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Strongly Coupled Dark Sectors

Visible Sector Portal Dark Sector

Multiparticle Spectrum
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» Dark sector may consist of multiple species of particles interacting via new, dark forces
« Consider a new “dark QCD” force with corresponding dark quarks, dark hadrons, and dark gluons
O Stable dark hadrons — dark matter candidates!

0 Unstable dark hadrons — decay back to SM
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https://indico.cern.ch/event/378957/

Why Dark QCD?

» We know dark matter exists and behaves differently from visible matter
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Why Dark QCD?

» We know dark matter exists and behaves differently from visible matter
» But so far, no direct experimental evidence of its nature
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Why Dark QCD?

» We know dark matter exists and behaves differently from visible matter
» But so far, no direct experimental evidence of its nature
 Collider, direct, and annihilation searches have largely focused on WIMP signatures
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Why Dark QCD?

» We know dark matter exists and behaves differently from visible matter
» But so far, no direct experimental evidence of its nature
 Collider, direct, and annihilation searches have largely focused on WIMP signatures
» Dark QCD signatures may evade current bounds:
o Novel collider phenomenology — ignored or rejected by typical strategies that focus on large pT'™*
O Suppressed at other experiments:
* DM abundance arises from asymmetry mechanism — no annihilation

= DM interactions with ordinary matter highly suppressed — no direct detection
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Why Dark QCD?

We know dark matter exists and behaves differently from visible matter

But so far, no direct experimental evidence of its nature

Collider, direct, and annihilation searches have largely focused on WIMP signatures

Dark QCD signatures may evade current bounds:

o Novel collider phenomenology — ignored or rejected by typical strategies that focus on large pT'™*
O Suppressed at other experiments:

= DM abundance arises from asymmetry mechanism — no annihilation
* DM interactions with ordinary matter highly suppressed — no direct detection
Cosmological motivations:
0 Most visible matter is baryonic (composite); maybe DM is similar
0 DM density similar to SM density (~5x larger); mpy, = 5m ;.7
» Dark matter may be in the existing LHC data!

Mitchell 2024 Kevin Pedro



Models

New “dark QCD” force, SU,,, (N%™) (carried by dark gluons) with scale Ay,
N> flavors of (fermionic) dark quarks y; (charged under SU,,, (N ))
Dark quarks hadronize to form dark mesons and baryons — “dark showers”

Some dark hadrons may be stable — DM candidates!

o From conserved quantities: dark baryon number, dark isospin, etc.
Other dark hadrons decay back to SM (through virtual mediators)

» Leads to novel phenomenology

Hidden sector couples to SM weakly via massive mediators

o Z": from broken U(1), vector, leptophobic, couplings g,, g,

o ®: bifundamental, scalar, charged under both SU,, . (N ) and SU(3)

Mitchell 2024 Kevin Pedro
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Parameter Space

« Complete models have dozens of parameters:
o Dark QCD: scale, number of colors
o Mediators: masses, couplings
o Dark quarks: masses, number of flavors
o Dark hadrons: masses, spins, lifetimes, dark quark composition, ...
0 + various parameters from empirical modeling of low-energy QCD (hadronization, fragmentation)
= SM QCD itself far from fully understood

» Focus on semi-simplified models that reproduce desired phenomenological and kinematic behavior
with effective parameters
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Effective Parameter Space

« Semivisible jets (SVJs): mediator mass, dark hadron mass, invisible fraction (r;,,)

« Emerging jets (EMJs): mediator mass, dark hadron mass, lifetime (cty,)
 Soft unclustered energy patterns (SUEPs): mediator mass, dark hadron mass, temperature (T )

o Expanding to confining theories with large ‘t Hooft coupling, beyond QCD-like
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Dual Strategy

» Dark QCD theories are very complicated
0 Need to make choices about numerous parameters
= Curse of dimensionality: dense grid in more than 2 parameters quickly leads to 1000s of models
o Target regions of parameter space not covered by existing searches
= Exploit complementarity with existing DM and LL search programs

