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Abstract
We propose a method to measure the electron electric dipole moment (eEDM) using ultracold
entangled francium (Fr) atoms trapped in an optical lattice, yielding an uncertainty below the
standard quantum limit. Among the alkali atoms, Fr offers the largest enhancement factor to the
eEDM. With a Fr based experiment, quantum sensing using quantum entangled states could
enable a search for the eEDM at a level below 10−30 ecm. We estimate statistical and systematic
errors attached to the proposed measurement scheme based on this quantum sensing technique. A
successful quantum sensing of the eEDM could enable the exploration of new physics beyond the
standard model of particle physics.

1. Introduction

The electron electric dipole moment (eEDM), arising due to parity and time-reversal symmetry violating
(P, T-odd) interactions, is a subtle physical property. The potential confirmation and quantitative
determination discovery of the eEDM is likely to shed light on new physics beyond the standard model
(SM) of particle physics [1, 2]. Although efforts to measure the eEDM have been pursued for more than 40
years, it has not yet been observed. However, experimental efforts to narrow down its possible range are
steadily gaining ground. The current status is that the experimental uncertainties are about ten orders of
magnitude larger than the value predicted by the SM. A further reduction of the uncertainties in eEDM
measurements will advance the constraining of proposed models beyond the SM.

On account of the enhanced effects, heavy open-shell atoms and polar molecules are considered as the
most promising candidates to observe eEDM. At present, the best limit on eEDM comes from the thorium
oxide (ThO) experiment, at |de| < 1 × 10−29 ecm, with 90% confidence [3]. However, eEDM is not the only
P, T-odd interaction source that contributes to the measurement. The scalar–pseudoscalar (S–PS)
electron–nucleus interactions are also the other P, T-odd interaction that contribute significantly. To
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separate out these contributions, it is imperative to perform experiments on more than one system. Owing
to the fact that inferring the S–PS interaction contributions from the complex molecules is a tedious
procedure, measurements in atoms are better for such purposes. Till date, the best experimental limit using
atoms comes from 205Tl [4]. The other atom where measurement is available is 133Cs [5, 6] (see also
reference [6]). However, 210Fr atom has the largest enhancement factor due to eEDM (about 1.5 and 7 times
larger than Tl and Cs atoms respectively) and a recent theoretical study has highlighted its advantageous
features for analyzing both the eEDM and S–PS contributions from its measurement [7].

The measurement of the eEDM is typically performed by polarizing an atom or a molecule in a beam
experiment with an applied external electric field. Compared to molecules, atoms require application of
large electric field owing their spherical symmetric structure. The interaction time with the electric field in a
beam experiment is limited to a few milliseconds, because atoms in an atomic beam and molecules in a
molecular beam transit through the interaction region in a short time. Thus, it is possible to improve the
statistical uncertainties in these experiments by increasing the interaction time of atoms or molecules with
the applied electric field.

It is well known today that very high-precision measurements are achievable using the laser cooled
atoms have been well studied for many high-precision measurements. This is why it is natural to expect that
the next-generation experiments to measure eEDM can be based on such cold atoms or molecules. In fact,
some of the recent studies have demonstrated how laser cooled and trapped atoms or molecules can be
suitable in prolonging the interaction time up to 10 s to measure eEDM [8–14]. The principle to measure
the eEDM using trapped molecular ions has also been reported [15, 16], but the statistical sensitivity in the
measurements using ions can be limited by the number of ions, which can be interrogated due to strong
Coulomb repulsion among them. Laser cooled neutral atoms can be extended to an eEDM measurement so
as to increase the interaction time by confining atoms in an optical lattice [17]. However, to improve the
current upper limit for the eEDM a prerequisite is to significantly improve the sensitivity of the experiment.
This limit is restricted by the standard quantum limit (SQL) as 1/

√
N, where N is the total number of

atoms or molecules used in the experiment.
To overcome the limitations of earlier methods applied in eEDM measurements, we propose a novel

experimental technique to measure eEDM using ultracold atoms based on the combined principles of
quantum sensing and optical lattice to circumvent the limitation over atom–electric field interaction time.
The underlying principle of this technique is that it uses quantum states as sensors and/or detectors to
measure physical quantities. Depending on the working mechanism, quantum sensor techniques are
broadly classified into three types [18]: type I involving quantum states, type II based on quantum
coherence, and type III that uses entangled quantum states to beat the SQL. Recently, as a
proof-of-principle experiments, the stabilities of the Rb microwave (MW) atomic clock [19] and the Yb
optical atomic clock [20] have surpassed the SQL using the quantum entangled states. It is, therefore,
promising to exploit the quantum entanglement in quantum sensing to overcome the limitations in the
measurement of the eEDM below the SQL.

As a proof-of-principle study, we consider ultracold entangled Fr atoms trapped in an optical lattice to
carry out an eEDM measurement with an uncertainty below the SQL. As mentioned above, Fr has the
largest eEDM enhancement factor among other considered atoms for the experiment. In our proposed
approach, we suggest employing an optical cavity method to create a squeezed state of collective spins
(Bloch vectors) as entangled quantum states. Quantum sensing with the entangled states will enable us to
search for the eEDM to below 10−30 ecm. Thereby, it will surpass the current best reported limit on eEDM
and will be able to probe the signatures of new physics beyond the SM. We also estimate typical systematics
associated with such measurement by performing high-accuracy calculations of the static and dynamic
second-order and hyperfine-induced third-order dipole polarizabilities of the ground state of 210Fr atom.

The paper is organized as follows. In section 2, we describe the measurement method of the eEDM
using atomic squeezed states in Fr atoms trapped in an optical lattice. In section 3, we present results for the
energy shifts calculated in the experimental scheme, and cancellations of them are discussed. We end the
article with a conclusion.

2. Measurement method of eEDM using the spin-squeezed state

We discuss here the quantum sensing using atomic squeezed states, technique for the eEDM measurement
in an optical lattice, and the detection procedure using the squeezed spin state (SSS). Finally, we estimate
the possible uncertainties in the eEDM measurement using the aforementioned methods.

One typical measurement method for eEDM is the Ramsey resonance. Let us consider the phase
difference θ of the atomic wave function between the ground and excited states. The phase uncertainty of
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Figure 1. Energy diagram and experimental setup for the atom–light interaction proposed to create the SSS. (a) Energy diagram
and related transitions in the atom. The detuning of the probe light is set to the midpoint of the hyperfine splitting in the S state.
A MW field is resonant between the hyperfine states of | ↑〉 and | ↓〉. (b) Lattice light creates a trap potential in the cavity, which
atoms are trapped at anti-nodes. The peak of the probe light overlaps with the atoms in the optical lattice. The atoms will feel
close to maximum intensity at the anti-node of the probe standing wave. The probe beam in introduced to the optical cavity
through an electro-optical modulator (EOM) and an optical isolator in order to enable stabilisation through the
Pound–Drever–Hall (PDH) technique [48]. Reflected probe light is monitored on a photo detector (PD). An electric field EDC is
generated by a pair of the electrodes, and a magnetic field Bext by a pair of Helmholtz coils. DBM: double-balanced mixer.

the Ramsey resonance δθ is:
δθ = 1/

√
N, (1)

where N is the total number of atoms. This is the so called ‘SQL’ or shot noise limit [21]. If a k-particle
entanglement state exists in the N particle atomic ensemble, the uncertainty of equation (1) is improved as
a bound for metrologically useful state as [22]

δθ = 1/
√

kN. (2)

For k = N, equation (2) gives the so called ‘Heisenberg limit’ (δθ = 1/N). Several kinds of entangled states
may decrease the detection limit below the SQL [18, 22]. One of these is the SSS.

The SSS of atoms was first proposed by Kitagawa and Ueda [23] that shows the net interaction is
proportional to square of the collective spin of the atoms. This interaction using Faraday rotation of light
was also shown in [24]. As an applications of SSS for atomic clocks, Wineland et al [25, 26] discussed the
squeezed Bloch vector in a Ramsey resonance in order to decrease the uncertainty of the signal [26]. By
interacting with the square of spins via collisions, the reduction of the uncertainty using the SSS to below
the SQL have been demonstrated for a Bose Einstein condensate [27].

