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Het werk beschreven in dit proefschrift is onderdeel van het onderzoeksprogramma van de sticht-
ing Fundamenteel Onderzoek der Materie. Deze stichting wordt financiëel ondersteund door de
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Chapter 1

Introduction

Di, coeptis [...]
adspirate meis primaque ab origine mundi

ad mea perpetuum deducite tempora carmen.

Gods, inspire my attempts
and spin out a continuous song

from the first origin of the world into my times.

Ovid [1], Metamorphoses I 2-4.

We live in exciting times. The Large Hadron Collider at CERN is working better than anyone
expected; it is collecting data at world-record holding center-of-mass energy and ever growing
luminosity (a measure of the number of interactions per unit time). The Tevatron accelerator at
Fermilab closed down at the end of the fiscal year 2011. In the last months of its service it worked at
top-luminosity to collect as much data as possible before its shut-down. This data is currently being
investigated and may contain a treasure of information.

On the neutrino front, the discovery of neutrino oscillations is now a little over ten years old and
neutrino physics has entered the precision era. There is hope that in the next decade, all mixing
angles, including the only recently measured angle θ13, are known to great precision; that the
absolute mass scale and the related hierarchy can be set and that neutrinoless double beta decay
may be observed. In September 2011, the OPERA experiment reported superluminal velocities for
neutrinos traveling from CERN to Gran Sasso, adding a new mystery to the neutrinos’ character.

The oldest light in the universe, the cosmic microwave background, is measured more and more
precisely by the WMAP and Planck satellites, thereby delivering a wealth of data also to the particle
physics community.

Between all this experimental force, it is up to the theorist community to give frameworks in which
the new results can be interpreted. In the first section of this introductory chapter, we describe the
Standard Model, that has been the leading theory of particle physics for the last forty years. Still,
there are reasons to expect that the Standard Model should be extended. These are described in the
next three sections. One of these extensions is the addition of family symmetries (also called flavour
symmetries). This is the main topic of this thesis. In this chapter, we also come across the neutrino
seesaw, dark matter, supersymmetry and gauge unification, that are other important elements of
some chapters of this thesis.



2 1. Introduction

1.1 The Standard Model

The leading theory in particle physics is, with good reason, called the Standard Model (SM). The SM
was developed in the 60s and describes all known elementary particles and their interactions with
unprecedented precision. The Standard model consists of matter particles, forces and related force
carriers and a sector that should give mass to it all, the Higgs sector.

On the matter side, the Standard Model describes quarks and leptons, that are ordered in generations,
as shown in figure 1.1. Ordinary matter is made of first generation matter. Atomic nuclei are

u
quark

up

d
quark
down

e
electron

ν
neutrino
electron

c
quark
charm

s
quark

strange

μ
muon

ν
neutrino
muon

t
quark
top

b
quark

bottom

τ
ν

neutrino
tau

e μ τ

lepton
tau

Figure 1.1: The matter content of the SM.

ultimately build of up and down quarks: two ups and one down form a proton and two downs
and one up form a neutron; a nucleus can be seen as a specific combination of protons and neutrons.
Around the nucleus circle the electrons to form an atom. Electrons together with the rarely interacting
neutrinos are called leptons. See also figure 1.2.

Experimentalists found that the spectrum of elementary particles is much more interesting than just
the first generation particles that are needed to build up atomic matter. In 1936-7, a new particle
was discovered. Eventually, it became known as muon and was identified as a heavier brother of
the electron. This is remarkable. A priori, there is no reason that a new particle should resemble any
‘older’ particle, but the muon does. It has all its properties in common with the electron: same electric
charge, same spin, also invisible to the strong nuclear force, etcetera. Only the mass is different; for
the rest, it is a perfect copy.

It was found that this relationship is not unique to the electron and the muon: all first generation
particles have exactly two heavier brothers. Next to the electron and the muon, there is the even
heavier tau particle. The down quark is accompanied by a strange and a bottom quark and next to
the up quark are a charm and a top quark. Also neutrinos come in three types, generally dubbed
electron-, muon- and tau-neutrino.
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Figure 1.2: Normal matter is made of atoms, that are on their turn build up from up quarks
(blue), down quarks (red) and electrons (yellow)[Schematic view – not to scale]

The quarks and leptons of the Standard Model interact via exactly three elementary forces. The
first one is the strong nuclear force that only works on the particles in the nucleus, the quarks. The
other two are called the weak force and the hyperforce and they are together called the electroweak
interactions. At ‘low’ energies, this gives rise to electromagnetism. According to the theory, there
is a force carrier (or gauge boson) related to each of these forces. For electromagnetism, this is the
well-known photon, or light-quantum. Apart from the photon, the electroweak interactions give rise
to W and Z bosons. Gluons, lastly, mediate the strong nuclear force.

A force carrier only couples to a particle that is charged under the appropriate charge. In the language
of gauge theory, in which the Standard Model is written, this translates to being in a non-trivial
representation of the related gauge group. The relation between the group theory of symmetry
groups and the physics of forces and couplings that is behind this is one of the best examples of
the power of mathematics in physics.

The interactions of the Standard Model are graphically depicted in figure 1.3. There, it can be seen
that also some gauge bosons couple to each other.

The Standard Model as described so far explains all known elementary particles and all their
interactions in great detail, but with two important shortcomings: if the above theory were all, all
elementary particles would be exactly massless and the electromagnetic force and the weak nuclear
force, that combine at higher energies would not separate. Both problems can be solved with the
introduction of an extra field to the theory, as explained by Brout, Englert, Guralnik, Hagen, Kibble
and Higgs and eventually called after the latter. The Higgs fields can give the required dynamics to
break electroweak symmetry and thereby give mass to the W and Z bosons. The quark and lepton
masses follow from the so-called Yukawa couplings to the Higgs field, that gives a mass term below
the electroweak scale. Addition of more than one Higgs field is in principle possible, but with only
one copy we have the most simple complete theory. We refer to this theory as ‘the Standard Model’
and to theories with more than one Higgs as extensions of it.
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The addition of the Higgs fields leads to the prediction of the existence of an extra particle, called
the Higgs boson. The Higgs has not been found yet and the search for this particle was one of the
main motivations to construct the LHC — although this argument was also used for its predecessor,
the large electron-positron collider (LEP). Many physicists believe that the LHC will indeed find the
Higgs and this would then ‘complete’ the Standard Model.

The Standard Model passed many experimental tests over the last decades and it was always able
to perfectly fit the experimental outcomes. Still there are reasons to believe that the Standard
Model, after the discovery of a single Higgs particle, is not the whole story. The arguments for this
claim fall in three groups. Firstly, there are experimental/observational reasons to believe that the
Standard Model is incomplete. Interestingly enough, arguments come mostly from cosmological and
astrophysical sources. Secondly, there are theoretical reasons to believe that the Standard Model is
‘unnatural’, meaning that although it can explain many experimental results very well, this requires
very special values of the parameters of the theory. Thirdly, the Standard Model fails to give a
microscopic theory of gravity. When we study places in the universe like black holes or times like
the Big Bang, we need both the physics of the very small and of the very heavy. Unfortunately, the
Standard Model of particle physics and the leading theory of gravity, Einstein’s general relativity, are
not compatible and a new theory of quantum gravity is needed.

We discuss the first two challenges to the Standard Model in some detail in the rest of this chapter,
each time suggesting solutions. As we will see, these are often the addition of extra particles and/or
symmetries to the Standard Model. The search for a quantum theory of gravity has been the holy
grail for high energy physicists for the last decades. Interesting theories, like string theory and loop
quantum gravity exist, but a conclusive answer has not yet been given. We do not study quantum
gravity in this thesis, although we refer to the scale at which quantum gravity is thought to exist —
the Planck scale — quite often.

q

H W

Z

ν
γ

l

g

quarks

charged 
leptons

Higgs boson

neutrinos

photon

Z boson

gluon

W boson

q

H W

Z

ν
γ

l

g
±

Figure 1.3: Schematic representation of the interactions of the Standard Model

1.2 Reasons why the Standard Model is incomplete

The Standard Model has successfully explained a multitude of experimental data, meaning that it
well predicted the behaviour of elementary particles in Earthbound colliders. However, particle
physics also has a strong connection with astrophysics and cosmology. This shows itself in the fact
that the Earth is constantly bombarded with particles from the Sun and many other sources in the
sky; it shows itself in the fact that the particle content of the universe steers its fate of contraction or
expansion and it shows itself in the fact some of the early phases of the universe, such as inflation
and nucleosynthesis can be described extremely well by particle physics.
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Indeed, many of the elementary particles were first discovered as elements of the cosmic radiation
and detected in bubble and cloud chambers long before they could be recreated and observed in
colliders on Earth. However, there are cases where the Standard Model falls short to describe what
we observe in the cosmos. We describe neutrino oscillations, dark matter and the baryon asymmetry
of the universe in the next sections.

1.2.1 Neutrino Oscillations

The Sun shines very brightly. Indeed, if we could capture the energy it radiates on Earth for just one
hour, this would be enough to satisfy humanity’s energy consumption for a full year. The energy
needed for this enormous amount of radiation is created in the center of the Sun, where protons are
fused into helium nuclei in one of the most energetic reactions imaginable. In this process, energy
is not only produced in the form of photons, or light, but also as (kinetic) energy of particles called
neutrinos, that we have seen above of companions to the charged leptons.

Neutrinos were postulated in 1930 to explain properties of radioactive materials and were eventually
observed in 1956. Their name is well-chosen. They are electrically neutral and the Italian suffix -ino
refers to something that is small. In particle language, that translates to having a small cross section,
a measure of how easily a particle interacts. Above, it was mentioned that neutrinos interact rarely.
This is an understatement: if we send a beam of neutrinos through a bar of lead, the bar would have
to be half a lightyear long in order to let half of the neutrinos interact with it. For comparison, for
visible light, this would be only a few atomic distances and even for the most energetic X-rays, it
would be a few millimetres. Still, no matter how rarely, neutrinos sometimes do interact with matter.
This is key to one of the most outstanding theorist-experimentalist collaborations ever.

We know the amount of radiation that the Sun produces very well and we also know how the origin
of this radiation is also the origin of many neutrinos. We can therefore calculate how many neutrinos
should reach the Earth every second. If we also know how many, or rather how few, of these interact
with a certain detector material, we can predict a detection rate. This was done by Ray Davis and
John Bahcall, using an ingenious set up in the old Homestake gold mine. They indeed found evidence
for reactions that were initiated by solar neutrinos, but it was a factor three less than they expected.
Of course, first their solar model and experimental efficiency were challenged, but eventually the
result stood. In 2002, Ray Davis received the Nobel Prize in physics.

Above, it was mentioned that neutrinos, like the other charged leptons and the quarks, come in three
‘generations’. The electron-neutrino is defined as the neutrino that reacts together with an electron
under the weak nuclear force and analogous for the muon-neutrino and the tau-neutrino. The
neutrinos produced in the Sun are of the electron type, as their creation is related to transmutation of
normal, first generation matter. The experiment of Davis and Bahcall was only sensitive to electron
neutrinos. It could not measure muon- or tau-neutrinos. The conclusion of their experiment is
thus that of the electron-neutrinos produced in the Sun, only a third arrives at Earth as an electron-
neutrino.

Figure 1.4: Schematic view of neutrino oscillations. In the centre of the Sun all neutrinos
are of the blue electron-type; at Earth all three flavours are equally present.
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Comparable results were obtained using neutrinos that are produced when a cosmic-ray particle
collides high in the atmosphere and produces a muon and a muon-neutrino. Also of these muon-
neutrinos, only a limited fraction reaches the Earth as a muon-neutrino. Other experiments use
neutrinos from nuclear reactors or specific collider processes and they all find the same result: only
a limited fraction of the neutrinos produced is observed later as a neutrino of the same species. They
also found that it is possible to detect neutrinos of a species that is not the one that is produced.

The above observations can be explained if we assume that neutrinos oscillate. This means that if a
neutrino is produced as a neutrino of a certain species, it can become a neutrino of a different species
while flying through space.

Neutrino oscillations can be explained using simple techniques from quantum mechanics, but
only if one fundamental assumption is satisfied: neutrinos should have mass. In the Standard
Model, neutrinos do not have mass. Mass terms in the Standard Model are discussed in more
detail in chapter 2. The crucial point is this: in order to obtain a mass from interactions with the
(standard) Higgs field, a particle should appear both in ‘lefthanded’ and ‘righthanded’ form. Only
the lefthanded neutrino interacts via the weak nuclear force and as can be seen in figure 1.3, this is
the only interaction that neutrinos have. This means that all observations of neutrinos are of those of
the lefthanded type. When the Standard Model was constructed, it was deemed enough to include
only lefthanded neutrinos and leave out the righthanded neutrinos. An automatic consequence was
that neutrinos were supposed to be massless, but that was in good agreement with all experimental
data at that time.

As the above discussion suggests, the problem of the massless neutrinos can be solved in a straight-
forward way. If righthanded neutrinos are added to the theory, the left- and righthanded neutrino
can interact with the Higgs field and acquire a mass term. In chapter 2, we will see that this is indeed
a possibility. We will also see that the addition of righthanded neutrinos to the theory also gives
rise to a different possibility to make neutrinos massive. This mechanism is called the type-I seesaw
and it also explains why neutrinos, even if they are massive, are much lighter than all other known
particles. We also discuss two other seesaw theories (type-II and III), that give rise to lefthanded
neutrino mass without a righthanded neutrino.

In conclusion, the observation of neutrino oscillations proves that the Standard Model is incomplete,
as it allows only massless neutrinos that cannot oscillate. There are a number of suggested remedies
for this problem and all of them involve beyond the Standard Model physics.

1.2.2 Dark Matter

The Sun accounts for 99.9% of the mass in the solar system. When we look out in the night sky, we
see many stars and not much more. It is therefore intuitive to assume that most of the matter in the
cosmos is in stars. This turns out to be incorrect. Interstellar and intergalactic gas clouds make up
more than three times more mass than there is in stars, but as they barely emit any light, they are
much harder to see.

The real surprise comes when we make an energy balance of the universe. Then we see that only
about one sixth of all matter in the universe can be in the form of normal atomic matter. The majority
of the matter in the universe occurs in the form of ‘dark matter’1. It is called ‘dark’ because it does
not interact with light in any way; invisible matter would be an even better name.

In terms of the Standard Model, not interacting with light means not coupling to the photon. A
glimpse at figure 1.3 shows that there are a few particles that do not couple to the photon. However,
the Z- boson, the Higgs boson and combinations of gluons (they cannot occur on their own), are
all unstable and decay to particles that do couple to the photon. The only candidates left are the
(normal lefthanded) neutrinos, but also these eventually get discarded. This has to do with the fact

1An even larger part of the energy content of the universe is in the form of ‘dark energy’. It is even more mysterious than
dark matter, but we do not discuss it any further in this thesis as it might as well be related to new aspects of gravity as to new
aspects of particle physics.
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that even if neutrinos have mass, this mass is too low to give them the right dark matter properties.
In particular, neutrinos do not cluster enough, behaviour that was observed for the unknown dark
matter particles.

We conclude that the Standard Model does not have a credible candidate for the dark matter. Again,
the remedy is rather straightforward. Just add any particle to the theory that is stable and does not
interact with the photon. The problem is that physicists generally don’t like the ad hoc addition of a
particle to the theory. It would be better if the dark matter candidate naturally occurs in a beyond
the Standard Model theory. Indeed some of the extensions of the Standard Model discussed in sec
1.3 automatically give a dark matter candidate. In chapter 5, we discuss the appearance of a dark
matter candidate after a flavour symmetry gets broken.

1.2.3 Matter-antimatter Asymmetry of the Universe

When we discussed the matter content of the Standard Model at the beginning of this chapter, we
left out an important detail. We mentioned that the electron has two brothers, the muon and the tau
lepton that are much like it, but only have a different mass. There is actually a particle that looks
even more like the electron, called the positron. It has all the properties of the electron, only its
charge is exactly the opposite. The electron has charge -e, so the positron has charge +e. All particles
of the Standard Model have these almost-identical twins and together they are called antimatter.
When a particle and its corresponding antiparticle meet, they cannot peacefully coexist. Instead,
they annihilate each other in a burst of pure energy.

Now if the Earth were made partly of matter and partly of antimatter, that would be quite incon-
venient, as matter-antimatter annihilating explosions would occur with catastrophic consequences.
Fortunately, this does not happen outside Dan Brown novels. The Earth is completely made of
matter and so is the solar system and most probably the whole observable universe. Obviously, the
(observable) universe has a preference to be in a matter state rather than in an antimatter state. Even
matter is quite scarcely present in the universe though. If we count the number of matter particles
and the number of light particles (photons), the photons win by a factor in the order of a billion.

Now comes the crucial point. There are many reasons to believe that the universe went through a
phase of so-called inflation almost directly after the Big Bang. Theory demands that directly after
this inflationary era, there were equal amounts of antimatter particles, matter particles and photons.
This is clearly not what we observe today: now there are no antimatter particles, few matter particles
and many photons.

The annihilation relations referred to above, provide part of the solution. In later stages of the
universe, matter and antimatter particles met and annihilated. This certainly explains why there
is much more light than matter, but it fails to explain why there is more matter than antimatter or
even why there is still any matter at all. Matter and antimatter could have completely annihilated
each other until nothing was left of either.

So the story can be this: directly after inflation, there were equal numbers of matter, antimatter and
light particles. Then some reactions occurred that slightly shifted the balance. For every billion
antimatter particles, there were a billion +1 matter particles (and still about a billion photons). Now
the annihilation reactions set in. All billion antimatter particles annihilated with a billion of the
matter particles, but a single matter particle survived. This matter particle, however, is dwarfed in a
sea of billions of photons. This scenario is schematically represented in figure 1.5.

The crucial question is of course what are the ‘some reactions’ of the previous paragraph. Clearly,
they treat matter and antimatter on different footing. In technical terms, this is called violating
charge-parity symmetry, or CP. Actually, there are some reactions in the Standard Model that violate
CP and these were very important in the history of particle physics. After the discovery of CP
violation in the decay of subatomic particles called kaons in the 1960s, Makoto Kobayashi and
Toshihide Maskawa showed in 1973 that the Standard Model can account for this CP violation, but
only if there are at least three generations of quarks and leptons. At that time, only two generations
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Figure 1.5: Schematic view of matter (red), antimatter (yellow) and photons (white) at
different stages of the history of the universe.

were observed, so their argument was really the prediction of a third generation. Particles of the third
generation were indeed discovered soon thereafter: the tau lepton in 1975 and the bottom quark in
1977, with the top quark and the tau neutrino following in 1995 and 2000. Kobayashi and Maskawa
received the Nobel Prize in Physics in 2008.

A detailed analysis of the CP violation in the Standard Model shows however that this is not enough to
explain the cosmic overabundance of matter over antimatter. To explain this, new physics is needed.
The solution to this problem might be related to the solutions of other challenges for the Standard
Model. For instance, if the problem of neutrino masses is indeed solved by the introduction of
righthanded neutrinos, the physics of these particles in the early universe might give the matter-
antimatter asymmetry by a process known as leptogenesis. And if the Standard Model is extended
to a supersymmetric Standard Model, there are new ways to generate the asymmetry at the moment
when the Higgs field makes the electroweak symmetry break as described above.

1.2.4 Minimal extensions of the Standard Model

From the above sections, it is clear that cosmological observations prove that the Standard Model is
incomplete. It should be extended with at least a number of new fields and operators such that it is
able to generate neutrino masses; that it has a dark matter candidate and that it can explain that the
universe is matter-antimatter asymmetric.

Recently, a very minimal model was proposed by M. Shaposhnikov and collaborators, dubbed the
neutrino minimal Standard Model or νMSM [2]. In this model, only three righthanded neutrinos are
added to the Standard Model. These open the possibility for (normal) neutrino mass terms. Of the
new righthanded neutrinos, one is much lighter than the others and it is stable and can serve as the
dark matter. The two others are much heavier and unstable. They decayed early in the universe and
did so in a way that shifted the matter-antimatter balance. It is technically very challenging to make
these decays generate enough asymmetry. A number of points in parameter space have been found
however, where the two heaviest neutrinos are almost of identical mass and the balance shift is large
enough.

Extensions of the Standard Model like the one by Shaposhnikov et al are very appealing from the
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point of view of minimality. They explain all the hard criticism on the Standard Model, all the
points where we are certain that it lags behind. However, it fails to address many why-questions.
Why are the parameters the way they are. An example is the tiny mass gap between the two heavy
righthanded neutrinos. Why is it this small? Only to provide the right amount of matter-antimatter
asymmetry? That would be a justification post hoc. Or is there a physical reason why this difference
is naturally of that order?

In the next section, we will see that questions like these also plague the (normal) Standard Model. We
will see that these theoretical reasons to extend the Standard Model generally call for more symmetry.

1.3 Theoretical reasons to extend the Standard Model

In this section we study a number of phenomena that can in principle be explained by the Standard
Model, but only if some of its parameters are very large, very small or finetuned to very specific
values. These are not hard problems of the Standard Model; in principle the parameters can be ‘just
like this’. But it is also possible – and from a theoretical perspective this is preferable – that there is
an underlying theory that can explain these particular values.

We can compare this to a person playing poker and getting four-of-a-kind aces many times in a row.
In principle, there is a finite probability of a long list of hands with four aces, but any casino or
opponent would investigate this player with great scrutiny. Cards in his sleeve are a much more
probable explanation than great luck.

In this section, we discuss the strong CP problem, the Higgs hierarchy problem and the gauge
unification possibility. Candidate solutions for these problems are respectively the Peccei-Quinn
symmetry; an extended space-time symmetry, called supersymmetry and an extended and unified
gauge symmetry. The last two symmetries in this list are important ingredients of chapter 4 of this
thesis. In the next section, we discuss the so-called flavour problem. This problem, and its candidate
solution, flavour symmetries are the main topic of this thesis.

1.3.1 The strong CP problem

In section 1.2.3, we discussed the fact that matter and antimatter behave differently under the laws
of particle physics, as the Standard Model violates CP. In principle, CP violation can be related to
two of the three forces of section 1.1, both the weak and the strong nuclear force. However, all CP
violation observed so far comes from the weak sector. The CP violation in the strong interactions is
thus either very small or vanishing.

In the Standard Model, CP violation in the strong sector is parameterized by a parameter called the
theta angle. In principle, θ can take any value between 0 and 2π, which is the natural range for an
angle. Measurements so far have not observed any non-zero value of the angle, but have restricted
it to be very small: θ < 10−10. Now it might well be that θ ‘just happens’ to have a small value of, for
instance, 5× 10−11. However, one is tempted to believe that θ might be exactly zero. In 1977, Roberto
Peccei and Helen Quinn postulated a theory that predicts the theta-angle to be zero in a natural way.
In this theory, θ is no longer a constant value (i.e. a parameter), but actually a dynamical field that is
charged under a new symmetry, the Peccei-Quinn symmetry. An extra advantage is the presence of
a dark matter candidate, called the axion.

In this thesis we do not discuss the Peccei-Quinn mechanism in more detail, but the framework it
uses is very typical. Firstly, we noticed that there is an element of the Standard Model that cannot be
explained in a natural way. Secondly, we gave an explanation using new fields and new symmetries.
Lastly, we found that this solution also helps to solve other problems of the Standard Model, in this
case the dark matter problem.
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1.3.2 The hierarchy problem

The next theoretical challenge to the Standard Model is related to the mass of the Higgs boson. Un-
fortunately, the Higgs mass is the last great unknown of the Standard Model. Indirect measurements
constrain the Higgs, if it exists, to be lighter than approximately 200 GeV [3]2. A theoretical argument,
the perturbativity bound, gives the same value.

Naively, this value of the Higgs mass – or in fact any other value – would not pose a problem. We
would just need to assume a parameter of the right size. The problem is, that masses in particle
physics are not just given by parameters. The masses given by the bare parameters can be significantly
changed by the effects of virtual particles. These can be thought of as being created from the vacuum
for a very short while before disappearing again in this vacuum in a process that is in line with the
uncertainty principle between energy and time.

To see the effect of virtual particles on the Higgs mass, we study a Higgs boson propagating through
the empty vacuum. This can be graphically represented by a line running from left to right as in
figure 1.6. The line is dashed to indicate that the particle propagating is a so-called boson, a particle
for which the spin quantum number is an integer, zero in this case.

Instead of ‘just’ propagating, the Higgs boson can do more interesting things, like budding of
a second (virtual) Higgs particle and then immediately reabsorbing it (figure 1.7) or temporarily
splitting in a fermion-antifermion pair. Fermions are particles whose spin quantum number is a half-
integer and they are represented by continuous lines. The top quark couples most strongly to the
Higgs (and is thus the heaviest) of all known fermions, so a top-antitop loop is most probable and
this is shown in figure 1.8.

H

Figure 1.6:
The Higgs propagator.

H

H

H

Figure 1.7:
The Higgs propagator with a
Higgs loop.

H

t

t̄

H

Figure 1.8:
The Higgs propagator with a top
loop.

The diagrams 1.7 and 1.8 effect the Higgs mass squared: the Higgs loop in a positive way and the
top-antitop loop in a negative way. The question is how large these corrections are. This is related
to how much energy the particles in the loop can have. Even if the energy of the Higgs boson that is
propagating is fixed, the energy of the short-lived particles in the loop can be much larger. Naively,
the energy of the particles in the loop can go up to infinity.

Allowing virtual particles with infinite energies gives unsolvable problems for the theory. This can
be circumvented by declaring that the virtual particles should be allowed to have energies at least as
high as the next scale of new physics. Until this scale, the Standard Model is a good description of
nature and we know what should be the physics of particles (including virtual particles) with these

2The gigaelectronvolt or GeV is a unit for energy or mass; according to Einstein’s E = mc2 these are equivalent. The mass
of a proton is approximately 1 GeV and most processes in particle physics find place at an energy scale up to a few hundred
GeV.
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energies. Above this scale, we do not know what the physics is and we also do not know what is the
effect of virtual particles of these energies.

The fundamental scale of the physics of the Standard Model is the scale where electroweak symmetry
breaking takes place as alluded to in section 1.1. The other fundamental scale of particle physics is the
scale of quantum gravity, the Planck scale introduced at the end of section 1.1. We do not know the
details of the new theory that emerges at the Planck scale, but we can estimate the scale itself by an
analysis of the fundamental constants of gravitation (Newton’s constant G), relativity (the speed of
light c) and quantum physics (the Planck constant h). Max Planck did this calculation immediately
after the postulation of his constant and the scale he found turned out to be much larger than the
(later discovered) electroweak scale. The Planck scale is 1.2 × 1019 GeV, while the electroweak scale
is a mere 246 GeV.

Unless there is another scale of new physics between the electroweak scale and the Planck scale,
we conclude that the virtual particles in the loops of figures 1.7 and 1.8 can have energies up to the
Planck scale. Even if this energy is not infinite, it is very large and it leads to enormous corrections
to the Higgs mass. To find a Higgs in the range where it should be, the bare parameter should not
be around the Higgs mass squared, but around the Planck mass squared and it should be almost
perfectly equal to the corrections. The difference between the original parameter and the corrections
should be 10−34 times smaller than either of these. This is a strong finetuning and the chance that it
happens ‘naturally’ is as small as a poker playing showing four aces nine times in a row.

There are two loopholes in the argument above and they serve as candidate solutions to the hierarchy
(or finetuning) problem. The first focusses on the claim that the scale of quantum gravity is as
large as 1019 GeV. A crucial assumption made here is that the known laws of gravity are valid at
all intermediate scales. More specifically, the assumption is that gravity always spreads out over
only three space dimensions. If there are extra dimensions, the scale of quantum gravity can be
lower and the finetuning is less severe.

A second solution is related to the fact that there are both a positive and a negative correction to the
Higgs mass squared. If these corrections cancel each other in a natural way, the finetuning problem
is also evaded. This is the case if there is both a loop with a boson and one with a fermion that have
related couplings to the Higgs field. This is not the case for the Higgs and the top of figures 1.7 and
1.8, but we can introduce a Higgs-like fermion (‘Higgsino’) and a top-like boson (‘stop’). These give
rise to diagrams 1.9 and 1.10, that cancel exactly to respectively 1.7 and 1.8.

H

H̃

¯̃H

H

Figure 1.9:
The Higgs propagator with a
Higgsino loop.

H

t̃

H

Figure 1.10:
The Higgs propagator with a
stop loop.

The symmetry that gives a boson for every fermion in the theory and vice versa, is called supersym-
metry. The superpartner of a Standard Model fermion is called a sfermion and its name is given by
putting an s (of ‘supersymmetric’) in front of the name of the particle, for instance a stop as a partner
to the top quark. The names of the supersymmetric partners of the Standard Model bosons are
formed by adding ‘-ino’ to the original names, giving photinos, Winos, Zinos, gluinos and Higgsinos.

If supersymmetry were exact, fermions and sfermions would have identical masses. This is not what
we observe: for none of the Standard Model fermions, there is a boson with the same mass. The same
holds for the known bosons. Obviously, supersymmetry cannot be an exact symmetry of nature, but
it should be broken. The superpartners of the known particles are much heavier than their Standard
Model counterparts. Still, if supersymmetry is to solve the finetuning problem, the gap may not be
too large. The prediction is that if superpartners exist, their masses should be in the range of the LHC
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and they should be discovered there. As of fall 2011 no signs of supersymmetry have been found
(see e.g. [4] and [5]). This significantly constrains the parameter space for certain supersymmetric
implementations, but by no means rules out supersymmetry at the LHC scale.

We conclude that supersymmetry can solve the finetuning problem related to the Higgs mass, but
this comes with a price. We need to add quite a large new (broken) symmetry to the theory and the
existence of many new particles is needed. The good news is that one of these particles typically
can serve as the dark matter candidate and that supersymmetry enables the possibility of gauge
unification, as described in the next section. Supersymmetry is an important ingredient of the models
in chapters 2 and 4. The models described in chapter 5 are non-supersymmetric.

1.3.3 Gauge unification

The Standard Model is a consistent theory of three of the four forces of nature, as described in section
1.1. All of these forces couple to some of the matter particles as shown in figure 1.3 and they do so
with their own strength. At small distances, the hierarchy of the forces is such that the strong nuclear
force is the strongest, followed by the weak nuclear force. The electromagnetic force is relatively
feeble.

Much like the Higgs mass discussed in the previous section, the coupling constant of a force is not
just a parameter, but there are strong effects from virtual particles. To study these, we consider an
electron somewhere in the vacuum.

e-

Figure 1.11: An electron and the field created around it.

The electron is an (electromagnetically) charged particle and it thus creates a strong field around
it, represented by the grey lines in figure 1.11. Now if a virtual electron-positron pair is created in
the vacuum, this pair will tend to align along the field lines, with the positron pointing towards the
electron to partially shield it. The resulting situation is depicted in figure 1.12.

Due to the screening of the positrons, the strength of the field that we observe is less than the strength
of the original field. How much less this is, depends on how far we have zoomed in. If we use very
energetic photons to probe the electron, we can look deeper into the cloud of electron-positron pairs
than when we use less energetic photons. We conclude that to energetic photons, the strength of the
field of the electron is greater than it is to less energetic photons. This translates to the electromagnetic
coupling constant growing with the energy scale we study it at.

If we study the strong nuclear force in detail, we see that not a screening effect, but an anti-screening
effect dominates. The strong force is very strong at low energies, but it becomes less strong when the
energy grows. The weak nuclear force starts in between the electromagnetic and the strong force. It
becomes weaker as energy grows, but at a smaller pace than the strong nuclear force.

This allows us to pose an interesting question. If we look at higher and higher energy scales, the
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Figure 1.12: An electron and the cloud of aligned positron-electron pairs around it.

coupling constants of the three forces of the Standard Model grow towards each other. Is there an
energy scale where all three of them become of comparable strength? In the Standard Model, the
answer is ‘no’, as can be seen from figure 1.13. Plotted here is 1/α for the three forces, where α is a
dimensionless number that is proportional to the coupling constants squared.

102 104 106 108 1010 1012 1014 1016 1018

10

20

30

40

50

60

Μ HGeVL

1�Α

Figure 1.13: The ‘running’ of the coupling constants of the Standard Model as a function
of the scale µ they are observed at. Red: hypercharge, that is directly related to electromag-
netism; yellow: the weak nuclear force and blue: the strong nuclear force. We observe that
the three forces do not meet in one point.

In a supersymmetric extension of the Standard Model, the superpartners of the known bosons and
fermions can also contribute to the screening or anti-screening effects. They do so only if we probe
the coupling constants at energies larger than their masses. In a theory with superpartners, the lines
of the running coupling constants therefore have a kink at the energy scale that corresponds to the
masses of the superpartners. This kink bends the running coupling constants in the right direction.
In a theory with supersymmetry, it is possible that the three coupling constants of the Standard
Model meet in one point. This is shown in figure 1.14. Note that this unification scale is higher than
the candidate unification scale in the non-supersymmetric theory. This has to do with the fact that
supersymmetric particles partly cancel the effect of their partners. In supersymmetry, the running of
the coupling constants is slower, so they meet at a higher energy.

In figure 1.14 the three coupling constants go through one point, but after that they just continue
to run and diverge again. If this is the case, there is probably no great importance of the three
constants going through one point. There is a second possibility however. After the unification
scale, the three forces may actually unite and form one superforce. Theories with this superforce are
called Grand Unified Theories (GUTs). In a sense, these theories are much simpler than the Standard
Model. The SM really needs three forces; in GUTs there is only one fundamental force, that has
three manifestations after it gets broken. Also fermions can often be described more economically in
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Figure 1.14: The running of the coupling constants in a supersymmetric extension of the
Standard Model. The three coupling constants seem to meet in one point.

GUTs, as several particles that are unrelated in the SM, may have a common origin in Grand Unified
Theories. In chapter 4 we study a particular GUT, the Pati–Salam theory, in more detail.

1.4 Flavour symmetries

There are many free parameters in the Standard Model. We already discussed some of them. The
theta parameter of QCD in section 1.3.1; the Higgs mass (that eventually relates to two parameters λ
and µ) in section 1.3.2 and the three gauge coupling constants in section 1.3.3. Together this gives six
parameters.

By far the most parameters however, are related to the masses of the elementary fermions, that
originate from the Yukawa couplings of the quarks and leptons to the Higgs field. In the original
Standard Model, where neutrinos are massless, this amounts to 13 parameters. In a theory that
includes neutrino masses, this number grows to 20 if neutrinos are particles of the Dirac type (not
their own antiparticle) and to 22 if neutrinos are of the Majorana type (their own antiparticle).

When we look at the fermion masses and the way the mass eigenstates combine to form interaction
eigenstates, there seems to be some structure. In principle, this apparent structure can just be the
result of particular values of the 20 or 22 available free parameters. Some parameters then need to be
tuned to ‘special’ values like 1, 1/2 or 1/3 to at least a few percent accuracy. Other parameters need
to be quite large, with for instance the top quark to electron mass ratio being of the order of 340 000.
This is all quite unnatural and unsatisfying from a theoretical physicist’s point of view. We prefer to
explain observed structures with physical arguments instead of with resort to coincidence.

The central claim of this thesis is that there may be new physics in the fermion mass sector that helps
explaining the observed structures in the data. In this section, we first discuss some of the structures
in the fermion sector. Then we sketch how family symmetries can explain these structures. The
working of family symmetries is explained in more (mathematical) detail in chapter 2.

1.4.1 Structures in the fermion masses

In section 1.1 we introduced the three families of quarks and leptons of the Standard Model. We
plot the measured masses of the fermions in figures 1.15 and 1.16 on respectively a linear and a
logarithmic scale. In the top figure, we see that the top quark is much heavier than all the other
particles, effectively dwarfing their masses.

The logarithmic plot holds more information. Firstly, we notice that the neutrinos are much lighter
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Figure 1.15: The masses of the Standard Model fermions on a linear scale. The top quark
appears right on the top line. All other quarks and all leptons appear on top of each other on
the left side of the diagram.
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Figure 1.16: The masses of the Standard Model fermions on a logarithmic scale. Top line
from right to left: top quark, charm quark and up quark. Second line: bottom quark, strange
quark and down quark. Third line: tau lepton, muon and electron. Bottom line: the three
neutrinos. Their exact masses are not know at the moment, but from indirect measures, we
conclude that their masses are in the milli electronvolt to electronvolt region.

than all the other particles around. It is no wonder that up to 13 years ago, they were thought to
be massless. This, combined with the observation that neutrinos are the only electrically neutral
particles in the Standard Model, gives rise to the assumption that neutrino mass might come from
an entirely other mechanism than quark and charged lepton masses. This mechanism is called the
see-saw mechanism and is called such because it works in the same way as the seesaw in a children’s
playground. The neutrinos are on the seat that goes up and end up with a very small mass. The
theory predicts the existence of other particles that sit on the seat that goes down. These particles
are identified as new heavy (‘righthanded’) neutrinos or bosonic or fermion triplets. As much as the
neutrinos are extremely light, these particles are very heavy and this might be the reason they are
not observed so far, although there is some hope at the Large Hadron Collider. The seesaw and its
consequences are discussed in more detail in section 2.1.4.

If we ignore the neutrinos, we can do a second interesting observation. All particles of the second
generation are much heavier than all particles of the first generation, while all particles of the third
generation are much heavier than all particles of the second generation. There seems to be quite a
strict hierarchy between the generations. Actually, when we look at the gaps between the first and
second and second and third generation, these are for each type of particle more or less of the same
order. This relation is not exactly true; for instance, we see that the electron is slightly too light, while
the down quark is a bit too heavy for the relation to hold. The masses of the Standard Model particles
vary slightly with the energy scale we observe them at, due to a mechanism with virtual particles,
much like what we described for the Higgs boson in section 1.3.2. At the scale of gauge unification,
the relation described above holds much better.

Let’s zoom in to the up-type quark sector. The mass of the top quark is given by a ‘normal’ parameter,
that is approximately 1, while the charm quark is given by a small parameter and the up quark
by a parameter that is small-squared (i.e. mc/mt ≈ mu/mc � 1). Alternatively, we can describe
the charm mass by a parameter that is normal, but now multiplied by a attenuating factor that is
approximately the ratio of the top to the charm mass. The up-quark mass is now described by a third
normal parameter, and the square of the attenuation factor. Froggatt and Nielsen gave a mechanism
that describes the attenuation factors for the charm and up quarks, assuming they are charged under
a type of charge that differs per generation. The Froggatt–Nielsen symmetry is thus the first family
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symmetry we encounter in this thesis; we study the principles of the mechanism in more detail in
section 2.3.1 and the Froggatt–Nielsen symmetry is also an important element of the model of chapter
4.

Evaluating the quark and charged lepton masses at the unification scale, yields two more interesting
observations. The first is that at this scale the bottom quark and the tau lepton have the same mass
to good accuracy. The second is that the strange quark is quite precisely three times lighter than
the muon, known as the Georgi–Jarlskog relation. This might suggest that these masses are not
given by unrelated parameters, but (in both cases) by one parameter that effects both masses. In
the Pati–Salam GUT, Bottom-tau unification and the Georgi–Jarlskog relation can easily follow from
symmetry principles and we use this in the construction of the model of section 4.

1.4.2 Structures in the fermion mixings

In figures 1.15 and 1.16 we plotted the masses of the quarks and leptons. In the weak interactions,
not exactly these mass eigenstates react, but rather a very specific combination of them. There is a
coupling between the top-quark, a W boson and a quark of the down type. We can define this quark
as the interaction eigenstate b′. The b′ quark does not have a uniquely defined mass. It is a mixture
of the lightest, middle and heaviest eigenstate.

In figure 1.17 we show the mass eigenstates d, s and b that are linear combinations of the down-type
quarks that couple to respectively the up, charm and top quark (the interaction eigenstates d′, s′ and
b′).

Figure 1.17: Pie charts showing the flavour content of the three quark mass eigenstates. .
Data taken from [6]

The pie-charts of figure 1.17 are almost ‘diagonal’, meaning that the lightest mass eigenstate d is
almost entirely the interaction eigenstate d′ that couples to the up quark; in the second generation,
we have s ≈ s′ and in the third b ≈ b′.

A priori, we would expect a mixing where each of the mass eigenstates is a mixture of significant
portions of each of the interaction eigenstates. The data on the other hand seem to signal that
coupling to the ‘own’ generation is preferred. Indeed in both chapter 4 and section 5.10.4 we describe
mechanisms where at the leading order quarks couple diagonally and where the small slivers of red
and blue (and the almost invisibly small piece of yellow) in figure 1.17 are given by correcting effects.

Figure 1.18: Pie charts showing the flavour content of the three neutrino mass eigenstates.
Data are average values from [7]

The situation in the lepton sector is different. The mass eigenstates are mixtures of significant
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portions of all three interaction eigenstates as shown in figure 1.18. In the last paragraph we
mentioned that this is exactly what could be a priori be expected. However, there is more to it here. A
closer look at the diagrams of figure 1.18 shows that the combinations seem to be special. The second
mass eigenstate is an almost perfect equal combination of all three interaction eigenstates, while the
third mass eigenstate is so for two of the three interaction eigenstates. This mixing pattern is called
tribimaximal mixing [8]. It is interesting to note that it can be reproduced by a quite limited amount
of new physics as shown in section 2.4. The words ‘almost perfect’ are important here. Recent
measurements of the so-called reactor neutrino angle have shown that the thin sliver of blue in the
rightmost diagram of 1.18 is unmistakeably there, ruling out the possibility of exact tribimaximal
mixing as was in line with the data until very recently.

1.4.3 Models with family symmetries

To solve the numerical coincidence with the θ parameter (the strong CP problem), the Peccei-
Quinn symmetry was introduced; supersymmetry can account for the numerical coincidence of the
finetuning of the Higgs mass. In the same spirit, there is a symmetry related to the observations of
the previous subsections.

The patterns we observed account to striking similarities and striking differences between the three
generations. The new symmetry will therefore have to connect these generations. The words family
symmetry and flavour symmetry are used interchangeably for this symmetry.

It is interesting to note that flavour symmetries work in a certain way perpendicular to the known
gauge symmetries of the Standard Model. The electromagnetic force couples for instance one electron
to a photon; the weak nuclear force can couple an electron neutrino to an electron and a W boson
and the strong force couples for instance a blue up quark to a red one. Obviously, these three forces
treat the particles within a generation very differently, according to their charges under the related
symmetry. All this concerns couplings within a generation. The idea of family symmetries is to have
very specific couplings between particles of different families and treat the three families different
by charging them differently under the new symmetry. This is graphically represented in figure 1.19.
The figure also explains why family symmetries are sometimes called horizontal symmetries.
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Figure 1.19: A graphical representation of family and gauge symmetries

The introduction of family symmetries concludes the content-part of this chapter. We conclude that
the Standard Model provides an excellent description of the physics of elementary particles, but that
there are reasons to extend it. One of these extensions is the introduction of flavour symmetries that
form the heart of this thesis.
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1.5 Outlook of this thesis

In this thesis we study different manifestations of flavour symmetries and their consequences. To be
well-prepared for these models and their technical details, chapter 2 is a second introductory chapter.
It is more technical than this chapter and contains not only an introduction to relevant concepts, but
also to the mathematical formulation. The number of equations grows to 90 compared to zero in this
chapter.

After a discussion of fermion masses in one and three families, chapter 2 discusses two well-known
family-symmetric models. The model of Froggatt and Nielsen [9] mainly gives an explanation for
the patterns found in the fermion masses as discussed in section 1.4.1. The model of Altarelli and
Feruglio [10, 11] reproduces the tribimaximal mixing alluded to in section 1.4.2. In both cases the
key element of the model is the assumption of an extra symmetry. We end the model sections with
a balance: how much information is gained by assuming an extra symmetry and how much extra
complications are the price that is paid for it.

The discussion of the Altarelli–Feruglio model contains a lot of information. This is true at a technical
level – an example is the method of using driving superfields – but it also shows directions to proceed
in. One of the conclusions is that the tribimaximal mixing pattern and in particular the limited
possibility to have so-called next-to-leading order corrections to this mixing scheme points to the
investigation of different mixing schemes.

Chapter 3 starts with a discussion about where to go now the measurement of non-zero reactor
neutrino mixing angle has excluded exact tribimaximal mixing. After that, we consider a large class
of candidate flavour symmetries and investigate to which mixing patterns they can give rise to.
Tribimaximal mixing is one of them, but it is accompanied by a large family of other mixing patterns.
Of particular interest are two mixing patterns that follow from relatively large groups (∆(96) and
∆(384) respectively) that naturally predict the third neutrino mixing angle to be non-zero. This
feature is not shared by other familiar groups and exactly what the most recent data point at.

Chapter 4 interprets the hint from the Altarelli–Feruglio model in a different way. This chapter
describes a model in detail, in which the tribimaximal mixing pattern is replaced by the so-called
bimaximal one. In first approximation this describes the data far worse than the tribimaximal case.
The advantage lies in the fact that in the bimaximal case, corrections are possible and indeed needed.

The model of chapter 4 is thus a model of bimaximal mixing. The other important characteristic of
the model is that it combines a flavour symmetry with a grand unified symmetry, the Pati–Salam
GUT to be precise. We discuss the consequences of the combination of the two types of symmetries
and show that in the interplay between the symmetries significant interference appears. The model
can explain a wealth of data, but it becomes quite baroque. The Higgs sector is strongly extended
and effects from renormalization group flow exclude much of the initially preferred parameter space.

Chapter 5 is inspired by another lesson learned from the Altarelli–Feruglio model. Supersymmetry
and extra dimensions are no essential elements of family symmetric models, but at least one of them
is needed for so-called flavon alignment in a model with two or more directions in flavour space.
Both supersymmetry and extra dimensions are very interesting and well-motivated types of new
physics, but it is important to see if flavour symmetry models can be constructed independent of
them. The obvious way out, is to consider cases where just one direction in flavour space appears.
Chapter 5 discusses a particular realization in which a multitude of Higgs fields transforms under
a family symmetry. We give the scalar potential if there are three Higgs fields that transform as a
triplet under A4, the most popular family symmetry and continue to find all its minima. The scale
of new physics in this set up is the electroweak breaking scale. The model thus provides predictions
testable at the LHC and precision measurements can already constrain it. We finish the chapter by
an elaborate discussion of these tests and applications to various implementations.

Chapter 6 does what a last chapter usually does. It summarizes and concludes the thesis. In this
chapter we make a large balance of the positive and negative things about flavour symmetries and
flavour symmetric model building seen in this thesis.



Chapter 2

Fermion masses in the Standard
Model and beyond

False facts are highly injurious to the progress of science, for they often
endure long; but false views, if supported by some evidence, do little
harm, for every one takes a salutary pleasure in proving their falseness.

Charles Darwin [12], The descent of man

Flavour symmetries provide new ways to describe the apparent structure in the quark and lepton
masses. To be able to appreciate this, we first study the way elementary-fermion masses are
generated in the original Standard Model. In the first section of this chapter, we discuss fermion
masses in the Standard Model with only one generation. We will see that the quark and charged
lepton masses are generated straightforwardly, but that neutrino masses are quite challenging to
the theorist already. In the next section, we extend the analysis to the familiar three generation
Standard Model, counting how many new degrees of freedom are hidden in the fermion masses and
mixing. In the two sections that follow, we describe the working of family symmetries. We include
two relatively simple models: the Froggatt–Nielsen model, that explains the hierarchy among the
generations in section 2.3 and the model of Altarelli and Feruglio, that reproduces the tribimaximal
mixing pattern in section 2.4. Lastly, section 2.5 presents the conclusions of the chapter.

2.1 The one family Standard Model

In this section, we describe how the Standard Model can accommodate masses for the quarks and
leptons in case there is a rather minimal number of them. We discuss a situation where there are only
two quarks, one of the up-type and one of the down-type, that we simply call up and down. We also
assume the existence of only one charged lepton, dubbed the electron and one neutrino, that we refer
to as such.

As always, all information is contained in the Lagrangian. The most general SU(3)C × SU(2)L ×
U(1)Y gauge invariant Lagrangian with only renormalisable operators reads

LSM = LK + Lgauge + LY + VHiggs. (2.1)

Here, LK are the kinetic terms for the quarks, the leptons and the Higgs field. The demand
of invariance under local symmetry transformations, requires the appearance of gauge bosons in
covariant derivatives. Their own kinetic terms and self-interactions are given in the second part of the
LagrangianLgauge. Kinetic and gauge terms are very well known since the original formulation of the
Standard Model and we do not modify them in this thesis, except for the fact that we discuss a gauge
group different from the Standard Model’s in chapter 4. Even there, the extension is straightforward.
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The last term in 2.1 is the potential for the Higgs field. If there is only one Higgs field, this is also
very well-known. It is the famous Mexican hat potential, where the Higgs field drifts away to its
minimum that is not at the origin, thereby breaking the electroweak symmetry. The value of the
Higgs field at the minimum is called the vacuum expectation value or vev. This is schematically
represented in figure 2.1. In case of more than one Higgs field, the potential might become more
involved. In chapter 5 we study the most general potential for a three Higgs fields that transform
together as a triplet of the flavour symmetry A4 and the different vacuum expectation values these
fields can be in. In the remainder of this chapter, we simply assume the existence of some Higgs
potential that gives non-zero vevs for one or more Higgses and focus on the last term we did not
discuss yet, the Yukawa interactions LY .

V(f)

Re(f)

Im(f)

Figure 2.1: A cartoon of the Higgs potential and its non-zero vacuum expectation value.

2.1.1 Yukawa couplings

The terms in 2.1 that are of most importance for this chapter, are the terms in LY , the Yukawa inter-
actions between the Higgs fields and the quarks or leptons that eventually give rise to mass terms for
the latter. To appreciate these, we first turn to elementary particles below the electroweak symmetry
breaking (EWSB) scale. These particles and their relevant quantum numbers - the electromagnetic
charge and the representation of the colour gauge group - are given in table 2.1

Field symbol (SU(3)C , U(1)em)

up quark u (3, 2
3 )

down quark d (3, - 1
3 )

neutrino ν (1, 0)

electron e (1,-1)

Table 2.1: The quarks and leptons below the EWSB scale and their representations
under the relevant gauge group.

Mass terms are constructed as quadratic terms in the fermion fields. They contain a spinor ψ that
represents an incoming fermion as well as a barred spinor ψ̄ that represents an outgoing fermion as
shown in figure 2.2. Below the electroweak scale, fermion masses read

Lmass = muūLuR +mdd̄LdR +meēLeR + h.c.
= muūu+mdd̄d+meēe .

(2.2)

Note that in the definition of ψ̄ = ψ†γ0, there is a complex conjugate. Therefore, a spinor ψ̄ has
the opposite quantum numbers as ψ. Thus, for instance, ū is in the representation (3̄,−2/3) of
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ψ ψ̄ ψ ψ̄

H

Figure 2.2: A propagating fermion with a mass insertion according to equation (2.2)

SU(3) × U(1)em. This ensures that all terms in the Lagrangian (2.2) are singlets of the colour times
electromagnetic gauge group. In the term muūu, we have 3̄ × 3 3 1 for colour and −2/3 + 2/3 = 0
for electric charge, etc. We did not include neutrino masses for reasons that are explained shortly.

Now we move to the Standard Model above the EWSB scale. This is a chiral theory, meaning that
left-handed and righthanded fields are no longer treated on equal footing. In the left hand side
of table 2.2, we repeat the content of table 2.1, this time taking the left- or righthandedness of the
fields into account. On the right hand side, we add the Standard Model fields that correspond to the
fields on the left. Standard Model fields have quantum numbers of SU(3)C , SU(2)L and U(1)Y . The
colour group is the same as below the electroweak scale. The representations under SU(2)L are such
that lefthanded fields are in the doublet representation, while righthanded fields are in the singlet
representation. We normalize hypercharge such that the electric charge is given byQ = I3+Y , where
I3 is +(-) 1

2 for the upper (lower) component of an SU(2)L-doublet and zero for righthanded fields.

Field (SU(3)C , U(1)em) Field (SU(3)C , SU(2)L, U(1)Y )

RH up quark uR (3, 2
3 ) RH up quark uR (3,1, 2

3 )

LH up quark uL (3, 2
3 )

LH quark doublet QL (3,2, 1
6 )

LH down quark dL (3, - 1
3 )

RH down quark dR (3, - 1
3 ) RH down quark dR (3,1, - 1

3 )

(RH neutrino) (νR) (1,0) (RH neutrino) (νR) (1,1,0)

LH neutrino νL (1,0)
LH Lepton doublet LL (1,2,− 1

2 )
LH electron eL (1,-1)

RH electron eR (1,-1) RH electron eR (1,1,-1)

Table 2.2: Elementary fermions below (left) and above (right) the scale of electroweak
symmetry breaking. The righthanded neutrino is printed in grey to stress that its
existence is uncertain as explained in the text.

Table 2.2 mentions a righthanded neutrino in grey. Indeed a non-particle physicist that would see
a version of table 2.2 without it, would probably immediately add it to ‘complete the symmetry’ of
the table, where for every lefthanded field in the left half of the table, there is also a righthanded
field and for every doublet on the right, there are two singlets. In the original Standard Model,
however, the righthanded neutrino is absent. The reason is simple: it has never been observed. This
is a consequence of the fact that it is a singlet under the complete Standard Model gauge group.
This means that, barring gravity, it cannot interact with any of the other particles, perfectly hiding
its possible existence. For now we assume that there are no righthanded neutrinos and discuss the
masses of the other particles of table 2.2. Later in this section, we explore the new physics possibilities
that the inclusion of a righthanded neutrino offers.

In passing, we note that after electroweak symmetry breaking, neutrinos of any handedness are
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singlets under the residual SU(3)C × U(1)em gauge group. This means that the only way in which
neutrinos can interact is by the fact that they are part of a doublet above the electroweak scale. There
is thus a huge gap between the energy that neutrinos normally have and the energy scale above
which they can interact. This explains the claim made in section 1.2.1 that neutrinos can traverse
lightmonths of lead without ever interacting.

The analogue of equation (2.2) above the electroweak scale reads1

Lmass = yu
(
Q̄uL Q̄dL

)(H0
u

H−u

)
uR + yd

(
Q̄uL Q̄dL

)(H+
d

H0
d

)
dR + ye

(
L̄νL L̄eL

)(H+
d

H0
d

)
eR + h.c. (2.3)

Here Hd and Hu are Higgs fields with quantum numbers (1, 2,+1/2) and (1, 2,−1/2) respectively.
Note that the Higgs fields are required by gauge invariance, as no terms with only left- and
righthanded quarks or leptons can give an SM singlet. This is why direct mass terms (with a dimen-
sionful coupling constant mx) are forbidden and we have only indirect mass terms from interactions
with the Higgs field. The coupling constants, the Yukawa couplings yx are dimensionless. In the
minimal Standard Model, only one independent Higgs field can be used asHd andHu can be related
via Hu = iσ2H

∗
d . In many extensions of the Standard Model, including the minimal supersymmetric

Standard Model, this identification is not allowed and two separate Higgs fields are required. In this
chapter, we use both Hd and Hu, keeping in mind that the two fields might be related .

After the neutral components of the Higgs fields develop vacuum expectation values of respectively
vHd and vHu , the Higgs fields can be expanded around these minima

Hd =
1√
2

(
h+
d

vHd + h0
d

)
, Hu =

1√
2

(
vHu + h0

u

h−u

)
. (2.4)

The factor
√

2 in (2.4) is just a convention to have both components conveniently normalized. In the
minimal Standard Model, obviously, vHd = vHu as the vev can be chosen real. In a two Higgs doublet
model, the quadratic sum of the two vevs equals ‘the’ electroweak vacuum expectation value vew.
The ratio of the two vacuum expectation values is an important parameter called tanβ.

v2
Hu + v2

Hd
= vew = 246 GeV2 , tanβ =

vHu
vHd

. (2.5)

The Higgs fields are complex SU(2)-doublets, so they have four real components each. If Hd and Hu

are unrelated, this gives in total eight real components; if they are related as in the Standard Model,
the number is only four. Three components correspond to Goldstone bosons that give mass to the
W+, W− and Z bosons. In the Standard Model, these are the two charged components for the W s
and the imaginary part A of the expansion around the vev for the neutral Z. This leaves only one
Higgs boson h.

In a two Higgs doublet model, the Goldstone boson for the W+ is formed from a certain linear
combination of the charged components h+

d and h−u (or rather its conjugate), while the orthogonal
combination becomes the physical charged Higgs. Typically, both vevs vHd and vHu are real. In that
case, the Goldstone boson of the Z particle comes from a linear combination of the imaginary parts
of h0

d and h0
u, but not of the real parts. The other linear combination of the imaginary parts becomes

a pseudoscalar Higgs, while the real parts of h0
d and h0

u mix to two scalar Higgs bosons.

Inserting the Higgs vevs of (2.4) into equation (2.3) reproduces equation (2.2) with mu = yuvHu/
√

2,
md = ydvHd/

√
2 andme = yevHd/

√
2. This vev insertion is shown with a cross in figure 2.3. Inserting

the terms with the active Higgs bosons gives fermion-Higgs vertices.

Lf̄fH =
yu√

2

(
ūLh

0
uuR + d̄Lh

−
u uR

)
+

yd√
2

(
ūLh

+
d dR + d̄Lh

0
ddR

)
+

ye√
2

(
ν̄Lh

+
d eR + ēLh

0
deR

)
+ h.c.

(2.6)

1Alternative conventions can be found in the literature, where yu,d,e are given by the coefficients of the Hermitian
conjugate of the main terms given in equation (2.3)
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ψ ψ̄ ψ ψ̄

H

Figure 2.3: A propagating fermion that gets a mass insertion by interacting with the Higgs
field

The absence of righthanded neutrinos in the spectrum of the Standard Model explains why there is
no neutrino mass term in equations (2.2) and (2.3). Even if the righthanded neutrino has only trivial
quantum numbers under the Standard Model gauge group, it would be needed to complete the
fermion flow. In its absence, no coupling between the lefthanded neutrino in the lepton doublet and
the (up-type) Higgs field can be constructed. At the time when the Standard Model was constructed,
the neutrino was indeed thought to be massless. Its mass was only inferred much later by the
observation of neutrino oscillations. Now we know that neutrinos have mass, we know that the
content of this section cannot be the whole story.

In the next subsection we describe the way to extend the Standard Model with supersymmetry. In
the six subsections that follow, we study the different possibilities to include neutrino masses in the
Standard Model.

2.1.2 Fermion masses in supersymmetry

The Lagrangian that gives rise to fermion masses (2.3) contains elementary fermions and scalars
(the Higgs fields). As mentioned in section 1.3.2, supersymmetry gives a boson for every fermion
in the theory and vice versa. Those two states together (as well as one extra auxiliary field) form
a supermultiplet or superfield. These are the building blocks of supersymmetric Lagrangians. In
particular the superpotentialW is relevant here. The superpotential is a holomorphic function of the
superfields of the theory, meaning that it can contain the superfields, up to three of them, but not
their Hermitian conjugates.

In the standard supersymmetry literature, it is customary not to reproduce the exact terms in (2.3),
but terms that are basically its Hermitian conjugate, but then with H† redefined to H , such that the
Standard Model Higgs has negative hypercharge. In this case, the mass term for the up quark reads
yuūRHu ·QL and we need three superfields. Going from right to left, the first is a superfield that
contains the quark doublet as fermionic component. Secondly there is a superfield with a Higgs
doublet with hypercharge +1/2 as scalar component. The holomorphicity of the superpotential now
explains the remark below equation (2.3). In the Standard Model, this Higgs field might be related
to the Higgs field of the second term Hd via Hu = iσ2H

∗
d , but in supersymmetry this is forbidden as

it would render the superpotential non-holomorphic.

The third superfield is more problematic. It is the superfield that should give rise to ūR. The bar
implies complex conjugation, so having uR as a fermionic component is not allowed. If instead we
take its charge conjugate (uR)c as an element, the corresponding supermultiplet does not need to
be conjugated and is allowed in the superpotential. Due to the nature of charge conjugation, (uR)c

is itself a lefthanded field and can as such be written as (uc)L – see for instance [13]. This has the
extra advantage that all fermionic fields in the theory are now lefthanded, which allows them to be
grouped together in grand unified multiplets. The best example is SO(10) grand unification, where
all Standard Model fermions are collected in a single 16-plet.

The generation of the superpotential terms for down quarks and electrons is similar to those for up
quarks. In the minimal supersymmetric standard model (MSSM) the superpotential reads

W = µΦHuΦHd − yuΦQΦHuΦuc − ydΦQΦHdΦdc − yuΦLΦHdΦec . (2.7)
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We indicate supermultiplets with a capital Φ and a subscript that indicates the Standard Model
component2. The first term in (2.7) gives rise to part of the Higgs potential. The other three terms
reproduce the known fermion mass terms. Soft supersymmetry breaking terms are supposed to
give additional contributions to the sfermion mass terms. These are terms that do not respect
supersymmetry, but are added to the theory by hand to explain non-observation of sparticles so far.
Note furthermore that in principle additional terms are possible in the superpotential (2.7). These are
terms such as ΦucΦdcΦdc or ΦQΦdcΦL that violate respectively baryon number and lepton number
and together can give rise to proton decay. They are absent however, if R-parity is imposed as an
exact multiplicative symmetry.

Standard Model particles can be assigned R-parity +1, while sparticles (squarks, sleptons and
Higgsinos) have −1. R-parity can be expressed in the spin, baryon and lepton quantum numbers.
The lepton doublet has lepton number +1, while the anti-electron has −1; baryons, being made up
of three quarks have baryon number +1, giving the individual quarks +1/3, while anti quarks have
−1/3. R-parity is then defined as

Rp = (−1)3(B−L)+2s . (2.8)

A single subsection can never do justice to the rich phenomenology of supersymmetry and the
MSSM. See for instance [14] for a more complete picture.