 First searches for new signatures — maximize both generality & sensitivity

Model-independent search Model-dependent search
» Use only simple kinematic * Employ machine learning for
variables (event- or jet-level) optimized jet taggers
» Results apply to any model » Assumes chosen signal models
with similar kinematic behavior are “correct”
Kevin Pedro
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Semivisible Jets

138 fb™ (13 TeV)
ettt T4 95% CL upper limits
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m,, [TeV]
« Complementarity sensitivity between dedicated strategies and more general searches
» Many subtle details: let’s walk through step by step
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Semivisible Jets

138 fb™ (13 TeV)
T r T T 1

rirw
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" o,
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m,, [TeV]
« BDT trained to tag semivisible jets using substructure variables
 Substantial improvement in limits:

o Inclusive: 1.8 <m, <3.5TeV, 0.07 <r;,, < 0.53

o0 BDT-based: 1.5<m,, <5.1TeV,0.01<r,;, <0.77
* More on model dependence later...
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Relative efficiency

Semivisible Jets

138 fb™ (13 TeV)
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Number of events

Semivisible Jets
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Semivisible Jets

138 fb™ (13 TeV)
T r T T 1

m,, [TeV]

1 95% CL upper limits
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» Improvement from dedicated SVJ search vs. generic o 94—

dijet search depends on both r;, and couplings
» Default scenario: based on LHC DM WG

0 g, =0.25, g, = DN(NF N{*™) = 0.5, By, = 47%

« Gains more apparent after converting to limit on g,

(for fixed g,)
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Emerging Jets

CTdark [MM]
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» Dedicated EMJ search focuses on track impact parameters

O Loses sensitivity once most decays are outside tracker volume
e Muon system shower search is complementary at high lifetimes

o Alternative model with flavor structure in dark sector leads to )
wider spread of lifetimes: weaker limits b b

» Other long-lived searches not sensitive to EMJs g

o0 Require few prompt tracks, displaced vertex reconstruction, or delayed timing,
Mitchell 2024 Kevin Pedro 17




o Working points tuned manually

Emerging Jet Tagging

» “Model-independent” version of EMJ search uses cut-based tagger based on tracks and jet substructure

» “Model-dependent” search uses GNN-based tagger (ParticleNet) based on jet constituents
0 Has to be trained separately for each signal model category (unflavored or flavor-diagonal)
o Within a given model, actually less dependent on lifetime than simpler cut-based tagger

o But more dependent on m,,
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Signal efficiency
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SUEPs

141 ,/'I A ST (100%) 95% CL upper limits
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-
o
I —

‘Vu‘]z > Hepyy
syord Ld-ybiy may

sm * Exclusions in model parameter space improve for higher mg
0 Need sufficient tracks to distinguish from SM

SM ¢ Model assumes dark hadrons decay to dark photons A’,
which then decay to e*e-, u*u-, 7" with varying fractions

SM O Results largely independent of A’ decay modes
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Model Dependence

Dark QCD models produce novel differences in jet substructure

0 Good handles to distinguish from SM... if we can use them optimally

ML tagging approaches so far are supervised: depend on signal model details
o Impossible to cover full range of complexity of dark QCD models

BDT SVJ tagger reduces sensitivity for very low or very high m,,, values

138 fb™ (13 TeV)
N N

= 100g . T 3 95% CL upper imits * Focus on SVJ case as generically

S 90 ; L, =20 GeV, = o most difficult to distinguish from SM

£ 80; ' ;_Semi\risible jet (inclusive)

e 70 : _ _Jszsmfv?:itifglgjt}(1|35|:?T-based, model-dependent) * EMJS and SUEPS have unusual’ bUt
60F ! JHEP 06 (2022) 156 distinct track signatures (typically)
50F ] ..
sof : _  Principles apply to all cases
30} '
20F .

