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Strongly Coupled Dark Sectors

• Dark sector may consist of multiple species of particles interacting via new, dark forces

• Consider a new “dark QCD” force with corresponding dark quarks, dark hadrons, and dark gluons

o Stable dark hadrons → dark matter candidates!

o Unstable dark hadrons → decay back to SM
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Why Dark QCD?
• We know dark matter exists and behaves differently from visible matter
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Why Dark QCD?
• We know dark matter exists and behaves differently from visible matter
• But so far, no direct experimental evidence of its nature
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Why Dark QCD?
• We know dark matter exists and behaves differently from visible matter
• But so far, no direct experimental evidence of its nature
• Collider, direct, and annihilation searches have largely focused on WIMP signatures
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Why Dark QCD?
• We know dark matter exists and behaves differently from visible matter
• But so far, no direct experimental evidence of its nature
• Collider, direct, and annihilation searches have largely focused on WIMP signatures
• Dark QCD signatures may evade current bounds:
o Novel collider phenomenology – ignored or rejected by typical strategies that focus on large pT

miss

o Suppressed at other experiments:
 DM abundance arises from asymmetry mechanism → no annihilation
 DM interactions with ordinary matter highly suppressed → no direct detection
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Why Dark QCD?
• We know dark matter exists and behaves differently from visible matter
• But so far, no direct experimental evidence of its nature
• Collider, direct, and annihilation searches have largely focused on WIMP signatures
• Dark QCD signatures may evade current bounds:
o Novel collider phenomenology – ignored or rejected by typical strategies that focus on large pT

miss

o Suppressed at other experiments:
 DM abundance arises from asymmetry mechanism → no annihilation
 DM interactions with ordinary matter highly suppressed → no direct detection

• Cosmological motivations:
o Most visible matter is baryonic (composite); maybe DM is similar
o DM density similar to SM density (~5× larger); mDM = 5mproton?
 Dark matter may be hiding in the existing LHC data!
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Models
• New “dark QCD” force, SUdark(Nc

dark) (carried by dark gluons) with scale Λdark

• Nf
dark flavors of (fermionic) dark quarks χi (charged under SUdark(Nc

dark))
• Dark quarks hadronize to form dark mesons and baryons → “dark showers”

• Some dark hadrons may be stable → DM candidates!
o From conserved quantities: dark baryon number, dark isospin, etc.

• Other dark hadrons decay back to SM (through virtual mediators)
 Leads to novel phenomenology

• Hidden sector couples to SM weakly via massive mediators
o Z′: from broken U(1), vector, leptophobic, couplings gq, gχ

o Φ: bifundamental, scalar, charged under both SUdark(Nc
dark) and SU(3)
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Parameter Space
• Complete models have dozens of parameters:

o Dark QCD: scale, number of colors

o Mediators: masses, couplings

o Dark quarks: masses, number of flavors

o Dark hadrons: masses, spins, lifetimes, dark quark composition, …

o + various parameters from empirical modeling of low-energy QCD (hadronization, fragmentation)

 SM QCD itself far from fully understood

 Focus on semi-simplified models that reproduce desired phenomenological and kinematic behavior 
with effective parameters
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Effective Parameter Space
• Semivisible jets (SVJs): mediator mass, dark hadron mass, invisible fraction (rinv)

• Emerging jets (EMJs): mediator mass, dark hadron mass, lifetime (cτdark)
• Soft unclustered energy patterns (SUEPs): mediator mass, dark hadron mass, temperature (Tdark)
o Expanding to confining theories with large ‘t Hooft coupling, beyond QCD-like
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Dual Strategy
• Dark QCD theories are very complicated

o Need to make choices about numerous parameters

 Curse of dimensionality: dense grid in more than 2 parameters quickly leads to 1000s of models

o Target regions of parameter space not covered by existing searches

 Exploit complementarity with existing DM and LL search programs

• First searches for new signatures → maximize both generality & sensitivity
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Model-independent search
• Use only simple kinematic 

variables (event- or jet-level)
• Results apply to any model 

with similar kinematic behavior

Model-dependent search
• Employ machine learning for 

optimized jet taggers
• Assumes chosen signal models 

are “correct”