2.1.3 Dirac neutrinos

The most straightforward way to include neutrino masses is to allow the existence of righthanded
neutrinos. Even if they are not observed themselves, their existence is motivated by the fact that they
now allow the neutrinos that we do know to get a mass. This mass is of the same type as for the
quarks and charged leptons and arises from the Yukawa interactions

LνD-mass = yν
(
L̄νL L̄eL

)(H0
u

H−u

)
νR + h.c. (2.9)

If neutrinos get a mass term according to this mechanism, they are called Dirac neutrinos. Dirac
particles are not identical to their antiparticles, for which all charges are reversed. We see that the
righthanded neutrino can a priori be a non-Dirac (or Majorana) particle as it does not seem to have
any charges.

The righthanded neutrino might have a different type of charge than the ones mentioned in table
2.2 though. A candidate charge is lepton number that was introduced above. The Standard Model
seems to respect lepton number (and baryon number as well) as accidental symmetries, but we might
promote it to a symmetry that we demand to be explicitly conserved. Indeed equation (2.9) respects
lepton number as well, as opposed to the alternatives we will see in the next sections3.

Just like the other fermions, below the EWSB scale, neutrinos get an effective mass as in equation
2.2 and righthanded and lefthanded components have the same mass, given by yνvHu/

√
2. The

dimensionless parameters yν have very small values: 10−12 to 10−15 depending on the exact neutrino
masses. According to the logic of section 1.3, one might wonder whether there is a reason for this
‘unnaturally small’ value.

In this scenario, the universe is filled with extra light degrees of freedom from the otherwise
unobservable righthanded neutrinos. If precision cosmological observations might measure these,
this will credit the scenario. If there are experiments that observe lepton number violation, for
instance in neutrinoless double beta decay, the scenario is discredited.

2As all multiplets contain lefthanded fermions, the subscript L can be dropped to prevent cluttered notation.
3Actually, there is a rare, non-perturbative process in the Standard Model, called sphaleron interactions [15, 16]. In these

interactions nine quarks can be converted to three antileptons and both baryon number and lepton number are violated. The
difference B − L is still conserved and this is thus a better candidate for an exact symmetry than L itself. Assigning a lepton
number to the righthanded neutrino automatically also gives it a B − L charge.
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2.1.4 Majorana neutrinos

Fermions that are their own anti particles are called Majorana fermions. The quarks and charged
leptons of the Standard Model clearly are not Majorana particles, as they have a charge that is the
opposite for the anti particles. Below the electroweak scale, (lefthanded) neutrinos are singlets under
the residual Standard Model group, so they are indeed a candidate to be Majorana particles. For
Majorana fermions, a second type of mass term is allowed4.

LνM -mass =
1

2
mν ν̄L(νL)c + h.c. (2.10)

Because the charge conjugate of the lefthanded neutrino is itself righthanded, the explicit addition
of a righthanded neutrino is not needed. Above the EWSB scale, lefthanded neutrinos are part of
the lepton doublet, that is in a non-trivial representation of the electroweak group and can therefore
not be a Majorana spinor. In the remainder of this section, we give four mechanisms that reproduce
equation (2.10) below the electroweak scale. One of these uses an effective dimension-5 operator; the
other three are versions of the so-called seesaw mechanism.

2.1.5 The Weinberg operator

The fields ν̄L and (νL)c that appear in equation (2.10) are singlets of the residual gauge group after
electroweak symmetry breaking. Above this scale, we can form Standard Model singlets from their
counterparts L̄L and (LL)c by multiplying these by Hu. The so-called Weinberg operator can now
provide an effective Majorana mass for neutrinos.

LνM -eff =
fν
MX

[ (
L̄νL L̄eL

)(H0
u

H−u

)] [ (
H0
u H−u

)((LνL)c

(LeL)c

)]
. (2.11)

Here, MX is a – presumably large – mass scale that appears because of the fact that this operator is
non-renormalizable. After the Higgs field gets its vev, a neutrino mass is generated.

mν =
fν
2

(vHu)2

MX
. (2.12)

Typically, MX is much larger than the Higgs vev. In many models it is as high as the Grand Unified
scale of section 1.3.3. This implies that neutrino masses are much below the electroweak scale for
‘natural’ values of the dimensionless parameter fν . This might explain why the neutrinos are much
lighter than the quarks and charged leptons as shown in figure 1.16.

(νL)c ν̄L

H H

(νL)c ν̄L

(νR)c = ν̄R

H H

Figure 2.4: The effective dimension 5 operator to generate a Majorana neutrino mass.

The Weinberg operator is schematically given in figure 2.4. The ‘blob’ symbolizes the unknown
physics behind the dimension-5 coupling. There are two ways to dissolve the blob using only
‘normal’ dimension-3 and -4 operators. These are given in figure 2.5.

4Some authors choose to define mν via the Hermitian conjugate of the main term in (2.10), i.e. mν ↔ mν∗. As the phase
of mν is not observable, this is not a problem; all observables are the same in both conventions.
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Figure 2.5: The two ways to dissolve the effective Weinberg operator of figure 2.4

Figure 2.5 contains intermediate particles: a fermion in the figure on the left and a boson in the figure
on the right. These particles are assumed to be very heavy. In fact, the heavier the new particle is,
the lighter is the lefthanded neutrino, just as on a seesaw in a children’s playground: the higher one
kid, the lower the other.

In all of the vertices of figure 2.5 two SU(2) doublets meet. According to the group theory rule
2×2 = 1+3, the intermediate fermion or boson should thus be a singlet or a triplet. This can be used
to classify the different seesaw mechanisms. An SU(2)-singlet fermion gives rise to the so-called
type-I seesaw; an SU(2)-triplet boson to the seesaw of type-II and an SU(2)-triplet fermion to the
type-III seesaw. Having an intermediate SU(2)-singlet boson is no option as can be seen from the
right figure in 2.5. This would basically ‘add nothing’ to the fermion flow.

2.1.6 Type-I Seesaw

We first study the type-I seesaw, in which an intermediate SU(2)-singlet fermion appears in the
diagram on the left of figure 2.5. The hypercharge of the field is calculated to be 0, giving it exactly
the quantum numbers of the righthanded neutrino. The couplings between the lefthanded neutrino,
the Higgs field and the righthanded neutrino are thus simply the Yukawa couplings of equation (2.9).

In section 2.1.3 we noticed that the righthanded neutrino might well be a Majorana particle, unless
new exactly conserved charges like lepton number forbid this. If the righthanded neutrino is indeed
a Majorana particle, a Majorana mass term analogous to equation (2.10) is also allowed. The mass
might be very large as it does not have to be generated at the electroweak scale.

The (lefthanded) neutrino mass can be estimated from the diagram in figure 2.6. The two Yukawa
interactions give a factor 1

2 (yνvH2
)2, while the propagator gives a factor i/(/p − MM ), that for low

momenta can be approximated by (−i)/MM , with MM the righthanded neutrino Majorana mass.

mν =
yν

2

2

(vHu)2

MM
. (2.13)

This is exactly of the form (2.12) if the high energy scale MX and the Majorana mass scale MM are
related according to MX/fν = MM/y

2
ν .

The light neutrino mass of equation (2.13) can also be obtained from a more formal analysis. The
total neutrino mass Lagrangian reads

Ltype−I = yν

(
L̄νL
L̄eL

)
·
(
H0
u

H−u

)
νR +

1

2
MMνR(νR)c + h.c. (2.14)

After the Higgs fields obtain their vevs, this becomes

LD+M =
1

2
mDνLνR +

1

2
mD(νR)c(νL)c +

1

2
MM (νR)cνR + h.c.

=
1

2

(
νL (νR)c

) ( 0 mD

mD MM

) (
(νL)c

νR

)
+ h.c.

(2.15)
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(νL)c ν̄L

H H

(νL)c ν̄L

(νR)c = ν̄R

H H

Figure 2.6: The type-I seesaw.

Here we used the spinor identity νLνR = (νR)c(νL)c. In the second line, we switched to a matrix
notation. Finding the masses of the light and heavy neutrinos corresponds to finding the eigenvalues
of this matrix.

mN, ν =
MM ±

√
1 + 4 (mD)2

MM

2
'
{
MM , For the heavy state N .

− (mD)2

MM
, For the light state ν.

(2.16)

The last approximation is valid under the assumption that MM � mD for reasons that are given
above. The eigenstates ν and N of the mass matrix in (2.15) can be given in terms of the original
states (νL)c and νR

ν ∝ (νL)c + mD
MM

νR ,

N ∝ mD
MM

(νL)c + νR .
(2.17)

We see that the light neutrino is almost entirely the (conjugate of) the old lefthanded neutrino, i.e.
the neutrino that was part of the lepton doublet.

2.1.7 Type-II Seesaw

Instead of fermionic, the messenger can also be bosonic. In that case, the two Higgses first ‘fuse’
to the new boson; this boson then couples to the fermion flow. The two Higgses are doublets of
SU(2)L, so the new boson can a priori be a singlet or a triplet and the hypercharge should be +1.
Only a triplet can generate a neutrino-neutrino coupling. This mechanism is known as the type-II
seesaw and depicted in figure 2.7.

(νL)c ν̄L

H H

∆
(νL)c ν̄LT

H H

Figure 2.7: The type-II seesaw.

The bosonic triplet can be written as ∆ =
(
∆++, ∆+, ∆0

)T . It gives rise to a mass term when the
third (electrically neutral) component gets a vacuum expectation value v∆

LII = gν ν̄L (νL)c v∆ . (2.18)

Neutrino masses are very small if the vev of ∆ is very small. This is indeed plausible as can be seen
from the combined potential of the doublet and triplet Higgs fields. We show the analysis for the
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case of the Standard Model with one doublet Higgs (so Hu = iσ2H
∗
d in equation (2.3)); the extension

to multiple Higgs doublet models is straightforward.

V = V (H) +MT
2∆†∆ + (αHH∆ + α∗H†H†∆†) + ... (2.19)

The first term is the normal Higgs potential V (H) = µ2H†H+λ(H†H)2; the next term is a mass term
for the triplet Higgs and the last term is a cubic interaction between the doublet and triplet Higgses.
Note that α is here a dimensionful parameter. The ellipsis contains quartic interaction terms with the
triplet Higgs, like H†H∆†∆ or (∆†∆)2, that are not relevant here, as their contribution is strongly
suppressed with respect to those given in (2.19). If the doublet Higgs is sufficiently lighter than the
triplet Higgs, the doublet obtains its vev vH = −µ2/2λ in the ordinary way. In terms of this vev and
the one of the triplet, the potential now reads

V = V0 +MT
2v∆v

∗
∆ + α vH

2v∆ + α∗(v∗H)2v∆
∗ . (2.20)

Demanding the first derivative with respect to v∆ to be zero gives

∂V

∂v∆
= 0⇒ v∗∆ = (−)α

vH
2

MT
2
. (2.21)

This equation justifies the use of the word seesaw. The higher the scale of the triplet Higgs (or rather
the presumably comparable scale of α and MT ), the lower the scale of v∆ and hence the lighter the
neutrinos. Indeed in many Grand Unified Theories, there is the relation

α 'MT 'MR . (2.22)

In that case, both the type-I and II seesaw predict neutrino masses of order vH2/MR and an analysis
of neutrino masses should take into account both types of seesaw. We will see an example in the
model of chapter 4.

2.1.8 Type-III Seesaw

Lastly, the intermediate particle can be a fermionic triplet that flows in the same channel as the
fermionic singlet of the type-I seesaw. This type-III seesaw is sketched in figure 2.8.

(νL)c ν̄L

H H

∆
(νL)c ν̄LT

H H

Figure 2.8: The type-III seesaw. T denotes the fermionic triplet messenger.

The seesaws of type-I, II and III are the only possibilities to generate neutrino masses with only
renormalisable operators and only one intermediate messenger. Many suggestions exist in the
literature of mechanisms that need more than one intermediate particle. They are known as the
double seesaw, inverse seesaw, etc. See for instance [17] for a detailed discussion.

2.2 The three family Standard Model

In the previous section, we ignored the fact that there are three generations of quarks and leptons.
In this section, we correct for this. We discuss the quarks sector first, then the lepton sector. The
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inclusion of three families basically amounts to adding generation labels to the fields in the mass
Lagrangian (2.3): QL → QLi; uR → uRj and dR → dRj . Obviously, i, j = 1, 2, 3. To prepare the
supersymmetric model of chapter 4 (where Hu and Hd are unrelated) and the models of chapters 5
(where there are three copies ofHd in the triplet representation of a family symmetry group), we also
allow the Higgs fields to come in several copies: Hd → Hd

a and Hu → Hu
b , where a and b run from

1 to respectively nd and nu. We denote their vevs as vdaeiωa and vub e
iωb , where the phases indicate

that the vevs can be complex. With three families, the old coupling constants yu and yd now become
matrices in generation space and in case of multiple Higgs fields even a vector of matrices.

2.2.1 Quark masses

The quark part of equation (2.3) becomes5

LQ mass = Y uijbQ̄LiH
u
b uRj + Y dijaQ̄LiH

d
adRj + h.c. (2.23)

The crucial observation is that the fields here are given in the interaction basis and they do not
correspond to mass eigenstates. If all Higgs fields obtain their vacuum expectation values, the
Lagrangian contains mass terms and fermion-Higgs interactions.

LQ mass = (Mu)ij ūLiuRj + (Md)ij d̄LidRj + h.c. (2.24)

Lf̄fH =
Y uijb√

2

(
ūLi h

u0
b uRj + d̄Li h

u−
b uRj

)
+

Y dija√
2

(
ūLi h

d+
a dRj + d̄Li h

d0
a dRj

)
+ h.c.

(2.25)

The mass matrices in the first Lagrangian are given by the expressions below. It is important that
these are not diagonal in flavour space.

(Mu)ij =
∑
b

Y uijb
vub e

iωb

√
2

, (Md)ij =
∑
a

Y dija
vdae

iωa

√
2

. (2.26)

The same holds for the mass matrices of the Higgses. We have already seen this in the section about
the one-family Standard Model, where for instance the neutral Goldstone boson can be a mixture of
Au and Ad.

A basis transformation related the weak interaction basis to a basis where the mass matrices are
diagonal. To distinguish the mass basis, we put a hat on relevant fields and operators and use the
letters r, s, . . . for the fermion family indices and α, β, . . . for the Higgs copy indices. We focus on the
mass terms first, leaving the diagonalization of the Higgs mass matrices to section 2.2.5.

The fermion fields in the mass basis are defined as

uRi = V uRirûRr, uLi = V uLirûLr ,

dRi = V dRird̂Rr, dLi = V dLird̂Lr .
(2.27)

Here V u,dL,R are unitary matrices such that the mass matrices in the mass basis are diagonal

M̂u
rs = (V uL )†ri M

u
ij V

u
RLjs = diag(mu,mc,mt) .

M̂d
rs = (V dL )†ri M

d
ij V

d
Rjs = diag(md,ms,mb) .

(2.28)

For practical purposes, V uL (V uR ) can be calculated as the matrix that has the normalized eigenvectors
of MuMu† (Mu†Mu) in its columns and idem in the down sector.

5Again, some authors choose to define the Yukawa couplings by the Hermitian conjugates of the terms in (2.23). Some
formulas, such as those directly below equation (2.28) change, but all observables are the same.
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The values on the diagonal of M̂u and M̂d are the quark masses. Experimentally, these are given
by [6]

mu = 1.7− 3.3MeV, mc = 1.27+0.07
−0.09GeV, mt = 172.0± 0.9± 0.3GeV,

md = 4.1− 5.8MeV, ms = 101+29
−21MeV, mb = 4.19+0.18

−0.06GeV. (2.29)

The large uncertainties in the light (u, d, s) quarks is due to the fact that quarks only exist in hadrons
and that most of the mass of a hadron is not in the constituent quarks, but due to QCD effects. It was
mentioned in section 1.4.1 that quark masses vary with the energy they are observed at. The masses
in (2.29) are evaluated at 2 GeV using the MS scheme for the u, d and s quark; the c and bmass are the
running masses at the mass scale itself, again using the MS scheme and the top mass is from direct
observations of top events.

2.2.2 The CKM matrix

The transformation to the mass basis implies that the weak interaction with theW boson is no longer
diagonal. The coupling of the quarks in their mass basis to the W boson is governed by the famous
Cabibbo-Kobayashi-Maskawa (CKM) matrix.

LCC =ūLiγ
µdLiW

+
µ + h.c.

=¯̂uLrγ
µ(VCKM)rsd̂LsW

+
µ + h.c. VCKM = (V uL )†V dL .

(2.30)

The CKM matrix is the product of two unitary matrices, (V uL )† and V dL and is as such unitary itself.
A general 3× 3 unitary matrix has nine real parameters. However, not all of these are observable, as
some phases can be absorbed in the quark fields. All quarks can absorb a phase, except for one global
phase. This removes five phases, leaving the CKM matrix with four real parameters. Three of these,
θq12, θq13 and θq23, are mixing angles that control the mixing between the particles of two of the three
generations and one, δqCP, is a complex phase that gives rise to CP violation. It was this counting and
the realization that CP violation in the quark sector can only occur in case of at least three generations
that earned Makoto Kobayashi and Toshihide Maskawa [18] the Nobel Prize of 2008.

In this section, we discuss two parametrizations of the CKM matrix. The first one is in terms of
the aforementioned three angles and one phase, the second in terms of the so-called Wolfenstein
parameters. The Wolfenstein parametrization takes into account that the CKM matrix elements
respect a hierarchy in which some of the terms are much larger than others.

In the standard parametrization [19], the CKM matrix is expressed as

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

1 0 0
0 c23 s23

0 −s23 c23

 ·
 c13 0 s13e

−iδqCP

0 1 0

−s13e
iδqCP 0 c13

 ·
 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδqCP

−s12c23 − c12s13s23e
iδqCP c12c23 − s12s13s23e

iδqCP c13s23

s12s23 − c12s13c23e
iδqCP −c12s23 − s12s13c23e

iδqCP c13c23

 .

(2.31)

Here sij and cij are respectively the sine and the cosine of the mixing angles θqij . These three angles
can be recovered from (2.31) by the following expressions

sin θq13 = |(VCKM)13| , tan θq12 =
|(VCKM)12|
|(VCKM)11|

, tan θq23 =
|(VCKM)23|
|(VCKM)33|

. (2.32)

The CP violating phase δqCP can be recovered from the argument of the (1 3)-element of the CKM
matrix. In practical calculations however, it is not always directly possible to eliminate the phases as
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described above and arrive at the parametrization (2.31). In that case, δqCP can be calculated via

δqCP = −arg

( (VCKM)∗11(VCKM)13(VCKM)31(VCKM)∗33

c12c213s13c23
+ c12s13c23

s12s23

)
. (2.33)

The mixing angles and the CP-violating phase are input to calculate the Jarlskog invariant of CP-
violation [20]

JCP = Im
[
VijVjiV

∗
iiV
∗
jj

]
= c12 c

2
13 c23 s12 s13 s23 sin δqCP . (2.34)

In the second term ij = 12, 13 or 23 and no summation is assumed.

The experimental determinations of the values of the absolute values of the elements of the CKM
matrix are [6]

|VCKM| =

0.9742± 0.00015 0.2253± 0.0007 0.00347+0.00016
−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

 . (2.35)

This is calculated under the assumption that the CKM matrix is unitary (this is theoretically well
motivated as described above) and that there are no more than three generations. The direct
constraint on for instance the (3 3)-element is much weaker: |Vtb| = 0.88± 0.07.

The angles that correspond to the data in (2.35) and the CP phase that can be calculated separately
are

θq12 = 13.0◦, θq13 = 0.199◦, θq23 = 2.35◦, δqCP = 68.9◦. (2.36)

These data support the claim made in section 1.4.2: the CKM matrix is almost diagonal. Although the
first mass eigenstate is not exactly the first interaction eigenstate, the difference is not large, etc. Only
the mixing between the first and the second mass eigenstates is of medium order, with the mixing
parameter θq12 equal to 13.0◦, while the other two mixing angles are tiny. This explains that there is
only a small sliver of red respectively blue in the first two circles of figure 1.17 and almost no yellow.

The standard parametrization uses θq12, θq13, θq23 and δqCP to parameterize the CKM-matrix. Some of
these parameters are very small. The Wolfenstein parametrization [21] is an alternative parametriza-
tion, in which all parameters are between 0.1 and 1. The first parameter λ is sin θq12 ≈ 0.23. This is
slightly smaller than 1 and allows a power expansion of the CKM matrix in powers of λ. To good
accuracy the (1 2)-element of the CKM matrix is equal to λ, since cos θq13 ≈ 1. The (2 3)-element
is more or less equal to λ2; we define the deviation A via sin θq23 = Aλ2. The (1 3)-element of the
CKM matrix is of order λ3. The real and imaginary part ρ and η of the coefficient are defined as
sin θq13 e

iδqCP = Aλ3(ρ+ iη). This gives the CKM matrix to third order in λ

VCKM =

 1− λ2/2 λ Aλ3(ρ̄− iη̄)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.37)

The Wolfenstein parameters are given by6

λ = 0.2246± 0.0011, A = 0.832± 0.017, ρ̄ = 0.130± 0.018, η̄ = 0.341± 0.013. (2.38)

2.2.3 Lepton masses

In sections 2.1.3 and 2.1.4 the Dirac or Majorana nature of neutrinos was discussed. If neutrinos
are Dirac particles, the theory of lepton masses in three generations is an exact copy of the theory

6For calculations to higher order in λ two parameters ρ̄ and η̄ are preferred over ρ and η; these are defined as

sin θq13 e
iδ
q
CP = Aλ3(ρ+ iη) =

Aλ3(ρ̄+ iη̄)
√

1−A2λ4
√

1− λ2[1−A2λ4(ρ̄+ iη̄)]
.
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of quarks. The lepton analogue to the CKM matrix, often called the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, can be parameterized in the same way as the CKM matrix in (2.31). There are
small, but important differences if neutrinos are Majorana particles as we assume in the remainder
of this section and in fact in most of this thesis.

The lepton masses below the electroweak scale are given by

LLmass = (Me)ij ēRieLj + (Mν)ij ν̄Li(νL)cj + h.c. (2.39)

The symmetric neutrino mass matrix (Mν)ij might originate from one or more of the seesaw
mechanisms. In model building, the seesaws of type I and II or a combination of these are very
popular. Indeed, in chapter 4 we show that in many grand unified models, both seesaws are
automatically present and their contributions to the neutrino masses are comparable. In case of
interplay of type I and II seesaw, the neutrino mass matrix reads

(Mν)ij = −MD
iI (MR)−1

IJ (MD)TJj +ML
ij . (2.40)

Here MD is the Dirac mass matrix, given by MD
iI =

∑
a Y

ν
iIav

u
a/
√

2; i = 1, 2, 3 is the index that
counts the number of normal lefthanded neutrinos. I counts the number of right handed neutrino
species. It need not run from 1 to 3, as there may be fewer or more righthanded neutrinos. ML is the
contribution of the type-II seesaw equal to gνijv∆.

The charged lepton masses are diagonalized as in equations (2.27) and (2.28)

eRi = V eRir êRr , eLi = V eLir êLr , (2.41)

M̂e
rs = (V eL)†riM

e
ijV

e
Rjs = diag(me,mµ,mτ ) . (2.42)

The masses of the the electron, the muon and tau lepton can be measured much better than the quark
masses, as they can be measured directly in detectors instead of only in hadrons. They are given by

me = 0.510998910± 0.000000013MeV ,

mµ = 105.658367± 0.000004MeV ,

mτ = 1776.82± 0.16MeV .

(2.43)

The neutrinos are diagonalized via a single unitary matrix Uν instead of two (left and right) as in the
case for all Dirac particles.

M̂ν
rs = (Uν)†ri(M

ν)ij(U
ν)∗js , (2.44)

νL = (Uν)∗ν̂L . (2.45)

Neutrino masses are very hard to measure. Neutrinos rarely interact and they are almost always
highly relativistic, meaning that only a tiny fraction of their energy is in the rest mass. The only
direct signs for neutrino masses are from neutrino oscillations. These are not sensitive to the neutrino
masses themselves, but to the differences between the squares of two of them. The results of
solar neutrino oscillations (neutrinos from nuclear fusion in the center of the sun) and atmospheric
neutrino oscillations (neutrinos formed when cosmic rays collide with air particles in the outer
atmosphere) are given in table 2.3.

The three neutrino mass eigenstates are generically denoted as ν1, ν2 and ν3. This ordering does
not always correspond to the ordering from lightest to heaviest. The solar and atmospheric mass
differences imply two gaps between the mass states, one much larger than the other. The states ν1

and ν2 are defined as the states separated by the solar mass gap, with ν1 the lightest of the pair.

∆m2
sol ≡ ∆m2

12 ≡ m2
2 −m2

1 . (2.46)

The third neutrino ν3 can be heavier or lighter than the solar pair; it is separated from them by the
larger atmospheric gap. In the former case, the neutrino ordering is called normal, because just like
with charged leptons and quarks, the gap between the third and second family is larger than the one
between the first and the second one. If ν3 is the lightest neutrino, the ordering is called inverted.
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Ref. [22–24] Ref. [25–28]
parameter best fit (1σ) 3σ-interval best fit (1σ) 3σ-interval

∆m2
sol [×10−5eV2] 7.58+0.22

−0.26 6.99− 8.18 7.59+0.20
−0.18 7.09− 8.19

∆m2
atm [×10−3eV2] 2.35+0.12

−0.09 2.06− 2.81
2.50+0.09

−0.16 2.14− 2.76 Normal hierarchy

2.40+0.08
−0.09 2.13− 2.67 Inverted hierarchy

Table 2.3: Neutrino oscillation parameters from two independent global fits [22–24] and [25–28].

The definition of ∆m2
atm in terms of neutrino masses is different for the two orderings; it is a positive

quantity given by the difference of the mass squared of ν3 and of the solar doublet neutrino closest
to it.

∆m2
atm =

{
m2

3 −m2
1, Normal ordering.

m2
2 −m2

3, Inverted ordering.
(2.47)

The neutrino oscillation parameters only contain information about the differences of (squares of)
neutrino masses, not about the magnitude of the masses themselves. In one scenario, the lightest
neutrino may be almost massless. The other masses are now given approximately by

√
∆m2

sol

and
√

∆m2
atm (normal ordering) or both very close to

√
∆m2

atm (inverted ordering). In this case,
the words normal ordering and inverted ordering are often replaced by normal hierarchy and
inverted hierarchy. In an other scenario, the neutrinos are relatively heavy and the differences
between the neutrino masses is small compared to the masses themselves. This is called a quasi
degenerate spectrum. The sum of quasi degenerate neutrino masses is constrained by cosmological
data. Although the different groups do not agree on the bound [6], most report a value near 1.0 eV,
requiring that the individual neutrinos have masses smaller than approximately 0.3 eV. Information
on the absolute mass scale of neutrinos may also be found in the endpoint of tritium beta decay by the
Katrin collaboration [29] or by one of the groups looking for neutrinoless double beta decay [30–34].
A schematic representation of the four possibilities for the neutrino hierarchy and ordering is given
in figure 2.9.

Figure 2.9: Schematic representation of the normal hierarchy (NH), inverted hierarchy (IH)
and quasi degenerate neutrinos with normal ordering (QD NO) and with inverted ordering
(QD IO).

2.2.4 The PMNS matrix

The Pontecorvo-Maki-Nakagawa-Sakata matrix parameterizes the flavour mixing in weak interac-
tions of leptons. The PMNS matrix is defined as

VPMNS = (V eL)†V ν . (2.48)
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If neutrinos are Majorana particles, the PMNS matrix can be parameterized as

VPMNS =

Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 = R(θl12, θ
l
13, θ

l
23, δ

l
CP)×

eiϕ1/2 0 0
0 eiϕ2/2 0
0 0 1

 . (2.49)

Here R(θl12, θ
l
13, θ

l
23, δ

l
CP) is the part of the mixing matrix that depends on the mixing angles and the

Dirac CP-violating phase. This is identical to the parametrization of the CKM matrix in (2.31). The
matrix on the right contains extra CP-violating phases, the so-called Majorana phases.

The mixing angles θlij and Dirac phase δlCP can be inferred from the PMNS matrix via formulas
analogous to (2.32) and (2.33). The Majorana phases can be written in terms of an auxiliary angle
δe = arg[eiδ

l
CP(VPMNS)13] as

ϕ1 = 2 arg[eiδe(VPMNS)∗11] , ϕ2 = 2 arg[eiδe(VPMNS)∗12] . (2.50)

The angles of the PMNS matrix are totally different to those of the CKM matrix. In the quark sector
all angles are small to very small. In the lepton sector, the angle θl23 – the atmospheric angle – is
very large. Possibly it has exactly the right value (45◦) to produce maximal mixing in the (2 3) sector.
The solar angle or θl12 is also very large, but significantly smaller than maximal (45◦). The third
mixing angle, θl13 is sometimes called the reactor angle. It is much smaller than the other two lepton
mixing angles. Until recently, experimental data were compatible with a vanishing value of the
angle [22, 23, 25, 26]. For the newest results, this is (just) below the 3σ range [24, 27, 28]. At the other
end of the range, the angle can be almost as large as the Cabibbo angle, the largest angle in the CKM
matrix.

In table 2.4 we give the mixing angles according to the two global fits also used in table 2.3. In the
last column, we mention the values according to the tribimaximal mixing pattern, first introduced by
Harrison, Perkins and Scott in 2002 and alluded to in section 1.4.2 [8]; see also [35–40]. We see that
this pattern indeed fits the data rather well, although the agreement was a lot stronger with older
datapoints. The fit significantly deteriorated when evidence for non-zero θ13 was found, first as a
slight hint in global fits to accommodate slightly conflicting data, later from a dedicated search at the
Tokai to Kamioka (T2K) experiment [41].

Ref. [22–24] Ref. [25–28]
parameter best fit (1σ) 3σ-interval best fit (1σ) 3σ-interval TBM values

sin2 θl12 0.312+0.017
−0.016 0.265− 0.364 0.312+0.017

−0.015 0.27− 0.36 1/3

sin2 θl23 0.42+0.08
−0.03 0.34− 0.64

0.52+0.06
−0.07 0.39− 0.64 NH 1/2

0.52± 0.06 0.39− 0.64 IH

sin2 θl13 0.025± 0.007 0.005− 0.050
0.013+0.007

−0.005 0.001− 0.035 NH 0
0.016+0.008

−0.006 0.001− 0.039 IH

Table 2.4: Neutrino oscillation parameters from two independent global fits [22–24] and
[25–28] and the values of the tribimaximal mixing pattern. In the second fit, separate results
for normal hierarchy (NH) and inverted hierarchy (IH) are given.

If the neutrino mixing matrix is exactly equal to the tribimaximal Harrison-Perkins-Scott matrix, the
absolute values of its elements are given by

|UTBM| =


√

2/3
√

1/3 0√
1/6

√
1/3

√
1/2√

1/6
√

1/3
√

1/2

 . (2.51)
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All three phases of the PMNS matrix are unknown at the moment. The phase δlCP might be
discovered together with the mixing angle θ13 in detectors near nuclear reactors [42–45]. The
Majorana phases do not show up in oscillations, but might be inferred from nuclear decay processes.
In particular, in neutrinoless double beta decay, a parametermββ is probed that contains both phases.

mββ =
∑
i=1−3

mi(VPMNS)2
ei

= m1 cos2 θl12 cos2 θl13e
iϕ1 +m2 cos2 θl13 sin2 θl12e

iϕ2 +m3 sin2 θl13e
−2iδ .

(2.52)

2.2.5 Diagonalizing the Higgs sector

This section discusses the diagonalization of the Higgs sector, necessary if there is more than one
Higgs boson present. We will see that if more than one Higgs boson is present, generally this gives
rise to flavour changing neutral currents (FCNCs) that are experimentally very tightly constrained.
In chapter 5 we use these FCNCs to test certain multi-Higgs models.

We recall from equation (2.4) that the Higgs fields can be expanded around the vacuum expectation
value according to

Hd
a =

1√
2

(
hd+
a

vae
iωa + Re hd0

a + i Im hd0
a

)
, Hu

b =
1√
2

(
vbe

iωb + Re hu0
b + i Im hu0

b

hu−a

)
. (2.53)

Now the interaction eigenstates hu,d mix to mass eigenstates of the Higgses (“physical Higgses”) and
a number of Goldstone bosons. As argued below equation (2.3), the states in Hd should thereby be
compared with those in −iσ2(Hu)∗. Indeed in both cases, the charged states are positive.

In the neutral sector the mass eigenstates are formed according to

ĥα = Uαaha . (2.54)

The vector ha holds all neutral components of the original Higgs fields. Due to the complex
conjugation alluded to above, Im hu0

b carry minus signs

ha =
(

Re hu0
1 · · · Re hu0

nu , −Im hu0
1 · · · − Im hu0

nu , Re hd0
1 · · · Re hd0

nd
, Im hd0

1 · · · Im hd0
nd

)
. (2.55)

These 2(nu+nd) states give rise to the states in ĥα: 2(nu+nd)−1 physical Higgses and the Goldstone
boson that gives a mass to the Z-boson.

ĥα =
(
ĥ1 · · · ĥ2(nu+nd)−1, π

0
)
. (2.56)

In the charged sector we have likewise
ĥ+
α = Sαah

+
a . (2.57)

The vector h+
a holds the positive states from Hd and from −iσ2(Hu)∗, while the vector ĥ+

α contains
the nu + nd − 1 positively charged scalars and the Goldstone boson that gives rise to the W+ boson
mass.

h+
a =

(
(Hu)+

1 · · ·hu+
nu , h

d+
1 · · · hd+

nd

)
,

ĥ+
α =

(
ĥ+

1 · · · ĥ+
nu+nd−1, π

+
)
.

(2.58)

The expressions in (2.54) and (2.57) are needed to rewrite the fermion-Higgs interactions, equation
(2.25) and its lepton analogue, in the mass basis. To keep the discussion clear and the formulas short,
we only discuss the quark case in this section. The lepton case is completely analogous.
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In the mass basis the part of the Lagrangian which includes interactions with the neutral Higgses –
the first and fourth term of equation (2.25) – becomes

LY,n = d̂r(R
d)αrshα

1 + γ5

2
d̂s + ûr(R

u)αrshα
1 + γ5

2
ûs + h.c. (2.59)

Here we defined the coupling tensors Rd and Ru according to

(Rd)αrs =

[
V d†Lri

1√
2

(U†(2nu+a)α + iU†(2nu+nd+a)α)Y dijaV
d
Rjs

]
,

(Ru)αrs =

[
V u†Lri

1√
2

(U†aα − iU†(nu+a)α)Y uijaV
u
Rjs

]
.

(2.60)

In case the up-type and down-type Higgses are not separate, we can still use this formula with some
small modifications. From the perspective of the down-type Higgs, there are no other Higgses, so
Rehd1 is the first element of ha in (2.55), so in Rd we should take nu = 0. On the other hand, in Ru we
should use nu = nd, because −Imhu0

1 is the (nd + 1)th element of ha.

The interactions with the charged Higgs in (2.25) become

LY,ch = ûr(T
d)αrsĥ

+
α

1 + γ5

2
d̂s + d̂r(T

u)αrsĥ
−
α

1 + γ5

2
ûs + h.c. (2.61)

The coupling tensors T are given by the following expressions that can also be used when there are
no separate up-type Higgses (nu = 0).

(T d)αrs =
[
V d†LriS

†(nu+a)αY dijaV
d
Rjs

]
, (Tu)αrs =

[
V u†LriS

T aαY uijaV
u
Rjs

]
. (2.62)

Expanding the Hermitian conjugate, the Lagrangian (2.59) can be written in terms of scalar and
pseudoscalar couplings with non-chiral fermions.

LY =

(
d̂r
(
(Id)αr,s + γ5(Jd)αr,s

)
ĥαd̂s + ûr

(
(Iu)αr,s + γ5(Ju)αr,s

)
ĥαûs

+ ûr
(
F βr,s + γ5G

β
r,s

)
ĥ+
β d̂s + d̂r

(
F β∗r,s − γ5G

β∗
r,s

)
ĥ−β ûs

)
.

(2.63)

The new coefficients are defined in the following way:

(Id,u)αr,s =
1

2

(
(Rd,u)αrs + ((Rd,u)αsr)

∗
)
,

(Jd,u)αr,s =
1

2

(
(Rd,u)αrs − ((Rd,u)αsr)

∗
)
,

F βr,s =
1

2

(
(T d)βrs)

∗ − ((Tu)βsr)
∗
)
,

Gβr,s =
1

2

(
(T d)βrs)

∗ + ((Tu)βsr)
∗
)
.

(2.64)

The operators I , J , F and G determine whether flavour changing interactions are possible and
what their strength is. Note that for particularly symmetric vevs of the Higgs fields, many of these
operators are automatically zero, thus forbidding many flavour changing interactions or allowing
them only if certain selection rules are met. We discuss some flavour changing interactions in chapter
5. The matrices I and J are important building blocks for the expressions there.

2.3 Fermion masses in family symmetric models

In section 1.4 family symmetries were introduced. We counted the number of free parameters and
found that 20 or 22 of the parameters correspond to the fermion masses and mixings in respec-
tively the neutrino-Dirac and neutrino-Majorana case. We also mentioned that some dimensionless
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parameters are remarkably small. The Yukawa couplings of the first generation yu, yd and ye are
examples we have seen in this chapter. All of these are of the order 10−5, with the electron Yukawa
even smaller. If neutrinos are Dirac particles, their Yukawa couplings are even more tiny, being
approximately 10−13. We have seen that the type-I seesaw provided a ‘solution’ to this. New physics
had to be introduced as the properties of the righthanded neutrino are now significantly different
from those of the lefthanded one, but the parameters could all be of ‘natural’ magnitude. Even the
new energy scale introduced was consistent with expectations.

The type-I seesaw provides a good example of some general philosophies that are also behind models
with flavour symmetries. In section 1.4 we mentioned that there does not need to be something like
flavour symmetries. In principle, the mass sector of the Standard Model can be the result of some
God playing dice with 20 or 22 available parameters. From a theoretical point of view, however,
alternative theories are preferable if they either manage to have much fewer parameters or if the
parameters they have are less finetuned, meaning that the observed physics follows from a larger
range of parameters. Ideally, a model does both.

The key ingredients of models with flavour symmetries are the matrices of Yukawa couplings Y xij ,
x ∈ {u, d, e, ν} and comparable parameters in the seesaws. The models were already introduced in
the text of section 1.4. In this section, we study in some more mathematical rigour how we can force
the Yukawa and seesaw parameters to reproduce the physics we observe.

The best way to introduce family symmetries is probably by going through a remarkably simple, but
efficient example, the Froggatt–Nielsen model [9], that we discuss in the next section. The Froggatt–
Nielsen model uses an Abelian flavour symmetry. The models that the other chapters of this thesis
are based on, use non-Abelian symmetries. Furthermore, these symmetries are often global and
discrete. We discuss their properties at the end of this section and give an typical example, the model
of Altarelli and Feruglio [10, 11], in the next section.

2.3.1 The Froggatt–Nielsen model

A first family symmetric model that we discuss is the Froggatt–Nielsen model, or rather a toy version
of it. To focus only on the core issues we restrict the discussion to the charged lepton sector and
ignore family mixing, i.e. we assume that only couplings diagonal in flavour space occur. Even
in this simplified set up, there is a striking feature in the data, namely the huge hierarchy between
the masses of the particles under consideration. The tau lepton is much heavier than the muon,
which is itself again much heavier than the electron. The Froggatt–Nielsen mechanism provides an
explanation to this by assigning different charges to the three fields.

The Yukawa Lagrangian for our simplified model reads

L = ye

(
νe
e

)
·
(
H+
d

H0
d

)
ec + yµ

(
νµ
µ

)
·
(
H+
d

H0
d

)
µc + yτ

(
ντ
τ

)
·
(
H+
d

H0
d

)
τ c. (2.65)

After the Higgs fields obtains it vev, this gives a diagonal mass matrix for the three leptons.

L =
1√
2

(
e µ τ

)yev yµv
yτv

ecµc
τ c

 . (2.66)

The observation that the tau lepton, muon and electron have a huge hierarchy, now translates to
ye � yµ � yτ . Actual, a study of the data suggests

ye : yµ : yτ ≈ λ5 : λ2 : 1, λ = 0.2. (2.67)

At this stage, λ is just a parameter with size 0.2. It appears because the data show that the logarithmic
gaps between tau lepton and muon and between muon and electron are roughly 3:2 related. In
chapter 4 the parameter λ is linked to the Cabibbo angle.
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The central idea of Froggatt and Nielsen was that the huge mass gaps may be not a coincidence. They
proposed a new U(1)FN symmetry and to assign a new charge that differs over the three families as
in table 2.5.

field all doublets ec µc τ c

FN-charge 0 5 2 0

Table 2.5: Frogatt and Nielsen’s proposal for new charges for the charged leptons.

The Lagrangian (2.65) is now no longer a valid Lagrangian: no longer all terms are singlets of the
full symmetry group. The first term for instance has U(1)FN-charge 0+0+5 6= 0. This can be solved by
introducing a new field, the so-called Froggatt–Nielsen messenger θ that has negative FN-charge as
shown in table 2.6.

field all doublets ec µc τ c θ

FN-charge 0 5 2 0 -1

Table 2.6: An update of table 2.5 that also includes the bosonic Froggatt–Nielsen
messenger.

With the Froggatt–Nielsen messenger, it is possible to ‘fix’ the Lagrangian (2.65) by inserting appro-
priate powers of the messenger. This makes the first two terms in the Lagrangian non-renormalisable.
We correct for this by dividing by appropriate powers of an assumedly high cut-off scale MFN. Like
the three versions of the seesaw mechanism can dissolve the Weinberg operator, it is in principle
possible to express the terms below in a combination of renormalisable operators, but here we stick
to the effective operator approach.

L =
1

M5
FN

y′e

(
νe
e

)
·
(
H+
d

H0
d

)
θ5ec +

1

M2
FN

y′µ

(
νµ
µ

)
·
(
H+
d

H0
d

)
θ2µc + y′τ

(
ντ
τ

)
·
(
H+
d

H0
d

)
τ c (2.68)

In the next step, the Froggatt–Nielsen-messenger θ acquires a vev just slightly below the cut-off scale
〈θ〉 = λ MFN, with λ ≈ 0.2. For the exact mechanism of this symmetry breaking, there are several
candidates. We present a supersymmetric case in which the U(1)FN is gauged such that θ gets its
vev through a D-term. The corresponding potential is of the form

VD,FN =
1

2
(M2

FI − gFN|θ|2 + ...)2 . (2.69)

The gauge coupling constant of U(1)FN is gFN and M2
FI denotes the contribution of the Fayet-

Iliopoulos (FI) term. Dots in equation (2.69) represent e.g. terms involving the fields ec and µc which
are charged under U(1)FN . These terms are however not relevant to calculate the VEV of the FN
field and we omit them in the present discussion. VD,FN leads in the supersymmetric limit to

|〈θ〉|2 =
M2

FI

gFN
. (2.70)

This is identified as λ2M2
FN.

When both the Higgs and the FN-messenger have vacuum expectation values, the mass matrix is
diagonal again.

L =
1√
2

(
e µ τ

)y′eλ5v
y′µλ

2v
y′τv

 ec

µc

τ c.

 . (2.71)
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The mass matrix looks a lot like the one in (2.66), but with the exception that the hierarchy is ‘factored
out’ in the factors λ2 and λ5. The three remaining dimensionless couplings y′e, y′µ and y′τ can all be of
the same order and more or less of order 1.

Concluding, we see that the Froggatt–Nielsen mechanism can give a natural explanation for the
charged lepton hierarchy and that it allows all dimensionless parameters to be of the same order.
The price to be paid is the introduction of a new symmetry UFN and of a new field θ as well as
allowing non-renormalisable operators in the mass Lagrangian.

In terms of cold parameter-counting, the Froggatt–Nielsen symmetry is certainly not a progress. The
addition of the symmetry did not reduce the number of free parameters of the model. We started
with three parameters ye, yµ and yτ and we ended with more parameters. Not only the analogous
y′e, y′µ and y′τ , but also the parameter λ that sets the scale of the messenger vev and some discrete
parameters that give the FN-charges as shown in table 2.6. The gain that we have is not in having
fewer parameters, but in ‘more natural’ parameters. Whether the gain in naturalness is worth the
excess complexity should probably be seen as a matter of personal taste.

Ultimately, it is up to experiments to confirm or falsify the model. For confirmation, detection of the
Froggatt–Nielsen messenger is necessary as well as showing that it has the correct couplings to the
other particles. The theory is falsified if θ is not observed in experiments that would have the ability
to detect it if it were to exist. However, close inspection of the formulas in this section show that
the exact scale at which the messenger should exist, is unknown. The mass or the vev of θ does not
appear in any formula, only the ratio 〈θ〉/MFN. This lack of exact predictivity makes falsification of
the theory very hard.

2.3.2 Global, non-Abelian, discrete symmetries

The Froggatt–Nielsen mechanism proved very apt in explaining the hierarchy between the three
copies of a certain particle type, for instance the charged leptons of the previous section. In chapter 1
we discussed a second striking feature of the mass sector, the mixing patterns. Two of the three angles
of the CKM matrix are very close to vanishing, with θl13 as small as 0.2◦. In the PMNS matrix, at least
two of the three angles are large and it is remarkable that the mixing pattern can be well described
by the simple fractions 1/3 and 1/2 in table 2.4. Such mixing patterns cannot be reproduced with
(an adaptation of) the Froggatt–Nielsen mechanism. To describe those, we need a different type of
symmetries.

When selecting symmetries, one has to make three choices: local or global; Abelian or non-Abelian
and continuous or discrete. It turns out that global, non-Abelian, discrete symmetries make good
candidates for flavour symmetries.

To start with the first choice: local or global. When a symmetry is made local or gauged, this
introduces many new degrees of freedom, e.g. in new gauge bosons. These complicate the theory
and often lead to new sources of flavour changing neutral currents, which have not been observed.
A global symmetry is enough for the aim we have set, constraining the Yukawa couplings.

The second choice is if the symmetry has to be Abelian or non-Abelian. Schur’s lemma dictates
that every complex irreducible representation of an Abelian symmetry group is one-dimensional.
To be able to describe mixing patterns like the tribimaximal one, it is highly preferred to have three-
dimensional representations. We conclude that candidate family symmetries should be non-Abelian.
Having said that, many models have a non-Abelian symmetry as the main symmetry, but need
additional Abelian symmetries as secondary or auxiliary symmetry groups. For instance, the full
symmetry group of the model of chapter 4 is

Gf = S4 × Z4 × U(1)FN × U(1)R . (2.72)

The group S4 is indeed non-Abelian. It ensures bimaximal mixing, a mixing pattern that is compa-
rable to tribimaximal. The additional Z4 is further needed to prevent some unwanted couplings and
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separates the quark and the lepton sector as well as neutrinos and charged leptons within the latter.
The Froggatt–Nielsen symmetry gives the quark and lepton mass hierarchies and the R-symmetry is
a generalization of the better-known R-parity of supersymmetry. It separates supermultiplets with
different functions (see for more details the next section).

Lastly, there is a choice between continuous and discrete symmetry groups. Although there exist
many excellent models that use continuous groups, for obvious reasons mostly SU(3) and SO(3) (see
for instance [46]), discrete groups are more popular. These have a richer choice in lower dimensional
representations and the groups can be relatively small and simple (in the non-mathematical use of
the word). Popular choices are the 12-element group A4 and the 24-element S4. For a review, see
e.g. [47], that also contains a long list of references to the various models.

The prototype model of how a non-Abelian discrete symmetry can reproduce a given mixing pattern
is the model of Altarelli and Feruglio [11]. We discuss this model in the next section, thereby also
providing the general strategies of flavour symmetric model building.

2.4 The Altarelli–Feruglio model

2.4.1 Description of the model

The model of Altarelli and Feruglio [11] applies to the lepton sector of the Standard Model. The
aim of the model is to produce a PMNS matrix that is exactly of the tribimaximal (TBM) form (2.51);
until recently, this was in perfect accordance with all data and at the moment, it is still a very good
approximation. To achieve TBM mixing, the lepton sector is required to be invariant not only under
the symmetries of the Standard Model, but also under an additional horizontal symmetry. For
this horizontal symmetry, the group A4 is chosen. A4 is a small discrete non-Abelian group, that
is described in more detail below and in appendix 3.A. The important point here is that it has a
three-dimensional representation. Actually, it is the smallest group with this property.

Much like in the Froggatt–Nielsen model, the Standard Model terms in themselves are not invariant
underA4 and the introduction of a new scalar field is required to save the symmetry. In the Froggatt–
Nielsen model, this was the messenger θ; here three so-called flavons are used. Two of these flavons,
ϕT and ϕS are triplets of A4; a third ξ is a singlet.

In the next step, the flavons get a vacuum expectation value according to a specific pattern, thereby
breaking the flavour symmetry. We show that the required patterns naturally appears from the
minimization of a superpotential. In an earlier model [10], Altarelli and Feruglio showed that
alternatively, this can be achieved in a set up with one extra dimension, where the fields are located
at different branes.

The symmetry breaking by the vevs of the flavons is not complete. There are residual symmetries:
Z3 in the neutrino sector and Z2 in the charged lepton sector. Naively, these are already the tri and bi
of tribimaximal mixing. This breaking of the flavour symmetry into two different subgroups in the
two lepton subsectors is the central point of flavour symmetric model building. It is now possible to
write down the mass matrices of charged leptons and neutrinos. In the basis chosen by Altarelli and
Feruglio, the charged lepton mass matrix is exactly diagonal. This implies V eL = 1, so the requirement
that the PMNS matrix is equal to the tribimaximal one reduces to V ν = VTBM. The neutrino mass
matrix is indeed of the form that generates this.

In the following, we first give some properties of the group A4 needed to understand the Altarelli–
Feruglio model. Then we give the derivation of the tribimaximal mixing as described in words above.
In this part, the required form of the flavon vevs is simply assumed; it is subsequently derived. We
continue with a brief discussion on higher-order corrections to the model and quark masses. We
finish with a conclusion in the form of a balance.
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2.4.2 Group theory of A4

The group A4 is a discrete group with 12 elements. Details of its group theory are given in appendix
3.A. Here we just present the information needed to understand the Altarelli–Feruglio model.
A4 has three irreducible representations, a trivial singlet 1 and two non-trivial one-dimensional
representations 1′ and 1′′ as well as a triplet representation 3. All 12 elements can be represented
as products of two generating elements S and T that satisfy the following relations, thereby defining
the ‘presentation’ of the group

S2 = (ST )3 = T 3 = 1 . (2.73)

The elements S and T can be represented as (1, 1), (1, ω), (1, ω2) for the three one-dimensional
representations. Here ω = e2πi/3 is a cube root of unity. In the three dimensional representation,
we have

S =
1

3

 −1 2 2
2 −1 2
2 2 −1

 ; T =

 1 0 0
0 ω 0
0 0 ω2

 . (2.74)

It can easily be checked that for all representations, the requirements (2.73) are met. However, only in
the three-dimensional case, this happens in a non-trivial way for the generator S. Generating all 12
elements of A4 is only possible with the three dimensional representations, that are therefore called
faithful. Different bases than (2.74) are possible. In particular, a basis of A4 in which the generator S
is diagonal is often used. This basis and its relations to the Altarelli–Feruglio basis (2.74) are given in
appendix 3.A.

The elements S and T in themselves generate the two maximal subgroups of A4, the Abelian Z2 and
Z3 as is clear from equation (2.73). Like in all groups, multiplication of two representations of A4

gives again a sum of A4 representations. The multiplication rules are given by

1× 1 = 1, 1× 1′ = 1′, 1× 1′′ = 1′′,

1′ × 1′ = 1′′, 1′ × 1′′ = 1, 1′′ × 1′′ = 1′,

1× 3 = 3, 1′ × 3 = 3, 1′′ × 3 = 3,

3× 3 = 1 + 1′ + 1′′ + 3 + 3.

(2.75)

If α is a singlet of one of the types 1, 1’ and 1” and (β1, β2, β3) is a triplet, the explicit form of the
products on the third line is given by (αβ1, α β2, α β3); (αβ3, α β1, α β2) and (αβ2, α β3, α β1)
respectively. The elements of the last product can be given as a function of the elements of two
triplets α = (α1, α2, α3) and β = (β1, β2, β3)

(α β)1 = α1β1 + α2β3 + α3β2 ;
(α β)1′ = α1β2 + α2β1 + α3β3 ;
(α β)1′′ = α1β3 + α2β2 + α3β1 ;
(α β)3;sym = 1

3 (2α1β1 − α2β3 − α3β2, −α1β2 − α2β1 + 2α3β3, −α1β3 + 2α2β2 − α3β1) ;
(α β)3;asym = 1

2 (α2β3 − α3β2, α1β2 − α2β1, α3β1 − α1β3) .
(2.76)

From the third line in (2.75), we see that the product of three triplets (3 × 3)3 × 3 can also give
a singlet. This is possible with the first product of two triplets in the symmetric or antisymmetric
combination. In the next subsection, we need the singlet of the combination (α α β). This selects the
symmetric combination for the first product.

(α α β)1 =
(
(α α)3;sym × β

)
1

=
2

3
(α2

1β1 − α2α3β1, α
2
3β2 − α1α2β2, α

2
2β3 − α1α3β3) . (2.77)

2.4.3 The model

In the AF model, the symmetry group A4 works in the family direction. We choose to put the three
copies of the lepton doublet (holding the lefthanded electron + electron neutrino; muon + muon
neutrino and tau + tau neutrino) together in a triplet L of A4. The righthanded charged leptons
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(or rather their lefthanded antiparticles as explained in section 2.1.2) are not combined in a triplet;
instead, they are assumed to be in the three different one dimensional representations: ec in 1; µc in
1′ and τ c in 1′′. The Higgs fields (separate Hu and Hd because of the supersymmetric context) are
family blind and thus in the trivial singlet representation.

There are three flavons: we want the triplet ϕT to couple only to the charged leptons and the
triplet ϕS as well as the (trivial) singlet ξ to couple only to the neutrinos. The two triplets are
indistinguishable at this moment: both are singlets of all Standard Model gauge groups and triplets
of A4, so we cannot use one of the already used symmetries to ensure this separation. Instead, a
second, auxiliary, symmetry is invoked – the Abelian Z3 in this case. The charges of all fields, as
shown in table 2.7 are exactly such that all wanted couplings are guaranteed, while the unwanted
couplings are forbidden.

Field L ec µc τ c Hu,d ϕT ϕS ξ

A4 3 1 1′ 1′′ 1 3 3 1

Z3 ω ω2 ω2 ω2 1 1 ω ω

Table 2.7: TheA4 and Z3 representations of the fields in the Altarelli–Feruglio model.

The superpotential for the mass terms becomes

W =
ye
Λ
ecHd(ϕTL)1 +

yµ
Λ
µcHd(ϕTL)1′′ +

yτ
Λ
τ cHd(ϕTL)1′+

xa
Λ2
ξHuHu(LL)1 +

xb
Λ2
HuHu(LLϕS)1 + ...

(2.78)

Terms such as y′e/Λ ecHd(ϕSL)1 or x′b/Λ (LLϕT )1 that would couple flavons to the ‘wrong’ sectors
are indeed absent due to the extra Z3 symmetry. We recall from equation (2.11) that the terms with
two Ls give rise to a neutrino mass term, while the first three terms obviously lead to charged lepton
masses. The dots at the end of equation (2.78) refer to terms suppressed by higher powers of Λ.

In [48] and [49] it was shown that models cannot reproduce maximal atmospheric mixing (θl23 = 45◦)
if the flavour symmetry is exact. The flavour symmetry thus needs to be broken. This occurs when
the flavons ϕT , ϕS and ξ develop vacuum expectation values in very specific directions in the A4

space; the next subsection show how this follows from an analysis of their superpotential. The vev
of ϕT is such that it is invariant under the T -generator of A4 (equation 2.73). This means that terms
in the Lagrangian that are dependent on ϕT (and ϕT only) will have a residual symmetry after A4

is broken by ϕT taking its vacuum expectation value. This symmetry is the Abelian Z3. As only the
charged lepton mass terms depend on ϕT , we say that Z3 is the residual symmetry in the charged
lepton sector.

Similarly, ϕS gets a vacuum expectation value that is invariant under the S generator and the singlet
ξ gets a constant vev, that does not break A4. As a result, the neutrino sector has a residual Z2

symmetry generated by S. Basically, the tri of the residual Z3 in the charged lepton sector and the
bi of the residual Z2 for the neutrinos are the main ingredients of tribimaximal mixing. The explicit
forms of the vacuum expectation values of the flavons are

〈ϕT 〉 = vT (1, 0, 0); 〈ϕS〉 = vS(1, 1, 1); 〈ξ〉 = vξ. (2.79)

The effective Lagrangian after the flavons and the Higgses obtain their vacuum expectation values is

L =
vdvT

Λ
(yee

ce+ yµµ
cµ+ yττ

cτ)

+
xav

2
uvξ

Λ2
(νeνe + 2νµντ ) +

xb2v
2
uvS

3Λ2
(νeνe + νµνµ + ντντ − νeνµ − νeντ − νµντ )

+h.c.+ ...

(2.80)
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The charged lepton mass matrix is now diagonal, with the masses given by

me = yevd
vT√
2Λ

, mµ = yµvd
vT√
2Λ

, mτ = yτvd
vT√
2Λ

. (2.81)

All masses are suppressed from the electroweak scale by a factor vT
Λ (and a factor cosβ from vd).

The model so far does not explain the hierarchy in the masses, although it is possible to combine the
model with the Froggatt–Nielsen model of section 2.3.1.

In the neutrino sector, the mass matrix reads

Mν =
v2
u

Λ

a+ 2b/3 −b/3 −b/3
−b/3 2b/3 a− b/3
−b/3 a− b/3 2b/3

 . (2.82)

Here a and b are dimensionless parameters given by

a =
2xavξ

Λ
, b =

2xbvS
Λ

. (2.83)

The neutrino mass matrix (2.82) is diagonalized exactly by the tribimaximal mixing matrix (2.51)

M̂ν = U†MνU
∗ =

a+ b 0 0
0 a 0
0 0 −a+ b

 , U =


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2

 . (2.84)

This is the main result of this section. Using a relatively limited amount of new ingredients, it is
possible to exactly predict the neutrino mixing matrix.

A few comments are in order. Firstly on the ratio between the various flavon vevs and the cut-off
scale. This ratio should be smaller than 1 in order to sensibly cut off the superpotential (2.78) after
the given terms. A lower limit emerges from the mass of the tau lepton in equation (2.81), where the
parameter yτ should be smaller than 4π to be in the perturbative regime. If we assume that for all
three flavons the vevs are of the same order of magnitude, we find

0.00080

cosβ
.
vT
Λ
≈ vS

Λ
≈ vξ

Λ
. 1 . (2.85)

Secondly, not only a neutrino mixing matrix, but also a relation between the neutrino masses is
found. In [10] it was shown that the atmospheric and solar mass differences can be accommodated
in the normal hierarchy and that there is an extra relation between the parameter of neutrinoless
double beta decay and the third neutrino mass. This makes the model testable in future neutrino
experiments. Thirdly, using the atmospheric mass difference, the absolute scale of Λ itself can be
limited to

Λ < 1.8× 1015 GeV. (2.86)

The model described so far assumes that neutrinos are Majorana particles, but does not use one of the
three seesaw mechanism to generate their masses. Instead, the effective Weinberg operator of section
2.1.5 is used. This seems reasonable, given that the couplings of fermions, Higgs fields and flavons
are already effective operators due to the extra flavon insertions. Addition of a righthanded neutrino
to the model is possible and a version of the model that uses the type-I seesaw can be written down,
giving the same general conclusions, but differing in many details such as the relations between the
neutrino masses.

2.4.4 Flavon vacuum alignment

In this subsection, we show how the flavons can obtain the vevs of equation (2.79). Note that the
ordinary Higgs fields are singlets under the family symmetries and that the flavons are singlets under
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the electroweak gauge group. The potentials of the Higgs fields and the flavons therefore decouple
and should be studied separately. For the Higgses, this is just the superpotential of the MSSM.

In the flavon sector, we would like to build a potential for the fields ϕS , ϕT and ξ such that their
minima are as in (2.79). This turns out to be possible only if new fields are introduced again, the
so-called driving fields. They do not develop vevs themselves but merely help the ‘normal’ flavons
to do so7. The driving fields, that we write as ϕS0 , ϕT0 and ξ0 have the same A4 and Z3 charges as the
fields they correspond to. To be able to have a non-trivial minimum, a second copy of the field ξ is
needed as well; it is called ξ̃ and has exactly the same charges as ξ.

At this stage also a new symmetry is introduced. It is a continuous R-symmetry U(1)R that has the
usual R-parity as a subgroup. The working of R-symmetry on superfields and supercoordinates is
such that consistent terms in a superpotential should always have total R-charge 2, see e.g. [14] for
more details. The R-charges in the model of Altarelli and Feruglio are given in table 2.8. It can be
seen that all terms in the flavour symmetry breaking superpotential have to be linear in one of the
driving fields. The Altarelli–Feruglio model does not discuss quarks, but extensions of it that do, will
have the same R-charges for quarks as for leptons. In that way, baryon number violating operators
that mediate proton decay are forbidden in the same way as in supersymmetric models with R-parity
conservation.

Field L ec µc τ c Hu,d ϕT ϕS ξ ξ̃ ϕT0 ϕS0 ξ0

A4 3 1 1′ 1′′ 1 3 3 1 1 3 3 1

Z3 ω ω2 ω2 ω2 1 1 ω ω ω 1 ω ω

U(1)R 1 1 1 1 0 0 0 0 0 2 2 2

Table 2.8: The representations of the fields in the Altarelli–Feruglio model after
inclusion of the driving fields.