On the other hand, Kuzmich et al [28] and Takahashi et al [29] have suggested measurements based on
the use of linearly polarized light. In experiments, the uncertainties in the case of SSS have been shown to
reach below the SQL in Yb [30] and Cs [31] by using the above method. Lately, the squeezing gain of
ultracold Rb has been enhanced by using an optical cavity [32, 33]. The SSS for more than 105 Rb atoms in
an optical lattice improved the stability of the MW atomic clock transition in a proof-of-principle
experiment [19]. Recently, it has been shown that the SSS improved stability of the Yb optical lattice clock
[20]. This suggests that carrying out an eEDM measurement by generating the SSS in an optical cavity can
boost its precision to an unprecedented level.

First, we consider a three-level atom interacting with monochromatic probe light, as shown in
figure 1(a). The optical frequency is detuned midway between the hyperfine levels |↑〉 and |↓〉 with the
detuning Δ = ωa/2, where ωa is the hyperfine splitting between the |↑〉 and |↓〉 states. The states |↑〉 and
|↓〉 are coupled with a MW field to enable the Ramsey resonance experiment. The atom is prepared in an
optical cavity with a resonance frequency ωc, which corresponds to the light frequency (figure 1(b)). Atoms
are trapped at anti-nodes of the standing wave produced by the superposed lattice beam inside the cavity.
The probe beam is generated by frequency doubling of the lattice light. The wavelengths for the probe and
lattice lights are 718 nm and 1436 nm, respectively. The peak of the probe light’s standing wave enfolds the
atoms in the optical lattice of the cavity as shown in figure 1(b). In this configuration, the probe light is
approximately uniformly coupled to all atoms [19]. In the following discussion of atom–light interaction,
we omit the effect of the lattice light. The electric field EDC generated by a pair of electrodes and the
magnetic field Bext applied by a pair of Helmholtz coils will be affecting the atoms (figure 1(b)).
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The Hamiltonian (HEDM) representing the interaction of atomic electric dipole moment (EDM) with an
electric field is given by

HEDM = −datom · EDC, (3)

where datom = Rde is the atomic dipole moment, de the eEDM, and R is the enhancement factor. It to be
noted that R is proportional to Z 3, where Z is the atomic number. Since the Fr atom has the largest Z
among the alkali metals, and it has been laser cooled and trapped [34–38], it makes the most suitable atom
for the experimental consideration. The R value of Fr has been calculated earlier [39] and its the most
accurate value is reported as R = 799 [7]. Using de = deJ/� and the Wigner–Eckart theorem gives the
expectation value of 〈de〉 as

〈de〉 =
de

�

〈J · F〉
F(F + 1)

〈F〉

=
de

�

F(F + 1) + J(J + 1) − I(I + 1)

2F(F + 1)
〈F〉

� de(gF/gJ)〈F〉/�, (4)

where J the electron angular momentum, I the nuclear spin, and the total atomic angular momentum is
F ≡ J + I. F, J, and I are the respective quantum numbers. gJ and gF are Landé g-factors for J and F. In an
alkali atom, the ground state S1/2 is split into two hyperfine states F = I + 1/2 and F = I − 1/2. For 210Fr,
the nuclear spin is I = 6. The quantization axis z is fixed by the direction of the applied electric field
EDC(x, y, z) = (0, 0, EDC), and equation (3) becomes

HEDM,F,MF = −Rde(gF/gJ)F · EDC/� = −(gF/gJ)RdeMFEDC, (5)

where MF is the magnetic quantum number of F, gF/gJ = 1/13 for the 7S1/2, F = 13/2 state, and −1/13 for
the 7S1/2, F = 11/2 state. To detect the energy shift in equation (5), an MW field resonant between
F = 13/2 and F = 11/2 state is applied to the trapped atoms. The frequency difference from the hyperfine
splitting is given by

ΔωEDM ≡ Δω
M′

F ,MF
EDM ≡ g′FM′

F − gFMF

gJ�
RdeEDC. (6)

Next, we consider the Hamiltonian of atoms interacting with probe light. Taking into account the cavity
resonance frequency ωc and probe light inside the cavity, the Hamiltonian can then be written as [40]

H = � (ωc +Δωc) ĉ†ĉ + �ωaJa,z, (7)

where Δωc is the shift of the cavity resonance frequency due to the refractive indices of atoms in the | ↑〉
and | ↓〉 states, ĉ† (̂c) are the creation (annihilation) operators of intra cavity photons of probe light. If we
define the ja as the optical Bloch vector for the | ↑〉 and | ↓〉 states of a single atom, with magnitude 1/2,
Ja = Σja,i is the summation of the atomic Bloch vectors for N atoms, Ja,z the z component of Ja, and Ja =

|Ja| = N/2 the magnitude of Ja. The first and second terms in equation (7) correspond to the total photon
energy and the third term is the total atomic energy for N atoms. As the detuning Δ is tuned to the
midpoint between the | ↑〉 and | ↓〉 states (figure 1(a)), the light feels the dispersion of atoms as a positive
refractive index in the | ↑〉 state and a negative one in the | ↓〉 state. The AC Stark shift Δωc is written as

Δωc =
2g2

Δ

N+ − N−
2

=
2g2

Δ
Ja,z, (8)

where 2g is the single-photon Rabi frequency in the transition between the S and P states, and N+ (N−) the
number of atoms in the | ↑〉 (| ↓〉) state. Then, equation (8) is written as

H = �ωcĉ
† ĉ + �

2g2

Δ
ĉ† ĉJa,z + �ωaJa,z. (9)

After the interaction of the probe light with atoms inside the cavity, corresponding to the second term in
equation (9), the measurement of probe light results in the quantum nondemolition (QND) measurement
of the atomic collective spin Ja.

In references [28, 29], creation of the SSS using a QND measurement of an atomic collective spin is
proposed based on the Hamiltonian HQND = χSzJa,z, where the χ is the coefficient, and the Sz is one of the
Stokes parameters for the probe light [29]. During the interaction of light and atom through HQND, S
precesses around the z axis by an angle kJa,z with k = χt/� and t is the interaction time. The interaction
gives as the lowest order, Sout

y ≈ Sin
y + kSin

x J in
a,z. Its variance is (ΔSout

y )2 = (n/4)(1 + κ2) = (n/4)ξ2 with the
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photon number n, ξ2 = (1 + κ2), and κ2 = nNk2/4 [22, 42]. After the measurement of Sy, the variance of Jz

is given by (ΔJout
a,z )2 = (N/4)/ξ2 = (N/4)/(1 + κ2). Although (ΔSout

y )2 is larger than the variance in the
coherent state of probe light n/4, (ΔJout

a,z )2 is smaller than the variance of coherent spin state (CSS) N/4.
Thus, it demonstrates that the J is in the SSS.

The squeezing process through the measurement of probe light from the cavity due to the interaction of
the probe light with Ja,z in the optical cavity, as given by equation (9), is described in detail in reference [41,
43, 44]. The variance of this squeezed spin ΔJa,z is written as

(ΔJa,z)2 = ξ2
R(ΔJz,CSS)2, (10)

where ξR is the Wineland parameter. Following equation (10), the variance (ΔJa,z)2 can be smaller than that
in the CSS (ΔJz,CSS)2 = Ja/2 = N/4 if ξR is smaller than one. By considering the photon shot noise and
Raman scattering process, ξR can be given for the squeezing in the optical cavity as [22, 44]:

ξ2
R =

1 + 4NC(Γ/ωa)2√
qNC/p

, (11)

where C = (2g)2/(κΓ) is the single-atom cavity cooperativity, κ the linewidth of the optical cavity, Γ the
natural line width of the transition between the S and P states, and q the quantum efficiency of the photo
detector (PD) monitoring probe light and the whole efficiency to detect the probe light [44]. The parameter
p represents the probability for a free-space photon scattering event causes an atom to spin flip from | ↑〉 to
| ↓〉 via the intermediate state |e〉. The fluctuations of N+ and N− due to the spin-flip via this Raman
process are anti-correlated. For instance, if Ja = (N/2)x̂, the N+ value can decrease while the N− value can
increase via the Raman process. As a result, it will increase (ΔJa,z)2 because of the fact that Ja,z =

(N+ − N−)/2. Thus, lower p value is desired for achieving smaller ξR value for our requirement.
To measure the energy shift of equation (6) using the SSS generated by the Hamiltonian of equation (9),

we utilize the Ramsey resonance technique in the SSS [25, 26] with an optical cavity [19, 20, 31, 33, 43–46].
We consider the following experimental steps:

(a) We have to prepare suitable states for the EDM measurement, with the latter consisting of two steps, as
shown in figure 2. First, the atoms are laser cooled in a magneto-optical trap (MOT). Next, they are
cooled by polarization-gradient cooling, and are loaded into the optical lattice in the cavity
(figure 1(b)). Then, the atoms are further cooled by Raman sideband cooling into the vibrational
ground state [47]. At this stage, the atoms are initially populated in the states 7S1/2, F = 13/2 and
F = 11/2. We take the total number of atoms as 2N. Second, the atoms are optically pumped into the
7S1/2, F = 11/2, MF = 11/2 and MF = −11/2 by irradiating them with light resonant to the transition

between 7S1/2, F = 11/2 and 7P3/2, F
′
= 9/2, and at the same time light resonant with 7S1/2, F = 13/2

and 7P3/2, F′ = 13/2, with both pump beams having π polarization (figure 2(a)). Next, the magnetic
field is applied and the population in the 7S1/2, F = 11/2, MF = −11/2 is adiabatically transferred to
7S1/2, F = 13/2, MF = −11/2 by sweeping the MW field resonant with the hyperfine transition in the
Zeeman shifted hyperfine states (figure 2(b)). The atoms are in the binary mixture of N atoms in the
7S1/2, F = 11/2, MF = 11/2, and N atoms in 7S1/2, F = 13/2, MF = −11/2 states. These state are
useful to cancel additional frequency shifts. The additional frequency shifts and the cancellation
mechanism are discussed in section 3.

(b) We consider a timing sequence for the MW and probe light pulses, as shown in figure 3. After the
preparation of the atomic state in (a), the atoms are in the binary mixture of the 7S1/2, F = 11/2,
MF = 11/2 and 7S1/2, F = 13/2, MF = −11/2 states, as shown in figure 3(a). We considers two Bloch
vectors J−M for the MF = −11/2 between S1/2, F = 13/2 and F = 11/2, and J+M for the MF = 11/2
between S1/2, F = 13/2 and F = 11/2 states, with isotropic uncertainties ΔJ±M,x = ΔJ±M,y = ΔJ±M,z =√

N/2 in the CSS, as shown in figure 3(c). The Bloch vectors in figure 3(c) are J+M = −(N/2)ẑ, and
J−M = +(N/2)ẑ. Then, the MW π/2 pulse with a duration of τ is applied to rotate the Bloch vectors
around the y axis (figures 3(c) and (d)).

(c) Following references [33, 46] for the generation of the SSS, the probe light pulse, the MW π pulse, and
the probe light pulse are applied separately, as shown in figure 3(b).

The PDH signal [48] is obtained by measuring the probe light reflected from the cavity [49], as shown
in figure 1(b). The probe light has a linear polarization parallel to the external electric and magnetic fields
for π transitions. Its frequency is tune to near the transition between 7S1/2 and 7P3/2 states and the
detuning is tuned to the midpoint between the 7S1/2, F = 13/2 and 7S1/2, F = 11/2 states (figure 3(a)), The
probe light is reflected by the cavity is separated from the incident beam by the polarization-beam splitter in
the optical isolator, and is then detected by the photo detector (PD). After the signal is demodulated in the
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Figure 2. Energy diagram and related transitions for state preparations. (a) Optical pumping of atoms into the 7S1/2, F = 11/2,
MF = 11/2 and MF = −11/2 states. (b) Adiabatic transfer from 7S1/2, F = 11/2, MF = −11/2 to 7S1/2, F = 13/2, MF = −11/2
states by sweeping the MW frequency with the magnetic field.

Figure 3. A five-level atom with spin one-half, timing sequence for the MW and the probe-light pulses, and Bloch vectors for
collective spins. (a) Atomic distributions after the initializing, as shown in figure 2. The frequency of probe light is tuned to the
middle point of the hyperfine splitting between F = 13/2 and F = 11/2 states. (b) Timing sequence for the MW and probe light
pulses. The notation π/2 (π) with τ (2τ) and x (y) refers to the π/2 (π) rotation around the axis of x (y) of Bloch vectors.
(c)–(h) Bloch vectors (red and blue arrows) on the Bloch spheres with uncertainty ellipsoids (red) during the squeezing and the
Ramsey resonance process. Red (blue) arrows represent the Bloch vector J−M (J+M) for the S1/2, F = 13/2, MF = −11/2(11/2)
and F = 11/2, MF = −11/2(11/2). (c) Bloch vectors after the initialization (figure 2) with isotropic uncertainties in the CSS.
(d) Bloch vectors after rotation around the x axis. (e) Bloch vectors are squeezed after the measurement. (f) and (g) Bloch vectors
during the quantum sensing of eEDM in Ramsey resonance. (h) Final Bloch vectors for the measurement.

double-balanced mixer (DBM) with the modulation frequency ωrf for the electro-optical modulator
(EOM), as shown in figure 1(b), the dispersion signal is obtained. As the cavity resonance frequency of the
signal is shifted proportional to the atom number difference N+ − N− due to equations (7)–(9), the probe
light frequency is tuned to the cavity resonance. As a result of the measurement of the probe light, the
uncertainties of the Bloch vectors ΔJ+M,z and ΔJ−M,z are reduced for the time indicated by the arrows (d)
and (e) in figure 3(b). The spatially inhomogeneous light shifts of the S1/2, F = 13/2 and F = 11/2 states
induced by the probe light results in decoherence of the Bloch vectors. To avoid this, the MW π pulse is
applied in a spin-echo technique (see supplemental material in reference [46]).

6
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(a) The MW π/2 pulse, with a temporal phase of 90 degree compared to the preceding MW field, is
applied as a first pulse of Ramsey resonance. The MW pulse rotates the Bloch vector around the x axis
with an angle of π/2 and a duration of τ . After the interrogation time T for the quantum sensing of
eEDM, the final MW π/2 pulse with a duration of τ and a phase ϕ is applied and it rotates the Bloch
vector around the x axis again. The final J±M,z, which corresponds to the uncertainty of the number of
atoms ΔN, is measured by again detecting the reflected probe light.

In the steps (b) and (c), the PDH signals are measured as the frequency shift Δωc of the dispersion
curve by the existence of atoms. The Δωc in equation (8) obtained through the dispersion curve gives us
the Ja,z=(N+ − N−)/2 in the case of figure 1(a). In figure 3(a), Δωc gives J+M,z + J−M,z, where J±M,z are the
z components of J±M.

Finally, as a result of the Ramsey resonance, J+M,z is (N/2)sin(Δω+MT − ϕ), and J−M,z is
(N/2)(−sin(Δω−MT − ϕ)). If the final MW pulse has a phase of ϕ = 0, J+M,z and J−M,z are written as

J+M,z =
N

2
sin(Δω+MT) (12)

J−M,z = −N

2
sin(Δω−MT), (13)

where Δω±M are
Δω±M ≡

(
ΔEF=13/2,±M −ΔEF=11/2,±M

)
/� − ωMW , (14)

ΔEF=13/2,±M (ΔEF=11/2,±M) is the energy in the 7S1/2, F = 13/2, MF = ±M (7S1/2, F = 11/2, MF = ±M)
state, and ωMW is the MW frequency between the 7S1/2, F = 13/2 and 7S1/2, F = 11/2 states.

