the limit of high temperature
and small volume with T V1/d held fixed. At sufficiently high temperature, highly excited
states dominate and from (9) the canonical partition function reduces to (Z1)

N/N !, where the
Boltzmann factor also reduces as

e−βEEn −→ e−βc|Ep|
= exp[−|En|/(T V1/d)]. (42)
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Consequently, the canonical partition function and the physical quantities such as φ, CV and
CP become one-variable functions depending on the single variable T V1/d or alternatively from
(34) and (42) on T P−1/(d+1).

Moreover, for large T V1/d we may safely assume the continuous approximation to
obtain [32]

Z N (T ,V) ∝ (VT d)N , (43)

which implies in the large T V1/d limit, cf (41):

PV = NkBT , φ = 1, CV /kB = d, CP/kB = 1 + d. (44)

3.2. Numerical results

Here, we present our numerical results on the ideal relativistic neutral Bose gas confined in a
cubic box, i.e. d = 3, at generic temperature and volume, performed by a supercomputer (SUN
B6048). Our analysis is based on the recurrence relation (7) and the previous work [4]8.

Emergence of a spinodal curve (figure 2). As N grows, φ develops a valley of local minima,
which eventually assumes negative values if N > 7616.
Specific heat per particle under constant pressure (figures 3–5). During the first-order phase
transition under constant pressure that is less than the critical value, the volume and hence every
physical quantity are triple valued between the supercooling and the superheating temperatures.
We focus here on CP , the specific heat per particle under constant pressure. For the explicit
behaviour of other quantities, see our earlier work [4].

Phase diagram of the ideal relativistic neutral Bose gas for N = 105 (figure 6).
Our numerical results of the critical point are listed below for some selected N :

N Tc Vc/N Pc

7616 3.665 1475 × 10−5 9.510 401 × 105 2.015 1967 × 10−11

104 0.149 54 3.133 0.027 02
105 1.738 0.025 2 53.1

which gives

N Tc(Vc/N )2/3 TcP
−2/5
c Tc(Vc/N )1/3 TcP

−1/4
c

7616 0.354 4519 0.695 6079 3.604 329 × 10−3 1.729 865 × 10−2

104 0.320 2 0.634 0 0.218 8 0.368 8
105 0.149 0.355 0.510 0.644

8 The numerical computation inevitably requires a momentum cutoff as for En · En, which generically deforms
the result at high temperature. We choose mutually different, sufficiently large values of the cutoff, such that
we maintain at least for some interval of temperature the high temperature behaviour (44), and report only the
cutoff-independent results (cf [33, 34]).
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0
0.03

951040 951042
N

3.6651435 10 5

3.6651455 10 5

3.6651475 10 5

d. N 7616

c

0
0

0

Figure 2. Constant pressure lines and spinodal curve. Dashed, thin solid or
thick solid lines denote the constant pressure, constant φ or spinodal curve,
respectively. Close to the origin of the (T ,V/N ) plane, φ diverges, and in
the opposite infinite limit, φ converges to unity. When N = 1 (figure 2(a)
with PL < PM < PH ), φ is monotonically decreasing from ∞ to 1 on arbitrary
isobars. As N increases, φ develops a valley whose height is less than unity.
Moreover, if N > 7616, the valley assumes negative values and a spinodal curve
emerges. Figure 2(d) magnifies the tip of the spinodal curve for N = 7616 to
manifest a critical point, (Tc,Vc/N ) = (3.665 1475 × 10−5, 9.510 401 × 105). In
figure 2(b), Pc denotes merely the numerical value, Pc = 2.015 1967 × 10−11,
which amounts to the critical pressure in the system with one more particle,
N = 7616.

Comparison with the non-relativistic results in [4] indicates that the critical point of N = 7616
is in the non-relativistic region, while those of N = 104 and N = 105 are not.

4. Summary and comments

In summary, as seen from figures 3 and 6, the ideal relativistic neutral Bose gas divides the
(T ,V/N ) phase diagram into three parts:
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a. N 1

10 5 1 105

N

10

10 2

10 5

0.0

2.5
4.0

Cp kB

I
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III

b. N 7615
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N

10

10 2

10 5

0.0

2.5
4.0

Cp kB

I

II

III

Figure 3. 3D image of CP on the (T ,V/N ) plane for N = 1 and N = 7615.
The plane decomposes into three parts: phase I with CP ' 0, phase II with
CP ' 2.5kB and phase III with CP ' 4kB. When N = 1, the transitions are
monotonic and smooth. As N grows, at the borders between I and II as well
as between I and III, a range of peaks emerges that will eventually diverge for
N > 7616. Figure 3(b) has been cut at the height of CP = 5kB, and the actual
peak rises to CP ' 5.336 84 × 106kB.

• Phase I: condensate with C p ' 0 (40),{
(T ,V/N ) | T . (N/V)1/3 and T . (N/V)2/3

}
.

