
Unsupervised Machine Learning for Classifying CHIME Fast Radio Bursts and
Investigating Empirical Relations

Da-Chun Qiang1, Jie Zheng1, Zhi-Qiang You1, and Sheng Yang1,2
1 Institute for Gravitational Wave Astronomy, Henan Academy of Sciences, Zhengzhou 450046, Henan, People’s Republic of China; sheng.yang@hnas.ac.cn

2 INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
Received 2024 November 21; revised 2025 February 12; accepted 2025 February 13; published 2025 March 12

Abstract

Fast radio bursts (FRBs) are highly energetic millisecond-duration astrophysical phenomena typically categorized
as repeaters or nonrepeaters. However, observational limitations may result in misclassifications, potentially
leading to a higher proportion of repeaters than currently identified. In this study, we leverage unsupervised
machine learning techniques to classify FRBs using data from the CHIME/FRB catalogs, including both the first
catalog and a recent repeater catalog. By employing Uniform Manifold Approximation and Projection for
dimensionality reduction and clustering algorithms (k-means and Hierarchical Density-Based Spatial Clustering of
Applications with Noise), we successfully segregate repeaters and nonrepeaters into distinct clusters, identifying
over 100 potential repeater candidates. Our analysis reveals several empirical relations within the clusters,
including the D - Dt tlog logsc rw, D -t Tlog logsc B, and r–γ correlations, where Δtsc,Δtrw, TB, r, and γ represent
the scattering time, rest-frame width, brightness temperature, spectral running, and spectral index, respectively. The
Chow test results reveal that while some repeaters and nonrepeaters share similar empirical relationships, the
overall distinctions between the two groups remain significant, reinforcing the classification of FRBs into repeaters
and nonrepeaters. These findings provide new insights into the physical properties and emission mechanisms of
FRBs. This study demonstrates the effectiveness of unsupervised learning in classifying FRBs and identifying
potential repeaters, paving the way for more precise investigations into their origins and applications in cosmology.
Future improvements in observational data and machine learning methodologies are expected to further enhance
our understanding of FRBs.

Unified Astronomy Thesaurus concepts: Radio transient sources (2008); Classification (1907); Clustering (1908);
Dimensionality reduction (1943)

1. Introduction

Fast radio bursts (FRBs) are highly energetic astronomical
phenomena characterized by millisecond-duration emissions.
The first FRB signal was discovered in 2007 by D. R. Lorimer
et al. (2007), and their existence was firmly established in 2013,
when D. Thornton et al. (2013) published observations of four
similar events detected by the Australian Parkes Radio
Telescope. Since then, FRBs have drawn significant attention
in both astronomy and cosmology (e.g., H. Gao et al. 2014;
B. Zhang 2014; E. F. Keane 2018; D. R. Lorimer 2018;
M.-J. Zhang & H. Li 2018; F. Y. Wang & G. Q. Zhang 2019;
D.-C. Qiang & H. Wei 2020, 2021; F. Y. Wang et al. 2020a;
W.-Y. Wang et al. 2020b; D. Xiao et al. 2021, 2022;
R. C. Zhang et al. 2021; E. Petroff et al. 2022; D. Xiao &
Z.-G. Dai 2022; R. C. Zhang & B. Zhang 2022; B. Wang &
B. Wang & J.-J. Wei 2023). However, the origin of FRBs
remains unknown.

To explore their origin, numerous radio telescopes have
dedicated time and efforts to FRBs, such as the Deep Synoptic
Array (G. Hallinan et al. 2019; J. Kocz et al. 2019), Arecibo
(L. G. Spitler et al. 2014), Parkes (e.g., D. R. Lorimer et al.
2007; S. Burke-Spolaor & K. W. Bannister 2014; V. Ravi &
P. D. Lasky 2014; E. Petroff et al. 2015), the Canadian
Hydrogen Intensity Mapping Experiment (CHIME; CHIME/

FRB Collaboration et al. 2018), the Five-hundred-meter
Aperture Spherical Radio Telescope (D. Li & Z. Pan 2016),
and the Australian Square Kilometer Array Pathfinder
(R. M. Shannon et al. 2024). So far, nearly a thousand FRBs
have been observed (E. Petroff et al. 2016; CHIME/FRB
Collaboration et al. 2021; F. Jankowski et al. 2023; J. Xu et al.
2023), with nearly 100 of them having known redshifts
(e.g., A. C. Gordon et al. 2023; M. Bhardwaj et al. 2024;
C. J. Law et al. 2024; K. Sharma et al. 2024). To date, the
largest FRB sample is the first CHIME/FRB catalog (CHIME/
FRB Collaboration et al. 2021).
Based on observational characteristics, FRBs are broadly

classified into two categories, i.e., repeaters and nonrepeaters.
As the names suggest, repeaters are sources that have exhibited
multiple bursts, whereas nonrepeaters have only been observed
to burst once. Since the discovery of the first repeater,
FRB 20121102 (L. G. Spitler et al. 2016), more than 50 FRBs
have been identified as repeaters to date (P. Kumar et al. 2019;
E. Fonseca et al. 2020; CHIME/FRB Collaboration et al.
2021, 2023; F. Kirsten et al. 2022; C. H. Niu et al. 2022; H. Xu
et al. 2022), while most of the remaining ones are classified as
nonrepeaters. However, V. Ravi (2019) suggests that the
volumetric rate of nonrepeating FRBs might exceed that of
cataclysmic events and the formation rate of compact objects,
implying that the majority of FRBs should be repeaters. Some
studies also propose that more than half of the FRBs in the first
CHIME/FRB catalog could be repeaters (S. Yamasaki et al.
2023; K. McGregor & D. R. Lorimer 2024). Furthermore,
several FRBs initially identified as nonrepeaters were later
observed to repeat (CHIME/FRB Collaboration et al. 2023).
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These suggest that many of the FRBs currently classified as
nonrepeaters might actually be potential repeaters, with only a
single burst detected due to various observational factors. As a
result, some studies have attempted to identify potential
repeaters among apparent nonrepeating FRBs, and one of the
methods being employed is machine learning.