We define ωHFS as the resonant frequency between 7S1/2, F = 13/2 and F = 11/2 states with neither the
Stark shift nor the Zeeman shift. The ωMW is tuned to near the ωHFS. If 1/τ (τ , the interaction time of the
MW field) is much larger than Δω±M, this monochromatic MW field induces two transitions as shown in
figure 3(a): the transition from 7S1/2, F = 11/2, MF = 11/2 to 7S1/2, F = 13/2, MF = 11/2 states and the
transition from 7S1/2, F = 13/2, MF = −11/2 to 7S1/2, F = 11/2, MF = −11/2 states. Therefore,
equation (14) include only the frequency shift from ωHFS as

Δω±M = ωHFS +ΔωEDM,±M − ωMW, (15)

where
ΔωEDM,±M ≡ Δω±M,±M

EDM . (16)

The signal S obtained is J+M,z + J−M,z = (NF=13/2,MF=11/2 − NF=11/2,MF=11/2)/2 + (NF=13/2,MF=−11/2 −
NF=11/2,MF=−11/2)/2. Thus, it can be written as

S = J+M,z + J−M,z. (17)

As the frequency shift of the eEDM is very small, equation (17) is approximately written as

S ∼ N

2
(Δω+M −Δω−M)T

=
N

2
(ΔωEDM,+M −ΔωEDM,−M)T. (18)

If we assume de = 1 × 10−29ecm, EDC = 100 kV cm−1, M
′
F = 11/2, and MF = 11/2, equation (18) gives

(ΔωEDM,+M −ΔωEDM,−M)/2π = 326 nHz.
After repeated measurements, taking into account equations (6) and (18) and the frequency uncertainty

of SQL from reference [26], the uncertainty of the EDM at the SQL, using the CSS δdCSS
e , is written as

δdCSS
e =

13�

22REDC

1√
NTttotal

, (19)

where ttotal = mT is the total interrogation time over all the measurement, and m is the number of
measurements. N = 2.5 × 105 for trapped Fr atoms, as reported in reference [51], and ttotal = 1 day
= 24h = 86 400 s, then equation (19) gives δdCSS = 3.3 × 10−29 ecm. For ttotal = 10 days,
δdCSS = 1.0 × 10−29 ecm.

On the other hand, using the SSS with ξR (equation (11)), equation (19) becomes

δdSSS
e =

13�

22REDC

ξR√
NTttotal

. (20)
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Figure 4. Dependence of the EDM uncertainty δde on N. The dashed line represents the δde with the SQL. Solid lines show δde

in the SSS with the single-photon Rabi frequencies 2g (g/2π of 103, 104, 105 and 106 Hz).

Now, we estimate the probability p in equation (11) to calculate equation (20). The spin flip with the
probability p results from the photon scattering event in 210Fr, there are two Raman processes with the π
polarization probe light: (i) the transition from | ↑〉 = |7S1/2, F = 13/2, MF = 11/2〉 to | ↓〉 =
|7S1/2, F = 11/2, MF = 11/2〉 via |e〉 = |7P3/2, F

′
= 13/2, M′

F = 11/2〉. (ii) The transition from | ↑〉 to | ↓〉
via |e′〉 = |7P3/2, F′ = 11/2, M′

F = 11/2〉. We define the matrix element for the transition between |F, mF〉
and |F′, m′

F〉 as MF,mF ,F′,m′F . The Raman scattering rate [50] is proportional to |M13/2,11/2,13/2,11/2

M11/2,11/2,13/2,11/2 + M13/2,11/2,11/2,11/2M11/2,11/2,11/2,11/2 |2 = 0. Therefore, the two Raman process are
completely canceled. Next, we consider the Raman transition to the different magnetic sublevel. In fact, this
process also increases ΔJ′z in equation (41) in reference [44]. We consider the transition from the
7S1/2, F = 13/2, MF = 11/2 to 7S1/2, F = 11/2, MF = 9/2 state via |e〉 and |e′〉. Then,
|M13/2,11/2,13/2,11/2M11/2,9/2,13/2,11/2 + M13/2,11/2,11/2,11/2M11/2,9/2,11/2,11/2|2 = 88/507. In reference [44], this
value should be divided by the single transition matrix element from the other state for rescaling. Therefore,
we divided 88/507 by |M11/2,11/2,13/2,11/2 + M11/2,11/2,11/2,11/2 |2. It gives 1/6.025. The term including p due to
Raman process to the other magnetic sublevel |3〉 in equation (41) in reference [44] is smaller than the first
term in equation (41) by a factor of 4. Therefore, we obtain p ∼ 1/24.

Figure 4 shows the estimated curve of uncertainty of eEDM δde using equations (19) and (20) with
E = 100 kV cm−1, T = 1 s, ttotal = 24h = 86 400 s, κ/2π = 8 kHz (corresponding to a finesse of 200 000
and cavity length L of 10 cm), Γ/2π = 7.6 MHz, and ωa/2π = 46.8 GHz for 210Fr atoms. We assume q = 1.
The dashed line represents the δdCSS

e for SQL based on equation (19). The solid lines represents the δdSSS
e

based on equation (20) with g/2π = 103, 104, 105, 106 Hz. In the case of g/2π = 105 and 106 Hz, δde at
N = 1.8 × 105 is below 1 × 10−30ecm. Figure 5 shows the δde as a function of g/2π with N = 102, 103, 104,
105, 2.5 × 105 and 106. For increasing g, δde decreases. However, δde increases for higher g. Therefore, the
minimum is reached at an optimal value of g. The curve reaches the minimum value with
ξ2

R =
√

16/(24q) Γ/ωa at NC = 1
4 (ωa/Γ)2 [44]. This is about 1/7500 for 210Fr. Thus, k ∼ 7500 is the

theoretical maximum enhancement for 210Fr. δde is improved by ξR ∼ 1/87 from the SQL. The best
theoretical value for δde in figure 5 is 1.9 × 10−31ecm with N = 106 and g/2π = 4 × 105 Hz. Furthermore,
substituting the current best values of N = 2.5 × 105 for trapped Fr atoms [51] and g/2π = 105 Hz
(reported for Rb [19]) into equation (20) gives ξR = 1/44.2 and δde = 7.5 × 10−31ecm.

In a real experiment, several kinds of additional frequency shifts must be considered. These shifts result
is systematic errors in the measurement of eEDM. In the next section, we discuss these additional frequency
shifts and their cancellation.

3. Additional shifts and cancellation

3.1. DC Stark shift, AC Stark shift, and Zeeman shift
In this section, we discuss the possible energy shifts encountered by the atoms, in this case Fr atoms, during
the eEDM measurement. We consider the ultracold 210Fr atoms trapped in a one-dimensional optical
lattice, as shown in figure 1(b). Thus, the atoms will see AC light shifts due to the applied laser. It also
requires application of DC electric field and magnetic field resulting in DC Stark shift and Zeeman shift,
respectively. Thus, the interaction Hamiltonian of the atom can be expressed as

8
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Figure 5. Dependence of EDM uncertainty δde on the single-photon Rabi frequency 2g. Solid lines show the δde for the N of
102, 103, 104, 105, 2.5 × 105, and 106.

H = H0 + HEDM + HDC Stark + Hlight + HZeeman, (21)

where H0 is the unperturbed atomic Hamiltonian due to the electromagnetic interaction, HEDM is the
atomic EDM Hamiltonian, HDCStark is the interaction Hamiltonian due to the DC electric field, Hlight is the
interaction Hamiltonian due to the AC electric field and HZeeman is the interaction Hamiltonian due to the
magnetic field.

The DC Stark shift of a hyperfine level can be expressed as

ΔEDC Stark = −1

2
αF,MF (0)E2

DC, (22)

where EDC is the static DC electric field and αF,MF (0) is known as the electric dipole (E1) polarizability of
the corresponding hyperfine level. Since transitions between the hyperfine levels of the ground 7S state are
considered in this analysis, the dominant second-order contributions to these levels will cancel out as they
depend only on the angular momentum J values of the states, while the next leading-order due to the
hyperfine induced contribution can contribute to the differential dipole polarizability.