The requirement of invariance underA4, Z3 and U(1)R allows us to write down the so-called driving
superpotential.

Wd =M(ϕT0 ϕT )1 + g0(ϕT0 ϕTϕT )1+

g1(ϕS0ϕSϕS)1 + g2ξ̃(ϕ
S
0ϕS)1 + g3ξ0(ϕSϕS)1 + g4ξ0ξ

2 + g5ξ0ξξ̃ + g6ξ0ξ̃
2 +O(1/Λ) .

(2.87)

Note that the field that appears in the term with g2 is ξ̃ and not ξ. So far, there was no difference
between these two fields and we are free to define ξ̃ as the combination that couples to (ϕS0ϕS)1 in
the superpotential.

The scalar potential follows from the superpotential, soft supersymmetry breaking terms and D-
terms. Given the large scale of Λ found in equation (2.86), we assume that the masses of soft
breaking are much smaller than the mass scales in wd and we minimize the scalar potential in
the supersymmetric limit, taking soft susy breaking terms into account later, for instance to select
the minimum described below over the trivial minimum. In the supersymmetric limit the scalar
potential reads

V =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 + · · · (2.88)

Requiring supersymmetry to be conserved and thus V = 0 requires the derivatives of the superpo-

7The fact that the driving superfields do not develop vevs strictly holds only in the exact supersymmetric phase, while in
the broken phase they develop a vev proportional to the common soft breaking scale [50–52], usually denoted asmSUSY . This
could have a relevant impact on flavour violating processes, as studied in a series of papers [53–57]
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tential to all components of the driving fields to be zero. This leads to a set of seven equations.

∂Wd

∂ϕT01

= MϕT1 +
2g0

3

(
ϕ2
T1 − ϕT2ϕT3

)
,

∂Wd

∂ϕT02

= MϕT3 +
2g0

3

(
ϕ2
T2 − ϕT1ϕT3

)
,

∂Wd

∂ϕT03

= MϕT2 +
2g0

3

(
ϕ2
T3 − ϕT1ϕT2

)
,

∂Wd

∂ϕS01

= g2ξ̃ϕS1 +
2g1

3

(
ϕ2
S1 − ϕS2ϕS3

)
,

∂Wd

∂ϕS02

= g2ξ̃ϕS3 +
2g1

3

(
ϕ2
S2 − ϕS1ϕS3

)
,

∂Wd

∂ϕS03

= g2ξ̃ϕS2 +
2g1

3

(
ϕ2
S3 − ϕS1ϕS2

)
,

∂Wd

∂ξ0
= g4ξ

2 + g5ξξ̃ + g6ξ̃
2 + g3

(
ϕ2
S1 + 2ϕS2ϕS3

)
.

(2.89)

The first three and the last four equations of (2.89) can be separately solved and a non-trivial solution
is given by

ϕT = (vT , 0, 0), vT = −3M

2g
,

ξ = vξ,

ξ̃ = 0,

ϕS = (vS , vS , vS), v2
S = − g4

3g3
v2
ξ .

(2.90)

This is indeed of the form (2.79) and breaks the A4 flavour symmetry to Z3 and Z2 respectively in the
charged lepton and neutrino sectors.

2.4.5 Higher order corrections and quark masses

So far we have proven that it is possible to obtain the tribimaximal lepton mixing in leading order
(LO) in a 1/Λ expansion. The lepton superpotential also contains next-to-leading order (NLO) terms,
that is terms with one additional flavon. These slightly break the TBM prediction. The same holds
for NLO terms in the driving superpotential, as these drive the vacuum expectation values of the
flavons away from the values in (2.90). A third source of deviations from the predicted limit comes
from the fact that the mass matrices (and thus the mixing matrices) are calculated at a very high scale,
up to 1.8× 1015 GeV according to equation (2.86). Renormalization effects between this scale and the
scale where they are observed should be taken into account, although they are generally relatively
small; see chapter 4 for a discussion of Yukawa coupling renormalization in a similar model.

These corrections are very welcome, as the observed neutrino mass mixing matrix is exactly of the
tribimaximal type. However, as the tribimaximal pattern already fits the data rather well (certainly
before the recent signal of non-zero θl13), the deviations should be small – in particular the correction
to θl12 should be tiny. We do not discuss the full NLO computation of masses and mixings in
the Altarelli–Feruglio model here, but instead present the main conclusion. In order for the NLO
corrections not to spoil the LO conclusions, the ratio between the vev of any of the flavons to the cut-
off scale Λ should be smaller than a few percent. The upper limit of vX/Λ in equation (2.85) becomes
0.05 instead of 1.

The aim of the Altarelli–Feruglio model is the reproduction of the lepton mixing matrix. Quarks are
thus not considered in the most basic version of the model. Addition of quarks to the model is of
course possible and it can be done in several ways. In the most simple extension, the quark doublet
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transforms in the same way as the lepton doublet, while the anti-quarks of both types transform in
the same way as the charged anti-leptons. In this case, at the leading order, the quark mixing matrix
is the unit matrix. This is a reasonable approximation, given that the quark mixing angles are fairly
small, but the required NLO corrections seem to be larger than those allowed in the lepton sector,
which is not entirely satisfactory. We find that while the (extended) model fits the data quite well at
leading order, it is hard to improve this at higher orders.

2.4.6 A balance

The original model of Altarelli and Feruglio was published in 2005. At that time, the tribimaximal
mixing pattern was well-known in the literature (it was published in 2002 by Harrison, Perkins
and Scott). The TBM mixing pattern was in accordance with the experimental data, although the
experimental errors were still large. Neutrino oscillations have given new results in the last years.
In particular, there now seems to be a signal for a θl13 angle that is relatively large. This would
require a rather large correction to this angle, while such corrections are not allowed for the other
two angles. Interestingly enough, a comparably large correction is needed to introduce the Cabibbo
angle in the CKM matrix that is the unity at leading order. Alternative models that require the same
(larger) corrections in both sectors may address this point; in chapter 4 we provide a model with this
mechanism. In chapter 3, we investigate mixing patterns that give non-zero mixing patterns at the
leading order.

Even if the question of NLO corrections is not answered completely satisfactory, the tribimaximal
pattern is still an interesting start for modelbuilding. The Altarelli–Feruglio model can provide this
mixing, but, as in the case of the Froggatt–Nielsen mechanism, it requires the introduction of a rather
large number of extra fields and symmetries.

The main ingredient of the model is the horizontal symmetry A4. It has subgroups Z2 and Z3 that
are at the basis of the tribimaximal mixing. The introduction of the fields ϕS and ϕT seems therefore
very reasonable. It is those fields that break in exactly the right directions for the TBM mixing pattern
to arrive.

Tribimaximal mixing requires that the Z2 and Z3 residual symmetries are not only created by the
flavons, but also transmitted in the right way to respectively the neutrinos and the charged leptons.
Unfortunately, both ϕS and ϕT are triplets of A4 (and singlets of the Standard Model gauge group),
so a priori both of them would couple to both sectors. To prevent this, a rather ad hoc Z3 symmetry is
introduced. This symmetry also requires a new particle: the fourth term in equation (2.78) with two
Higgs fields and two lepton doublets is invariant under the Standard Model gauge group and under
A4 with or without ξ and it needs this field only to be safe under Z3. This chain of action-and-reaction
of addition of new fields and symmetries makes the model slightly baroque and unfortunately, this
will not be much better (actually quite a bit worse) in more ambitious ones, such as the model of
chapter 4 that also aims at reproducing the CKM matrix and some relations between particles of
different type.

The version of the Altarelli–Feruglio model described here is supersymmetric. An earlier version of
the model [10] has a setting with extra dimensions. We stress that neither are fundamental elements
of the model or of non-Abelian flavour models in general. In principle the questions whether flavour
symmetries exist in nature and whether supersymmetry or extra dimensions are introduced – for
instance to solve the hierarchy problem – should be answered separately, both from a theoretical
and from an experimental point of view. The problem is that the theoretical methods developed
so far only succeed in giving the right vacuum alignment for two or more flavons in settings with
supersymmetry or extra dimensions. We have shown that with supersymmetry the right flavon
alignment is possible, but that this is non-trivial. New driving fields had to be introduced as well as
a second copy of ξ. We note that it is possible in some other models to find a supersymmetric vacuum
without driving fields. The A5 model of Feruglio and Paris [58] is an elegant example. Alternatively,
one can consider models that are non-supersymmetric and do not have extra dimensions. This is
discussed in chapter 5 where the role of the flavons is basically given to a multiplet of Higgs bosons.
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Concluding we state that the model of Altarelli and Feruglio succeeds in reproducing the tribi-
maximal mixing pattern in an impressive way. The ’cost’ of this is the introduction of quite a
number of new symmetries and fields and from an theoretical-economical perspective, one may
question whether the gained predictively is worth the price. The last words of this section have the
same message as those in section 2.3.1 on the Froggatt–Nielsen mechanism. Ultimately it is up to
experiments to confirm or disprove the sometimes very specific predictions of the model.

2.5 Conclusions of the chapter

In this chapter we discussed how fermion masses appear in the Standard Model (extended to include
neutrino masses) and in supersymmetric variations. To focus on the different operators that appear,
we first studied the case where the Standard Model has only one family. Next we allowed for three
family copies of the fermionic content in accordance with observations. We found that with more
than one generation, mass eigenstates and flavour eigenstates do not coincide. This gives rise to the
CKM and PMNS mixing matrices.

We studied the experimentally found masses and mixing angles of the elementary fermions. The
trained eye of the theoretical physicist immediately sees patterns here. We stressed that these patterns
do not need to imply new physics. Even if some of the 20 or 22 free parameters of the Standard Model
plus neutrinos have some unnatural values, it is perfectly consistent and describes everything that
is measured. On the other hand, these patterns are compelling enough to at least justify a thorough
study of different possibilities to explain them using symmetry principles.

We studied two simplified models: the Froggatt–Nielsen model, that gives an explanation for
the hierarchies of the charged fermion masses and the Altarelli–Feruglio model that explains the
emergence of a neutrino mixing close to the tribimaximal mixing pattern. These models are very
interesting, but they leave some questions unanswered. For instance, we found no clear way to
include quarks and quark mixing in the Altarelli–Feruglio model. Furthermore, we mentioned that
the tribimaximal mixing pattern is not be the only phenomenologically interesting mixing pattern.
In particular models that accommodate non-zero θl13 either at first order or naturally via corrections
are appealing. In the following chapters we will see examples of both these approaches.
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Chapter 3

Mixing patterns of finite modular
groups

The most amazing thing happened to me to me tonight. I was coming
here, on the way to the lecture, and I came in through the parking lot.
And you won’t believe what happened. I saw a car with the licence plate
ARW 357. Can you imagine? Of all the millions of licence plates in the
state, what was the chance that I would see that particular one tonight?
Amazing!

(attributed to) Richard Feynman

3.1 Introduction
From bimaximal to tribimaximal to which neutrino mixing?

Slightly over a decade ago neutrino oscillations were discovered. Shortly after this observation,
it was found that the PMNS neutrino mixing matrix can be characterized by two large mixing
angles and one significantly smaller, possibly vanishing one. It was soon speculated that the
neutrino mixing might correspond to a special pattern. Early data were in accordance with so-called
bimaximal (BM) mixing [59–61] that is characterized by sin2 θl23 = sin2 θl12 = 1/2 and sin2 θl13 = 0.

More precise measurements of the solar angle θl12 showed that the corresponding mixing is in fact not
maximal; it is currently off by approximately 6 σ. Instead, for a long time, the data were compatible
with the tribimaximal (TBM) mixing pattern [8] of figure 1.18 and table 2.4. TBM mixing has
sin2 θl12 = 1/3 and the other two angles identical to the bimaximal values: the mixing corresponding
to the atmospheric angle θl23 is still maximal and the reactor angle θl13 is still vanishing. Both the
bimaximal mixing and the tribimaximal mixing can emerge when horizontal symmetry groups are
assumed along the lines of section 2.4. In particular the small discrete groups A4 and S4 are often
used. See e.g. [47, 62] for reviews.

As mentioned in the previous chapter, recent data by the T2K collaboration gives evidence for non-
zero reactor mixing angle. This signal is in accordance with earlier hints that a small but non-zero
reactor angle can alleviate tensions between oscillation data extracted from KamLAND and from
solar neutrinos and also in accordance with the first data of Double Chooz [63]. In table 2.4 we
presented two recent independent fits of the neutrino oscillation data. In both fits, the hypothesis
of zero θ13 is excluded by more than 3σ. The new neutrino oscillation data do not match the
tribimaximal pattern anymore, at least not at the three sigma level. The detection of non-zero θ13

can lead to four directions in flavour-symmetry model-building space.

A first conclusion can be that the most important prediction of tribimaximal mixing, a vanishing
reactor mixing angle, is not observed. The falsification of this most popular implementation of
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flavour symmetries can be seen as a general argument against the use of flavour symmetries in
general and a sign that one should give up on the approach. Secondly – and less negatively – one
can keep the idea of flavour symmetries, but use them to build models that are less constraining in
their predictions. An example is a model that provides tribimaximal mixing with a single finetuning
instead of three as in the Standard Model. If this parameter is not exactly tuned this way, near-
tribimaximal mixing results. The models of chapter 5 – motivated in a different way – are examples
of such models.

Thirdly, one can try to reconcile the predictions with the data by allowing next-to-leading order
(NLO) effects to alter the precise prediction. These corrections then modify the prediction of zero
sin2 θ13 and, most likely, also modify the two other mixing angles. In models where quark and
neutrino mixing have a common origin, NLO corrections in the quark sector also follow. At the end
of section 2.4 we found that the requirement that the solar mixing angle should have only minor
corrections in order to keep fitting the data, is quite restricting. Possibly, the old bimaximal mixing
pattern is a better starting point: both the solar and the reactor angle are far away from the data at
first order and they require comparable corrections in order to fit the data. This was done in [64] and
is further explored in chapter 4.

A fourth possibility is to assume a different mixing pattern at leading order, preferably one that has a
non-zero prediction for θ13 already at the lowest level. In this chapter we pursue this last option. We
systematically consider all mixing patterns that are generated by a class of discrete groups of which
A4 and S4 are the first members. See e.g. for [65, 66] for other scans of candidate groups and [67] for
an analysis of how groups like these can naturally occur when an SU(3)F symmetry gets broken.

The key to generate this class of groups is in (2.73) and its analogue for S4. Both A4 and S4 are
generated by two elements, generally called S and T that satisfy two relations that make them
subgroups of the modular group Γ

S2 = (ST )3 = 1 . (3.1)

The groups A4 and S4 are selected by additionally requiring a third relation between the generators.
Both are of the form

TN = 1 . (3.2)

N = 3 corresponds toA4 andN = 4 to S4. In section 3.2 we show that the list of groups generated by
generalizing this relation is infinite, but that only a finite number of these contains three dimensional
irreducible representations. For all these groups Gf we investigate in section 3.3 to which lepton
mixing patterns it can naturally give rise when we assume that the flavour dynamics breaks the
group, but ensures residual symmetries Ge and Gν in respectively the charged lepton and the
neutrino sectors.

As expected, tribimaximal mixing and bimaximal mixing occur in this list as well as several other
candidate mixing-patterns. Some of these are closer to the data than others. Four mixing patterns are
particularly interesting. These are related to two groups of the type ∆(6n2) with respectively n = 4
and n = 8 (where n = 2 corresponds to S4) that give rise to four mixing patterns that are quite close to
the data as shown in table 3.1. In particular the patterns M3 and M4 are compatible with the present
data at the 2σ level. Note that this is possible only because of the prediction of non-zero θl13. We
discuss the patterns M1 to M4 in more detail in section 3.4. In section 3.5 we present the conclusions
of the chapter.

3.2 Finite modular groups and their representations

As mentioned in the introduction, the groups A4 and S4 have a common presentation in terms of
two generators S and T satisfying for N = 3 or 4

S2 = (ST )3 = 1 , TN = 1 . (3.3)

For N = 5 the group A5 follows. With this group added, the list contains the proper symmetry
groups of the five platonic solids, that can be grouped into three dual pairs: cube/octahedron,
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group pattern sin2 θ12 sin2 θ23 sin2 θ13

∆(96)
M1 8−2

√
3

13 ≈ 0.349 5+2
√

3
13 ≈ 0.651 2−

√
3

6 ≈ 0.045

M2 8−2
√

3
13 ≈ 0.349 8−2

√
3

13 ≈ 0.349 2−
√

3
6 ≈ 0.045

∆(384)
M3 4

8+
√

2+
√

6
≈ 0.337 4−

√
2+
√

6
8+
√

2+
√

6
≈ 0.424 4−

√
2−
√

6
12 ≈ 0.011

M4 4
8+
√

2+
√

6
≈ 0.337 4+2

√
2

8+
√

2+
√

6
≈ 0.576 4−

√
2−
√

6
12 ≈ 0.011

Central value [24] 0.312 0.420 0.025
Central value [27, 28] 0.312 0.520 0.014

Table 3.1: Four of the mixing patterns produced by the groups we consider. In particular
patterns M3 and M4 can be very close to the experimental data.

dodecahedron/icosahedron and the self-dual tetrahedron. Also the group A5 has been used in
flavour symmetric model building, see for instance [58], where the Golden Ratio mixing pattern
is derived. It fits the data with a precision comparable to the tribimaximal pattern and has the same
θ13 = 0 prediction.

A natural question is whether these presentations extend to other finite groups forN > 5. It turns out
that this is possible, although for N ≥ 7 a fourth relation will be required next to the three already
given to ensure that the groups considered are finite [68]. Though not excluded as candidates for
a flavour symmetry, infinite discrete groups have the disadvantage that they can possess infinitely
many irreducible representations of a given dimensionality, which makes them less appealing for
model building as they eventually allows to reproduce any mixing pattern. In particular, we will be
interested in the groups in this series that have three dimensional representations [69], as these can
then be used to build models of lepton mixing.

We will embed the previous groups into an infinite set of finite groups, related to the modular group.
To be able to study this set, we first study the modular group (over Z) itself, which is an discrete
infinite group.

The (inhomogeneous) modular group Γ is the group of linear fractional transformations acting on a
variable z:

z → az + b

cz + d
. (3.4)

The parameters a, b, c and d are integers and ad − bc = 1. Obviously, a transformation described by
parameters {a, b, c, d} is identical to a transformation defined by {-a, -b, -c, -d}.

As is clear from the definition, Γ is isomorphic to the group PSL(2, Z) = SL(2, Z)/{±I}. Here
SL(2, Z) (the homogeneous modular group) is the group of 2 × 2 matrices with integer entries and
determinant equal to one and to get PSL(2, Z) (the inhomogeneous modular group), two matrices
that only differ by an overall sign are identified as M and −M determine the same transformation.

The modular group Γ is generated by two elements S and T satisfying [70]:

S2 = (ST )3 = 1 . (3.5)

Note again that these relations are also satisfied by the generators of A4, S4 and A5, although they
are not sufficient to define these groups uniquely. With respect to the behaviour of the parameter z,
S and T can be represented by the transformations

S : z → −1

z
. T : z → z + 1. (3.6)
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This corresponds to the two following matrices of SL(2, Z):

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
. (3.7)

We now generalize this construction by replacing integers by integers modulo N . Given a natural
number N > 1, the homogeneous finite modular group SL(2, ZN ) is defined as the group of 2 × 2
matrices with entries that are integers modulo N and determinant equal to one modulo N . Again,
the inhomogeneous groups are defined by identifying in SL(2, ZN ) two opposite matrices

ΓN ∼ PSL(2, ZN ) ≡ SL(2, ZN )/{±I} .

For each N these groups are finite.

The order of the homogeneous finite modular groups SL(2, ZN ) is [70, 71]∣∣∣SL(2, ZN )
∣∣∣ = N3

∏
p|N

(
1− 1

p2

)
(3.8)

The product extends to the prime p divisors of N . For N = 2, the identity I and its opposite −I are
indistinguishable and therefore Γ2 ≡ SL(2, Z2). For N > 2 they are distinguishable and the order of
the inhomogeneous groups is half of that of the homogeneous ones∣∣∣ΓN ∣∣∣ =

1

2

∣∣∣SL(2, ZN )
∣∣∣ . (3.9)

In table 3.2 we list the order of SL(2, ZN ) and ΓN , as well as the groups ΓN is isomorhic to, for
2 ≤ N ≤ 11

N 2 3 4 5 6 7 8 9 10 11∣∣∣SL(2, ZN )
∣∣∣ 6 24 48 120 144 336 384 648 720 1320∣∣∣ΓN ∣∣∣ 6 12 24 60 72 168 192 324 360 660

ΓN ∼ S3 A4 S4 A5 (S3 ×A4) PSL(2, 7) (S3 ×A5) PSL(2, 11)

Table 3.2: Properties of SL(2, ZN ) and ΓN for 2 ≤ N ≤ 11.

The group Γ2 has six elements and coincide with the permutation group S3. For N = 3, 4, 5, the
groups ΓN coincide with the proper symmetry groups of the Platonic solids and we have [71]: Γ3 ∼
A4, Γ4 ∼ S4 and Γ5 ∼ A5. Our proposal is to investigate the whole series ΓN . Notice that, if
we regard the matrices S and T of equation (3.7) as representative of elements of ΓN , we find that,
besides the relations in equation (3.5), they also satisfy TN = 1. However, in general, further relations
are required to define the complete presentation of the corresponding group. For instance, Γ7 is
characterized by

S2 = (ST )3 = 1 , T 7 = 1 , (ST−1ST )4 = 1 . (3.10)

The group Γ7 is isomorphic to the group1 PSL(2, 7). Note that without including the last relation in
(3.10), the matrices S and T can generate a group of infinite order.

The group SL(2, ZN ) is a double covering of the group ΓN , for N > 2. There is a homomorphism
between these two groups and the inhomogeneous group, ΓN , can be regarded as an unfaithful copy
of its homogeneous counterpart SL(2, ZN ) (except for N = 2 where the relation is an isomorphism).
As a consequence, all irreducible representations of ΓN are also irreps of SL(2, ZN ).

1The 7 in PSL(2, 7) stands for the Galois field of order 7, so a better notation would be PSL(2, GF7). It is non-trivial
that PSL(2, Z7) is isomorphic to PSL(2, GF7). Actually, only for prime N the numbers 0 to (N − 1) with addition and
multiplication modulo N form a finite field.
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In the following we will recall the complete classification of the irreducible representations of
SL(2, ZN ). In this way we will obtain all the representations of the group we are interested in, ΓN ,
plus additional representations that we will discard.

We now like to find all three-dimensional representations of SL(2, ZN ) (and thus of ΓN ). To study
the irreps of SL(2, ZN ), we consider the three possible situations for N

1) N is prime.

2) N is a power of a prime.

3) N is the product
∏
p p

λp of primes and powers of primes.

We start with the case where N is a prime p. As remarked before, if p = 2, we have Γ2 = S3, which
has two one-dimensional and one two-dimensional representations, but no three-dimensional ones.
The dimensions d and multiplicities µ of the irreducible representations of SL(2, Zp) (p an odd prime)
as a function of p are given in table 3.3.

We find that SL(2, ZN ) has three dimensional irreps only for the primes 3, 5 and 7. The only related
ΓN groups that can have three dimensional irreps are thus A4, A5 and PSL(2, 7). We indeed find
thatA4 has a three dimensional irrep, whileA5 and PSL(2, 7) have two, in the latter case, a complex-
conjugate pair. These representations are explicitly given in table 3.4 in a basis where T is diagonal.

d µ d = 3 if µ if d = 3 related Γn.
1 1∗ - - -

p+ 1 1
2 (p− 3) ���p = 2 - -

p 1 p = 3 1 A4

p− 1 1
2 (p− 1) ���p = 4 - -

1
2 (p+ 1) 2 p = 5 2 A5
1
2 (p− 1) 2 p = 7 2 PSL(2, 7)

Table 3.3: Dimensions d and multiplicities µ of the irreducible representations of SL(2, Zp),
p being an odd prime and the possibility to have three dimensional representations. If the
candidate three-dimensional representation is related to even p in the third column, it is
crossed. ∗In the case p = 3, there are two extra 1d representations from the last row.

Next, we consider the case where N is a power pλ of a prime. We separately discuss the cases
where p is an odd prime and where p = 2. In table 3.5 we list the irreducible representations d of
SL(2, Zpλ) with p > 2 and λ > 1, and the multiplicities µ of these representations. This table should
be understood as follows. Given an integer λ̄ > 1, all groups SL(2, Zpλ) with λ < λ̄ are unfaithful
copies of the group SL(2, Zpλ̄). It follows that the representations of SL(2, Zpλ) with 1 ≤ λ < λ̄
are also representations of the group SL(2, Zpλ̄). The irreducible representations of SL(2, Zpλ̄) are
given by those of table 3.3 (λ = 1) and by those listed in table 3.5, with λ = 2, ..., λ̄. For instance, if
λ̄ = 3 we should include both λ = 2 and λ = 3 from table 3.5. As a check we can compute the order
of SL(2, Zpλ̄) from tables 3.3 and 3.5 and we find p3λ̄(1 − 1/p2) in agreement with eq. (3.8). From
table 3.5 it is easy to prove that for p > 2 and λ > 1 there are no other irreducible three-dimensional
representations, apart from those already given in table 3.3. This concludes the discussion for p > 2.

The case p = 2λ is more complicated and a separate discussion for each λ is needed. Again the
representations of SL(2, Z2λ) are also representations of the group SL(2, Z2λ̄) for 1 ≤ λ < λ̄.
For λ > 4 there are no three-dimensional irreducible representations, different from those already
induced by λ = 2, 3, 4 [72–74]. In table 3.6 we summarize the irreducible representations of
SL(2, Z2λ) (λ = 1, 2, 3, 4). We conclude that Γ4, Γ8 and Γ16 can give “new” three dimensional
irriducible representations and are interesting from a model building point of view.
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N S
1

2πi
log(T )

3 1
3

 −1 2 2
2 −1 2
2 2 −1

 diag
(
0, 1

3 ,
2
3

)

5 1√
5

 1
√

2
√

2√
2 −φ 1

φ√
2 1

φ −φ

 diag
(
0, 1

5 ,
4
5

)

− 1√
5

 1
√

2
√

2√
2 1

φ −φ√
2 −φ 1

φ

 diag
(
0, 2

5 ,
3
5

)

7 2√
7

 s1 s2 s3

s2 −s3 s1

s3 s1 −s2

 diag
(

2
7 ,

1
7 ,

4
7

)
2√
7

 s1 s2 s3

s2 −s3 s1

s3 s1 −s2

 diag
(

5
7 ,

6
7 ,

3
7

)
Table 3.4: Three dimensional irreducible representations of ΓN , N = 3, 5, 7.We have defined
φ ≡ 1+

√
5

2 and sj ≡ sin( jπ7 ).

d pλ−1(p+ 1) pλ−1(p+ 1) 1
2p
λ−2(p2 − 1)

µ 1
2p
λ−2(p− 1)2 1

2p
λ−2(p2 − 1) 4pλ−1

Table 3.5: Dimensions d and multiplicities µ of the ”new” irreducible representations of
SL(2, Zpλ), p being an odd prime and λ > 1. See the text for explanations.

Lastly, we consider the case where N is a product of primes and powers of primes

N =
∏
p

pλp . (3.11)

Now the group SL(2, ZN ) factorizes as

SL(2, ZN ) =
∏
p

SL(2, Zpλp ) (3.12)

Two examples can be checked on the second line of table 3.2: SL(2, Z6) = SL(2, Z2) × SL(2, Z3)
(the number of elements satisfies 144 = 6 × 24) and SL(2, Z10) = SL(2, Z2) × SL(2, Z5) (where the
number of elements satisfies 720 = 6×120). Due to the special position of Γ2, in these two cases, also
the relations Γ6 = Γ2 × Γ3 = S3 ×A4 and Γ10 = Γ2 × Γ5 = S3 ×A5 hold, as given on the lowest line.

Clearly, three dimensional representations of these product groups can be constructed using the
three-dimensional representation of one of the groups and one-dimensional representations of all
the others. Therefore, the cases where N is a product do not give new patterns.

In conclusion all independent three-dimensional representations of the finite modular groups can be
studied by considering the six groups SL(2, ZN ) (N = 3, 4, 5, 7, 8, 16). We have 33 distinct irreducible
triplets. From table 3.3 we see that one is associated to N = 3, two are related to N = 5 and two to
N = 7. Moreover, from table 3.6, we see that 4 irreducible triplets corresponds to N = 4, while
N = 8 introduces 8 new irreducible triplets and finally 16 other independent irreducible triplets are
associated to N = 16.

The full list of these 33 triplets is explicitly given in Appendix A of ref. [74], in terms of the S and
T elements, in the basis where the T generator is diagonal. Of these 33 SL(2, ZN ) representations
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d 1 2 3 4 6 8 12 24 Order Note
SL(2, Z2) 2 1 6 Isomorphic to S3

SL(2, Z4) 4 2 4 48 Double cover of S4

SL(2, Z8) 4 6 12 2 6 384
SL(2, Z16) 4 6 28 2 26 6 2 2 3072

Table 3.6: Dimensions d and multiplicities of the irreducible representations of SL(2, Z2λ),
for λ < 5. For each group all the irreducible representations are listed [72–74].

only a smaller subset are also representations of the corresponding inhomogeneous group ΓN : those
satisfying the relations in eq. (3.5). They are 19 and we collect them in table 3.4 and 3.7. In the latter
table, the elements S are given in terms of a matrix

S ≡ 1

2

 0
√

2
√

2√
2 −1 1√
2 1 −1

 (3.13)

N S
1

2πi
log(T )

4 S diag
(
0, 1

4 ,
3
4

)
−S diag

(
2
4 ,

3
4 ,

1
4

)
8 S diag

(
6
8 ,

7
8 ,

3
8

)
S diag

(
2
8 ,

5
8 ,

1
8

)
−S diag

(
6
8 ,

1
8 ,

5
8

)
−S diag

(
2
8 ,

3
8 ,

7
8

)
16 S diag

(
14
16 ,

5
16 ,

13
16

)
S diag

(
2
16 ,

11
16 ,

3
16

)
−S diag

(
6
16 ,

13
16 ,

5
16

)
−S diag

(
10
16 ,

3
16 ,

11
16

)
S diag

(
10
16 ,

15
16 ,

7
16

)
S diag

(
6
16 ,

1
16 ,

9
16

)
−S diag

(
2
16 ,

7
16 ,

15
16

)
−S diag

(
14
16 ,

9
16 ,

1
16

)
Table 3.7: Three dimensional irreducible representations of ΓN , N = 4, 8, 16. The matrix S is defined
in the text.

In the next section we will study the application of ΓN with N = 3, 4, 5, 7, 8 or 16 to the lepton sector.
We suppose that the group functions as a horizontal symmetry group, that after it gets broken leaves
a residual Ge symmetry in the charged lepton sector and a residual Gν in the neutrino sector. Both
Ge and Gν are expressed in the generators S and T .

In the cases N = 3, 4, 5 and 7, this is straightforward, but in the cases N = 8 and 16 an extra
complication occurs. In these cases, the representations given by S and T are not faithful and
generate subgroups of Γ8 and Γ16 of order 96 and 384 respectively. These are the groups ∆(96)
and ∆(384) that we study in sections 3.3.5 and 3.3.6. They belong to the series ∆(n2) [75–77] that also
∆(24) ∼ S4 is part of and are isomorphic to the semi-direct products of Z2 × Z2 and S3.
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3.3 Lepton mixing patterns from ΓN

In this section we classify the lepton mixing patterns arising from the candidate flavour symmetry
groups mentioned in the previous section. We have Gf = ΓN for N = 3, 4, 5 and 7, while for N = 8
and 16 Gf is the subgroup of ΓN that can be constructed from the S and T generators mentioned in
table 3.7.

We aim at a complete classification under the following rules. We work in a certain leading order
approximation, where the neutrino mass matrix and the charged lepton mass matrix are separately
invariant under the subgroups Gν and Ge of Gf , respectively. As has been discussed in detail in
the literature [78, 79], this framework in which the misalignment between neutrino and charged
lepton mass matrices is associated with the non-trivial breaking of a flavour symmetry is particularly
interesting and predictive. Given Gf , we will scan all possible subgroups Gν and Ge with the
following restrictions.

Firstly we assume that neutrinos are Majorana particles as strongly hinted to by their light masses.
The Majorana character of neutrinos shows up in the choice of Gν . With a single generation, the only
transformation of a Majorana neutrino leaving invariant its mass term is a change of sign. If there
are three generations, it can be shown [78, 80] that the appropriate invariance group of the neutrino
sector generalizes to the product of two commuting parities, the Klein group Z2 × Z2, allowing for
an independent relative change of sign of any neutrino.

Secondly, we discard non-Abelian residual symmetries for the charged leptons since the non-Abelian
character of the subgroup would result in a complete or partial degeneracy of the mass spectrum,
which is not in accordance with the hierarchy among the charged lepton masses. Hence, we choose
Ge to be a cyclic group Zn or a subgroup of these groups, such as Z2 × Z2.

Thirdly, to minimize double counting and to select only those mixing patterns that reflect the
properties of the full group Gf , we will ask that the subgroups Gν = Z2 × Z2 and Ge generate
the full group Gf .

Once we specify a three-dimensional representation ρ of Gf for the lepton doublets, the elements
gνi of the subgroup Gν and gei of the subgroup Ge are given by matrices ρ(gνi) and ρ(gei). These
matrices leave the neutrino mass matrix mν and the combination (m†eme) invariant2.

ρ(gνi)
Tmν ρ(gνi) = mν , ρ(gei)

†(m†eme)ρ(gei) = (m†eme) . (3.14)

The matrices ρ(gνi) and ρ(gei) can be diagonalized by two unitary transformations Ων and Ωe. This
follows from the facts that ρ is a unitary representation and that Gν and Ge are Abelian

ρ(gνi)diag = Ω†ν ρ(gνi) Ων , ρ(gei)diag = Ω†e ρ(gei) Ωe . (3.15)

By the above invariance requirements Ων and Ωe are also the transformations that diagonalize mν

and (m†eme), respectively.

(mν)diag = ΩTνmνΩν , (m†eme)diag = Ω†e(m
†
eme)Ωe . (3.16)

The lepton mixing matrix is, up to phase redefinitions, given by

UPMNS = Ω†eΩν . (3.17)

Phase redefinitions Ωe → ΩeKe and Ων → ΩνKν , with Ke and Kν diagonal matrices of phases,
can be used to make the eigenvalues of mν real and positive and to eliminate all but three phases
in UPMNS. One of these is the Dirac CP phase δlCP that can be measured in neutrino oscillations (at
least if θl13 6= 0); two others are Majorana phases. These cannot be predicted in our approach as

2In our convention, SU(2)L doublets are on the right of me
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the neutrino masses remain unconstrained by the above requirements. When relevant, we report
| sin δlCP| and the Jarlskog CP-invariant of equation (2.34).

The fact that the actual neutrino and charged lepton masses are not fixed by the requirements (3.14)
and (3.15), means that these relations only fix the lepton mixing matrix up to interchange of rows
and columns. We can use this to our advantage to obtain a UPMNS that is in closest agreement with
the data. Even if there is evidence of non-zero θl13 now, this angle is very small. We recall from (the
lepton analogue of) equation (2.32) that the sine of this angle is given by the absolute value of the
(1 3) element of the mixing matrix and therefore, we choose to represent the smallest element of the
mixing matrices at the (1 3) position. Now we are just allowed an extra interchange of the first and
second column and of the second and third row.

We choose to order the first and second columns such that the (1 1) element is larger in absolute
value than the (1 2) element. Equation (2.32) tells us that tan θl12 is then smaller than 1 and this
implies sin2 θl12 < 1/2 in accordance with the data in table 2.4. Next, we mention a slight tension
between the two global neutrino oscillation fits reported in table 2.4. The fit [24] seems to point at a
value of sin2 θ23 smaller than 1/2, implying that the (2 3) element of the PMNS matrix is larger than
the (3 3) element. On the other hand the fit [27,28] very slightly favours sin2 θ23 > 1/2, which can be
reproduced if the two above mentioned elements are ordered the other way around.

Equations (3.14) and (3.15) also show that the PMNS mixing matrix is invariant, when the matrices
representing the elements of Gν and/or Ge change overall sign. Furthermore, when these matrices
are complex conjugated, the lepton mixing matrix becomes conjugated as well. We do not discuss
these cases separately.

In the next six subsections, we systematically consider the cases N = 3, 4, 5, 7, 8 and 16. In each
of the cases we present the conjugacy classes of the group with their order and a list of the Abelian
subgroups that the group possesses. We consider all possible Abelian subgroups Ge that the charged
lepton sector can be invariant under (as explained above, Gν of the neutrino sector is fixed to be one
of the Klein groups). For all these cases, we find the corresponding lepton mixing matrix and we
comment on the compatibility with the data of these patterns.

3.3.1 The group Γ3 ∼ A4

The group A4 is the group of even permutations of four elements. Directly related, A4 is also the
symmetry group of the regular tetrahedron, the simplest of the Platonic solids. The group has three
inequivalent one-dimensional irreducible representations 1, 1′ and 1′′ and one three dimensional
irrep. As explained in section 3.2, it can be generated by elements S and T that satisfy

S2 = (ST )3 = T 3 = 1 . (3.18)

In the T -diagonal (Altarelli–Feruglio) basis of the three dimensional representation, S and T are
given in table 3.4. The twelve elements of the group A4 are members of four classes, with order 1, 2,
3 and 3 respectively as shown in table 3.8. We name these classes aCb, where a refers to the number
of elements and b the order.

Class Order # Elements Elements
1C1 1 1 E
3C2 2 3 S, T 2ST , ST 2ST

4C(1)
3 3 4 T , ST , TS, STS

4C(2)
3 3 4 T 2,(ST )2, (TS)2, (STS)2

Table 3.8: Conjugacy classes of A4

There is a unique Z2 ×Z2 Klein group, that is equal to the class of order 2 and there are four Z3s. We
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can assume that each of these is generated by an element of the first class of order 3 as shown in table
3.9.

Subgroup Generators
Z2 × Z2 K S, T 2ST

C1 T
Z3 C2 ST

C3 TS
C4 STS

Table 3.9: Abelian subgroups of A4 and their generators.

The fact that there is only a single Klein group, automatically fixes Gν . It also forces Ge to be one of
the Z3 groups, as it cannot also be the Klein group. The choices of Ge are all equivalent. In all cases
the Klein group and the Z3-group together generate the full group A4 and we obtain the so-called
magic mixing matrix as the lepton mixing matrix [81, 82].

UPMNS =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 . (3.19)

In this mixing pattern, both the solar and atmospheric mixing are maximal and θ13 fulfills sin2 θ13 =
1/3. This pattern also leads to a Dirac CP phase |δCP | = π/2 and |JCP | = 1/(6

√
3) ≈ 0.096.

We comment about the fact that in this scheme A4 cannot reproduce the tribimaximal mixing.
However there are many models in the literature that obtain TBM mixing from A4, including the
model of section 2.4. The key is that in these models, the neutrinos are invariant under a Klein group
generated not only by S, but also by the so-called (µ τ)-invariant matrix U

U =

 1 0 0
0 0 1
0 1 0

 . (3.20)

This matrix is not an element of A4. Invariance under U can therefore not be forced by A4. It can
however appear as an accidental symmetry because of the matter content of a specific model and/or
auxiliary symmetries that are present next to A4. The matrix U is actually an element of S4 and
since this group also has a Z3 subgroup, we will find tribimaximal mixing in the next section. The
combination of S4 and tribimaximal mixing is indeed also often seen in the literature.

The group A4 appears in many places in this thesis and details of its group theory, such as Clebsch
Gordan rules are thus often needed. We derive those properties in appendix 3.A that follows this
chapter.

3.3.2 The group Γ4 ∼ S4

The next group we consider is S4. It is the symmetric group of (even and odd) permutations of
four elements. As such, it is twice as large as A4, having twenty-four elements. S4 is also the
symmetry group of two of the Platonic solids, the cube and the octahedron. It has five irreps: two
one-dimensional, one two-dimensional and two inequivalent three-dimensional. The group can be
generated by two elements S and T that satisfy

S2 = (ST )3 = T 4 = 1 . (3.21)

Specific realizations of S and T in the three-dimensional representation are given in table 3.7. We see
that the two triplets are related by an overall change of sign of both ρ(S) and ρ(T ). As explained in
the introduction of this section these two cases lead to equivalent lepton mixing matrices and do not
need to be discussed separately.
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The group S4 has five conjugacy classes, whose elements are listed in table 3.10. The Abelian
subgroups are Klein groups as well as groups of order 3 and 4, as given in table 3.11. One of the
Klein groups K is a conjugacy class on itself, making it a normal subgroup.

Class Elements
1C1 E
6C2 S, ST 2ST , T 3ST , T 2ST 2, ST 3ST 2, ST 2ST 3

3C2 T 2, ST 2ST 2, ST 2S
8C3 ST , ST 3, TS, T 3S, T 2ST , ST 3ST , T 3ST 2, T 2ST 3

6C4 T , ST 2, T 3, STS, T 2S, ST 3S

Table 3.10: Conjugacy classes of S4

Subgroup Generators
K T 2, ST 2S

Z2 × Z2 K1 S, ST 2ST 2

K2 T 2, ST 2ST 3

K3 ST 2S, ST 3ST 2

C1 ST
Z3 C2 TS

C3 T 3ST 2

C4 T 2ST 3

Q1 T
Z4 Q2 ST 2

Q3 STS

Table 3.11: Abelian subgroups Z2×Z2, Z3 and Z4 of S4 and their generators. K is a normal
subgroup.

The possible mixing patterns are listed below. From table 3.11 we se that we have several different
possible choices for Gν and Ge. Some of them do not generate the entire group S4 and can be
disregarded. For instance K together with any other subgroup in table 3.11 always generate a group
smaller than S4.

In the next three paragraphs, we consider the three choices of Ge: it can be a Z3 , Z4 or Klein
subgroup. We focus on choices of the Ge and Gν where it is possible to generate the full group
S4. Because of the potential presence of many phases in the lepton mixing matrix, we report the
absolute values of its elements. This is enough to calculate all three mixing angles.

Mixing patterns withGν = Z2 × Z2 andGe = Z3

When the lepton sector is invariant under an element of order 3, the full group S4 can be generated
if neutrino sector is invariant under a klein group Ki, but not K. We then obtain the tribimaximal
mixing pattern, as anticipated upon in the discussion of A4.

||UPMNS|| =


2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2

 . (3.22)

When we pick the invariant Klein group K for the neutrino sector, it is not possible to generate
the full group S4, but a subgroup is generated instead. In this case, the subgroup is A4 and the
corresponding mixing pattern is the magic matrix of (3.19).
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Mixing patterns withGν = Z2 × Z2 andGe = Z4

If we assume the lepton sector to be invariant under an element of order 4, the mixing pattern
obtained can be

||UPMNS|| =


1√
2

1√
2

0
1
2

1
2

1√
2

1
2

1
2

1√
2

 . (3.23)

An example is when Gν = K1 and Ge = Q1. This mixing pattern is bimaximal. As mentioned in the
introduction, the mixing pattern itself does not describe the data well, as the solar angle is maximal
and thus too large. However, with next-to-leading order corrections included, it may be very
relevant, in particular since the order of magnitude of the correction to the solar and reactor angle
are similar. Furthermore, the corrections in the lepton sector might be related to the generation of the
Cabibbo angle, which is also approximately of the same size via quark-lepton complementarity; see
e.g. [83–87] and the discussion in chapter 4.

Mixing patterns withGν = Z2 × Z2 andGe = Z2 × Z2

When both the neutrino sector and the charged lepton sector are assumed to be invariant under
(different) Klein groups, the lepton mixing matrix can be the same as in the previous case. When the
full group S4 is generated, for instance by K1 and K2, the mixing pattern is the bimaximal mixing of
equation (3.23).

This concludes the discussion for S4. The group can be used to reproduce two of the most popular
mixing patterns in the literature, tribimaximal and bimaximal mixing. In the case of bimaximal
mixing, this is possible in two ways, with very different residual symmetries in the charged lepton
sector. As for A4, the group theory of S4 will be important in many places of this thesis, in particular
in chapter 4. We derive the Clebsch-Gordan rules and transformation rules of different bases into
each other in appendix 3.B.

3.3.3 The group Γ5 ∼ A5

The third subgroup of the modular group is A5. It can be defined as the group of even permutations
of 5 elements and has 60 elements and five conjugacy classes. Relevant Abelian subgroups are Z2 ×
Z2, Z3 and Z5. In total, there are 21 of them. Due to the growing number of elements, we no longer
list all classes and generators of Abelian subgroups. Instead, these are collected in appendix 3.C at
the end of this chapter.

The group has two inequivalent irreducible triplets. Two candidates for ρ(S) and ρ(T ) are mentioned
in table 3.4. We checked that if the set {S, T} is given by one pair of matrices given in the table, that
then the others can be written as {S′ = T 2ST 3ST 2, T ′ = T 2} and that this is a second independent
representation that satisfies the algebra

S2 = (ST )3 = T 5 = 1 . (3.24)

In the following three subsections, we describe the lepton mixing when the neutrino residual
symmetry is a Klein groups and the one of the charged leptons is either Z3, Z5 or Z2 × Z2.
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Mixing patterns withGν = Z2 × Z2 andGe = Z3

When we take Gν a Klein group and we take Ge generated by an element of order 3, we get the
mixing pattern

||UPMNS|| =
1√
6


√

2φ
√

2
φ 0

1
φ φ

√
3

1
φ φ

√
3

 ≈
 0.934 0.357 0

0.252 0.661 0.707
0.252 0.661 0.707

 . (3.25)

This mixing pattern is for instance generated by Gν = K1 and Ge = C1. The mixing angles are
vanishing θ13 and maximal θ23 together with sin2 θ12 = 1

3 (2 − φ) = 1
6 (3 −

√
5) ≈ 0.127. Obviously,

JCP = 0. This is the pattern mentioned by Lam [80]. It would need large corrections to the solar
mixing angle in order to match the current data.

Mixing patterns withGν = Z2 × Z2 andGe = Z5

When the lepton sector is invariant under an element of order 5, the mixing pattern becomes

||UPMNS|| =

 cos θ12 sin θ12 0

sin θ12/
√

2 cos θ12/
√

2 1/
√

2

sin θ12/
√

2 cos θ12/
√

2 1/
√

2

 ≈
 0.851 0.526 0

0.372 0.602 0.707
0.372 0.602 0.707

 . (3.26)

with tan θ12 = 1/φ. This pattern is generated for any choice of Gν and Ge. Again, we find vanishing
θ13 and maximal atmospheric mixing θ23, this time together with sin2 θ12 ≈ 0.276. Obviously JCP =
0. This mixing pattern was discussed before e.g. in [58,88]. As mentioned at the beginning of section
3.2, its agreement with the data is of the same order as the tribimaximal mixing pattern.

Mixing patterns withGν = Z2 × Z2 andGe = Z2 × Z2

In case both the neutrino sector and the charged lepton sector are invariant under a Klein group, the
mixing reads

||UPMNS|| =
1

2

 φ 1 φ−1

φ−1 φ 1
1 φ−1 φ

 ≈
 0.809 0.5 0.309

0.309 0.809 0.5
0.5 0.309 0.809

 . (3.27)

Excluding the case in which Gν and Ge are the same group, we always find the pattern in
equation(3.27) to be generated. The mixing angles which can be extracted from equation(3.27) are:
sin2 θ13 ≈ 0.095 and sin2 θ12 = sin2 θ23 ≈ 0.276. Interchange of the second and third row gives
sin2 θ23 ≈ 0.724. Also in this case there is no non-trivial Dirac CP phase, i.e. JCP = 0. We mention
that although the (1 2)-angle is in good agreement with the data, sin2 θ13 is too large even now it
is clearly established to be non-zero and also the atmospheric mixing angle is too far away from
maximum in order to fit the data.

3.3.4 The group Γ7 ∼ PSL(2, 7)

For N equal to 7, the modular subgroup ΓN is isomorphic to PSL(2, 7) [89, 90]. We recall from
the previous section that the group can be generated from two generators S and T only if a fourth
non-trivial relation is satisfied. A presentation of the group is then

S2 = (ST )3 = T 7 = (ST−1ST )4 = 1 . (3.28)

Possible matrix representations for S and T are given in table 3.4. The two representations there are
each others complex conjugates and thus trivially give rise to the same mixing patterns. The group
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PSL(2, 7) has six conjugacy classes mentioned in table 3.C.3 in the appendix after this chapter and a
total of 71 relevant Abelian subgroups of the type Z3, Z4, Z7 and Z2×Z2. These are collected in table
3.C.4. In the following four paragraphs, we discuss the lepton mixing when the charged leptons are
invariant under each of these groups, while the neutrinos are fixed to be invariant under the Klein
group. None of these mixing patterns are very close to the neutrino data.

Mixing patterns withGν = Z2 × Z2 andGe = Z3

When the neutrino sector is invariant under a Klein group and the charged lepton sector under an
element of order 3, it is possible to generate the whole group PSL(2, 7) with the elements of Ge and
Gν and we find the following mixing pattern

||UPMNS|| =
1√
6


√

1
2

(
5 +
√

21
)

1 1
2 (5−

√
21)
√

1
2 (5 +

√
21)

1 2 1
1
2 (5−

√
21)
√

1
2 (5 +

√
21) 1

√
1
2

(
5 +
√

21
)


≈

 0.894 0.408 0.187
0.408 0.816 0.408
0.187 0.408 0.894

 .

The mixing angles are sin2 θ13 = 1
12

(
5−
√

21
)
≈ 0.035 and sin2 θ12 = sin2 θ23 = 1

14

(
7−
√

21
)
≈

0.173. If the second and third row are interchanged, the atmospheric mixing is given by sin2 θ23 =
1
14

(
7 +
√

21
)
≈ 0.827. The CP violating phase fulfills | sin δCP | =

√
7/8 ≈ 0.935 and thus |JCP | =

1/(24
√

3) ≈ 0.024. One possible choice of Gν and Ge is: Gν = K1 and Ge = C1.

Mixing patterns withGν = Z2 × Z2 andGe = Z4

If we take the lepton sector invariant under an element of order 4, we can generate the following
mixing pattern

||UPMNS|| =
1

2


√

1
2

(
3 +
√

7
)

1 1
2

(
3−
√

7
)√

3 +
√

7

1
√

2 1
1
2

(
3−
√

7
)√

3 +
√

7 1
√

1
2

(
3 +
√

7
)


≈

 0.840 0.5 0.210
0.5 0.707 0.5

0.210 0.5 0.840

 . (3.29)

The mixing angles are given by sin2 θ13 = 1
8

(
3−
√

7
)
≈ 0.044, sin2 θ12 = sin2 θ23 = 1

9

(
5−
√

7
)
≈

0.262. After interchange of the second and third rows, sin2 θ23 is equal to 1
9

(
4 +
√

7
)
≈ 0.738. The

Jarlskog invariant fulfills |JCP | = 1/32 ≈ 0.031 and | sin δCP | = 1
4

√
13−

√
7 ≈ 0.804. This pattern is

produced for example for Gν = K1 and Ge = Q1.

Mixing patterns withGν = Z2 × Z2 andGe = Z7

If the charged lepton sector is invariant under an element of order 7, the mixing takes the form

||UPMNS|| = 2

√
2

7

 s2s3 s1s3 s1s2

s1s2 s2s3 s1s3

s1s3 s1s2 s2s3

 ≈
 0.815 0.452 0.363

0.363 0.815 0.452
0.452 0.363 0.815

 . (3.30)

For the mixing angles we find sin2 θ13 ≈ 0.132 and sin2 θ12 ≈ 0.235; sin2 θ23 is approximately equal
to 0.235 or, after interchange of rows, to 0.765. CP violation is characterized by |JCP | = 1/(8

√
7) ≈
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0.047.This pattern arises from any possible combination of a Klein group and an element of order
seven.

Mixing patterns withGν = Z2 × Z2 andGe = Z2 × Z2

If both the neutrino sector and the charged lepton sector are invariant under a Klein group, the
unique mixing pattern, compatible with our requirements, is

||UPMNS|| =
1

2

 √2 1 1

1
√

2 1

1 1
√

2

 . (3.31)

We find for the mixing angles sin2 θ13 = 1/4, sin2 θ12 = 1/3 and sin2 θ23 = 1/3 or 2/3. The quantity
| sin δCP | is 3

√
7/8 ≈ 0.992 and |JCP | =

√
7/32 ≈ 0.083. One choice of Gν and Ge leading to this

particular pattern is Gν = K1 and Ge = K3.

3.3.5 The subgroup ∆(96) of Γ8

The next group to consider is Γ8. As explained at the end of section 3.2, it does not have three-
dimensional faithful representations. Instead the three-dimensional representations given in table 3.7
can generate at most a subgroup of order 96. This group ∆(96) is also known as the tetrakisoctahedral
group 4O.

The group ∆(96) has ten conjugacy classes as given in table 3.C.5; a list of generating elements for the
Abelian subgroups Z2 × Z2, Z3, Z4 and Z8 can be found in table 3.C.6 and that of the Z2 symmetries
in table 3.C.7. The reason for mentioning the latter is explained shortly. There are ten irreducible
representations: two singlets, one doublet, six triplets (two of which unfaithful) and one sextet. The
character table of ∆(96) can be found in [75, 76]. The elements S and T of the four faithful three-
dimensional representations are given in table 3.7. They are related to each other by an overall change
of sign and/or complex conjugation and thus give rise to the same mixing patterns. S and T fulfill
the relations

S2 = (ST )3 = T 8 = (ST−1ST )3 = 1 . (3.32)

In the following we discuss all possible combinations of Ge and Gν = Z2 × Z2 case by case. We
encounter two new instances: firstly, we come across situations in which a certain combination of
types of subgroups employed for Ge and Gν = Z2×Z2 does not allow to generate the original group
∆(96).

Secondly, it can be checked that the generating elements of the groups Q1, Q2 and Q3 for the faithful
irreducible triplets (to which we assign the left-handed lepton generations) are represented by
matrices which have two degenerate eigenvalues. As a consequence, it is not possible to distinguish
among the three generations of leptons with these groups. On themselves they cannot be used
to generate Ge. However, a combination of two of them or a combination with an additional Z2-
generating element, resolves the degeneracy. For this reason we also include the cases Ge = Z2 × Z4

and Ge = Z4 × Z4 in our discussion.3

3We do not discuss all possible types of Z2 × Z4 and Z4 × Z4 subgroups, but only those in which the Z4 group alone is
not sufficient to distinguish the three generations of leptons.
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Mixing patterns withGν = Z2 × Z2 andGe = Z3

We first discus the case where the neutrino sector is invariant under a Klein group and the charged
lepton sector under an element of order 3. The generated mixing pattern reads

||UPMNS|| =
1√
3

 1
2 (
√

3 + 1) 1 1
2 (
√

3− 1)
1 1 1

1
2 (
√

3− 1) 1 1
2 (
√

3 + 1)

 ≈

 0.789 0.577 0.211
0.577 0.577 0.577
0.211 0.577 0.789

 . (3.33)

This leads to the following mixing angles: sin2 θ13 = 2−
√

3
6 ≈ 0.045 and sin2 θ12 = sin2 θ23 = 8−2

√
3

13 ≈
0.349. Alternatively, the second and third row can be exchanged, giving sin2 θ23 = 5+2

√
3

13 ≈ 0.651
instead. The fact that this pattern is close to the data, including a prediction for non-zero reactor
mixing angle, makes the pattern very interesting. It is discussed in more detail in section 3.4. We
refer to the two sets of mixing angles here as M2 and M1 respectively. A viable choice of Ge and Gν
leading to this pattern is Ge = C1 and Gν = K1.

It is interesting to note that this mixing pattern can also be realized when the flavour group is S4,
although this does not happen when neutrinos are Majorana particles and thus required to satisfy
Gν = Z2 × Z2. If neutrinos are instead Dirac particles, Gν = Z4 may be chosen. Together with any
choice for a Z3 subgroup as residual symmetry in the lepton sector, the pattern M1 or M2 follows.

Mixing patterns withGν = Z2 × Z2 andGe = Z8

If the original group ∆(96) is generated through the elements of Ge and Gν , the resulting mixing
pattern is bimaximal, see equation (3.23). One possible choice ofGe andGν isGe = O1 andGν = K1.

Mixing patterns withGν = Z2 × Z2 andGe = Z2 × Z4

As discussed above, we also consider the Z4 subgroup contained in Ge to be one of the subgroups
which are represented by matrices with degenerate eigenvalues (Q1, Q2 or Q3) for the irreducible
faithful triplet. These are only sufficient to describe the charged leptons when combined with an
additional Z2-group. The mixing pattern that arises if all our requirements are passed, is again the
bi-maximal one of equation (3.23). An example of Ge and Gν is Ge = V1 ×Q1 and Gν = K1.

Three cases that do not generate the full group ∆(96)

Lastly, we study the cases where Gν is given by a Klein group and Ge is given by either

- a Z4 group, but not Q1, Q2 or Q3 (that have degenerate eigenvalues),

- a Klein group Z2 × Z2 or

- a product Z4 × Z4, where the each of the Z4 groups is given by one of Q1, Q2 or Q3 .

None of the possible choices allows us to generate the original group ∆(96) using the elements of the
subgroups Ge and Gν .

3.3.6 The subgroup ∆(384) of Γ16

The last group we consider in this chapter is Γ16. Just like Γ8, none of the three-dimensional
representations is faithful. The eight triplets in table 3.7 instead generate a subgroup of order 384.
Like the group of the previous section, it is part of the series ∆(6n2), this time with n = 8.
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The group ∆(384) has 24 conjugacy classes and a total of 145 Zn subgroups as given in the appendix.
As not only the Z2 elements, but also some of the Z4 and Z8 elements have degenerate eigenvalues,
candidates for Ge also include Z4 × Z2, Z4 × Z4, Z4 × Z8, Z8 × Z2 and Z8 × Z8. In these cases, the
order 4 and 8 elements should come from Q1−3 and O1−3.

The matrix representations for the elements S and T that can generate the group ∆(384) are given in
table 3.7. The elements S and T satisfy four non-trivial relations

S2 = (ST )3 = T 16 = (ST−1ST )3 = 1 . (3.34)

We observe that the eight faithful triplets of table 3.7 come in two groups of four, where the matrices
in each group are related by an overall sign change and/or complex conjugation. The two groups
are related by observing that if one set of S and T matrices satisfies the presentation (3.34), then so
does any odd power of it, smaller than 16.

In the following, we calculate the mixing patterns that follow when Gν is taken to be a Klein group
and Ge is a Zn-group, a Klein group or any of the product groups mentioned above.

Mixing patterns withGν = Z2 × Z2 andGe = Z3

The case we discuss is the one where the neutrino sector is invariant under a Klein group and the
charged lepton sector under an element of order 3. The generated mixing pattern reads

||UPMNS|| =
1√
3


1
2

√
4 +
√

2 +
√

6 1 1
2

√
4−
√

2−
√

6
1
2

√
4 +
√

2−
√

6 1 1
2

√
4−
√

2 +
√

6√
1− 1√

2
1

√
1 + 1√

2


≈

 0.810 0.577 0.107
0.497 0.577 0.648
0.312 0.577 0.754

 . (3.35)

With the ordering chosen in eq. (3.35), the mixing angles are

sin2 θ13 =
4−
√

2−
√

6

12
≈ 0.011 ,

sin2 θ12 =
4

8 +
√

2 +
√

6
≈ 0.337 , (3.36)

sin2 θ23 =
4−
√

2 +
√

6

8 +
√

2 +
√

6
≈ 0.424 .

If we exchange the second and third rows in UPMNS, the atmospheric mixing changes to

sin2 θ23 =
4 + 2

√
2

8 +
√

2 +
√

6
≈ 0.576 . (3.37)

We observe that CP is conserved in both cases. We refer to these two patterns as M3 and M4. Both
patterns are very close to the data, with interestingly, M3 favoured by the global neutrino fit [24] and
M4 by the fit [27, 28]. Similar to the case where the mixing patterns M1 and M2 could be generated by
S4 instead of ∆(96) if neutrinos are Dirac particles, we find that these patterns can also be generated
by the ‘simpler’ group ∆(96) if the neutrino are allowed to be Dirac particles invariant under a Z3

symmetry and charged leptons under a Z8 symmetry.

Mixing patterns withGν = Z2 × Z2 andGe = Z16

We now study mixing patterns where the neutrinos are invariant under a Klein group and the
charged leptons under one of the Z16 groups. It is possible to generate the full group ∆(384) for
instance with K2 and Y1. The mixing pattern that follows is the bimaximal mixing pattern (3.23)
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Mixing patterns withGν = Z2 × Z2 andGe = Z8 × Z2

When the charged lepton sector is invariant under a Z8 × Z2 group, with the Z8 either O1, O2 or O3,
the full group ∆(384) is generated for instance if Ge = O1 × V2 and Gν = K1. The resulting mixing
pattern is the familiar bimaximal one of equation (3.23).

Cases that do not generate the full group ∆(384)

There are seven additional cases where Ge is in accordance with the requirements set in this section.
When combined with any Gν that is a Klein group, it is not possible to recover the complete group
∆(384). These cases are

• Ge is a Z4 subgroup, unequal to Q1, Q2 or Q3,

• Ge is a Z8 subgroup, unequal to O1, O2 or O3,

• Ge is a Klein group,

• Ge is a product group Z4 × Z2, with the Z4 factor given by either Q1, Q2 or Q3,

• Ge is a product group Z4 × Z4, with both Z4 factors from Q1−3,

• Ge is a product group Z4 × Z8, with the Z4 factor from Q1−3 and the Z8 factor from O1−3 or

• Ge is a product group Z8 × Z8 with both Z8 factors from O1−3.