Machine learning is an artificial intelligence technique that
allows computers to learn from data and make predictions or
decisions without being explicitly programmed (T. Cover &
P. Hart 1967; D. E. Rumelhart et al. 1986). Machine learning is
generally categorized into three types, i.e., supervised learning,
unsupervised learning, and semi-supervised learning (e.g.,
V. Vapnik 1999; L. Breiman 2001; C.-C. Chang &
C.-J. Lin 2011; A. P. Dempster et al. 2018). Using algorithms
to uncover patterns in the data can be applied to tasks such as
classification, regression, clustering, and optimization. Cur-
rently, machine learning has already been widely used in the
detection and analysis of FRBs (e.g., K. L. Wagstaff et al.
2016; Y. G. Zhang et al. 2018; D. Wu et al. 2019; K. Adámek
& W. Armour 2020; D. Agarwal et al. 2020; X. Yang et al.
2021; S. Bhatporia et al. 2023). For instance, within the first
CHIME/FRB catalog data set, B. H. Chen et al. (2021) and
J.-M. Zhu-Ge et al. (2022) identify 188 and 117 repeater
candidates from 474 nonrepeating FRBs via unsupervised
learning, respectively. X. Yang et al. (2023) instead discovered
145 repeaters, using FRB morphology as features, while
J.-W. Luo et al. (2022) identified dozens of repeater candidates
with various supervised learning methods. Furthermore,
J.-W. Luo et al. (2022) found that the most prominent factors
for distinguishing between nonrepeating and repeating FRBs
are the brightness temperature and rest-frame frequency
bandwidth, whereas W.-P. Sun et al. (2025) found spectral
running may play a role instead. Furthermore, some studies
have used machine learning techniques to classify thousands of
bursts from highly active repeaters, such as FRB 20121102
(B. J. R. Raquel et al. 2023) and FRB 20201124A (B. H. Chen
et al. 2023), in an effort to analyze their potential radiation
mechanisms.

In addition to classifying FRBs based on their repeatability,
some studies have also investigated the clustering of FRBs
using characteristics beyond repeatability, as well as the
empirical relationships among these features. For instance,
similar to the well-known classification of gamma-ray bursts
(GRBs), where short GRBs exhibit short prompt emissions and
are mostly associated with the old population, while long
GRBs with long prompt emissions are mostly associated with
the young population (B. Zhang et al. 2007; P. Kumar &
B. Zhang 2014), H.-Y. Guo & H. Wei (2022) proposed
classifying FRBs based on their association with either old or
young stellar populations. They discovered several tight
empirical relations for nonrepeaters in the first CHIME/FRB
catalog, such as - nE Llog log , -Elog log DME, and

- nLlog DM logE , where log means the logarithm to base
10 and E, DME, and Lν are the isotropic energy, the
extragalactic dispersion measure (DM), and spectral luminos-
ity, respectively. Similar empirical relations were found
for nonrepeaters associated with old populations and all
nonrepeaters, though with notably different slopes and
intercepts, such as -n nF Slog log , - nSlog DM logE , and

-nFlog log DME, where Fν is specific fluence and Sν is
flux. Many empirical relations still hold for localized FRBs
(L.-Y. Li et al. 2024). Based on these empirical relations, FRBs

could potentially serve as standard candles, allowing cosmo-
logical models to be constrained without relying on DM
measurements (H.-Y. Guo & H. Wei 2024). X. J. Li et al.
(2021) classified FRBs into short (W < 100 ms) and long
(W > 100 ms) bursts, where W represents the pulse width. A
strong power-law correlation between fluence and peak flux
density was identified for these categories. D. Xiao & Z.-G. Dai
(2022) classified repeating FRBs into classical (TB� 1033 K)
and atypical (TB < 1033 K) bursts, where TB refers to the
brightness temperature. A tight power-law correlation between
pulse width and fluence was also observed for classical bursts.
CHIME has recently released a new repeater catalog

(CHIME/FRB Collaboration et al. 2023), significantly
increasing the data available on repeaters. This expanded
data set is expected to improve the accuracy of identifying
repeater candidates through machine learning. In this paper,
we will apply unsupervised learning methods to classify the
FRBs from the combined data of these two catalogs into
different clusters, find potential repeaters among the
nonrepeaters, and analyze possible empirical relations
across these clusters. This paper is structured as follows. In
Section 2, we present the selected CHIME data and the
features used in our analysis. Section 3 introduces two
types of unsupervised machine learning methods, i.e.,
dimensionality reduction and clustering, as well as evalua-
tion metrics. In Section 4, we present the results of the
dimensionality reduction and clustering, then we analyze
the potential empirical relations. Finally, Section 5 provides
our conclusions.

2. Data Set

2.1. Sample Construction

In this paper, we use the largest available FRB data from
CHIME to date, including the first CHIME/FRB catalog (Cat1;
CHIME/FRB Collaboration et al. 2021) and the CHIME/FRB
Collaboration 2023 catalog (Cat2023; CHIME/FRB Colla-
boration et al. 2023). Cat1 includes 536 events (474
nonrepeaters and 62 repeat bursts from 18 repeaters). There
are 600 sub-bursts in total, because of multiple peaks appearing
in the light curves of FRBs. Cat2023 contains 127 events from
39 repeaters,3 or 151 sub-bursts for all events. Since there are
six FRBs in Cat1 with flux and fluence values of zero, we
excluded those FRBs. Additionally, six nonrepeaters in Cat1,
identified as repeaters, are duplicates in Cat2023, resulting in
739 FRB bursts used in this paper.

2.2. Feature Selection

We treat all sub-bursts as individual bursts and use their
features for machine learning algorithms. To provide a more
comprehensive description of an FRB event, we include a
broad range of parameters, based on their usage in previous
research, as different studies emphasize different features and
identify varying important ones (e.g., B. H. Chen et al. 2022;
J.-W. Luo et al. 2022; J.-M. Zhu-Ge et al. 2022; W.-P. Sun
et al. 2025). These parameters can be divided into two

3 In fact, CHIME/FRB Collaboration et al. (2023) marked 14 FRB sources as
repeater candidates, due to lower significance, indicating that the burst-to-burst
DM and sky-position differences are larger compared to other confirmed
repeaters, and their repetition rates are relatively low. In this study, we consider
these 14 FRB sources as repeaters, as they warrant further follow-up
observations for potential confirmation.
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categories—observational parameters (original data provided
by Cat1 and Cat2023) and derived parameters—and we present
the distribution of all parameters for the entire FRB data set in
Figure 1. We choose 10 observational parameters, as was done
by B. H. Chen et al. (2022):

1. Boxcar width Δtbc (ms)—the boxcar width of the burst,
with the label name “bc_width” in the two catalogs.

2. Width of the burst Δtfitb (ms)—the width of the burst that
is fitted by fitburst,4 with the label name “width_fitb”
in the two catalogs.

3. Flux Sν (Jy)—the peak flux of the band average profile
(lower limit) with the label name “flux” in the two
catalogs.

4. Fluence Fν (Jy · ms)—the flux integrated over the
duration of the burst (lower limit) with the label name
“fluence” in the two catalogs.