The total dipole polarizability including the dominant second-order and the next leading-order
hyperfine induced contributions can be given by

αF,MF (0) = α(2,0)
F (0) + α(3,0)

F (0) +
3M2

F − F(F + 1)

F(2F − 1)
α(3,2)

F (0), (23)

where α(2,0)
F (0) is the second-order static E1 polarizability, and α(3,0)

F (0) and α(3,2)
F (0) are the scalar and

tensor contributions to the third-order hyperfine mediated static E1 polarizabilities. In a sum-over-states
approach, α(2,0)

F (0) can be expressed as

α(2,0)
F (0) = − 2

3(2J + 1)

∑
k

|〈J‖D‖Jk〉|2
E0 − Ek

, (24)

where 〈J‖D‖Jk〉 are the reduced E1 matrix elements between the ground and other possible intermediate
states k having angular momentum Jk. Here, E0 is the ground state energy and Ek is the energy of the
corresponding intermediate state k. To carry out the calculation conveniently, we categorise the
contributions from the sum into low-lying valence states, high-lying valence states and occupied states. The
low-lying valence states give the dominant contribution and are denoted as the ‘main’ contribution,
contributions from the high-lying valence states are given as ‘tail’, while the contributions from the
occupied states are given in two parts as ‘core’ and ‘core–valence’. We use the E1 matrix elements from the
singles and doubles approximated relativistic coupled-cluster theory (RCCSD method) together with
experimental energies to estimate the ‘main’ contribution. To improve the accuracy of ‘main’, we use the
precisely known E1 matrix elements of the D1 and D2 lines from reference [52]. The ‘core–valence’ and
‘tail’ contributions are estimated using the Dirac–Hartree–Fock method, while the ‘core’ is evaluated using
the random phase approximation. We have also estimated the uncertainties for these quantities and obtain
the final value for α(2,0)

F (0) as 317.1(1.3) a.u.. We present the individual contributions to this quantity in

9
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Table 1. Contributions from various E1 reduced matrix elements and other contributions to the
second-order dipole scalar and vector E1 polarizabilities of the F = 13/2 and F = 11/2 hyperfine levels at
ω = 0 and ω = 0.031729 a.u. (λ = 1436 nm). Our final value for the static dipole polarizability is
compared with the previously reported results.

ω = 0 ω = 0.031 729 a.u.

Transition Reduced E1 matrix α(2,0)
F=13/2;11/2 α(2,0)

F=13/2;11/2 α(2,1)
F=13/2 α(2,1)

F=11/2

Main
7S1/2 − 7P1/2 4.277(8) 109.4(4) 161.7(6) −184.1(7) 156.4(7)
7S1/2 − 7P3/2 5.898(15) 182.8(9) 243.7(1.2) 121.9(6) −103.6(6)
7S1/2 − 8P1/2 0.34(1) 0.36(2) 0.40(2) −0.24(1) 0.20(1)
7S1/2 − 8P3/2 0.95(2) 2.8(1) 3.0(1) 0.90(4) −0.76(4)
7S1/2 − 9P1/2 0.11(1) 0.03(1) 0.03(1) −0.02(0) 0.01(0)
7S1/2 − 9P3/2 0.44(2) 0.52(5) 0.55(5) 0.14(1) −0.12(1)
7S1/2 − 10P1/2 0.05(0) 0.01(0) 0.01(0) 0.00(0) 0.00(0)
7S1/2 − 10P3/2 0.26(1) 0.17(1) 0.18(1) 0.04(1) −0.04(1)
7S1/2 − 11P1/2 0.04(0) 0.0(0) 0.0(0) 0.00(0) 0.00(0)
7S1/2 − 11P3/2 0.18(1) 0.08(1) 0.08(1) 0.02(0) −0.02(0)

Total 296.10(99) 409.7(1.4) −61.3(9) 52.1(9)

Tail 1.5(5) 1.3(7) 0.2(1) −0.2(1)
Core–valence −0.9(3) −1.0(5) ∼0 ∼0
Core 20.4(5) 28.2(6) 0.0 0.0

Final sum 317.1(1.3) 438.4(1.5) −61.1(9) 52.6(9)
Others 316.81 [53]

289.8 [54]
315.2 [55]

317.8(2.4) [56]

Table 2. Contributions from α(top,i=0,2)
F (ω), α(cen,i=0,2)

F (ω) and α(norm,i=0,2)
F (ω) to the α(3,0)

F ,
α(3,1)

F and α(3,2)
F values (in ×10−2 a.u.) of the F = 13/2 and F = 11/2 hyperfine levels of the

ground state of 210Fr at ω = 0 and ω = 0.031729 a.u. (λ = 1436 nm). The value can be
converted from a.u. to SI unit by multiplying with the conversion factor
1/(4πε0a3

0) = 0.248 8319 kHz (kV cm−1)−2 [61].

ω = 0 ω = 0.031 729 a.u.

Contribution α(3,0)
F α(3,2)

F α(3,0)
F α(3,1)

F α(3,2)
F

F = 13/2level
α(top,i=0,2)

F (ω) 1.2369 0.0455 1.7481 0.1358 0.0657
α(cen,i=0,2)

F (ω) 0.0133 −0.1097 0.0501 0.5412 −0.3173
α(norm,i=0,2)

F (ω) 1.6675 0.0 4.1464 1.5805 0.0
Final 2.9177 −0.0642 5.9446 2.2575 −0.2516

F = 11/2level
α(top,i=0,2)

F (ω) −1.4431 −0.0321 −2.0394 0.1340 −0.0464
α(cen,i=0,2)

F (ω) −0.0155 0.0774 −0.0584 0.5342 0.2237
α(norm,i=0,2)

F (ω) −1.9454 0.0 −4.8375 1.5602 0.0
Final −3.4030 0.0453 −.9353 2.2284 0.1773

table 1 and compare the final result with the previously reported values [53–56]. As can be seen, our result
agrees with other values in literature and is also more precise.

The hyperfine induced E1 polarizability can be expressed as [57, 58, 60]

α(3,i=0,2)
F (0) = α

(top,i=0,2)
F (0) + α(cen,i=0,2)

F (0) + α(norm,i=0,2)
F (0), (25)

where α
(top,i=0,2)
F (0), α(cen,i=0,2)

F (0) and α(norm,i=0,2)
F (0) represent different static contributions, and their

expressions can be found in references [57, 60]. We determine α(3,0)
F and α(3,2)

F values for the F = 11/2 and
F = 13/2 hyperfine levels of the ground state of 210Fr. Contributions from α

(top,i=0,2)
F (0), α(cen,i=0,2)

F (0) and
α(norm,i=0,2)

F (0) to the third-order hyperfine induced scalar and tensor polarizabilities along with their final
values of the above hyperfine levels are quoted in table 2. We have neglected contributions from the
occupied and continuum orbitals in these estimations. As can be seen, the final values are much smaller
than the α(2,0)

F (0) values but they are more relevant to the present study.
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Table 3. The DC Stark shifts ωJ
DC/2π (MHz), ωF

DC/2π (kHz), and ωF,M
DC /2π (Hz)

with E = 100 kV cm−1 in the hyperfine states of 7S1/2 in 210Fr.

ωJ
DC/2π (MHz) ωF

DC/2π (kHz) ωF,M
DC /2π (Hz)

F = 13/2 −395.4 −36.800 30.7
F = 11/2 −395.4 42.705 −30.7

To measure the eEDM, we apply the MW field with a frequency resonant between the hyperfine levels
F = 13/2 and F = 11/2. Therefore, the frequency shifts should be determined for each magnetic sublevel of
these hyperfine states. Equation (22) can be rewritten as

ΔEDC Stark ≡ �ωJ
DC + �ωF

DC + �ωF,M
DC M2

F (26)

with

�ωJ
DC ≡ −1

2
α(2,0)

F (0)E2
DC, (27)

�ωF
DC ≡ −1

2

(
α(3,0)

F (0) − (F + 1)

(2F − 1)
α(3,2)

F (0)

)
E2

DC, (28)

and �ωF,M
DC ≡ − 3

2F(2F − 1)
α(3,2)

F (0)E2
DC, (29)

where �ωF
DC and �ωF,M

DC are the MF independent and dependent contributions, respectively, to the Stark
shifts. These values are listed in table 3 for the F = 11/2 and F = 13/2 hyperfine levels.

Similarly, the light shift due to the AC electric field (EL) arising from the optical lattice can be expressed
as

ΔElight = −1

2
αF,MF (ω)E2

L(ω), (30)

where EL(ω) is the electric field strength with angular frequency ω and αF,MF (ω) is known as the dynamic
E1 polarizability, given by

αF,MF (ω) = C0(α(2,0)
F (ω) + α(3,0)

F (ω)) + C1(α(2,1)
F (ω) + α(3,1)

F (ω)) + C2α
(3,2)
F (ω). (31)

α(i,0)
F , α(i,1)

F and α(3,2)
F are known as the scalar, vector and tensor polarizability contributions respectively for

the second-order (i = 2) and third-order (i = 3) E1 polarizabilities. Ck=1,2,3 are coefficients whose values
depend on the polarization of EL.