10!
' 3 s 5
m,, [TeV]
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An Autoencoder for Semivisible Jets

» Create a latent representation that can be used to accurately reconstruct background

o Signal not used in training; identified during inference as having high reconstruction error
 Train autoencoder on QCD background, compare to BDT trained on signals w/ m,, = 20 GeV
» Autoencoder can outperform BDT on signals with different m,,, values

o Similar for r;,, (less information at high r;,,)

m, =3 TeV
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, BDT AE BDT (different signal training)
; : 0.90
( input (9) ) 0.816 0.716 0.737 4.0 0714
! : 0.85
@ dense hidden layer (10) !
3 l LA 0.699 : 3.5 [ 0.80
o ( dense hidden layer (10) ) : -
0.75
_____________________________________________________________________________________ ; 0727 0,633 S |
bottleneck (6) S 2 i 0.70
( dense hidden layer (10) ) % 0.703 0.585 E e 0 0.65
| 3
( densehidden layer (10) ) < 2.0 (ORZE 0.60
! | '
( output (9) ) 15 0.55
0.3 0.7 0.3 0.7 ' 0.3 0.5 0.7 e o8 o7 o
arXiv:2112.02864 r r r

inv inv inv inv
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https://arxiv.org/abs/2112.02864

Normalized Autoencoder

Autoencoders have complexity bias: may learn to reconstruct any event below some complexity level
SVJ case: easy to discriminate against QCD (lower complexity), but not against tt (higher complexity)
0 Boosted top quark decaying to £vb is closest SM analogue to SVJ with real pT™

Need to sample from low-error space during training to prevent AE from over-generalizing

o Use Boltzmann distribution, compare “energies” between training data (E,) & NAE output (E.)
Loss function L = log(cosh(E, — E_)) + aE, (additional functions/terms improve stability)

o Differences unstable, can still mode collapse — use Energy Mover’s Distance to choose best model

> Slgnlflcantly better performance CMS Simulation Preliminary 10 CMS Simulation Preliminary 10
against tt! 4000

Full phase-
uiphase-space £ Eble 3000

Training / background data Anomalous /

k‘ signal data

2000 XLy 0486 0.506 _ 0.685 0.681

m, [GeV]

1500

1000

0.1 0.3 0.5
r
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https://doi.org/10.22323/1.449.0491

Trigger-Level Autoencoders

miss

 EXisting trigger strategies use basic kinematic quantities: jet p, Hr =Y p+, pt
o Can be model- or production mode-dependent: influenced by mediator mass, r;,, etc.
o Thresholds have to be increased to handle higher event rates and pileup
e CMS has deployed two anomaly detection algorithms in L1 trigger during Run 3:
0 AXOLITL (Anomaly eXtraction Online Level-1 Trigger Lightweight)
= Variational autoencoder trained on all global L1 bits
o0 CICADA (Calorimeter Image Convolutional Anomaly DetectionAlgorithm)
= Convolutional autoencoder trained on calorimeter energy deposits

Zero bias (L = 0.81) SUEP (L =14.21)

CMS Preliminary 2023 (13.6 TeV) 2 CMS Preliminary 2023 (13.6 TeV) . CMS Preliminary 2023 (13.6 TeV) CMS Preliminary 2023 (13.6 TeV)

50 50
| |
40 40
| |

<
Calorimeter Er deposit (GeV)
(=
Calorimeter Er deposit (GeV)
= 2 S
Calorimeter Er deposit (GeV)
= 2 S
Calorimeter Er deposit (GeV)
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arbitrary units

Interpretable, Semi-Supervised ML

» Rejecting background is important... but can we learn more about signal?

» Maximize mutual information between NN output and theory parameter:
— interpretable output, e.g. from approximation of invariant mass function (not a regression!)

 Findings so far:
o Can improve on My for Z' mass reconstruction (similar to My,-assisted on shell algorithm)
o Falling distribution for background, though trained only on signal
0 Generalizes well across ry,,
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1.8 1 mz=2000GeV 105 1 mz»=1000GeV 0.00121 i ! Vr,.=o03
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1.5, — v o 10% 1 mz=3000Gev | £00010% con v, o,

""" M+ - S . ~

1.2 Musos % 103 "4 50.0008 | Vinix of rip, k]
1o e o aa E 1 2 ~ I Mr © finv=0.3 A

- 8. 0) L Musos £ 0.0006 mz =2000GeV " |
0.8 ] H L-L‘—‘ © s 1

P 0.0004 1 i i
3 TEH L 0.0002 1 e B

0.2 100 | | AL S
0.0 L . : ‘ Pl ‘ - , RERES: ‘ N I 0.0000 +—== ‘ - i

' 500 1000 1500 2000 2500 3000 3500 4000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000

mass [calibrated] mass [calibrated] mass [calibrated]
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https://arxiv.org/abs/1008.2690

CTyqk (lifetime)

The Future of Dark QCD Searches

» Expand to more production modes (vector, scalar, bifundamental, Higgs, ...)