This concludes all cases where the residual symmetry in the neutrino sector is a Klein group. There
is one pattern that does not respect this rule, but that might be worth mentioning.

V =

 cosπ/16 sinπ/16 0
− sinπ/16 cosπ/16 0

0 0 1

 ≈
 0.981 0.195 0
−0.195 0.981 0

0 0 1

 . (3.38)

This can be produced by a number of residual subgroups, including Z4 and Z4 (e.g. Q1 and Q18); Z4

and Z8 (e.g. Q1 and O24); Z4 and Z16 (e.g. Q4 and Y12); Z8 and Z8 (e.g. O1 and O24) and, lastly, Z8

and Z16 (e.g. O24 and Y12). Obviously, this is not a valuable pattern for neutrinos, but it might be
relevant for quarks. If the two residual subgroups are those of the up- and down-quark sectors, the
result is quite close to the CKM matrix. In a first approximation, one angle slightly smaller than the
Cabibbo angle is generated. Subleading corrections may lead to the two other angles and possibly
to very small effects on the neutrino mixing matrix. In the spirit of this chapter, we refrain from
giving a more concrete model building realization. This is likely to be quite complicated, as now
there are different residual symmetries in all four sectors (charged leptons, neutrinos, up and down
quarks). In a realization with flavons, preventing them to couple to the wrong sectors is likely to be
non-trivial.

3.4 Four interesting mixing patterns

In this section we comment on the four mixing patterns M1 to M4. All of these points are close to
the current data on the neutrino mixing angles as shown already in table 3.1 at the beginning of this
chapter and as graphically illustrated in figure 3.1.

Both (pairs of) mixing patterns appeared when Gν = Z2 × Z2 and Ge = Z3 was chosen for a group
of the type ∆(6n2). When these two subgroups are chosen in ∆(24) ∼ S4 one gets the tribimaximal
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Figure 3.1: Values of sin2 θij for the four different mixing patterns M1 (black), M2 (violet),
M3 (red) and M4 (green) as well as the tribimaximal mixing pattern (star). The contours show
the 1σ (pink dashed line), 2σ (blue solid line) and 3σ (black dotted line) levels and are taken
from [24]. The small dots indicate the best fit values of the mixing angles and the arrows the
effect of the new estimates of the reactor antineutrino flux. Note that in the sin2 θ12-sin2 θ13

plane the points of M1 and M2 as well as of M3 and M4 lie on top of each other, since they only
differ in the value of sin2 θ23.

mixing pattern given by equation (3.22), or, with the phases reintroduced in the standard way by

UTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2

 (3.39)

The two new patterns are quite similar to tribimaximal mixing. This can be seen from the fact that
also these patterns can be brought into a form in which the second column has three entries equal to
1/
√

3. Indeed, the TBM mixing matrix can be modified by a rotation in the (1 3) plane acting from
the right

UPMNS = UTBMU13(α) with U13(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 . (3.40)

It is immediate to show that, by taking α = −π/12 and α = π/24, the resulting mixing matrices are
identical, in absolute value, to the matrices in equations (refeq:mixD96) and (3.35), respectively. Such
perturbations from TB mixing with α arbitrary have been already discussed in the literature [91–96].
For generic α, the mixing angles read

sin2 θ12 =
1

2 + cos 2α
, sin2 θ23 =

1

2
−
√

3 sin 2α

4 + 2 cos 2α
, sin2 θ13 =

2

3
sin2 α . (3.41)
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For small α, we can expand the results

sin2 θ12 ≈
1

3
+

2α2

9
, sin2 θ23 ≈

1

2
− α√

3
, sin2 θ13 ≈

2α2

3
(3.42)

showing that the deviation from the value of TB mixing of sin2 θ12, the best measured quantity among
the three mixing angles, is quadratic in α, whereas the leading correction to sin2 θ23 = 1/2 is linear in
α, allowing reasonably large deviations from its maximal value as indeed still allowed by the data.

3.5 Conclusions of the chapter

Recent results of the T2K experiment and of a global fit of the neutrino oscillation data point to non-
vanishing θ13 at the 3σ level. The best fit value of θ13 is around 0.15 ÷ 0.16, smaller than the ones of
the other angles, but much larger than 0.02, the 1σ experimental error on the solar angle θ12. If future
data confirm this result, many models giving rise at LO to mixing patterns with vanishing θ13, such
as TB mixing, become disfavoured, because corrections, expected in these models, generically lead
to too small θ13.

A particular elegant mechanism to produce simple mixing patterns is based on discrete flavour
symmetries. The latter are broken in a non-trivial way and as a consequence give rise to mixing
angles whose values only depend on the properties of the flavour symmetry, but not on lepton
masses. After the T2K data the natural question is whether such symmetries still remain a valuable
tool to describe flavour mixing. In the beginning of the chapter we have given four possible answers
to this question, ranging from ‘probably not’ to ‘possible with the right types of flavour symmetries’.

In this chapter we have scanned a large category of candidate flavour-symmetries. The discrete
flavour group Gf is chosen to be a modular subgroup ΓN or, in specific cases a subgroup hereof.
Gf is supposed to be broken in such a way that the relevant mass matrices mν and m†eme have
a residual invariance under the subgroups Gν and Ge, respectively. The lepton mixing matrix
originates from the mismatch of these two subgroups and from their specific embedding intoGf . We
rediscovered the lepton mixing matrices that correspond to tribimaximal mixing, bimaximal mixing
and the golden ratio mixing from the ‘smaller’ groups A4, S4 and A5 in the list of Gf . The group
PSL(2, 7) generates several mixing patterns, but none of them is particularly close to the data given
by neutrino oscillations. The groups ∆(96) and ∆(384) provide us with two (or four if a degeneracy
is taken into account) very interesting mixing patterns. In particular the pattern reproduced by
∆(384) is remarkably close to their experimental best fit values. More precise measurements are
expected to show if the agreement between the patterns and the data are just coincidental or if they
might be related by a deeper mechanism. If the latter is the case, the first thing on a theorist’s to-
do list should obviously be a concrete model that derives these mixing angles and generates some
additional predictions.



Appendices to chapter 3

In the previous chapter, we studied six groups of the type ΓN . The groups A4 and S4, corresponding
respectively toN = 4 andN = 5, occur at many other places in this thesis. In the first two appendices
here, we carefully derive their group theoretical properties. In the third appendix, we list some
properties of the other finite modular groups under discussion, A5, PSL(2, 7), ∆(96) and ∆(384).

3.A The alternating group A4

The group A4 is the group of even permutations of four elements. It thus has 4!/2 = 12 elements. A
general permutation of them can be seen as a mapping p : i 7→ p(i), with i = 1 · · · 4. The mappings
can be represented as

p =

(
1 2 3 4
p(1) p(2) p(3) p(4)

)
. (3.A.1)

This is often simply represented as p =
(
p(1), p(2), p(3), p(4)

)
. With only four elements, only

a limited number of structures is available for permutations. Apart from the identity, these are
transpositions, double transpositions, three-cycles and four-cycles.

A transposition is the interchange of two elements, while leaving the other two elements inert. The
interchange of i1 and i2 is represented as i1 7→ i2 7→ i1 or as (i1, i2) in the so-called cycle notation.
A single transposition is obviously an odd permutation, so it is not an element of A4, but it is an
important building block for permutations that are in A4.

A double transpositions, the combined and unrelated interchange of two pairs of elements is an even
permutation and thus an element of A4. They can be represented as i1 7→ i2 7→ i1 and i3 7→ i4 7→ i3
or simply as (i1, i2) (i3, i4). With four elements present, there are three double transpositions, one
for each of the three ways to pair the numbers 1 to 4. Obviously (double) transpositions square to
the identity, giving an important property of these transformations.

The third type are three-cycles i1 7→ i2 7→ i3 7→ i1, while the fourth element i4 is inert. This is also
written as (i1, i2, i3). A three-cycle can be seen as a combination of two transpositions, for instance
as (i1, i3) ◦ (i1, i2). There are eight three-cycles in A4: there are four ways to pick the three elements
(there are four choices for the single element that has to be left out) and each of these gives rise to two
three-cycles, one being the square of the other. The third power of any element gives the identity.
Four-cycles lastly, can be written as the product of three transpositions and as such are no elements
of A4.

We can call one of the double transpositions S and one of the three-cycles T . It follows that all
elements of A4 can be written as simple combinations of S and T . It is in particular relevant to
mention that the element ST is a three-cycle and as such satisfies (ST )3 = 1. In table 3.A.1 we
mention the 12 elements of A4 in permutation notation, in cycle notation and as a product of S and
T .



70 Appendices to chapter 3

Permutation Cycle f
[
S, T

]
Order Class

(1, 2, 3, 4) - 1 1 E

(1, 3, 4, 2) (2, 3, 4) (ST )2 3 4C
(2)
3

(1, 4, 2, 3) (2, 4, 3) ST 3 4C
(1)
3

(2, 1, 4, 3) (1, 2) (3, 4) S 2 3C2

(2, 3, 1, 4) (1, 2, 3) T 3 4C
(1)
3

(2, 4, 3, 1) (1, 2, 4) (STS)2 3 4C
(2)
3

(3, 1, 2, 4) (1, 3, 2) T 2 3 4C
(2)
3

(3, 2, 4, 1) (1, 3, 4) TS 3 4C
(1)
3

(3, 4, 1, 2) (1, 3) (2, 4) T 2ST 2 3C2

(4, 1, 3, 2) (1, 4, 2) STS 3 4C
(1)
3

(4, 2, 1, 3) (1, 4, 3) (TS)2 3 4C
(2)
3

(4, 3, 1, 2) (1, 4) (2, 3) ST 2ST 2 3C2

Table 3.A.1: The 12 elements of A4 with their permutation and cycle notation; the way to
write them in S and T ; the order and the class they belong to.

In the discussion above, the group A4 works on four abstract points. A very natural interpretation is
possible, where the four points (1, 2, 3, 4) are the four vertices of a tetrahedron. An operation
i1 7→ i2 · · · represents the corresponding interchange of the vertices. Even permutations of the
four vertices are exactly the rotations that leave the tetrahedron invariant, while odd permutations
represent reflections.

We define S as the double transposition (1, 2) (3, 4) that interchanges vertices 1 and 2 as well as 3 and
4. It can be represented by a rotation over 180◦ over the axis connecting the middles of the edges
1-2 and 3-4. The three-cycle T is defined as the anti-clockwise rotation over 120◦ in the 1-2-3 plane,
leaving vertex 4 invariant. This is shown in figure 3.A.1
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4

Figure 3.A.1: The generating elements S and T of A4.

In section 3.3.1 we calculated the conjugacy classes of A4. The group has four classes: E containing
the identity, 3C2 containing the three elements of order 2 (including S) and two classes 4C3 and
4C ′3 with order 3 elements (one containing T and the other T 2). The order and the conjugacy class
any element belongs to are also given in table 3.A.1. For finite groups, the number of irreducible
representations (irreps) up to equivalence is equal to the number of classes. Their dimensions are
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related to the order of the group according to∑
a∈I

d2
a = order(G) (3.A.2)

BecauseA4 has four classes, it should also have four irreps. The only way to satisfy equation (3.A.2) is
if three of them have dimension 1 and one has dimension 3. The irreps ofA4 can thus be characterized
as 1, 1′, 1′′ and 3.

Next we construct the character table. We use the following requirements

• In the trivial representation, all elements are represented as 1.

• The identity operation, contained in the class E is represented by the number 1 for all three
one-dimensional representations and by the (3× 3) identity matrix (with trace 3) for the three-
dimensional representation

• The elements of 3C2 should be represented by +1 or−1 in the irreps 1′ and 1′′ since they square
to the identity.

• The elements of 4C3 and 4C ′3 should be represented by 1, ω ≡ e2πi/3 or ω2 in the irreps 1′ and
1′′ as the identity is their third power.

• The irreps satisfy an orthonormality relation:

1

order(G)

∑
i∈G

χI(i)
(
χJ(i)

)∗
= δIJ .

Here χI(i) stands for the character of the element i in the irreducible representation I .

When we apply these conditions, there are just two character tables possible. One of them is given
in table 3.A.2; the other simply has the irreps 1′ and 1′′ interchanged4.

E 3C2 4C3 4C ′3
(containing S) (containing T ) (containing T 2)

1 1 1 1 1
1′ 1 1 ω ω2

1′′ 1 1 ω2 ω
3 3 -1 0 0

Table 3.A.2: The character table of A4.

Two explicit representations are popular in the literature. In the representation of Ma and Ra-
jasekaran (MR) [97], the element S is diagonal in the three-dimensional representation. It has the
further advantage that all elements are represented by real matrices in the triplet representation. In
the basis of Altarelli and Feruglio (AF) [10, 11] the element T is chosen diagonal (and complex). The
representations of S and T in the various irreducible representations and in the bases of MR and
AF are given in table 3.A.3. Both representations are used in this thesis: the AF representation in
chapters 2 and 3 and the MR representation in chapter 5.

The bases of Ma and Rajasekaran and of Altarelli and Feruglio are related by a basis transformation

MMR = Ω†MAFΩ , Ω =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 . (3.A.3)

4In the original definition of Altarelli and Feruglio [11] the opposite definition for 1′ and 1′′ is chosen. The ‘Altarelli-
Feruglio basis’ given below is therefore not the original one, but it shares the most important property, namely that the T
matrix is diagonal in the triplet representation.
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Irrep Ma and Rajasekaran Altarelli and Feruglio

1 S = 1 T = 1 S = 1 T = 1
1′ S = 1 T = ω S = 1 T = ω
1′′ S = 1 T = ω2 S = 1 T = ω2

3 S =

 1 0 0
0 −1 0
0 0 −1

 T =

 0 1 0
0 0 1
1 0 0

 S =

 −1 2 2
2 −1 2
2 2 −1

 T =

 1 0 0
0 ω2 0
0 0 ω


Table 3.A.3: The generating elements S and T ofA4 in the bases of Ma and Rajasekaran and
of Altarelli and Feruglio.

The multiplication rules for A4 can be constructed from the character table by demanding that the
characters satisfy the multiplication rules. We find

1× r = r for all representations r,
1′ × 1′ = 1′′, 1′′ × 1′′ = 1, 1′ × 1′′ = 1,

1′ × 3 = 3, 1′′ × 3 = 3,

3× 3 = 1 + 1′ + 1′′ + 3 + 3.

(3.A.4)

In the last product, one of the resulting triplets can be chosen to be symmetric and the other to be
antisymmetric in the elements of the original triplets.

Lastly, we construct the Clebsch-Gordan (CG) coefficients of the products above. We use αi to
indicate the elements of the first representation of the product and βj to indicate those of the
second representation. The products are then linear in αi and βj . The coefficients follow from
the requirement that the products (3.A.4) ‘commute’ with S and T transformations. For instance
if (α×β)1′ indicates the 1′ in the product 3× 3, we should have

(
(T3α)× (T3β)

)
1′

= T1′(α×β)1′ . All
results are given in table 3.A.4.

The calculation of the Clebsch-Gordan coefficients concludes this appendix. The multiplication rules
and the CG coefficients ofA4 are the starting point for the analyses in the main chapters of this thesis.
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Ma-Rajasekaran Altarelli-Feruglio
1× r = r r r

1′ × 1′ = 1′′ αβ αβ

1′ × 1′′ = 1 αβ αβ

1′′ × 1′′ = 1′ αβ αβ

1′ × 3 = 3 α(β1, ωβ2, ω
2β3) α(β3, β1, β2)

1′′ × 3 = 3 α(β1, ω
2β2, ωβ3) α(β2, β3, β1)

3× 3 3 1 α1β1 + α2β2 + α3β3 α1β1 + α2β3 + α3β2

3× 3 3 1′ α1β1 + ω2α2β2 + ωα3β3 α1β2 + α2β1 + α3β3

3× 3 3 1′′ α1β1 + ωα2β2 + ω2α3β3 α1β3 + α2β2 + α3β1

3× 3 3 3S
1
2

α2β3 + α3β2

α1β3 + α3β1

α1β2 + α2β1

 1
3

 2α1β1 − α2β3 − α3β2

−α1β2 − α2β1 + 2α3β3

−α1β3 + 2α2β2 − α3β1



3× 3 3 3AS
1
2

 α2β3 − α3β2

−α1β3 + α3β1

α1β2 − α2β1

 1
2

 α2β3 − α3β2

α1β2 − α2β1

−α1β3 + α3β1


Table 3.A.4: The Clebsch-Gordan coefficients for A4 in the two bases used in this thesis,
when αi and βj represent the elements of the terms of the product.
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3.B The symmetric group S4

The group S4 is the group of all permutations of 4 elements. It has 24 elements that are of order 1,
2, 3 and 4. The irreps are of one-dimensional (twice), two-dimensional (once) and three-dimensional
(twice). We denote the two one-dimensional irreps as 11 and 12 instead as 1 and 1′ to use the
common notation in S4 models. The details of the classes and irreps can be calculated in the same
way as in the previous section. This is summarized in the extended character table 3.B.1.

Class χ11
χ12

χ2 χ31
χ32

Elements

E 1 1 2 3 3 1

3C2 1 1 2 -1 -1 T 2, ST 2S, ST 2ST 2

6C2 1 -1 0 1 -1 S, T 3ST , TST 3, T 2ST 2, ST 2ST , TST 2S

8C3 1 1 -1 0 0 TS, ST , (TS)2, (ST )2, T 2ST , TST 2, T 3ST 2, T 2ST 3

6C4 1 -1 0 -1 1 T , T 3, ST 2, T 2S, STS, TST

Table 3.B.1: Character table of the S4 discrete group. In the last column we have reported
the elements for each class in terms of the generators S and T of the group.

As for A4, all elements can be generated as by two elements, S of order 2 and T of order 4 that satisfy
(ST )3 = 1. S4 is also the symmetry group of the octahedron. S, T and ST can the be represented
respectively by a rotation over 180◦ on an axis through two opposing edges; a rotation of 90 degrees
on an axis through the centres of two opposing faces and a rotation over 180◦ on an axis through two
opposite vertices as given in figure 3.B.1

Figure 3.B.1: Graphical representation of the elements S, T and ST of S4.

Many matrix representations can be used for S4. In chapter 4 we choose a representation in which
neither S nor T is diagonal in the three dimensional representations. We present this basis as well as
S and T diagonal bases in table 3.B.2. There we also report the matrices that diagonalize our S and
T elements according to Mchap4 = Ω†2,S,TM2;S,T−diagΩ2,S,T .

The product rules can be constructed from the character table. They read

1× r = r for all representations r,
12 × 12 = 11 , 12 × 2 = 2 , 12 × 31 = 32 , 12 × 32 = 31 ,

2× 2 = 11 + 12 + 2 , 2× 31 = 31 + 32 , 2× 32 = 31 + 32 ,

31 × 31 = 32 × 32 = 11 + 2 + 31 + 32 , 31 × 32 = 12 + 2 + 31 + 32 .

(3.B.1)

For each of the bases the Clebsch-Gordan rules can be calculated. We report those for the basis used
in chapter 4 in table 3.B.3.
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Irrep Basis of chapter 4
11 S = 1 T = 1
12 S = −1 T = −1

2 S = 1
2

(
1
√

3√
3 −1

)
T =

(
−1 0
0 1

)

31 S =

 0 0 −1
0 1 0
−1 0 0

 T =

−1 0 0
0 0 −1
0 1 0


32 S =

0 0 1
0 −1 0
1 0 0

 T =

1 0 0
0 0 1
0 −1 0


Irrep S-diagonal basis Diagonalizing matrix
11 S = 1 T = 1
12 S = −1 T = −1

2 S =

(
−1 0
0 1

)
T = 1

2

(
1
√

3√
3 −1

)
Ω2 = 1

2

(
−1

√
3√

3 1

)

31 S =

1 0 0
0 1 0
0 0 −1

 T = 1
2

 0 −
√

2 −
√

2√
2 −1 1√
2 1 −1

 ΩS = 1√
2

 0 −1 1√
2 0 0

0 1 1


32 S =

−1 0 0
0 −1 0
0 0 1

 T = 1
2

 0
√

2
√

2

−
√

2 1 −1

−
√

2 −1 1

 ”

Irrep T -diagonal basis Diagonalizing matrix
11 S = 1 T = 1
12 S = −1 T = −1

2 S = 1
2

(
1
√

3√
3 −1

)
T =

(
−1 0
0 1

)

31 S = 1
2

 0 −
√

2 −
√

2

−
√

2 1 −1

−
√

2 −1 1

 T =

−1 0 0
0 −i 0
0 0 i

 ΩT = 1√
2

√2 0 0
0 −i i
0 1 1


32 S = 1

2

 0
√

2
√

2√
2 −1 1√
2 1 −1

 T =

1 0 0
0 i 0
0 0 −i

 ”

Table 3.B.2: The generating elements S and T of S4 in the basis of chapter 4, and in S- and
T -diagonal ones.
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Product rule Clebsch-Gordan coefficients
11 × r = r r

12 × 12 = 11 αβ

12 × 2 = 2

(
−αβ2

αβ1

)
12 × 32 = 31

αβ1

αβ2

αβ3

and
12 × 31 = 32

2× 2 = 11 α1β1 + α2β2

2× 2 = 12 α1β2 − α2β1

2× 2 = 2

(
α1β2 + β1α2

α1β1 − α2β2

)
2× 31 = 31

 α1β1

− 1
2 (
√

3α1 + α2)β2
1
2 (
√

3α1 − α2)β3

and
2× 33 = 32

2× 31 = 32

 α1β1

− 1
2 (α1

√
3α2)β2

− 1
2 (α1 +

√
3α2)β3

and
2× 32 = 31

31 × 31 = 11 ,
α1β1 + α2β2 + α3β331 × 31 = 11

and
31 × 32 = 12

31 × 31 = 2 ( √
3(−α2β2 + α3β3)

2α1β1 − α2β2 − α3β3

)
and

32 × 32 = 2

31 × 32 = 2

(
2α1β1 − α2β2 − α3β3√

3(α2β2 − α3β3)

)
31 × 31 = 31 ,

α2β3 + α3β2

α1β3 + β3α1

α1β2 + α2β1

31 × 32 = 31

and
32 × 32 = 32

31 × 31 = 32 ,
−α2β3 + α3β2

α1β3 − β3α1

−α1β2 + α2β1

31 × 32 = 32

and
32 × 32 = 31

Table 3.B.3: The Clebsch-Gordan coefficients for S4 in the bases used in chapter 4. Again αi
and βj represent the elements of the terms of the product.
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3.C Tables of Abelian subgroups for A5, PSL(2, 7), ∆(96) and
∆(384)

The groups A5, PSL(2, 7), ∆(96) and ∆(384) were very important in chapter 3, but they do not
reappear in this thesis. Hence we refrain from giving their full group theoretical properties, such as
character tables. These can be found in the mathematical and/or physical literature, e.g. [58,75,76,89].
In this appendix we just report the relevant Abelian subgroups of the groups, as these can be used as
candidates for Ge and Gν as described in the chapter.

3.C.1 Abelian subgroups ofA5

The group A5 has five irreducible representations, namely the trivial singlet, two triplets and one
four- and one five-dimensional representation. In the tables below the five conjugacy classes and all
relevant subgroups of A5 are given, together with a typical element or generator of them expressed
in the elements S and T . We mention that all subgroups of a certain type are similar to each other.

Class Typical element
1C1 E
15C2 S
20C3 ST

12C(1)
5 T , T 4

12C(2)
5 T 2, T 3

Table 3.C.1: Conjugacy classes in A5

Subgroup Generators Subgroup Generators

Z2 × Z2

K1 S, T 2ST 3ST 2

Z3

C1 ST
K2 T 4ST , ST 3ST 2S C2 TS
K3 TST 4, ST 2ST 3S C3 TST 3

K4 T 2ST 3, ST 2ST C4 T 2ST 2

K5 T 3ST 2, TST 2S C5 T 3ST

Z5

R1 T C6 ST 3ST
R2 ST 2 C7 ST 2ST 3

R3 T 2S C8 ST 3ST 2

R4 TST C9 ST 2ST 4

R5 TST 2 C10 ST 2ST 2S
R6 T 2ST

Table 3.C.2: Generators of Abelian subgroups of A5.
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3.C.2 Abelian subgroups of PSL(2, 7)

Apart from the two complex conjugated three-dimensional representationsPSL(2, 7) has one singlet,
one six-, one seven- and one eight-dimensional representation. All classes and relevant subgroups of
PSL(2, 7) are collected in the tables below. The cyclic subgroups are similar to each other, while the
Klein groups can be divided into two categories, where each order-two element is part of both.

Class Typical element Class Typical element

1C1 E 21C2 S

56C3 ST 42C4 ST 3

24C(1)
7 T , T 2, T 4 24C(1)

7 T 3, T 5, T 6

Table 3.C.3: Conjugacy classes in PSL(2, 7)

Subgroup Generators Subgroup Generators

Z2 × Z2

K1 S, T 2ST 3ST

Z3

C1 ST
K2 S, TST 3ST 2 C2 TS
K3 T 4ST 3, T 2ST 4ST 2 C3 TST 5

K4 T 4ST 3, ST 4ST 3S C4 T 2ST 4

K5 T 5ST 2, ST 4ST 3S C5 T 3ST 3

K6 T 2ST 5, ST 3ST 4S C6 T 4ST 2

K7 T 3ST 4, ST 3ST 4S C7 T 5ST
K8 T 3ST 4, T 2ST 4ST 2 C8 TST 3S
K9 T 6ST , ST 5ST 6 C9 T 2ST 4S
K10 TST 6, ST 4ST 4 C10 ST 2ST 5

K11 T 2ST 5, ST 4ST 4 C11 ST 2ST 4

K12 T 6ST , ST 3ST 3 C12 T 4ST 2S
K13 TST 6, ST 2ST C13 ST 5ST 2

K14 T 5ST 2, ST 2ST C14 ST 4ST 2

C15 ST 3ST

Z4

Q1 T 3S C16 ST 2ST 4S
Q2 ST 3 C17 ST 4ST 2S
Q3 TST 3 C18 TST 4ST 5

Q4 T 2ST 2 C19 TST 4ST
Q5 TST 2 C20 TST 3ST 4

Q6 T 3ST C21 TST 5ST 2

Q7 T 2ST C22 T 2ST 5ST
Q8 TST 5S C23 TST 5ST
Q9 T 2ST 3S C24 ST 3ST 5ST
Q10 T 3ST 2S C25 ST 2ST 4ST 6

Q11 ST 3ST 4 C26 ST 2ST 4ST 2

Q12 ST 4ST 3 C27 ST 2ST 4ST 5

Q13 ST 2ST 3 C28 ST 2ST 4ST
Q14 ST 3ST 2

Z7

P1 T
Q15 ST 5ST P2 STS
Q16 ST 2ST 2S P3 T 2S
Q17 TST 4ST 2 P4 TST 4

Q18 T 2ST 4ST P5 T 4ST
Q19 TST 5ST 3 P6 ST 2

Q20 T 2ST 5ST 2 P7 T 2ST 3

Table 3.C.4: Generators of Abelian subgroups of PSL(2, 7).
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3.C.3 Abelian subgroups of ∆(96)

The group ∆(96) has ten irreducible representations: two singlets, one doublet, six triplets and one
sextet. In this appendix we list the conjugacy classes and the generators for the relevant Abelian
subgroups of ∆(96). As explained in the text of section 3.3.5, these are of the type Z2×Z2, Z3, Z4 and
Z8. Also Z4 × Z2 and Z4 × Z4 can be used for specific choices of the Z4 generator, namely Q1, Q2 or
Q3.
All Klein groups except K are similar to each other and so are the sixteen Z3 subgroups Ci and
all six Z8 subgroups Oi. The twelve Z4 subgroups Qi fall into three categories applying similarity
transformations belonging to ∆(96): the first contains Q1, Q2 and Q3, the second one Q4, Q5 and
Q6 and the third the others Q7, ..., Q12. The generators of Q1−6 all commute. The product group
Q4×Q5×Q6 is a normal subgroup of 4O, since the elements of order two fill the class 3C2 and those
of order 4 fill the class 6C4.

Class Typical element Class Typical element
1C1 E 3C2 T 4

12C2 S 32C3 ST

3C(1)
4 T 2 3C(2)

4 T 6

6C4 ST 2ST 4 12C4 ST 4

12C(1)
8 T , T 5 12C(2)

8 T 3, T 7

Table 3.C.5: Conjugacy classes in ∆(96)

Subgroup Generators Subgroup Generators

K T 4, ST 4S, ST 4ST 4

K1 ST 4ST 4, S O1 T
K2 T 4, ST 2ST O2 ST 2

Z2 × Z2 K3 ST 4S, T 7ST Z8 O3 T 2S
K4 ST 4ST 4, T 6ST 2 O4 STS
K5 ST 4S, TST 7 O5 ST 4ST
K6 T 4, ST 6ST 3 O6 T 5ST
C1 ST
C2 ST 3

C3 ST 5 Q1 T 2

C4 ST 7 Q2 ST 2S
C5 T 2ST Q3 ST 2ST 2

C6 T 2ST 3 Q4 ST 4ST 2

C7 T 4ST Q5 ST 6ST 2

Z3 C8 T 3ST 4 Z4 Q6 ST 2ST 4

C9 T 6ST Q7 ST 4

C10 TST 2 Q8 T 3ST
C11 T 3ST 2 Q9 ST 6ST
C12 T 5ST 2 Q10 T 2ST 2

C13 T 4ST 3 Q11 TST 3

C14 T 2ST 5 Q12 ST 2ST 3

C15 TST 4

C16 TST 6

Table 3.C.6: List of elements generating the subgroups Z2 × Z2, Z3, Z4 and Z8 of ∆(96).
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Z2 groups

V1 ST 6ST 3 V2 ST 2ST V3 TST 2S V4 T 4ST 2ST V5 TST 7

V6 S V7 T 2ST 6 V8 T 5ST 3 V9 T 4ST 4 V10 T 7ST
V11 T 3ST 5 V12 T 6ST 2 V13 ST 4S V14 ST 4ST 4 V15 T 4

Table 3.C.7: List of generating elements of the Z2 subgroups of ∆(96).
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3.C.4 Abelian subgroups of ∆(384)

The group ∆(384) has 24 irreducible representations: two singlets, one doublet, 14 triplets (six of
which unfaithful) and seven sextets. In this appendix, we list its relevant Abelian subgroups. There
are 27 Z2 subgroups, from which 13 Klein groups can be constructed. Furthermore, there are 64 Z3

subgroups, 18 Z4 subgroups, 24 Z8 subgroups and 12 Z16 subgroups. As mentioned in the text about
mixing patterns from ∆(384), apart fromGe being a Klein group or a Zn group, also Z4×Z2, Z4×Z4,
Z4 × Z8, Z8 × Z2 and Z8 × Z8 can be considered.

All Klein groups, exceptK are similar to each other. The same holds for allZ3 andZ16 subgroups.The
Z4 and Z8 subgroups fall into three and five categories respectively. Of the Z4 elements, all of
Q1−6 commute. The first category contains the elements of Q1, Q2 and Q3 with only two unique
eigenvalues; the second category contains the elements of Q4, Q5 and Q6 and the third one contains
all other elements. A similar structure can be found in the Z8 subgroups, where all ofO1−12 commute
and five categories are formed by respectively O1−3; O4−6; O7−9; O10−12 and all others.

Class Typical element Class Typical element
1C1 E 3C2 T 8

24C2 S 128C3 ST

3C(1,2)
4 T 4 / T 12 6C4 ST 4ST 8

24C4 ST 8 3C(1−4)
8 T 2 / T 6 / T 10 / T 14

6C(1−6)
8

ST 2ST 4 / ST 2ST 6 / ST 2ST 8 24C(1,2)
8 ST 4 / ST 12

ST 2ST 10 / ST 2ST 12 / ST 4ST 10 24C(1−4)
16 T / T 3 / T 5 / T 7

Table 3.C.8: Conjugacy classes in ∆(384)

Z2 groups

V1 TST 2S V2 ST 14ST 7 V3 T 3ST 6S V4 T 5ST 10S
V5 ST 2ST 9 V6 ST 6ST 3 V7 ST 10ST 5 V8 ST 2ST
V9 TST 15 V10 ST 13ST 10 V11 T 5ST 11 V12 TST 3ST 5

V13 T 15ST V14 T 4ST 12 V15 T 6ST 10 V16 T 8ST 8

V17 ST 6ST 10S V18 ST 3ST 6 V19 ST 8ST 12ST 12 V20 T 2ST 14

V21 T 11ST 5 V22 S V23 ST 9ST 2 V24 T 9ST 7

V25 ST 8S V26 ST 8ST 8 V27 T 8

Table 3.C.9: List of generating elements of the Z2 subgroups of ∆(384).

Klein groups

K T 8, ST 8S, ST 8ST 8 K1 ST 8S, T 11ST 5

K2 ST 8S, TST 15 K3 ST 8S, T 15ST
K4 ST 8S, T 5ST 11 K5 ST 8ST 8, T 6ST 10

K6 ST 8ST 8, T 4ST 12 K7 ST 8ST 8, T 2ST 14

K8 ST 8ST 8, S K9 T 8, ST 14ST 7

K10 T 8, ST 10ST 5 K11 T 8, ST 6ST 3

K12 T 8, ST 2ST

Table 3.C.10: List of generating elements of the Klein groups contained in ∆(384).
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Z3 groups

C1 ST C2 TS C3 ST 3 C4 T 3S
C5 T 5S C6 T 7S C7 T 9S C8 T 11S
C9 TST 14 C10 T 2ST 13 C11 T 3ST 12 C12 T 4ST 11

C13 T 5ST 10 C14 T 6ST 9 C15 T 7ST 8 C16 T 8ST 7

C17 T 9ST 6 C18 T 10ST 5 C19 T 11ST 4 C20 T 12ST 3

C21 T 13ST 2 C22 T 14ST C23 TST 12 C24 T 2ST 11

C25 T 3ST 10 C26 T 4ST 9 C27 T 5ST 8 C28 T 6ST 7

C29 T 7ST 6 C30 T 8ST 5 C31 T 9ST 4 C32 T 10ST 3

C33 T 11ST 2 C34 T 12ST C35 TST 10 C36 T 2ST 9

C37 T 3ST 8 C38 T 4ST 7 C39 T 5ST 6 C40 T 6ST 5

C41 T 7ST 4 C42 T 8ST 3 C43 T 9ST 2 C44 T 10ST
C45 TST 8 C46 T 2ST 7 C47 T 3ST 6 C48 T 4ST 5

C49 T 5ST 4 C50 T 6ST 3 C51 T 7ST 2 C52 T 8ST
C53 TST 6 C54 T 2ST 5 C55 T 3ST 4 C56 T 4ST 3

C57 T 5ST 2 C58 T 6ST C59 TST 4 C60 T 2ST 3

C61 T 3ST 2 C62 T 4ST C63 TST 2 C64 T 2ST

Table 3.C.11: List of generating elements of the Z3 subgroups of ∆(384).

Z4 groups

Q1 T 4 Q2 ST 4S Q3 ST 4ST 4

Q4 ST 4ST 8 Q5 ST 8ST 4 Q6 ST 4ST 12

Q7 ST 8 Q8 TST 7 Q9 T 2ST 6 Q10 T 3ST 5

Q11 T 4ST 4 Q12 T 5ST 3 Q13 T 6ST 2 Q14 T 7ST
Q15 ST 2ST 5 Q16 ST 6ST 7 Q17 ST 10ST 9 Q18 ST 14ST 11

Table 3.C.12: List of generating elements of the Z4 subgroups of ∆(384).

Z8 groups

O1 T 2 O2 ST 2S O3 ST 14ST 14

O4 ST 6ST 4 O5 ST 4ST 6 O6 ST 10ST 14

O7 ST 2ST 4 O8 ST 2ST 14 O9 ST 4ST 2

O10 ST 2ST 8 O11 ST 6ST 14 O12 ST 8ST 2

O13 ST 4 O14 T 4S O15 TST 11

O16 TST 3 O17 T 2ST 10 O18 T 2ST 2

O19 T 3ST 9 O20 T 3ST O21 ST 2ST 3

O22 ST 6ST O23 ST 10ST 3 O24 ST 14ST

Table 3.C.13: List of generating elements of the Z8 subgroups of ∆(384).

Z16 groups

Y1 T Y2 ST 2 Y3 STS Y4 ST 6

Y5 ST 10 Y6 ST 14 Y7 TST 5 Y8 TST 9

Y9 TST 13 Y10 ST 4ST Y11 ST 8ST Y12 ST 12ST

Table 3.C.14: List of generating elements of the Z16 subgroups of ∆(384).



Chapter 4

The interplay between GUT and
flavour symmetries in a Pati–Salam
× S4 model

Il semble que la perfection soit atteinte non quand il n’y a plus rein à
ajouter, mais quand il n’y a plus rein à retrancher.

It seems that perfection is reached not when there is nothing more to
add, but when there is nothing more to remove.

Antoine de Saint-Exupéry [98], Terre des Homes

4.1 Introduction

In this chapter we investigate the possibility to combine flavour symmetries with Grand Unified
Theory (GUT) symmetries. The desire to combine these two symmetries has three roots. Firstly, it
is partly data-driven. There are structures that can be explained well by grand unified explanations
and others that are well explained using flavour symmetries. As far as these concern the elementary
masses, as a rule of thumb relations between the different family copies of a certain type of particle
(e.g. charged leptons) can have explanations in family symmetries, while relations between different
types of particles in one generation (e.g. the muon and the strange quark) might be explained by
grand unified symmetries.

Secondly, there are aesthetic reasons to combine the two symmetries. Family symmetries reduce the
number of fermionic representations by grouping particles of different families in single irreducible
representations; grand unified symmetries do exactly the same with different particle types within a
generation. Thirdly, there is the coincidence that in many models scale of family physics is close to
the assumed GUT scale - see e.g. equation (2.86) and figure 1.14.

Flavour-GUT models have been constructed before, for references see e.g. [47]. In our opinion,
these analyses emphasize the difficulty in the construction of a flavour GUT model which naturally
lead to realistic fermion phenomenology and to a fair explanation of the gauge symmetry breaking
chain to get SU(3)C × U(1)em. In particular, the combinations of the constraints arising by the
flavour symmetry and by the GUT group may lead to wrong predictions for the fermion masses
and mixings. For instance if the lepton mixing is tribimaximal at the GUT scale and at leading order,
it is not necessarily so at a low energy scale and to all orders in different perturbing parameters.
The problem is usually avoided by recurring to non-minimal Higgs or flavon field content and by
assuming peculiar symmetry breaking patterns of the GUT gauge symmetry and ascribing quite
often at type-II seesaw as the origin of the neutrino masses. Moreover these patterns are often not
supported by the study of the scalar Higgs potential, leaving open the question if such peculiar
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patterns may be actually realized or not.

In this chapter we perform as complete an analysis as possible. The chapter is divided into three
parts. The first part is introductory. In section 4.2, we list several patterns that can be seen in the
mass sector and that may be explained by family symmetry pattern or GUT patterns. The section
ends with a ‘wishlist’ of relations that the model we construct in the rest of the chapter should be
able to reproduce. In section 4.3 we introduce the flavour part of the model and add some additional
wishes to the list. Section 4.4 introduces the Pati–Salam GUT that the model in the next sections is
based on.

In the second part, we construct the described model. Section 4.5 gives the contents of the model and
in sections 4.6 and 4.7 we give the results respectively at leading order and next-to-leading order in
the number of flavons inserted. Subleading effects are very important to obtain agreement with the
data in models based on the bimaximal mixing pattern and we find that after section 4.7 all points of
the wishlist are satisfied.

Section 4.8 is a bridge between the second and the third part of the chapter. In this section we show
that the flavons used in sections 4.6 and 4.7 can indeed have the vacuum expectation values they are
assumed to. This introduces extra complications as driving fields are needed, but this is not more
than in the non-GUT model of Altarelli and Feruglio discussed in chapter 2.

In sections 4.9 and 4.10 we study respectively the Higgs alignment and the effects of renormalization
group running. Here is becomes clear that the combination of flavour and GUT symmetries leads
to unexpected interference effects. In fact some of the positive conclusions of the second part of the
chapter have to be withdrawn.

Lastly, in section 4.11, we perform an analysis of the phenomenological consequences of our model
on near-future neutrino experiments and in section 4.12 we present our conclusions.

4.2 A detailed look on patterns in the elementary fermion masses

In chapters 1 and 2 some patterns in the mass sector of the Standard Model were introduced. In
section 1.4.1 we found that the masses in both quark sectors as well as in the charged lepton sector
are highly hierarchical with comparable gaps between the third and second generation and the
second and first generation on a logarithmic scale. In section 2.3.1 we discussed the Froggatt–Nielsen
mechanism that can explain these structures in a natural way.

The model described in section 2.3.1 discusses only the charged lepton sector. Extension to the quark
sector is obviously possible. From figure 1.16 we see that the gaps between the charged lepton and
down quark states are comparable, while the gaps between the up quark states are clearly larger. The
ratios between the muon and the tau mass and between the electron mass and the muon mass used
in section 2.3.1 were λ2 and λ3 respectively, with λ = 0.2. This does also reasonably well describe
the mass gaps in the down-type quark sector, although the strange quark is slightly too light. In the
up-type quark sector, the gaps are larger and can be parameterized by ratios of λ4 and λ3 between
the charm and the top and between the up and the charm respectively.

The other simplifying assumption in section 2.3.1 is the absence of off-diagonal terms. This is clearly
not realistic. The presence of off-diagonal terms is necessary for the generation of mixing matrices.
In the quark sector, where the mixing is relatively weak, the off-diagonal terms should be small.
It is exactly the key point of the Froggatt–Nielsen mechanism to generate terms that are naturally
small and in the model we study in this chapter, we show how we can use this at our convenience.
To explain the larger mixing angles of the lepton sector, that might furthermore be close to special
mixing patterns such as the tribimaximal or bimaximal one, the use of discrete non-Abelian flavour
symmetries might be more appropriate.

While the Froggatt–Nielsen mechanism can provide relations between the ratios of masses of par-
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ticles of the same type – charged leptons in the example of section 2.3.1 – it does not help much to
explain patterns between particles of different type. Still, these relations might be present. A first
hint might be given by the fact that the second (down-type quarks) and third line (charged leptons)
in figure 1.16 are quite close together, allowing for the possibility of relations between charged lepton
and down-type quark masses.

At low energy scales, such relations do not quite exist. For none of the three generations the charged
lepton has the same mass as a quark or a simple multiple of it. When we discussed the Altarelli–
Feruglio model in section 2.4, we found that flavour symmetries are often implemented at a high
scale and that there are renormalization effects. If we run the renormalization group backwards we
can evaluate the quark and lepton Yukawa couplings at a high scale and the corresponding masses
are graphically depicted in figure 4.1. We find evidence for two relations. The first is bottom-tau
unification

mb = mτ . (4.1)

The second relation goes by the name of the Georgi–Jarlskog relation [99] and it connects the muon
mass with the mass of the strange quark

mµ = 3ms (4.2)

Both relations are supposed to hold at the scale of Grand Unification or slightly below. Given that
this is far above the electroweak scale, the Higgs field does not have a vacuum expectation value
here. The word ’mass’, equal to the product of the relevant Yukawa coupling with the Higgs vev
should thus be taken with a grain of salt. Technically, all particles are massless at this scale. What is
meant is that the Yukawa couplings, evaluated at this scale, satisfy the given relations.

meV eV keV MeV GeV TeV

Figure 4.1: The masses of the Standard Model fermions when evolved to a scale of 1012 GeV
in the MSSM with tan β = 50 as discussed below.

Lastly, we would like to explain the fact that the top quark is much heavier than the bottom quark
and the tau lepton. In theories with more than one Higgs boson (for instance any supersymmetric
theory), this may be explained by tanβ or comparable quantities that give information about the
relative vev of the Higgs that couples to the up- and down-sector. This large tanβ itself should then
follow from Higgs physics.

In table 4.1 we summarize the results mentioned in this section: the table contains the masses of the
quarks and charged leptons at the scale of their own mass (or, if this is unavailable, at 2 GeV). The
table also gives the masses at a high energy scale calculated in [100] using the renormalization group
running of the MSSM with large tanβ = 50. We choose a value of 1012 GeV for the high energy scale.
In section 4.9 we find that this is indeed close to the relevant scale for the generation of fermion
masses.

The errors for the quarks are rather large, but the bottom-tau unification and the Georgi–Jarlskog
relation are realized well within the margins of error. We also show ratios of the small Yukawa
couplings with certain powers of λ = 0.2 such that the resulting couplings are of order 1. As a note
of caution, we mention that the specific value of the high scale and of tanβ are both slightly arbitrary
and that the model inspired by the relations in the table does not have the MSSM as low energy limit.
Therefore we perform a simple one-loop renormalization analysis in section 4.10.

As mentioned in chapter 2, not many parameters of the neutrino masses are known. It will be the aim
of a family symmetric model to reproduce the solar and atmospheric mass differences of table 2.3.
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The actual neutrino masses themselves and in particular their ordering should then be a prediction
of the specific model.

We conclude this section with a ‘wishlist’ of properties of the masses of quarks and leptons that a
complete model should be able to reproduce:

• Find the right masses for the third family, in particular the large top mass.

• Suppress the second family masses: mµ/mτ = ms/mb = λ2 and mc/mt = λ4.

• Suppress the first family masses even stronger: me/mτ = md/mb = λ5 and mu/mt = λ7.

• Reproduce the bottom-tau and strange-muon relations.

• Reproduce the atmospheric and solar mass differences

• Predict the absolute neutrino mass scale and the neutrino hierarchy.

Next to properties of the masses, we would also like to reproduce or predict properties of the mixings
of the elementary fermions. The choices of our model regarding mixing are discussed in the next
section.

4.3 Bimaximal versus tribimaximal mixing

At the end of section 2.4 we discussed the next-to-leading order (NLO) corrections to the Altarelli–
Feruglio model, or rather to a simple extension of it that contains quarks. The leading order (LO)
results of this model were exact tribimaximal mixing in the lepton sector and no mixing at all in
the quark sector. We mentioned that these leading order mixing patterns were very accurate in the
neutrino sector, perhaps even too accurate. The measured value of the solar mixing angle is very
close to the tribimaximal value. The deviations can be at most of order λ2, where λ is still defined as
a parameter with value 0.2. The measurement error for the atmospheric mixing angle is rather large,
but also here the central value agrees very well with the tribimaximal prediction and corrections no
larger than of order λ2 are favoured. The size of corrections in the (1 2) and (2 3) sector naturally
imply very small corrections to the reactor mixing angle. This angle was zero at leading order and
thus θl13 very close to zero is a prediction of the model – one that is in contradiction with the latest
data. In the Wolfenstein picture, the parameter λ is defined as the size of the Cabibbo angle. If the
LO result has no quark mixing, this should all be generated at NLO, thus requiring much larger
corrections in the quark than in the lepton sector.

As described in section 2.4 NLO terms contain an extra flavon with respect to the leading order. We
recall that the suppression of NLO terms is vX/Λ with vX the vev of any flavon and Λ the cut-off
scale of the model. In models that have zero quark mixing at leading order and that reproduce the
Cabibbo angle at the NLO, we thus need

vX
Λ
≈ λ = 0.2. (4.3)

Good care must be taken to ensure that the two other mixing angles of the CKM matrix do not obtain
values as large as the Cabibbo angle, but in general it is possible to have these vanishing also at NLO
and to produce them only at the next-to-next-to-leading order. See also figure 4.2.

It is clear that the size of NLO corrections vX/Λ ≈ 0.2 is incompatible with the vX/Λ . 0.05 found
at the end of section 2.4 from lepton considerations. Now there are three possibilities. The first
option entails a complete separation of the flavon-induced physics of the quark and lepton sectors.
Instead of one value of vX/Λ, there are separate values for vXq/Λ (large) and vXl/Λ (small). These
two values of the flavon vevs might come from flavons that barely talk to each other or even from
different symmetry groups in the two sectors. Obviously, the idea of separating the flavour aspects
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Figure 4.2: Left: pie charts showing the flavour content of the three quark eigenstates. Right:
the no-mixing predictions of a typical flavour model at LO (upper line) and a NLO result,
where θ12 is corrected to the size of the observed Cabibbo angle. The other two mixing angles
follow at higher orders, hence the absence of the red sliver in the third mass eigenstate (lower
line).

of quark and lepton physics is badly compatible with the concept of a unified description of the two
sectors as discussed in the next section.

In both other options a single value of vX/Λ ≈ 0.2 is assumed. In a second scenario, the couplings of
flavons to the Yukawa terms are tailored such that only in the quark sector there is a correcting
term with just one extra flavon (thus giving a large correction), while in the lepton sector, the
first correcting term has two extra flavons, leading to a much smaller correction of order (vX/Λ)2.
This tailoring is highly non-trivial and might require the addition of more than one additional Zn
symmetry.

Thirdly, one can accept large corrections in both the quark and the lepton sector. In that case,
however, the tribimaximal mixing pattern is not a good leading order result, as the near-perfect
agreement with the data gets completely destroyed at the NLO. This is graphically shown in figure
4.3.

Figure 4.3: Left: pie charts showing the flavour content of the three neutrino eigenstates.
Right: The tribimaximal mixing pattern (upper line) and a possible NLO result if corrections
of the size λ are allowed. We have used δθl12 = −0.7θC , δθl13 = 0.5θC . The (2 3) angle is
not corrected. This is indeed the case in some models and allows for a more fair comparison
with figure 4.4

The fact that the quark sector requires a relatively large NLO correction, seems to suggest a lepton
mixing pattern that also requires large corrections, i.e. one that at leading order described the data
less perfect than the tribimaximal pattern. An interesting new piece of evidence are the so-called
quark-lepton complementarity relations.

θl12 + θq12 ' π/4 +O(λ2) , θl23 + θq23 ' −π/4 +O(λ2) . (4.4)

We note that there does not seem to be such a relation between the (1 3)-angles. In the quark sector,
this angle is tiny (of the order of λ3); in the lepton sector, the T2K result points to a value slightly
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smaller than λ. There is certainly no angle close to π/4 involved. The complementarity relations
point at a description in which the quark and lepton mixing angles are not only related by being part
of a powerseries with a comparable expansion parameter (vX/Λ), but may even be connected even
stronger. In the next section we discuss the grand unified model of Pati and Salam, in which there is
indeed a strong relationship between quark and lepton mass matrices as leptons may be seen as the
fourth colour. In minimal Pati–Salam models one finds equal mass matrices for charged leptons and
down-type quarks

Me = Md . (4.5)

This obviously implies a common source for the mixing angles. The model described in this chapter
is not a minimal Pati–Salam model and there are significant corrections to equation (4.5), but the idea
of a common source for quark and lepton mixing angles remains.

The bimaximal pattern of section 3.3.2 is a candidate mixing pattern that matches the criteria above1.
At leading order, both the (1 2) and (2 3) mixing angles in the lepton sector are maximal (45◦), while
the third lepton mixing angle as well as all quark mixing angles are zero. An elaborate model [64]
exists in the literature where bimaximal mixing in the lepton sector is derived from a S4 discrete
symmetry. Our model can be seen as an revision of [64] in order to include a realistic description of
the quark sector.

One way to realize bimaximal mixing at leading order is now if the neutrino mass matrix is
diagonalized by a maximal angle in the (1 2) sector2, while for all charged particles (that is, charged
leptons and both types of quarks), the mixing is maximal in the (2 3) sector. Writing a rotation in the
(i j) plane of a mass matrix over an angle α as Rij(α), we get

VCKM = (V uL )†V dL = R23(−π
4

)×R23(
π

4
) = 1

VPMNS = (V eL)†V ν = R23(−π
4

)×R12(
π

4
) .

(4.6)

These maximal mixing angles can originate from mass matrices that are relatively simple; they have
many zeroes in the elements we do not want to get mixed. In this chapter, we choose the following
realization for the neutrino mass matrix at leading order3

Mν ∝

 k0 k1λ 0
k1λ k0 0
0 0 k0

 . (4.7)

The charged particle mass matrices (generically denoted as Mx) are given at leading order by

Mx ∝

0 0 0
0 yb ya
0 −yb ya

 → Mx(Mx)† ∝

0 0 0
0 y2

a + y2
b y2

a − y2
b

0 y2
a − y2

b y2
a + y2

b

 . (4.8)

Here, ya will eventually be leading in the generation of the third generation masses and yb in those
of the second generation. The relative smallness of the second generation masses is explained by a
positive Froggatt–Nielsen charge; yb should therefore not be read as a true parameter of the model,
but rather as an effective parameter after ’dilution’ by the Froggatt–Nielsen mechanism4. At this

1It is amusing to see that the first references to the bimaximal mixing pattern are some four years older than those to the
tribimaximal mixing pattern. From a modern point of view, the tribimaximal pattern is more natural since already at first
order it reproduces decent agreement with the data. Obviously, this was not known in the first years of neutrino oscillations.
As long as the solar mixing angle were in agreement with an maximal angle, the bimaximal pattern was considered a good
leading order fit; when it was found that θl12 is significantly smaller than 45◦, it was dismissed for a while. Approximately
ten years after its first postulation, the pattern re-emerged as a pattern feasible with large next-to-leading order effects

2We recall that the CKM and PMNS matrix are respectively defined as VCKM = (V uL )†V dL and VPMNS = (V eL)†V ν , where
V ν is the matrix that appears in the diagonalization of the neutrinos (2.44) and V xL , x ∈ {u, d, e} are the matrices that
diagonalize MxMx†.

3The appearance of λs in this formula makes it look like a NLO expression instead of a LO result. However, the matrix
with just the k0 elements is proportional to the identity and does not allow the determination of V ν as it is invariant under
the action of any unitary matrix.

4This implies again that some terms in the mass matrix are larger than others; this choice follows from consistent
qualification of LO and NLO effects.
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level of approximation, the first generation particles are still massless; their masses are generated by
higher order effects.

At next-to-leading-order, the Cabibbo angle should be reproduced in the quark sector, while keeping
the two other mixing angles small. In the lepton sector, there should be a large correction to the
(1 2) mixing angle. The (2 3) angle should not be corrected at this order, as the data suggest at most
a λ2 deviation from the maximal value. From the input-side, there is no preference for a specific
behaviour of the (1 3) mixing angle. In our model, the correction is large, of order λ. This is good
news in view of the latest data.

This pattern of NLO corrections can be generated as follows. In the neutrino mass matrix (4.7), the
only correction is in the (3 3) element

(Mν) ∝

 k0 k1λ 0
k1λ k0 0
0 0 k0 + k2λ

2

 . (4.9)

This is still diagonalized byR12(π4 ). In the charged sector, NLO terms should give non-zero elements
in the (1 2) and (1 3) elements, but not in the first column.

Mx ∝

0 ydλ ycλ
0 yb ya
0 −yb ya

 → Mx(Mx)† ∝

 0 (yayc − ybyd)λ (yayc + ybyd)λ
(yayc − ybyd)λ y2

a + y2
b y2

a − y2
b

(yayc + ybyd)λ y2
a − y2

b y2
a + y2

b

 .

(4.10)
This is diagonalized by a combination of rotations over all three mixing angles

V xL = R23(
π

4
).R13(fλ).R12(gλ) . (4.11)

Here, f and g are functions of the parameters of the mass matrix and we ignored complex phases. It
is easy to see that in the diagonalization of the mass matrices in (4.10), the (1 2) rotation originates
dominantly from the second families, while the (1 3) rotation comes from the third families. The
parameters ya, yb, yc, yd in equation (4.10) generically stand for parameters in the mass matrices of
all three types of charged particles.

In our model, the parameters ya and yc are universal for up quarks, down quarks and charged
leptons, while yb and yd are the same for e and d, but different for u. This relates to the fact that
the hierarchy is larger in the up sector than in the two other sectors. The Higgs content of our model
is such that the coupling that gives mass to the second generation charged leptons and down-type
quarks does not have an analogue for the up-type quarks. The mass of the charm quark eventually
follows from a term whose d and e analogue is subleading. This has two positive consequences.
Firstly that the mass gap between top and charm is indeed larger than between the bottom and the
strange and between the tau lepton and the muon. Secondly that the parameter f of equation (4.11)
is the same for all three types of particles, while g is the same for charged leptons and down quarks,
but different for up quarks.

f = fe = fd = fu

ge = gd 6= gu

The mixing matrices at next-to-leading order read

VPMNS = (V eL)†V ν =

[
R12(−geλ)R13(−fλ)R23

(
− π

4

)]
R12

(π
4

)
=R23

(
− π

4

)
R13(f̃λ)R12

(π
4
− g̃eλ

)
,

VCKM = (V uL )†V dL =

[
R12(−guλ)R13(−fλ)R23

(
− π

4

)][
R23

(π
4

)
R13(fλ)R12(gdλ)

]
=R12

(
(gd − gu)λ

)
.

(4.12)
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Going from the first to the second line, we note that the rotation matrices in different sectors do not
commute, hence the introduction of parameters f̃ and g̃e. The lepton rotation in the (2 3) sector is still
−π/4 up to corrections of order λ2; the (1 2) mixing angle is corrected by an term of order λ from the
maximal LO result and a large angle in the (1 3) sector is generated. For the quarks, only the Cabibbo
angle is generated and it is of order λ as required; the other two angles are generated at even higher
orders. The bimaximal leading order and next-to-leading order results for leptons are graphically
summarized in figure 4.4; for quarks, it is the same as in figure 4.2.

Figure 4.4: Left: pie charts showing the flavour content of the three neutrino eigenstates.
Right: The bimaximal mixing pattern (upper line) and a possible NLO result if corrections
of the size λ are allowed in the (1 2) and (1 3) but not the (2 3) sector as in the model of this
chapter. We have used δθl12 = −0.7θC and δθl13 = 0.5.θC

We end this section with a continuation of the wishlist we ended the previous section with. With
respect to mixing angles in the lepton and quark sectors, the model should have the following
properties.

• Show bimaximal lepton mixing and no quark mixing at leading order.

• At next-to-leading order, have a correction of order λ to the (1 2) mixing angles of both leptons
and quarks.

• The two other angles in the CKM matrix should be generated by higher order effects, such that
θq23 ∼ λ2 and θq13 ∼ λ3.

• The atmospheric mixing angle θl23 may not get a NLO correction; its deviation from maximal is
at most λ2.

• The model should give a value or range for the reactor mixing angle θl13. When the model was
first constructed, θl13 > 0 was only hinted at and the result θl13 = O(λ) was a prediction – one
that is indeed supported by the current stream of data.

We have already seen that if the neutrino and charged fermion mass matrices at NLO are given
by respectively (4.9) and (4.10) all wishes can be realized, so basically the wishlist collapses to the
realization of these two matrices.

4.4 The Grand Unified Theory of Pati and Salam

In section 1.3.3 we introduced grand unified theories (GUTs). The main motivation was the obser-
vation that the three gauge couplings of an supersymmetric extension of the Standard Model go
through one point when plotted against energy. From this scale on, there might not be three separate
gauge forces, but one GUT-force instead. From a theoretical point of view, the main gain is that the
description of the gauge sector is thus much simpler.
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Also in the elementary fermion sector, grand unified theories offer a much simpler picture. We recall
from table 2.2 on page 21 that five or six representations are needed to describe the fermions of one
family of the Standard Model, depending on the question whether the righthanded neutrino is taken
into account or not. In this chapter we assume it exists. Six representations is already a relatively low
number. The lefthanded lepton doublet contains two states, one that below the electroweak phase
transition becomes an electron and one that becomes a neutrino. The states of the righthanded up
and down quarks (or, equivalently, anti-up or anti-down quarks) both describe three colour states.
The lefthanded quark doublet even contains six states: three colours of up and three of down quarks.
These states are depicted in figure 4.5.
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Figure 4.5: The sixteen fermion states of the Standard Model grouped in six representations

The way in which the fermions are grouped in figure 4.5 immediately suggests two possible unifi-
cations. Firstly, the difference between left- and righthanded fields are striking. While lefthanded
fields are in a doublet, righthanded fields are in two separate singlets. The hypercharge is exactly
such that these may be the two components of an SU(2)R-doublet. This righthanded SU(2) should
then be present at high energies, but broken above the Standard Model scale. The assumption of
this left-right symmetry closes the second horizontal gap in figure 4.5, thereby making it much more
symmetric and compact.

Secondly, the position of the leptons right next to the quarks makes it tempting to see the leptons as
a fourth colour. This is indeed possible if the SU(3) gauge group of QCD is extended to SU(4) at
higher energies. As a result, the vertical gap in figure 4.5 is closed as well and all sixteen Standard
Model states are described in just two representations, one lefthanded and one righthanded. We refer
to these as FL and F c respectively. The fact that the theory is now completely left-right symmetric
ensures anomaly cancellation.

The fact that quarks and leptons are treated on equal footing at high energies, with the symmetry
broken in a very specific way, allows the bottom-tau unification and the mass relation (4.2) between
muons and strange quarks. It is also essential in the generation of the mixing matrices from combined
effects in both sectors.

The gauge group described above is known as the Pati–Salam grand unified theory [101]. Technically,
it does not give a unified description. Even at high energies, the gauge group is the product of three
groups and not a single group as is the case in the more conventional GUTs such as SU(5) or SO(10).
Still, due to the unification of quarks and leptons and the fact that lefthanded and righthanded fields
are treated on the same footing, we refer to it as a GUT.