- -



Semivisible Jets

• Complementarity sensitivity between dedicated strategies and more general searches
• Many subtle details: let’s walk through step by step

Mitchell 2024 Kevin Pedro 12

0.8 

138 tb·1 (1 3 TeV) 
..=;..:.:..:.=--r-----r----r----r-..--::--,----:r-~---,,--,----,---,--,-;----,---n 95% CL upper limits 

' 

2 

' I 

3 4 

q 

q 

5 

TTlz· [TeV] 

- Observed 

- - Expected 

Dijet 
- JHEP 05 (2020) 033 

Monojet 
- JHEP 11 (2021) 153 

Semivisible jet (inclusive) 
- JHEP 06 (2022) 156 

Semivisible jet (BOT-based, model-dependent) 
- JHEP 06 (2022) 156 



Semivisible Jets

• BDT trained to tag semivisible jets using substructure variables
• Substantial improvement in limits:
o Inclusive: 1.8 < mZ′ < 3.5 TeV, 0.07 < rinv < 0.53
o BDT-based: 1.5 < mZ′ < 5.1 TeV, 0.01 < rinv < 0.77

• More on model dependence later…

Mitchell 2024 Kevin Pedro 13

0.5 

0.4 

0.3 

0.2 

138 fb-1 (13 TeV) 

... ... 

0.1 

0~~2~~~~~3 ~~~4~~~-J5 
mz, [TeV] 

95% CL upper limits 

~ Observed 

- - Expected 

Dijet 
- JHEP 05 (2020) 033 

Monojet 
JHEP 11 (2021) 153 

_ Semivisible jet (inclusive) 
JHEP 06 (2022) 156 

_ Semivisible jet (BOT-based, model-dependent) 
JHEP 06 (2022) 156 

·-·-·-·-·-·-·-■- . -
Jf 
.D 

w 

,-

1 
CMS Simulation 

Signal: 

m. = 3.1 TeV, md""' = 20 GeV, 

r ,w = 0.3, adarl< = a::"! 
- QCD (0.946) 
- W(lv)+jets (0.936) 

O 1 tf (0.932) 
• - Z(vv)+jets (0.930) 

0o 0.2 0.4 

(13 TeV) 

0.6 0.8 



Semivisible Jets

• Peak sensitivity for monojet (pT
miss+X) actually at rinv ≈ 0.8

• Interplay between efficiency of pT
miss, Δφ, and Nb-jet selections
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Semivisible Jets

• SVJ events can enter dijet search signal region
• For rinv ≳ 0.1: low mJJ → high background → 

negligible contribution
• For rinv < 0.1: similar mJJ → enhanced 

resonance peak → stronger limit
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Semivisible Jets

• Improvement from dedicated SVJ search vs. generic 
dijet search depends on both rinv and couplings

• Default scenario: based on LHC DM WG
o gq = 0.25, gχ = 1/√(Nc

darkNf
dark) = 0.5, Bdark = 47%

• Gains more apparent after converting to limit on gq
(for fixed gχ)
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Emerging Jets

• Dedicated EMJ search focuses on track impact parameters
o Loses sensitivity once most decays are outside tracker volume

• Muon system shower search is complementary at high lifetimes
o Alternative model with flavor structure in dark sector leads to

wider spread of lifetimes: weaker limits
• Other long-lived searches not sensitive to EMJs
o Require few prompt tracks, displaced vertex reconstruction, or delayed timing
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Emerging Jet Tagging
• “Model-independent” version of EMJ search uses cut-based tagger based on tracks and jet substructure
o Working points tuned manually

• “Model-dependent” search uses GNN-based tagger (ParticleNet) based on jet constituents
o Has to be trained separately for each signal model category (unflavored or flavor-diagonal)
o Within a given model, actually less dependent on lifetime than simpler cut-based tagger
o But more dependent on mdark
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SUEPs

• Exclusions in model parameter space improve for higher mS

o Need sufficient tracks to distinguish from SM
• Model assumes dark hadrons decay to dark photons A′,

which then decay to e+e–, μ+μ–, π+π– with varying fractions
o Results largely independent of A′ decay modes
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Model Dependence
• Dark QCD models produce novel differences in jet substructure
o Good handles to distinguish from SM… if we can use them optimally