5. Scattering time Δtsc (ms)—the scattering time at 600
MHz of the burst, with the label name “scat_time” in the
two catalogs.

6. Spectral index γ—the spectral shape parameter of the
burst. The label name in the two catalogs is “sp_idx.”

7. Spectral running r—this value characterizes the fre-
quency dependence of the spectral shape and is labeled as
“sp_run” in both catalogs.

Figure 1. The distributions of observed and derived parameters for nonrepeaters and repeaters are shown separately, forming the input data used for unsupervised
learning. For more details, refer to Section 2.

4 https://github.com/CHIMEFRB/fitburst
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8. Highest frequency nmax (MHz)—the highest-frequency
band of detection for the burst at full-width tenth-
maximum. The label name in the two catalogs is
“high_freq.”

9. Lowest frequency nmin (MHz)—the lowest-frequency
band of detection for the burst at full-width tenth-
maximum. The label name in the two catalogs is
“low_freq.”

10. Peak frequency νp (MHz)—the peak frequency for the
burst that is labeled as “peak_freq” in both catalogs.

For Δtbc, Δtfitb, Sν, Fν, and Δtsc, we take their logarithmic
values throughout this work. Cat1 and Cat2023 only provide
upper limits for the width of the burst and scattering time for
some FRBs, so we opted to use these upper limits in our
analysis.

For the derived parameters, we choose six physical proper-
ties of FRBs (for further details, see J.-M. Zhu-Ge et al. 2023):

1. Redshift z—the redshifts of FRBs are numerically
derived from their DMs.

In astronomical observations, distance plays a crucial
role in analyzing the origins of FRBs. The DM, indicating
the total column density of free electrons along the line of
sight, serves as a key distance-related parameter. For
most FRBs, DM values far exceed those predicted for the
Milky Way, pointing to their extragalactic origins. The
DMs of FRBs can be separated into different components
(see, e.g., W. Deng & B. Zhang 2014; H. Gao et al. 2014;
B. Zhou et al. 2014; Y.-P. Yang & B. Zhang 2016;
Y.-P. Yang et al. 2017; Z. Li et al. 2019; J.-J. Wei et al.
2019; D.-C. Qiang et al. 2020, 2022; D.-C. Qiang &
H. Wei 2020, 2021):

( ) ( )/

= + +
+ + z

DM DM DM DM
DM 1 , 1

obs MW halo IGM

host

where DMMW, DMhalo, DMIGM, and DMhost represent the
contributions from the Milky Way, the Milky Way halo,
the intergalactic medium (IGM), and the host galaxy
(including the interstellar medium of the host galaxy and
the plasma around the source) of the FRB. In the
literature, we usually use the extragalactic DM for
research:

( ) ( )/

= - -
= + + z

DM DM DM DM
DM DM 1 . 2

E obs MW halo

IGM host

In this paper, the values of DMobs are provided by both
catalogs, with the label name “bonsai_dm.” We used the
values of DMMW as provided in Cat1 and Cat2023, which
were estimated using the NE2001 model (J. M. Cordes &
T. J. W. Lazio 2002; the corresponding label names
in Cat1 and Cat2023 are “dm_exc_ne2001” and
“dm_exc_1_ne2001,” respectively). Following the pre-
vious studies, we adopt DMhalo = 30 pc cm−3 and
DMhost = 70 pc cm−3. For the DMIGM, it can be written
as (see, e.g., W. Deng & B. Zhang 2014; Y.-P. Yang &
B. Zhang 2016; Z. Li et al. 2019; J.-J. Wei et al. 2019;
D.-C. Qiang et al. 2020, 2022; D.-C. Qiang & H. Wei
2020, 2021)

( )
( ˜) ( ˜)( ˜) ˜
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W +
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f z f z z dz

E z
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z
e

IGM
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0

IGM

where c is the speed of light, G is the gravitational
constant, mp is the mass of the protons, and E(z) is the
dimensionless Hubble parameter. For cosmological para-
meters, we adopt H0 = 67.4 km s−1 Mpc−1, Ωm = 0.315,
and Ωb,0h

2 = 0.0224, from the latest Planck 18 results for
the flat ΛCDM cosmology (Planck Collaboration et al.
2020). fe(z) is the ionized electron number fraction per
baryon, and fIGM(z) is the fraction of the baryon mass
in the IGM. In principle, these two parameters are
functions of the redshift z. In this work, we follow, e.g.,
D.-C. Qiang et al. (2020), D.-C. Qiang & H. Wei (2021),
H. Gao et al. (2014), and Y.-P. Yang et al. (2017), using
the fiducial values fe = 0.875 and fIGM = 0.83. According
to Equations (2) and (3), we can derive the redshifts of all
FRBs. Following J.-M. Zhu-Ge et al. (2023), we also set
a minimum redshift of 0.002248, corresponding to a
luminosity distance of 10Mpc, to avoid zero or negative
values.
a. Rest-frame frequency width Δ ν (MHz)—the fre-

quency width corrected for the cosmological redshift
effect, which can be calculated by

( )( ) ( )n n nD = - + z1 . 4max min

b. Rest-frame width Δ trw (ms)—the width of the burst
Δ tfitb corrected for the cosmological redshift effect:
Δ trw=Δ tfitb/(1 + z). We take the logarithmic
values.

c. Burst energy E (erg)—the energy of an FRB can be
calculated by

( )p
n=

+
nE

d

z
F

4

1
, 5L

p

2

where dL is the luminosity distance. We take their
logarithmic values.

d. Luminosity L (erg s−1)—the luminosity of FRBs can
be derived from

( )p n= nL d S4 , 6L p
2

and we take the logarithmic values.
e. Brightness temperature TB (K)—the brightness temp-

erature can be derived as (J.-W. Luo et al. 2022)
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where κB is the Boltzmann constant. We take the logarithmic
values.

3. Method

Dimensionality reduction and clustering are two types of
unsupervised machine learning methods used in this paper.
First, we apply the dimensionality reduction algorithm to
automatically convert high-dimensional data into low-dimensional
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data. Then, we use a clustering algorithm to cluster the reduced-
dimensional data based on their similarities.

3.1. Machine Learning Techniques

3.1.1. Dimensionality Reduction

In this study, we use Uniform Manifold Approximation
and Projection (UMAP; L. McInnes et al. 2018), imple-
mented via the Python package umap-learn,5 to perform
dimensionality reduction. UMAP is a dimensionality reduction
technique that can be used for both visualization and general
nonlinear dimensionality reduction. This algorithm assumes
that the input data are uniformly distributed on a Riemannian
manifold with a locally constant (or approximately constant)
Riemannian metric and that the manifold is locally connected.
Based on these assumptions, the manifold can be modeled
using a fuzzy topological structure.