» Unsupervised and interpretable ML to improve acceptance, =
sensitivity, robustness, generalization £
» Search for combinations of phenomena: new phase space! E_J
0 5
IR emerging
Nobody knows what SUEP
happens here, but
arXiv:2009.08981 SUEP semivisible
emerging provides intriguing SUEP
possibilities 0
1
mdlljlzvet semivisible _ ., (invisible fraction)
O J o \ GO
wea¥ (O | |
Ngot® ’ \W/

I, (Invisible fraction)
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Anomalous Galactic Rotation Curves
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In Big Bang Nucleosynthesis
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Dark Matter Landscape

Dark Sector Candidates, Anomalies, and Search Techniques
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SVJ Decays

 Fraction of stable hadrons r;,, may vary from 0 to 1
o Decreases w/ dark quark mass splitting, increases w/ N&
» Jets that contain mix of visible and invisible particles (prompt decays)
o Not covered by existing searchesj for dijet resonances, pI"*+ISR

[nvisible fraction arXiV 170705326

o Z' — yy — dark hadrons — SM quarks — SM hadrons
o Decay to SM — two high-p, wide jets

0 Pyark- democratic decay 1
0 m,, . Mass insertion decay (prefer heavy flavor)
o Ngark — 2, N]gark — 2, mX — 1/2mdark q

SVJ Workshop Kevin Pedro

30


https://arxiv.org/abs/1707.05326

SVJ Resonant Search

» Kinematic signature: Less mlssmg energy than WIMPs, aligned w/ jet
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» Bump huntin m(3J,pt
o Kinematic edge at m,
o Better resolution than m;

0 SM backgrounds have steeply
falling distributions
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Semivisible Jet Kinematics

CMS simulation Supplementary (13 TeV) CMS simulation Supplementary (13 TeV)
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SVJ Workshop

QCD

Jet 2

£, 3
L e Jet 1
Jet 3

(mismeasured)
Jet mismeasurement induces &,

aligned with jet
Major background

W(Lv)+]ets

Lost lepton or hadronic t
Less likely than tt to mimic
semivisible jet, but higher o

SVJ Backgrounds

tt

Kevin Pedro

Wide, high-p+ jets: boosted tops
“Lost” lepton {: out of acceptance,
can’t veto (or hadronic 1)

Neutrino aligned w/ wide jet:
mimics semivisible jet

Z(vv)tjets

Real £ from vv, but least likely to
align with jet
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SVJ Workshop

SVJ Event Se

/ Preselection \
¢ N,>2 }

Pr(J1,dy) > 200 GeV, n(J1,d)| < 2.4,

lection

—— Signal topology

J12 pass noise rejection
— meSS/m > O 15

» Data quality

An(Jl, ) <15 1\

> Reject QCD

m; > 1500 GeV S

> Trigger efficiency

e/ veto (pr > 10 GeV, n| <2.4)
ol s filters

Custom dead ECAL cell filter: veto
event_s w/ AR(jl,Z: Cnonfunc:tional) <0.1
Inactive HCAL filter (2018 only): >
veto events w/ p(j) > 30 GeV,
—-3.05 <n(j) <-1.35,

—-1.62 < p(j) <-0.82

Final Selection
Gap jet filter: veto events w/ "\

> Reject tt, W(Lv)

— Data quality

pr(iy) > 1000 GeV, f,(j;) > 0.7

> Data quality

A(Pmln(‘]l 2’ mISS) <0. é 7

Kevin Pedro

> Reject tt, W(Lv), Z(wv)
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SVJ Cutflows