• ML tagging approaches so far are supervised: depend on signal model details
o Impossible to cover full range of complexity of dark QCD models

• BDT SVJ tagger reduces sensitivity for very low or very high mdark values
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• Focus on SVJ case as generically 
most difficult to distinguish from SM

• EMJs and SUEPs have unusual, but 
distinct track signatures (typically)

• Principles apply to all cases
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An Autoencoder for Semivisible Jets
• Create a latent representation that can be used to accurately reconstruct background
o Signal not used in training; identified during inference as having high reconstruction error

• Train autoencoder on QCD background, compare to BDT trained on signals w/ mdark = 20 GeV
 Autoencoder can outperform BDT on signals with different mdark values
o Similar for rinv (less information at high rinv)
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Normalized Autoencoder
• Autoencoders have complexity bias: may learn to reconstruct any event below some complexity level
• SVJ case: easy to discriminate against QCD (lower complexity), but not against tt ̅ (higher complexity)
o Boosted top quark decaying to ℓνb is closest SM analogue to SVJ with real pT

miss

• Need to sample from low-error space during training to prevent AE from over-generalizing
o Use Boltzmann distribution, compare “energies” between training data (E+) & NAE output (E–)

• Loss function L = log(cosh(E+ – E–)) + αE+ (additional functions/terms improve stability)
o Differences unstable, can still mode collapse → use Energy Mover’s Distance to choose best model
 Significantly better performance

against tt ̅!
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Trigger-Level Autoencoders
• Existing trigger strategies use basic kinematic quantities: jet pT, HT = ∑pT, pT

miss

o Can be model- or production mode-dependent: influenced by mediator mass, rinv, etc.
o Thresholds have to be increased to handle higher event rates and pileup

• CMS has deployed two anomaly detection algorithms in L1 trigger during Run 3:
o AXOL1TL (Anomaly eXtraction Online Level-1 Trigger Lightweight)
 Variational autoencoder trained on all global L1 bits

o CICADA (Calorimeter Image Convolutional Anomaly Detection Algorithm)
 Convolutional autoencoder trained on calorimeter energy deposits
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Interpretable, Semi-Supervised ML
• Rejecting background is important… but can we learn more about signal?
• Maximize mutual information between NN output and theory parameter:

→ interpretable output, e.g. from approximation of invariant mass function (not a regression!)
• Findings so far:
o Can improve on MT for Z′ mass reconstruction (similar to MT2-assisted on shell algorithm)
o Falling distribution for background, though trained only on signal
o Generalizes well across rinv
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The Future of Dark QCD Searches
• Expand to more production modes (vector, scalar, bifundamental, Higgs, …)
• Unsupervised and interpretable ML to improve acceptance,

sensitivity, robustness, generalization
• Search for combinations of phenomena: new phase space!
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Light Element Abundance 
in Big Bang Nucleosynthesis

NASA
Matter Power Spectrum

arXiv:1112.1320

SDSS data
ΛCDM
no DM
MOND

1112.1320

More Evidence of Dark Matter
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K. G. Begeman

Anomalous Galactic Rotation Curves

(Weak) Gravitational Lensing

DES, arXiv:1708.01535

Non-Anomalous Galactic 
Rotation Curves

arXiv:2112.00017
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Dark Matter Landscape
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arXiv:1707.04591, G. Landsberg

Dark Sector Candidates, Anomalies, and Search Techniques 
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arXiv:1707.05326

SVJ Decays
• Fraction of stable hadrons rinv may vary from 0 to 1
o Decreases w/ dark quark mass splitting, increases w/ Nf

dark

 Jets that contain mix of visible and invisible particles (prompt decays)
o Not covered by existing searches for dijet resonances, pT

miss+ISR

• Z′ → χχ → dark hadrons → SM quarks → SM hadrons
o Decay to SM → two high-pT, wide jets
o ρdark: democratic decay
o πdark: mass insertion decay (prefer heavy flavor)
o Nc

dark = 2, Nf
dark = 2, mχ = ½mdark
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SVJ Resonant Search
• Kinematic signature: Less missing energy than WIMPs, aligned w/ jet

