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Abstract: The implementation of quantum gates by means of microwave cryo-RFICs
controlling qubits is a promising path toward scalable quantum processors. Quantum gate
fidelity quantifies how well an actual quantum gate produces a quantum state close to
the desired ideal one. Regrettably, the literature usually reports on quantum gate fidelity
in a highly theoretical way, making it hard for RFIC designers to understand. This paper
explains quantum gate fidelity by moving from Shannon’s concept of fidelity and proposing
a detailed mathematical proof of a valuable integral formulation of quantum gate fidelity.
Shannon’s information theory and the simple mathematics adopted for the proof are both
expected to be in the background of electronics engineers. By using Shannon’s fidelity, this
paper rationalizes the integral formulation of quantum gate fidelity. Because of the simple
mathematics adopted, this paper also demystifies to electronics engineers how this integral
formulation can be reduced to a more practical algebraic product matrix. This paper makes
evident the practical utility of this matrix formulation by applying it to the specific examples
of one- and two-qubit quantum gates. Moreover, this paper also compares mixed states,
entanglement fidelity, and the error rate’s upper bound.

Keywords: fidelity; quantum fidelity; RFICs; quantum gate; hyperspace integrals; energy
efficiency; logical qubit

1. Introduction

A scalable and fault-tolerant quantum processor is the enabling device for the second
quantum revolution, which, exploiting the counter-intuitive laws of quantum mechanics,
promises to revolutionize, in the near-medium future, how information is processed and
transmitted, with relevant impacts in several practical fields, such as cryptography, drug
synthesis, and artificial intelligence [1].

Microelectronic technologies seem to assure scalability. In particular, cryogenic RFICs
(radio frequency integrated circuits) are a promising solution for scaled quantum micro-
processors [2-21]. The application of a microwave pulse with an appropriate amplitude,
frequency, and time duration to a two-level quantum physical system (quantum bit or
qubit for short) indeed enables the implementation of one-qubit quantum gates; likewise,
two-qubit quantum gates can be implemented by applying suitable microwave pulses
to a pair of qubits [22]. The useful frequency range spans from 100 MHz to 50 GHz for
electron spin qubits and from 500 MHz to 15 GHz for superconductive qubits [23]. RFICs
are interesting because they are microminiaturized microwave sources that can be placed
close to the qubits, minimizing the number of microwave cables connecting the quantum
microprocessor to the external room temperature environment. In this way, the size of the
whole system is reduced and the adiabaticity of the cryostat is improved.
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On the one hand, microelectronic technologies seem to assure scalability. However,
on the other hand, the intrinsic brittle coherence of quantum objects constitutes the main
challenge to achieving fault tolerance because it tends to increase the quantum computation
error. The quantum error rate is the correct figure of merit for evaluating the fault-tolerance
degree of a quantum processor [24]. An important theorem of quantum information
theory, the threshold theorem, states that there exists a threshold error rate under which a
quantum processor, even if faulty, is able to correctly run a quantum algorithm by using
an efficient number of qubits and quantum gates [25]. The theorem guarantees that a
quantum processor is feasible but only on the condition that the quantum error rate is kept
low enough. Because of the aforementioned brittleness of the quantum coherence, this
condition can be attained only by adopting quantum error correction (QEC) codes [25].

The unavoidable non-idealities in the actual implementation of quantum gates also
prevent quantum gates from functioning ideally. Fidelity is the figure of merit that quan-
tifies the difference between the output states generated by actual and ideal quantum
gates [26]. The key point is that the QEC codes can be successfully applied only if quantum
gate fidelities are higher than a given threshold [27]. A high enough quantum gate fidelity
is therefore the prerequisite for achieving quantum fault tolerance.

The non-idealities in the electronic circuitry in an RFIC may limit the quantum gate
fidelity [28,29]. For instance, the phase noise, affecting the microwave signal generated by
the oscillator/phase locked loop in the RFIC, and the inaccuracies in the amplitude of the
controlling microwave signal due to the output pre-drive amplifier in the RFIC can reduce
the fidelity. The RFIC should be placed close to the qubits inside the cryostat chamber,
whose thermal budget nevertheless limits the amount of power the RFIC is allowed to
dissipate. Designing RFICs under power dissipation constraints may lead to device size,
bias voltage, and low power circuit solutions that sacrifice ideal behavior for power [4,20].
For instance, power dissipation is traded for sensitivity to parametric fluctuations, the
spurious free dynamic range (SFDR), and linearity.

Since quantum gate fidelity enables the application of the QEC codes, it is an important
specification for electronics engineers designing the qubit RFIC controllers. Typical quan-
tum gate fidelity requirements pose a significant challenge to the RFIC designers [10,30,31],
who should therefore be aware of what quantum gate fidelity is, in order to properly
account for it alongside other design specifications. In addition, being aware of quantum
gate fidelity also facilitates discussion and information exchange between RFIC designers
and physicists. Collaboration between these two professional figures is of paramount
importance for successfully addressing the fabrication of quantum microprocessors.

Nevertheless, the literature typically addresses quantum gate fidelity by definition,
without providing a rationalized explanation that aids understanding. Moreover, it employs
advanced abstract mathematical formalism that does not help electronics engineers grasp
the concept. This paper intends to contribute to overcoming these obstacles.

To achieve this, Section 2 of this paper introduces quantum gate fidelity by leveraging
the concept of fidelity as found in information theory, which is generally familiar to
electronics engineers. Moreover, Section 3 introduces an analogy between a quantum gate
and a transmission channel, thus linking the input and output states of the quantum gate
to, respectively, the transmitted and received signals on the channel. Section 4 reports a
step-by-step, detailed mathematical proof of a relatively well-known formula for quantum
gate fidelity [32]. This formula is particularly relevant for RFIC designers because it
reduces the calculation of the fidelity to matrix analysis, a domain familiar to electronics
engineers. Regrettably, in [32], as it often occurs in other papers on fidelity, see, for instance,
refs. [33-35], the mathematics is often presented using an abstract formalism characteristic
of theoretical physics. This makes it difficult for electronics engineers to interpret the
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formulation of fidelity, thereby discouraging its use, despite fidelity being a relevant
design specification. In contrast, the mathematical proof proposed in Section 4 adopts a
more accessible mathematical formalism, aligning with the mathematical background of
electronics engineers. It is the authors” opinion that addressing mathematical issues in
this way helps to demystify concepts that may remain otherwise obscure. With the aim of
further clarifying the relevance of the formula above for RFIC designers, Section 5 discusses
brief case studies that exemplify how the RFIC non-idealities impact quantum gate fidelity,
and Section 6 addresses the relationship between quantum gate fidelity and the energy
efficiency of the quantum microprocessor. Section 7 discusses quantum gate fidelity in the
more involved case of mixed states. Eventually, Section 8 closes this paper by summarizing
the obtained results and drawing some conclusions.