Selection QCD tt W+jets Z+jets  ripy =03
pr(i2) > 200GeV, (] ,) < 24 12 6.4 2.0 13 83,5
Rt > 0.15 1.3 12.1 18.5 34.6 39.7
Ay(J1,]2) < 1.5 94.9 88.0 85.1 78.8 80.0
mt > 1.5TeV 0.20 3.1 4.0 5.6 81.8
N, =0 93.0 62.0 66.0 99.5 96.8
Ne =0 99.6 59.8 57.3 99.6 99.4
pImiss filters 99.5 99.9 99.9 99.9 99.8
AR(jy 2 Cronfunctional) > 0.1 60.6 95.1 95.2 95.6 95.2
veto f,(j1) > 07 & pr(j) > 1.0TeV 997 99.7 99.6 99.7 99.7
A¢prmin < 0.8 94.8 81.7 61.8 44.7 87.7
Efficiency [%] 1.6e-05 0.0060 0.0029 0.0085 17
high-Rt 9.0 295 38.8 39.1 45.2
low-R 91.0 70.5 61.2 60.9 54.8
high-5V]2 0.093 0.62 0.46 0.69 34.6
low-5V]2 1.1 1.7 0.92 0.94 42.3
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SVJ Mass Sculpting

CMS simulation Supplementary (13 TeV) CMS simulation Supplementary (13 TeV)
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O Relative variable (“transverse ratio”): £ ;

Ry = p"**/m;

» Reject QCD background without
shifting m; peak
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SVJ Triggering

Trigger on jet p4, Hy

» Require low An(J,,J,) for

high efficiency -
» Usually improves signal sensitivity high p+, low An
» Most t-channel QCD events
already rejected by R; requirement Fails:

low p+, high An

m; > 1500 GeV for trigger efficiency

o 107 CMS simulation Sug::p:‘ementa-"JT | (13 TeVv) 05 CMS simulation Supplementary (13 TeV)
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SVJ Electroweak Rejection

Veto leptons: reject tt, W(Lv)

CMS S.'mua’anon Supp;‘ementary 13 TeV)
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SVJ Instrumental Backgrounds

» Centrally-maintained filters reject

most instrumental sources of artificial

miss

high-p7 ™ events

o But low-Agq region ignored by almost
all analyses: filters not tuned here

» Major source of jet mismeasurement:
nonfunctional ECAL readout channels
(“dead” or “hot” cells)

» Custom filter vetoing events w/ narrow
(AK4) jets w/ AR(j, », nonfunctional) < 0.1
— reject additional 40% of QCD background

o Signal efficiency 95%
» Misreconstructed jets near barrel-endcap gap in ECAL

0 Appear at high p7

miss

and high m;

O Veto events w/ p(j;) > 1000 GeV and f(j,) > 0.7

SVJ Workshop
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SVJ Inclusive Signal Regions
 With all inclusive selection requirements applied:

QCD 0.000016

« If only one signal region were defined, high-R; tt 0.0060
(R > 0.25) would have optimal significance W(Lv)+ets 0.0029
 Adding separate region low-R; (0.15 < Ry < 0.25) Z(vv)+jets 0.0085
Improves expected performance signal ~17

arXiv:i2112.11125 arkivi2112.11125
57% High-R,
WQCD
ot
@W(lv)+jets
W Z(vv)+jets
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Number of events

SVJ my Variations

CMS simulation Supplementary
o L A i I B e B

138 tb' (13 TeV)
L B B

Al arXivi2112.11125 1

107E High-R, E
i Signal (m, = 2.5 TeV, :
3L =20 GeV, o, = obe)

10 e --r“d_01 *
1 =03

10%F .- TR --r,m,=06 .
Th, =09

105— . - =
.
1 » I=1=
E . - | =
: SRRl

107'F | | =
F v I j Pl 1

Y N & 0 B 1 1 B B
1.5 2 2.5 3 3.5 4

m; [TeV]

|nv

10°F

Number of events
3,
|

CMS simulation Supplementary
L A L S e

138 tb' (13 TeV)
L B B

—h
o
|

107 _

arXiv:2112.11125
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Signal {m =25TeV,

dk
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L

- 20 GeV, o, = o)

dark

has largest impact on signal mass distributions

0 0y, Nas minor impact; mg,, has very little impact

o e

' Low r;,, signals populate
' Iow R signal region

acceptance

'Asr

nv

|
increases, |
|
|
I

: kinematic edge softens

rinv
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] Very high ry,
I look like ISR

signals |
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Tagging Semivisible Jets