 Bump hunt in mT(JJ,pT
miss)

o Kinematic edge at mZ′

o Better resolution than mJJ

o SM backgrounds have steeply
falling distributions
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Semivisible Jet Kinematics
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SVJ Backgrounds
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• Wide, high-pT jets: boosted tops
• “Lost” lepton ℓ: out of acceptance, 

can’t veto (or hadronic τ)
• Neutrino aligned w/ wide jet: 

mimics semivisible jet

Δφ

E/T

QCD

• Jet mismeasurement induces E/T
aligned with jet

• Major background

W(ℓν)+jets
• Lost lepton or hadronic τ
• Less likely than tt̄ to mimic 

semivisible jet, but higher σ

Z(νν)+jets
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SVJ Event Selection
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Data quality
Reject tt̄, W(ℓν), Z(νν)

Preselection
• NJ ≥ 2
• pT(J1,J2) > 200 GeV, |η(J1,J2)| < 2.4,

J1,2 pass noise rejection
• RT ≡ pT

miss/mT > 0.15
• Δη(J1,J2) < 1.5
• mT > 1500 GeV
• e/μ veto (pT > 10 GeV, |η| < 2.4)
• pT

miss filters
• Custom dead ECAL cell filter: veto 

events w/ ΔR(j1,2, cnonfunctional) < 0.1
• Inactive HCAL filter (2018 only):

veto events w/ pT(j) > 30 GeV,
–3.05 < η(j) < –1.35,
–1.62 < φ(j) < –0.82

Final Selection
• Gap jet filter: veto events w/

pT(j1) > 1000 GeV, fγ(j1) > 0.7
• Δφmin(J1,2,pT

miss) < 0.80

Signal topology

Data quality
Reject QCD
Trigger efficiency
Reject tt̄, W(ℓν)

Data quality



SVJ Cutflows
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Selection QCD tt W+jets Z+jets rinv = 0.3 

PT(h,2) > 200GeV, 17 (h,2) < 2.4 1.2 6.4 2.0 1.3 83.5 

RT > 0.15 1.3 12.1 18.5 34.6 39.7 

L'l17 (Ji,h) < 1.5 94.9 88.0 85.1 78.8 80.0 

mT > l.5TeV 0.20 3.1 4.0 5.6 81.8 
N1, = 0 93.0 62.0 66.0 99.5 96.8 

Ne= 0 99.6 59.8 57.3 99.6 99.4 
PTiss filters 99.5 99.9 99.9 99.9 99.8 

6R(h ,2, Cnoniunctional) > 0.1 60.6 95.1 95.2 95.6 95.2 

veto fr (h ) > 0.7 & PT(h ) > l.0TeV 99.7 99.7 99.6 99.7 99.7 

L1</>min < 0.8 94.8 81.7 61.8 44.7 87.7 

Efficiency [%] l.6e-05 0.0060 0.0029 0.0085 17 

high-RT 9.0 29.5 38.8 39.1 45.2 

low-RT 91.0 70.5 61.2 60.9 54.8 

high-SVJ2 0.093 0.62 0.46 0.69 34.6 

low-SVJ2 1.1 1.7 0.92 0.94 42.3 



SVJ Mass Sculpting

• Avoid/minimize direct cuts on mT
ingredients: pT

miss, jet pT

o Relative variable (“transverse ratio”): 
RT = pT

miss/mT

 Reject QCD background without 
shifting mT peak
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SVJ Triggering
• Trigger on jet pT, HT

 Require low Δη(J1,J2) for
high efficiency

• Usually improves signal sensitivity
 Most t-channel QCD events

already rejected by RT requirement
• mT > 1500 GeV for trigger efficiency
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SVJ Electroweak Rejection
Veto leptons: reject tt̄, W(ℓν)

Require low Δφmin(J1,2,pT
miss):

Reject tt̄, W(ℓν), Z(νν)
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arXiv:1903.06078