2. Fidelity According to Shannon

The concept of fidelity is rooted in the communication theory conceived by Claude
Shannon (1916-2001) in 1948 at Bell Laboratories [36]. Shannon introduced the term fidelity
to indicate the degree of exactness in recovering, at the receiver side Ry of a transmission
channel, the signal generated by a source at the transmitter side Tx. In particular, his
historical paper introduces the probability P (mx, moyr), which represents, as follows, the
likelihood that moyr and mjy are, respectively, the input and output signals:

P(min, mour) = P(min)P(mour|min) (1)

where P(myy) is the probability that the input message source generates the signal my
and P(moyr|mN) is the conditional probability that the received signal is moy 1 given that
the sent message is mjy. The conditional probability in Equation (1) implicitly attributes
a stochastic nature to the transmission channel. Indeed, it introduces the fact that, for a
given input signal, different output signals may be observed, each with its own conditional
probability. All possible messages my and moyr form the message space S;;. The proba-
bility P(mn, moyr) fully statistically describes the whole transmission system (message
source plus transmission channel) in terms of the pairs of messages my and moy7. If the
probability P(my, moyr) is known for the whole space Sy, the fidelity is also known in a
qualitative sense. Nevertheless, if you desire a more operative and quantitative definition
of fidelity, you need to introduce a function F{-} that yields a number from P(my, moyr).
Shannon interpreted this number as the distance between the ideally expected and the
actually received output signals. He dubbed this distance fidelity because it quantifies the
degree of exactness in receiving the transmitted message. In his paper, Shannon mathe-
matically introduced fidelity as the weighted average distance calculated over the message
space, where the probability P(my, moyr) serves as the weighting factor [36]:

F{P(min,mour)} = Y_P(m, mour)s(min, mour) 2)
STn

where §(my, moyr) quantifies, based on a given criterion, the distance between the re-
ceived moyr and the transmitted mjy signals. This makes sense because for an ideal
transmission channel, the ideal received output signal m};;+ = myy, where the superscript
“1” stands for ideal. The quantity d(my, moyr) therefore measures the distance between
the ideal and actual output messages. Since in Equations (1) and (2), moy is the actual out-
put signal, for reasons of unambiguousness, it is good practice to replace the symbol moyr
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with m¥ ;7 in these equations. With these representations, the substitution of Equation (1)
into Equation (2) yields:

F{P(mg)ur mgm)} = SZP(mIN)P(mgUT‘mIN)(S(mg)UT' mgm) ©)

where, in the mathematical expressions of the distance ¢ and fidelity F, it has been em-
phasized that m};; = my. In this way, it is made plain that the distance 6 and fidelity F
address the difference between the ideal m),; and actual m§; output messages.

A deterministic (not stochastic) transmission channel implies P(mSUT}m IN) =1,
reducing the mathematical expression of the fidelity to the following:

F{P(mIOLIT/ mgw)} = SZP(WIN)‘S(’”IOUP mgUT) (4)

It is worth noticing that, being deterministic, the channel does not imply an ideal
channel. The distance ¢ in Equation (4) accounts for that. In particular, since mIOUT = mn,
Equation (4) shows that different my signals contribute differently to the fidelity.

In cases where the input source generates input messages with a uniform probability,
the probability P(my) is a constant, so you can factor it out from the summation:

F{P(m(IDUTf mgur)} = P(mIN)Z‘S(méUTf mgm) )
Sm
Apart from a constant, the fidelity can therefore be rewritten as follows:
F{P<mg)uw mgm) } = ;5(7”(1%1% mgm) (6)

If the space S, is continuous instead of discrete, as assumed above, an integral replaces
the summation:

F{P(mIOUT/ mgm) } = /Sm 5(’”&1% mgm) dSm )
with dS;, being the infinitesimal volume in S;,. Equations (6) and (7) state that the fidelity
is the average distance between m) ;7 and m8 ;1 on the message space Sy

It is worth concluding this section by emphasizing that Equations (6) and (7) em-
bed two hypotheses: the transmission channel is deterministic, and all input signals are
generated with the same probability.

3. The Fidelity of a Quantum Gate

Quantum gate fidelity, as well as the fidelity for transmitted and received signals in
Section 2, quantifies the difference between ideal and actual quantum gates as the average
distance between ideal and actual quantum output states. A fidelity equal to 100% means
that the quantum gates behave ideally. In practice, it is useful to introduce the error rate of
a quantum gate as the complement to 100% of the quantum fidelity [37], so that an ideal
quantum gate exhibits an error rate equal to zero.

In quantum information theory, a quantum operation, such as a quantum gate, is
an operator A [26,38]. Following the considerations in Section 2, this paper assimilates a
real quantum gate to a real channel, as depicted in Figure 1. The output quantum state

|1/)(I§UT ) = A|yn ) coincides with the ideal one flpéUT ) only if the operator is ideal, exactly
as the output signal moy7 is identical to the input signal my only if the channel behaves
ideally. If the effect of the quantum gate in Figure 1 on the input state |y ) does not
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introduce phase decoherence, the output state |X ;1) is a pure state as long as the input
state is pure. Appendix A shortly reviews the definition of pure and mixed states, along
with some further considerations.

Real
uantum
(a) stsfem [¥in) Quantum [YSur)
Gate
Real R R
(b) TX Min Channel Mour X

Figure 1. Analogy between the manipulation of a quantum state by a real quantum gate (a), and the
transmission of a signal through a real channel (b).

As observed for a deterministic transmission channel, a coherent quantum gate does
not imply that it behaves ideally. When both input and output states are pure, the distance

2
$our)) = | ($our [$5ur)|
which is the probability that the actual output state |5, ) coincides with the desired

§(mby 7, m8 ;1) is the state overlap probability 6(|¢57 ),

ideal |pL,7) [38]. It is worth emphasizing here that, in quantum mechanics, the quantity
(957 w8 7) is dubbed the inner product, and it is a complex-valued scalar. By assuming
that all input states are equally probable, the fidelity F of the quantum gate can be therefore
introduced from Equation (7) as follows:

F= /BS’<1/’IOUT’1/JSUT>‘2‘1V (8)

where dV is the infinitesimal volume of the Bloch sphere (BS), which is a geometrical figure
useful for visualizing a quantum state [26,38]. For a n-level quantum state (qudit), the Bloch
sphere is a hypersphere in a (2n—1)-dimensional space $>"~! and it can be described as a
nested Bloch sphere [39]. A qubit is a qudit for n = 2. In this case, the Bloch hypersphere
reduces to the usual three-dimensional sphere, because 2n—1 = 3. It is worth pointing out
that, as Equation (7) is an average value on the message space S;;, Equation (8) describes
the fidelity F as the probability, averaged on the entire Bloch hypersphere, that |5 ;1)
and |87 ) are identical.