The Pati–Salam Gauge group SU(4)C′ × SU(2)L × SU(2)R is broken down to the Standard Model
in two steps. At a very high scale MC , the group SU(4)C′ of extended colour breaks down to QCD
SU(3)C times an additional U(1)B−L. The charges of the known particles under this force are exactly
the differences between their baryon and lepton number. At an intermediate scale MR, SU(2)R ×
U(1)B−L is broken to U(1)Y , the hypercharge of the Standard Model, according to Y = T3R + (B −
L)/2. The Standard Model gauge group now exists until the scale of electroweak symmetry breaking,
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where the symmetry breaking ends at SU(3)C × U(1)em:

SU(4)C′ × SU(2)L × SU(2)R
MC−→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L
MR−→ SU(3)C × SU(2)L × U(1)Y
Mew−→ SU(3)C × U(1)em

(4.13)

We stress that the Pati–Salam GUT is not the only GUT that unifies many fermions in a single
representation. In the SU(5) GUT of Georgi and Glashow [102], the righthanded down quarks and
the lepton doublet exactly have the right quantum numbers of the 5̄ of SU(5), while the righthanded
up quarks, the quark doublet and the righthanded electron together just fit in the anti-symmetric
tensor representation 10. According to Georgi and Glashow, the arguments of unification are so
strong that they are led “inescapably to the conclusion that SU(5) is the gauge group of the world.”
In the SO(10) GUT, the unification is even stronger as all 15 Standard Model particles plus the
righthanded neutrino fit in the single 16 representation.

The choice for the Pati–Salam GUT over SU(5) relates to the quark-lepton complementarity relations.
In minimal SU(5), one does not have equal charged lepton and down-type quark mass matrices as
in equation (4.5). Instead the relation is Me ∼ MT

d and as result, a correction of order λ to the solar
angle does not correspond to the Cabibbo angle of the CKM matrix.

On the other hand a reason to prefer Pati–Salam over SO(10) is related to the type-I and type-II
seesaw mechanisms. In these two GUT contexts, we expect both left-handed (LH) and right-handed
(RH) neutrino Majorana mass matrices to be present. As a result, the effective LH neutrino mass
matrix (4.7) gets contributions from both the type-I and II seesaw. In general, and this happens also
in our proposal, this interplay introduces two mass scales and a highly non-trivial flavour structure
for the effective neutrino mass matrix. It is difficult to find a realistic description of the PMNS matrix.
For this reason, a hierarchy between the two contributions is usually assumed. We can reproduce
quark-lepton complementarity in our model, if the type-II seesaw is dominant.

This possibility has already been investigated in several flavour GUT models, for example in [90,103–
105] in the context of the SO(10) GUT. However in [106] it was proven that the type-II dominance
is not a viable solution in such GUTs. In the Pati–Salam context, there is more freedom and the
eventual dominance of one of the two contributions could be realized. In this chapter we study the
gauge Higgs potential and we verify that a type-II dominance can be justified, even if it puts strong
constraints on the model building realization.

4.5 The flavour model building

In section 3.3.2 we found that the bimaximal mixing pattern can be reproduced by the 24-element
discrete group S4. For the group theory of S4, we refer to appendix 3.B. In this section, we use a
basis of S4 different than the one in chapter 3. Obviously, the physical results are independent of the
representation used. The representation chosen here makes the origin of the mixing effects from the
charged lepton or neutrino sector more apparent. The transformations from this basis to bases with
diagonal S or T is given in the appendix.

The spontaneous symmetry breaking of S4 is responsible for the flavour structure of the matrices in
equations (4.7) and (4.8): S4 is broken down to two distinct subgroups and it is the presence of this
mismatch at the LO which allows to construct Mν and Mx. More in detail, the different subgroups
to which S4 is broken down are the subgroups that preserve the vevs of the flavons. In order to
determine these structures, it is necessary to identify the elements of the group which leave the vevs
of the flavons invariant under their action. Doing so, we find that S4 is broken down to Z2×Z2 in the
neutrino sector, originated by the elements ST 2S and T 3ST of the classes 3C2 and 6C2 respectively.
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In the charged fermion sector, we find that S4 is broken down to a Z2 × Z2 group, distinct to the
one in the neutrino sector, generated by the two elements T 2 and ST 2ST 3 of the classes 3C2 and 6C2
respectively.

It was already mentioned in section 2.3.2 that next to the non-Abelian S4 auxiliary Abelian symme-
tries are required for a complete model. The complete flavour group is

Gf = S4 × Z4 × U(1)FN × U(1)R . (4.14)

The other terms in Gf carry out specific roles: the Abelian Z4 symmetry is required to avoid
dangerous terms in the superpotential, it helps to keep the different sectors of the model, quarks
from leptons and neutrinos from charged leptons, separated; it is also useful in the generation of
the flavon vacuum alignment. The continuous Frogatt-Nielsen (FN) Abelian symmetry, U(1)FN , is
introduced to justify charged fermion mass hierarchies. As in section 2.3.1, the (righthanded fields
of the) first and second generation are assigned non-zero FN-charge, albeit a lower one than the one
in section 2.3.1. This relates to the fact that mass terms for the first and second family often already
require multiple (ordinary) flavons. The continuous R-symmetry U(1)R, was introduced in section
2.4. It simplifies the constructions of the scalar potential. We stress again that the supersymmetric
context is of great utility in the discussion of the scalar potential and helps in the gauge coupling
running, but a similar non-supersymmetric model can in principle be constructed as well. In this
chapter we only deal with SM particles and therefore we use the same symbols for a supermultiplet
and its even R-parity components.

4.5.1 The matter, Higgs and flavon content of the model

As discussed in section 4.4, all fermionic matter of the SM plus a righthanded neutrino is contained in
two Pati–Salam multiplets. The lefthanded multiplet FL contains the quark and the lepton doublets,
while the righthanded multiplet F c contains the righthanded up quark, down quark, charged lepton
and neutrino

SU(3)C × SU(2)L ×U(1)Y → PS

(3, 2, 1/6)Q + (1, 2, −1)L → (4, 2, 1)

(3, 1, −2/3)uc + (3, 1, 1/3)dc + (1, 1, 1)ec + (1, 1, 0)νc → (4, 1, 2) .

(4.15)

The three copies of the LH supermultiplet are combined in the three-dimensional representation 31 of
S4, while the three families of the RH supermultiplet are in one of the 1-dimensional representations,
12, 12 and 11 respectively. The fact that we can put different representations within one family in
different representations of the family symmetry group is essential here. Note that this would not
be possible in (minimal) SO(10), where all Standard Model particles are in one sixteen dimensional
representation. The first two families are also charged under U(1)FN by two units. This suppresses
their masses with respect to the third family ones. Further suppression of the first family with respect
to the second is due to their different Z4 charges that necessitate multiple flavon insertions already.

All the properties of the matter fields are summarized in table 4.2 and the unifying aspects are
stressed in figure 4.6. Instead of 18 matter representations, as in the Standard Model, our model
just needs four.

Our model contains five flavon fields that develop vacuum expectation values: two S4 triplets (ϕ
and ϕ′) that, because of their Z4 charge, deal at LO only with the Dirac Yukawa couplings of quarks
and leptons, and two fields, one singlet (σ) and one triplet (χ), that, by Z4, deal at LO only with
the Majorana masses of neutrinos. The fifth flavon is the Froggatt–Nielsen messenger, which we
indicate with θ. Their properties are shown in table 4.3. Under the continuous R-symmetry, the
matter superfields transform as U(1)R = 1, while all the flavons are neutral. Additional U(1)R = 2
driving flavons are introduced in section 4.8. These help the original flavons obtaining their vevs.

Fermion masses and mixings arise from the spontaneous breaking of the flavour symmetry by means
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Matter FL F c1 F c2 F c3

PS (4, 2, 1) (4, 1, 2) (4, 1, 2) (4, 1, 2)

S4 31 12 12 11

U(1)FN 0 2 2 0

Z4 1 1 i −i

Table 4.2: Transformation properties of the matter fields. Note that the PS assignments
should be read in agreement with SU(4)C × SU(2)L × SU(2)R.
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Figure 4.6: The forty-eight fermion states of the Standard Model grouped in eighteen
representations as in the SM (upper line) or in four representations as in our model (lower
line)

Flavons θ ϕ ϕ′ χ σ

S4 11 31 32 31 11

U(1)FN -1 0 0 0 0

Z4 1 i i 1 1

Table 4.3: The flavon field content and their transformation properties under the flavour
symmetries. All flavon fields are singlet of the gauge group.

of the flavons which develop vevs according to the following configuration: at LO we have

〈ϕ〉 =

 0
1
1

 vϕ , 〈ϕ′〉 =

 0
1
−1

 vϕ′ , (4.16)

〈χ〉 =

 0
0
1

 vχ , 〈σ〉 = vσ , (4.17)

〈θ〉 = vθ . (4.18)
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In this section we simply assume this vev alignment and we prove it to be a natural solution
of the minimization of the scalar potential in section 4.8. Furthermore we assume that the FN
messenger and the other flavons have vevs of the same order of magnitude: it results partly from
the minimization procedure and partly from the constraints coming form the comparison with the
measured mass hierarchies, as it will be clearer in the following.

The Higgs fields of our model relevant to build the fermion mass matrices transform under the
gauge group and under the Z4 factor of the flavour symmetry: in table 4.4 we summarize their
transformation rules. The first three fields, φ, φ′ and ρ, deal at LO only with the Dirac Yukawa
couplings. Due to the Z4 charges, φ and φ′ are responsible for the third family and the charm quark
masses, while ρ is responsible for the strange and µmasses. The field ρ ∼ (15, 2, 2) being in the adjoint
of SU(4)C may develop vev along the SU(4)C direction diag(−3, 1, 1, 1). This implies that the leptons
which get mass via this field are a factor 3 heavier than the corresponding quarks and therefore this
field is very useful to describe the second family, at least in the down sector, reproducing the well
known Georgi–Jarlskog relation [99], mµ ≈ 3ms, at the high energy scale. As we show in the next
sections, in order to recover the up-quark mass hierarchies the ρ projection along the light doublet
Higgses, vuρ and vdρ , has to point only in the down direction: the requirement vuρ = 0 can be realized
only if the Higgs field content contains two identical copies of the Higgs field (1, 2, 2) and this justifies
the presence of both φ and φ′.

Finally, as we show in detail in the following sections, the field ∆R is necessary to conclude the PS
symmetry breaking pattern and to recover the SM gauge group through its spontaneous symmetry
breaking vev. At the same time, when ∆R develops a vev, it gives a Majorana mass to the right-
handed neutrinos thus contributing to the effective neutrino mass matrix through the usual type-I
seesaw mechanism. A second source for the neutrino mass matrix comes from ∆L, in terms of the
type-II seesaw mechanism.

Higgses φ, φ′ ρ ∆L ∆R

PS (1, 2, 2) (15, 2, 2) (10, 3, 1) (10, 1, 3)

Z4 1 −1 1 −1

Table 4.4: The Higgs fields responsible of generating fermion mass matrices and their
transformation under the gauge and the Abelian flavour symmetries. All Higgs fields are
singlets under S4 ×U(1)FN ×U(1)R, while they can transform non-trivially under the Z4

factor.

In our scheme the neutrino mass matrix is dominated by type-II seesaw. As already stated in the
two previous sections, the flavour structure of the effective neutrino mass matrix in equation (4.7)
arises from an interplay between the two seesaw sources. In the PS context mD ∼ Mu and this
suggests a hierarchical structure for the type-I contribution, which does not agree with the flavour
structure in (4.7). We show that, given mD ∼Mu, the required flavour structure for the Majorana RH
neutrino mass necessary to recover equation (4.7) is not allowed in our model. This suggests to find
a construction in which the type-II contributions are dominating over the type-I and we show that
such a feature puts strong constraints on the model building.

4.6 Fermion mass matrices at leading order

In this and the next section, we present the most important results: the fermion mass matrices and
the resulting masses and mixings of the fermions. We first discuss the results at leading order in the
flavon insertions. As expected for a model of bimaximal mixing, the results do not match the data
very closely and next-to-leading order effects are very important as well. These are the topic of the
next section.
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The central object in the study of the fermion mass matrices is the matter superpotential, WY . This
Yukawa superpotential can be written as a sum of two pieces,

WY =WDir +WMaj . (4.19)

These contain respectively terms with Dirac and Majorana structures. We study the superpotential
making a power expansion in terms of flavon/Λ, distinguishing between leading and subleading
couplings.

4.6.1 Dirac mass terms

We first study the Dirac matter superpotential at LO

WLO
Dir = y1

1

Λ
FLF

c
3 (φ+ φ′)ϕ+

+ y2
1

Λ3
FLF

c
2 θ

2ρϕ′ +

4∑
i=1

y3,(i)
1

Λ5
FLF

c
2 θ

2(φ+ φ′)X
(1)
i +

+

3∑
i=1

y4,(i)
1

Λ4
FLF

c
1 θ

2ρX
(2)
i + y5

1

Λ5
FLF

c
1 θ

2(φ+ φ′)χ3 .

(4.20)

Here we use a compact notation to avoid the proliferation of coefficients: the term X
(1,2)
i represents

a list of products defined as

X
(1)
i ≡ {ϕ3, ϕ2ϕ′, ϕϕ′ 2, ϕ′ 3} ,

X
(2)
i ≡ {ϕ2, ϕϕ′, ϕ′2} .

(4.21)

Each term represents all the different S4 contractions which can be constructed with those flavons;
furthermore we indicate with y1(φ+φ′) the combination y(1)

1 φ+y
(2)
1 φ′ and similarly for y3, (i) and y5.

When the flavour symmetry is broken, the model describes a non-minimal PS model in which the
Yukawa couplings present a well defined structure. Then, when the PS gauge symmetry is broken
to the SM gauge group φ, φ′ and the colour singlet component of ρ mix in four light Higgses, two
up-type and two down-type, hu,d and h′u,d. Thus at the EW scale φ, φ′ and ρ have non-vanishing
projections to the light Higgs components that acquire a vev. We indicate these components as vu,dφ ,
vu,dφ′ and vu,dρ . As already said, we need to impose that the ρ field has no projection along the up
direction: vuρ = 0. This can be realized because in terms of the light Higgs up-vevs, vu1 = 〈hu〉 and
vu2 = 〈h′u〉, vuρ is given by

vuρ = U13v
u
1 + U23v

u
2 . (4.22)

The matrix U is introduced in appendix 4.A. The constraint vu2 = −U13/U23v
u
1 can be imposed

thanks to the freedom we have in the superpotential and in the soft potential5. Note that we could
relax the condition vuρ = 0 allowing a mild hierarchy between vuρ and vdρ , for example of order λ2,
without affecting the final mass hierarchies, but in the following, for simplicity, we work under the
assumption that vuρ = 0.

5This requirement, imposed by hand, could be motivated by some symmetry argument, but to introduce a mechanism that
could explain vuρ = 0, it would be necessary deeply modifying the structure of our model. In the present chapter we just
assume this fine-tuning and we refer to the Appendix 4.A.2 for further details. We note that the fine-tuning we introduce in
the model is similar to the fine-tuning which is universally accepted whenever the MSSM has to be recovered.
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The final Dirac fermion mass matrices we get are given by

MLO
e = −3

 0 0 0
0 y2 0
0 −y2 0

 vdρλ
3 +

 0 0 0
0 0 y1

0 0 y1

 vdφλ , (4.23)

MLO
d =

 0 0 0
0 y2 0
0 −y2 0

 vdρλ
3 +

 0 0 0
0 0 y1

0 0 y1

 vdφλ , (4.24)

MLO
u = mLO

D =

 0 0 0
0 y3 0
0 −y3 0

 vuφλ
5 +

 0 0 0
0 0 y1

0 0 y1

 vuφλ . (4.25)

We used the compact notation yiv
u/d
φ to indicate y(1)

i v
u/d
φ + y

(2)
i v

u/d
φ′ and absorbed all non-relevant

CG coefficients. Note that y3 is the sum of the different y3, (i) and that, by construction, y1,2,3 can
be considered complex coefficients with modulus of order 1. Note also that the different numerical
coefficients between charged leptons and down quarks originate from to the presence of ρ instead
of φ (φ′) in the superpotential. The operators which should give contributions to the first families
(those proportional to y4 and y5) are vanishing, thanks to the special flavon vev alignment. As a final
comment, we are neglecting at this level of approximation the contributions to MLO

e,d coming from
the operators proportional to y3: these terms, which preserve the anti-alignment of the second and
third entries of the second columns, are λ2 suppressed with respect to the LO ones proportional to
y2.

The quark and lepton masses of the second and the third generation follow from (4.23)–(4.25)

mµ ≡ −3
√

2y2v
d
ρλ

3 , mτ ≡
√

2y1v
d
φλ ,

ms ≡
√

2y2v
d
ρλ

3 , mb ≡
√

2y1v
d
φλ ,

mc ≡
√

2y3v
u
φλ

5 , mt ≡
√

2y1v
u
φλ .

(4.26)

We note that the top-quark Yukawa does not come from a renormalizable coupling; it has the same
suppression as the other third family fermion masses. Obviously, the dominance of the top-quark
mass should be justified by the hierarchy between vuφ and vdφ. The mass matrices in (4.23)–(4.25) are
diagonalized by a maximal rotation in the sector (23), i.e. Ue = Vd = Vu = R23(π/4), while the
fermion mass hierarchies are given by∣∣∣∣mµ

mτ

∣∣∣∣ ∼ ∣∣∣∣ms

mb

∣∣∣∣ ∼ O(λ2) ,

∣∣∣∣mc

mt

∣∣∣∣ ∼ O(λ4) . (4.27)

Furthermore, at the cut off, we recover some relations among the masses of different fermions: the
b− τ unification and the Georgi–Jarlskog relation [99]

|mτ | = |mb| , |mµ| = 3|ms| . (4.28)

Finally we should comment of the relative value of the top and of the bottom masses:∣∣∣∣mt

mb

∣∣∣∣ =

∣∣∣∣∣y
(1)
1 vuφ + y

(2)
1 vuφ′

y
(1)
1 vdφ + y

(2)
1 vdφ′

∣∣∣∣∣ . (4.29)

Note that usually this ratio is proportional to tanβ, the ratio between the up- and down-vevs of the
light Higgses, but this is not the case: indeed the light Higgses are combinations of φ, φ′ and ρ and
therefore we can define tanβ as

tanβ ≡

√
(vuφ)2 + (vuφ′)

2√
(vdφ)2 + (vdφ′)

2 + (vdρ)2
6=
∣∣∣∣mt

mb

∣∣∣∣ . (4.30)
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4.6.2 Majorana mass terms

We now discuss the part of the superpotential which contains the Majorana couplings. At LO it is
given by6

WLO
Maj = k̃0 FLFL∆L +

2∑
i=1

k̃1,(i)

Λ
FLFL∆LX

(3)
i +

3∑
i=1

k̃2,(i)

Λ2
FLFL∆LX

(4)
i + z1 F

c
3F

c
3 ∆R . (4.31)

This uses the compact notation
X(3) ≡ {χ, σ} ,

X(4) ≡ {χ2, χσ, σ2} .
(4.32)

This superpotential is responsible for giving the following Majorana LH and RH neutrino mass
matrices:

ML =

 k0 k1λ 0
k1λ k0 0
0 0 k0 + k2λ

2

 vL , MR =

 0 0 0
0 0 0
0 0 z1

 vR . (4.33)

Here vL, vR are the vevs of ∆L,R respectively. At every order in λ, there is a diagonal contribution,
parameterized by one of the k̃i. The collective effect is captured in the effective parameter k0 of order
1.

k0 ≡ k̃0 + k̃1,(2)λ+ k̃2,(1)λ
2 + k̃2,(3)λ

2 (4.34)

In the same spirit we define k1 and k2

k1 ≡ k̃1,(1) + k̃2,(2)λ ,

k2 ≡ −k̃2,(1) .
(4.35)

WhileML corresponds to the type-II contribution to the effective neutrino mass matrix,MR provides
a type-I term. Even at this approximation level, we note the tension between the two seesaw
contributions: m(type-II)

ν ≡ML presents a maximal rotation in the (12) sector, while it is easy to verify
that m(type-I)

ν ≡ mDM
−1
R mT

D shows a democratic structure on the (23) sector which corresponds to a
maximal rotation here. To recover the mass matrix in (4.7) it is necessary that the type-II contribution
dominates over the type-I terms: in this case it is sufficient to identify a with k0, b with k1λ and c
with k0 + k2λ

2.

The neutrino masses can be written as

|m1,2|2 =
(
|k0|2 ∓ 2|k0| |k1| cos(θk0 − θk1)λ+ |k1|2 λ2

)
v2
L , (4.36)

|m3|2 =
(
|k0|2 + 2|k0| |k2| cos(θk0 − θk2)λ2

)
v2
L . (4.37)

Here θki is the argument of the complex number ki. The definition of the solar mass difference
implies that |m1| is smaller than |m2|. This requires cos(θk0

− θk1
) > 0. We see that in most of

parameter space the spectrum is quasi degenerate, as the unsuppressed term with |k0|2 that appears
in all three masses dominates over the other terms that are λ or λ2 suppressed.

We also see that in most of the parameter space |m3| is the central eigenvalue: indeed |m1| (|m2|) is
shifted down (up) from the central value |k0|2v2

L by a term proportional to λ, while |m3| stays closer
to this central value as it is only shifted by a term proportional to λ2. Having |m3| as the central
eigenvalue is obviously in contradiction with experimental data. We conclude that our model is only
viable when the term 2|k0| |k1| cos(θk0 − θk1)λ is suppressed. This is clearly possible if either |k0| or
|k1| or cos(θk0−θk1) (or a combination of them) is small. In particular, the latter condition means that

6Regarding the terms which contribute to MR, we consider at LO only the first non vanishing term in the superpotential.
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k0 and k1 are almost perpendicular in the complex plane. We now investigate on these different
scenarios, calculating the solar and atmospheric mass squared differences. Taking as definition
of ∆m2

atm the mass squared difference between the heaviest and the lightest neutrinos, we have
different results for normal (NO) and inverse (IO) mass ordering as given by

∆m2
sol ≡ m2

2 −m2
1

= 4|k0||k1| cos(θk0
− θk1

)λ v2
L ,

∆m2
atm ≡

{
∆m2

atmNO ≡ (m2
3 −m2

1)

∆m2
atmIO ≡ (m2

2 −m2
3)

= 2|k0||k1| cos (θk0
− θk1

)λ v2
L︸ ︷︷ ︸

∆m2
sol/2

∓
(
|k1|2 − 2|k0||k2| cos (θk0 − θk2)

)
λ2 v2

L .

(4.38)

On the right-hand side of the last equation, the first term is suppressed by λ; the second one only
by λ2. We would be tempted to conclude that the first term gives the dominant contribution: it is
however exactly this term that must be suppressed in order to avoid |m3| as the central eigenvalue.
Furthermore, this term is equal to half of the solar mass squared difference that is about 30 times
as small as the atmospheric splitting (see table 2.3). As a result, to recover a value for ∆m2

atm close
to the measured one, we need that the second term on the right-hand side of equation (4.38) is the
dominant one. We can estimate the ratio between the two terms by calculating r, the ratio of the two
mass squared differences:

(rNO,IO)−1 ≡
∆m2

atmNO,IO

∆m2
sol

=
2|k0||k1| cos (θk0

− θk1
)λ∓

(
|k1|2 − 2|k0||k2| cos (θk0

− θk2
)
)
λ2

4|k0||k1| cos (θk0
− θk1

)λ

=
1

2
∓ |k1|2 − 2|k0||k2| cos (θk0 − θk2)

4|k0||k1| cos (θk0
− θk1

)
λ .

(4.39)

The natural range of this quantity r−1 would be something like [0.3 − 0.7] (central value 0.5 and
corrections of order λ). However, measurements give r = 0.032+0.006

−0.005 ≈ λ2, or in other words 1/r ∼
30 ∼ λ−2. We conclude that

4|k0||k1| cos (θk0 − θk1)∣∣|k1|2 − 2|k0||k2| cos (θk0
− θk2

)
∣∣ ≈ λ3 . (4.40)

The most natural explanation may be assuming that cos (θk0 − θk1) is very small. In that case
the absolute values of all parameters can still be of order one, which was part of the naturalness
requirement of the model. Neutrinos present a quasi degenerate (QD) spectrum and both normal
and inverse ordering are possible. The typical scale of neutrino masses vL is given in this case by

v2
L =

∆m2
atm

λ2
∣∣|k1|2 − 2|k0||k2| cos (θk0

− θk2
)
∣∣ ≈ (0.1eV)2 . (4.41)

Possible alternative solutions of equation 4.40 that give a non-QD spectrum can be obtained only by
admitting the parameters belong to a larger and less natural, range, λ2 − λ−2. In this case when k0 is
of order λ−2 and cos (θk0

− θk1
) ∼ λ while k1,2 still of order one a inverse hierarchical (IH) spectrum

can be obtained. Another possibility to get an IH spectrum is having k0 and cos (θk0
− θk1

) of order
one, k1 ∼ λ−1 and k2 ∼ λ2. Finally a normal hierarchical (NH) spectrum can be obtained only in the
case in which k2 ∼ λ−2, cos (θk0

− θk1
) and k1 of order 1 and k0 ∼ λ2.

At this moment, we conclude that the quasi-degenerate hierarchy (with either ordering) is the most
natural outcome of our model, while normal and inverse hierarchy solutions are also possible, albeit
with slightly unnatural values of the parameters. In section 4.10 we find that the renormalization
flow dramatically changes these predictions.



4.7. Fermion mass matrices at higher orders 101

4.6.3 Mixing matrices at Leading Order

As anticipated, the mixing pattern at leading order is the bimaximal pattern that does not describe
the data very well. Only considering the NLO contributions, which we study in the next section, the
model agrees with the measurements.

V = 1 , U = R23

(
−π

4

)
R12

(π
4

)
=

 1/
√

2 −1/
√

2 0

1/2 1/2 −1/
√

2

1/2 1/2 +1/
√

2

 . (4.42)

4.7 Fermion mass matrices at higher orders

The NLO contributions in the mass matrices originate from two sources: the first are the higher order
terms in the superpotential, while the others come from the insertion of the NLO flavon vevs in the
operators in equations (4.20, 4.31). In section 4.8 we show how the flavons develop vevs and how
they are corrected. Here we anticipate the results, reporting the flavon vevs in a form which is useful
for the discussion in this section:

〈ϕ〉 =

 0
1
1

 vϕ +

 1
0
0

 δvϕ , 〈ϕ′〉 =

 0
1
−1

 vϕ′ +

 1
0
0

 δvϕ′ ,

〈χ〉 =

 0
0
1

 vχ +

 0
1
0

 δ2vχ , 〈σ〉 = vσ .

(4.43)

Some comments are in place: the subleading corrections are suppressed with respect the LO terms
as δv/v ∼ λ and δ2v/v ∼ λ2 for each flavon; NLO corrections to the second and third entries of 〈ϕ〉
and 〈ϕ′〉 are present, but they present the same structure of the LO terms and can be re-absorbed;
similarly, the NLO corrections to the third entry of 〈χ〉 and to 〈σ〉 are present, but they can be re-
absorbed into the LO terms; the other entries of 〈χ〉 do not receive any corrections at NLO. If we
consider the NNLO approximation level, i.e. corrections of relative order λ2 with respect the LO
terms, we see that the second and the third entries of 〈ϕ〉 (〈ϕ′〉) are not (anti-)aligned anymore and
that the second entry of 〈χ〉 is filled in. It is interesting that the first entry of 〈χ〉 is still vanishing at
this level. We will see the relevance of this structure in a while.

4.7.1 Dirac mass terms

The Dirac matter superpotential at NLO is given by

WNLO
Dir =

3∑
i=1

y6,(i)
1

Λ2
FLF

c
3 (φ+ φ′)X

(5)
i +

+

3∑
i=1

y7,(i)
1

Λ4
FLF

c
2 θ

2ρX
(6)
i +

8∑
i=1

y8,(i)
1

Λ6
FLF

c
2 θ

2(φ+ φ′)X
(7)
i +

+

6∑
i=1

y9,(i)
1

Λ5
FLF

c
1 θ

2ρX
(8)
i +

7∑
i=1

y10,(i)
1

Λ6
FLF

c
1 θ

2(φ+ φ′)X
(9)
i +

+

13∑
i=1

y11,(i)
1

Λ7
FLF

c
1 θ

2(φ+ φ′)X
(10)
i .

(4.44)
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We adopt a compact notation similar to the one in equation (4.20):

X
(5)
i ≡ {ϕσ, ϕχ, ϕ′χ} ,

X
(6)
i ≡ {ϕ′σ, ϕχ, ϕ′χ} ,

X
(7)
i ≡ {ϕ3χ, ϕ2ϕ′χ, ϕϕ′ 2χ, ϕ′ 3χ, ϕ3σ, ϕ2ϕ′σ, ϕϕ′ 2σ, ϕ′ 3σ} ,

X
(8)
i ≡ {ϕ2χ, ϕϕ′χ, ϕ′2χ, ϕ2σ, ϕϕ′σ, ϕ′2σ} ,

X
(9)
i ≡ {ϕ4, ϕ3ϕ′, ϕ2ϕ′ 2, ϕϕ′ 3, ϕ′ 4, χ4, χ3σ} ,

X
(10)
i ≡ {ϕ4χ, ϕ3ϕ′χ, ϕ2ϕ′ 2χ, ϕϕ′ 3χ, ϕ′ 4χ, ϕ4σ, ϕ3ϕ′σ, ϕ2ϕ′ 2σ, ϕϕ′ 3σ,

ϕ′ 4σ, χ5, χ4σ, χ3σ2} .

(4.45)

Note that not all of these terms are non-vanishing when the flavons develop a vev: in particular X(9)
i

for any i do not give a contribution when the LO vevs are considered: only when the corrections to
the vevs are introduced, they contribute to the mass matrices. For this reason also the terms with
X

(10)
i are taken into account, even if they are suppressed by an additional Λ. The other terms which

are vanishing at this order of approximation are X(8)
i for i = 4, 5, 6 and X(10)

i for i = 6, . . . , 13. When
flavons and Higgs fields develop vevs, we get the following Dirac mass matrices:

MNLO
e = −3

 0 0 0
ỹ4 0 0
ỹ9 0 0

 vdρλ
5 − 3

 0 ỹ7λ 0
0 ỹ2 0
0 −ỹ2 0

 vdρλ
3 +

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 vdφλ , (4.46)

MNLO
d =

 0 0 0
ỹ4 0 0
ỹ9 0 0

 vdρλ
5 +

 0 ỹ7λ 0
0 ỹ2 0
0 −ỹ2 0

 vdρλ
3 +

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 vdφλ , (4.47)

MNLO
u =

 0 0 0
ỹ5 0 0
ỹ10 0 0

 vuφλ
7 +

 0 ỹ8λ 0
0 ỹ3 0
0 −ỹ3 0

 vuφλ
5 +

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 vuφλ . (4.48)

At this order, the neutrino Dirac matrix still equals the up-type quark matrix mNLO
D = MNLO

u . In the
above equations we used the definitions

ỹ1 ≡ y1 + y6,(1)λ ,

ỹ2 ≡ y2 + y7,(1)λ ,

ỹ3 ≡ y3 +
∑8
i=5 y6,(i)λ ,

ỹ4 ≡ F1[y9,(i)] +
1

λ
y4

(
δvϕ′

vϕ′
− δvϕ

vϕ

)
,

ỹ5 ≡ F2

[
y11,(i)

]
+

1

λ
F3

[
y10,(i);

δvϕ
vϕ

,
δvϕ′

vϕ′

]
+

1

λ2
F4

[
y5;

δ2vχ
vχ

]
,

ỹ6 ≡ (y6,(2) + y6,(3)) +
1

λ
y1
δvϕ
vϕ

,

ỹ7 ≡ (y7,(2) + y7,(3)) +
1

λ
y2
δvϕ′

vϕ′
,

ỹ8 ≡ ∑4
i=1 y8,(i) +

1

λ

∑4
i=2 y3,(i)

δvϕ′

vϕ′
,

ỹ9 ≡ F5[y9,(i)] +
1

λ
y4

(
δvϕ′

vϕ′
+
δvϕ
vϕ

)
,

ỹ10 ≡ F6

[
y11,(i)

]
+

1

λ
F7

[
y10,(i);

δvϕ
vϕ

,
δvϕ′

vϕ′

]
.

(4.49)
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In the previous definitions we can see that each ỹ is the sum of two pieces: the first refers to the
terms in equation (4.44) when the LO flavon vevs are considered; the second comes from the terms
in equation (4.20) where the NLO flavon vevs are introduced. The only exception is F3 which refers
to the term proportional to X(9)

i in equation (4.44) and that give contribution only when the NLO
flavon vevs are considered. These two parts are of the same order of magnitude, since δv/v ∼ λ
and δ2v/v ∼ λ2. Note that Fi are distinct linear combinations of the arguments in the square
brackets. The expressions in equations (4.46, 4.47, 4.48) are valid at NLO level. Note that the (anti-
)alignment between the second and third entries of the (second) third families are still preserved.
When considering higher order terms, this feature is lost and the (1, 1) entry of each mass matrix is
filled.

The values for the charged fermion masses given in equation (4.26) are modified only by substituting
the coefficients yi with their tilde-versions:

y1 → ỹ1 , y2 → ỹ2 , y3 → ỹ3 . (4.50)

At this approximation level, the first family masses are not yet well-described, because they are too
small. We come back to these light masses in section 4.7.4.

4.7.2 Majorana mass terms

Moving to the Majorana part of the matter superpotential at NLO, we get

WNLO
Maj =

3∑
i=1

k3,(i)

Λ3
FLFL∆LX

(11)
i +

z2

Λ4
F c2F

c
2 θ

4∆R+

+
z3,(1)

Λ4
F c2F

c
3 θ

2∆Rϕϕ
′ +

3∑
i=2

z3,(i)

Λ5
F c2F

c
3 θ

2∆RX
(12)
i−1 +

6∑
i=4

z3,(i)

Λ6
F c2F

c
3 θ

2∆RX
(13)
i−3 +

+

4∑
i=1

z4,(i)

Λ5
F c1F

c
3 θ

2∆RX
(1)
i +

12∑
i=5

z4,(i)

Λ6
F c1F

c
3 θ

2∆RX
(14)
i−4 +

+
z5

Λ6
F c1F

c
2 θ

4∆Rϕχ+

2∑
i=1

z6,(i)

Λ6
F c1F

c
1 θ

4X
(15)
i .

(4.51)

As usual we used compact notation with

X
(11)
i ≡ {χ3, χ2σ, σ3} ,

X
(12)
i ≡ {ϕϕ′χ, ϕϕ′σ} ,

X
(13)
i ≡ {ϕ2χ2, ϕϕ′χ2, ϕ′ 2χ2} ,

X
(14)
i ≡ {ϕ3χ, ϕ2ϕ′χ, ϕϕ′ 2χ, ϕ′ 3χ, ϕ3σ, ϕ2ϕ′σ, ϕϕ′ 2σ, ϕ′ 3σ} ,

X
(15)
i ≡ {ϕ2, ϕ′ 2} .

(4.52)

A few comments are in place. Note that all the terms proportional to k3 can be reabsorbed by
a redefinition of k̃0,1,2 and that the only new structure which corrects ML comes from the term
FLFL∆Lχ when we consider the subleading corrections of 〈χ〉: as a result the entries (1, 3) and (3, 1)
ofML are filled in by terms proportional to λ3. Regarding the contributions to the Majorana mass
matrix for the RH neutrinos, it is important to see that the terms proportional to z3,(i) with i = 1, . . . , 3
and to z4,(i) with i = 1, . . . , 4 are vanishing, due to the particular flavon vev alignment of the model.
As a consequence all the NLO contributions toMR are of the order of λ6, apart that one to the entry
(2, 2) which is of the order of λ4. Finally, we note that each entry ofMR is independent from all the
others, being F ci singlets of the flavour symmetry, and therefore all the zi are free parameters with
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modulus of order 1. We listed only the dominant contributions, but the higher order terms would
correspond to subleading corrections, which we can safely neglect in the following.

As a result of this analysis the Majorana masses for LH and RH neutrinos are given by

MNLO
L =

 k′0 k′1λ k′3λ
3

k′1λ k′0 0
k′3λ

3 0 k′0 + k′2λ
2

 vL , MNLO
R =

 z6λ
6 z5λ

6 z4λ
6

z5λ
6 z2λ

4 z3λ
6

z4λ
6 z3λ

6 z1

 vR . (4.53)

With the notation k′i we account for all the redefinitions done on the parameters. As already stated
when discussing the LO mass matrices, the contributions to the effective light-neutrino mass matrix
come from the type-I and type-II seesaw mechanisms. The resulting NLO m

(type-I)
ν is given by

m(type-I)
ν =mNLO

D (MNLO
R )−1(mNLO

D )T

=

 ỹ2
6λ

2 ỹ1ỹ6λ ỹ1ỹ6λ
ỹ1ỹ6λ ỹ2

1 ỹ2
1

ỹ1ỹ6λ ỹ2
1 ỹ2

1

 (vuφ)2λ2

z1vR
,

(4.54)

This is diagonalized by a maximal rotation in the (2 3) sector and not in the (1 2) sector as demanded
by equation 4.6. As a result, we need that the type-I seesaw contribution suppressed with respect to
type-II seesaw one by at least a factor of order λ2. Using equation (4.50), this translates to

m2
t

z1vR
≤ λ2k′0vL . (4.55)

We remind here that vL, vR are the vevs of ∆L and ∆R respectively. In particular vL is the vev
developed by the SM (1, 3, 1) triplet component of ∆L and it is induced once the EW symmetry
is broken. As we show in detail in the next sections the physical SM triplet T ∼ (1, 3, 1) arises
by the mixing between the SM (1, 3, 1) components of ∆L and of two additional fields, Σ and Σ′

transforming under the PS gauge symmetry as (1,3,3). The vev 〈T 〉 of the SU(2)L triplet T is related
to its mass MT through the following expression

〈T 〉 ' αij
vui v

u
j

MT
. (4.56)

Here αij are numerical coefficients arising by the details of the scalar potential and vu1 = 〈hu〉 , vu2 =
〈h′u〉 are the vevs of the two up-type light Higgs doublets needed for the realization of our model
(see appendix 4.A for details). Since vL is the projection of 〈T 〉 along ∆L, neglecting fine tuned cases
it is expected that

vL ∼ 〈T 〉 . (4.57)

From equation (4.55) we need therefore that MT and vR satisfy

MT ≤ λ2

(
k′0z1αijv

u
i v

u
j

m2
t

)
vR . (4.58)

At the same time neutrino mass data imply that

k′0αij
vui v

u
j

MT
≤ O(1) eV . (4.59)

Combining the constraints of (4.58)–(4.59) we see that in the most natural scenario, assuming αij = 1,
MT and vR satisfy

vR & 30MT ,

1012 GeV .MT . 1013 GeV .
(4.60)

Nevertheless if we allow the numerical factors αij laying in the range 0.1 − 10, then MT , and
consequently vR, can be reduced even of two and one orders of magnitude respectively

1010 GeV .MT . 1012 GeV . (4.61)
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In the following discussion of lepton mixing and in the phenomenological analysis, we assume that
indeed type-II seesaw is dominating and neglect the type-I contributions. In the section devoted to
the study of the scalar potential we justify this assumption and find the region of the parameters
space where the type-II seesaw indeed dominates over type-I.

4.7.3 Mixing angles at the Next-to-Leading Order

Looking at equations (4.46)–(4.48) and (4.53) we see that the fermion mass matrices are of the required
form as in (4.9) and (4.10). The resulting mixing matrices are modified with respect to the LO
approximation and interesting new features follow. In the quark sector, the CKM matrix receives
deviations from unity and at NLO the angle θq12 is not vanishing anymore:

θq12 =
λ√
2

|ỹ7ỹ3 − ỹ2ỹ8|
|ỹ2| |ỹ3|

. (4.62)

Looking at this result, the meaning of the parameter λ is clear: it is defined as the ratio of the flavon
vevs over the cut-off of the theory, but it also determines the order of magnitude of the Cabibbo
angle. This justifies our initial assumption that λ is equal to 0.2. If the second columns of the up- and
down-quark matrices are not proportional to each other, we can generate a non-vanishing Cabibbo
angle θq12, while the two other angles in the CKM matrix are still vanishing.

In the lepton sector, the PMNS is of the bimaximal form with large corrections as discussed in section
4.3. The solar and reactor angles are given by

θl13 =
λ

2

∣∣∣∣∣ ỹ6

ỹ1
− ỹ7

ỹ2

∣∣∣∣∣, (4.63)

θl12 =
π

4
− λ

2

∣∣∣∣∣ ỹ6

ỹ1
+
ỹ7

ỹ2

∣∣∣∣∣ . (4.64)

As it is easy to see, the reactor angle and the deviation from the maximal value of the solar angle are of
order λ and therefore the model is now in agreement with the experimental data7, fulfilling the weak,
but not the strong complementarity relations (4.4). At this approximation level, the atmospheric
angle remains maximal. The relatively large value of θl13 was a prediction when this model was first
presented.

4.7.4 Higher order effects

At the next-to-next-to-leading order (NNLO) and even higher orders, many new terms appear in the
superpotential. However, only a few of them lead to new terms in the mass matrices, while the rest
can be absorbed in redefinitions of the parameters as in equation (4.49). For this reason we do not
report the full list of NNLO contributions, but we just comment on the physical consequences. Three
effects are worth mentioning.

- As expected, the masses of the first families are strongly suppressed. We find that the down
quarks and the electron masses are suppressed by a factor of λ6 and the up-quark mass by a
factor of λ8. This leads to the following mass hierarchies in accordance with the wishlist of
section 4.2 ∣∣∣∣md

mb

∣∣∣∣ ∼ ∣∣∣∣me

mτ

∣∣∣∣ ∼ λ5 ,

∣∣∣∣mu

mt

∣∣∣∣ ∼ λ7 . (4.65)

- The (anti-)alignment of the (23) and (33) elements of the Dirac mass matrices in (4.46–4.48) gets
broken as the new terms appear. The new elements are λ2 suppressed with respect to the older

7Deriving equation (4.64), we already neglect the corrections which increase the value of the solar angle, instead of
decreasing it
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terms. As a result, the matrix that diagonalizes MiM
†
i , with i = e, u, d, has no longer an exact

maximal mixing in the (2 3) sector. In the lepton sector, this translates to a λ2 deviation from
maximality in the atmospheric angle of the PMNS matrix. In the quark sector, the angle θq23

becomes of order λ2. It is interesting to note that θq13 remains vanishing at this order. It only
appears when even stronger suppressed terms are taken into account and is of order λ3, in
accordance with the Wolfenstein parametrization [21].

- The third columns of the mass matrices in (4.46)–(4.47) are proportional to vdφ, while the second
column of MNLO

d is proportional to vdρ and that one of MNLO
e to −3vdρ . Therefore, also at NLO,

equations (4.28) are fulfilled. At the NNLO level, terms proportional to vdρ appear in the third
columns of charged lepton and down-type quark matrices and terms proportional to vdφ in the
second columns. The new terms are λ2 ≈ 5% suppressed with respect to the old entries. We
thus expect deviations from the relations |mτ | = |mb| and |mµ| = 3|ms| at the 5% level.

After giving the right masses to the first generation fermions and introducing the (2 3) and (1 3)
mixing angles in the CKM matrix, all points at the wishlists at the end of sections 4.2 and 4.3 are
satisfied. So far, the model is successful. However, its success is based on a number of assumptions:
that the flavons can indeed have the vacuum expectation value structure mentioned; that the Higgs
fields indeed break the symmetry in the way assumed and that the values of fermion parameters
derived at the high energy scale are still useful to describe physics when they are measured at low
energy scales. These assumptions are studied in more detail in the next few sections.

4.8 The flavon scalar potential

In this section we comment on the vacuum alignment mechanism which explains the flavon vevs as
in equations (4.16)–(4.18). It turns out that our desired alignment is exactly the one presented in [64],
once we transform all the fields in our basis. Note indeed that it is possible to identify each flavon of
table 4.3 with the flavons in [64], by simply comparing the transformation properties under the full
flavour group:

ϕ −→ ϕl , ϕ′ −→ χl , χ −→ ϕν , σ −→ ξν . (4.66)

We use the unitary matrix ΩT of appendix 3.B to move from the basis in [64] to our basis, 1 0 0

0 −i/
√

2 i/
√

2

0 1/
√

2 1/
√

2

 . (4.67)

We find (up to irrelevant phases) the following flavon vev alignment8. We comment about the
presence of equivalent solutions below.

ϕ ∝

0
1
1

 , ϕ′ ∝

 0
1
−1

 , χ ∝

0
0
1

 . (4.68)

These vacuum alignments correspond to equations (4.16)–(4.17).

The correct flavon vacuum alignment is ensured by a set of driving superfields among the same
lines as described in section 2.4 dealing with a context similar to our model. All the driving
fields transform as U(1)R = 2 under the continuous R-symmetry and they appear linearly in the
superpotential. In table 4.8 we show the driving fields and their transformation properties under
S4 × Z4.

It is easy to determine the correspondence between our set of driving fields and those of [64]:

DR −→ ϕ0
l , ϕR −→ χ0

l , χR −→ ϕ0
ν , σR −→ ξ0

ν . (4.69)
8The vevs of the fieldsϕ andϕ′ is recovered by applying the unitary matrix in equation (4.67) to an equivalent configuration

of equation (51) in [64], resulting from the application of the element (TS)2 to (51) and of the element T to (18) of [64]
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Driving DR ϕR χR σR

S4 2 32 31 11

Z4 −1 −1 1 1

Table 4.5: The driving field content and their transformation properties under S4 × Z4.
They are all singlets under the gauge group and the FN symmetry, while they transform as
U(1)R = 2 under the continuous R-symmetry.

We now construct the driving superpotential wd, which contains only flavons and driving fields and
in particular neither matter fields nor Higgses, and look for the conditions that minimize the scalar
potential,

V =
∑
i

∣∣∣∣∂wd∂Φi

∣∣∣∣2 +m2
i |Φi|2 + . . . (4.70)

We write Φi to collectively denote all the scalar fields of the theory; m2
i are soft masses and dots stand

for D-terms for the fields charged under gauge group and possible additional soft breaking terms.
Since m2

i are expected to be much smaller that the mass scales involved in wd, it is reasonable to
minimize V in the supersymmetric limit and to account for soft breaking effects subsequently.

Since our flavon and driving field content exactly corresponds to the one in [64], we already know
that the vev alignment in (4.16)–(4.17) represents an isolated minimum of the scalar potential. We
only need to identify the relations which link the vevs vϕ, vϕ′ , vχ and vσ among each other in our
model. We therefore study the potential that can be constructed from the flavon driving fields and
the ordinary flavons

wd = f1DRϕϕ+ f2DRϕ
′ϕ′ + f3DRϕϕ

′ + f4ϕRϕϕ
′+

+M1ΛχRχ+ f5χRχσ + f6χRχχ+

+M2
2 Λ2σR +M3ΛσRσ + f7σRσσ + f8σRχχ ,

(4.71)

The first line deals with only the fields ϕ and ϕ′ and the other two with χ and σ. As also explained
in [64], this leads to the alignment in equations (4.16, 4.17) where the vevs satisfy

f1v
2
ϕ + f2v

2
ϕ′ +

√
3f3vϕvϕ′ = 0 ,

vσ = −M1

f5
, v2

χ =
f2

5M
2
2 − f5M1M3 + f7M

2
1

2f2
5 f8

.
(4.72)

The solution in equations (4.16, 4.17, 4.72) is not unique, but it is possible to introduce a set of soft
supersymmetric breaking parameters, which selects this solution as the lowest minimum of the scalar
potential.

It is interesting to note the presence of an other source of uncertainty in our solution, which
minimizes V . Given the symmetry of wd and the field configurations of (4.16, 4.17, 4.72), by acting
on them with elements of the flavour symmetry group S4 × Z4, we can generate other minima of
the scalar potential. These alternative solutions however are physically equivalent to those of the
original set and it is not restrictive to analyze the model by choosing as local minimum that one in
equations (4.16, 4.17, 4.72).

The Froggatt–Nielsen field can acquire a vev through a D-term as given in equation (2.70)

|vθ|2 = |〈θ〉|2 =
M2
FI

gFN
. (4.73)

It is relevant to underline that the vevs in (4.72, 4.73), depend on mass parameters: all these mass
scales naturally have the same order of magnitude and as a result vX/Λf ∼ λ. The only exceptions
are the vevs of ϕ and ϕ′, which depend on a flat direction. In the model, we simply assume that their
vevs have values of the same order as all the other flavon vevs.
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4.8.1 Higher order contributions

In this section we briefly comment on the corrections which enter in the flavon vevs, once the higher
order contributions are taken into account. We leave all details to appendix 4.B.

In the superpotential wd, the flavons which contribute to the Dirac mass terms, ϕ and ϕ′, and those
which contribute to the Majorana mass terms, χ and σ, at LO belong to two separate sectors, indeed
any mixing term is prevented due to the Z4 symmetry. This situation is not preserved at NLO, since
the fields χ and σ are neutral under the Z4 symmetry and therefore we can add each of them to all
the terms in wd. This leads to modifications to the LO vev alignment of (4.16) and it turns out that
the first entries of 〈ϕ〉 and 〈ϕ′〉 are filled in, while the second and third entries are corrected by terms
which can be however absorbed into the LO ones, without spoiling the alignment. Also the vevs in
equation (4.17) receive some corrections: the first and second entries of 〈χ〉 still vanish and the NLO
contributions to the third entry can again be absorbed into the LO term. This discussion justifies the
results showed in equation (4.43).

Corrections from the NNLO contributions are without particular alignments: in particular, the
second and third entries of 〈ϕ〉 and 〈ϕ′〉 are no longer related, and also the second entry of 〈χ〉 gets a
non-zero value. It is interesting to note that the first entry of 〈χ〉 remains zero.

4.9 Higgs scalar potential

In this section we present the study of the Higgs potential in our model. It is an interesting example
of how the introduction of flavour symmetries and the assumptions made to get the correct mass
matrices have non-negligible consequences on the Higgs sector. As a result, the study of the Higgs
scalar potential and of the gauge and the running Yukawa couplings in a general non-flavour PS
context does not strictly hold. Note that even if the following analysis refers to our particular choice
of fields and symmetries, our conclusions can be taken as a general hint for a very large class of
models that combine a discrete flavour symmetry with a grand unified scenario: indeed our model
building strategy shares common features with other constructions. In particular the Higgs fields
usually transform under the flavour symmetry Gf – in our case under the Z4 part of it. This has
direct consequences on the implementation of the grand unified symmetry breaking. Moreover type-
II seesaw dominance and particular patterns of vanishing projections of the heavy Higgs fields on
the light Higgs doublets are frequently required to get the correct fermion mass matrices.

In table 4.6 we list all the Higgs fields which are necessary to reproduce the correct mass matrices and
to implement the desired PS symmetry breaking pattern. This extends table 4.4 that only contains
that appear in the Yukawa superpotentials. The fields in table 4.6 carry one of the labels ‘min’ (from
‘minimal’), ‘ext’ (from ‘extended’) or ‘new’. This refers to the question whether they occur already
in minimal Pati–Salam scenarios, only in extended (non-minimal) realizations or are new to our
construction that combines GUT with flavour.

Some of these Higgs fields are already present in the minimal version of PS models [107]: typically
a (15,1,1) multiplet – as the fields A and B in table 4.6 – is used to break SU(4)C down to SU(3)C ×
U(1)B−L and to induce the vevs of the couple of (10, 1, 3) ⊕ (10, 1, 3) – corresponding to the fields
∆R ⊕ ∆R in table 4.6. The latter vevs breaks SU(2)R × U(1)B−L into the SM hypercharge U(1)Y
concluding the symmetry breaking chain from the PS gauge group to the SM SU(3)C × SU(2)L ×
U(1)Y . The field that triggers the EW symmetry breaking is usually a bidoublet (1,2,2) – as φ or φ′

in table 4.6. The fields (10, 3, 1) ⊕ (10, 3, 1) – the fields ∆L ⊕ ∆L in table 4.6 – do not develop vevs
at tree level in the usual minimal PS model, but only when next to leading order terms are taken
into account; these are typically suppressed by the Planck scale, as already stated in [107]. For this
reason in the minimal PS the type-II seesaw contributions to the effective neutrino masses are almost
negligible.

We identify three main reasons for which the existent studies of the symmetry breaking patterns in



4.9. Higgs scalar potential 109

Higgses φ φ′ ρ ξ ∆L ∆R

PS (1, 2, 2) (1, 2, 2) (15, 2, 2) (1, 1, 1) (10, 3, 1) (10, 1, 3)

Z4 1 1 −1 −1 1 −1

min new ext new ext min

Higgses ∆L ∆R A B Σ Σ′

PS (10, 3, 1) (10, 1, 3) (15, 1, 1) (15, 1, 1) (1, 3, 3) (1, 3, 3)

Z4 1 −1 1 −1 1 −1

ext min min new ext new

Table 4.6: All the Higgs fields of the model and their transformation properties under the
gauge group and under Z4. All Higgs fields are invariant under the other factors of the
flavour symmetry group Gf . The labels ‘min’, ‘ext’ and ‘new’ indicate whether the field is
present in minimal PS models, in extended ones or only in our realization.

the PS context have to be modified and this automatically justifies the presence of the new fields in
table 4.6.

- The assumption vuρ = 0 necessary to distinguish the up-quark sector from the others and to
recover the up-quark mass hierarchies can be realized only if we include two identical copies
of bidoublet (1,2,2), φ and φ′ (see details in appendix 4.A), and we then impose that four SU(2)L
doublets (2 up-type and 2 down-type) remain light;

- Since the fields ρ, ∆R and ∆R transform non-trivially under the flavour symmetry Z4, it is
necessary to introduce two copies of (15,1,1) multiplets, A and B, with opposite Z4 charges, 1
and -1 respectively: A is responsible of inducing the breaking of SU(2)R through its coupling
with ∆R and ∆R;B allows the coupling of the bidoublets φ, φ′ with the bidoublet ρ. In this way
all of these three fields have a non-vanishing projection on the light Higgs SU(2)L doublets;

- The component of ∆L which corresponds to the usual SM triplet (1,3,1) can develop a vev once
the EW symmetry is broken only in the presence of a trilinear coupling with the SU(2)L Higgs
doublets. This coupling cannot be constructed with only the Higgs fields ∆L ⊕ ∆L and the
field content given in table 4.6. For this reason we need an additional field that mediates this
coupling and the simplest choice would be a bitriplet Σ ∼ (1, 3, 3) that can couple with the
fields φ, φ′ or ρ and at the same time can mix with ∆L, when ∆R develops vev at the SU(2)R
breaking scale. However, once more, the presence of the Z4 symmetry obliges the introduction
of two distinct (1,3,3) Higgs fields, Σ and Σ′, with opposite Z4 charges, 1 and −1 respectively.
In this way Σ can couple to the bidoublets φ, φ′ or ρ, while Σ′ can mix with ∆L. Finally, we
need a new ingredient that mixes Σ with Σ′: a PS singlet ξ charged −1 under Z4 can do the job.
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The scalar part of the superpotential is then given by9

W =
1

2
Mφ φφ+

1

2
Mφ′ φ

′φ′ +Mφφ′ φφ
′ +

1

2
Mρ ρρ+M∆L

∆L∆L+

+M∆R
∆R∆R +

1

2
MAAA+

1

2
MB BB +

1

2
MΣΣΣ +

1

2
MΣ′Σ

′Σ′ +
1

2
Mξξξ+

+ λξΣΣ′ξ + λξABABξ + λφρφBρ+ λφ′ρφ
′Bρ+

1

3
λAAAA+

+
1

2
λBBBA+ λL∆L∆LA+ λR∆R∆RA+

+
1

2
λφΣφφΣ +

1

2
λφ′Σφ

′φ′Σ + λφφΣφ
′φΣ +

1

2
λρΣρρΣ+

+ λ∆Σ′∆L∆RΣ′ + λ∆Σ′∆R∆LΣ′ +
1

3
λΣΣΣΣ +

1

2
λΣ′Σ

′Σ′Σ .

(4.74)

The vacuum configuration at the GUT breaking scale is given by10

〈∆R〉 =
〈
∆R

〉
= MR , 〈A〉 = MC1

, 〈B〉 = MC2
, 〈ξ〉 = Vξ . (4.75)

The vevs 〈A〉 and 〈B〉 break the SU(4)C to SU(3)C×U(1)B−L, while 〈∆R〉 and
〈
∆R

〉
break SU(4)C×

SU(2)R into SU(3)C × U(1)Y . Therefore, given our field content, the colour breaking scale, MC =
Max(MC1 ,MC2), is never smaller than the SU(2)R breaking scale, MR. We may expect that (MC1 ∼
MC2) = MC but in principle they could be different. Finally Vξ is expected to be close to the flavour
breaking scale, due to the ξ gauge singlet nature.

The F-derivative system obtained by the superpotential (4.74) reads

M∆R
+

3√
2
λRMC1

= 0 ,

MBMC2

√
2λBMC1

MC2
+ λABξMC1

Vξ = 0 ,

MAMC1 +
1√
2
λBM

2
C2
− 2√

3
λRM

2
R +
√

2λAM
2
C1

+ λABξMC2Vξ = 0 ,

MξVξ + λABξMC1MC2 = 0 .

(4.76)

By solving the previous equations, we can express the mass parameters that enter in the super-
potential in term of the dimensionless parameters λi and the physical breaking scales. All details
regarding the mass spectrum are reported in the appendix 4.A, but some comments are in place. As
in the minimal supersymmetric PS [107] when the singlet component of A develops a vev, there is
an accidental SU(3) symmetry involving ∆R and ∆R. When the singlet components of these fields
acquire a vev the accidental symmetry is broken to SU(2) giving rise to 5 Goldstone Bosons (GBs).
At the same time SU(2)R × U(1)B−L is broken down to U(1)Y , eating 3 of the 5 GBs. Therefore 2 of
them, namely δ++ and δ

++
are left massless, down to the SUSY soft breaking scale ∼ 1 TeV. This is

a well known prediction of SUSY PS theories, which can be tested at LHC [108–111]. On the other
hand, contrary to the minimal case described in [107], due to the mixing between the Higgs fields A
and B, no colour octet is lighter than MR.

In order to assure type-II dominance and to get the correct PS symmetry breaking pattern, it is
necessary that MT ≤ MR ≤ MC ≤ Vξ. In the next section we present the constraints on the
parameters that can be derived from this special mass ordering. For the moment, we just assume
this scheme. Below we give the spectrum of the states that become massive at scales between Msusy
and Vξ. We express the states with the quantum numbers they would have under the Standard Model
gauge group.

9All the Higgs fields are neutral under the continuous U(1)R. The scalar superpotential explicitly breaks it, while
preserving the usual R-parity. The terms in equation (4.74) can be generated from a U(1)R-conserving superpotential in
which the breaking is mediated by additional fields, which are U(1)R = 2 and develop non-vanishing vevs. For instance the
mass term Mφ φφ can originate from a trilinear term X φφ, when 〈X〉 = Mφ. Similarly the trilinear coupling λξΣΣ′ξ could
originate by the non-renormalizable term X ΣΣ′ξ/Λ′, when 〈X〉/Λ′ = λξ and Λ′ is the energy scale of the dynamics of the
field X . In our model we simply assume the existence of the terms in equation (4.74) in the superpotential and allow for an
explicit breaking of the U(1)R symmetry in this sector.

10We redefine 〈∆R〉 = vR as 〈∆R〉 = MR in order to adapt to the usual notation.
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1. At Vξ

At this scale we have two heavy SU(2)L triplets given in section 4.A.3.

2. Between Vξ and MC In this range a number of fields become massive. These are

- all the SM singlets given in section 4.A.1 except one, called ξ0,

- the colour triplets given in section 4.A.1,

- the colour octets given in section 4.A.1,

- the heavy doublets given in section 4.A.2,

- the two heavy couples of SU(2)L triplets given in section 4.A.3.

3. At MC

At the scale where the extended colour group of the Pati–Salam theory breaks the colour scalars
originating by ∆R ⊕∆R, ρ and ∆L ⊕∆L become massive. These are

- the SU(2)L singlets given in section 4.A.1,

- the SU(2)L doublets given in section 4.A.2,

- the SU(2)L triplets given in section 4.A.3.

4. At MR

At the scale where the righthanded SU(2) is broken, the singlet ξ0 becomes massive;

5. At MT

At the scale MT of the type-II seesaw, the light couple of SU(2)L triplets given in section 4.A.3
obtains a mass.

6. At Msusy, the supersymmetry scale, next to the familiar sparticles, we find

- the scalar singlets δ++ and δ
++

given in section 4.A.1 – these are well known low-energy
remnants of models with Pati–Salam unification,

- the SU(2)L light doublets given in section 4.A.2.

With the Higgs field content given in tables 4.4 and 4.6 and the scalar spectrum so far sketched we
can calculate the running of the gauge couplings and see if the conditions given in (4.60) or those in
(4.61) can be satisfied. Furthermore, in the study of this running (see appendix 4.C for details) from
the MGUT to the EW scale we have to impose the following constraints.

- We should recover the EW values for α3, α2 and α1, related to the gauge couplings of the SM
gauge group ;

- At MR ≤MC the hypercharge U(1)Y is obtained by the SU(2)R × U(1)B−L breaking;

- We impose αB−L = αC at MC ;

- The ‘GUT scale’ is defined as the scale at which the largest αi = 1. In this way we are sure to
be in a perturbative regime up to the GUT scale and thus we are allowed to adopt the one-loop
renormalization group equations (RGEs).
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Even using all these constraints we are left with two more free parameters, the value of the SU(4)C
and SU(2)R breaking scales, i.e. MC and MR respectively.

We adopt two distinct approaches, that we indicate as the more constraining and the less constraining
ones. In the first case we define MC to be the scale at which the largest αi is equal or smaller than
1/4π. In this way all the gauge coupling gi are smaller than 1 at MC . In the second case we allow
the largest αi to correspond to a gauge coupling in the range 1 < gi < 3, so 1/4π < αR < 9/4π. Then
MR should satisfies equation (4.60) or (4.61), but its exact value is not fixed yet.