The dynamic second-order E1 polarizability can be evaluated by

α(2,l=0,1)
F (ω) =

∑
k

W (l=0,1)
k

[
|〈J‖D‖Jk〉|2
E0 − Ek + ω

+ (−1)l |〈J‖D‖Jk〉|2
E0 − Ek − ω

]
(32)

with the coefficients

W (0)
k = − 1

3(2J + 1)
, (33)

and

W (1)
k = (−1)Jk+F+I+1

√
6F(2F + 1)

(F + 1)

{
F J I
J F 1

}{
J 1 J
1 Jk 1

}
. (34)

These values for both the F = 13/2 and F = 11/2 hyperfine levels are given in table 1. Similarly, the
third-order hyperfine interaction mediated dynamic E1 polarizabilities can be evaluated by

α(3,i=0,1,2)
F (ω) = α

(top,i=0,2)
F (ω) + α(cen,i=0,1,2)

F (ω) + α(norm,i=0,1,2)
F (ω), (35)

where the expressions for α(top,i=0,1,2)
F (ω), α(cen,i=0,1,2)

F (ω) and α(norm,i=0,1,2)
F (ω) can be found in references

[57, 60], and these contributions to the scalar, vector and tensor parts for both the F = 13/2 and F = 11/2
hyperfine levels are given in table 2. The final values of the third-order E1 polarizabilities, after adding the
above three contributions, are also given in the same table.

The coefficients for the linearly polarized light are given by [59]

C0 = 1, C1 = 0, and C2 =
3M2

F − F(F + 1)

F(2F − 1)
(36)
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Table 4. Estimated light shifts in the hyperfine levels of the 7S1/2(F) in 210Fr due
to the light shifts ω0

light/2π (in MHz), ω1
light/2π (in kHz), and ω2

light/2π (in Hz) for
the light with a wavelength of 1436 nm, power P = 5 W, a beam waist
w0 = 50 μm, and σ+ and π polarizations.

F �ω0
light �ω1

light �ω2
light

πpolarization
13/2 −4.889 0.0 1.155
11/2 −4.888 0.0 −1.155

σ+polarization
13/2 −4.889 56.248 −5.773
11/2 −4.888 −56.522 −5.773

and for the circularly polarized light, they correspond to

C0 = 1, C1 =
AMF

2F
, and C2 = −3M2

F − F(F + 1)

2F(2F − 1)
, (37)

where A is known as the degree of circular polarization and takes the values 1 and −1 for right-hand and
left-hand circularly polarized electric field, respectively.

Using the above quantities, we can rewrite the light shift due to EL as

ΔElight ≡ �ω0
light + �ω1

lightMF + �ω2
lightM

2
F , (38)

where the first, second and third terms are the contributions independent of MF, linear in MF and quadratic
in MF respectively. The estimated �ω0

light, �ω1
light and �ω2

light values for the F = 11/2 and F = 13/2 levels are
given in table 4.

Next, we intend to estimate the Zeeman shifts due to HZeeman. To extract ΔωEDM from the frequency
shifts due to the Hamiltonian of equation (20), it is necessary to apply an external magnetic field Bext

parallel followed by anti-parallel to the external electric field EDC. The typical magnitude of the applied
external magnetic field Bext is 200 pT. In addition, there is also a background magnetic field. The
dominating ambient field is the earth’s magnetic field which is of the order of ∼ 3 × 10−5 T. Using
compensation Helmholtz coils along the x, y, and z axes reduces this by a factor 100, and magnetic shields
will give an additional reduction factor of 106 [62]. This would leave a residual magnetic field of the order
of ∼ 3 × 10−13 T, which is defined as Bres ≡ Br,‖ + Br,⊥, where Br,‖ and Br,⊥ are the residual magnetic fields
parallel and perpendicular to EDC. If the direction of EDC and Bext is same, the energy shift ΔEZeeman is
written as [6]

ΔEZeeman,↑↑ ≡ �ω0,↑↑gFMF + �ω1K1g2
F + �ω2,↑↑K2g3

F , (39)

�ω0,↑↑ ≡ −μB(Bext + Br,‖) (40)

�ω1 ≡
μ2

BB2
r,⊥

�ωF,M
DC

(41)

�ω2,↑↑ ≡ −μ3
BB2

r,⊥(Bext + Br,‖)

(�ωF,M
DC )2

, (42)

where the arrows in the subscripts signify that the directions of EDC and Bext are parallel. K1 and K2 are
coefficients which are function of MF [6]. K1 has M2

F dependence whereas K2 has MF and M2
F dependence.

Thus, although K1 does not depend on the sign of MF, K2 does. Applying Bext opposite to the direction of
EDC gives

ΔEZeeman,↑↓ ≡ −�ω0,↑↓gFMF + �ω1K1g2
F − �ω2,↑↓K2g3

F , (43)

�ω0,↑↓ ≡ −μB(Bext − Br,‖) (44)

�ω2,↑↓ ≡ −
μ3

BB2
r,⊥ ((Bext − Br,‖)

(�ωF,M
DC )2

. (45)

In the above expressions, ω0,2,↑↑ (ω0,2,↑↓) indicates the Zeeman shift when EDC and Bext are parallel and
anti-parallel respectively.
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Figure 6. Energy diagram and MW transitions. (a)Tensor DC Stark shifts and tensor light shifts of magnetic sublevels in the
hyperfine states of 7S1/2. (b) Zeeman shifts and vector light shifts of magnetic sublevels.

3.2. Cancellation of frequency shifts
We now consider the cancellation of the additional frequency shifts during the measurement. Figure 6(a)
shows the MF sublevel dependency of the ωF,M

DC M2
F contribution to the DC Stark shift in equation (26). This

is the dominant contribution and the other contributions to the DC Stark shift are omitted since ωJ
DC and

ωF
DC are not dependent on the magnetic sublevel. The diagram in figure 6(a) also includes the tensor light

shift ω2
light. After the second Ramsey MW pulse in the time sequence shown in figure 3(b), the z components

of Bloch vectors measured as the Ramsey resonance are given by equations (12) and (13) including Δω±M.
Taking into account the additional frequency shift of equations (26), (38), (39) and (43), Δω±M in
equation (15) can be replaced by

Δω±M = ωHFS +ΔωEDM,±M +ΔωF
DC +ΔωF,M

DC M2

+ΔωS
light ±ΔωV

lightM +ΔωT
lightM

2

+ΔωZeeman,±M − ωMW , (46)

where

ΔωEDM,±M ≡ Δω±M,±M
EDM (47)

ΔωF
DC ≡ ωF

DC,F=13/2 − ωF
DC,F=11/2 (48)

ΔωF,M
DC ≡ ωF,M

DC,F=13/2 − ωF,M
DC,F=11/2 (49)

ΔωS
light,±M ≡ (ω0

light,F=13/2 − ω0
light,F=11/2)

ΔωV
light ≡ (ω1

light,F=13/2 − ω1
light,F=11/2) (50)

ΔωT
light ≡ (ω2

light,F=13/2 − ω2
light,F=11/2) (51)

ΔωZeeman,±M ≡ ω0
4

13
M + ω2K2

16

2197
. (52)

Here ω0 is either ω0,↑↑ or ω0,↑↓. For 210Fr, gF = 2/13 for F = 13/2 and gF = −2/13 for F = 11/2, and K2 is
proportional to the sign of M. Therefore, K2 for M corresponds to −K2 for −M [6].

The signal S of equation (18) can accordingly be written as

S ∼ N

2
(Δω+M −Δω−M)T

=
N

2

(
ΔωEDM,+M −ΔωEDM,−M + 2ΔωV

lightM + ω0
8

13
M

)
T (53)

.
Equation (53) shows that the scalar DC Stark shift, tensor DC Stark shift, scalar light shifts, tensor light

shift, and shift due to the frequency of MW field in the signal are all canceled out by the measurement
scheme. It reduces the systematic errors due to the EDC and the lattice light. This cancellation can be

13
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understood since the transition frequencies between F = 13/2, MF = 11/2 → F = 11/2, MF = 11/2 and
F = 13/2, MF = −11/2 → F = 11/2, MF = −11/2 under the tensor DC Stark shift and tensor light shift
are the same, as shown in figure 6(a). On the other hand, the transitions under the vector light shift and
Zeeman shift (shown in figure 6(b)) remains in equation (53). Albeit the ωMW dependence is canceled, in
order to maximize the excitation by the MW field, its frequency is tuned to ωMW = ωHFS +ΔωF

DC +
ΔωF,M

DC M2 +ΔωS
light +ΔωT

lightM
2.