If A; and Ay are the ideal and actual forms, respectively, of the operator A, you can

express |Phr) = Arlpiv) and |98,1) = Ar 1N ). Thus:
F= /BS‘<¢1N‘A;AR’1P1N>‘2dV )

where Al is the conjugate transpose (adjoint) of A;. If the input state {1y ) is a vector of
an n-dimensional complex Hilbert space:

¥ = ;D‘iW’i) (10)

where |;) for i=1.. .n, is an orthonormal basis for the Hilbert space, Equation (9) can be
reformulated as follows:

<¢IN‘A}-AR‘1/JIN>‘2‘1V (11)

§2n—1
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In Equation (11), |¢;n ) describes a qudit and the integral is calculated based on the
Bloch hypersphere in the multi-dimensional space S?*~1.

4. Quantum Gate Fidelity in Matrix Form

Calculating the fidelity from Equation (11) is not a trivial task, as it involves a multi-
dimensional integral. The aim of this section is to formulate Equation (11) in a more
practical matrix form, to make it easy to calculate the quantum fidelity once the operators
Ay and Ap are provided in the matrix form. It is worth emphasizing that, once a basis for
the Hilbert space is provided, an operator is mathematically represented by a matrix [40];
in this way, an operator enjoys all the properties of the matrix. In particular, the application
of the Toeplitz decomposition [41] to the Aror = AT AR total operator makes it possible
to decompose Aot into the sum of a Hermitian H and an anti-Hermitian A operator.
Equation (11) can thus be rewritten as follows:

F= [, JwwlArorlen)Pav = [ [ilH + Alpi) Pav (12)

Because of linearity, Equation (12) can be reformulated as follows:

F = Jqua| COnIHIPiN) + (inlAlrn) PV (13)

By assuming that the state |¢;y) is normalized, the quantities (¢;n|H|¢n) and
(YiN|A|prn) are the expectation values of the operators H and A, respectively [42,43].
Since the expectation value of an operator is the average values of its eigenvalues [42,43],
you can write:

(Win|Hlpin) = L |ai[*h;

l 14
@in|AlYiN) = T | a; (14)

where «; is the components of the state vector |¢;yn) and h; (a;) are the eigenvalues of
the operator H (A). By emphasizing that the eigenvalues of a Hermitian operator are
real numbers while the eigenvalues of an anti-Hermitian operator are pure imaginary
numbers [42], you can state that h; are real numbers while a; are imaginary numbers.
In addition, since |1Jci|2 are real numbers, you can conclude, from Equation (14), that
(Y1Nn|H|prn) is real while (1| A|N) is purely imaginary. The argument of the integral
in Equation (13) is therefore of the general form |x + jy|2, with x and y real numbers. By
emphasizing that |x + jy|* = |x|*> + |y|?, Equation (13) can be split into two contributions:

F= 52n71|<¢1N‘H‘¢1N>|2dV+/52n71|<1/’1N|A|1P1N>|2dV 15)

It is now also worth emphasizing that the Hermitian and anti-Hermitian operators
are normal operators [44]. They therefore enjoy the spectral theorem from the matrix
analysis [41], which states that every normal operator is unitarily similar to a diagonal
operator, which is an operator represented by a diagonal matrix [44]. In particular, the
matrix entries on the main diagonal are exactly the eigenvalues dj; for the diagonal operator
Dy, which is similar to the operator H, and d4; for the diagonal operator D4, which is
similar to the operator A. Since similar operators exhibit the same eigenvalues, h; = dpy;
and a; = d ;. Thus:

($in|Dulyin) = Zi:|“i|2dHi = ;\“thi
(Yin|Dalpin) = IZ\ai|2dAi = Y |a;*a;

1

(16)
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Of course, with h; (a;) being real (imaginary) numbers, dpy; (d 4;) are also real (imagi-
nary) numbers. The comparison of Equation (14) with Equation (16) leads to the following
reformulation of Equation (15):

F= /52n—1|<lpIN|DH|lIJIN>|2dV+/52n71|<l,’)[]\]‘DA|lIJIN>|2dV (17)

Since d 4; is wholly imaginary, d 4;/] is a real number and, since |j| = 1, Equation (17)
can be reformulated by replacing D 4, whose entries are d 4;, with D4 /j, whose entries are
dailJ: _ )

F= [, e IDulgn) Pav+ [ [(givIDa/ilé) Pav (18)

In this way, the fidelity F has been expressed by means of the two real diagonal
matrices Dy and D4 /j. For the sake of brevity, it therefore makes sense to address the
following integral $3:

H= [SZH |(n| DN [2dV 19)

where D is a real diagonal matrix of real-valued eigenvalues d;. The expectation value
(Y1n|D|yn) is thus also real-valued, because of the usual expression:

($In|D[yin) = Z|D‘i|2di (20)

Since the squared module of a real number is the squared number | (x| D) |* =
(¥1n|D|¥in)?, Equation (20) yields:

2
(1| Dlyin) > = (ZIMI%) =Yl a2 42 ) il | *did,; (21)
' 7 i

1

Equation (21) is the generalization to n terms of the Leibniz trinomial for n = 2
(a+b+c)* = a2+ b2+ 2 + 2ab + 2ac + 2b.
The substitution of Equation (21) into Equation (19) yields:

4 2 2 2
9= [, Dl d@dv+ [ 2 (ol ddav @)
i i,j#i
from which:
4 2 2] 2
0= 2(/5 [ dV) 4+ Z( S 0%l dV) 2did (23)

The eigenvectors can be factored out from the integral because the integral is calculated
on the (2n — 1)-dimensional Bloch hypersphere by varying the vector state |{;y ), i.e., by
varying its components. Appendix B details the mathematical proof of the following pair
of integrals:

4 __ 2

Json Jai de— n(n+1) (24)
2 1

szV‘*l il ’DC]| dv = n(n+1)

The substitution of Equation (24) into Equation (23) yields:

__ 2 2 1 4
h= n(n+ 1);di + n(n+ 1);25[161} (25)
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By remarking that the trace Tr{D} of the matrix D is also a real-valued number, you
can write:

2
|Tr{D}|* = T"*{D} = (Zd,) =Y #+2Y dd; = Tr{DZ} +2Y dd;  (26)
i i ij# Lj#i

where it has been remarked that the first summation on the right-hand side of
Equation (26) is the trace Tr{D?} of D2
Eventually, the substitution of Equation (26) into Equation (25) yields:

w T g (D) (D) @)

Again, the summation in Equation (27) is Tr{D?}, so that the Equation can be rear-
ranged by factoring out Tr{D?}:

2 1 1 Tr{D?} + |Tr{D}|?
’3:”{1)2}[;1(;1“)‘n(n+1)}+n( D} = == (28)

The application of Equation (28) to the real diagonal matrices Dy and D4 /j in

Equation (18) leads to:
p = MHORHTDu | T{(Dasj)® }TH{DA/ i}
- n(n+1) ) i’l(?‘l+1) ) (29)
_ Tr{D} }+|Tr{Dy}| n —Tr{D3 }+|Tr{D}|
- n(n+1) n(n+1)

Since Dy (D) is a diagonal matrix, whose entries are pure real (imaginary), Dy = D}