The use of UMAP has been extensively explored in many
studies (e.g., J.-M. Zhu-Ge et al. 2022; B. H. Chen et al.
2023; B. J. R. Raquel et al. 2023; X. Yang et al. 2023). For
FRB classification, the three parameters n_components,
n_neighbors, and min_dist have a more significant
impact on the classification results. Meanwhile, we also
experimented with modifying other parameters and found
that they had a minimal effect on the classification
outcomes. Therefore, in this study, we choose to focus on
adjusting these three parameters of UMAP. n_compo-
nents allows us to determine the dimensionality of the
reduced space where the data will be embedded. In our
work, we set n_components = 2 for all features,
projecting the data onto a 2D plane for visual representa-
tion. n_neighbors controls how UMAP balances the
local and global structures of the data. UMAP achieves this
by controlling the size of the local neighborhood it
considers when attempting to learn the underlying structure
of the data. This means that low values of n_neighbors
will cause UMAP to focus on very local structures,
potentially at the cost of missing the overall global
structure. On the other hand, higher values of n_neigh-
bors will push UMAP to consider larger neighborhoods
around each point, capturing the broader structure of the
data but possibly losing finer details. min_dist decides
how tightly UMAP can pack points together in low-
dimensional space. Basically, it sets the minimum distance
between points in the low-dimensional space. Lower values
of min_dist will lead to more tightly packed, “clumpier”
embeddings, which can be beneficial for identifying clusters
or preserving finer topological details. In contrast, higher
values of min_dist will prevent the points from being
tightly packed, instead focusing on maintaining the broader
topological structure. We scan n_neighbors from 2 to 50
and min_dist from 0.0 to 0.99. In this paper, we take
n_neighbors = 21 and min_dist = 0.03.

3.1.2. Clustering Algorithms

In this work, we used k-means (J. MacQueen et al. 1967;
S. Lloyd 1982) and Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN;
R. J. G. B. Campello et al. 2013, 2015; L. McInnes et al.
2017) to group the reduced-dimensional data into different

clusters. K-means clustering is based on the distance between
each data point and its corresponding cluster center. It aims to
minimize the distance between the points and their respective
centers, effectively grouping similar points into clusters based
on proximity in the feature space. Initially, the k-means
algorithm selects k random points as the initial cluster centers,
calculates the Euclidean distance of each data point from
these centers, and assigns each point to the nearest center.
Then, it recalculates the mean of each cluster, updating the
cluster centers. This process is repeated iteratively until the
cluster centers stabilize, minimizing the overall variance
within the cluster (for details, see S. Fotopoulou 2024 and
references therein). We use sklearn.cluster.KMeans 6

as the k-means clustering algorithm. The essential hyperpara-
meter is n_clusters, which means how many clusters are
present in the model.
HDBSCAN is a clustering algorithm developed by

R. J. G. B. Campello et al. (2013, 2015). It extends
Density-based Spatial Clustering of Applications with Noise
(DBSCAN; M. Ester et al. 1996) by transforming it into a
hierarchical clustering method (J. Han et al. 2012). The
algorithm then extracts flat clusters from this hierarchy,
based on the stability of the clusters, which allows it to better
handle varying densities and identify clusters of different
shapes and sizes. HDBSCAN uses minimum spanning trees,
allowing it to discover clusters with varying densities, unlike
DBSCAN, which assumes a constant density across the
entire data set. This flexibility enables HDBSCAN to
identify clusters of different shapes and sizes, making it
more adaptable to complex structures. We use a Python
package hdbscan 7 as this clustering algorithm. The
hyperparameters of HDBSCAN adjusted in this paper are
min_cluster_size and min_samples. min_clus-
ter_size controls the minimum number of points required
to form a cluster, while min_samples determines how
conservative the algorithm is in classifying points as noise or
part of a cluster. These parameters directly influence the
number of clusters and the overall shape of the clustering.
To improve the clustering results, we optimize the

hyperparameters of the clustering algorithm by maximizing
the mean silhouette coefficient 8(P. J. Rousseeuw 1987) across
all samples. The silhouette coefficient measures how well a
sample fits within its assigned cluster, with values ranging from
−1 to 1. Higher values indicate more tightly grouped, well-
defined clusters. We show the mean silhouette coefficients
changed with the hyperparameters of the clustering algorithm
in Figure 2. In this work, we chose the hyperparameters with
max mean silhouette coefficients, which are n_clusters = 3
for k-means and min_cluster_size = 37 9 and min_-
samples = 3 for HDBSCAN. We also include the condensed
tree of HDBSCAN in Appendix A, to highlight the persistence
and stability of the clustering results.

5 https://github.com/lmcinnes/umap

6 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html
7 https://hdbscan.readthedocs.io/en/latest/index.html
8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
silhouette_score.html
9 In fact, when we fixed min_samples at 3, the mean silhouette coefficients
remained constant as min_cluster_size varied from 37 to 60. However,
the number of noise points increased during this range. Therefore, we chose
min_cluster_size = 37 for this study.

5
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3.2. Evaluation Metrics

In this study, we experimented with various machine
learning algorithms and hyperparameters, and their classifica-
tion performance requires evaluation using specific metrics.
The outputs of clustering can be written as the following forms:

1. TP. The true positives, meaning the number of repeaters
correctly classified in the repeater cluster.

2. TN. The true negatives, representing the number of
nonrepeaters correctly classified in the nonrepeater cluster.

3. FP. The false positives, representing the number of
nonrepeaters incorrectly classified in the repeater cluster.

4. FN. The false negatives, indicating the number of
repeaters incorrectly classified in the nonrepeater cluster.

Generally, based on the four outputs mentioned above, various
metrics can be calculated to evaluate the model’s performance:

1. Recall: TP/(TP + FN).
2. Precision: TP/(TP + FP).
3. Accuracy: (TP + TN)/(TP + TN + FP + FN).

In this study, we use recall to evaluate the model’s
performance, as observational limitations prevent the accurate
determination of nonrepeaters, making it impossible to reliably
estimate TN and FP.

4. Results and Discussion

4.1. Dimensionality Reduction and Clustering

Based on the methods and hyperparameters discussed in
Section 3.1.1, we present the UMAP dimensionally reduced
features of 745 FRBs in the left panel of Figure 3. The blue
dots represent nonrepeaters, while the green and red crosses
indicate repeaters from Cat1 and Cat2023, respectively. It is
evident that after dimensionality reduction by UMAP, the
repeaters are clustered in the upper right corner, while a distinct
group of pure nonrepeaters appears in the lower left corner,
separated by a noticeable gap from the mixture. This indicates
that the 16 parameters of FRBs used in the analysis have the
ability to distinguish between nonrepeaters and repeaters.