« Various jet substructure variables (& Ag(J, pT™)) can weakly discriminate between semivisible jets and
SM background jets
0 Heavy object tagging: Mep, Tpy, Top, N&, NY
0 Quark-gluon discrimination: D, , Snajors Ominor 9Irth
o Flavor (energy fractions): f,, fis, oo, o, T,
» Combine useful variables into a BDT for strong discrimination!
o Background: equal mix of QCD and tt ; signal: mix of many models
0 Reweight background jet p; spectrum to match signal: avoid sculpting

CMS simulation (13 TeV) CMS Srmufanon (13 TeV)
%) L B B e B e S B L L L %) L y
"é' L —QCD Signal (m, = 3.1 TeV, 1 "é' —OCD S|gnal (m 31TeV
S 1k tt Fo = 0.3, 01y, = 05 )_ S 1L tt Mo = 20 GV, aty,, = 0foy) |
> E W(lv)+jets --m,, =1 GV > : Wi(lv)+jets ---r,,, = 0.1
© —Z{vv)+ets --m,,, =20 GeV © X —Z(\'V)+J9TS~“'.m=gv§
E B -~-mdark=50 GeV = o “ Tl =0
= 10 T My, = 100 GeV g 107" _ M =07 E
10°%E
10‘35
10—4....|....|....|....|....|....| 10—4_..2'
0 50 100 150 200 250 300 0

Mgp(J; ,) [GeV]
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SVJ Tagger Performance

Mz = 3.1 TeV, My = %gakGeV, « Strong and consistent performance
r-inv: 0'3’ Ogark = Odark T . - | CD tt
A e | O Training on on)_/Q _ (tt) -
(Vf/(; 05 e caused misclassification of tt
— = S = (QCD) jets at rate of 10-20%
CD 0.881 | 0.947 651.4 ) .. i
(3 o Some inefficiency for signals
tt 0.881 | 0.931 270.6 with hlgh or low Myt
W(kv)tjets Bl || e 441.5 | Working point 0.55 chosen based
Z(vv)tjets 0.881 | 0.930 420.7 on background estimation
CMS simulation (13 TeV) ’ CMS simuiation (13 TeV)
2 maCD | Sgnal(m,, =20Gev, ] g T U
5 W(v)+jets 1, =0.3,a,, = 02 ] ¢ 0.9F
g pMpee et T o8t
% ----- m, = 4.1 TeV i-% 0'7;_
< 10" 0.6;-
| 0.5F
102 Ui o3 0-4;_ i91a§,1 TeV,m,, = 20 GeV,
N OO e e
10 0.25- v_v(g)ggg(s (0.936) '
) . | 0'1§—2(£:\;)+je?ts(0.930) | | | E
0% "2 04 06 08 1 % 02 04 06 08 1

BDT discriminator (J, ,) €.
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SVJ BDT-based Signal Regions

o Start from inclusive signal regions (high-R., low-R;)
» Require both leading wide jets to be tagged as semivisible
0 high-SVJ2, low-SVJ2 regions: strict subsets of inclusive regions

> Reduce background by factor ~60 while preserving signal

o, arXivi2112.11125 arXivi2112.11125
46% High-SVJ2
mQcD
ot
@W(lv)+jets
W Z(vv)+jets

4%

1 90/0 50/0

17%

18%
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Arbitrary units

Arbitrary units

SVJ BDT Input Variables (1)
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Arbitrary units

Arbitrary units

SVJ BDT Input Variables (2)
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SVJ BDT Input Variables (3)
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SVJ: More m+ Variations
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SVJ Signal Efficiency (BDT-based)
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number of events

SVJ Workshop

SVJ Background Flts (BDT—based)
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EMJ Cut-Based Tagger Inputs
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EMJ GNN Taggers
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EMJ Fake Rates
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Mitchell 2024