(Dy = _qu) and thus:
2 _ t
Dt = DyDy,

30
D% = —D4D% (30)

Since H and Dy (D 4) are unitarily similar, by definition, Dy (D 4) is obtained from H
(A) by means of the following similarity transformation:

Dy = U, 'HUy

31
Dy = U, AUy B1)

where Uy (Uy) is the diagonalizing unitary matrix. The substitution of Equation (31) into
Equation (30) yields:

D, = Uy HUly (U HUy )" = U Uy [ug (1|

5 . . t t (32)
D% = —U; AUA(UA AUA) = Uy AuA[ (AuA)}
Since, for a unitary matrix, u-! = ut, and, for a couple of matrices A and B,
(AB)" = Bt Af, Equation (32) can be reformulated as follows:
D} = U5 HUy (HUH)*u—” Ug'HUyUfH Uy = U HH Uy )

D% = U AU, (AUL) UMY = —UtAU UL AU, = —UPAATU,
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By emphasizing that, for a pair of matrices A and B, Tr{AB} = Tr{BA}, from
Equation (33), you get:

Tr{D%} = Tr{ (Ug'H) (H'Uy) } = Tr{ (H*Up) (U5 H) } = Tr{H"H} -
{04} = —Tr{ (uz'A) (ATua) | - Tr{ (AtUs) (Uz'A) } = —Tr{A%4}
and from Equation (31):
— -1 _ -1 _ -1 —
Tr{Dy} = Tr{ (uH H) uH} = Tr{uH(uH H)} = Tr{uHuH H} =T{H) )
Tr{Ds} = Tr{A}
The substitution of Equations (34) and (35) into Equation (29) yields:
Tr{H'H} + Tr{A'A} + |Tr{H})* + |Tr{A}?
F= (36)
n(n+1)
By emphasizing that Aror = H 4 A, you can write:
Tr{ ArorAfor } = Tr{(H+ A)(H+ A)'} = Tr{(H + A)(H - 4)} (37)
where it has been emphasized that, by definition, HY = H and A' = —A. Due to the

above-emphasized property Tr{AB} = Tr{BA}, it holds that Tr{ HA} = Tr{AH}. Thus,
Equation (37) can be shortened as follows:

Tr{ATOTA}OT} = Tr{HH} — Tr{HA} + Tr{AH} — Tr{AA} = Tr{HH*} + Tr{AA*} (38)

From Equation (31), you can observe that similar matrices own the same trace:

Tr{Dy} = Tr{ (ung) uH} = Tr{uHulng} = Tr{H}

(39)
Tr{Ds} = Tr{A}

Equation (39) shows that the trace of H (A) is real (imaginary), because the entries of
Dy (Dy) are real (imaginary). Consequently, you can write:
\Tr{Aror}|* = |Tr{H + A}|* = |Tr{H} + Tr{A}|> = |Tr{H}* + |Tr{A}*  (40)
The substitution of Equations (38) and (40) into Equation (36) yields:

Fe Tr{ ArorAkor} + |Tr{Aror}?

nn+1) 41

It is now worth emphasizing that the operator describing a quantum gate is unitary
and thus represented by a unitary matrix. Since Aj and Ay are unitary operators, being the
operators of a quantum gate, the operator Aror, which is their product, is also unitary and
thus A;(le = A}EOT. Equation (41) therefore takes the following form:

_ Tr{I} + [Tr{Aror}* _n+ |Tr{ATA} (42)

F n(n+1) n(n+1)

Equation (42) provides the mathematical expression for the fidelity of a quantum gate
exploiting an n-level quantum system, as it has been calculated for a general qudit. In the
case of a one-qubit gate (e.g., X Pauli gate), n = 2, since there are two energy levels, while
for a two-qubit gate (e.g., CNOT gate), n = 4 because there are four energy levels [22].
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5. Brief Case Studies

To better grasp the relevance of Equation (42) as an RFIC designer, let us consider
the brief case studies of the one-qubit Pauli X and two-qubit CNOT quantum gates im-
plemented in the spin of electrons confined in quantum wells [22]. The quantum gate is
implemented by irradiating the qubit, via a micro-antenna, with a microwave pulse at the
resonance Larmor frequency and for a suitable time duration At; this microwave irradiation
induces the following rotation angle 6 of the state vector:

0 — gz”—hBBlAt (43)
where g is the electron spin g-factor, up is the Bohr magneton, # is the reduced Planck
constant, and By is the magnitude of the magnetic component of the microwave electro-
magnetic pulse applied to the qubit. The magnitude By depends on the amplitude of the
microwave signal sgr, generated by the RFIC, which excites the micro-antenna used to
irradiate the qubit.

5.1. Pauli X Quantum Gate

The ideal matrix Axy of the Pauli X quantum gate operator is obtained from the matrix
ARx of the Rx operator [22]:

0 c e 0
COS~ —71Sins

ARX—[ 20 4 92] (44)
—]S‘lnj COSZ

by forcing the rotation angle of the qubit state vector 8 = m and by factorizing and
neglecting the global phase term —j:

Axy = lg ;1 (45)

Let us suppose that the actual rotation angle is affected by an error ¢, so that
0 = m + ¢, because the electronics circuitry, designed to control the qubit, causes er-
rors in the amplitude of sgr and/or in the duration At. From Equation (44), the actual
matrix Axg of the Pauli X quantum gate operator is:

cos(3 +35) —jsin(F+3)| _ _|sin(3) jeos(3)
e = l—isi"(’f £5) cos(F+g) | |jeos(s) sin(3) 4
Since the entries of the matrix Axy are real values, Ax; = A;rq, and thus from

Equations (45) and (46), you obtain:

R ) et e | R

from which: ) )
‘Tr{A}LHAXRH = ‘—chos(g)‘ = 4cos? (;) (48)
The substitution of Equation (48) into Equation (42) yields:

P 2+ 4cos* (%) - 1+ 2cos? (%)
o2(2+41) 3

(49)

where it has been emphasized that n = 2 for a one-qubit quantum gate. As expected,
Equation (49) yields F = 1 when & = 0.
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ACNOTR

5.2. CNOT Quantum Gate

As for the CNOT quantum gate operator, its ideal matrix Acyory is obtained from the
matrix Agr1 1 [22]:

cos(2)

) (50)
0 0 —jsin ( g) cos

by forcing the rotation angle of the qubit state vector 8 = m and by factorizing and
neglecting the global phase term —j:

Acnotr = (51)

S O O
S O = o
- o O O
o = O O

As in the previous case, let the actual rotation angle be affected by an error ¢, so
that 6 = m +¢e. Equation (50) yields the actual matrix Acyorr of the CNOT quantum
gate operator:

i 0 0 0

0 —j 0 0

0 0 cos(F4g) jsin(F+5)

o 0 (3 g) cos(f D

—j 0 0 0 i 0 0 0 (52)
0 —j 0 0 0 0 0

0 0 —sin(§) —jcos g) “ o 0 sin(%) ]cos<g>

(0 0 fjcos<g) —sin(%) 00 ]cos<g> sin (%)