Figure 2. The mean silhouette coefficients of k-means (left) and HDBSCAN (right) with respect to different hyperparameters.

Figure 3. The results of dimensionality reduction and clustering. Left: the distribution of the UMAP embedded data. The blue dots represent nonrepeaters, while the
green and red crosses indicate repeaters from Cat1 and Cat2023, respectively. Middle: the clustering result of the UMAP embedded data from k-means. Clusters 0, 1,
and 2 are represented by the blue dots, orange stars, and red crosses, respectively. Right: the clustering result of the UMAP embedded data from HDBSCAN. The gray
triangles, blue dots, cyan squares, orange stars, light coral diamonds, and red crosses represent noise and Clusters 0, 1, 2, 3, and 4, respectively.
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Then we used two types of clustering algorithms—k-means
and HDBSCAN—to cluster the 2D UMAP embedding. We
present the clustering results in the middle and right panels of
Figure 3, based on the hyperparameters of k-means and
HDBSCAN discussed in Section 3.1.2. If the proportion of
repeaters in a cluster exceeds 30%, we classify it as a “repeater
cluster,” with the nonrepeaters within it considered as “repeater
candidates.” Conversely, if the proportion is below 30%, it is
classified as an “nonrepeater cluster.”

As shown in the middle panel of Figure 3, the k-means
algorithm divided the UMAP embedded data into three
clusters. Cluster 0 contains 210 FRBs, all of which are
nonrepeaters. Cluster 2 consists of 294 FRBs, including 98
repeaters and 196 repeater candidates (the repeater burst
percentage is 33.3%). Cluster 3 contains 235 FRBs, with 132
repeaters (the repeater burst percentage is 56.2%) and 103
repeater candidates. All repeaters are classified into repeater
clusters, giving a recall of 100%. Out of the 509 nonrepeaters,
299 repeater candidates were identified (from 269 nonrepeater
sources). If these repeater candidates are real, the repeater
source percentage of FRBs would reach approximately 61.7%,
exceeding the predicted rates from studies such as B. H. Chen
et al. (2022), J.-M. Zhu-Ge et al. (2022), and X. Yang et al.
(2023).
As shown in the right panel of Figure 3, HDBSCAN divided

the UMAP embedded data into five clusters and a noise cluster.
Cluster 0 contains 169 FRBs, all of which are nonrepeaters.
Cluster 1 includes 15 repeaters and 138 nonrepeaters, with
repeater bursts making up only 9.8%. Clusters 2, 3, and 4
contain 206, 94, and 58 FRBs, with 88, 66, and 47 repeaters
(repeater burst percentages accounting for 42.7%, 70.2%, and
81.0%, respectively) and repeater candidates numbering 118,
28, and 11 (a total of 157 candidates, corresponding to 141
nonrepeater sources). The recall for the 739 samples is 93.1%.
The overall repeater source percentage is around 37.9%,
slightly lower than the results of S. Yamasaki et al. (2023) and
K. McGregor & D. R. Lorimer (2024) but comparable to those
of B. H. Chen et al. (2022), J.-M. Zhu-Ge et al. (2022), and
X. Yang et al. (2023). Detailed clustering results for both
algorithms are also presented in Table 1.

We plot the feature distributions of different clusters
generated by k-means and HDBSCAN in Figures 4 and 5,
respectively. As shown in Figure 4, the rest-frame frequency
width differs the most across clusters, indicating that repeater
clusters tend to have narrower-frequency bandwidths. Sig-
nificant differences are also observed in the distributions of the

spectral index, highest frequency, redshift, energy, luminosity,
and brightness temperature among the clusters. These results
are consistent with the feature distribution of repeaters and
nonrepeaters shown in Figure 1. In Figure 5, almost all features
show notable differences in their distributions among clusters,
with the rest-frame frequency width once again being the most
distinct, similar to the results in Figure 4.
As mentioned in Section 2, there are six FRB sources that

were previously observed as nonrepeaters in Cat1 but were
later identified as repeaters in Cat2023. We mark these six
FRBs in Figure 6 with green open stars to analyze the
reliability of our repeater candidate predictions. The left and
right panels of Figure 6 show the repeater candidate predictions
from k-means and HDBSCAN, respectively. For k-means, five
out of these six FRB sources are located in the repeater clusters
and were successfully identified as repeater candidates, while
HDBSCAN predicted four of them successfully. This indicates
that our method is effective in identifying potential repeaters.
However, one of these six FRBs stands out—FRB 20180910A
—which was classified into the nonrepeater cluster by both
clustering algorithms. After analyzing its 16 parameters, we
found that its boxcar width is only 0.98 ms, and its spectral
index (0.05) and spectral running (−0.53) are very similar to
those of nonrepeaters. Additionally, its broadband emission
characteristics differ significantly from the narrowband emis-
sion typically observed in repeaters. Currently, there is no
satisfactory theoretical explanation for repeaters that exhibit
characteristics so similar to nonrepeaters. We also found that
FRB 20180910A has so far produced three detected bursts,
with intervals of 1 yr and 9 months. These bursts exhibit
noticeable differences in boxcar width, bandwidth, spectral
index, and spectral running. It is possible that these bursts are
from different nonrepeaters within the same galaxy (or
neighboring galaxies in the same direction). Further observa-
tions are needed to confirm this.
Regarding FRB 20190226B, which was misidentified only

by HDBSCAN, we analyzed its 16 parameters and found no
distinct characteristics suggesting it is a nonrepeating burst.
Additionally, some of the nonrepeaters from Cat1 have

identified host galaxies (C. J. Law et al. 2020; M. Bhardwaj
et al. 2024). In both panels of Figure 6, we highlight two of
these FRBs (FRB 20181220A and FRB 20190418A) that were
identified as repeater candidates by both clustering algorithms,
with black circles. Continued observations of the host galaxies
of these two FRBs may reveal further repeating bursts in the
future.