SVJ Instrumental Backgrounds
• Centrally-maintained filters reject

most instrumental sources of artificial
high-pT

miss events
o But low-Δφ region ignored by almost

all analyses: filters not tuned here
• Major source of jet mismeasurement:

nonfunctional ECAL readout channels
(“dead” or “hot” cells)

 Custom filter vetoing events w/ narrow
(AK4) jets w/ ΔR(j1,2, nonfunctional) < 0.1
→ reject additional 40% of QCD background
o Signal efficiency 95%

• Misreconstructed jets near barrel-endcap gap in ECAL
o Appear at high pT

miss and high mT

o Veto events w/ pT(j1) > 1000 GeV and fγ(j1) > 0.7
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SVJ Inclusive Signal Regions
• With all inclusive selection requirements applied:

• If only one signal region were defined, high-RT
(RT > 0.25) would have optimal significance

• Adding separate region low-RT (0.15 < RT < 0.25)
improves expected performance
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SVJ mT Variations

• rinv has largest impact on signal mass distributions
o αdark has minor impact; mdark has very little impact
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Tagging Semivisible Jets
• Various jet substructure variables (& Δφ(J, pT

miss)) can weakly discriminate between semivisible jets and 
SM background jets
o Heavy object tagging: mSD, τ21, τ32, N2

(1), N3
(1)

o Quark-gluon discrimination: DpT
, σmajor, σminor, girth

o Flavor (energy fractions): fγ, fh±, fh0, fe, fμ

 Combine useful variables into a BDT for strong discrimination!
o Background: equal mix of QCD and tt̄ ; signal: mix of many models
o Reweight background jet pT spectrum to match signal: avoid sculpting

SVJ Workshop Kevin Pedro 42

en 
."!::: 
C 
:::l 

>. .... 
ct1 .... ..... :.a .... 
<( 

CMS Simulation (13 TeV) 
en 

."!::: 
C 
:::l 

>. .... 
ct1 .... ..... :.a .... 
<( 

10-4 L......L. .......... _._ ......... _._.......,_.......__._._ ......... _._.......,_.......__._._ ......... _,_.......,_.......__._._ ........... 

0 50 100 150 200 250 300 
mso(J1 2) [GeV] 

CMS Simulation (13 TeV) 

1 

10-1 

10-2 

10-3 

10-4 
0 0.2 

- QCD Signal (m2. = 3.1 TeV, 
ti mdark = 20 GeV, ada111 = a:;:i) 

- W(lv)+jets · • •r ;n, = 0.1 
- Z(vv)+jets - - r1n, = 0.3 

0.4 

·••r ;nv = 0.5 
..... r ;nv = 0.7 

0.6 



SVJ Tagger Performance
• Strong and consistent performance
o Training on only QCD (tt̄) 

caused misclassification of tt̄
(QCD) jets at rate of 10–20%

o Some inefficiency for signals 
with high or low mdark

• Working point 0.55 chosen based 
on background estimation
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SVJ BDT-based Signal Regions
• Start from inclusive signal regions (high-RT, low-RT)

• Require both leading wide jets to be tagged as semivisible

o high-SVJ2, low-SVJ2 regions: strict subsets of inclusive regions

 Reduce background by factor ~60 while preserving signal
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SVJ BDT Input Variables (1)
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SVJ BDT Input Variables (2)
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SVJ BDT Input Variables (3)
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SVJ: More mT Variations
• αdark has 

non-trivial 
impact

• mdark has 
very little 
impact
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SVJ Signal Efficiency (inclusive)
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SVJ Signal Efficiency (BDT-based)
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SVJ Background Fits (inclusive)

• No significant deviations from SM
o Small pulls, few if any cases of several contiguous pulls > 0

• Signals shown w/ cross section at observed limit
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SVJ Background Fits (BDT-based)

• No significant deviations from SM
o Small pulls, few if any cases of several contiguous pulls > 0