The vector light shifts for σ− polarization is opposite to that for σ+ polarization. As the polarization
vector of the optical lattice beam is directed along y-axis, (thus it has the same amount of σ+ and σ−

polarization components), the vector light shifts ωV
light are canceled. However, if the σ polarization

component of the optical lattice light is slightly unbalanced, the cancellation will not be complete. Reducing
the polarization purity to 10−5 results in the residual ΔωV

light/2π = 740 mHz, as derived from table 4 with
P = 0.6 W. In the following step, the measurement is pursued by reversing the direction of EDC and Bext to
−EDC and −Bext, respectively. As the polarity of σ polarization components are mirrored, due to the
reversal of the quantization axis, the ΔωV

DC can be canceled by comparing the signal S for EDC, Bext with
that for −EDC, −Bext. In the event that the degree of circular handedness would change in a way that is
correlated with the electric field reversal, a false eEDM signature may arise. To stem this source of a
spurious signal, the polarization purity of optical lattice light, and its long term drifts and short term
fluctuations, should be independently measured and characterized with atomic spectroscopy, for example
the form of coherent population trapping and the detection of a dark state.

For this example, we assume a Bext of 10 pT generated by Helmholtz coils with the current stabilized
below 10−5. The Zeeman shift ω0

8
13 M/2π with Bext = 200 pT is 0.496 Hz. To cancel the Zeeman shifts, we

reverse the direction of Bext relative to EDC. Subtracting S↑↓ from S↑↑ cancels the Bext terms in equations (39)
and (43). However, the Br,‖ terms remain, and at 3 × 10−13 T with the magnetic shield of 106 [62], the shift
is about 0.014 Hz. The drift of earth magnetic field is typically 10−3 if there is no magnetic storm.
Therefore, the fluctuation of residual magnetic field is 14 μHz inside the magnetic shield. During the
Ramsey resonance measurement with T = 1 s, the SQL of frequency measurement is given by 1/(2π

√
N) =

0.318 mHz for N = 2.5 × 105. The Zeeman shifts in equation (53) during T = 1 s should be compensated
with monitoring the magnetic field. Therefore, to independently estimate the background magnetic field
Br,‖, we propose measuring it using a spin-exchange relaxation free (SERF) magnetometer [63]. The

sensitivity of the magnetometer can reach 7 fT (
√

Hz)−1 at 1 Hz [64]. As the noise floor of the
magnetometer corresponds to 98 μHz and the fluctuation of residual magnetic field from the earth
magnetic field is 14 μHz as mention above, the drift of magnetic field is below the uncertainty of the
magnetometer for T = 1 s. 98 μHz of the magnetometer is smaller than the SQL frequency uncertainty of
0.318 mHz for T = 1 s. In this way, the frequency shift ΔωEDM,+M −ΔωEDM,−M in equation (53) with the
uncertainty of 0.318 mHz is extracted and is compensated for the Zeeman shift of 0.496 Hz. Then, the
integration of the frequency shift ΔωEDM,+M −ΔωEDM,−M for ttotal = 1 day = 86 400 s reduces the
uncertainty of eEDM down to 3.3 × 10−29ecm level.

In the case of the SSS, the SQL of frequency measurement with ξR = 1/44.2 (as discussed in the end of
section 2, N = 2.5 ×105 for trapped Fr atoms [51], and g/2π = 105 Hz) gives 0.318 mHz/44.2 = 7.4 μHz.
This is smaller than the noise floor of the magnetometer. On the other hand, the 16 magnetometers were
used in the neutron EDM measurement [65]. Likewise, the uncertainty of 25 μHz for T = 0.1 due to the 16
SERF magnetometers is less than the uncertainty with the SSS of 74 μHz with the T = 0.1 s. To compare the
uncertainty in the SSS with the CSS using T = 1 s and ttotal = 1 day, we consider T = 0.1 s and ttotal = 10
days for the SSS in order to keep the product of Tttotal in the equations (19) and (20). Then, equation (20)
with T = 0.1 s and ttotal = 10 days gives de = 7.5 ×10−31ecm as discussed in the section 2. Furthermore, the
residual magnetic field that correlates with the electric field reversal should be checked by changing the
magnitude of the electric field.

The E × v effect has also been discussed in previously reported EDM measurements with atomic beam
experiments [4, 66]. This term is added to the magnetic field. Laser cooling and trapping of atoms reduces
the velocity, and thus, the effect. The mean values of the velocity v of atom in the optical lattice is about
9.2 mm s−1. Then, B = v × EDC/c2 = 0.92 pT. It corresponds to frequency shift of 0.81 mHz. However, as
the velocity distribution of atoms trapped in the optical lattice is isotropic, the mean value of v × EDC/c2 is
zero, and the dispersion remains.

After these estimates, the ΔωEDM,+M −ΔωEDM,−M = 2ΔωEDM,+M can be obtained. This should be
checked by changing the direction of Bext, EDC, switching the phase ϕ = 0 to π, changing the magnitude of
Bext, and by changing the balance of NF=13/2,MF=−11/2 and NF=11/2,MF=+11/2. The quantum sensing using
SSS may thus offer the potential to dramatically improve the resolution of the search for the eEDM to below
1 × 10−30ecm. The large uncertainty will still bury the small difference. The large reduction of uncertainty
by using SSS in experiment should also be useful for checking and reducing systematic errors generally.
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4. Conclusion

We propose a method for measuring the eEDM arising from parity and time-reversal symmetry violations,
using ultracold Fr atoms trapped in an optical lattice, with a potential uncertainty below the SQL. The
dependence of the uncertainty in the EDM on a single-photon Rabi frequency inside the optical cavity is
investigated. Quantum sensing using the SSS of a Fr atom for the measurement of its EDM is predicted to
offer an uncertainty below 10−30 ecm. To estimate systematic uncertainties, we evaluated the DC Stark shifts
due to the applied electric field, light shifts due to the optical lattice, and Zeeman shifts due to the applied
magnetic field. We demonstrated that our proposed technique using the two Bloch vectors in the spin
squeezed states cancel out the shifts arising from the Stark shifts due to both the DC field and the optical
lattice in the measurement. This advocates for using the proposed quantum sensing technique to measure
the eEDM, to a very low uncertainty. This technique can also be extended to measure the electric dipole
moments of polar molecules. Thus, our proposed technique opens up a new possibility to carry out EDM
measurements in the atomic systems as the next generation experiments to probe new physics beyond the
SM of particle physics.

Acknowledgment

We thank Professor B P Das for many useful discussions. This work was supported by a Grant-in-Aid for
Scientific Research (B) (No. 20H01929), and a Grant-in-Aid for Scientific Research (S) (No. 19H05601)
from the Japan Society for the Promotion of Science (JSPS). BKS acknowledges access to the Vikram-100
HPC cluster of the Physical Research Laboratory (PRL), India for carrying out computations. The work of B
A is supported by SERB-TARE(TAR/2020/000189), New Delhi, India.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

T Aoki https://orcid.org/0000-0001-9875-2515
R Sreekantham https://orcid.org/0000-0002-4210-5922
B K Sahoo https://orcid.org/0000-0003-4397-7965
Bindiya Arora https://orcid.org/0000-0001-7083-034X
A Kastberg https://orcid.org/0000-0002-6175-2252
T Sato https://orcid.org/0000-0001-7699-8768
H Ikeda https://orcid.org/0000-0003-3229-6021
N Okamoto https://orcid.org/0000-0002-1295-7542
Y Torii https://orcid.org/0000-0002-7613-1344
T Hayamizu https://orcid.org/0000-0003-1966-7828
K Nakamura https://orcid.org/0000-0001-7773-1328
S Nagase https://orcid.org/0000-0001-7367-0062
M Ohtsuka https://orcid.org/0000-0002-1773-5711
H Nagahama https://orcid.org/0000-0001-7184-0267
N Ozawa https://orcid.org/0000-0002-5698-2133
M Sato https://orcid.org/0000-0003-1419-3192
T Nakashita https://orcid.org/0000-0002-6921-8556
K Yamane https://orcid.org/0000-0001-8460-6349
K S Tanaka https://orcid.org/0000-0001-6916-9654
K Harada https://orcid.org/0000-0002-5130-2848
H Kawamura https://orcid.org/0000-0002-2978-756X
T Inoue https://orcid.org/0000-0003-0505-5599
A Uchiyama https://orcid.org/0000-0001-9636-4631
A Hatakeyama https://orcid.org/0000-0002-0196-0375
A Takamine https://orcid.org/0000-0001-5528-7940
H Ueno https://orcid.org/0000-0003-4150-9500
Y Ichikawa https://orcid.org/0000-0001-5362-6523