Table 1
The Clustering Results of the UMAP Embedded Data Using k-means and HDBSCAN

Algorithm Cluster
Nonrepeater
Number

Repeater
Number

Repeater Candidate
Number

Total
Number

Repeater Burst
Percentage Recall

Repeater Source
Percentage

k-means Cluster 0 210 0 0 210 0% 100% 61.7%
Cluster 1 0 98 196 294 33.3%
Cluster 2 0 132 103 235 56.2%

HDBSCAN Noise 45 14 0 59 23.7% 93.5% 37.0%
Cluster 0 169 0 0 169 0%
Cluster 1 138 15 0 153 9.8%
Cluster 2 0 88 118 206 42.7%
Cluster 3 0 66 28 94 70.2%
Cluster 4 0 47 11 58 81.0%

Note. For a detailed description, see Section 4.1.
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4.2. Empirical Relationships

In this paper, we further analyze the potential 2D empirical
relations within different clusters identified by various cluster-
ing algorithms. We pair the 16 parameters of FRBs from
different clusters and linearly fit the data points using scipy.
stats.linregress,10 which performs linear least-squares
regression. The form of the 2D empirical relationship is
given as y = a x + b, and the goodness of fit is evaluated
using the score (coefficient of determination), defined as

( ˆ) ( ¯)/= - å - å -R y y y y1 i i i i i i
2 2 2, where yi, ŷi, and ȳi are the

observed values, the regressed values, and the mean of the
observed values, respectively. The closer R2 is to 1, the better
the model fits the data. To quantify the statistical differences in
the slopes and intercepts of the empirical relationships across
different clusters, we implemented the Chow test for evaluation
(G. C. Chow 1960). The null hypothesis of the Chow test is
that the two samples come from the same regression model. If
the p-value is less than 0.05, the null hypothesis is rejected,
indicating that the two samples come from different regression
models.
We set a high-score threshold of R2 > 0.5 to filter out well-

fitted empirical relations and excluded parameter combinations
that inherently have a linear relationship (e.g., luminosity and
flux). For the clusters from k-means, the selected empirical

Figure 4. The distributions of 16 parameters across different clusters from k-means are illustrated, with the blue, orange, and red histogram step lines representing
Cluster 0, Cluster 1, and Cluster 2, respectively.

10 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
linregress.html
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relations are shown in Figure 7. The slope, intercept, and score
of the empirical relations are listed in Table 2. The p-values of
the Chow test between different clusters are listed in Table 3.
The left panel of Figure 7 shows the empirical relation between
two independent parameters: scattering time ( Dtlog sc) and
rest-frame width ( Dtlog rw). We observe that R2 > 0.5 only in
Cluster 2, corresponding to a repeater cluster, whereas the

D - Dt tlog logsc rw relation appears less significant in the
other two clusters. However, the slope and intercept of the
relation D - Dt tlog logsc rw are similar in Clusters 1 and 2.
Similarly, the p-value of the Chow test between Clusters 1 and
2 is greater than 0.05, indicating that they likely come from the
same regression model. This may be because both clusters are

repeater clusters. The right panel of Figure 7 displays the
empirical relation between two other independent parameters:
spectral acceleration (r) and spectral index (γ). In contrast to
the D - Dt tlog logrw sc relation, the r–γ relation is less evident
in Cluster 2 but is very pronounced in Clusters 0 and 1
(R2 > 0.8), with similar slopes and intercepts. Moreover, the
p-value of the Chow test between these two clusters even
reaches around 0.5, indicating that some repeaters may share
spectral properties with nonrepeaters. Combining the two
repeater clusters, Cluster 1 and Cluster 2, the relation

D - Dt tlog logsc rw yields an R2 value of 0.4608. Although
this is less than 0.5, it still exhibits a distinct empirical
correlation compared to nonrepeating bursts. The r–γ relation

Figure 5. The same as Figure 4 but displaying the results from HDBSCAN. The blue, cyan, orange, light coral, and red histogram step lines represent Clusters 0, 1, 2,
3, and 4, respectively.
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for the combined clusters has an R2 value of 0.3767, which is
even lower than that of Cluster 2. This may result from the
substantial disparity between the r–γ relations of Cluster 1 and
Cluster 2, as well as the relatively weak correlation observed in
Cluster 2. The p-values of the Chow test between the
nonrepeater cluster (Cluster 0) and the repeater clusters

(Clusters 1 and 2) are all below 0.05 for both empirical
relations. This result strengthens the idea that FRBs can be
classified into repeaters and nonrepeaters.
Figure 8 shows the empirical relations for different clusters

from HDBSCAN, and Table 4 lists the slope, intercept, and
score of these empirical relations. The p-values of the Chow
test between different clusters are listed in Table 5. The left

Figure 6. The distribution of nonrepeaters (blue dots), repeater candidates (orange diamonds), and repeaters (red crosses) is presented in the clustered UMAP
embedded data from both k-means (left) and HDBSCAN (right). The gray triangles represent noises. The green stars mark the first bursts of six repeaters that were
misidentified as nonrepeaters in Cat1 but are later identified as repeaters in Cat2023. The black circles indicate the localized nonrepeaters.

Figure 7. The empirical relationships between scattering time ( Dtlog sc) and rest-frame width ( Dtlog rw; left) and between spectral acceleration (r) and spectral index
(γ; right) are shown for FRBs in different clusters from k-means. These relationships are represented by blue, orange, and red lines, corresponding to Clusters 0, 1, and
2, respectively. The associated R2 values are shown in the same colors. Additionally, the dashed magenta line and its corresponding R2 represent the combined data
from Clusters 1 and 2. See Section 4.2 for details.

Table 2
The Slope (a), Intercept (b), and R2 Values of the Empirical Relations for

Different Clusters from k-means

x y Cluster a b R2

Dtlog sc Dtlog rw 0 0.3440 −0.3055 0.2818
1 0.4954 −0.1744 0.3966
2 0.6572 −0.1256 0.5463

[1, 2] 0.5691 −0.1519 0.4608

r γ 0 −0.9000 −1.6846 0.8977
1 −0.7853 −1.9914 0.8226
2 −0.1613 11.4422 0.3920

[1, 2] −0.1936 11.1439 0.3767

Table 3
The p-values of Chow Tests for k-means Clusters

p-value

Relation

Clusters D - Dt tlog logsc rw r–γ

0 and 1 0.0016 0.5177

0 and 2 1.75e–06 6.28e–05

1 and 2 0.1975 1.11e–16

0 and [1, 2] 2.49e–06 0.0190
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panel displays the relation between the rest-frame width
( Dtlog sc) and the brightness temperature ( Tlog B), which are
also two independent parameters. We can see that only Cluster
0 (a nonrepeater cluster) has a significant D -t Tlog logsc B
relation with R2 > 0.6, while the other clusters show no strong

D -t Tlog logsc B relation. Even if the p-values of the Chow
test between some clusters are greater than 0.05, this does not
necessarily indicate that they originate from the same
regression model. The right panel shows the empirical relation
between spectral acceleration (r) and spectral index (γ). All
clusters exhibit a significant r–γ relation, especially Clusters
0–3, where R2 > 0.8. Notably, Clusters 0 and 3 (a repeater
cluster) have very similar slopes and intercepts for the r–γ
relation (the p-value of the Chow test is 0.45), suggesting that
certain repeaters might have spectral properties similar to those
of nonrepeaters, a trend also observed in the k-means results.
We also analyzed the relations using the combined data from
Clusters 0 and 1 (nonrepeater clusters) as well as from Clusters
2, 3, and 4 (repeater clusters). For the D -t Tlog logsc B
relation, the R2 value for the nonrepeater clusters is less than

0.5, likely due to the scattered data in Cluster 1. However, it
still performs better than the repeater cluster, which has an R2

value of 0.0444, indicating that the D -t Tlog logsc B relation is
virtually nonexistent for the repeater cluster. The r–γ relation is
still apparent in the nonrepeater clusters, but the R2 value is less
than 0.5 in the repeater clusters. This may be due to the
significant differences in slope and intercept of the r–γ relation
across Clusters 2, 3, and 4. The p-values of the Chow test
between nonrepeater clusters and repeater clusters are all
significantly below 0.05 for both empirical relations, aligning
with the results from k-means clustering.