Since the entries of the matrix Acyor are real values, Acyorr = AE ~Nori- Thus, from
Equations (51) and (52), you obtain:

10 00](/ 0 O 0
0 0 0
+ o1 00 ] _
AavomANOTR = =15 g g 1 | [0 0 sin(5) jeos($)
00 1 0]Jjo o0 ]cos(g> sin (%) 53
i 0 0 0 3)
0j o0 0
— [0 0 jeos(¥) sin(g)
00 sm(%) jeos(%)
from which:
2 2 2
‘Tr{AENOTIACNOTRH - ‘—2]' [1 + cos(g)} ‘ - 4{1 + cos(g)] (54)
The substitution of Equation (54) into Equation (42) yields:
2 2
po4F4[itcos(3)]” _ 1+ [1+cos(5)] (55)

4(4+1) N 5
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where it has been emphasized that n = 4 for a two-qubit quantum gate. As expected,
Equation (55) yields F = 1 when ¢ = 0.

5.3. Entanglement Fidelity
Finally, it is worth noting that the authors in [45] expressed the fidelity in Equation (42)
in terms of the entanglement fidelity F,:

F:nFe—i—l
n+1

(56)

where F, quantifies the exactness in teleporting information coded in a quantum state
over a quantum transmission channel formed by entangled states (e.g., Bell states).
Equation (56) further reinforces the analogy proposed in Figure 1 between a quantum gate
and a transmission channel. The substitution of Equation (42) into Equation (56) yields:

2
p_ [Tr{aiag)|

g (57)

which is the mathematical expression used in [28] to investigate the impact of the non-ideal
behavior of the electronics on quantum fidelity. In the above case studies with the Pauli X
and CNOT quantum gates, the substitution of Equation (48) into Equation (57) yields the
entanglement fidelity F, x for the Pauli X quantum gate:

4cos? () Nz YZ:

F.x = —r = cos (E) =1-—sin (E) (58)
and the subsititution of Equation (54) into Equation (57) yields the entanglement fidelity
F, cnort for the CNOT quantum gate:

Focnor = 4 [1+czz(§)}2 _ 2—sin”(§ 21+2cos( %)

1.:.2(¢ £ (59)
_ 1—g3sin (§)+cos(§)
2

For small values of ¢, sin(¢/2) can be approximated with ¢/2 and cos(¢/2) with 1, so that,
from Equations (58) and (59), respectively, you obtain:

£\2 &2
Fe,X%l—(E) =1-= (60)
L 1-3(5)%+1 e
Pe,CNOT: f =1- E (61)

Equation (60) agrees with the mathematical form claimed in [24,28] for one-qubit
quantum gates facing phase errors in the controlling microwave signal.

5.4. N-Qubit Quantum Gate
Equations (60) and (61) suggest that the entanglement fidelity F, youpiT of an n-qubit

quantum gate can be approximated as follows for small values of «:

&

FonouBir = 1— (;)2 (62)

The substitution of Equation (57) into Equation (62) yields:

Tr{iAtA V| 2
| {JZRH 1 (%) ©3)
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and thus: )
Tr{Ajag}| =& (64)
By adding n on both sides, you obtain:
2
’n{ﬂAAH-+n:n+n?—§ (65)
from which: )
Tr{AfAR}| +n 2
| { 1 R}2| —1-— € 5 (66)
n+n n+n
By referring to Equation (42), Equation (66) can be written in a shorter form:
2
£
F=1-—— 67
n+n? (67)
from which:
e =/n(n+1)(1—-F) (68)

Equation (68) is identical to the mathematical expression of the upper bound error
claimed in [24] for an n-qubit quantum gate. It should be pointed out that the authors in [24]
propose the Pauli distance as tool for a more accurate investigation of quantum gates.

For the sake of convenience, Table 1 summarizes the main obtained mathematical
expressions for fidelity and entanglement fidelity.

Table 1. Mathematical expressions for fidelity and entanglement fidelity.

Quantum Gate F F, F.(ex1)
One-qubit 1+2c082( £ . 2/e 2
(Pauli X) —3 (&) 1—sin”(3) 1-%
Two-qubit (CNOT) 1+[1+c50s(%)]2 1—%sin2(%2 )+cos($) 1-2

N-qubit 1-— (%)2

Table 2 reports some experimental values of quantum fidelity for one-qubit and two-
qubit quantum gates. It shows that achieving higher fidelities is simpler for one-qubit
than for two-qubit quantum gates. On the other hand, Equation (67) implies that, for a
given error, the fidelity increases with increasing n. This comparison suggests that actual
quantum gates also suffer from environmental decoherence [25]. Equation (42), of which
Equation (67) was demonstrated to be a consequence, can indeed account for coherent
sources of error only, as it holds for pure states [25].

Table 2. Experimental quantum fidelity values for one- and two-qubit quantum gates.

Number of Qubits Qubit Technology Fidelity [%] Reference
1 Superconducting 99.9 [46]
1 Superconducting 99.8 [47]
1 Superconducting >99.9 [48]
1 Electron Spin 99.9 [49]
2 Superconducting 99.4 [47]
2 Superconducting 99.4 [46]
2 Trapped ions 99.3 [47]
2 Neutral atom 99.5 [37]
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6. Energy Efficiency

As outlined in Section 1, in order to address problems of practical utility, quantum
microprocessors need to protect the qubits against errors by adopting QEC codes. Never-
theless, these codes require fidelity that is better than a threshold value Fyjesp014 [37,50]. A
QEC code implies merging N, physical qubits into one logic qubit to achieve a desired
logic error rate €),4., which decreases with increasing Nyp; [51]:

(69)

N ..
r 2V i 1)
€logic = K1 <\/>

1-— Pthreshold

with K; being a suitable constant. By emphasizing the definition of the error rate of a
quantum gate given in Section 3, Equation (69) can be reformulated as follows:

e\ e
€logic = K1 <\/> (70)

Ethreshold
where egresn014 15 the error rate threshold required by the QEC code. From Equation (70),

you can obtain:

2
! ic) — log(K 1 .
Nyupit = 2|1 -2 o8 (Etogic) ~ log(Ky) | 128 108 (etogic) (71)

1-F 1-F
lOg( Ethreshold ) lOg ( Ethreshold )

where the approximation is based on ¢j,4c being very small, in the order of 10719 [51]. By

defining Py,p;; the power dissipated to control each physical qubit, Equation (71) provides
the total dissipated power Pjyg;cq1 for the logical qubit:

2

log(&10gi
Plogicul = Pqubit % (72)
4C=

Ethreshold

where P,p;; depends on the adopted qubit-driving method [52]. The power Pjygicar ap-
pears, magnified by the ratio between the room Tyoom and the qubit cryogenic Tyypit
temperatures, in the power dissipated by the cryostat Pesyyo [53]:

2
T log(&1ogi
Pcryo = Tro& qubit M (73)
qubit log( 1-F )
Ethreshold

Equation (73) demonstrates the importance of achieving a quantum gate fidelity that
is as high as possible, as this makes the ratio (1 — F) /€esn014 lower and reduces, in this
way, Peryo. Equation (73) also shows that hot qubits may help in reducing Pgcpy, because
they reduce the temperature ratio Tyoom / Tgupit- Interestingly, one- and two-qubit quantum
gates encoded in semiconductor electron spins operating above 1 K have been recently
demonstrated to produce fidelity, respectively, of 99.6% and 98.9% [54].