15

https://orcid.org/0000-0001-9875-2515
https://orcid.org/0000-0001-9875-2515
https://orcid.org/0000-0002-4210-5922
https://orcid.org/0000-0002-4210-5922
https://orcid.org/0000-0003-4397-7965
https://orcid.org/0000-0003-4397-7965
https://orcid.org/0000-0001-7083-034X
https://orcid.org/0000-0001-7083-034X
https://orcid.org/0000-0002-6175-2252
https://orcid.org/0000-0002-6175-2252
https://orcid.org/0000-0001-7699-8768
https://orcid.org/0000-0001-7699-8768
https://orcid.org/0000-0003-3229-6021
https://orcid.org/0000-0003-3229-6021
https://orcid.org/0000-0002-1295-7542
https://orcid.org/0000-0002-1295-7542
https://orcid.org/0000-0002-7613-1344
https://orcid.org/0000-0002-7613-1344
https://orcid.org/0000-0003-1966-7828
https://orcid.org/0000-0003-1966-7828
https://orcid.org/0000-0001-7773-1328
https://orcid.org/0000-0001-7773-1328
https://orcid.org/0000-0001-7367-0062
https://orcid.org/0000-0001-7367-0062
https://orcid.org/0000-0002-1773-5711
https://orcid.org/0000-0002-1773-5711
https://orcid.org/0000-0001-7184-0267
https://orcid.org/0000-0001-7184-0267
https://orcid.org/0000-0002-5698-2133
https://orcid.org/0000-0002-5698-2133
https://orcid.org/0000-0003-1419-3192
https://orcid.org/0000-0003-1419-3192
https://orcid.org/0000-0002-6921-8556
https://orcid.org/0000-0002-6921-8556
https://orcid.org/0000-0001-8460-6349
https://orcid.org/0000-0001-8460-6349
https://orcid.org/0000-0001-6916-9654
https://orcid.org/0000-0001-6916-9654
https://orcid.org/0000-0002-5130-2848
https://orcid.org/0000-0002-5130-2848
https://orcid.org/0000-0002-2978-756X
https://orcid.org/0000-0002-2978-756X
https://orcid.org/0000-0003-0505-5599
https://orcid.org/0000-0003-0505-5599
https://orcid.org/0000-0001-9636-4631
https://orcid.org/0000-0001-9636-4631
https://orcid.org/0000-0002-0196-0375
https://orcid.org/0000-0002-0196-0375
https://orcid.org/0000-0001-5528-7940
https://orcid.org/0000-0001-5528-7940
https://orcid.org/0000-0003-4150-9500
https://orcid.org/0000-0003-4150-9500
https://orcid.org/0000-0001-5362-6523
https://orcid.org/0000-0001-5362-6523


Quantum Sci. Technol. 6 (2021) 044008 T Aoki et al

Y Matsuda https://orcid.org/0000-0002-9847-3791

H Haba https://orcid.org/0000-0002-0170-8305

Y Sakemi https://orcid.org/0000-0001-8101-3900

References

[1] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[2] Cesarotti C, Lu Q, Nakai Y, Parikh A and Reece M 2019 J. High Energy Phys. JHEP05(2019)059
[3] ACME Collaboration 2018 Nature 562 355
[4] Regan B C, Commins E D, Schmidt C J and DeMille D 2002 Phys. Rev. Lett. 88 071805
[5] Murthy S A, Krause D, Li Z L and Hunter L R 1989 Phys. Rev. Lett. 63 965
[6] Amini J M, Munger C T and Gould H 2007 Phys. Rev. A 75 063416
[7] Shitara N, Yamanaka N, Sahoo B K, Watanabe T and Das B P 2021 J. High Energy Phys. JHEP02(2021)124
[8] Zhu K, Solmeyer N, Tang C and Weiss D S 2013 Phys. Rev. Lett. 111 243006
[9] Parker R H et al 2015 Phys. Rev. Lett. 114 233002

[10] Aoki T et al 2011 Proc. 5th Int. Workshop on Fundamental Physics Using Atoms ed ed N Sasao (Okayama, Japan: Okayama
University)

[11] Kozyryev I and Hutzler N R 2017 Phys. Rev. Lett. 119 133002
[12] The NL-eEDM Collaboration 2018 Eur. Phys. J. D 72 197
[13] Sunaga A, Abe M, Prasannaa V S, Aoki T and Hada M 2020 J. Phys. B: At. Mol. Opt. Phys. 53 015102
[14] Fitch N J, Lim J, Hinds E A, Sauer B E and Tarbutt M R 2021 Quantum Sci. Technol. 6 014006
[15] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119

153001
[16] Zhou Y et al 2020 Phys. Rev. Lett. 124 053201
[17] Chin C, Leiber V, Vuletíc V, Kerman A J and Chu S 2001 Phys. Rev. A 63 033401
[18] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[19] Hosten O, Engelsen N J, Krishnakumar R and Kasevich M A 2016 Nature 529 505
[20] Pedrozo-Peñafiel E et al 2020 Nature 588 414
[21] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47

3554
[22] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[23] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[24] Takeuchi M, Ichihara S, Takano T, Kumakura M, Yabuzaki T and Takahashi Y 2005 Phys. Rev. Lett. 94 023003
[25] Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 46 R6797
[26] Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67
[27] Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A and Treutlein P 2010 Nature 464 1170
[28] Kuzmich A, Bigelow N P and Mandel L 1998 Europhys. Lett. 42 48
[29] Takahashi Y, Honda K, Tanaka N, Toyoda K, Ishikawa K and Yabuzaki T 1999 Phys. Rev. A 60 4974
[30] Takano T, Fuyama M, Namiki R and Takahashi Y 2009 Phys. Rev. Lett. 102 033601
[31] Appel J, Windpassinger P J, Oblak D, Hoff U B, Kjaergaard N and Polzik E S 2009 Proc. Natl Acad. Sci. 106 10960
[32] Leroux I D, Smith M H S and Vuletíc V 2010 Phys. Rev. Lett. 104 073602
[33] Chen Z, Bohnet J G, Sankar S R, Dai J and Thompson J K 2011 Phys. Rev. Lett. 106 133601
[34] Simsarian J E, Ghosh A, Gwinner G, Orozco L A, Sprouse G D and Voytas P A 1996 Phys. Rev. Lett. 76 3522
[35] Lu Z-T, Corwin K L, Vogel K R, Wieman C E, Dinneen T P, Maddi J and Gould H 1997 Phys. Rev. Lett. 79 994
[36] Atutov S N et al 2003 J. Opt. Soc. Am. B 20 953
[37] Tandecki M, Zhang J, Collister R, Aubin S, Behr J A, Gomez E, Gwinner G, Orozco L A and Pearson M R 2013 J. Instrum. 8

P12006
[38] Harada K 2019 11th Int. Workshop on Fundamental Physics Using Atoms (FPUA) (Okinawa, Japan)
[39] Byrnes T M R, Dzuba V A, Flambaum V V and Murray D W 2016 Phys. Rev. A 59 3082
[40] Schleier-Smith M H, Leroux I D and Vuletíc V 2010 Phys. Rev. A 81 021804(R)
[41] See appendix A Vrijsen G 2011 PhD Thesis Stanford University
[42] Saffman M, Oblak D, Appel J and Polzik E S 2009 Phys. Rev. A 79 023831
[43] Nielsen A E B and Mølmer K 2008 Phys. Rev. A 77 063811
[44] Chen Z, Bohnet J G, Weiner J M, Cox K C and Thompson J K 2014 Phys. Rev. A 89 043837
[45] Cox K C, Greve G P, Weiner J M and Thompson J K 2016 Phys. Rev. Lett. 116 093602
[46] Schleier-Smith M H, Leroux I D and Vuletíc V 2010 Phys. Rev. Lett. 104 073604
[47] Vuletíc V, Chin C, Kerman A J and Chu S 1998 Phys. Rev. Lett. 81 5768
[48] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
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