5. Conclusion and Future Prospects

Machine learning is a powerful tool for classifying FRBs. In
this paper, we applied unsupervised learning methods, includ-
ing dimensionality reduction and clustering algorithms, to

Figure 8. The empirical relationships between scattering time ( Dtlog sc) and brightness temperature ( Tlog B; left) and between spectral acceleration (r) and spectral
index (γ; right) are shown for FRBs in different clusters from HDBSCAN. These relationships are represented by the blue, cyan, orange, light coral, and red lines,
corresponding to Clusters 0, 1, 2, 3, and 4, respectively. The associated R2 values are shown in the same colors. Additionally, the dashed black (magenta) line and its
corresponding R2 represent the combined data from Clusters 0 and 1 (2, 3, and 4). See Section 4.2 for details.

Table 4
The Slope (a), Intercept (b), and R2 Values of the Empirical Relations for

Different Clusters from HDBSCAN

x y Cluster a b R2

Dtlog sc Tlog B 0 −1.4741 35.8475 0.6159
1 −1.0264 34.9418 0.1888
2 −0.7559 34.4684 0.0669
3 −0.9667 34.4318 0.0576
4 −0.098 34.1223 0.0003

[0, 1] −1.1274 35.3659 0.2793
[2, 3, 4] −0.7510 34.4152 0.0444

r γ 0 −0.9394 −2.2495 0.9125
1 −0.6574 −2.6236 0.8386
2 −0.4835 −7.4780 0.8053
3 −0.8527 4.4482 0.9187
4 −0.1090 11.8615 0.5293

[0, 1] −0.7424 −2.1286 0.8258

[2, 3, 4] −0.1542 16.5526 0.2878

Table 5
The p-values of Chow Tests for HDBSCAN Clusters

p-value

Relation

Cluster D -t Tlog logsc B r–γ

0 and 1 0.0041 1.13e–10

0 and 2 0.1701 1.75e–09

0 and 3 0.0483 0.4561

0 and 4 0.5232 1.11e–16

1 and 2 0.2403 0.0019

1 and 3 8.12e–07 6.34e–12

1 and 4 0.0014 1.11e–16

2 and 3 0.0002 1.11e–16

2 and 4 0.0379 1.11e–16

3 and 4 0.6024 1.11e–16

[0, 1] and [2, 3, 4] 2.43e–11 1.97e–08

11

The Astrophysical Journal, 982:16 (21pp), 2025 March 20 Qiang et al.



differentiate between repeaters and nonrepeaters in the first
CHIME/FRB catalog (CHIME/FRB Collaboration et al. 2021)
and the CHIME/FRB Collaboration 2023 catalog (CHIME/
FRB Collaboration et al. 2023). We extracted 16 parameters
from the FRBs to serve as input features for unsupervised
learning, ensuring that the information from the FRBs was
sufficiently comprehensive. Ultimately, we successfully identi-
fied several candidate repeaters among the nonrepeaters. Using
the UMAP + k-means method, we identified 269 nonrepeaters
as repeater candidates, with an estimated repeater source
percentage of 61.7%. With the UMAP + HDBSCAN method,
141 nonrepeaters were identified as repeater candidates,
yielding a repeater source percentage of 37.9%. All repeater
candidates are summarized in Appendix B. Additionally, we
found that FRBs in repeater clusters and nonrepeater clusters
exhibit different distributions across several features, suggest-
ing that repeaters and nonrepeaters may belong to distinct
categories.

We used six FRB sources previously classified as non-
repeaters but actually confirmed as repeaters to evaluate the
predictive capability of our model. The UMAP + k-means
method successfully predicted five of these sources, while the
UMAP + HDBSCAN method successfully predicted four. The
only exception was FRB 20180910A, which could not be
predicted. The reason for this is that many of its characteristics
—such as frequency bandwidth, spectral index, and spectral
running—closely resemble those of nonrepeaters, making it
distinctly different from typical repeaters. Additionally, the
intervals between the three outbursts of this repeater are quite
long, and the features of each burst show significant variation.
This may indicate that the FRB sources are unrelated and
originate from different galaxies within the same direction or
from different sources in the same galaxy. Furthermore, within
Cat1, there are some localized nonrepeaters, and we identified
two of them as repeater candidates using both clustering
algorithms. Continued observations of the host galaxies of
these two FRBs may reveal additional repeating bursts in the
future.

We further analyzed the empirical relations that may exist
within different clusters. For the clusters derived from k-means,
we identified a significant (with R2 > 0.5) D - Dt tlog logsc rw
relation exclusive to Cluster 2, as well as an r–γ relation
present only in Clusters 0 and 1. For the clusters obtained
through HDBSCAN, we found a notable D -t Tlog log Bsc
relation that exists solely in Cluster 0, along with the r–γ
relation observed across all clusters. The spectral index γ and
the spectral running r are the shape parameters of the FRB
spectrum, described by a continuous power-law function
(Z. Pleunis et al. 2021; Planck Collaboration et al. 2020):

( ) ( ) ( )( )/ /n n n= g n n+I A , 8r
0

ln 0

where I(ν) is the intensity at spectral frequency ν, A is the
amplitude, and ν0 is the pivotal frequency, set at
400.1953125MHz, the lower limit of the CHIME band. The
strict r–γ relation means that only one parameter can determine
the morphology of an FRB. Some clusters from k-means
exhibit relatively weak but still noteworthy empirical relations,
such as the D - Dt tlog logsc rw relation in Clusters 0 and 1 and
the r–γ relation in Cluster 2. Similarly, for HDBSCAN, the