A few general comments are in place. The non-minimal PS field content affects the running of the
gauge couplings in a non-negligible way. In particular the presence of the charged singlets δ++ and
δ

++
down to Msusy deeply modifies the U(1)Y and SU(2)R gauge coupling evolution. It turns out

that the largest αi above the MR scale is always αR. Therefore the two approaches we described can
be formulated as follows:

- More constraining approach⇐⇒ αR < 1/4π, at MC

- Less constraining approach⇐⇒ 1/4π < αR < 9/4π, at MC .

4.9.1 More constraining approach

In this case there are no solutions neither for the ranges of values of MT and MR given in equation
(4.60) nor for those in (4.61). Indeed we find that MR ≤ 1012 GeV, as can be seen in fig. 4.7. In other
words if we adopt this constraining approach to fix the value of MC , the type-I and type-II seesaw
scales require Yukawa parameters which are at least two orders of magnitude far from their natural
values to reproduce the correct neutrino mass scale. This solution is not satisfactory: in this case
the type-II seesaw dominance is obtained by increasing the Yukawa couplings in the right neutrino
sector and at the same time reducing the coupling of the left-handed neutrinos with the scalar triplet.
Even if this may be considered a solution, the challenge was to provide a justification of type-II
seesaw dominance through the analysis of the Higgs scalar potential and not by tuning the Yukawa
parameters. Moreover we introduced a FN Abelian symmetry to explain the small (≤ 10−2) Yukawa
parameters necessary in the charged fermion sector to reproduce the correct mass hierarchies. The
presence of Yukawa parameters of this order in the purely left-handed neutrino sector makes the
introduction of the FN symmetry questionable.

4.9.2 Less constraining approach

In this case there are solutions only for the second range of values of MT and MR given in equation
(4.61). As can be seen in fig. 4.8, MR can now reach the value of 1013 GeV. The three scales MR, MC

andMGUT are compressed in a narrow region around 1013 GeV and therefore our model is described
by an extended MSSM model almost up to the GUT scale, defined as the scale where one of the
couplings – in practice gR – becomes non-perturbative 11, i.e. αi > 1. Nevertheless, the PS origin is
reflected in the non-trivial relations between the Yukawa couplings. In conclusion, by admitting the
Yukawa parameters span in a range 0.1–10. The scalesMR,MC andMGUT are driven to be very close
to each other; we have found a narrow region of the parameter space where our model could still
give a realistic description of fermion masses and mixings and in which type-II seesaw dominance is
not imposed by hand.

To finally consider our model viable, we should study the stability of the flavour structure of the mass
matrices under the RGEs from the GUT scale down to the EW one. The study of the full set of the

11Above this energy scale an other gauge structure could be active. We do not take in consideration an high-energy
completion of the model, but it is reasonable that larger gauge groups or particular constructions could be present at these
energies: for example an SO(10) inspired approach in which fermions do not belong to a unique representation.
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Figure 4.7: The running of the gauge coupling constants in the more constraining approach.
MT = 1011 GeV, MR = 1012 GeV, MC = 1.4 × 1012 GeV (where αR = 1/4π) and
Mgut = 4.0 × 1012 GeV (where αR = 1). In the dotted figure, we show a detail of the full
plot, restricting the energy scale inside the range 1010 ÷ 1013 GeV.

RGEs of the model presented is beyond the purpose of this work. For this reason we neither run the
parameters of the scalar superpotential nor include and run the parameters of the soft SUSY breaking
potential. Under these approximations the EW vacuum expectation values do not change from the
GUT scale down to the EW one. However this does not affect our conclusions for what concerns the
stability of the mass matrix structures since the EW vev shifts due to the running factorize out and
leave the Yukawa flavour structure unchanged. The study of the Yukawa matrix running is done in
the next section.

4.10 Running of the Yukawa couplings

In the previous section we analyzed the constraints on the scalar Higgs sector coming from the
requirement of type-II seesaw dominance and from the presence of the flavour symmetry under
which the Higgs fields non-trivially transform. We found that the model is viable only in a small
region of the parameter space for which MR, MC and MGUT ∼ 1013 GeV are very close to each other.
At the same time MT lies at only one order of magnitude below MR. For these reasons to study
the stability of the flavour structure of the fermion mass matrices at low scale we can consider only
the running from MT onwards, thus neglecting the running from higher energies. Furthermore we
also neglect the running from Msusy to the EW scale, which would introduce only minor corrections.
We work under the assumption that type-II seesaw is dominating over type-I and moreover that the
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Figure 4.8: The running of the gauge coupling constants in the less constraining approach.
MT = 1012 GeV, MR = 1013 GeV, MC = 1.8× 1013 GeV (where αR = 1/3) and Mgut =
2.2 × 1013 GeV (where αR = 1). In the dotted figure, we show a detail of the full plot,
restricting the energy scale inside the range 1011 ÷ 1014 GeV.

effects from the type-I terms under the RGEs are negligible. Therefore, when studying the running of
the Yukawa couplings, we do not take into account the Weinberg operator originating by integrating
out the right-handed neutrinos. The error we introduce in this way is less than λ2 and we will see
in a while that these contributions do not modify our results. Furthermore, we study the stability
under the Renormalization Group (RG) running in the approximation corresponding to the NLO,
i.e. considering the mass matrices introduced in equations (4.46)–(4.48).

4.10.1 Yukawa matrices at MT

We start the renormalization group running at MT ; at this scale we integrate out the SU(2)L scalar
triplet T obtaining an effective Weinberg operator responsible of the type-II seesaw contribution. The
origin of this effective operator is in the Majorana parts of the matter superpotential given in (4.31)
and (4.51), that contain terms with the coupling

FLFL∆L . (4.77)
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The scalar part of the superpotential (4.74) contains the terms

1

2
λφΣφφΣ +

1

2
λφ′Σφ

′φ′Σ + λφφΣφ
′φΣ +

1

2
λρΣρρΣ+

+λ∆Σ′∆L∆RΣ′ + λ∆Σ′∆R∆LΣ′ +
1

3
λΣΣΣΣ +

1

2
λΣ′Σ

′Σ′Σ .

(4.78)

These terms ensure the mixing between the (1,3,1) ((1,3,-1)) components of ∆L (∆L), Σ and Σ′,
whose lighter combination is identified with T (T ), and provides the coupling of T (T ) with the
light doublets hd and h′d (hu and h′u). The effective Weinberg operator at MT is given by

αijYLrs
LrLshuihuj

MT
. (4.79)

Here Li represents the SU(2)L lepton doublets; hu1
= hu, hu2

= h′u and αij are coefficients arising
by the scalar potential whilst YL is given by 4.53 without terms of order λ3, that we neglect because
they are irrelevant for the following analysis.

YL =

 k′0 k′1λ 0
k′1λ k′0 0
0 0 k′0 + k′2λ

2

 . (4.80)

The Dirac part of the superpotential at MT is written as a function of the charged fermion Yukawa
matrices and the low energy Higgs fields hu,d and h′u,d.

YuQU
chu + Y ′uQU

ch′u + YdQD
chd + Y ′dQD

ch′d + YeLE
chd + Y ′eLE

ch′d . (4.81)

These matrices have the same textures as their counterparts (4.46) –(4.48), but we absorb a factor of λ

Yu =
1

β
Y ′u =

 0 ỹ8λ
5 ỹ6λ

ỹ5λ
6 ỹ3λ

4 ỹ1

ỹ10λ
6 −ỹ3λ

4 ỹ1

 ,

Yd = U13

 0 ỹ7λ 0
ỹ4λ

2 ỹ2 0
ỹ9λ

2 −ỹ2 0

λ2 +

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 ,

Y ′d = U23

 0 ỹ7λ 0
ỹ4λ

2 ỹ2 0
ỹ9λ

2 −ỹ2 0

λ2 + β

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 , (4.82)

Ye = −3U13

 0 ỹ7λ 0
ỹ4λ

2 ỹ2 0
ỹ9λ

2 −ỹ2 0

λ2 +

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 ,

Y ′e = −3U23

 0 ỹ7λ 0
ỹ4λ

2 ỹ2 0
ỹ9λ

2 −ỹ2 0

λ2 + β

 0 0 ỹ6λ
0 0 ỹ1

0 0 ỹ1

 .

The U matrix defines the light SU(2)L Higgses in term of the PS Higgs field components, as explicitly
written in appendix 4.A while ỹi has to be read as U11ỹ

(1)
i + U12ỹ

(2)
i and βỹi as U21ỹ

(1)
i + U22ỹ

(2)
i .
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4.10.2 Analytical approximations

In the appendix 4.D, we report all the RGEs for the Yukawa matrices, while here we discuss the
results. The RGEs present the general compact expressions

dYL
dt′

= FL
[
Yf ′Y

†
f ′

]
YL + YLFTL

[
Yf ′Y

†
f ′

]
+

[
GL
[
Tr(Yf ′Y

†
f ′)
]
−
∑
i

cνi g
2
i

]
YL ,

dYf
dt′

= Ff
[
Yf ′Y

†
f ′

]
Yf +

[
Gf
[
Tr(Yf ′Y

†
f ′)
]
−
∑

cfi g
2
i

]
Yf . (4.83)

In these equations the index f runs over {e, u, d}; the parameter t′ is defined as t′ ≡ t/(16π2) ≡
logµ/(16π2); FX [. . .] is a matrix written in terms of the fermion Yukawa matrices Yf ′ ; GX [. . .] is
function of the trace in the flavour space over the Yukawa matrices Yf ′ and cfi are the Casimir
coefficients related to the group representations (see appendix 4.D for the details). The generic
solutions are given by

YL(µ) ∼
∏
i

e−c
ν
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]
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(4.84)
Here Ii =

∫ t′(µ)

t′(µ0)
gi(t
′)2dt′. When we fix µ0 ∼MT and µ ∼Msusy these formulas can be approximated

as functions of ∆t′ = 1/16π2 log(Msusy/MT ) ≈ 0.13
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(4.85)

In the quark sector we find the following approximate expressions for the masses of the last two
families and the Cabibbo angle

m2
t (Msusy) ∼ m2

t (1− 2
∑
i c
u
i Ii + 14 γ∆t′) ,

m2
c(Msusy) ∼ m2

c (1− 2
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i c
u
i Ii + 6 γ∆t′) ,

m2
b(Msusy) ∼ m2

b

(
1− 2

∑
i c
d
i Ii + 16 γ∆t′

)
,

m2
s(Msusy) ∼ m2

s

(
1− 2

∑
i c
d
i Ii + 8 γ∆t′

)
,

θq12(Msusy) ∼ θq12 +
1

6
√

2
U2

13 λ∆t′ .

(4.86)

Here γ = m2
t/(v

u
1 + βvu2 )2 and the masses and the Cabibbo angle on the right of the previous

expressions are intended at the MT scale. Note that the demand that m2
b is still positive at Msusy

gives a lower bound on γ of 0.7. The charged lepton masses are very similar to the down-quark
masses and indeed we have

m2
τ (Msusy) ∼ m2

τ (1− 2
∑
i c
e
i Ii + 16 γ∆t′) ,

m2
µ(Msusy) ∼ m2

µ (1− 2
∑
i c
e
i Ii + 8 γ∆t′) .

(4.87)
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We now consider the neutrino sector (see [112–119] for a general approach to RGEs with or without
flavour symmetries) and the modification due to the RG running. We recall that our model at the
GUT scale naturally predicts the quasi degenerate (QD) spectrum, with both normal and inverse
ordering, while choosing a less natural range of the parameters space we may have both the normal
hierarchy (NH) and the inverted hierarchy (IH). To simplify the analysis of the effect of the RGEs on
the neutrino mass matrix Mν , we rotate Mν by a maximal rotation in the (1 2) sector. Then, at the
high scale, Mν is diagonal and reads as

Mν =

 k′0 − λk′1 0 0
0 k′0 + λk′1 0
0 0 k′0 + λ2k′2

 vL . (4.88)

Without loss of generality k′0 can be taken real, by a redefinition on the phases. After the running
at Msusy equation (4.88) gets a correction ∆Mν . The form of this correction depends on the neutrino
hierarchy. For the quasi-degenerate hierarchy and the inverse hierarchy (when k′2 ∼ O(1), it reads as
follows (with w± = (±γ/

√
2 +
√

2λ))

∆Mν

vL
∼
(
−k′0
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i
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13

2
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(4.89)

For the normal hierarchy case characterized by k′2 ∼ λ−2, ∆Mν assumes the following form
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(4.90)

Here k′± is given by (k′1λ± k′2λ2).

We can now consider the three different cases QD, NH and IH, which the model accounts for at the
GUT scale.

- QD case =⇒ k′0, k
′
1, k
′
2 ∼ O(1).

The correction given by the running induces a rotation in the (23) sector characterized by

tan 2θν23 ∼ −
√

2∆t′

λ

k′0
|k′1|

γ ∼ −2
√

2λ
k′0
|k′1|

γ . (4.91)

The last equality follows from ∆t′ ∼ 2λ2. This is a large contribution, which deviates the atmo-
spheric angle from the initial maximal value, spoiling the agreement with the experimental data
at 3σ. A possible way out would be if this large correction is erased by a corresponding large
correction in the charged lepton mass matrix. However this is not the case, because the maximal
θe23 in the charged lepton mixing matrix is stable under the RG running. As a result, the QD case
is not viable. This is an unexpected result. Obviously, the combination of flavour symmetries
and grand unified symmetries puts more constraints on model building than naively expected.

- NH case =⇒ k′0 ∼ λ2, k′1 ∼ O(1) and k′2 ∼ λ−2.
The corrections both to the atmospheric and to the reactor angles are of order ∆t′γ/2

√
2 ∼ 3λ3

and can be safely neglected. Analogously, also the mass splittings receive deviations which
can be neglected. On the other hand, the charged lepton mixing matrix is stable under the RG
running. As a result the three mixing angles atMsusy can be well approximated with their initial
values at MT .



118 4. The interplay between GUT and flavour symmetries in a Pati–Salam × S4 model

- First IH case =⇒ k′0 ∼ λ2 and k′1, k′2 ∼ O(1).
All the corrections to the neutrino mixing are of order γ∆t′/

√
2. While the solar mass splitting

receives negligible contributions, the atmospheric mass splitting is corrected as follows

∆m2
atm(Msusy) = ∆m2

atm

(
1− 2

∑
i

cνi Ii + 13 γ∆t′

)
. (4.92)

Corrections to the mixing angles coming from the RG running are proportional to ∆t′. At this
order of approximation, the corrections to θl12(Msusy) and θl13(Msusy) come from the charged
lepton sector, while that one to θl23(Msusy) arises only by the neutrino sector. The resulting
mixing angles at the susy scale are

θl12(Msusy) ∼ π/4− θe12 + θe13γ/2∆t′ ,

θl23(Msusy) ∼ θe23 + γ∆t′ ,

θl13(Msusy) ∼ θe13 − θe12γ/2∆t′ .

(4.93)

These corrections are more significant than those of the NH case, but their magnitude is
small enough to consider the mixing pattern still viable. In this scenario, we only used one
‘unnatural’ parameter (k′0 ∼ λ2), while the NH case has two (one of order λ2 and one of order
λ−2). We can thus conclude that after the dismissal of the QD scenario, the appearance of the
inverse hierarchy with neutrino observables as above is a (weak) prediction of our model.

- Second IH case =⇒ k′2 ∼ λ2, k′0 ∼ 1 and k′1 ∼ λ−1.
We recover the same shifts as in the previous case for the atmospheric mass splitting and the
lepton mixing angles. The difference lies in the fact that also the solar mass splitting gets a
non-negligible correction

∆m2
sol(Msusy) = ∆m2

sol (1− 2
∑
i c
ν
i Ii + 14 γ∆t′) . (4.94)

This scenario is thus also possible, but slightly disfavoured with respect to the previous one.

We conclude this section by re-stating the important conclusion. Due to interference between the
flavour and the grand unified symmetry, the Yukawa coupling running from the GUT scale (or from
the type-II seesaw scale) to a low scale has important effects. These effects are strongest in the quasi-
degenerate case and we have seen that agreement with the data cannot support this shift. As a
result, only the normal and inverse hierarchy are feasible, with the latter slightly preferred. In the
next section we study the phenomenological consequences for the neutrino sector.

4.11 Neutrino Phenomenological Analysis

In the previous section, it was concluded that the quasi-degenerate spectrum is unstable under
the RG running and becomes phenomenologically inviable due to too large corrections to the
atmospheric mixing angle. Only the normal and inverse hierarchies were shown to be stable and
phenomenologically viable. This is different from [64], where only the normal hierarchy and the
quasi-degenerate spectrum with normal ordering were found.

In this section, we discuss neutrino phenomenology in more detail, focussing on the value of the
reactor mixing angle θl13 and the possibility of neutrinoless double beta decay.

The analytical expression of the reactor mixing angle is given by equation (4.63) at NLO and it is
corrected by the RG running as in equation (4.93) for the two IH scenarios studied in the previous
section. We see that θl13 is typically of order λ ≈ 0.2, so sin2 θl13 ≈ 0.04. This is rather large:
approximately at the +2σ level according to [24], so still viable and values of θl13 just slightly smaller
fit the central region very well. This is both true for the current data and for the data at the time when
the model was first written down [22, 23].
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Here, we complete the study of θl13, performing a numerical analysis and comparing it with (the
errors on) the data. As can be seen from equations (4.46)–(4.53), the neutrino and the charged lepton
mass matrices at NLO are functions of many parameters. However the GUT nature of the model
allows us to fix most parameters that occur at LO because they enter in the low energy expressions
for quark and charged lepton masses, as can been seen comparing equation (4.26) with (4.86). Note
that all dimensionless parameters, i.e. the ỹi, can be fixed to be of order 1.

The other free parameters can be fixed as random numbers of order 1, except for the cases where we
have argued in the previous section that they should have slightly larger or smaller values. Because
of the use of random numbers, the predictions of our model are no longer single valued.
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Figure 4.9: The solar angle versus the reactor angle. On the upper line the two IH
cases of the previous section (on the left the first case and on the right the second
one), while on the lower line the NH one. The two vertical lines are the 3σ bounds
for sin2 θl12 according to [24]. The upper horizontal line is the 3σ upper bound for
sin2 θl13 and the middle line is the best fit value and the lower line is the 3σ lower
bound.

We plot the reactor angle versus the solar angle in figure 4.9. At NLO, equation (4.64), θl12 is driven
away from the maximal value π/4 by a term proportional to λ (note that we take only the corrections
which decrease the value of the solar angle, neglecting those which increase it). We see that this
deviation is not for all values of the parameters large enough to bring it in the observed region,
although this happens for a significant number of them. As explained above, larger values of sin2 θl13

are favoured and almost all points are in the sensitive region for experiments.
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To study neutrinoless double beta decay, we consider the effective 0νββ parameter mee, defined as

mee = [U diag(m1, m2, m3)U ]11. (4.95)

In figure 4.10 we plot mee against the lightest neutrino mass, which is m1 and m3 in the NH and
IH case respectively. The future experiments are expected to reach good sensitivities: 90 meV [30]
(GERDA), 20 meV [31] (Majorana), 50 meV [32] (SuperNEMO), 15 meV [33] (CUORE) and 24 meV
[34] (EXO). As a result, looking at figure 4.10, the whole IH band will be tested in the next future and
with it the two cases of our model which allow for the IH spectrum.

Figure 4.10: Neutrinoless double beta decay plots. On the upper line the two IH cases of the
previous section (on the left the first case and on the right the second one), while on the lower
line the NH one. The background red (blue) points refer to the allowed region for the NH
(IH), taking into account the lepton mixing angle values with their 3σ errors.

4.12 Conclusions of the chapter

In this chapter we have addressed several aspects of the interplay between a GUT based model and
a discrete flavour symmetry. The chapter should indeed be considered as the combination of three
distinct parts: it starts with a part in which many concepts and motivations are introduced. In the
second one we mainly discussed the building of the model from the flavour point of view, while in
the last one we faced the problem to justify the assumptions made in the second part and to achieve
the correct gauge symmetry breaking chain. We found that this gives non-trivial constraints on the
model building.
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More in detail, the symmetry group of our model is PS × Gf , where PS stands for the GUT
Pati–Salam gauge group SU(4)C × SU(2)L × SU(2)R and Gf for the flavour group S4 × Z4 ×
U(1)FN × U(1)R. Within this GUT context one has the relationship between the down-quark and
charged leptons mass matrices, Md ∼ Me, which can easily be used to revise the old idea of
quark-lepton complementarity. In the model this is obtained by the use of the non-Abelian discrete
flavour symmetry S4 properly broken through the vevs of a set of flavon fields, which transform as
triplets under S4. The additional Abelian symmetries, which enters in Gf , play different roles: Z4

keeps quarks separated from leptons and neutrinos from charged leptons and prevents dangerous
couplings in the superpotential of the model; U(1)FN helps to justify the charged fermion mass
hierarchies; U(1)R is a common ingredient of supersymmetric flavour models. It contains the discrete
R-parity and is useful to build a suitable flavon superpotential that allows the correct S4 breaking
pattern.

Already at the leading order, the model shows nice features: we are able to reproduce the mass
hierarchy between the third and the second charged fermion families, the bottom-tau unification, the
Georgi–Jarlskog [99] relation |mµ| = 3|ms| and, under the assumption of type-II seesaw dominance
at the GUT scale, a realistic neutrino spectrum. However at this level of approximation, both the
CKM and the PMNS mixing matrices are not correct: the quark mixing matrix coincides with the
identity matrix, while the lepton one is given by the BM pattern. It is worth to recall here that the BM
mixing corresponds to maximal solar and atmospheric angles and to a vanishing reactor angle: only
the solar angle is not in agreement with the data as it deviates from the experimental central value
by a quantity close to the Cabibbo angle, λ ∼ 0.2.

At next-to-leading order, the wrong predictions for the fermion mixing angles are corrected: in the
CKM matrix, the mixing angle θq12 receives contributions of the order of λ, fitting the value of the
Cabibbo angle; analogously, in the PMNS matrix, the solar angle is corrected by the same amount
and we find the nice result that θl12 ∼ π/4 − O(λ). At the same time, also the reactor angle receives
significant contributions and indeed at this level of approximation it results θl13 ∼ O(λ): this is an
interesting feature of our model, this value is close to the experimental upper bound at the time
the model was constructed and indeed this prediction seems confirmed by more recent data. It will
further be tested in the forthcoming neutrino experiments [42–45, 120–123].

Once we consider the higher order terms, we find the other two CKM angles of the correct order of
magnitude, θq23 ∼ O(λ2) and θq13 ∼ O(λ3), and small corrections are introduced in the PMNS angles:
in particular the atmospheric angle becomes θl23 ∼ π/4 +O(λ2), justifying a small deviation from the
maximality. For what concerns the masses, all the fermions are massive and the mass hierarchies fit
the experimental observations.

On the other hand, the neutrino spectrum could be either quasi degenerate or normal or inverse
hierarchical. Only the first case corresponds to a completely natural choice of the parameters, which,
in the absence of an explanation coming form a higher energy theory, should be of order 1: in order to
allow the NH and the IH, the parameters should span in a larger range of values, namely λ−2÷λ2. In
short, the combination of flavour and GUT symmetries allow many observed patterns in the flavour
sector to be reproduced. If at this moment a balance had to be made like we did at the end of sections
2.3.1 and 2.4.6, this balance is likely to be positive, or at least as positive as the balances of chapter 2.
Our model is slightly larger, but it also explains much more peculiarities of the flavour sector.

In the third part of the chapter (from section 4.9) the tides turned. We have studied the Higgs
scalar potential and the running of both the gauge couplings and the Yukawa mass matrices under
the RGEs. With this analysis we looked for the constraints which arise to justify the Higgs field
vev pattern used in the flavour section and the assumption of the type-II seesaw dominance. The
presence of the flavour group Gf modifies the Higgs field content necessary to implement the
classical breaking pattern of the PS gauge group and as consequence not all the results obtained
by studying minimal versions of PS are recovered. In particular we need the presence of two
PS multiplets (15, 1, 1), A and B, responsible to break the unified colour symmetry SU(4)C to
SU(3)C × U(1)B−L. Two copies of the (1, 2, 2) multiplet, φ and φ′, and one (15, 2, 2) field, ρ, are
necessary to implement the condition vuρ = 0 . Lastly, we need the new fields Σ,Σ′ ∼ (1, 3, 3) and
ξ ∼ (1, 1, 1) to have a type-II seesaw contribution at tree level.
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The running of the gauge couplings is affected by the large field content and in particular we found
that the requirement of having type-II See-Saw dominance constrains the model in a small region
of the parameter space, in which all the heavy mass scales are sandwiched between 1011 GeV and
1013 GeV. At the same time Yukawa mass matrix running shows that while the CKM Cabibbo angle
is stable under the RGEs evolution, the PMNS mixing angles are stable only if neutrinos present a
NH or an IH spectrum, ruling out the QD case. As already stated, the QD spectrum would be the
most natural and probable case at the GUT scale, but the Yukawa RGEs analysis further reduces the
allowed region of the parameter space. Whether the negative evidence of the third part of the chapter
is enough to swing the balance mentioned above to the negative side (assuming it was positive to
start with) is up for everybody’s judgement, but it is clear that this evidence should be taken into
account in order to form a fair opinion.

In section 4.11, we performed a brief phenomenological analysis of neutrino observables considering
all the constraints which come from the flavour and the Higgs sectors. We have first considered the
value of the reactor angle in terms of the deviations of the solar angle from the maximal value and the
numerical analysis confirmed the analytical results: in our model, θl13 naturally acquires values that
more recent data indeed point at. After this, we studied the neutrinoless double beta decay effective
mass, mee, and we have seen that the next future experiments are expected to reach sufficiently good
sensitivities to test our model in the IH regime.

The main conclusion of the chapter is that there is a strong tension in combining a GUT model with
a (discrete non-Abelian) flavour symmetry and therefore a parallel study is not only interesting but
also recommended to provide a viable model. In the second part of the chapter we produced a
flavour-GUT model that is quite realistic and viable. Only the study done in the third part, regarding
the Higgs sector revealed that the model is restricted into a small region of the parameter space,
reducing the freedom in the choice of the parameter values. Even if our results are model dependent,
our construction shares many features with other models present in literature, where often a detailed
discussion of the Higgs sector is missing. In our opinion, this is a serious drawback and we would
suggest to consider the interplay between GUTs and flavour symmetries in this kind of models as
well.
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4.A Higgs scalar spectrum

In this appendix we present the scalar mass matrices for all the fields introduced in section 4.9 in
terms of representations of the SM∼ SU(3)C × SU(2)L × U(1)Y ; we also indicate their origin with
respect to the PS and the colour-broken Pati-Salam (CbPS) phase, in which the symmetry group is
given by SU(3)C×SU(2)L×SU(2)R×U(1)B−L. For completeness for each field we also indicate the
corresponding T3R value, with T3R the diagonal generator of SU(2)R. We use the same notation as in
[124]: we write the Dirac scalar mass matrices as they could be read directly from the superpotential
(4.74) at the scale MR. We label the mass matrices with S, D and T when they refer to the singlet,
doublet and triplet representations respectively of the SU(2)L gauge symmetry.

Obviously the most interesting subsection of this appendix is 4.A.2 that discusses the colour-singlet
SU(2)-doublets, that give rise to the light electroweak breaking Higgs fields.

4.A.1 SU(2)L singlets

We first consider singlets under SU(2)L. When the symmetry breaks down from the Pati-Salam
symmetry group to the Standard Model, this SU(2)L is the only product group that remains
unbroken. All Goldstone bosons related to the symmetry breaking chain so far are thus singlets
of SU(2)L. In total, the breaking from SU(4)C × SU(2)L × SU(2)R → SU(3)C × SU(2)L × U(1)Y
should give rise to nine Goldstone bosons. In this appendix, we indeed reproduce these.

• Singlets (1, 1, 0)

The mass matrix for the Standard Model singlet scalar fields reads

MS1 =


0 0 3√

2
λRMR 0 0

0 0 3√
2
λRMR 0 0

3√
2
λRMR

3√
2
λRMR

√
2MC1

λA + x λABξVξ + 1√
2
λBMC2

1√
2
λABξMC2

0 0 λABξVξ + 1√
2
λBMC2

1√
2
λBξMC1 − y 1√

2
λABξMC2

0 0 1√
2
λABξMC2

1√
2
λABξMC1

−MC1
MC2

Vξ
√

2
λABξ

 .

The parameters x and y are given by

x =
1

2
√

2MC1

(−4λAM
2
C1
− 2
√

2λABξMC2
Vξ − 2λBM

2
C2
− 8λRM

2
R) ,

y =
MC1√
2MC2

(
√

2λABξVξ + 2λBMC2
) .
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MS1 has a vanishing eigenvalue that is eaten by the corresponding gauge boson. Moreover it can
be checked that one of the singlets, which we call ξ0, has a mass ∼ MR while all the others masses
appear as combinations of MC1,MC2 and Vξ and are heavier still. We present all states and their
origins in the table below.

Field Origin PS CbPS T3R

C1, R1 ∆R (10, 1, 3) (1, 1, 3,−2) 1

C2, R2 ∆R (10, 1, 3) (1, 1, 3, 2) −1

C3, R3 A (15, 1, 1) (1, 1, 1, 0) 0

C4, R4 B (15, 1, 1) (1, 1, 1, 0) 0

C5, R5 ξ (1, 1, 1) (1, 1, 1, 0) 0

• Singlets (3, 1, 2/3)⊕ (3, 1,−2/3)

MS2 =


√

2λAMC1 + x λABξVξ + 1√
2
λBMC2 2λRMR

λABξVξ + 1√
2
λBMC2

1√
2
λBMC1

− y 0

2λRMR 0 −
√

2λRMC1

 .

MS2 has a vanishing eigenvalue: it corresponds to the massless GBs (3, 1, 2/3)⊕ (3, 1,−2/3) eaten by
the gauge bosons.

Field Origin PS CbPS T3R

C1 A (15, 1, 1) (3, 1, 1, 4/3) 0

C2 B (15, 1, 1) (3, 1, 1, 4/3) 0

C3 ∆R (10, 1, 3) (3, 1, 3,−2/3) 1

R1 A (15, 1, 1) (3, 1, 1,−4/3) 0

R2 B (15, 1, 1) (3, 1, 1,−4/3) 0

R3 ∆R (10, 1, 3) (3, 1, 3, 2/3) −1

• Singlets (8, 1, 0)

MS3 =

(
−
√

2MC1λA + x VξλABξ − 1√
2
λBMC2

VξλABξ − 1√
2
λBMC2 − 1√

2
MC1λB − y

)
.

In this case, there are no massless states.

Field Origin PS CbPS T3R

C1, R1 A (15, 1, 1) (8, 1, 1, 0) 0

C2, R2 B (15, 1, 1) (8, 1, 1, 0) 0

• Singlets (1, 1,±1)

MS4 = 0 .

These states correspond to the last two massless Goldstone bosons eaten by the gauge bosons. With
these two states present, the total number of GBs eaten is 1 + 2× 3 + 2 = 9, exactly as required by the
symmetry breaking scheme.
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Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (1, 1, 3,−2) 0

R1 ∆R (10, 1, 3) (1, 1, 3, 2) 0

• Singlets (1, 1,±2)

MS5 = 0 .

The mass matrix for the colour- and SU(2)L-singlets with hypercharge (and thus electric charge)
±2 vanishes, implying that these states remain massless until the susy scale, providing a testable
prediction of the model (as well as other Pati-Salam set ups). We write these as δ++ and δ

++
.

Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (1, 1, 3,−2) −1

R1 ∆R (10, 1, 3) (1, 1, 3, 2) 1

• Singlets (3, 1,−1/3)⊕ (3, 1, 1/3)

MS6 = −
√

2MC1λR .

Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (3, 1, 3,−2/3) 0

R1 ∆R (10, 1, 3) (3, 1, 3, 2/3) 0

• Singlets (3, 1,−4/3)⊕ (3, 1, 4/3)

MS7 = −
√

2MC1λR .

Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (3, 1, 3,−2/3) −1

R1 ∆R (10, 1, 3) (3, 1, 3, 2/3) 1

• Singlets (6, 1, 4/3)⊕ (6, 1,−4/3)

MS8 = −2
√

2MC1λR .

Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (6, 1, 3, 2/3) 1

R1 ∆R (10, 1, 3) (6, 1, 3,−2/3) −1
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• Singlets (6, 1, 1/3)⊕ (6, 1− 1/3)

MS9 = −2
√

2MC1λR .

Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (6, 1, 3, 2/3) 0

R1 ∆R (10, 1, 3) (6, 1, 3,−2/3) 0

• Singlets (6, 1,−2/3)⊕ (6, 1, 2/3)

MS10 = −2
√

2MC1λR .

Field Origin PS CbPS T3R

C1 ∆R (10, 1, 3) (6, 1, 3, 2/3) −1

R1 ∆R (10, 1, 3) (6, 1, 3,−2/3) 1

4.A.2 SU(2)L doublets

Next we consider the SU(2)L doublets. We start with the doublets that have the right quantum
numbers to break electroweak symmetry.

• Doublets (1, 2,±1/2)

The mass matrix relevant for the electroweak-symmetry breaking doublets is

MD1 =

 Mφ Mφφ′
1√
2
MC2λφρ

Mφφ′ Mφ′
1√
2
MC2λφ′ρ

1√
2
MC2λφρ

1√
2
MC2λφ′ρ Mρ + 1√

2
λρAMC1

 (4.A.1)

M2
D1 is diagonalized according to

UT ·M2
D1 · U = M̂D1M̂D1 . (4.A.2)

This gives three up-type (down-type) Higgs doublets hu, h′u, Hu (hd, h′d, Hd) . φu,d
φ′u,d
ρu,d

 = UT

 hu,d
h′u,d
Hu,d

 . (4.A.3)

Therefore for the up (down) projections we have

vu,dφ ≡ 〈φu,d〉 = U11v
u,d
1 + U21v

u,d
2 + U31v

u,d
3 ,

vu,dφ′ ≡
〈
φ′u,d

〉
= U12v

u,d
1 + U22v

u,d
2 + U32v

u,d ,

vu,dρ ≡ 〈ρu,d〉 = U13v
u,d
1 + U23v

u,d
2 + U33v

u,d
3 .

(4.A.4)

In general a light doublet, i.e. massless at the MC scale, gets a mass term at MSUSY and its vev, at
the EW scale, is of order of the EW scale ∼ vW . On the contrary for a heavy doublet of mass M , its



4.A. Higgs scalar spectrum 127

induced vev at the EW scale is ∼ v2
W /M For M ∼ MC this is completely negligible with respect to

vW .

Consider now the condition 〈ρu〉 = 0 that we imposed to get the correct fermion mass matrices. In
the standard case we would have only one up- and one down-type light Higgs doublets, with all
the other doublets heavy. Assume now that hu,d in equation (4.A.3) are the up- and down-type light
doublets at MC . Then we have vu,d1 ∼ vW while vu,d2 ∼ vu,d3 ∼ 0. From equation (4.A.4) we see that in
this case it would be impossible to make the ρ projection vanish along the up-direction (that implies
U13 = 0), while still maintaining a non-vanishing 〈ρd〉 .12 For this reason the condition 〈ρu〉 = 0
implies a non-standard scenario and the presence of two light doublets of up-type at the MC scale,
namely hu and h′u. However the symmetric nature of MD1 ensures that as consequence we are also
left with two down-type light Higgs doublets, hd and h′d. Nevertheless this does not imply that 〈ρd〉
vanishes because vu,di depend on the soft terms and we get

〈ρu〉 = U13v
u
1 + U23v

u
2 = 0 ,

〈ρd〉 = U13v
d
1 + U23v

d
2 6= 0 , (4.A.5)

In conclusion we have to impose two constraints on the free parameters that enter in MD1 corre-
sponding to require thatMD1 has two vanishing eigenvalues. Notice that the condition thatMD1

has
rank 1 is fine-tuned but it is not more fine-tuned than imposing MD1 of rank 2, which is universally
accepted whenever the MSSM has to be recovered. In our case the fermion mass matrix structures
impose a slightly different condition –MD1

of rank 1 – but both the requirements are satisfied by
fine-tuning the parameters that enter in the mass matrix.

Field Origin PS CbPS T3R

C1 φ (1, 2, 2) (1, 2, 2, 0) 1/2

C2 φ′ (1, 2, 2) (1, 2, 2, 0) 1/2

C3 ρ (15, 2, 2) (1, 2, 2, 0) 1/2

R1 φ (1, 2, 2) (1, 2, 2, 0) −1/2

R2 φ′ (1, 2, 2) (1, 2, 2, 0) −1/2

R3 ρ (15, 2, 2) (1, 2, 2, 0) −1/2

• Doublets (3, 2, 7/6)⊕ (3, 2,−7/6)

MD2 = Mρ +
1√
2
λρAMC1

.

Field Origin PS CbPS T3R

C1 ρ (15, 2, 2) (3, 2, 2, 4/3) 1/2

R1 ρ (15, 2, 2) (3, 2, 2,−4/3) −1/2

• Doublets (3, 2, 1/6)⊕ (3, 2,−1/6)

MD3 = Mρ +
1√
2
λρAMC1 .

12Even the condition U13 = 0 is not natural. Therefore in the most general case with only one up-type (down-type) light
doublet, the condition 〈ρu〉 = 0 implies that all the other vevs given in equation (4.A.4) vanish.
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Field Origin PS CbPS T3R

C1 ρ (15, 2, 2) (3, 2, 2, 4/3) −1/2

R1 ρ (15, 2, 2) (3, 2, 2,−4/3) 1/2

• Doublets (8, 2, 1/2)⊕ (8, 2,−1/2)

MD4 = Mρ −
1√
2
λρAMC1

.

Field Origin PS CbPS T3R

C1 ρ (15, 2, 2) (8, 2, 2, 0) 1/2

R1 ρ (15, 2, 2) (8, 2, 2, 0) −1/2

4.A.3 SU(2)L triplets

Lastly, we discuss triplets under the Standard Model’s SU(2)L.

• Triplets (1, 3, 1)⊕ (1, 3,−1)

MT1 =

 MΣ λξVξ 0
λξVξ MΣ′

1√
2
λMR

0 1√
2
λMR M∆L + 3√

2
λLMC1

 .

with

Field Origin PS CbPS T3R

C1 Σ (1, 3, 3) (1, 3, 3, 0) 1

C2 Σ′ (1, 3, 3) (1, 3, 3, 0) 1

C3 ∆L (10, 3, 1) (1, 3, 1, 2) 0

R1 Σ (1, 3, 3) (1, 3, 3, 0) −1

R2 Σ′ (1, 3, 3) (1, 3, 3, 0) −1

R3 ∆L (10, 3, 1) (1, 3, 1,−2) 0

• Triplets (1, 3, 0)

MT2 =

(
MΣ λξVξ
λξVξ MΣ′

)
.

with

Field Origin PS CbPS T3R

C1, R1 Σ (1, 3, 3) (1, 3, 3, 0) 0

C2, R2 Σ′ (1, 3, 3) (1, 3, 3, 0) 0
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• Triplets (3, 3,−1/3)⊕ (3, 3, 1/3)

MT3 = M∆L
+

1√
2
λLMC1 .

with
Field Origin PS CbPS T3R

C1 ∆L (10, 3, 1) (3, 3, 1, 2/3) 0

R1 ∆L (10, 3, 1) (3, 3, 1,−2/3) 0

• Triplets (6, 3, 1/3)⊕ (6, 3,−1/3)

MT4 = M∆L
− 1√

2
λLMC1

with
Field Origin PS CbPS T3R

C1 ∆L (10, 3, 1) (6, 3, 1,−2/3) 0

R1 ∆L (10, 3, 1) (6, 3, 1, 2/3) 0

4.B NLO contributions to the flavon scalar potential

The superpotential wd of equation (4.71), linear in the driving fields DR, ϕR, χR and σR, is modified
into:

wd = w0
d + δwd . (4.B.1)

The addition δwd contains the NLO contributions, suppressed by one power of 1/Λ with respect
to w0

d; it is given by the most general quartic, S4 × Z4-invariant polynomial linear in the driving
fields, and can be obtained by inserting an additional flavon field in all the LO terms. The Z4-charges
prevent any addition of the flavons ϕ and ϕ′ at NLO, while a factor of σ or χ can be added to all the
LO terms. The full expression of δwd is the following:

δwd =
1

Λ

(
3∑
i=1

xiI
σR
i +

5∑
i=1

wiI
χR
i +

6∑
i=1

siI
DR
i +

5∑
i=1

viI
ϕR
i

)
. (4.B.2)

where xi, wi, si and vi are coefficients and
{
IσRi , IχRi , IDRi , IϕRi

}
represent a basis of independent

quartic invariants:

IσR1 = σRσσσ IσR3 = σRσ(χχ)11

IσR2 = σR(χ(χχ)31)11

IχR1 = (χRχ)11(χχ)11 IχR4 = (χR(χχ)31)11
σ

IχR2 = ((χRχ)2(χχ)2)11
IχR5 = (χRχ)11

σσ
IχR3 = ((χRχ)31

(χχ)31
)11

IDR1 = ((DRχ)31
(ϕϕ′)31

)11
IDR4 = (DR(ϕϕ)2)11

σ

IDR2 = ((DRχ)32
(ϕϕ′)32

)11
IDR5 = (DR(ϕ′ϕ′)2)11

σ

IDR3 = ((DRχ)31
(ϕ′ϕ′)31

)11
IDR6 = (DR(ϕϕ′)2)11

σ
IϕR1 = (ϕRχ)1s(ϕϕ

′)12 IϕR4 = ((ϕRχ)32(ϕϕ′)32)11

IϕR2 = ((ϕRχ)2(ϕϕ′)2)11
IϕR5 = (ϕR(ϕϕ′)32

)11
σ

IϕR3 = ((ϕRχ)31
(ϕϕ′)31

)11
.

(4.B.3)

In these terms we indicate with (. . .)R the representation R of S4.
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The NLO flavon vevs are obtained by imposing the vanishing of the first derivative of wd + δwd with
respect to the driving fields σR, χR, DR and ϕR. We look for a solution that perturbs equations (4.16)
and (4.17) to first order in the 1/Λ expansion: for all components of the flavons Φ = (σ, χ, ϕ, ϕ′), we
denote the shifted vev’s by

〈Φ〉 = 〈Φ〉LO + δΦ . (4.B.4)

The original 〈Φ〉LO here are given by equations (4.16) and (4.17).

It is straightforward to verify the following results. In the Majorana mass sector the shifts δσ, δχ turn
out to be proportional to the LO vev’s 〈Φ〉LO and can be absorbed in a redefinition of the parameters
vχ and vσ . Instead, in the Dirac mass sector, the shifts δϕ, δϕ′ have a non-trivial structure, so that the
LO texture is modified:

〈ϕ〉 =

 δvϕ
v′ϕ
v′ϕ

 〈ϕ′〉 =

 δvϕ′

v′ϕ′
−v′ϕ′

 . (4.B.5)

Here v′ϕ and v′ϕ′ satisfy a relation similar to that in equation (4.72) and the shifts δvϕ and δvϕ′ are
suppressed by a factor λ with respect to the LO entries v′ϕ and v′ϕ′ , respectively.

4.C Beta coefficients of the gauge coupling running

In this appendix, we provide the coefficients of the β–functions for the gauge coupling running in
the different regimes. The complete matter fields run from the GUT scale down to the MSUSY scale,
where the SUSY partners decouple. We have already outlined the spectrum for the scalar fields in
section 4.9, according to the different scale at which the fields decouple. As a result the computation
of the β–functions is straightforward. We write µ for a generic scale and obtain in the different energy
regimes

- MC < µ < MGUT : all matter is in the left and right handed multiplets (4, 2, 1) and (4, 1 , 2) as
mentioned in table 4.2. In the Higgs sector, we have all the fields mentioned in table 4.6. This
leads to the coefficients

βSU(4)C = 54 , βSU(2)L = 69 , βSU(2)R = 69 . (4.C.1)

Due to the large matter content these coefficients are very large and the β–functions are very
steep. As consequence the theory is in the Pati-Salam regime only for a very small range of
energies, as can indeed be seen in figure 4.8. Almost directly after passing the scale MC , the
SU(2)R coupling constant enters the non-perturbative regime.

- MR < µ < MC : in this range the Pati-Salam gauge group is broken to the ‘colour-broken Pati-
Salam’ SU(3)C × SU(2)L × SU(2)R × U(1)B−L symmetry. We find the following coefficients
for the matter (left and right handed doublets of quarks and leptons characterized by different
U(1)B−L charges) and the scalar fields

βSU(3)C = −3 , βSU(2)L = 18 , βSU(2)R = 18 , βU(1)B−L = 24 . (4.C.2)

- MT < µ < MR: in this regime we have all the usual MSSM matter particles, four light higgs
doublets (two up-type and two down-type), a couple of SM triplets (1, 3, 1)⊕ (1, 3,−1) and two
extra charged singlets (δ++ and δ̄++). The coefficients of the β–functions are

βSU(3)C = −3 , βSU(2)L = 4 , βU(1)Y = 69/5 . (4.C.3)

The hypercharge that appears in the last term is related to SU(2)R and the B−L charges in the
previous regime by

Y = T3R +
B − L

2
.
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- MSUSY < µ < MT : in this regime we have all the usual MSSM matter particles, four light higgs
doublets (two up-type and two down-type) and two extra charged singlets (δ++ and δ̄++). The
β–function coefficients are

βSU(3)C = −3 , βSU(2)L = 2 , βU(1)Y = 12 . (4.C.4)

This should be compared with the (-3, 1, 33/5) coefficients of the ordinary MSSM.

- vW < µ < MSUSY : we have the particle content of the standard model, with the exception that
there are four Higgs doublets. We have therefore the following β–function coefficients

βSU(3)C = −7 , βSU(2)L = −8/3 , βU(1)Y = 22/5 . (4.C.5)

This should be compared with the (-7, -19/6, 41/10) coefficients of the ordinary SM.

4.D Yukawa running

In section 2.1.1 we remarked that we can consider only the running between MT and MSUSY to
provide analytical approximations for the evolution of fermion masses and mixing under the RGEs
effect. This is due to the closeness of the intermediate scales between MGUT and MT . At MT the
scalar SU(2)L triplet has been already integrated out giving rise to the effective Weinberg operator
for neutrino masses

αijYLrs
LrLshuihuj

MT
, (4.D.1)

For the Higgs fields we have hu1 = hu and hu2 = h′u; the αij coefficients arise from the scalar potential
and YL is given in equation (4.80).

For what concerns the charged fermion Yukawa, atMT the Dirac part of the superpotential is written
as

YuQU
chu + Y ′uQU

ch′u + YdQD
chd + Y ′dQD

ch′d + YeLE
chd + Y ′eLE

ch′d , (4.D.2)

with the Yukawa mass matrices given in equation (4.82).

The Yukawa matrices RGEs are therefore given by

16π2 dYu
dt

=
[
3YuY

†
u + YdY

†
d + 3Y ′uY

′†
u + Y ′dY

′†
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The coefficients here are numerically given by

cu1 =
13

15
, cu2 = 3 , cu3 =

16

3
, cd1 =

7

15
, cd2 = 3 , cd3 =

16

3
,

ce1 =
9

5
, ce2 = 3 , ce3 = 0 , cν1 =

6

5
, cν2 = 6 , cν3 = 0 .

(4.D.4)



Chapter 5

Flavour symmetries at the electro-
weak scale

For there are three that bear record in heaven,
[...]: and these three are one.

The Bible - King James Version
1 John 5:7

5.1 Introduction

When studying the Altarelli–Feruglio model in chapter 2 we found that the mass scale of flavons of
flavour symmetries is typically very high. It can be as high as the assumed energy scale of grand
unification. In the previous chapter, we used this to our advantage and constructed a model that
contains both grand unified and family symmetries. The disadvantage is that the model is not very
predictive. There is a limited effect of the physics at the very high scale on the physics at scales
that the current experiments are investigating, the TeV scale for the LHC and even lower scales
for neutrino experiments. There are some predictions, for instance about the rates of neutrinoless
double beta decay and the presence at the SUSY scale of extra doubly charged scalars δ++ and δ̄−−,
but these are not very many. The predictiveness of flavour models is significantly enlarged if the
scale of symmetry breaking can be lowered to the electroweak scale. In this chapter we study a set
up in which this is indeed the case.

The flavour model of the previous section contained flavons and pure Higgs fields. Flavons are
scalar fields that are singlets of the SM gauge group, but charged under the family symmetry group,
while for pure Higgs fields it is exactly the other way around. The central idea of this chapter,
introduced in section 5.2, is to combine these two fields to form ‘flavo-Higgses’ that are in non-trivial
representations of both the flavour symmetry group and the electroweak group. Naturally, breaking
electroweak symmetry also implies breaking the flavour symmetry and we obtain low-energy, highly
predictive models of flavour.

In particular we are interested in models where there are three Standard-Model like Higgs fields that
are in the triplet representation of the family symmetry group A4. In section 5.3 we introduce this
scenario and in section 5.4 we present the corresponding potential for the flavo-Higgs fields. Section
5.5 discusses the physical Higgs fields present after breaking electroweak symmetry.

The potential of section 5.4 allows only a limited number of minima. In section 5.6 we construct a
complete list of all those vacua and in section 5.7 we discuss the question whether in these cases CP
is violated in the Higgs sector. The vacua are solutions of the mathematical equations that minimize
the potential. The question whether they are also physically viable is a different one. In section 5.8
we develop a number of tests that are only sensitive to the Higgs sector of a model and in section 5.9
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we confront the minima of section 5.6 with these tests.

To constitute a complete model, knowledge of the representation of the Higgs fields (an A4-triplet),
is not enough. Only when also the fermionic content is given a complete model arises. In section 5.10
we present four such models, three from the literature and one original work, called ‘quark mixing
in the discrete dark matter model’. In section 5.11 we present a number of tests for these models that
are sensitive also to the fermionic content and in section 5.12 we present the results of these tests.
Lastly, section 5.13 presents the conclusions.

5.2 The pros and cons of flavons

The crucial assumption of models with flavour symmetries is the existence of a horizontal gauge
group. Invariance under this flavour group dictates which terms are allowed in the Lagrangian of
the resulting field theory. The Lagrangian of the Standard Model, equation (2.1), is well-known

LSM = LK + Lgauge + LY + VHiggs.

Typically, adding a family symmetry group does not affect the kinetic and gauge terms, as the usual
choice is not to gauge the flavour group. The effect on the Yukawa terms, on the other hand, is
drastic. The terms originally present in the Standard Model are not invariant under the flavour
group. In chapters 2 and 4 we have seen ways to fix this deficit and we found that the way in which
invariance is recovered ultimately dictates what the masses and mixing angles of the fermions look
like. A crucial choice is whether the last term VHiggs is to be modified as well.

In the previous chapters, the solution to make the Yukawa terms invariant, was to introduce
flavons. These fields transform trivially under (vertical) gauge transformations, but are in extended
representations of the flavour symmetry. The flavons acquire vacuum expectation values and the
structure of the vevs translates to structures in the fermion mass matrices. The Higgs sector on the
other hand, was touched as little as possible. In the Altarelli–Feruglio model the Higgs fields are
singlets of the family symmetry and in the Pati-Salam inspired model of chapter 4, they transform
under the auxiliary Z4, but are still singlets of the S4 symmetry.

Modifications of the Higgs potential in the strict sense are absent in the model of Altarelli and
Feruglio. The point that they are larger than naively expected in the model of chapter 4 is one of
the main messages of that chapter. Still, the modifications are relatively limited when compared to a
scenario where the Higgses are not only charged under Z4, but also under S4.

The addition ‘in the strict sense’ in the previous paragraph refers to the fact that the non-modification
concerns the potential of the ‘traditional’ Higgses, i.e. the fields that break electroweak (ew)
symmetry. The flavons are also fields that break a symmetry – in this case the family symmetry.
To write down a mass term for fermions, both electroweak Higgses and flavons are needed. It can
thus be well defended to see the flavons as a second type of Higgs fields. From this point of view,
there is a very significant modification of the Higgs potential

VHiggs −→ Vew Higgs + VFlavons . (5.1)

In the previous chapters, we have seen that the idea of using flavons is quite attractive. It is possible
to build models that reproduce the tribimaximal or bimaximal mixing patterns, without having to
tune parameters. However, four weaker points of the approach should also be stressed.

Firstly, non-renormalizable operators are ubiquitous in models with flavons. Several flavons are
added to Yukawa couplings that originally exactly had dimension 4. We discussed the effective
Weinberg-operator for neutrino masses and its possible origin from one of the three types of seesaw
(or a combination thereof) in chapter 2 and concluded that non-renormalizable interactions are
in principle no problem for a theory. Still, their appearance makes the theory significantly more
complicated.



5.3. The three Higgs doublet scenario 135

Secondly, models can be quite baroque. In the set up of chapter 4, no fewer than nine new flavon
fields had to be introduced. The flavons ϕ and ϕ′ are tailored to couple to charged fermions at
leading order, while χ and σ couple to neutrinos. The four driving fields do not even couple to
the SM fermions directly, but are needed to help the other flavons obtain the correct vevs. The
Froggatt–Nielsen messenger lastly ensured the fermion hierarchy. All flavons fulfill a well-defined
role and none of them is redundant. The number nine thus seems to be rather minimal for this type
of models, but it is quite large. It is worth trying to see if simpler models with flavour symmetry can
be constructed.

Thirdly, all the known techniques for flavon alignment in case of more than one flavon require
supersymmetry or the presence of extra dimensions. These are two types of new physics that are
very well-motivated. They explain one of the greatest standing puzzles in the Standard Model, the
hierarchy problem of section 1.3.2 and, as a bonus, give a dark matter candidate. Supersymmetry
at the TeV scale furthermore enables gauge unification as shown in section 1.3.3. There are thus
good arguments to include supersymmetry or extra dimensions in flavour model building, but it
would be preferable not to depend on them and to be able to write down more minimal models.
This is especially true in a time where the experimental bounds on supersymmetry (or at least on the
simplest implementations of it) are becoming rather tight.

Lastly, the scale of the physics of the flavons is typically very high. In the Altarelli–Feruglio model,
the cut-off scale is estimated to be of the order of 1015 GeV; in the model of section 4 it should be the
GUT scale. This can be read from figure 4.7 and 4.8 to be of the order of 1013 GeV. An advantage of this
high scale is that it is possible to build models that combine flavour and grand unified symmetries.
The downside is that the theories are hard to test and that few direct predictions can be made. An
effect on neutrino parameters is present as shown in section 4.11, but direct detection of the flavons
is out of the question.

In this chapter, we discuss an alternative possibility. We assume that there are no separate flavons,
but that the Standard Model Higgs field takes their role. In this ‘flavo-Higgs’ set up, there are three
copies of the SM Higgs that are in a triplet of the flavour group. Once the Higgses get their vevs, the
resulting ‘vector of vevs’ acts as the flavons.

In this set up, the four weak points described above are ameliorated. All couplings are of the Yukawa
type fermion-fermion-Higgs and are thus renormalizable. Although there is a substantial amount of
new fields (two extra copies of the Higgs field), this is far less than in the other models. The alignment
in flavour space is now possible in a non-supersymmetric context and without extra dimensions;
all that is required is finding the vacuum expectation values of the three Higgses. The scale of
new physics is obviously the electroweak scale and the set up is thus testable at the LHC by direct
detection of the extra Higgs fields and verification that they have the right couplings. The indirect
tests also become numerous. These can in fact be used to constrain the models significantly.

The disadvantage is that we only have one (effective) flavon. This limits the amount of structure we
can impose on the fermion masses. For instance, to reproduce the exact tribimaximal mixing pattern,
we need to tune one parameter. This is still much better than in the Standard Model, where the
tuning of three parameters (all three neutrino mixing angles) is required.

5.3 The three Higgs doublet scenario

In this chapter we investigate a flavo-Higgs set up. The most important choice to make is that of the
family symmetry group. We choose the group A4. This group is very well-known in particular in
models with flavons. The Altarelli–Feruglio model of section 2.4 used A4 to reproduce tribimaximal
mixing in the lepton sector, although in section 3.3.1 it was shown that this requires the appearance
of an additional accidental Z2 symmetry.

The fact that an accidental symmetry was required to give a specific mixing pattern is valuable
information when constructing a flavo-Higgs model. In the previous section it was shown that this



136 5. Flavour symmetries at the electroweak scale

set up can produce only one direction in flavour space. Residual symmetries in the neutrino and
charged lepton sector (the key for finding mixing patterns in chapter 3) will necessarily be severely
limited. If accidental symmetries can realize a mixing pattern even when certain directions in flavour
space are not given by flavon vevs, that is good news.

Throughout this chapter, we work in the S-diagonal basis, often referred to as the Ma-Rajasekaran
basis. The transformations from this basis to the T -diagonal basis of Altarelli and Feruglio as well
as all other details of the group theory of A4 is given in appendix 3.A. We recall that the group
has a trivial as well as two non-trivial one-dimensional representations (1, 1′ and 1′′) and one three-
dimensional representation (3). In order to provide a non-trivial direction in flavour space, the flavo-
Higgs fields should thus transform as a triplet ofA4. We adopt the standard notation to refer to these
fields as Φ instead of H .

~Φ = (Φ1, Φ2, Φ3) (5.2)

We stress that each of the Higgs fields has the same hypercharge +1/2 as the fields Hd of chapter
2. Our set up is thus very different from the MSSM, that has multiple (two) Higgs doublets, but
these have different hypercharges. In the language of chapter 2, the Higgs sector in this chapter is
characterized by nu = 0 and nd = 3.

Each of these Higgs fields is written in terms of SU(2)L components and expanded around its
vacuum expectation value similar to equation (2.4)

Φa →
1√
2

(
Re φ1

a + i Im φ1
a

vae
iωa + Re φ0

a + i Imφ0
a

)
. (5.3)

Here vaeiωa is the vacuum expectation value of the ath Higgs field. One or two of the va can be zero,
implying that the corresponding Higgs field does not develop a vev. The phases ωa appears due to
the fact that the vacuum expectation values can generally be complex. A global rotation can remove
one phase, so in a one-Higgs doublet model the vev is generally chosen real. In models with more
than one Higgs doublet, phases carry physical information and should be taken into account. Note
that the appearance of complex vevs does not automatically imply CP violation. For a discussion of
CP violation in the Higgs sector, see section 5.7.

Next to these three Higgs fields, there may be additional Higgses in one of the one-dimensional
representations. We refer to models with only the A4 triplet Higgs as minimal and to models that
also have singlets as non-minimal. In this section we investigate the potential and its vacua solutions
for the minimal set up. Two of the models we discuss in section 5.10 are indeed minimal, while two
others are non-minimal.

In this chapter the A4 representation for the Higgs fields is now fixed. The choice of representation
for the various fermions is still free. The requirement that the SM Yukawa couplings can still be
written down requires at least one of the fermion fields to be in the triplet representation. Whether
this is the left- or the righthanded field and if fields in one-dimensional representations are in 1, 1′ or
1′′ is a further choice to be made. In this chapter we perform several tests of the viability of a certain
situation. Tests that only take the Higgs sector into consideration and that are thus insensitive to
choices made in the fermion representations are referred to as ‘model-independent’ tests, while tests
that involve fermions are ‘model-dependent’ tests.

5.4 The A4 invariant Higgs potential

The Higgs potential of the ordinary Standard Model Higgs as given below equation (2.19) is the
well-known ‘Mexican hat’ potential.

V (H) = µ2H†H + λ(H†H)2

The coefficients µ2 and λ of the quadratic and quartic terms are respectively negative and positive.
This keeps the potential bounded from below, while having a non-trivial minimum to break elec-
troweak symmetry.
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The Higgs potential in the three Higgs doublet model with A4 symmetry is constructed in the same
spirit. It contains quadratic and quartic terms in the Higgs fields. The group theory of SU(2) and A4

dictates that only one quadratic term is possible, while there are several ways to contract the indices
in the quartic terms. As shown by Ma and Rajasekaran [97], the most general potential is given by

V [Φa] =µ2(Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3) + λ1(Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3)2+

+ λ3(Φ†1Φ1Φ†2Φ2 + Φ†1Φ1Φ†3Φ3 + Φ†2Φ2Φ†3Φ3)+

+ λ4(Φ†1Φ2Φ†2Φ1 + Φ†1Φ3Φ†3Φ1 + Φ†2Φ3Φ†3Φ2)+

+
λ5

2

[
eiε
[
(Φ†2Φ1)2 + (Φ†3Φ2)2 + (Φ†1Φ3)2

]
+ e−iε

[
(Φ†1Φ2)2 + (Φ†2Φ3)2 + (Φ†3Φ1)2

] ]
.

(5.4)

The parameters λ1,3,4,5 and ε are chosen to be in accordance with the usual notation in two Higgs
doublet models [125,126]. The parameter µ2 is typically negative in order to have a stable minimum
away from the origin. All the other parameters, λi, are real parameters which are subject to the
condition that the potential is bounded from below: this forces λ1 and the combination λ1 +λ3 +λ4 +
λ5 cos ε to be positive.

5.4.1 Soft A4 breaking

When the Higgs fields develop vacuum expectation values, they break electroweak symmetry as well
as the A4 flavour symmetry. At that moment, A4 is thus spontaneously broken. It is also possible to
break A4 explicitly, by adding terms to the potential that are not invariant. This is obviously against
the spirit of introducing the symmetry in the first place and should thus only be done as a last resort.
One way to break A4 is by adding soft breaking terms to the potential (5.4) in the form

VA4soft = v2
ew
m

2
(Φ†1Φ2 + Φ†2Φ1) + v2

ew
n

2
(Φ†2Φ3 + Φ†3Φ2) + v2

ew
k

2
(Φ†1Φ3 + Φ†3Φ1) . (5.5)

Here m,n, k are dimensionless parameters that should presumably be smaller than one. Note that
the chosen VA4soft is not the most general one but it prevents an accidental extra U(1) factor to appear.