7. Mixed States

Equation (42) has been proven under the assumptions that the input state is pure
and uniformly distributed and that quantum gates do not introduce phase decoherence,
ensuring that the output state is also pure. In practice, the uniform distribution of the input
states may not be considered a serious limitation, because the characterization of a quantum
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gate is typically intended to explore how the quantum gate behaves for all possible input
states, as it occurs in the case of the quantum process tomography [55]. Several papers on
average fidelity indeed assume a uniform distribution, such as, for instance, [34,56]. On the
other hand, the case of mixed states is more involved and it deserves a more comprehensive
discussion for the sake of comparison with the literature.

In cases where the input state |¢p ;) of the density matrix is pure and the output state
is mixed poyr, Wilde introduces the expected fidelity as an average distance (J) between
pure states [38]:

(6) = ;PX|<¢1N|1PX>|2 (74)

where pyx is the probability used to describe the mixed state as a mixture of pure states in
terms of a linear combination of the density matrix of pure states | y) (see Appendix A):

pour = ;PX\IPX><¢X| (75)

Since, as observed in Appendix A, a pure state is an ensemble of identical pure states,
in cases where the output state is pure, Equation (75) reduces to |(¥;x|¢our)|*, being
[¥ ) = [¢oyr) and Lx px = 1 for the probability normalization.

Wilde shows that a short algebraic manipulation leads to the following compact
mathematical expression of Equation (75):

(6) = (Yinlpout|¥in) (76)

Equivalently, Equation (76) can be expressed by means of the trace Tr [57]:

(6) = Tr{ [ n)(¥inlpour } = Tr{pineour} (77)

Nielsen reports, as a root fidelity, a mathematical expression very close to
Equation (76) [26]:

F= \/<1/JIN loourt [¢1n) (78)

In the more involved case where, in addition to the output state, the input state is
also mixed, Wilde invokes Uhlmann’s fidelity [38], which, after [58] and [59], is defined
as the maximum probability that the purifications of the two mixed states are coincident.
Appendix A reports short notes about the concept of purification. Uhlmann’s theorem
allows the following compact mathematical expression for the fidelity [38]:

F = ||v/pinv/pourll; (79)

where ||-||; is the Schatten 1-norm, defined as Tr{ v MM } for a given operator M. Note
that |/piN+/pour is indeed an operator, with the density matrix p;y and poyr being
operators. Moving from Equation (79), Wilde reports that it is possible to write Uhlmann’s
fidelity in the following trace form:

2
F= {TT’\/\/PINPOUT PIN} (80)

Equation (80) reduces to Equation (76) when the input state is pure, because, for a
pure state, it holds that p> = p and Tr{p?} = 1 [43]. The property p* = p indeed allows
for writing:
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2
F = {Tr\/pinpoutpin}’ = {Tr\/|¢1N><¢1N|pOUT |1P1N><¢1N|} (81)

and since (11n|pour | ) is scalar, being an expectation value [43], Equation (81) can be
rearranged as follows:

2
F= {\/<¢1N|POUT¢IN>Tr\/|¢IN><lP1N|} = (yivlpour [¥ ) TP {/oIN}  (82)

Having emphasized that Tr{cM} = cTr{ M} for a given scalar ¢ and operator M, invoking
again the properties p?> = p and Tr{p?} = 1 yields:

F = (¢l pour [ ;n) Tr*{ein} = (¢inlpour 1§ 1y (83)

which is equal to Equation (76). Equation (80) reduces to the distance |(;n|$our)|*, used
in Equation (8), when both the input and output states are pure. Having indeed proved
that an input pure state leads from Equation (80) to Equation (76), it is just enough to state
that Equation (76) is equivalent to Equation (74) and that the pure output state reduces

Equation (74) to | (¥;n|wour)|?, because Yy px = 1.

8. Conclusions

This paper provided a rationalization of the concept of quantum gate fidelity, starting
from Shannon’s fidelity and drawing an analogy between a quantum gate and a trans-
mission channel. This approach introduces quantum gate fidelity to electronics engineers
in a more accessible manner, leveraging their general background. Bringing quantum
fidelity back to information theory concepts facilitates understanding its integral form
in Equation (11). In contrast, other authors, such as in [32], introduce this integral form
abstractly and associate it with fidelity without any justification.

This paper also proposed a step-by-step mathematical proof of Equation (42) using
mathematical tools familiar to electronics engineers. Apart from some fundamentals of
quantum mechanics and matrix analysis, for which reference textbooks [40-44] are sug-
gested if needed, the proof primarily requires algebraic steps and hyperspace integrations
(see Appendices B and C). Though longer than the one in [32], this proposed proof is
significant, because Equation (42) is of relevance for RFIC designers. It indeed simpli-
fies the quantum gate fidelity calculation from the abstract multi-dimensional integral in
Equation (11) to the product between the matrices Aj and Ap, describing, respectively, the
wanted ideal and actual behavior of the quantum gate. In particular, the proof begins by
applying the Toeplitz decomposition, focusing on the single integral form in Equation (19),
from which Equation (28) follows. In contrast, in [32], the Toeplitz decomposition appears
only in a later phase, and multi-dimensional integrals are just stated. A mathematical
expression close to Equation (28) is reported in [32], relying on particularly simple matrices
and abstract formulas, but lacking proof or useful references.

To further clarify the use of Equation (42), Section 5 addressed case studies of Pauli X
and CNOT quantum gates encoded in an electron spin, specifically analyzing the impact
of phase error on fidelity. The implications of these results are then discussed in the
light of entanglement fidelity and the error upper bound, reinforcing the central role of
Equation (42).

The main implications of the results above are a facilitated understanding of quantum
gate fidelity to electronics engineers and improved collaboration between engineers and
physicists, which is important for the practice of applied research.
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Section 6 also contributed to reinforcing the engineering relevance of Equation (42) by
elucidating its impact on the energy efficiency of a quantum microprocessor.

Even if the experimental investigation of fidelity is not the subject of this paper,
for the sake of completeness, it is worth closing these conclusions by remarking that
the experimental verification of Equation (42) needs independent measurements of the
fidelity and the actual matrix Ag of the quantum gate operator. For this purpose, several
experimental techniques, each with its own advantages and downsides, can be adopted,
such as the randomized benchmarking (RB) protocol [54], quantum process tomography
(QPT) [26], or gate set tomography (GST) [49]. In this case, the fidelity is a process fidelity,
calculated as the trace of the product matrix between the ideal process matrix and the
Hermitian and unitary matrix that best fits the tomographic experimental data [60].