• Phase II: non-relativistic gas with C p ' 2.5kB (41),{
(T ,V/N ) | T . 1 and T & (N/V)2/3

}
.

• Phase III: ultra-relativistic gas with C p ' 4kB (44),{
(T ,V/N ) | T & (N/V)1/3 and T & 1

}
.

Equivalently, the (P, T ) phase diagram splits into three parts:

• Phase I:
{
(P, T ) | T . P2/5 and T . P1/4

}
.

• Phase II:
{
(P, T ) | T & P2/5 and T . 1

}
.

• Phase III:
{
(P, T ) | T & P1/4 and T & 1

}
.

Here . and & mean rough inequalities up to constants of the order of unity.
When N = 1, the transitions are all smooth and monotonic along any isobar. As N

increases, a valley in φ, and hence a range of peaks in CP , develops along the boundary of
the condensate phase I. In particular, when N = 7616, the valley of φ assumes negative values
and a spinodal curve with a critical point emerges along the boundary of phase I starting from
absolute zero temperature. Beyond the critical point it is the Widom line that divides phase I
and phase III. As N further increases, the critical point moves along the Widom line toward
the ultra-relativistic higher temperature region. For the transition between the non-relativistic
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Figure 4. CP for various N and P . For N = 1, CP is monotonically increasing
from zero to 4kB on any isobar. Under sufficiently low pressure, it assumes the
intermediate value of 2.5kB as in equation (41). As N increases, CP develops a
peak on each isobar. In particular, when N > 7616 and P < Pc, it diverges both
to the plus and minus infinities at the supercooling point T = T∗ as well as at the
superheating point T = T∗∗. At the critical point T = Tc = 3.665 1475 × 10−5,
it diverges only positively. For P > Pc, the specific heat features a single finite
peak, which can be identified as the Widom line.

and ultra-relativistic gas phases II and III there is no latent heat involved. The spinodal curve
sharply defines the phase diagram. The consequent phase transition is first order below the
critical pressure or second order at the critical pressure. The exponents corresponding to the
singularities are 1/2 and 2/3, respectively. The presence of both supercooling and superheating
characterizes the first-order phase transition.

The resulting equation of state from the spinodal curve of the relativistic ideal gas
resembles the van der Waals equation of state, which is derived by assuming both repulsive
potential at short distance and attractive potential at long distance. It is well known that the
effective statistical interaction of the ideal Bose gas is attractive [3]. Our result seems to suggest
a more intriguing structure. The fact that the volume is finite at absolute zero temperature seems
also to indicate a repulsive interaction at short distance related to the Heisenberg uncertainty
principle.
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Figure 5. Critical and non-critical exponents. Our numerical data confirm
the singular behaviour of the specific heat CP anticipated in section 2.2:
above the supercooling point, CP ∼ ±(T − T∗)

−1/2 (figure 5(a)); below the
superheating point, CP ∼ ±(T∗∗ − T )−1/2 (figure 5(b)); and around the critical
point, CP ∼ |T − Tc|

−2/3 (figure 5(c)). The numerical data are for N = 7616,
P = 5.000 170 056 40 × 10−12 (figures 5(a) and (b)) or Pc = 2.015 1967 × 10−11

(figure 5(c)). The error bars originate from the numerical uncertainty beyond
these digits. The straight lines correspond to the theoretical slopes, −1/2
(figures 5(a) and (b)) or −2/3 (figure 5(c)).

An interesting open question is whether the critical point converges or not in the phase
diagram as N → ∞. If not, one may also wonder whether there exists another critical number
in N for the emergence of a spinodal curve from the ultra-relativistic canonical partition function
(42). We have verified for up to N = 106 that the ultra-relativistic canonical partition function
does not feature any spinodal curve, although φ develops a local minimum.

Although in this work we have focused on the relativistic generalization of the non-
relativistic ideal Bose gas and have obtained a non-trivial phase diagram with a critical
point and Widom line, it is natural to expect that other generalizations that involve extra

New Journal of Physics 13 (2011) 033003 (http://www.njp.org/)

http://www.njp.org/


15

1 20

20

40

60

a. N 105

I

II III

0.1 0.2
N

0

1

2

b. N 105

I

III

II

Figure 6. Phase diagram for N = 105 on the (P, T ) and (T ,V/N ) planes. The
thick solid line, dashed line and dotted line correspond to the spinodal curve
(including its inside), the Widom line (a range of finite peaks in CP that also
coincide with the valley of φ) and the T ' 1 line, respectively. The lines divide
the phase diagram into three parts: phase I of CP ' 0, phase II of CP ' 2.5kB and
phase III of CP ' 4kB. On the top of the solid line, there exists a critical point. As
N increases, the critical point moves towards the more ultra-relativistic, higher-
temperature region along the Widom line keeping Tc(Vc/N )1/3 and TcP−1/4

c
constant.

dimensionful parameters, e.g. trapping potentials, may also lead to qualitatively similar or even
more intriguing phase diagrams.
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