The soft breaking terms are needed when we study two models [127, 128] in section 5.12. These
models make use of a minimum of the potential (5.4) that gives rise to unnaturally light Higgses.
The addition of the terms in (5.5) solves this problem and only after this it is meaningful to test the
models on their merits.

5.5 Physical Higgs fields

After the symmetry breaking of the Higgs fields of equation (5.3) the components of the Higgs
fields become the known Goldstone bosons of the Standard Model or the charged and neutral Higgs
bosons. The number of expected Higgs bosons can easily be calculated. In the charged sector, we
have three complex or six real degrees of freedom. Two of these relate to the Goldstone bosons
that are eaten by the W+ and W− bosons, leaving four degrees of freedom to produce two pairs
of a positively and a negatively charged boson. In the neutral sector only one of the six degrees of
freedom corresponds to an eaten Goldstone boson (by the Z boson), leaving five neutral Higgses.
In the case where all vevs are real, it is easy to see that three of these have a scalar and two a
pseudoscalar nature. In this counting the assumption was made that only electroweak symmetry
gets broken; there are no additional (global) broken symmetries. If those are present, extra Goldstone
bosons appear and some of the Higgs states are massless.

The mixing of the six neutral states to five (pseudo)scalar states and a Goldstone boson can be
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parameterized as in section 2.2.51

hα = UαaReφ0
a + Uα(a+3)Imφ0

a ,

π0 = U6aReφ0
a + U6(a+3)Imφ0

a .
(5.6)

Here a = 1, 2, 3 and α = 1− 5, while α = 6 refers to the Goldstone boson that we represent as π0.

In the situation where all vevs are real the 6 by 6 scalar mass matrix reduces to a block diagonal
matrix with two 3 by 3 mass matrices leading to three CP even states and 2 CP odd states and the GB
π0.

The three charged scalars mix into two new charged massive states h+
α and a charged Goldstone

boson that we refer to as π+ and that is eaten by the gauge bosons W+.h+
1

h+
2

π+

 = S

φ1
1

φ1
2

φ1
3

 . (5.7)

In general, the S is a complex unitary matrix. In the special case where all vevs are real, its entries
are real (and it is thus an orthogonal matrix).

It is interesting to notice that, contrary to other multi Higgs (MH) scenarios, here we cannot recover
the SM limit, with one light scalar and all the others decoupled and very heavy. The flavour
symmetry constrains the potential parameters in such a way that the scalar masses are never
independent from each other. This can be easily understood by a parameter counting: the scalar
potential (5.4) presents 6 independent parameters and the number of the physical quantities is 8, i.e.
the electroweak (EW) vev and the seven masses for the massive scalar fields.

5.6 Minimum solutions of the potential

In this section we investigate the minima of the potential (5.4). We assume that electromagnetism is
conserved and that thus only the neutral components of the Higgs fields develop vacuum expectation
values. The fields can then be developed around their vevs as given in equation (5.3).

The tool to find minima is obviously the first derivative system

∂V [Φ]

∂ΦI
= 0 . (5.8)

Here ΦI is one of the fields Re Φ1
a, Re Φ0

a, Im Φ1
a or Im Φ0

a. Secondly we require non negative
eigenvalues of the Hessian

∂2V [Φ]

∂ΦI∂ΦJ
. (5.9)

This means that all the physical masses are positive except those corresponding to the Goldstone
bosons (GBs) that vanish.

Some of the solutions are natural in the sense that they do not require ad hoc values of the potential
parameters; these are only constrained by requiring the boundedness at infinity and the positivity
of all the physical scalar masses. The only potential parameter constrained is the bare mass term µ2

which is related to the physical electroweak (EW) vev, v2
ew = v2

1 + v2
2 + v2

3 . Others require specific
relations between the dimensionless scalar potential parameters and may have extra Goldstone
bosons.

Minima of the A4 scalar potential are described by a vector of vevs(
v1e

iω1 , v2e
iω2 , v3e

iω3
)
. (5.10)

1As there can be no confusion, we leave the hat over the mass eigenstates h.
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As already mentioned below equation (5.3) one or two of the vi may be zero and it is always possible
to choose at least one of the vevs real. In the remainder of this section, we categorize the potential
solutions in two classes: those that can have all vevs real and those for which at least one vev is
inherently complex.

5.6.1 Analysis of solutions with only real vacuum expectation values

When all vevs are real, the first derivative system (5.8) reads

v1[2(v2
1 + v2

2 + v2
3)λ1 + (v2

2 + v2
3)(λ3 + λ4 + λ5 cos ε) + 2µ2] = 0 ,

v2[2(v2
1 + v2

2 + v2
3)λ1 + (v2

1 + v2
3)(λ3 + λ4 + λ5 cos ε) + 2µ2] = 0 ,

v3[2(v2
1 + v2

2 + v2
3)λ1 + (v2

1 + v2
2)(λ3 + λ4 + λ5 cos ε) + 2µ2] = 0 ,

v1(v2
2 − v2

3)λ5 sin ε = 0 ,

v2(v2
1 − v2

3)λ5 sin ε = 0 ,

v3(v2
2 − v2

1)λ5 sin ε = 0 .

(5.11)

The first three derivatives refer to the real components of Φ0
a and the second ones to the imaginary

parts. In the most general case, when neither ε nor λ5 is zero, the last three equations allow two
different solutions

1) v1 = v2 = v3 = v = vew/
√

3;

2) v1 6= 0 and v2 = v3 = 0 (and permutations of the indices).

The second case obviously implies v1 = vew. Both cases represent solutions of the first three equations
as well, provided that{

µ2 = −(3λ1 + λ3 + λ4 + λ5 cos ε)v2
ew/3 for the first case.

µ2 = −λ1v
2
ew for the second case.

(5.12)

In these cases λ5 can be chosen positive, as a sign can be absorbed in a redefinition of ε.

Next, we consider the case where sin ε is 0. This implies ε = 0 or π. We can absorb the minus sign
corresponding to the second case in a redefinition of λ5 that is then allowed to span over both positive
and negative values.

Assuming v1 6= 0, we can solve the first equation in (5.11) with respect to µ2. Then by substituting µ2

in the other two equations we get

v2(v2
1 − v2

2)(λ3 + λ4 + λ5) = 0 ,

v3(v2
1 − v2

3)(λ3 + λ4 + λ5) = 0 .
(5.13)

Next to the two solutions present in the general case, this system has two further possible solutions

3) v3 = 0, v2 = v1 = vew/
√

2 and permutations. This requires

µ2 = − (4λ1 + λ3 + λ4 + λ5) v2
ew/4 . (5.14)

4) (λ3 + λ4 + λ5) = 0. This condition implies that in the real neutral direction there is an O(3)
accidental symmetry that is spontaneously broken by the vacuum configuration. Indeed in this
case v1, v2 and v3 are only restricted to satisfy v2

1 + v2
2 + v2

3 = v2
ew and the parameter µ2 is given

by µ2 = −λ1v
2
ew. We anticipate that the spectrum of neutral Higgs states contain problematic

extra Goldstone bosons.
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The next four subsections are devoted to a closer look of the four minima just described. This includes
a study of the masses of the physical Higgs bosons to see for which minima the spectrum is realistic.
This means that all resulting masses are non-negative (no tachyons) and that the only Goldstone
bosons that appear are those related to electroweak symmetry breaking. We note that the condition
λ5 = 0 allows special cases of the solutions 1) to 4), but does not give rise to new solutions. The
λ5 = 0 scenario can thus be handled in the regular subsections regarding minima 1) to 4) and does
not require a separate discussion.

5.6.2 The Alignment (v, v, v) when ε 6= 0

In the basis chosen, the vacuum alignment (v, v, v) preserves the Z3 subgroup2 ofA4. It is convenient
to perform a basis transformation into the Z3 eigenstate basis, 1, 1′ ∼ ω, 1′′ ∼ ω2, where ω was
defined in section 2.4 as a cubic root of unity. The Z3 eigenstates read

ϕ = (Φ1 + Φ2 + Φ3)/
√

3 ∼ 1

ϕ′ = (Φ1 + ωΦ2 + ω2Φ3)/
√

3 ∼ ω
ϕ′′ = (Φ1 + ω2Φ2 + ωΦ3)/

√
3 ∼ ω2 . (5.15)

In the Z3 basis, ϕ ∼ 1 behaves like the standard Higgs doublet: its neutral real component develops
a vacuum expectation values

〈
ϕ0R

〉
= vew and all its other components correspond to the GBs eaten

by the corresponding gauge bosons. The physical real scalar gets a mass given by

m2
h1

=
2

3
v2

ew(3λ1 + λ3 + λ4 + λ5 cos ε). (5.16)

The neutral components of the other two doublets ϕ′ and ϕ′′ mix into two complex neutral states;
their masses are given by

m′,′′ 2n =
v2

ew

6

(
−λ3 − λ4 − 4λ5 cos ε±

√
(λ3 + λ4)2 + 4λ2

5(1 + 2 sin2 ε)− 4(λ3 + λ4)λ5 cos ε

)
. (5.17)

The charged components of ϕ′, ϕ′′ do not mix; their masses are

m′,′′ 2C = −v
2
ew

6

(
3λ4 + 3λ5 cos ε±

√
3λ5 sin ε

)
. (5.18)

5.6.3 The Alignment (v, 0, 0) when ε 6= 0

In the chosen A4 basis, the vacuum alignments (v, 0, 0) preserves the Z2 subgroup of A4. As in the
Z3 conserving vacuum, it is useful to rewrite the scalar potential by performing the following Z2

conserving basis transformation
Φ1 → Φ1 ,

Φ2 → e−iε/2Φ2 ,

Φ3 → eiε/2Φ3 .

(5.19)

Φ1 is even under Z2 and behaves like the standard Higgs doublet, while Φ2 and Φ3 are odd. For what
concerns the neutral states, the 6× 6 mass matrix is diagonal in this basis and has some degenerated
eigenvalues

m2
h1
≡ 2λ1v

2
ew , m2

h2
= m2

h3
=

1

2
(λ3 + λ4 − λ5)v2

ew ,

m2
h4

= m2
h5

=
1

2
(λ3 + λ4 + λ5)v2

ew , m2
π0 = 0 .

(5.20)

2In the special case where ε = 0, the symmetry of the vacuum is enlarged to S3 even if S3 is not a subgroup of A4. The
reason is that setting ε = 0 effectively enlarges the symmetry of the potential to S4 (once also SU(2)×U(1) gauge invariance
is required), which does have S3 as a subgroup.
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The charged scalar mass matrix is also diagonal with eigenvalues

m2
C1

= m2
C2

=
1

2
λ3v

2
ew , m2

π+ = 0 . (5.21)

The degeneracy in the mass matrices are imposed by the residual Z2 symmetry. Contrary to the
previous case the neutral scalar mass eigenstates are real and not complex.

5.6.4 The Alignment (v, v, 0) when ε = 0

This vacuum alignment does not preserve any subgroup of A4. From the minimum equations we
obtain

µ2 = −1

4
v2

ew(4λ1 + λ3 + λ4 + λ5) . (5.22)

The scalar and pseudoscalar mass eigenvalues are given by

m2
h1

= −v
2
ew

2
(λ3 + λ4 + λ5) , m2

h2
=
v2

ew

2
(4λ1 + λ3 + λ4 + λ5) ,

m2
h3

=
v2

ew

4
(λ3 + λ4 + λ5) , m2

h4
= −λ5v

2
ew ,

m2
h5

=
v2

ew

4
(λ3 + λ4 − 3λ5) , m2

π0 = 0 .

(5.23)

In the charged sector the masses are given by

m2
C1

=
v2

ew

4
(λ3 − λ4 − λ5) , m2

C2
= −v

2
ew

2
(λ4 + λ5) , m2

C3
= 0 . (5.24)

For λ5 6= 0 the alignment (v, v, 0) has the correct number of GBs, while for λ5 = 0 we have an
extra massless pseudoscalar. More importantly, the conditions m2

h1
> 0 and m2

h3
> 0 can not be

simultaneously satisfied. This alignment is therefore a saddle point of the A4 scalar potential we are
studying.

5.6.5 The Alignment (v1, v2, v3) when ε = 0

This vacuum alignment, as the previous one, does not preserve any subgroup of A4. We recall that
this minimum requires two constraints on the parameters of the potential: ε = 0 and λ3 +λ4 +λ5 = 0.

The mass matrix for the neutral CP-even scalar states has just one massive state

mh1
2 = 2λ1v

2
ew . (5.25)

There are two additional massless scalars as expected from the enlarged symmetry of the potential.
There are two degenerate massive and one massless CP-odd states as well. The massless state is just
the Goldstone boson π0. The mass of the massive states is

m2
h2

= m2
h3

= (λ3 + λ4)v2
ew . (5.26)

Note that for the special case λ5 = 0 even these states are massless as the original symmetry of the
potential was even larger. Lastly, for the charged scalars we have

m2
C1

= m2
C2

=
1

2
λ3v

2
ew , m2

C3
= 0 . (5.27)

The total amount of GBs is 5 (7) for the case λ5 6= 0 (λ5 = 0), so we have 2 (4) extra unwanted GBs. We
note that the introduction of terms in the potential that softly break A4 can ameliorate the situation
with the Goldstone bosons.
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5.6.6 Analysis of solutions with complex vacua

In the two subsections after this one, we study vacua that are inherently complex. We reiterate that
it is always possible to remove one phase by a global rotation. Therefore, it is very easy to give an
exhaustive list of vacua: there are just two possibilities.

We order the vacua by the number of zero vevs. Two zeros is not an option, as the only phase in
(v1e

iω1 , 0, 0) can always be rotated away. The first possibility is thus the configuration with one zero
vacuum expectation value (v1e

iω1 , v2, 0). A special case occurs if the magnitudes of the two vevs are
related. The second possibility reads (v1e

iω1 , v2e
iω2 , v3) and does not have any zero vevs. A number

of special cases is possible, where some or all of the moduli or phases are related. In subsection 5.6.8
we see that the situation with v1 = v2 and ω1 = −ω2 is of special interest.

We note that the two natural vacua of the previous section (v, v, v) and (v, 0, 0) obviously do not have
complex analogues as they have only one phase that can be reabsorbed to make all vevs real. The
two less satisfying solutions that appear under the constraint ε = 0, given by (v, v, 0) and (v1, v2, v3),
do have complex analogues. In the following subsections we show that these are physically more
relevant than the real versions.

5.6.7 The Alignment (v1e
iω1, v2, 0)

The third doublet is inert if the Higgs fields appear in the vacuum (v1e
iω1 , v2e

iω2 , 0). We are left only
with two doublets that develop a complex vev and after the redefinition, there is only one phase ω1.
Taking the generic solution (v1e

iω1 , v2, 0) the minimum equations are given by

v1

[
cosω1[2µ2 + 2λ1(v2

1 + v2
2) + (λ3 + λ4)v2

2 ] + λ5v
2
2 cos(ε+ ω1)]

]
= 0 ,

v2

[
(2µ2 + 2λ1(v2

1 + v2
2) + (λ3 + λ4)v2

1 + λ5v
2
1 cos(ε+ 2ω1)

]
= 0 ,

v1

[
sinω1[2µ2 + 2λ1(v2

1 + v2
2) + (λ3 + λ4)v2

2 ]− λ5v
2
2 sin(ε+ ω1)

]
= 0 ,

v2v
2
1 sin(ε+ 2ω1) = 0 .

(5.28)

The last equation can be solved by ε = −2ω1 or ε = −2ω1 +π. Like in section 5.6.1, we can absorb the
second case by a redefinition of λ5. The other three equations reduce to

v1 cosω1

[
2µ2 + 2λ1(v2

1 + v2
2) + (λ3 + λ4)v2

2 + λ5v
2
2

]
= 0 ,

v2

[
2µ2 + 2λ1(v2

1 + v2
2) + (λ3 + λ4)v2

1 + λ5v
2
1

]
= 0 ,

v1 sinω1

[
2µ2 + 2λ1(v2

1 + v2
2) + (λ3 + λ4)v2

2 + λ5v
2
2

]
= 0 .

(5.29)

These equations are simultaneously solved for v1 = v2 = vew/
√

2 and µ2 given by

µ2 = −v
2
ew

4
(4λ1 + λ3 + λ4 + λ5) . (5.30)

The neutral and charged 6 × 6 mass matrices can analytically be diagonalized. In the neutral sector
we have

m2
h1

=
1

2
v2

ew(−λ3 − λ4 − λ5) , m2
h2

=
1

2
v2

ew(4λ1 + λ3 + λ4 + λ5) ,

m2
h3

=
1

4
v2

ew(λ3 + λ4 − λ5 + 2λ5 cos 3ω1) , m2
h4

= −λ5v
2
ew ,

m2
h5

=
1

4
v2

ew(λ3 + λ4 − λ5 − 2λ5 cos 3ω1) , m2
π0 = 0 .

(5.31)

The charged sector has masses

m2
C1

=
v2

ew

4
(λ3 − λ4 − λ5) , m2

C2
=
v2

ew

2
(−λ4 − λ5) , m2

C3
= 0 . (5.32)
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We see that the mass of the fourth neutral boson selects negative values for λ5, i.e. the second solution
ε = −2ω1 +π. It is interesting to see that in the real limits ω1 → 0 (or π), it is not possible to have both
m2
h1

and m2
h3

(respectively m2
h5

) positive. This was indeed the conclusion of subsection 5.6.4. Only
in the complex situation, there are points in parameter space where all masses are positive. This is in
particular clear in the region around cos 3ω1 = 0. As before, λ5 = 0 leads to two problems: an extra
GB and impossibility to have all massive eigenstates positive.

5.6.8 The Alignment (v1e
iω1, v2e

iω2, v3)

We now consider the alignment where all Higgs doublets develop a non-zero vev. This leads to two
physical phases. We have the freedom to take ω3 = 0. In this case the first-derivative system is given
by

v1

{
cosω1[2µ2 + 2λ1(v2

1 + v2
2 + v2

3) + (λ3 + λ4)(v2
2 + v2

3)]+

+λ5[v2
3 cos(ε− ω1) + v2

2 cos(ε+ ω1 − 2ω2)]
}

= 0 ,
v2

{
cosω2(2µ2 + 2λ1(v2

1 + v2
2 + v2

3) + (λ3 + λ4)(v2
1 + v2

3)+

+λ5[v2
3 cos(ε+ ω2) + v2

1 cos(ε− ω2 + 2ω1)]
}

= 0 ,
v3

{
2µ2 + 2λ1(v2

1 + v2
2 + v2

3) + (λ3 + λ4)(v2
1 + v2

2)+

+λ5[v2
1 cos(ε− 2ω1) + v2

2 cos(ε+ 2ω2)]
}

= 0 ,
v1

{
sinω1[2µ2 + 2λ1(v2

1 + v2
2 + v2

3) + (λ3 + λ4)(v2
2 + v2

3)]+

+λ5[v2
3 sin(ε− ω1)− v2

2 sin(ε+ ω1 − 2ω2)]
}

= 0 ,
v2

{
sinω2(2µ2 + 2λ1(v2

1 + v2
2 + v2

3) + (λ3 + λ4)(v2
1 + v2

3))+

+λ5[−v2
3 sin(ε+ ω2) + v2

1 sin(ε− ω2 + 2ω1)]
}

= 0 ,
v3

[
λ5(−v2

1 sin(ε− 2ω1) + v2
2 sin(ε+ 2ω2))

]
= 0 .

(5.33)

The last equation is solved for ω2 = −ω1 and v2 = v1 = v. We have checked explicitly that this is the
only solution for the last equation that is compatible with the other equations. Defining v3 = rv and
v2

1 + v2
2 + v2

3 = v2
ew the previous system reduces to three equations

µ2 +
v2

ew

2(2 + r2)

[
(4 + 2r2)λ1 + (1 + r2)(λ3 + λ4) +

λ5

cosω1
(r2 cos(ε− ω1) + cos(ε+ 3ω1))

]
= 0 ,

µ2 +
v2

ew

2(2 + r2)

[
(4 + 2r2)λ1 + (1 + r2)(λ3 + λ4) +

λ5

sinω1
(r2 sin(ε− ω1) + sin(ε+ 3ω1))

]
= 0 ,

µ2 +
v2

ew

(2 + r2)

[
(2 + r2)λ1 + λ3 + λ4 + λ5 cos(ε− 2ω1)

]
= 0 .

(5.34)
We can solve the third equation in (5.34) in terms of µ2. Thereafter, the second equation can be solved
in terms of λ5.

µ2 = − v2
ew

2+r2 [(2 + r2)λ1 + λ3 + λ4 + λ5 cos(ε− 2ω1)] ,

λ5 =
(r2 − 1)(λ3 + λ4) sinω1

(r2 − 1) sin(ε− ω1)− 2 cos ε sin(3ω1)
.

(5.35)

Then the first equation in (5.34) has two possible solutions, for λ4 and ε respectively

i) λ4 = −λ3 ,

ii) tan ε =
r2 sin 2ω1 + sin 4ω1

r2 cos 2ω1 − cos 4ω1
.

(5.36)

The solutions (5.35) and (5.36) seem to constrain the potential severely, fixing three of the potential
parameters in a non-trivial way. This is indeed true for solution i) in (5.36), but in the other case the
potential is still completely general; we have just expressed three of its parameters (µ2, λ5 and ε) in
terms of parameters of the vev system (vew, r and ω1).

To test the validity of the solution so far sketched it is necessary to check whether this is a true
minimum of the potential and furthermore if there are extra GBs apart from three corresponding to
electroweak symmetry breaking. Unfortunately the relations given in (5.35) and (5.36) do not allow
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to get analytical solutions for the scalar masses in case ii). For this reason we consider only three
special limits in this case : r ∼ 0, r ∼ 1 and r very large. We think that these limit situations could be
the most interesting ones in model building realizations. Indeed two of the models [127,128] that we
discuss in section 5.10 and test in section 5.12 use this vacuum with a large value of r, respectively 43
and 240.

Case i)

In this case the constrains λ4 = −λ3 puts λ5 to zero and this substantially enlarges the symmetries of
the potential. There is an accidental O(3) in the neutral real direction and two accidental U(1)s due
to λ5 = 0. For this reason the neutral spectrum has 5 massless particles, the GB π0 and 4 other GBs,
and only one massive state

m2
h1

= 2λ1v
2
ew . (5.37)

The charged scalars are

m2
C1

= m2
C2

=
1

2
λ3v

2
ew , m2

C3 = 0 (5.38)

Case ii)

In this case, it is unfortunately not possible to find analytical solutions. Instead we consider three
situations where r takes special values: r � 1 (in numerical examples r ∼ 0.05); r ∼ 1 and r � 1
(where we take r in the range 50÷ 200 in numerical studies). See also figure 5.1.

In all these three cases, we find the appearance of very light states. This does obviously not prove
that light states are a necessary consequence of case ii) of the (veiω1 , ve−iω1 , rv) vacuum, but it is a
rather strong hint that the vacuum is, at least to some degree, pathological. The problem of the light
states can be alleviated by introducing soft A4 breaking terms. Indeed we opt to add these terms to
the models studied in section 5.10.

Figure 5.1: The three ranges of r studied in this subsection.

• r ∼ 0

In this case we assume that r is small and that we can thus neglect terms of order r2. Equation (5.36)
is easily solved for ε

ε ∼ −4ω1 +Nπ . (5.39)

Inserting these values in the equations of (5.35) we find

µ2 = −λ1v
2
ew − (λ3 + λ4)

1− cos 6ω1

2− 4 cos 6ω1
,

λ5 =
λ3 + λ4

1− 2 cos 6ω1
. (5.40)

Under these approximations the 6 x 6 neutral scalar mass matrix gives one massless state, m2
π0 = 0,
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corresponding to the GB. The other five eigenvalues are at leading order in r given by

m2
h1
∼ f [λi]O(r2)v2

ew

m2
h2
∼ −(λ3 + λ4)/(1− 2 cos 6ω1)v2

ew

m2
h3
∼ [−2λ1 + (4λ1 + λ3 + λ4)(1− cos 6ω1)/(1− 2 cos 6ω1)] v2

ew

m2
h4
∼ −

[
(λ3 + λ4) cos 6ω1v

2
w/(1− 2 cos 6ω1)

]
v2

ew ,

m2
h5
∼ −

[
2(λ3 + λ4) sin2 3ω1/(1− 2 cos 6ω1)

]
v2

ew .

(5.41)

Here f [λi] stands for a linear combination of the dimensionless λ parameters of the potential. The
lightest state in (5.41) may be too light to be phenomenologically acceptable. We estimate its mass
by choosing f [λi] in the range 0.1÷ 10 (natural values for a function of dimensionless parameters) or
10−2 ÷ 102 (slightly unnatural). Reference values for r2 are 10−3 ÷ 10−2. Under these conditions, we
find upper bounds

m2
h1
≤ 200 GeV2 for λi ∼ 100, r2 ∼ 10−2 ,

m2
h1
≤ 25 GeV2 for λi ∼ 10, r2 ∼ 10−3 . (5.42)

This indicates that for small value of r the spectrum is likely to contain very light neutral states. On
the contrary, in the charged sector we have the two GBs eaten by the corresponding gauge bosons,
m2
C3

= 0, and two states that are not very light.

m2
C1
∼ −[λ4 + (λ3 + λ4 cos 6ω1)/(1− 2 cos 6ω1)]v2

ew/2

m2
C2
∼ −[2λ4 + (λ3 + 2λ4 cos 6ω1)/(1− 2 cos 6ω1)]v2

ew/2 .
(5.43)

• r ∼ 1

If r is close to 1, we write r ∼ 1 + δ and make an expansion in terms of δ, neglecting terms of order
δ2. This gives for ε

ε ∼ π/2− ω1 − δ cot 3ω1 +Nπ . (5.44)

Equations (5.35) for µ2 and λ5 become

µ2 = −(3λ1 + λ3 + λ4)/3v2
ew − δ/9(λ3 + λ4)v2

ew ,

λ5 = δ(λ3 + λ4) csc 3ω1 . (5.45)

Under these approximations the 6 x 6 neutral scalar mass matrix gives the usual null mass state,
m2
π0 = 0, corresponding to the GB and the following five eigenvalues

m2
h1
∼ m2

h2
∼ f [λi]O(δ2)v2

ew ,

m2
h3
∼ m2

h4
∼ −(λ3 + λ4)/3v2

ew ,

m2
h5
∼ 2(3λ1 + λ3 + λ4)/3v2

ew ,

(5.46)

Again f [λi] stays for a linear combination of the λs. An analysis similar to the one for the case with
r ∼ 0 shows that the neutral spectrum typically has very light states.

In the charged sector we have the GBs eaten by the gauge bosons and two degenerate massive states

m2
C1
∼ m2

C2
∼ −λ4/2v

2
ew . (5.47)

• r � 1

In the situation where r is large, we perform an expansion in term of 1/r and neglect terms of order
1/r2. From equation (5.36) we find

ε ∼ 2ω1 +Nπ . (5.48)
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After this, equation (5.35) reduces to

µ2 ∼ −λ1v
2
ew , (5.49)

λ5 ∼ −(λ3 + λ4) . (5.50)

Under these approximations we find a massless neutral scalar state, m2
π0 = 0. The other 5 neutral

masses are given at leading order by

m2
h1
∼ m2

h2
∼ f [λi]O(1/r2)v2

ew ,

m2
h3
∼ 2λ1v

2
ew ,

m2
h4
∼ m2

h5
∼ (λ3 + λ4)v2

ew .

(5.51)

The charged scalar mass matrix is diagonal up to terms of order O(1/r2) with the correct number of
GBs and two massive degenerate states

m2
C1

= m2
C2

= λ3v
2
ew/2 . (5.52)

From equation (5.51) it follows that again there are two very light neutral scalars. Using reference
values for r in the range 50÷ 200 we find

m2
h1,2
∼
√
f [λi] 5 GeV2(1 GeV2) . (5.53)

For ‘small’ values of f [λi] as defined above, the minimal masses that this expression can reproduce
are

m2
1,2 ≤ 502 GeV2 for r ∼ 50 ,

m2
1,2 ≤ 102 GeV2 for r ∼ 200 . (5.54)

Again we find that naturally very light scalars appear. In conclusion the solution (eiω1 , e−iω1 , r)vew/
√

2 + r2

gives very light states in each of the domains for r investigated, at least under the assumption that
the functions f [λi] obtained somewhat natural values. We reiterate that this is no formal proof that
there exist light states for all values of r.

5.6.9 List of the available minima

In this section we have scanned the possible solutions of the first derivative system (5.8) of the A4-
invariant Higgs potential (5.4). Three candidate-vacua seemed to be under control.

• The vacuum (v, v, v) of section 5.6.2.

• The vacuum (v, 0, 0) of section 5.6.3.

• The vacuum (veiω1 , v, 0) of section 5.6.7. We note that the global rotation used to get rid of
the second phase could equally well be used to give the first two elements equal but opposite
phases: (veiω1/2, ve−iω1/2, 0)

These configurations have the right number of Goldstone bosons and in a large part of parameter
space all masses are positive and in a reasonable range.

Two vacua were more problematic

• The alignment (v1, v2, v3) of section 5.6.5.

• The alignment (v eiω1 , v e−iω1 , r v) of section 5.6.8.
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The first vacuum here was derived under the assumption of non-trivial relations of parameters in the
potential. As a result, obtaining this vacuum implies breaking extra symmetries next to electroweak
symmetry. The second vacuum has two realizations, case i) and case ii). The first case suffers from the
same handicaps as the previous vacuum: the potential parameters are related and extra symmetries
gets broken when the Higgses develop vacuum expectation values. The second case technically gives
a correct vacuum. However, for all values of f [λi] and r studied, very light states appeared. In all
situations, a solution is to add soft A4 breaking terms to the potential, although that significantly
reduces the appeal of the method. Lastly, one of the solutions, the candidate-vacuum (v, v, 0) of
section 5.6.4 turned out to be always a saddle point and is not discussed further.

5.7 Discussion on CP violation

The A4-invariant Higgs potential 5.4 central in this chapter has an explicit complex phase ε. Further-
more, the solutions studied in sections 5.6.7 and 5.6.8 had an explicit complex phase ω1 in some of the
vacuum expectation values. One might thus wonder whether the Higgs sector in A4 models gives
rise to extra sources of CP violation. This CP violation can be either explicit if it appears directly at
the level of the Higgs potential or implicit if it occurs due to the vacuum expectation values of the
scalars. In this section we investigate explicit and implicit CP violation in the A4 Higgs scenario. The
conclusion is that neither is present. This section owes to [129] in which the question of CP violation
in our class of models was first discussed in detail.

We first investigate if the potential 5.4 exhibits explicit CP violation. We find that the potential is not
invariant under a ‘naive’ CP transformation

Φi
CP−→ Φ∗i , i.e. Φi

CP−→ δijΦ
∗
j . (5.55)

Under this transformation ε and −ε get interchanged in the potential (5.4). Equation (5.55) does not
describe the most general CP transformation however. A more general CP transformation follows
when the ‘pure’ CP transformation (5.55) is combined with a Higgs basis transformation

Φi
CP−→ UijΦ

∗
j . (5.56)

Here U is a unitary matrix in the space of the three Higgs fields. It was shown in [130] that the Higgs
potential conserves CP explicitly if a matrix U exists such that the ‘new’ CP transformation (5.56)
leaves the potential invariant. For the potential (5.4) it is not hard to find such a matrix. An example
is the matrix that parameterizes the interchange of the first and second Higgs field

U =

0 1 0
1 0 0
0 0 1

 . (5.57)

In this case, the CP transformation is defined according to

Φ1
CP−→ Φ∗2, Φ2

CP−→ Φ∗1, Φ3
CP−→ Φ∗3 . (5.58)

We conclude that the A4 invariant Higgs potential does not violate CP explicitly. There is still the
possibility of spontaneous CP violation through the complex vacua discussed in the previous section.
In [130] and [131] it is shown that a vacuum does not give rise to spontaneous CP violation if there is
a matrix U such that the CP transformation (5.56) also leaves the vacuum invariant. In that case, the
vacuum thus satisfies

(vac) = U (vac)∗ . (5.59)

In other words, each component vieiωi of the vector of vevs should be written as a linear combination
of the complex conjugates of the vevs vjeiωj with the coefficients given by Uij

vie
iωi = Uijvj e

−iωj . (5.60)
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In the specific case under investigation, where U has the form (5.57), this is represented by

v1e
iω1 = v2e

−iω2 , v2e
iω2 = v1e

−iω1 , v3e
iω3 = v3e

−iω3 . (5.61)

The first two equations are dependent; they require v1 and v2 to be each others complex conju-
gate. The third equation requires the third vev to be real. The two candidate-CP-violating vacua,
(veiω1/2, ve−iω1/2, 0) and (v eiω1 , v e−iω1 , r v) both satisfy the conditions (5.61). They do thus not
break CP spontaneously, notwithstanding the fact that they are inherently complex3.

The criterium of conserving or violating CP depending on whether the transformation matrix U
exists, is not always a very practical one. Even if such a transformation exists, it may not be easy to
find. A more solid test is in the calculation of CP-odd basis invariants that vanish if CP is conserved
and that are non-zero if CP is violated (or, at least one of them is). Invariants for the potential (5.4)
and the vacua of the previous subsection were calculated in [129]. As expected, they are all zero.

5.8 Description of model-independent tests of the viability of
vacua

The most direct tests for the scenario of this chapter, is obviously the direct detection of the extended
Higgs sector. In each of the vacua of section 5.6 we mentioned the appearance of multiple Higgs
bosons with specific relations between their masses. The LHC recently cut deep into the parameter
space available to the Standard Model Higgs boson, excluding much of its mass range and finding
hints for a Higgs around 125 GeV, see for instance [132,133]. Bounds for non-Standard Model Higgses
have also been obtained. We have not yet applied these bounds to our model. The fact that the data
are not sufficient to exclude slightly similar multi-Higgs scenarios, in particular the MSSM, however
hints to the statement that more data will be needed to test our model via direct detection of the
Higgs fields involved.

In this section we analyze three more indirect tests for the vacuum configurations derived in section
5.6. These tests only require pre-LHC data and involve phenomenology of the Higgs sector only. As
such they are model independent according to the definition of section 5.3 as the A4 representations
of the various fermions in the theory need not be fixed.

The three tests are unitarity; Z and W± decays and oblique parameters. In the next section we use
these three tests to examine the viability of the vacua of section 5.6 and to restrict their parameter
space.

5.8.1 Unitarity

A first test for multi-Higgs models comes from the tree level unitarity constraints due to the
additional scalars present in the theory. In this subsection, we examine the partial wave unitarity for
the neutral two-particle amplitudes for s � M2

W ,M
2
Z . We can use the equivalence theorem, so that

we can compute the amplitudes using only the scalar potential given in (5.4). In the regime of large
energies, the only relevant contributions are the quartic couplings in the scalar potential [134–137]
and we can write the J = 0 partial wave amplitude a0 in terms of the tree level amplitude T as

a0(s) ≡ 1

32π

∫ 1

−1

dcos θ T (s) =
1

16π
F [λi] . (5.62)

3We recall that via a global rotation the first complex vacuum can also be written as (veiω1 , v, 0) and it was indeed
derived in this form in section 5.6.7. In this case, U should contain a phase as well and is written as eiω1 times the matrix in
equation (5.57).
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Here F represents a function of the λi couplings. For simplicity we use the notation

Φa =

 w+
a

vae
iωa + h0

a + iza√
2

 . (5.63)

Now we can write the 30 neutral two-particle channels as follows:

w+
a w
−
b ,

zazb√
2
,
h0
ah

0
b√

2
, h0

azb . (5.64)

The full scattering matrix a0 can be cast in a block diagonal structure. The first 12×12 block concerns
the channels

w+
1 w
−
1 , w

+
2 w
−
2 , w

+
3 w
−
3 ,

z1z1√
2
,
z2z2√

2
,
z3z3√

2
,
h0

1h
0
1√

2
,
h0

2, h
0
2√

2
,
h0

3, h
0
3√

2
, h0

1z1 , h
0
2z2 , h

0
3z3 .

The other three 6 × 6 blocks are related to six channels parameterized by the labels (a, b) that take
values (1, 2), (1, 3) and (2, 3):

w+
a w
−
b , w

+
b w
−
a , h

0
azb , h

0
bza , zazb , h

0
ah

0
b ,

Note that up this point the analysis is completely general and is valid for all the vacua presented.
When testing a vacuum configuration, we express the quartic couplings λi in terms of the masses
of the scalars. Afterwards, we can use the constraint that the largest eigenvalues of the scattering
matrix a0 has modulus less than 1. This gives upper bounds on the scalar masses that we can use in
a numerical analysis.

5.8.2 Z AndW± Decays

The next test we perform is related to the decay of Z and W gauge bosons. From an experimental
point of view the decay of gauge bosons into scalar particles is detected by looking at fermionic
channels, such as Z → hA → 4f in the 2HDM, or Z decays into partial or total missing energy
in a generic new physics scenario. From this point of view gauge bosons decays bound the Higgs
sector in an extremely model dependent way as they are highly sensitive to the fermion content of
the theory.

On the other hand, in the SM the Z and the W± decays have precisely been calculated and measured
not only for decay into 2 or 4 fermions, but also for the sum of all decays. We can thus focus on the
decays Z,W± → all. Doing this we overestimate the allowed regions in the parameter space, but we
have a first and model-independent cut arising from the decay of the gauge bosons. Once we pass to
a model dependent analysis the region can only be restricted, not enlarged. Actually, we expect the
error to be quite small, given that the contribution from new physics ∆Γ satisfies

∆Γ2f
Z,W± ∼ ∆Γ4f

Z,W± ∼ ∆ΓallZ,W± � ΓZ,W± . (5.65)

LEP data give an estimate for the width that can be assigned to new physics effects

Γ
exp
Z,W± = ΓSM

Z,W± + ∆ΓZ,W± . (5.66)

Experimentally ∆ΓZ ∼ 0.0023 GeV and ∆ΓW± ∼ 0.042 GeV [6]. This can be used to calculate the
width of Z and W decay to respectively two neutral Higgs states and to one neutral and one charged
state.

Z → hihj ,

W+ → h+
i hj .

(5.67)
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In the final step we select the points for which the the widths of the Z and W bosons due to the
multi-Higgs set up are allowed by the LEP data.

ΓMH
Z,W± ≤ ∆ΓZ,W± . (5.68)

In the vacuum analysis of section 5.6 we have seen that in a few situations there are extra massless or
very light particles. Even if we assume that these do not directly rule out the related configurations
(some light scalars may indeed be hard to find directly), the gauge-boson decays put very strong
bounds on their existence. Bound on Z decay translate to the following inequalities

kZ ≤ ∆ΓZ
16π

mZ

4c2W
g2

if both particles hi and hj are massless .

kZ

(
1− m2

hi

m2
Z

)3

≤ ∆ΓZ
16π

mZ

4c2W
g2

if hj is massless and 0 < m2
hi
< m2

Z .

kZ

(
1−

m2
hi

+m2
hj

m2
Z

)3

≤ ∆ΓZ
16π

mZ

4c2W
g2

if hi, hj 6= 0 and 0 < m2
hi

+m2
hj
< m2

Z .

(5.69)

In these equations, g is the SU(2) gauge coupling, cW the cosine of the Weinberg angle θW and the
parameter kZ is expressed in terms of the matrix U defined in equation (5.6)

kZ =
(
−UTabUT(a+3)c + UT(a+3)bU

T
ac

)2

. (5.70)

A similar equation exist for W± decay in the situation where hj is massless and m2
Ci
< m2

W

kW

(
1− m2

Ci

m2
W

)3

≤ ∆ΓW
16π

mW

4cW
g2

. (5.71)

Analogous to kZ , the parameter kW is given in terms of the matrix S defined in equation (5.7).

kW =
∣∣∣S†abUTac∣∣∣2 +

∣∣∣S†(a+3)bU
T
(a+3)c

∣∣∣2 . (5.72)

Large Mass Higgs Decay

Electroweak data analysis considering the data from LEP2 [138] and Tevatron [139] put an upper
bound on the mass of the SM Higgs of 194 GeV at 99% CL [6]. In a MH scenario this bound can be
roughly translated in the upper bound for the lightest scalar mass, mh1

. For large values of the SM
Higgs mass, mh ≥ 2mW , the main decay is h→ W+W− and the upper bound is completely ‘model
independent’ in the sense that it does not depend on the fermionic content of the model.

In a MH model the lightest Higgs boson coupling to the gauge bosons is given in terms of a parameter
β ≤ 1

gh1ZZ = β gSMhZZ ,

gh1WW = β gSMhWW .
(5.73)

In the three-Higgs model, β is given by

β =
va
vew

fa(cosωa U
T
a1 + sinωj U

T
(a+3)1) . (5.74)

In these models, the lightest Higgs h1 is less copiously produced than the SM Higgs of the same
mass, which in turn is always less than the SM Higgs production at the highest allowed mass of 194
GeV

ΓMH
WW (mh1) ∼ |β|4ΓSMWW (mh1) ≤ ΓSMWW (194) . (5.75)

We use this to obtain an upper bound for mh1
of 194 GeV.
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5.8.3 Constraints By Oblique Corrections

Lastly, the consistency of a MH model with the current experimental data has to be checked also
by means of the oblique corrections. These corrections can be classified [140–145] by means of
three parameters, S T and U , that maybe written in terms of the physical gauge-boson vacuum
polarizations

T =
4π

e2c2Wm
2
Z

[
AWW (0)− c2WAZZ(0)

]
,

S = 16π
s2
W c

2
W

e2

[
AZZ(m2

Z)−AZZ(0)

m2
Z

−A′γγ(0)− (c2W − s2
W )

cW sW
A′γZ(0)

]
, (5.76)

U = −16π
s2
W

e2

[
AWW (m2

W )−AWW (0)

m2
W

− c2W
AZZ(m2

Z)−AZZ(0)

m2
Z

− s2
WA

′
γγ(0)− 2sW cWA

′
γZ(0)

]
.

As in equation (5.69), cW is the cosine of θW and sW is its sine; e is the electric charge. EW precision
measurements severely constrain the possible values of the three parameters T , S and U . In the SM
assuming m2

h > m2
Z the oblique parameters are given by

TSMh ∼ − 3

16πc2W
log

m2
h

m2
Z

,

SSMh ∼ 1

12π
log

m2
h

m2
Z

,

USMh ∼ 0 .

(5.77)

For a Higgs boson mass of mh = 117 GeV (and in brackets the difference assuming instead mh = 300
GeV), the data allow [6]

Sexp = 0.10± 0.10(−0.08)

T exp = 0.03± 0.11(+0.09)

Uexp = 0.06± 0.10(+0.01) .

(5.78)

A detailed analysis on the S, T and U parameters in a MH model has been presented in [146, 147]
where all details are carefully explained. However the resulting formulas are valid only for scalar
masses larger or comparable to mZ . This is not the case for a generic MH model. In particular in
some of the configurations studied in the previous section there are massless and extremely light
particles. We modify their results, getting full formulas valid for any value of the scalar masses in
appendix 5.A.

5.9 Results of the model-independent tests

In this section we report on numerical analyses for all vacuum configurations summarized in section
5.6.9. The aim of the analysis is to find, for each configuration, whether a region in parameter space
exists, where all the Higgs constraints are satisfied. Points in parameter space are generated and
then tested through subsequent constraints, from the weaker one to the strongest. Points that ‘pass’
a certain test and then ‘fail’ the next one are classified as points Y, B and G. Points that ‘pass’ all tests
are referred to as R.

• Points Y. These points are true minima: all the squared masses are positive, but the unitarity
test fails (yellow points in the figures);

• Points B. These points are true minima and the unitarity bounds are passed, but Z and W±

decays are not (blue points);
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• Points G. Here also the Z and W± decays are according to data, but the oblique parameters are
not (green points);

• Points R. These points pass all tests we performed, including being in accordance with the T ,
S and U parameters (red points).

The ratios B/Y , G/B, R/G can be used to indicate which is the stronger constraint for each of the
allowed minima. Whenever possible, we plot the mass of the lightest neutral state m1 to the mass
of the second lightest neutral state m2 and of the lightest charged one mch1 . For all green points
that pass the unitarity and W/Z constraints, i.e. the green and the red points, we plot the T and S
oblique parameters. It turns out that for all cases considered that T is the most constraining one. For
this reason we have not inserted the plots concerning U .

5.9.1 The Alignment (v, v, v)

We first consider the minimum (v, v, v). We showed in section 5.6.2 that this conserves a Z3

symmetry. There we have also redefined the initial 3 doublets in terms of the surviving Z3 symmetry
representations: 1, 1′ and 1′′. One combination corresponds to a Z3 singlet doublet, that behaves like
the SM Higgs: it develops a non-vanishing vev, gives rise to a CP even state which we call h1 and to
the three GBs eaten by the gauge bosons. The others two doublets, ϕ′ and ϕ′′, are inert. Depending
on which Higgs is the lightest, we can describe the allowed decay patterns and describe what is
expect from a numerical scan. The results of this scan are given in figure 5.2.

1) When h1 is the lightest state, the usual SM mass upper bound applies. On the contrary as long
as we do not consider its coupling with the fermions we do not have a model-independent
lower mass bound. This is due to a combined effect of the CP and Z3 symmetries: h1 is CP
even and a singlet under Z3. This forbids couplings like Zh1h1, Zh1ϕ

′0 and Zh1ϕ
′′0. Gauge

boson decays can therefore not constrain the lower mass of h1.

2) When ϕ′0 or ϕ′′0 is the lightest state, we do not have an upper bound on this state by the heavy
Higgs decays because the couplings ϕ′0W+W− (ϕ′′0W+W−) are absent. On the contrary we
can have a lower bound by W and Z decay because couplings like Zϕ′0ϕ′′0 and W−ϕ′0ϕ′′− are
allowed.

5.9.2 The Alignment (v, 0, 0)

The second minimum we consider is (v, 0, 0) that is Z2 conserving. In this minimum, there is only
one Z2 even Higgs boson. We refer to this as h1, although, again, it is not necessary the lightest one.
There are also four Z2 odd states: a degenerate pair of CP even bosons, labeled h2,3 and a degenerate
pair that is CP odd, labeled h4,5. As in the previous subsection we sketch the expectations for a
numerical analysis.

1) When h1, the Z2-even SM-like Higgs, is the lightest boson, we expect the SM Higgs upper
bound to apply, but there should be no lower bound because the interactions Zh1h4,5 are
forbidden by the Z2 symmetry;

2) When the two lightest bosons are the Z2 odd degenerate states h2,3 (CP even) or h4,5 (CP odd)
we expect no upper bound. Moreover since they are degenerate we do not expect a lower
bound either. On the contrary we expect that Z and W decays constrain the third lightest
neutral Higgs mass and that of the charged ones.

In figure 5.3 we see a large number of points on the diagonal. This means that the lightest mass m1

is identical to the second-lightest mass m2, with values up to 700 GeV. Having one of the degenerate
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Figure 5.2: TheZ3 conserving alignment (v, v, v): the upper panels show the lightest neutral
massm1 versus the second lightest neutral massm2 and versus the lightest charged onemch1

respectively. The gray arc delimits the region below which the Z (W ) decay channel opens.
On the left plot the arc is only 45◦ because m2 ≥ m1. For points below the arc the Z (W )
decay can happen. The points allowed stretch in the region close to the border because of
the conditions (5.69). The dashed vertical lines indicates the approximate cuts that occur at
m1 ∼ mZ/

√
2 andm1 ∼ 194 GeV according to case 2) and case 1) respectively as explained

in the text. The lower panels show the contributions to T and S for the green and red points.
The gray dashed lines indicate the experimental values at 3, 2, 1σ level with long, normal
and short dashing respectively. T turns out to be the most constraining oblique parameter.

pairs as the lightest states reflects case 2). The points corresponding to case 1) have a sharp cut at
m1 = 194 GeV. This cut rejects many blue points, i.e. those that satisfy the unitarity constraint but
not the decay constraint. We have also reported m1 versus m3 to check that indeed, when m1 → 0,
m3 is bounded by mZ as we expected. Our intuitions are also confirmed by the plot m1 − mch1

,
wheremch1 stands for the lightest charged Higgs. As in the Z3 preserving case the most constraining
oblique parameter is T .

5.9.3 The Alignment (v1, v2, v3) with ε = 0, λ3 + λ4 + λ5 = 0

In this case we do not have any surviving symmetry that forbids specific couplings as was the case
in the previous two subsections. However from subsection 5.6.4 we know that the conditions ε = 0,
λ3 + λ4 + λ5 = 0 give rise to two extra massless CP even particles. This justifies two expectations.

1) When the lightest massive state is CP odd, then its mass is bounded by the Z decay through
equation (5.69);

2) When the lightest massive state is CP even, then its mass could reach smaller values since the Z
decay bound would constrain the combination of its mass with the lightest CP odd state mass.
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Figure 5.3: The alignment (v, 0, 0): the upper panels show m1 versus m2 (on the left)
and third lightest m3 (on the right). For the latter we reported only the R points. The
central panel shows m1 versus mch1

. The gray arc delimits the region below which the Z
(W ) decay channel opens while the second dashed vertical line indicates the SM-Higgs mass
upper bound at 194 GeV. The first dashed vertical line at m1 = mZ/

√
2 is given to help a

comparison with the Z3 preserving case. On the first two plots the arc is only 45 degrees
because m2,3 ≥ m1. The lower panels show the contributions to T and S. Again, the T
parameter turns out to be the most constraining one.

Moreover in both cases we expect the mass of the lightest charged scalar bounded by W decay,
according to equation (5.71), due to its coupling with W and the massless particles.

Figure 5.4 shows that case 2) happens very rarely as there are very few red points below the Z cut.
As for the Z3 and Z2 preserving minima the T parameter is the most constraining one. In general, we
mention that it is remarkable that there are many red points in the figures. Even with extra massless
particles present, it is quite possible to pass all electroweak tests.
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Figure 5.4: The alignment (v1, v2, v3) with extra Goldstone bosons: the upper panels
show m1 versus m2 and mch1

respectively. The dashed lines at m1 = mZ (vertical) and
mch1 = mW (horizontal) delimit the region below which the Z and W decay channels open
respectively. The allowed points concentrate close to the borders according to equations 5.69-
5.71. The lower panels show the contributions to T and S. Again, the T parameter turns out
to be the most constraining one.

5.9.4 The Alignment (veiω1, v, 0)

The alignment (veiω1 , v, 0) does not preserve any A4 subgroup, just like the vacuum alignment
(v1, v2, v3) discussed above. We expect that Z decay does not give a lower bound on m1 and m2

in figure 5.5 as the two lightest Higgs might have the same CP eigenvalue, preventing the Z to decay
into them. W decay on the other hand gives a lower bound on the quantity m2

1 + m2
ch1

. Regarding
the upper bound on the lightest neutral mass state we do not expect any clear cut because we may
not identify a SM-like Higgs.

5.9.5 The Alignment (veiω1, ve−iω1, rv) case i)

In section 5.6.8 we have seen that the alignment (veiω1 , ve−iω1 , rv) with the constrains λ5 = 0, λ4 =
−λ3, gives rise to 4 extra GBs and only to one neutral state. The expressions for the three non-
vanishing masses (5.37) and (5.38) show that λ1 and λ3 should be positive in this case.

The positivity constraint is therefore easily met. Also the test of unitarity can be passed if the
parameters are centred around 1. We expect that the most stringent bound is given by the decay
constrains and not by the T , S and U parameters: massless particles give a small contribution to the
oblique parameters and due to the limited number of new massive particles (two charged degenerate
scalars) T , S and U should not deviate too much from the SM values. Indeed in figure 5.6 it is shown
that the oblique parameters are not constraining at all at 3σ level. For this reason we only report the
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Figure 5.5: The complex alignment (veiω1 , v, 0): as in the previous figure the upper panels
show m1 versus m2 and mch1

respectively. In the plot on the right, the effect of the W decay
constraint on m2

1 + m2
ch1

is clear by looking at the B points. The lower panels show the
contributions to T and S. Again, the T parameter turns out to be the most constraining one.

points R in the upper panel of figure 5.6. In the m1 −mch1 plot (obviously, the absence of a second
neutral state prohibits a (m1−m2)–plot), we see that with respect to the minima so far analyzed there
are much fewer points and that as expected there are cuts in correspondence to mZ and mW .

In conclusion, the solutions for the alignment (veiω1 , ve−iω1 , rv) with λ5 = 0, λ4 = −λ3 are not easy
to find, but the Higgs phenomenology does not completely rule out this vacuum configuration. We
could introduce a weight to estimate the degree to which a solution is stable or fine-tuned, but this
goes beyond the purposes of this work. We note however that this situation with four extra massless
particles should be very problematic when considering the model dependent constraints. Indeed the
two models with this vacuum studied in section 5.10 are of the second type, where there are no extra
Goldstone bosons, although light states might be problematic.

5.9.6 (veiω1, ve−iω1, rv) case ii)

In section 5.6.8 we showed that at least in the three special limits r ∼ 0, r ∼ 1 and r >> 1, there are
one or two very light particles.

It turns out that finding actual minima (i.e. solutions of equation (5.8) that are not saddle points) is
very hard. Scanning over 100.000 points in parameter space with variable r, we only found a handful
of minima (yellow or otherwise coloured points). This is sketched in figure 5.7. The other relevant
information in this diagram is that for any value of r the two lightest states are always very light, thus
confirming our rough analytical approximations. Indeed both m1 and m2 are lighter then expected.
This holds in particular for m2 in case r ∼ 0, where equation (5.41) just predicts one very light state.
This indicates that some cancelations have to occur in order to make all masses greater than 0. This
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Figure 5.6: Case i) of the alignment (veiω1 , ve−iω1 , rv) case i): the upper panel show m1

versus mch1
. Only the R points are reported. The lower panels show the contributions to T

and S for the G points. For this specific case the oblique parameter constraint is irrelevant
compared to the decay one.

might explain the difficulty to find solutions; this cannot to be ascribed to any constraint imposed,
because even in presence of 4 additional Goldstone bosons as in section 5.9.5 there is a significant
larger number of solutions.

Figure 5.7: Case ii) of the alignment (veiω1 , ve−iω1 , rv), the panels show m1 (on the left)
and m2 (on the right) versus r. The number of points is small, but the most interesting
information is the order of magnitude of the masses.

It is possible to add soft A4 breaking terms as given in equation (5.5) to the potential. All five neutral
and all four charged Higgses can be in the LHC sensitive range between 100 GeV and 1 TeV if the
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dimensionless parameters m, n, k are approximately 0.05, corresponding to effective parameters of
a few GeV after multiplying nsoft,eff =

√
m2 + n2 + k2 by vew. It is interesting to underline that such

large Higgs masses have been recovered by using soft terms at most of order of 5% of the EW vev.
This underlines a non-linear dependence, as can be seen in figure 5.8. In this figure r is fixed to the
large value of 240, in accordance with model 2 of the next section.
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Figure 5.8: Correlation among the lightest Higgs mass and the soft breaking parameter. The
different colours correspond to the ranges that the individual parameters m, n and k are in,
respectively (0− 10−4), (0− 10−3), (0− 10−2) and (0− 10−1)

5.10 Four models of flavour symmetries at the electroweak scale

In this section we describe four concrete models that contain a triplet of Higgses. In these models
the A4 representations of not only the Higgs sector are chosen, but also of the various Standard
Model fermions. The model of Ma and Rajasekaran [97] (model 1) and the model of Morisi and
Peinado [128] (model 2) focus on the lepton sector. The model of Lavoura and Kühböck [148] (model
3) describes the quark sector. In ‘quark mixing in the discrete dark matter model’ (model 4), we
consider both sectors, but specifically focus on quarks.

Models 1 and 4 are non-minimal in the definition of section 5.3; models 2 and 3 are minimal. These
two models use exactly the minimum we found to be the most problematic in the previous section.
When analyzing the phenomenology in section 5.12 therefore, we allow for the presence of soft A4

breaking terms.

5.10.1 Model 1

Model 1 [97] is an extension of a simpler model by one of the authors [149] that generates neutrino
masses via a TeV-scale seesaw of type-I. In both models several Higgs fields occur, one of which
carries lepton number. In [97] the choice is made to make the Higgs SU(2)-doublet that does not
carry lepton number a triplet of A4. The most general potential for this triplet of Higgses 5.4 is
written down for the first time there. The triplet Φa couples only to charged leptons and the chosen
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vacuum alignment falls in the class (v, v, v), with v real. In the original work, the constraint that the
ε phase of the potential should be zero is assumed to make this alignment possible, but as shown in
section 5.6.2 this is in fact not necessary.

All the time there is also a fourth Higgs doublet. This is a singlet η of A4 and, as mentioned above,
it carries a single unit of lepton number. The appearance of a singlet next to the triplet makes this
model clearly a non-minimal one. Two new terms are added to the scalar potential (5.4)

Vη = µ2
η(η†η) + λη(η†η)2 + ληΦ(η†η)(φ†1φ1 + φ†2φ2 + φ†3φ3)

Vη soft = µ2
ηΦ

[
η†(φ1 + φ2 + φ3) + (φ†1 + φ†2 + φ†3)η

]
,

(5.79)

where the A4 soft breaking part Vη soft is needed in order to avoid additional GBs. Vη soft breaks A4

as well as lepton number, but preserves its Z3 subgroup thus the full potential may naturally realize
the vacuum configuration

〈Φ〉 ∼ (v, v, v) , 〈η〉 ∼ vη ∝ µ2
ηΦv . (5.80)

The vacuum expectation value of the field η is much smaller than that of Φ. This relates to the relative
smallness of µ2

ηΦ that is natural in the sense that if it goes to zero the model’s symmetry is increased
because lepton number is unbroken. This makes vη very fit to generate the (small) neutrino masses.

The fermion content of the model is much like the (later constructed) Altarelli–Feruglio model of
section 2.4: the lepton doublet is a triplet of A4 and the righthanded charged fermions are singlets
of respectively type 1, 1′ and 1′′. A righthanded neutrino is present as A4-triplet – which is indeed
also Altarelli and Feruglio’s choice in the seesaw version of their model. It is interesting to note that
this righthanded neutrino has zero lepton number. The complete fermion and Higgs content of the
model is given in table 5.1.

Field LL eR µR τR νR Φ η

A4 3 1 1′ 1′′ 3 3 1
lepton number 1 1 1 1 0 0 -1

Table 5.1: The lepton and Higgs content of model 1.

Lepton number constrains the triplet Φ to couple only to charged leptons and the singlet η to
participate only in the neutrino Dirac terms:

L =
1

2
Mν2

Ri + fν̄RiLLiη + YijkL̄LilRjΦk + h.c. (5.81)

In this formula, lR is general notation for the three righthanded charged leptons. The Yukawa
matrices in the charged lepton sector are

Yij1 =

 y1 y2 y3

0 0 0
0 0 0

 , Yij2 =

 0 0 0
y1 ωy2 ω2y3

0 0 0

 , Yij3 =

 0 0 0
0 0 0
y1 ω2y2 ωy3

 (5.82)

After the diagonalization of the charged lepton mass matrix, it is straightforward to relate the
coefficient yi to the mass eigenvalues:

y1 =
me√

3v
, y2 =

mµ√
3v
, y3 =

mτ√
3v
. (5.83)

Since the vevs of the scalar potential are real, the U matrix that rotates the Higgs fields into the
mass basis (2.54) is block diagonal. Neutrino masses are given through the type I See-Saw and
have magnitude f2u2/M . Due to the smallness of vη , the righthanded neutrino masses can be at
a (relatively) low scale around a TeV. Maximal mixing in the (µ τ) sector is obtained and depending
on soft A4 breaking terms for the righthanded neutrinos, specific mixing patterns like the bimaximal
or the tribimaximal are possible.
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5.10.2 Model 2

The second model we discuss is the one by Morisi and Peinado [128]. Like model 1, this model
focuses on the lepton sector, but four important choices are different with respect to the work of Ma
and Rajasekaran. The first is that this model does not employ anA4-singlet Higgs; all the Higgs fields
present are in the triplet Φ.

The second difference is in the vacuum of the Φ field. This is a permutation of the complex vacuum
introduced in section 5.6.8 – in particular of case ii) of that section, as the potential parameters are
not constrained.

〈Φ〉 =
vew√
2 + r2

(
r, eiω1 , e−iω1

)
. (5.84)

As shown below, r needs to be very large in order to incorporate the charged lepton masses: r ' 240.
This case was studied in detail in sections 5.6.8 and 5.9.6, where it was concluded that in order for
this minimum to be viable, the potential needs a contribution from soft breaking terms. When we
study the fermion-dependent processes in section 5.12, we indeed assume these terms to be present.

Thirdly, models 1 and 2 differ in the choice of fermion representations. In model 2, the choice is made
to put all relevant fields in the triplet representation of A4. Table 5.2 that shows the content of the
model is therefore very simple

Field LL lR Φ

A4 3 3 3

Table 5.2: The lepton and Higgs content of model 2.

The Yukawa Lagrangian for the charged leptons is also very simple. It contains the two possible
ways to contract three A4 triplets to a singlet.

L = y1

(
L̄L1Φ3lR2 + L̄L2Φ1lR3 + L̄L3Φ2lR1

)
+ y2

(
L̄L1Φ2lR3 + L̄L2Φ3lR1 + L̄L3Φ1lR2

)
. (5.85)

When the three Higgs fields obtain their vevs as in equation 5.84, this results in a charged lepton
mass matrix without diagonal components:

Ml =

0 a b
b 0 ar
a br 0

 . (5.86)

Here a = y1vew/
√

2 + r2 = 0.43 MeV; b = y2vew/
√

2 + r2 = 7.3 MeV and, as mentioned before,
r = 242. The mass matrix is real because all phases can be absorbed in the fields.