EMJ Selection Sets

Selection set Hy [GeV] Jet pp [GeV] (>) EJ tagger
u-set 1 >1600 275 250 250 150 u-tag 1
u-set 2 >1600 200 200 150 150 u-tag 2
u-set 3 >1600 200 150 100 100 u-tag 3
u-set 4 >1500 200 150 100 100 u-tag 4
u-set 5 >1200 200 150 100 100 u-tag 5

u-set validation  1000-1200 100 100 100 100 validation u-tag
a-set 1 >1500 200 150 100 100 a-tag 1
a-set 2 >1800 250 250 200 200 a-tag 2
a-set 3 >1200 275 250 250 200 a-tag 2
a-set 4 >1500 275 250 250 100 a-tag 3
a-set b >1800 200 150 100 100 a-tag 4

a-set validation  1000-1200 100 100 100 100 validation a-tag

uGNN set 1 >1350 170 120 120 100 uGNN tag 1

uGNN set 2 >1750 300 260 250 250 uGNN tag 2

uGNN set 3 >1800 240 180 180 100 uGNN tag 3

uGNN validation >1000 100 100 100 100 uGNN validation tag

aGNN set 1 >1300 200 140 120 100 aGNN tag 1

aGNN set 2 >1650 300 250 200 200 aGNN tag 2

aGNN set 3 >1400 270 220 220 120 aGNN tag 3

aGNN validation >1000 100 100 100 100 aGNN validation tag
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EMJ Results (vs. First Search)
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I\/Iuon Shower Exclusions
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Gluon portal: 1y, — gg (hadron-rich)
Photon portal: ng,« — vy (photon-rich)
Vector portal: ® g, — €£/0q, Ny, Stable (SVJIs w/ r;,, = 0.25)
Higgs portal: ng, — bb, cc, 1t

Dark photon portal: ng,, — A'A’, A" — ££/qq (lepton-rich)
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More at arXiv:2402.01898
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SUEP Event Display
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SUEP Background Estimation
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NAE Formalism

Input features normalized to Gaussian by quantile transform 2oy o o
16; --ll Inv . nv . 1

 Treat reconstruction error E, as “energy” for energy-based model i m=07
125 7
0 Py(X) = Yo, eXP(—Eo(X)/T) 12
e Loss: °F ;
i ]
2- ]

0 [EX"pdata[Le(X)] = [EX"pdata[Ee(X)] - [Ex’~pe[Ee(X’)] = E+ - E— 0%

Axis major

Positive energy from training dataset

Negative energy from sampling NAE latent space and reconstructing

o Using Markov chain Monte Carlo (MCMC)
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AXOLILITL

Regularize latent space Sampled latent representation

to avoid overfitting /
\OO '\\Dc
"\6\ H f : H ’\6\\
pr | n ® pr [ n [ o

MET MET

4ely 4ely

au 4u
10 jets : : 10 jets

loss = ||x-X]|P + KLI ,N(0,1)] T. Aarrestad

e K-L divergence expands to ~ u*> + 6> — 1 — log(c?)
e Dominated by just u> — use this as score instead of full reconstruction error

* Drop second half of network (decoder) for inference — substantially reduces latency on FPGA (50 ns)
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CICADA

A1

: - |
AN l '

Conv/ReLU Lk '

30

Conv/ReLU

20 1

UpSampling/Conv/ReLU Conv

( =2 ]  Inputis 2D map of energy deposited in calorimeters (ECAL + HCAL)
« Initial model (above, “teacher): 300K parameters

e Deployed model (below, “student”): 3K parameters

o Trained to reproduce teacher model using knowledge distillation
0 ~100 ns latency on FPGA

YyYvyy

.
Layer 1
Calorimeter
Trigger

—

A 4

Layer 2
Calorimeter
Trigger
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Event Variable Network

vy |1 0
6) Mzyp =0 Mpgpg o > o
\ Classifier
X P, Py >
py py > EVN > \7’ R
: : | > output

/ ______

« Derive new variable(s) V'(X) from inputs X’ to maximize mutual information with underlying model
parameter(s) 0

o0 Not a regression: learns an actual, generalized function of inputs
» Both components are simple fully-connected networks (few layers)

o Classifier uses V' (from EVN bottleneck) to distinguish events w/ correct 6 from events w/ wrong 6
(using binary crossentropy)

e Trains in a few minutes on a consumer GPU
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