The experimental characterization of quantum gate fidelity is an important activity
because it allows us to optimize microwave pulse parameters, such as shape, amplitude,
and rise/fall times, for the best possible fidelity [49]. With this perspective, artificial
intelligence (Al), when applied to experimental techniques for the characterization of
quantum gate fidelity, may be a useful tool for optimizing the microwave control of the
qubits [61,62].

QEC codes, briefly cited in Section 6, and Al applied to experimental characterization
can therefore be considered promising strategies to improve the fidelity of quantum gates
in the presence of practical limitations imposed by thermal noise and the accuracy of
electronics circuitry.
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Abbreviations

The following abbreviations are used in this manuscript:

Qubit  Quantum bit

BS Bloch Sphere

RFIC  Radio Frequency Integrated Circuit
SFDR  Spurious Free Dynamic Range
QEC Quantum Error Correction

Al Artificial Intelligence

RB Randomized Benchmarking

QPT  Quantum Process Tomography
GST  Gate Set Tomography

Appendix A

In quantum mechanics, a quantum state is pure when it provides a fully informative
description of a quantum system. This implies that the quantum system is closed and
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isolated from its environment, so that Schrodinger’s Equation is an adequate tool for
describing the dynamics of the system [63]. Nevertheless, when addressing open quantum
systems, an additional mathematical tool is required: the density matrix operator p, or
density matrix for short. For a quantum pure state |¢), p is defined as the outer product of
the state |¢)(¢|. On the other hand, a mixed quantum state is defined as a state whose
density matrix ppsx is a linear combination (mixture) of the density matrix of pure quantum
states |(x ), each contributing with a probability px [43]:

omIx = Yy Px | x) (¥x| (A1)

Equation (A1) shows that the density state of a mixed state is not simply the outer
product of the quantum state. Since the probabilities are normalized, ) xpx = 1,
Equation (A1) suggests that you can think of a quantum system in a pure state as an
ensemble of quantum subsystems, all in the same pure quantum state.

Usually, quantum systems constituted by elementary subsystems exhibit non-
separability (entanglement) [64]; the single elementary subsystems are therefore dubbed
as entangled. The non-separability implies that the state of a quantum system with entan-
glement cannot be factorized in a tensorial product of pure quantum states. It is worth
pointing out that if a composite quantum system with entanglement may be in a pure state,
its single entangled subsystems are surely mixed [43]. The entanglement of each quantum
subsystem with the rest of the quantum system, i.e., its environment, causes a loss of phase
coherence, which, in turn, makes the state mixed. Therefore, a quantum gate exposed to
the environment induces phase decoherence in the output state, which therefore results in
a mixed state.

For a given mixed state, the pure entanglement quantum state, within which the
mixed state is entangled, can be obtained through a procedure known as purification [38].
Since purification is essentially a reverse procedure, several entanglement pure states are
possible for a given entangled mixed state. This remark explains the use of the maximum
probability mentioned in the definition of Uhlmann’s fidelity, introduced in Section 7.

Appendix B

The integrand quantities |a;|* and |a; |2|oc]- |2 in Equation (24) can be read as generated
by the same product of a sequence:

. (A2)

withk =2 and a7 = ap = «; for |le~|4, and ay = a;, ap = «; for |Déi|2’06]‘|2. The two integrals
in Equation (24) can therefore be traced back to one single integral:

k
/5 _TTiafav (A3)
h=1

Because of the probability normalization condition on the component «;,:

n

Y janl* =1 (A4)

h=1

the integral in Equation (A3) is carried out on a hypersphere of unitary radius. In addition,
it should be also remarked that 4V is the normalized infinitesimal Lebesgue measure on
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the hypersphere. For calculating this integral, it is useful to address the following general
integral defined in a r-dimensional complex vector space C”, whose generic vector z has
components z;:

k
I:/ e T T |z[2av" (A5)
cr h=1

where dV” is the infinitesimal Lebesgue measure in C’. It is worth noticing that, as in
Equation (A2), Equation (A4) contains the product of a sequence of k terms, which, in the
present case, are k components of a generic vector z instead of a state vector.

Figure Al evidences that, in a two-dimensional vector space, the infinitesimal
Lebesgue measure is the infinitesimal surface do, whose mathematical expression in polar
coordinates is:

do = pdpdg = p*~'dpdg, (A6)

with dg1 = dg, while in a three-dimensional vector space, it is the infinitesimal volume dt,
whose mathematical expression in polar coordinates is:

dt = pdfpddp = p*dpdode = 0°> 1dp de1de, (A7)

with dg; = d¢ and dg, = db.

y 4
~do

Yy
’
4 4
/
7 ’
A
// s
.
.

’
.
s
’,”
’, Q
14

Figure Al. Infinitesimal Lebesgue measure in two- (on the left) and three-dimensional (on the right)

do

X

vector spaces.

Equations (A6) and (A7) lead, by induction, to the following mathematical expression
of dV:

2r—1
dv’ =p¥ ldp ] de; (A8)
=1

A r-dimensional complex vector space C' is indeed dimensionally equivalent to a
2r-dimensional real space. The substitution of Equation (A8) into Equation (A5) yields:

fo'e) k 2r—1
_ —p? 2 2r—1 ,
A A Gl e (49)

Inverting the integration order and separating the integration on p and ¢; yields:

[o'e) . k 2r—1
o2 2
I:/ e P % 1dp/2r71 | ||zh\2| [ do; (A10)
0 ST =1 i=1
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since p2 = |z|°. The integral in d¢; is calculated in a hypersphere of radius |z|. Dividing
and multiplying by |z|2k in the second integral leads to:

* —0? 2r—1 £ 2k|Zh|22r
I=/ e p dp/HHII Zkl—[ Pj (A11)
0 57 =1 2|
Since, as remarked above, p? = |z|?, the term |z|2k can be repositioned into the integral
in dp: 2
2r—
2k+2r—1 4
= [T pSZHH 2kH 9 (A12)

In the product of a sequence in integral in dg;, the division by |z\2k is equiva-
lent to dividing, by |z|, each |z;| term in the product, so that, by defining B, = z,/z,
Equation (A12) takes the following form:

2r—1
T = / P p2kr2r— 1dp/2 1|,Bh|21—[d¢j (A13)
j=1
It is possible to remark that:
r z er z 2 ZZ
> 1Bul® Z | hl h—l‘z’” _ (A14)
=1 2] 2]

because z;, are the components of z. The integral in d¢; in Equation (A13) is therefore
calculated on a hypersphere of unitary radius as it is in the case of Equation (A3). Since dV
is the normalized infinitesimal Lebesgue measure in Equation (A3), the normalization of
the second integral to the surface Q%" of the unitary radius hypersphere makes this integral
equal to Equation (A3):

str 1Bl H2711 @i
o —/52 1H|¢xh| v (A15)