• Signals shown w/ cross section at observed limit
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Semivisible Jet Results
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EMJ Models
• Unflavored:

o Yukawa καd nonzero, others zero

o Nc
dark = 3, Nf

dark = 7

o mχ = Λdark, mπdark
= ½mχ, mρdark

= 4mπdark

o

• Flavor-diagonal:
o Yukawa κ1d, κ2s, κ3b nonzero

o Nc
dark = 3, Nf

dark = 3

o mχ = Λdark, mπdark
= ½mχ, mρdark

= 4mπdark

o
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EMJ Cut-Based Tagger Inputs
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EMJ GNN Taggers
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EMJ Fake Rates
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EMJ Selection Sets
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Selection set Hr [GeV] Jet Pr [GeV] (> ) EJ tagger 

u-set 1 > 1600 275 250 250 150 u-tag 1 
u-set 2 > 1600 200 200 150 150 u-tag 2 
u-set 3 > 1600 200 150 100 100 u-tag 3 
u-set 4 > 1500 200 150 100 100 u-tag 4 
u-set 5 > 1200 200 150 100 100 u -tag 5 

u-set validation 1000- 1200 100 100 100 100 validation u-tag 

a-set 1 > 1500 200 150 100 100 a-tag 1 
a-set 2 > 1800 250 250 200 200 a-tag 2 
a-set 3 > 1200 275 250 250 200 a-tag 2 
a-set 4 > 1500 275 250 250 100 a-tag 3 
a-set 5 > 1800 200 150 100 100 a-tag 4 

a-set validation 1000-1200 100 100 100 100 validation a-tag 

uGNN set 1 > 1350 170 120 120 100 uGNN tag 1 
uGNN set2 > 1750 300 260 250 250 uGNNtag2 
uGNN set3 > 1800 240 180 180 100 uGNNtag3 

uGNN validation > 1000 100 100 100 100 uGNN validation tag 

aGNN set 1 > 1300 200 140 120 100 aGNN tag 1 
aGNN set2 > 1650 300 250 200 200 aGNNtag2 
aGNN set3 > 1400 270 220 220 120 aGNNtag 3 

aGNN validation > 1000 100 100 100 100 aGNN validation tag 



EMJ Results (vs. First Search)
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Muon Shower Exclusions

• Gluon portal: ηdark → gg (hadron-rich)
• Photon portal: ηdark → γγ (photon-rich)
• Vector portal: ωdark → ℓℓ/qq, ηdark stable (SVJs w/ rinv = 0.25)
• Higgs portal: ηdark → bb, cc, ττ
• Dark photon portal: ηdark → A′A′, A′ → ℓℓ/qq (lepton-rich)
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More at arXiv:2402.01898
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SUEP Event Display
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SUEP Background Estimation

• Extended ABCD method with 9 regions:

• From arXiv:1906.10831
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SVJ AE Score
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NAE Formalism
• Input features normalized to Gaussian by quantile transform

• Treat reconstruction error Eθ as “energy” for energy-based model

o pθ(x) = 1⁄Ωθ
exp(–Eθ(x)/T)

• Loss:

o Ex~pdata
[Lθ(x)] = Ex~pdata

[Eθ(x)] – Ex′~pθ
[Eθ(x′)] = E+ – E–

• Positive energy from training dataset

• Negative energy from sampling NAE latent space and reconstructing

o Using Markov chain Monte Carlo (MCMC)
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AXOL1TL

• K-L divergence expands to ~ μ² + σ² – 1 – log(σ²)
• Dominated by just μ² → use this as score instead of full reconstruction error
• Drop second half of network (decoder) for inference → substantially reduces latency on FPGA (50 ns)
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CICADA

• Input is 2D map of energy deposited in calorimeters (ECAL + HCAL)
• Initial model (above, “teacher”): 300K parameters
• Deployed model (below, “student”): 3K parameters
o Trained to reproduce teacher model using knowledge distillation
o ~100 ns latency on FPGA
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Event Variable Network

• Derive new variable(s) V→(x→) from inputs x→ to maximize mutual information with underlying model 
parameter(s) →θ
o Not a regression: learns an actual, generalized function of inputs

• Both components are simple fully-connected networks (few layers)
o Classifier uses V→ (from EVN bottleneck) to distinguish events w/ correct →θ from events w/ wrong →θ

(using binary crossentropy)
• Trains in a few minutes on a consumer GPU
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