The fourth and last important difference between model 1 and 2 is that in the latter neutrino masses
originate from effective dimension-5 operators. To a good approximation the neutrino mass matrix
is

Mν =

 xr2 κre−iω1 κreiω1

κre−iω1 zr2 κ
κreiω1 κ yr2

 . (5.87)

In this matrix x, y, z and κ are linear combinations of the parameters that occur in the effective
Lagrangian. In the limit where ω1 → 0 and y → z, the neutrino mass matrix is (µ τ)-invariant,
implying maximal atmospheric and zero reactor mixing angle. The solar mixing angle, however, is
undetermined.
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5.10.3 Model 3

In model 3, constructed by Lavoura and Kühböck [127], the quark sector is central. The minimum
configuration of the Higgs fields is, up to permutations, the same as in model 2 (with model 3 having
the priority), although the value of r used is smaller, r ' 43, bringing the model less deep into the
r � 1 limit. The presence of soft A4-breaking terms is thus also mandatory for this model. Figure
5.8 that shows the behaviour of the lightest Higgs as a function of the soft breaking terms, was
constructed for the parameters of model 2; for those of model 3, it looks very similar.

The fermion representation chosen are the triplet for the lefthanded doublets and three different
singlets 1, 1′ and 1′′ for both types of righthanded quarks; see also table 5.3.

Field QL uR cR tR dR sR bR Φ

A4 3 1 1′ 1′′ 1 1′ 1′′ 3

Table 5.3: The lepton and Higgs content of model 3.

This fermion assignment is much like that of model 1, with quarks replacing charged leptons and
indeed the Yukawa Lagrangian and matrices have the same structure. The relevant Lagrangian reads

L = Y dijkQ̄LidRjΦk + Y uijkQ̄LiuRjΦ̃k + h.c. (5.88)

Here Φ̃ = iσ2Φ∗ to provide up-type Higgs bosons. This Lagrangian corresponds to the mass matrices
for the down quarks (cf. equation (5.82))

Md =

 y1 y2 y3

0 0 0
0 0 0

 vew√
2 + r2

eiω1 +

 0 0 0
y1 ωy2 ω2y3

0 0 0

 vew√
2 + r2

e−iω1 +

 0 0 0
0 0 0
y1 ω2y2 ωy3

 rvew√
2 + r2

.

(5.89)
The up Yukawa matrices have the same structure, but with y4, y5 and y6 as parameters and the phases
reversed (due to the complex conjugation in equation (5.88). The eight parameters of the model
y1 − y6, r and ω1 can now be fit against nine observables in the quark sector (the six quark masses
and the three CKM angles). This fit has a minimum corresponding to χ2 = 0.057 and parameters
given by

y1 = 0.010, y2 = 0.022, y3 = 0.00058,
y4 = 0.97, y5 = 0.127, y6 = 0.00026,
r = 43, ω1 = 0.23 rad.

(5.90)

All three angles of the CKM matrix are fit very well by the parameters given above, but the phase is
not. The CKM matrix that is the result of the construction of model 3 is completely real, providing
no source of CP violation.

5.10.4 Model 4 - Quark mixing in the discrete dark matter model

In model 4 we present an extension of a number of studies [150–152] in which the concept of discrete
dark matter (DDM) is developed. In these works, the focus is on the scalar sector, but also charged
leptons are discussed, although quarks are not. In our work, we add quarks to the set up and allow
for quark mixing in a way that is much like the one described in chapter 4.

At a number of places in this thesis we have seen the connection between symmetries and the
presence of a dark matter candidate in a theory. Examples were the axion of section 1.3.1 and the
‘lightest supersymmetric particle’ (LSP) of section 1.3.2. The key to the relation between symmetry
and dark matter is that a symmetry can prevent the decay of a particle, thus making it stable and
letting it exist in the cosmos. It is a very natural question to ask whether flavour symmetries can
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provide a dark matter candidate. Note that this question is less relevant in models where flavour
symmetries are combined with supersymmetry or extra dimensions, as those on themselves already
provide a dark matter candidate. In the models of this section on the other hand, where flavour
symmetry is the only relevant symmetry beyond the Standard Model, the question becomes more
interesting.

The naive answer to the question of the previous paragraph is ‘no’. Flavour symmetries cannot
provide a dark matter candidate, because flavour symmetries are always broken when flavons (or
Higgs fields in non-trivial representations of the flavour group) develop vacuum expectation values.
In some cases, however, there is a residual symmetry after a flavour symmetry is broken. In this
chapter we have seen that there is a residual symmetry Z3 when the three Higgses have their vevs
as (v, v, v) and Z2 when the vev alignment is (v, 0, 0). Those residual symmetries can well be the
symmetries that make a dark matter candidate stable.

In [150] the vacuum (v, 0, 0) is selected, while also a A4-singlet Higgs is present. The inert fields Φ2

and Φ3 give rise to four neutral Higgs bosons: two scalars h2 and h3 and two pseudo scalars A2 and
A3. The lightest of these cannot decay and is a dark matter candidate. Note that even if the dark
matter candidate cannot decay, a pair of two candidates can annihilate. In [152] it is shown that the
correct relic abundance can still be obtained for a dark matter mass MDM in the large range 1 - 100
GeV. In our set up, additional annihilation channels to quarks are added and the relic density is a
crucial test of the viability of the extension as discussed in section 5.12.

The matter content of the model is given in table 5.4. We see that in this model all charged fermion
fields, both left- and righthanded are in the various singlet representations of A4. Note that all these
A4 singlets transform under the Z3 subgroup of A4, but not under the Z2 subgroup, making them
even under the residual symmetry. There are four righthanded neutrinos originating from a A4

triplet and a singlet. The second and third component of the neutrino triplet are odd under the
residual Z2 just like the corresponding components of the Higgs triplet.

Field Φ η QL1
QL2

QL3
qR1

qR2
qR3

A4 3 1 1 1′ 1′′ 1 1′ 1′′

Field LLe LLµ LLτ lRe lRµ lRτ νRT νR4

A4 1 1′ 1′′ 1 1′ 1′′ 3 1

Table 5.4: The A4 representations of the fields in model 4; q = u, d.

The resulting Yukawa Lagrangian for the quarks reads

Lq = yuQ1η̃u1R + ycQ2η̃u2R + ytQ3η̃u3R+

ydQ1ηd1R + ysQ2ηd2R + ybQ3ηd3R + h.c.,
(5.91)

Here the up-type Higgs η̃ is defined analogously to Φ̃ as given below equation (5.88).

At the renormalisable level, both up- and down-quark matrices are diagonal with all masses given
bymi = yivη/

√
2, with vη/

√
2 the vacuum expectation value of theA4-singlet Higgs field. Obviously,

at this level, the CKM matrix is the identity matrix.

For the leptons, the Lagrangian is the same as in [150]

Ll = yeLelReη + yµLµl
c
Rµη + yτLτ l

c
Rτη+

yν1Le(νRT Φ̃)1 + yν2Lµ(νRT Φ̃)1′ + yν3Lτ (νRT Φ̃)1′′+

yν4LeνR4η +M1NTNT +M2N4N4 + h.c.

(5.92)

This leads to charged lepton masses similar to the quark masses and a light neutrino mass matrix of
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the form

Mν =
v2

Φ

2M1

(yν1 )2 + (yν4 )2M1

M2

vη
vΦ

yν1 y
ν
2 yν1 y

ν
3

yν1 y
ν
2 (yν2 )2 yν2 y

ν
3

yν1 y
ν
3 yν2 y

ν
3 (yν3 )2

 . (5.93)

The neutrino mass matrix has one zero eigenvalue, so a prediction of the model is one massless
neutrino. The (1 3) mixing angle is zero at the renormalizable level. The other two angles are not
determined and a simple tuning can reproduce the tribimaximal mixing pattern.

Quark mixing (and additional lepton mixing) can be generated by dimension six operators that
contain extra insertions of the Higgs fields. There are three ways to contract the SU(2) indices,
represented by brackets in the equation below

fij
Λ2

(QiĤ)dj(η
†η) +

f ′ij
Λ2

(Qiη)dj(η
†Ĥ) +

f ′′ij
Λ2

(Qiη)dj(Ĥ
†η) . (5.94)

The contraction of A4 indices between the two η(†) triplets is such that it generates the right type of
singlet (1, 1’ or 1”) to match the charges for Qi and dj . It is important to note that this is possible
for any combination of i and j due to the product rules of A4, giving non-zero entries at all elements
of the mass matrix. Λ is the cut-off scale, up to which we accept the theory to be valid and the f
couplings are dimensionless. Analogous dimension-6 operators can obviously be constructed for
up-type quarks and charged leptons.

The mass term Lagrangian (5.91) and the effective couplings (5.94) generate the effective mass matrix
for down-type quarks

Md =

 md 0 0
0 ms 0
0 0 mb

+
vHv

2
η

Λ2

 hdd hds hdb
hsd hss hsb
hbd hbs hbb

+O(
1

Λ4
) , (5.95)

where hij = (fij +f ′ij +f ′′ij)/2
√

2. Analogous expressions again hold for up-type quarks and charged
leptons.

The crucial question is how large the cut-off scale Λ is. In principle, this is a scale we are free to
set. Only using ‘naturalness’ and ‘finetuning’ arguments, we can find a range for it. We give two
arguments, both pointing to a scale of 1 to 10 TeV.

In the first argument, we demand that there should not be more than 10 to 100% corrections to the
Higgs from one-loop corrections to the Higgs propagator with the fermions and the (new) scalars of
the theory. These corrections are typically of the order Λ2/(4π)2 and requiring them to be not too
large with respect to v2

ew = (246GeV)2 indeed gives Λ . (1 to 10) TeV.

Interestingly, we find the same scale from an argument where we require the dimensionless parame-
ters h, in particular hds, to be of order 1. The off-diagonal terms in equation (5.95) are responsible for
generating the quark mixing as parameterized by the CKM matrix. As we do not have information
about the size of the dimensionless parameters h, we assume them to be of order 1, which can be
seen as the most natural assumption for dimensionless parameters.

Under this assumption, the absolute values of the corrections to the leading order elements of the
mass matrix are of the same order for the up-type quark matrix and the down-type quark matrix.
However, due to the much larger elements of the leading order up-type quark mass matrix, the
effects on quark mixing are dominated by the down-type quark contributions. This allows us to
estimate the order of magnitude of the cut-off scale.

Now the (1 2) element of equation (5.95) should be of order λC ms in order to reproduce the Cabibbo
angle.

hds
vHv

2
η

Λ2
= λCms. (5.96)
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We define a parameter tan β̃ as the ratio between the vev of η and Φ in the same spirit as in ‘normal’
models where two Higgs doublet acquire a vev. With this definition, we can solve the previous
equation for Λ2

Λ2 = hds
vHv

2
η

λCms
= hbd

v3
ew

(tan2 β̃)(1 + 1
tan2 β̃

)3/2λCms

= [(1 to 10) TeV]2. (5.97)

The exact value depends on the exact values of hds and tan β̃; to obtain the range, we have taken
them between 0.1 and 1 and between 0.1 and 10 respectively. The mass of the bottom quark is rather
large and therefore the effect of hdb and hsb θ13 and θ23 is relatively minor even if these parameters
are of the same size as hds. This naturally keeps these angles smaller than the Cabibbo angle. Indeed
in a large part of parameter space, we can fit them to their measured values.

The analogue of the dimension 6 operator (5.94) affects the lepton mixing. The fact that the down-
type quark and charged lepton mass matrices are alike (at least at leading order) suggests that the
matrices that diagonalize them, V dL and V eL are also similar. We thus expect a large angle (of the order
of the Cabibbo angle) in the (1 2) sector of V eL . In the lepton mixing matrix VPMNS = (V eL)† V νL , this
affects all three angles. In particular, we predict a Cabibbo-sized correction to the θ13-angle, bringing
it in the range of the current fits given in table 2.4.

The cut-off scale Λ may coincide with the scale M1 that appears in the neutrino mass matrix (5.93).
In that case, the seesaw mechanism indeed takes place at a low energy scale, 1 TeV, as compared to
1012 GeV as in chapter 4. In this case, the parameters yνi should not be too small, yν = 10−(4÷5).

5.11 Description of model dependent tests of flavour symmetries
at the electroweak scale

The interaction of fermions with the Higgs particles induces flavour violating processes in the lepton
and quark sectors. In the first one, rare decays of muon and tau particles into three leptons are
allowed at tree-level, while processes as li → ljγ take place through one-loop graphs. For the quarks
the possibility of ∆F = 2 meson-antimeson oscillations is considered.

In this section we study these processes and obtain formulas that give the contribution of the
new physics processes. We rely heavily on the equations obtained in section 2.2.5 where we have
described the interactions of different fermions with multiple Higgs bosons. The formulas derived
in this section are used in the next one, where we discuss to what degree they constrain the four
models of the previous section.

5.11.1 The Processes µ− → e−e−e+ and τ− → µ−µ−e+

We consider the decay of a muon into a positron and two electrons as given in figure 5.9 on the left.
In the approximation of massless final states, the decay amplitude is written as

Γ(µ→ eee) =
m5
µ

(4π)3 × 24
Iµeee . (5.98)

The coefficient Iµeee is a combination of Iij and Jij , that were defined in section 2.2.5.

Iµeee =

∣∣∣∣∑
α

IαµeI
α
ee

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JαµeJ
α
ee

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

IαµeJ
α
ee

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JαµeI
α
ee

mα
H

2

∣∣∣∣2. (5.99)

The prediction for the corresponding branching ratio is

Br(µ→ eee) ≈ Γ(µ→ eee)

Γ(µ→ eνeνµ)
=
Iµeee
8G2

F

. (5.100)
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Figure 5.9: The decays µ− → e+e−e− (left) and τ− → e+µ−µ− (right) can occur at tree
level in our models.

This is to be compared with the experimental limit [6] of Br(µ→ eee)exp ≤ 1.0× 10−12.

The decay of a τ into two muons and a positron (figure 5.9 on the right) is generally less constrained
that the decay of the muon in two electrons and a positron, but it is of interest in models where the
latter process is prohibited by the symmetries. The calculation proceeds in an analogous way. The
decay amplitude is now

Γ(τ → eµµ) =
m5
τ

(4π)3 × 24
Iτµµe . (5.101)

The coefficient Iτµµe is now given by the following expression:

Iτµµe =

∣∣∣∣∑
α

IατµI
α
eµ

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JατµJ
α
eµ

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

IατµJ
α
eµ

mα
H

2

∣∣∣∣2 +

∣∣∣∣∑
α

JατµI
α
eµ

mα
H

2

∣∣∣∣2. (5.102)

The branching ratio becomes

Br(τ → eµµ) = 0.17× Γ(τ → eµµ)

Γ(τ → µνµντ )
= 0.17× Iτµµe

8G2
F

, (5.103)

This branching ratio should be compared with the experimental limit [6] Br(τ → eµµ)exp ≤ 2.3×10−8

.

5.11.2 The process µ− → e−γ

The relevant diagram for the decay of the muon to an electron and a photon has one loop with a
charged fermion and a neutral Higgs (see figure 5.10). We consider the limit in which the Higgs is
much heavier than the virtual fermion and the final electron is massless. Under this assumption the
decay amplitude becomes [153]

Γ(µ→ eγ) =
e2m5

µ

6× (16)3π5

∣∣∣∣∣∣
∑
α,f

(Rαfe)
∗Rαfµ

mα
H

2

∣∣∣∣∣∣
2

(5.104)

This uses the coupling tensor R defined in section 2.2.5. The branching ratio is

Br(µ→ eγ) =
Γ(µ→ eγ)

Γ(µ→ eνν)
=

αem
32πG2

F

∣∣∣∣∣∣
∑
α,f

(Rαfe)
∗Rαfµ

mα
H

2

∣∣∣∣∣∣
2

(5.105)

This should be compared with the current experimental bound from MEGA [154] of 10−11 and the
future experimental bound from MEG [155] of (10−13).
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Figure 5.10: The decays µ− → e−γ proceeds at one loop in our models, but can be much
larger than in the Standard Model, where a GIM-like cancellation occurs.

5.11.3 Meson oscillations

Meson-antimeson oscillations are constrained to be generated by box processes in the SM (figure
5.11 on the left), but in the presence of flavour violating Higgs couplings, they can also proceed
via tree-level Higgs exchange. Note that there is a large difference with the lepton processes.
Those practically have zero background from the Standard Model and experimentally there are only
upper bounds. Meson oscillations have been measured and fit fairly well to the Standard Model
calculations. It is preferred that the new physics contributions are much smaller than the Standard
Model, although in principle they can be of comparable magnitude if there is cancellation at the
amplitude level.
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Figure 5.11: Bd-Bd oscillations take place via box diagrams in the Standard Model, but can
proceed via tree-level Higgs exchange in multi-Higgs models.

For the mass splitting connected to F 0 − F 0 oscillations [156, 157], we find

∆MF = B2
F f

2
F MF

∑
α

[
1

mα
H

2

(
|Iαrs|2

(1

6
+

1

6

M2
F

(mr +ms)2

)
+ |Jαrs|2

(1

6
+

11

6

M2
F

(mr +ms)2

))]
. (5.106)

Here, MF is the mass of the meson, fF is its decay constant and BF are recalibration constants of
order 1, related to vacuum insertion formalism. Lastly, mr and ms are the masses of the quarks
of which the meson is build, i.e. rs = bd, bs, ds stands for Bd, Bs and K0 respectively. Recent
experimental values for the meson parameters, including ∆MF that should be reproduced by the
model, are given in table 5.11.3
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Meson MF (GeV) fF (GeV) BF ∆MF (GeV)

Bd (bd) 5.2795 0.1928± 0.0099 1.26± 0.11 (3.337± 0.006)× 10−13

Bs (bs) 5.3664 0.2388± 0.0095 1.33± 0.06 (1.170± 0.008)× 10−11

K (sd) 0.497614 0.1558± 0.0017 0.725± 0.026 (3.500± 0.006)× 10−15

D (uc) 1.8648 0.165 0.82 (0.95± 0.37)× 10−14

Table 5.5: Properties of neutral mesons (from [158] for Bd, Bs and K and from [157] for
D).

We stress that the tests developed in this section do not constitute a complete list. Many other other
processes can be thought of. The ones considered in this section already prove to be very constraining
as shown in the next section when we apply them to the models described in the previous section.

5.12 Results of the model dependent tests

The tests developed in the previous section can be applied to the four models described in section
5.10. Of course we apply the lepton tests to models 1 and 2 and the meson oscillation tests to model
3. For model 4 we focus on the addition of quarks to the model and we apply the meson oscillation
tests also here. Furthermore we study the effect of the new dimension-6 operators on the relic density
of the dark matter candidate.

5.12.1 Model 1

Discussion of the flavour violating processes in model 1 is best done in terms of the fields ϕ, ϕ′ and
ϕ′′ in the Z3 eigenstate basis of section 5.6.2. In the context of lepton triality, this was discussed
before in [159]. Furthermore, the transformation properties of the additional scalar η allow a mixing
between ϕ0 (ϕ1) and η0 (η1), both behaving as the SM-Higgs. However, this mixing interaction,
iZη0ϕ0 + h.c., that was not present in section 5.6.2, is irrelevant for the scalar spectrum discussion,
because the coupling, being suppressed by vη , is extremely small .

Figure 5.12: The branching ratio for the decay τ− → µ−µ−e+ in model 1 as a function
of the effective mass m0 (left) and the smallest mass m1 (right) in the situation where the
parameter ε is zero. The horizontal line corresponds to the experimental upper bound.

The coupling of the Higgses ϕ′0, ϕ′′0 to fermions is purely flavour violating. This setup has striking
effects on the lepton processes. In fact it was shown in [160] that, when theA4 symmetry is unbroken,
only a limited number of processes is allowed and these either conserve flavour or satisfy the
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constraint ∆Le × ∆Lµ × ∆Lτ = ±2. The only source of symmetry breaking is the vev of the SM-
like Higgs ϕ0, which is flavour-conserving and thus not involved in the processes we are looking at.
We conclude that all flavour violating processes should satisfy the selection rule. In particular this
implies that the decays µ− → e−e−e+ and µ→ eγ are not allowed, in the latter case in contrast with
what was reported in [97], but in agreement with the more recent [161].

Of the allowed processes, τ− → µ−µ−e+ is least suppressed, since its branching ratio is proportional
to m2

τm
2
µ. However, even this decay is very rare and below the experimental limit for most values of

the Higgs masses. In the upper part of figure 5.12, we plot the branching ratio for the decay against
an effective mass defined as m−2

0 = m−2
hA

+ m−2
hB

, where A and B are the two pairs of degenerate
bosons. In the lower part, the same branching ratio against the mass of the lightest state, m1. In
both the plots, the parameter ε is set to zero, corresponding to the real Higgs potential discussed
in [97]. For the first picture, we reproduce the result of [97] that the branching ratio is proportional
to m−4

0 . In the second one, this dependence is lost, even if we can see a similar behaviour. Once we
take ε over the full range [0, 2π], we verified that the points cover a larger parameter space, but still
concentrating around the previous points with ε = 0.

In figure 5.13, we show the masses of the SM-Higgs ϕ0, mh1 , against the mass of the lightest statem1.
A plot with the mass of the SM-Higgs η0 against m1 looks very similar to figure 5.13. All the points
are above the diagonal and this corresponds to the fact that the SM-Higgses are always heavier than
the lightest state. As already mentioned in section 5.9.1, there is no upper bound on the mass of
the SM-like Higgs mass. In particular the standard upper bound of 194 GeV at 99% CL [6] does not
apply, due to the combined effect of the CP and Z3 symmetries and the smallness of the iZη0ϕ0 +h.c.
coupling.

Figure 5.13: The mass of the SM-like Higgs mh1
against the smallest Higgs mass m1 in

model 1.

5.12.2 Model 2

In contrast with the Model 1, A4 is completely broken by the vev of the Higgs triplet. As there is
no residual symmetry, there are no special selection rules that forbid flavour changing interactions.
In particular the processes µ− → e−e−e+ and µ− → e−γ are allowed. The first process, figure 5.14
occurs at tree level and produces a strong bounds on the Higgs sector, where the lightest Higgs mass
is expected to be above about 300 GeV. On the other hand, the radiative muon decay to an electron,
figure 5.14, is loop suppressed and the new physics leads to a branching ratio below the observed
experimental bound.

5.12.3 Model 3

Experimentally, in the quark sector two features have been explored: flavour changing interactions
and CP violation. Remarkably, the CKM matrix obtained in the model under inspection is completely
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Figure 5.14: The branching ratio of the decay of µ− → e−e−e+ (left) and µ− → e−γ (right)
in model 2 versus the lightest Higgs mass. The horizontal band is the experimental limit [6].

real. It seems then of scarce value to explore CP violating effects coming from the complex vevs of
the Higgs triplet, not having the dominant contribution from the Standard Model CKM matrix to
compare them with. Consequently we only focus on flavour changing processes. As discussed in
section 5.11.3 meson oscillations are in these models mediated by tree level diagrams instead of box
diagrams. We therefore expect strong bounds from the mass splittings in the neutral B-meson and
Kaon systems. In figure 5.15, we plot ∆MF versus the lightest Higgs mass for these systems. Indeed
∆MF is large, up to several orders of magnitude above the experimental value for the Bd meson and
the Kaon.

Figure 5.15: ∆MF for Bd, Bs and K mass splittings versus the lightest Higgs mass in
model 3. The horizontal lines correspond to the experimental values as reported in [158].

5.12.4 Model 4 - Quark mixing in the discrete dark matter model

In section 5.10.4 we discussed how adding effective dimension-6 operators to the original discrete
dark matter model allowed the quarks to mix according to the CKM matrix. These operators also
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allow flavour changing neutral currents and in particular meson-antimeson oscillations, that occur
through diagrams given in figure 5.16, challenge the validity of our extension of the model.

Figure 5.16: In model 4,Bd and other meson oscillations can occur through a special version
of the diagram on the right of figure 5.11.

As mentioned in the section 5.10.4, the CKM matrix can dominantly originate from corrections to
the up-type quark mass matrices or the down-type quark mass matrices and we mentioned that
dominance of the latter is more natural. Indeed we find that if corrections of the former type
dominate or even if there is no dominance of one of the two, the contribution to ∆MD of D meson
oscillations given only by the new diagrams is much larger than the experimental value [157] and
this scenario should be excluded as shown in figure 5.17.

Figure 5.17: D meson oscillations in model 4 in a scenario where the CKM matrix is
generated dominantly by corrections to the up-type quark mass matrix.

In case the CKM matrix mostly originates from corrections to the down-type quark mass matrix, we
find that the bounds from meson mixing are rather strong. In figure 5.18, we show the contribution
of the new diagrams to ∆MBd , ∆MBs and ∆MK as function of the lightest Higgs mass. We see
that in almost all of parameter space the points are near or even above the short-dashed line, which
indicates the current experimental value [158] that is rather well described by the Standard Model
box diagrams [6, 162]. Naively, this is interpreted as an exclusion of the model, which is true in
most of parameter space, but not in points where the Standard Model and new physics contributions
partially cancel. To see this, we write the mixing amplitude for Bd mixing as [163][

Md
12

]
NP

= (1− 1

1 + h2
de

2iσd
)
[
Md

12

]
full

(5.107)

and analogously for Bs. We have verified that our expression for the NP contribution carries enough
phases to generate a flat distribution for σd and σs. We check that the points in (h2

d = 0.41, σd = 100◦)
and (h2

s = 1.6, σs = 90◦) are allowed by the data [163, 164] and give a nett contribution of NP with
respect to the full result of respectively 0.65 and 2.67 times the observed value. For Bd mesons, NP
effects are thus forced to be less than the observed value, while for Bs mesons, it can even be slightly
more. These values (and a corresponding estimate in case of the kaons) correspond to the dot-dashed
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lines in 5.18. We see that a small, but significant number of points is allowed by the data under the
assumption of partial cancellation.

Figure 5.18: B and K mesons oscillations. The horizontal lines are as explained in the text.

The naturalness of this cancellation, that requires finetuning between the phase and amplitude of
the new and the Standard Model contribution, can be a matter of debate. The need for cancellation
diminishes for larger Higgs masses, although there are still no points below the lower line for Bs
and K. Indeed, requiring that the new diagrams contribute less than the experimental bound, as is
customarily done, the model would be excluded. On the other hand allowing a strong negative
interference between the SM and the DDM contributions does not further constrain the scalar
spectrum with respect to the analysis done in [152]. Indeed figure 5.19 shows that there is no
correlation between the bound imposed and the mass of the lightest Z2-even scalar state, even if
the number of points allowed is significantly reduced with respect to the earlier analysis.
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Figure 5.19: The mass of the lightest Z2-even state of model 4 versus the mass of the DM
candidate without (red) and with (blue) meson oscillation constraints.

Dark matter relic density and direct detection

Here we consider the effect of the inclusion of the dimension-six terms of equation (5.94) to the relic
density. The operators (5.94) give an effective quartic coupling of the dark matter with quarks. This
enhances the annihilation of the dark matter candidate into quark pairs that in the original model is
only possible via SM Higgs exchange in the s-channel. We only study the decay into down quarks;
decay to up quarks is barely affected as we have seen thatD-meson constraints force the off-diagonal
elements in the up-type quark mass matrix to be very small.

We define the λqeff as the parameter of the four points interaction χχdid̄j - i.e. the result of the
three couplings in (5.94) when H but not the two ηs obtain their vevs. We can use equation (5.96) to
estimate its size. The assumption is that all hs are of the same natural order of magnitude as the hds
of equation (5.96). An important exception may be hdd that needs to be small in order not to inflate
the down mass. For all other couplings, we find

λdeff ∼ hdij
vH
Λ2
∼ msλC

v2
η

. (5.108)

We compare the effect of this operator on the σvrel of the process χχ → did̄i to the effect of s-
channel exchange of the SM-like lightest CP-even scalar. The SM-like Higgs couples to fermions
proportionally to yq ∼ mq/vH . The new contribution is negligible if

msλC
v2
η

<
mqAH
vHm2

h

. (5.109)

In this equationmh is the mass of the lightest CP-even neutral scalar andAH ∼ vew is the dimensional
coupling that controls the interaction of the dark matter with the Higgs doublet Hχχ. Since
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vη ∼ vH ∼ mh ∼ AH ∼ vew the new contribution is naturally subleading for the second and third
generation. For the first generation, on the contrary the new contribution to χχ → dd̄ is of the same
order as the old one. We can (conservatively) estimate that this channel is negligible only for values
MDM ≥ 1 GeV. This is basically satisfied for all values of the dark matter mass, that we reported to
be in the range 1 - 100 GeV in section 5.10.4.

Direct detection is not affected at all by the NLO terms: the quark flavour diagonal scattering
contribution are subdominant with respect to those mediated by the scalar H while the off-diagonal
one could only give rise to processes that are not kinematically allowed such as χ + N → χ + N +
π+ + e− + ν̄, with N a nucleus in the detector bulk.

This concludes the discussion of the quark extension of the discrete dark matter model. Relic density
and direct detection calculations do not constrain its viability. Meson oscillations do. D meson
oscillations exclude any significant off-diagonal elements in the up-quark mass matrix. Kaon and Bs
meson oscillations also produce very tight constraints. These do not immediately rule out the set up,
but the model can only be in accordance with the experimental data if there is significant finetuning
between Standard Model and new physics contributions. All together, honesty forces us to say that
this ‘natural extension’ is less natural then we hoped.

5.13 Conclusions of the chapter

Flavour models based on non-Abelian discrete symmetries under which the SM scalar doublet
(and its replicates) transforms non trivially are quite appealing for many reasons. First of all there
are no new physics scales, since the flavour and the EW symmetries are simultaneously broken.
Furthermore this kind of models are typically more minimal with respect to the ones in which the
flavour scale is higher than the EW one: in particular the vacuum configuration is simpler and the
number of parameters is lower. We then expect a high predictive power and clear phenomenological
signatures in processes involving both fermions and scalars.

In this chapter we focussed on the A4 discrete group, but this analysis can be safely generalized for
any non-Abelian discrete symmetry. We consider three copies of the SM Higgs fields, that transform
as a triplet of A4. This setting has already been chosen in several papers [97, 127, 128, 150–152, 159]
due to the simple vacuum alignment mechanism. In each of these works, a certain configuration has
been assumed for the vacuum expectation values of the three Higgs bosons.

In this chapter we have considered all the possible vacuum configurations allowed by the A4 × SM
scalar potential. These obviously contain the vacua studied in earlier models. We showed further-
more that the total list is rather small. The potential allows only the five minima mentioned in section
5.6.9 and permutations of their components.

The fact that a certain vev combination is a true minimum of the Higgs potential does not auto-
matically imply that a model that uses three Higgs fields with these vacuum expectation values is
physically viable. In this chapter we described two groups of tests to check if a model is in accordance
with the current (pre-LHC) data. The first group of tests only considers the Higgs sector. It is not
influenced by the choice of A4 representations for the fermions, only by the representation choice for
the Higgs fields, that are fixed to be in the triplet representation of A4. We considered constraints
by unitarity, by W and Z decays, and by the oblique parameters S, T and U . For all but one vacua
considered, a significant number of points passed all three tests. The exception is one of the complex
vacua. This can only be realistic if the A4-invariant Higgs potential is extended with some terms
that break the family symmetry softly. This makes models that use this vacuum significantly less
attractive.

The second group of tests consists of processes in which the fermions participate and for which it is
thus needed to know the A4 representations of these fields. We developed a very general formalism
to describe the interaction of charged and neutral Higgs and of fermions. In the mass basis of both
Higgs bosons and fermions the interaction depends on the Yukawa matrices that appear in the
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Lagrangian and the unitary matrices that rotate the flavour basis into the mass basis. When these
matrices are given, a number of flavour violating processes can be calculated and these calculations
can be used to test the viability of models in the literature.

We showed that for three of the four models considered in detail in this chapter, flavour violating
processes significantly reduce the viability of the set up. It is not a coincidence that he only model for
which the flavour changing neutral currents do not pose a large problem, assumes the Higgs fields
to be in the configuration with the maximal residual symmetry.

In conclusion, we showed that for flavour models with the family symmetry implemented at the
electroweak scale, it is possible to test their phenomenology beyond the prediction of the mixing
patterns. This is a powerful tool to discriminate among them. Indeed, many Higgs vacuum
configurations and concrete models considered in this chapter can be strongly constrained or almost
ruled out. The fact that this falsification is possible is most important advantage of the set up of
flavour symmetries at the electroweak scale.



Appendix to chapter 5

5.A Analytical formulæ for the oblique parameters

In this appendix we provide a dictionary from the notation in the original papers introducing the
oblique parameters [141, 144] to ours.

In the notation of Peskin and Takeuchi, we are in the case in which nd = 3 and nn, nc = 0; this implies
that the matrices T andR are vanishing. The quantities that need to be translated are

U → S

ReVki → Uki ,

ImVki → Uk+3i ,

ωk → fke
iωk . (5.A.1)

Moreover they put the GBs as first mass eigenstates while we put them as the last ones and contrary
to them we use the standard definition for the photon.

We have rewritten the expression for

A(I, J,Q)−A(I, J, 0)

Q
=


dA(I, J) for I 6= 0 and/or J 6= 0 ,

QF (Q)

Q
∼ 1

48π2
logQ for I = J = 0 since A(0, 0, 0) = 0 .

(5.A.2)

In the first row of equation(5.A.2) we used

A(I, J,Q) ' A(I, J, 0) +Q
∂A(I, J,Q)

∂Q

∣∣∣∣∣
Q=0

= A(I, J, 0) +QdA(I, J) . (5.A.3)

In this expression dA(I, J) is given by

dA(I, J) =



1

288(I − J)3π2

[
I3 + 9JI2 + 6(I − 3J) log(I)I2 − 9J2I − J3 + 6(3I − J)J2 log(J)

]
for I, J 6= 0, I 6= J ,

1

288π2
(1 + 6Log[I]) for J = 0 ,

1

48π2
(1 + log[I]) for I = J .

(5.A.4)
The function Ā(I, J,Q) enters only in the loops in which a gauge boson and a scalar run, so we have
always J = Q when computing the quantity

Ā(I, J,Q)− Ā(I, J, 0)

Q
= d̄A(I, J) . (5.A.5)
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As a result, for this function, it does not make sense to consider the case I = J = 0 where J = Q =
m2
V the gauge boson mass. Eventually we find

d̄A(I,Q) =


1

8(I −Q)3π2

[
Q
(
−I2 + 2Q log(I)I − 2Q log(Q)I +Q2

)]
for I 6= Q, I 6= 0 ,

∼ 0 for I = 0 ,

∼ 0 for I = Q .

(5.A.6)



Chapter 6

Summary, conclusions and outlook

La science, mon garçon, est faite d’erreurs, mais d’erreurs qu’il est bon
de commettre, car elles mènent peu à peu à la vérité.

Science, my boy, is built upon errors; but upon errors that are good to be
made, as step by step they lead to the truth.

Jules Verne [165], Voyage au centre de la Terre

One of the oldest and most important questions humanity has asked itself is “What is it made of?”
Every time this question seemed answered in a particular field, people started looking for structures
in the answer. When structures were found, the next challenge was to understand them from a
deeper principle. Particle physics and in particular its flavour branch is no exception to this rule.

Our current world view is that all normal matter is made of atoms. Atoms consist of a shell of
electrons surrounding a nucleus. The electrons are thought to be elementary particles; the nucleus
is not, but digging deep enough, one finds supposedly-elementary up and down quarks. This is not
the whole story; exotic matter can be observed in the cosmic rays and at particle colliders. This gives
two new leptons and a whole zoo of new mesons and baryons, but the quark model structures this
in terms of just four new quarks. Together with three neutrinos, this is the complete matter content
of the Standard Model as recapitulated in figure 6.1.
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Figure 6.1: The matter particles of the Standard Model and two arrows that might suggest
symmetry relations.
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Structure in similarity

The vertical arrow in figure 6.1 generically depicts the three gauge interactions of the Standard
Model. These structure the allowed interactions between the elementary particles. In a sense,
their representation structure even dictates which particles are to appear in the figure. The weak
nuclear force for instance has a doublet as fundamental representation and indeed the electron and
the electron neutrino as well as the up and down quark come in pairs in figure 6.1.

The horizontal arrow in the figure corresponds to the fact that particles that are standing next to each
other are very similar. The up, charm and top quark have exactly the same quantum numbers of
colour, weak isospin and hypercharge and the same holds for all other rows. This is a structure that
is easily observed in the answer to the question what matter is made of, but an explanation for the
structure is lacking in the conventional Standard Model. The existence of three families is considered
an experimental fact, but not connected to a deeper symmetry principle to explain it.

The fundamental assumption of this thesis is that this is unsatisfactory. A theory in which the
family structure can be explained is to be preferred over one in which it cannot. A suggestion to
the explanation is already given in figure 6.1. There might be a force – or, more general, a symmetry
relation – working not in the vertical, but in the horizontal direction. If a horizontal symmetry group
with a three-dimensional irreducible representation is assumed, the three-family structure of the
Standard Model results.

Structure in difference 1: the masses

A horizontal symmetry, often also referred to as a flavour or family symmetry, can thus provide and
explain structure in the similarities of the particles of the three generations. The particles are indeed
identical in their coupling to the gauge sector, but the mass sector is very different. It is an interesting
question if there are also structures here. The answer is that there might, both in the masses of the
fermions and in the mixings between flavour and mass eigenstates.

Firstly, we observe that the masses of the quarks and (charged) leptons are very hierarchical, with
the mass gaps between particles of the same type of comparable order on a logarithmic scale. In
section 2.3.1 we observed that the mass ratios of the muon to the tau lepton and of the electron to the
muon are respectively λ2 and λ3, with λ numerically equal to 0.2 and possibly related to the Cabibbo
angle. According to Froggatt and Nielsen, this may not be a numerical coincidence, but related to
the charges of the different generations under the Frogatt-Nielsen family symmetry. Again, we see
that family symmetries can be used to motivate observed structures.

Structure in difference 2: the mixings

The second part where one can looks for structures in the fermion masses is in the mixing of flavour
eigenstates to mass eigenstates. The data shown in figure 6.2 give rise to several models constructed
in the main body of this thesis. These models invoke some new physics, at least containing a
horizontal symmetry, to reproduce the pie charts of figure 6.2, either by predicting exactly these
values or by producing a probability distribution for the mixing angles peaked at or close to the
values corresponding to those in the figure. The fact that the models correctly ‘postdict’ the mixing
angles obviously isn’t enough to immediately declare them the new Standard Model. All models
also make a number of predictions that can be tested by experiments in the near or more distinct
future and lastly, there is the difficult issue of the ‘aesthetical value’ of models. We try to make a final
balance in the remainder of this chapter.
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Figure 6.2: Pie charts showing the flavour content of the three quark mass eigenstates (left)
and neutrino mass eigenstates (right). Quark data taken from [6] and the errors on these
data are very small. neutrino data correspond to average values of the elements of the mixing
matrix from [7]. The errors here are large, corresponding to tens of percents in some cases.

The beauty and the beast

The astuicle that chapter 4 of this thesis is based on, was originally called ’Discrete Flavour Symme-
tries in GUTs: the Beauty and the Beast’. After a rightful comment of the referee that he or she did
not consider this a very appropriate title for a scientific publication, the title was changed. Still, the
concept of beauties and beasts, positive and negative messages about beyond-the-Standard-Model
models, is an important theme in the article as well as in the articles on which the other chapters
of this thesis are based. In that fashion, this summarizing and concluding chapter can continue in a
’beauty-like’ or a ’beast-like’ way.

The beauty

The beautiful conclusion of the thesis would be that the field of flavour model building is very rich.
There are many ideas around, making the field very versatile and flexible.

The application of family symmetries to flavour mixing was first popularized approximately ten
years ago when the mixing deferred from neutrino oscillations seemed to be in accordance with the
bimaximal mixing pattern, although there were large experimental errors.

θl12 = θl23 = π/4; θl13 = 0 , or
sin2 θl12 = sin2 θl23 = 1/2; sin2 θl13 = 0 .

This pattern is probably the third simplest mixing pattern one can think of. Only ‘no mixing’ and
‘maximal mixing in just one sector’ are simpler. It is indeed a very remarkable fact that the data were
in accordance with such a simple pattern and it was worth researching if there is a deeper reason for
this. This turned out not to be the case; the agreement between early data and the bimaximal pattern
was accidental.

A larger data set allowed a more precise determination of the solar mixing angle θl12 and it was found
that it is in fact not ‘maximal’, but seems to settle near another special value; the one corresponding to
sin2 θl12 = 1/3. The focus on bimaximal mixing pattern was swiftly changed for this tribimaximal one.
One way to realize tribimaximal mixing is using A4 as a horizontal symmetry group as discussed in
section 2.4. A4 is one of the simplest groups available in the mathematical literature. It only has 12
elements, which makes it the smallest group to have a three-dimensional representation. The ability
of A4 to generate tribimaximal mixing is another elegant example of the force of group theory in
physics. As elaborated upon in chapter 3, an accidental symmetry is necessary when A4 reproduces
tribimaximal mixing. The group S4 on the other hand, is almost as simple as A4; it can reproduce
tribimaximal mixing as well as bimaximal mixing without resort to accidental symmetries.

The bimaximal and the tribimaximal mixing differ in the values of the solar mixing angle, but they
agree on the two other mixing angles. The atmospheric angle θl23 should be 45◦ and the reactor angle
0◦. The first prediction has so far stood the test of time and is in accordance with the current best
fits at 1σ or less. It is interesting to note that the two different global fits given in chapter 2 present
central values that deviate from this value in opposite directions.

The prediction θl13 = 0◦ for the reactor mixing angle seems not to have held. Over the last years,
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non-zero θl13 was first presented as a hint in global fits of all neutrino oscillation observables. For a
long time the best-fit value of the angle was positive, although a vanishing angle was still allowed
at the 2 to 3σ level. In the summer of 2011, observations of the T2K collaboration have finally
swung the balance to θl13 > 0◦. The next big step from an experimental point of view will be the
independent confirmation or refutation of this measurement. As mentioned in the start of chapter
3, the falsification of the hypothesis of exact tribimaximal mixing opens up a number of directions
in the space of model building. We investigated many of these ways in the different chapters of this
thesis.

In chapter 3 itself we systematically scanned a large number of mixing patterns that naturally
arise when horizontal symmetry groups and residual symmetries are selected. We found that the
bimaximal and tribimaximal patterns are elements of a large, but finite, list of naturally obtained
mixing structures. Four of these structures, M1 - M4, are particularly appealing, as they naturally
predict non-zero reactor mixing angle, while the other two neutrino angles are also close to the
current best fits on the data. They are different from the predictions of tribimaximal mixing. There
are thus three unique predictions that will be tested when more precise fits of the mixing angles
become available.

Chapter 4 discusses a set up in which the mixing angles are significantly different at leading order
in the number of flavons present in the Lagrangian from the eventual all-order result. In this set up,
indeed one of the predictions is a non-zero reactor mixing angle. The main message of the chapter
is that the combination of the S4 family symmetry (with bimaximal mixing at leading order) and
the Pati–Salam grand unified theory (with quark-lepton complementarity) is indeed feasible. The
combination of flavour and GUT symmetry enabled a double stroke of unification, making the model
attractive from a aesthetical point of view. A number of predictions is made by the model; these
include the observation of neutrinoless double beta decay in a particular range and the existence of
doubly charged scalars at a few TeV. In a more distinct future, new experimental techniques might be
able to scan the complete gauge structure, but at the moment the related energy scales are still very
far out of sight.

From the point of view of predicting neutrino mixing angles, chapter 5 presents a less ambitious set
up. In this chapter, we discuss a situation in which there are no separate flavons and correspondingly
there is no separate scale of the flavour symmetry breaking. The flavour symmetry is realized via
non-trivially transforming Higgs bosons and all the flavour symmetry processes take place at the
electroweak scale. The fact that these Higgses provide only one direction in flavour space (‘just one
flavon’) means that the mixing angles in quark and lepton sector cannot be uniquely determined.
Patterns such as the tribimaximal mixing are obtained by finetuning some parameters, although
significantly less than in the Standard Model. When the tuning is not exact, a pattern close to, but
not identical to tribimaximal naturally comes out and this is indeed what the current data seem to
point at. The strongest point of the set up of chapter 5 is that the predictions are testable at the LHC.
We have given elaborate lists of the Higgs bosons and their masses in each of the vacua considered.
Furthermore, pre-LHC data can be used to significantly reduce the parameters space available in
each of the vacua as well as to test specific models in which details of the fermionic content are
given.

The beast

On the other hand, a beasty conclusion is possible. This focusses on the point that application of the
‘hierarchy-problem argument’ might not be very fit in the context of flavour symmetries.

We recall that in chapter 1 the reasons to go beyond the Standard Model were separated into
two groups. There is observational evidence that the Standard Model is incomplete and there are
theoretical or aesthetical reasons to expand it. The first reasons pose a strong obligation to the
theorists to extend the Standard Model. As shown by e.g. Shaposhnikov and alluded to in section
1.2.4, this does not need much new physics. Just the addition of three righthanded neutrinos with
finetuned masses does the job. The crucial point is that this finetuning is much disliked in the
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theoretical physics community. New physics can be assumed in order to prevent a theory from
being finetuned. Axions to fight the strong-CP problem and supersymmetry to fight the Higgs-mass
hierarchy problem are examples given in section 1.3. The motivation for flavour symmetries falls
into the same category.

Finetuning in the fermion sector can appear in the masses or the mixings of the particles. The
hierarchy in the fermion masses was already discussed above as well as the potentially related
Froggatt–Nielsen symmetry. The crucial point is that the fermion mass hierarchy provides a rather
clear signal. This is less the case in the fermion mixings. The three pie-charts on the right hand
side of figure 6.2 were calculated with the central values of the allowed ranges for each of the nine
mixing matrix elements. These figures show the suggestion of near-tribimaximal mixing with small
θl13 effects. The assumption is that if the data favour such a special mixing pattern, we should see the
appearance of this pattern as a finetuning and try to explain it.

The problem with this reasoning is that the data do not point at the patterns as strongly as perhaps
suggested by figure 6.2. Indeed, the central values may provide an interesting signal, but those
central values are surrounded by large error bands. This already revealed itself in the fact that in the
past years there were ‘phase transitions’ between different paradigms, going from the bimaximal
to the tribimaximal to the ‘near-tribimaximal with non-zero reactor angle’ paradigm. All those
patterns were allowed within the 2 or 3σ bounds at the time of their popularity. Within those bounds,
also other mixing schemes exist that do not show any pattern and thus do not call for a symmetry
explanation. This is graphically illustrated in figure 6.3.

Figure 6.3: Pie charts showing a possibility for the flavour content of the three neutrino mass
eigenstates. Instead of taking the average values given in [7] we have taken other values in
the 3σ intervals. The figures resemble neither the tribimaximal nor any other simple pattern
much.

With this in mind, flavour symmetric model building can be seen as preemptive model building. In
the last few years, the tribimaximal mixing pattern was allowed by the data, but not firmly pointed
at. The models were constructed to anticipate that the data might settle at exact tribimaximal mixing
that is in need of an explanation of the apparent fine-tuning.

The data did not settle at exact tribimaximal mixing. Instead evidence for non-zero reactor mixing
angle was found. ‘Vanilla’ tribimaximal mixing models cannot explain this and in this thesis,
suggestions for more elaborate flavours are given. These however, are all still in the framework
of flavour symmetries. The question is how well one can still defend this framework.

Let us imagine a world that has never been through the ‘tribimaximal paradigm’ era. In this
world, one day after the establishment of neutrino oscillations, an ingenious experimentalist builds
a machine that immediately measures all three mixing angles with a precision that in our world was
only reached in the summer of 2011. She sends this information to her theorist colleagues and asks if
they see anything in the data. The theorists will not come up with tribimaximal mixing: it is already
excluded by the data; it is also unlikely that they will go in one step from nothing to ‘(tri-) bimaximal
mixing with significant corrections’, as in the model of chapter 4. The motivation to defend this from
a finetuning perspective is simply lacking.

It is interesting to ask whether the hypothetical theorists would come up with groups such as ∆(96)
and ∆(384) of chapter 3 to address the mixing patterns. Indeed, in our world, where we have been
through the ‘tribimaximal paradigm’ phase, it can be defended that these groups are not much more
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complicated than A4 and S4 and indeed are generated by the same basic principles. In the other
world, assuming a very complicated group to explain a mixing pattern that on first sight looks quite
innocent might be a step too far. The same holds for the assumption of an A4-triplet of Higgs fields
as discussed in chapter 5.

If the beasty conclusion is true, flavour symmetries may not be ‘the truth’, but in discussing them, we
may step by step have moved closer to understanding Majorana neutrinos, dark matter, multi-Higgs
models and many other aspects of the physics of the exciting times we live in.



Samenvatting

Lieve hart mijn boek is af, mijn boek is af!

Multatuli, 1859
en

In memoriam Sjoerd Hardeman [166], proefschrift 2011

Twee vragen die de mens van oorsprong heeft beziggehouden zijn ‘Waar is dat van gemaakt?’ en
‘Zit daar structuur in?’. Als die vragen beantwoord zijn, volgen vaak nieuwe vragen van het type ‘Is
daar een reden voor?’ en ‘Kan ik dat verklaren vanuit een onderliggend principe?’

Sinds ongeveer een eeuw hebben we een redelijk beeld van de bouwstoffen van alledaagse materie.
Materie komt in veel verschijningsvormen; zo lijken lucht, water, stenen en gras niet echt veel op
elkaar. Als je maar diep genoeg inzoomt, blijken ze echter toch allemaal dezelfde bouwstoffen te
hebben. Uiteindelijk is alles opgebouwd uit atomen, die op hun beurt weer uit een kern en een
aantal elektronen bestaan, zoals weergegeven in figuur 1.

Figuur 1: Materie is opgebouwd uit atomen. Een atoom heeft een elecronenwolk (geel) en een
kern. In de kern zitten protonen (zwart) en neutronen (donkerrood), die op hun beurt weer
uit zogeheten quarks (rood en blauw) bestaat [Schematische voorstelling – niet op schaal].

Elektronen lijken elementaire deeltjes te zijn: hoe hard je ook je best doet, je kunt ze niet splitsen
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in kleinere bouwstenen. Dat blijkt niet zo te zijn voor de atoomkern die in veel gevallen gesplitst
kan worden, bijvoorbeeld in een kernreactor. Een atoomkern blijkt opgebouwd uit protonen en
neutronen, waarin op hun beurt weer zogeheten up en down quarks1 blijken te zitten, altijd drie in
totaal. Daarnaast blijkt er nog een deeltje, het neutrino, te bestaan, dat zich in zekere zin verhoudt
tot het elektron zoals het up en down quark zich tot elkaar verhouden.

Deze beschrijving beantwoordt de eerste twee vragen. Alles is gemaakt uit de vier deeltjes elektron,
neutrino, up quark en down quark en het feit dat dit voor alle materie geldt en dat er numerieke
relaties zijn tussen de aantallen van verschillende deeltjes in een atoom, geeft aan dat er structuur in
zit. Het antwoord op de vraag of dit deze via een onderliggend principe verklaard kunnen worden,
moest wachten tot de jaren ’60 van de vorige eeuw. Toen is het standaardmodel van de deeltjesfysica
opgesteld, waarin gesteld wordt dat er een diepe relatie is tussen materie, krachten en een tak van
wiskunde genaamd groepentheorie.

De vraag waarom er drie quarks in een proton of neutron zitten, wordt bijvoorbeeld beantwoord
door te stellen dat quarks een extra eigenschap ‘kleur’ hebben en dat alleen kleurneutrale of ‘witte’
objecten stabiel kunnen zijn. Zoals wit licht verkregen kan worden door rood, groen en blauw
licht te mengen, kan een kleurneutraal proton of neutron gevormd worden uit drie quarks, elk
met één van de kleuren. De details volgen bij het bestuderen van de SU(3)-groepentheorie van
kwantumchromodynamica, de theorie van de sterke kernkracht

Daarnaast wordt het feit dat het elektron en het neutrino alsmede het up en down quark als paren
voorkomen, verklaard als een eigenschap van de SU(2)-groepentheorie van de zwakke kernkracht,
die ook zorgt voor radioactief verval.

Bovenstaande is een algemene beschrijving van de elementaire-deeltjesfysica zoals we die nu ken-
nen. Het daadwerkelijke onderwerp van dit proefschrift komt naar voren in de waarneming dat
weliswaar alle stabiele materie uit de vier bovenstaande deeltjes bestaat, maar dat er daarnaast twee
‘broertjes’ lijken te bestaan voor elk van deze deeltjes. Het up quark lijkt op zijn broertjes charm en
top die beiden ook weer in drie ‘kleuren’ voorkomen; het down quark wordt vergezeld door quarks
met de namen strange en bottom en naast het elektron bestaan er een muon en een tau lepton en er
zijn ook in totaal drie neutrinos. Dit is nog eens samengevat in figuur 2. De enige eigenschap waarin
de broertjes (meestal aangeduidt als tweede en derde familie) verschillen van de stabiele-materie
deeltjes (de eerste familie) is hun massa.
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Figuur 2: De materiedeeltjes die samen het standaardmodel vormen.

De vraag of er structuur in de families van deeltjes in het standaardmodel zit, wordt duidelijk
beantwoord door figuur 2. De vraag of daar ook een onderliggende reden achter zit, is echter

1We gebruiken hier de Engelse namen voor de quarks. Nederlandse namen bestaan: op-, neer-, vreemde, tover-, bodem-
en top-quark in volgorde van toenemende massa, maar deze zijn zeer ongebruikelijk.
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nog open. In de traditionele theorie wordt deze vraag met ‘nee’ beantwoord. Het bestaan van drie
families wordt als een experimenteel feit gezien, maar niet verklaard.

De fundamentele stellingname van dit proefschrift is dat dit onbevredigend is, en er een on-
derliggende reden moet zijn achter het bestaan van de drie families. Een hint naar de oplossing
is hierboven al gegeven, toen gevonden werd dat de groepentheorie van de kernkrachten uit wees
dat deeltjes soms in paren (up en down quark; elektron en neutrino) of in drievoud (rood, groen
en blauw quark) voorkomen. Wellicht kan hetzelfde principe gelden voor de drie families. Als
er een kracht – of, meer algemeen, een symmetriegroep – bestaat tussen de drie families, kan de
groepentheorie hiervan verklaren dat ieder van de stabiele-materie deeltjes twee zwaardere broertjes
heeft.

Een familiesymmetrie kan dus de gelijkenis tussen de drie families verklaren. Zoals boven
aangegeven, lijken de deeltjes in de drie families inderdaad heel erg op elkaar, maar verschillen
ze ook op een belangrijk punt: in hun massa. Nu is het interessante dat ook in die massa’s weer
structuren lijken te zitten. Zo zijn de deeltjes van de derde familie typisch ongeveer 100x zwaarder
dan die van de tweede familie, die op hun beurt weer zo’n 100x zwaarder zijn dan de deeltjes
van de eerste familie2. In de theorie van Froggatt en Nielsen, beschreven in sectie 2.3.1, kan de
massahierarchie inderdaad verklaard worden middels een familiesymmetrie.

Hier blijft het niet bij. Het geoefend oog van de theoretisch natuurkundige denkt méér patronen te
kunnen waarnemen. Één hiervan is gerelateerd aan de ‘menging’ van neutrinos. Aangezien er drie
neutrinos zijn, kunnen we drie massa’s toeschrijven aan de neutrinos. Maar in bepaalde interacties,
blijken het niet precies de toestanden met een zekere massa (‘massa-eigentoestanden’) te zijn die
reageren, maar bepaalde combinaties daarvan (‘interactie-eigentoestanden’) – en wel heel specifieke
combinaties. Zo is één van de massa-eigentoestanden voor zover we kunnen meten een precies geli-
jke combinatie van elk van de drie interactie-eigentoestanden en is een andere massa-eigentoestand
een gelijke combinatie van twee van de drie interactie-eigentoestanden en bijna niks van de derde.
Dit heet tri-bi-maximale mixing in de deeltjesfysicaliteratuur en sinds enige jaren zijn er modellen
die het vanuit onderliggende principes kunnen reproducere, mits er een familiesymmetrie gebruikt
mag worden. Een voorbeeld wordt gegeven in sectie 2.4.

De kern van dit proefschrift – de hoofdstukken 3 tot en met 5 – zijn in zekere zin allemaal
geinsprireerd door het onderstreepte woordje bijna in de vorige alinea. Sinds de zomer van 2011
is er duidelijk experimenteel bewijs dat tri-bi-maximale mixing niet perfect kan zijn. Moeten
familiesymmetrieën hiermee verworpen worden, of kunnen ze op een simpele manier aangepast
worden?

Hoofdstuk 3 begint met een schets van een aantal mogelijke richtingen in de ruimte van theorieën
waar deze waarneming naar kan wijzen. In de rest van het hoofdstuk bekijken we de groepentheo-
retische achtergrond van tri-bi-maximale mixing en de wiskundige groep die dit mogelijk maakt.
We zien dat dit principe te generaliseren is en vinden een groot – maar eindig – aantal andere
mixingspatronen die door de wiskunde naar voren worden geschoven. Een aantal hiervan komt
heel erg dicht bij de meest recente data en ze hebben met elkaar gemeen dat ze op een natuurlijke
manier een inmenging vinden van de derde interactie-eigentoestand in de massa-eigentoestand die
voornamelijk uit gelijke delen van de andere twee bestaat, θl13 6= 0 in formules.

In hoofdstuk 4 gooien we het over een andere boeg en construeren een vrij uitgebreid – volgens
critici wellicht barok – model. Dit model bevat naast een familiesymmetrie ook een zogeheten grand
unified symmetrie. Deze unificeert de bekende krachten van het standaardmodel en vereenvoudigt
daarnaast de beschrijving van de elementaire deeltjes. We kiezen er opzettelijk voor om de menging
van zowel neutrinos als quarks in eerste benadering niet heel erg goed te laten overeenstemmen met
de data. We kunnen dan een tweede-benaderingsschema invoeren waarin in één klap beide de data
een stuk beter beschrijven en bovendien θl13 6= 0 gegenereerd wordt.

De kern van de argumentatie van het hoofdstuk ligt in de onverwachte complicaties die het com-

2De constante waarde 100 is lichtelijk overgesimpliceerd. In werkelijkheid verschilt de factor per deeltjestype. Zie sectie
4.2 voor een meer gedetailleerde beschrijving.
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bineren van grand unified en familiesymmetrie geven. Hoewel de combinatie van de twee symme-
trieën vanuit esthetisch oogpunt zeer wenselijk is – beide staan een compactere formulering van de
theorie toe – blijkt het aantal benodigde hulpvelden onverwacht sterk toe te nemen. Daarnaast blijkt
dat voorspellingen gedaan op een zekere hoge energieschaal zich minder makkelijk laten vertalen
naar een lagere energieschaal dan naı̈ef wellicht verwacht zou kunnen worden3. Met de toepassing
van de juiste methoden kan het model toch op beide schalen geëvalueerd worden.

In hoofdstuk 5 beschouwen we juist modellen waar de energieschaal van de familiesymmetrie vrij
laag is. Familiesymmetrie manifesteert zich in deze modellen op dezelfde schaal als de zwakke
kernkracht waarnaar hierboven al gerefereerd is. De Large Hadron Collider (LHC) deeltjesversneller
van CERN bij Genève is specifiek gebouwd om de geheimen van de zwakke kernkracht beter te
doorgronden. Als de schaal van familiesymmetrie inderdaad dezelfde is als die van de zwakke
kernkracht, zal de LHC ook voor familiesymmetrieën een boel waarnemingen kunnen doen. We
beschouwen de voorspellingen van deze modellen voor de LHC en laten zien dat via precisiewaarne-
mingen van eerdere, minder energierijke versnellers veel modellen al sterk beperkt kunnen worden.
Een bijkomend voordeel van deze set-up is dat deze modellen typisch θl13 ongelijk aan 0 hebben, zij
het zonder een specifieke waarde te voorspellen.

Hoofdstuk 6 presenteert de conclusies van dit proefschrrift. Geı̈nsprireerd op de oorspronkelijke
titel van één van de artikelen kan deze op een the beauty en een the beast manier gelezen worden. De
goede boodschap is dat het veld van familiesymmetrieën erg veelzijdig is en dat veel interessante
modellen opgesteld kunnen worden. De slechte boodschap is dat de structuur die familiemodellen
inspireert, misschien toch minder overtuigend is dan eerst gedacht werd, zeker nu een waarde voor
θl13 ongelijk aan 0 gevonden is. Wellicht is de structuur dan onvoldoende om de gecompliceerdheid
van de modellen te rechtvaardigen.

In ieder geval kunnen we stellen dat de elementaire-deeltjesfysica de vraag ‘Waar is dat van
gemaakt?’ beantwoord denkt te hebben. De vraag ‘Zit daar structuur in?’ wordt sowieso bevesti-
gend beantwoord, maar de hoeveelheid structuur is nog onderwerp van debat. Aan de hand daarvan
zijn er veel antwoorden mogelijk voor de vragen ‘Is daar een reden voor?’ en ‘Kan ik dat verklaren
vanuit een onderliggend principe?’ En zodra er nieuwe antwoorden komen op de eerste vraag –
bijvoorbeeld als de LHC nieuwe, onverwachte deeltjes vindt – kunnen alle kaarten weer anders
liggen.

3De waarde van veel observabelen in de hoge-energiefysica blijkt van de energieschaal afhankelijk te zijn waarop een
waarnemer er naar kijkt. Intuı̈tief kan dit als volgt verklaard worden: waarnemen vindt meestal plaats door een lichtdeeltje
(foton) op een object af te schieten en te kijken hoe het terug komt. Als dit een energierijker foton is, kan het dieper in het
object doordringen en ziet het dus iets anders dan een energiearmer foton, dat minder diep door dringt.
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