The substitution of Equation (A15) into Equation (A13) yields:

k 00
=¥ /S  TTiaPav /O e 2214, (A16)
h=1

Appendix C shows that in an n-dimensional real vector space R", the surface Q" of
the unitary radius hypersphere is given by:

2(vm)"

Y=

(A17)
where I is Euler’s gamma function:
I(z) = / et dt (A18)
J0

Setting n = 2r in Equation (A17) leads thus to the following mathematical expression
of Q%" )
2(ym)” o
2r _ —
e v Bl P b (A19)
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where the property I'(n 4+ 1) = n! has been emphasized. The substitution of Equation (A19)
into Equation (A16) yields:

27"

k ©
2 —
1= m\/shfl H‘ah|2dv‘/o e P p2k+27 1dp (AZO)
: h=1

Euler’s gamma function also comes into play for calculating the integral in dp. By
replacing p by t'/2, Equation (A20) takes the following form:

/52r 1H\ah|2dV/ 1y 17dt (A21)

from which:
-2 1 / e tktrgy / ﬁ\a 1% (A22)
r—1)12Jo R

The comparison of the integral in df with Equation (A18) leads to the reformulation of
Equation (A22) as follows:

I:

u k 2 k+r 5
T(k+ / av =" / av A23
(r—1)! ( r) 52?7]]}211'““ o 1H‘D‘h| ( )

where it is again emphasized that I'(n+ 1) = n!. It is worth noting here that the aim
of this appendix is to demonstrate the mathematical expression of the two integrals in
Equation (24) that have been traced back to the integral in Equation (A3), which is in the
right side of Equation (A23). To calculate this integral, you need to recalculate the integral
7 from Equation (A5), as performed for achieving Equation (A23), but in a different way.
For this purpose, the integrand quantities |a;|* and |a;]? | |2 in Equation (24) have to be
re-interpreted, not as in Equation (A2) but rather as follows:
r
Joi[* =TT o[>

P (A24)

|0¢i|2}l’¢j|2 = h]‘[1|th|2m”

where my, is the multiplicity of the component ay,. It is worth noticing that, unlike in
Equation (A2), Equation (A24) extends the product of a sequence over all of dimension r
of the complex vector space; this compels us to introduce the multiplicity. As shown in
Equation (A24), the new formulated product of a sequence generates |a;|* if my, = 2 for
h = i and m;, = 0 otherwise, and |(xi\2‘1xj|2 if my =1forh =i = jand m; = 0 otherwise.
Following Equation (A24), Equation (A5) takes the following form:

r
I:/ e T T1zn v (A25)
cr h=1

It is now possible to remark that:

(A26)
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The substitution of Equation (A26) into Equation (A25) yields:
r 2 th r " 2 th
I:/ I_Ie_‘zh| lzp| dzy = H/ el |z, dz, (A27)
Ch= h=1"/C!

In this way, the integral in the r-dimensional complex vector space C” has been reduced
to the product of a sequence of integrals in the one-dimensional complex vector space
C!. Because the dimension is one, in this space, zj, is the unique vector and dzj, is the
infinitesimal Lebesgue measure. In polar coordinates, it holds therefore that |z,| = p. In
addition, Equation (A6) provides the mathematical expression of the infinitesimal Lebesgue
measure, because a one-dimensional complex vector space C! is dimensionally equivalent
to a two-dimensional real vector space. It holds therefore that dz;, = pdpd¢. Consequently,
Equation (A27) can be reformulated as follows:

r r 27T oo
=11 /(Cl e p*ipdpdg = [ | /O /0 e p?" pdpde (A28)
h=1 h=1
from which:
’ 2 * —0% 2my,+1 r g oo —0% 2my+1
I:H/O d(p/O e p dp:(Zn)H/o e p dp (A29)
h=1" : h=1"

The integral in p can be calculated by setting p = t1/2, as done for Equation (A20). In
this way, you obtain:

Yo R R T ]‘[r (my+1)  (A30)
h=

©
e tondt =
0 Y

Since I'(n + 1) = n!, Equation (A30) takes the following short form:
r
IZ=n"T]my (A31)
h=1

The substitution of Equation (A31) into Equation (A23) yields:

! k+r
nrhli[lmh!_ /52 1HWWV (A32)
from which:
/ H|0c |2dV_ (r— Hmh Lﬁmh (A33)
ot (k+7” Pl (k+7r—1)!

From the definition of k in Equation (A2) and of m;, in Equation (A24), it holds that:

j=1
P , . . (A34)
f52r—1 hH1|“h| av = str—l hHl|‘Xh| "dv

By observing that |« |4 can be interpreted as a product of vector components «; with
m; = 2,if j = hand m; = 0if j # h, you can write:
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T
Y, mp=2
=1
g (A35)
[Im!=2
j=1
The substitution of Equations (A34) and (A35) into Equation (A33) yields:
4 (r—1)! 2(r—1)! 2
/52r—1 oV (2+r—1)! (r+1)!  r(r+1) (A36)

Similarly, since, Equation (A24) generates |a;|* | ’2 ifmy,=1forh=i=jandm, =0
otherwise, you get:

r
Y, mp=2
=1
e (A37)
[Im!=1
j=1
The substitution of Equations (A34) and (A37) into Equation (A33) yields:
2 12 (r—1)! 1
/SZH w4V = & T D (A38)
Equations (A36) and (A38) demonstrate Equation (24).
Appendix C
By extending the Gaussian integral on a one-dimensional real vector space R!:
_In P
/ e F = Van (A39)
R

to a n-dimensional real vector space R", you obtain:

/” *L‘zdx—/nl—[e T2 dxy = H/

Following the calculation procedure adopted for Equation (A9), the integral in dx in

] varn=(var)"  (ad0)
h=1

Equation (A40) can be calculated by means of the polar coordinates as follows:

/ ,ﬁdx_/sn 1/ o 1ded<p] / H (P]/ e~ p"1dp (Ad1)

The integral in dg; is the surface ()" of a unitary radius hypersphere in the R" vector
space. The radius does not appear in the integral, indicating that it is unitary. Equation (A41)
can be therefore rewritten as follows:

_ls n © & n—1
/e de:Q/ e 20" dp (A42)
n 0
The integral in dp can be calculated by replacing p by (Zt)l/ 2,
/ e Fax— / Yol 2 g — o /°° et (20 1ar (Ad3)
g 0 22t Jo

from which: s
/ e dx = 0”27—1/ e tHE1gs (A44)
n O
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The comparison with Equation (A18) shows that the integral on the right-hand side of

Equation (A44) is I'(n/2), and thus Equation (A44) takes the following form:

/n e_#dx = Q”Z%_1F<g)

from which: ,
x|

n_ Jrne” T dx
2571 (3)

The substitution of Equation (A40) into Equation (A46) yields:

L) ey
2T() 2ir(g) T(3)

which demonstrates Equation (A17).
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