D -t Tlog logsc B relation is present but weak in Cluster 1,
while it is extremely weak in Clusters 2, 3, and 4, suggesting
that it is effectively nonexistent in the latter. These results

suggest that the D - Dt tlog logsc rw relation is more pro-
nounced in repeater clusters, whereas the D -t Tlog logsc B

relation is more evident in nonrepeater clusters. While the r–γ
relation is significant in both repeaters and nonrepeaters,
the noticeable differences in slopes and intercepts across
different repeater clusters indicate that repeaters do not form
a homogeneous group, and their properties may vary
significantly.
We also applied the Chow test to assess statistical

differences in the slopes and intercepts of empirical relation-
ships across different clusters. For certain prominent empirical
relationships, the Chow test p-values indicate that some
repeater and nonrepeater clusters share a common regression
model, such as the r–γ relation in Clusters 0 and 1 from k-
means and Clusters 0 and 3 from HDBSCAN. This suggests
that some repeaters and nonrepeaters exhibit comparable
spectral characteristics, a finding consistent with observational
evidence—particularly in the case of FRB 20180910A, if it is
indeed a genuine repeater. However, this also implies that if
some repeaters behave similarly to nonrepeaters in key spectral
relationships, some FRBs currently classified as nonrepeaters
might actually be repeaters with undetected bursts, due to
observational limitations. Subsequently, when all repeater
and nonrepeater clusters are merged separately, the Chow test
p-values reveal significantly distinct empirical relationships
between the two groups, reinforcing the notion that FRBs can
indeed be categorized into repeaters and nonrepeaters.
In the future, improvements in observational data and

machine learning techniques will refine FRB classification,
reduce misclassifications, and uncover more repeaters. The use
of advanced clustering algorithms and multiwavelength
observations will enhance the accuracy of models, while deep
learning approaches may reveal new patterns. These advance-
ments will contribute to a better understanding of the origins
and physical mechanisms of FRBs, with potential implications
for cosmology.
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Appendix A
Condensed Tree of HDBSCAN

We show the condensed tree of HDBSCAN in Figure 9 to
highlight the persistence and stability of the clustering results.
λ is used to consider the persistence of clusters, which can be
calculated by λ = 1/d, where d is the distance between a point
and cluster core. For a given cluster, λbirth marks when the

12

The Astrophysical Journal, 982:16 (21pp), 2025 March 20 Qiang et al.



cluster first formed, and λdeath (if applicable) marks when it
split into smaller clusters. For each point p in the cluster, λp
represents the value at which the point left the cluster,
occurring between λbirth and λdeath, either during the cluster’s
lifetime or at the split. Then we can compute the stability for
each cluster as ( )= å l lÎ -S p cluster p birth

. Start by declaring all leaf
nodes as selected clusters. Move up the tree: if the sum of the
child cluster stabilities exceeds the parent cluster’s stability,
update the parent’s stability to this sum. Otherwise, select the
parent cluster and deselect its descendants. At the root node, the
selected clusters form the flat clustering, which is then returned.
Ultimately, we selected the five clusters enclosed within the

ellipses in Figure 9. See https://hdbscan.readthedocs.io/en/
latest/how_hdbscan_works.html for more details.

Appendix B
Repeater Candidates

Here, we present the repeater candidates identified using
unsupervised machine learning methods, listed in Table 6. The
“Sub Num” column lists the sub-burst numbers of FRBs from
Cat1 and Cat2023. The “Note” column specifies whether each
candidate was identified exclusively by k-means (“k”) or by
both k-means and HDBSCAN (“both”).

Figure 9. The condensed tree of HDBSCAN. The leaf nodes within the ellipses of different colors represent the final clusters obtained by HDBSCAN, while the other
leaf nodes are noise.
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Table 6
The List of Repeater Candidates

FRB Name Sub Num R.A.(J2000)
Decl.

(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin
νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20180725A 0 93.4 67.1 2.95 0.30 1.70 4.10 1.10 38.20 −45.80 760.1 485.3 607.4 0.641 40.45 450.9 0.18 43.28 35.74 k

FRB 20180729A 0 199.4 55.6 0.98 0.10 11.70 17.00 0.16 16.46 −30.21 692.7 400.2 525.6 0.002 36.03 293.2 0.10 38.87 32.69 k

FRB 20180729B 0 89.9 56.5 1.97 0.31 0.92 1.20 0.66 14.50 −14.60 800.2 441.8 657.5 0.158 38.70 414.9 0.27 41.64 34.50 k

FRB 20180801A 0 322.5 72.7 9.83 0.58 1.11 7.90 5.54 60.00 −75.50 709.3 500.2 595.6 0.553 40.60 324.8 0.37 42.94 34.40 both

FRB 20180810B 0 180.4 83.1 0.98 0.31 5.20 7.90 0.20 −0.76 −4.06 778.6 400.2 400.2 0.031 37.86 390.1 0.30 40.70 34.86 k

FRB 20180812A 0 19.3 80.8 7.86 1.30 0.93 5.40 2.81 −2.90 −8.30 586.4 400.2 400.2 0.727 40.50 321.6 0.75 42.97 35.10 both

FRB 20180904A 0 286.6 81.2 1.97 0.53 3.80 6.00 0.55 12.12 −23.18 712.3 400.2 519.7 0.257 39.73 392.2 0.42 42.63 35.76 k

FRB 20180907A 0 320.9 29.5 5.90 0.87 0.87 2.80 0.26 −2.30 −5.10 648.6 400.2 400.2 0.797 40.30 446.5 0.48 43.04 35.40 k

FRB 20180907E 0 167.9 47.1 11.80 4.15 0.73 6.90 3.38 −7.10 −2.70 536.3 400.2 400.2 0.312 39.85 178.5 3.16 41.99 33.89 both

FRB 20180909A 0 123.6 56.8 19.66 6.31 0.33 1.02 8.20 −0.30 −1.30 800.2 400.2 400.2 0.319 39.04 527.5 4.79 41.67 33.12 k

FRB 20180911A 0 99.5 84.6 1.97 0.83 1.60 2.60 0.94 −5.78 0.20 599.9 400.2 400.2 0.085 38.26 216.6 0.77 41.09 34.62 both

FRB 20180915A 0 280.6 17.9 4.92 0.80 2.30 6.20 0.88 6.50 −9.10 800.2 400.2 571.9 0.128 39.16 451.1 0.71 41.78 34.04 k

FRB 20180915B 0 225.2 25.0 4.92 1.69 0.99 3.80 0.11 −9.20 3.00 527.4 400.2 400.2 0.072 38.28 136.3 1.58 40.73 33.47 both

FRB 20180916A 0 349.0 80.3 0.98 0.10 2.40 4.50 0.19 2.41 −8.10 793.2 400.2 464.7 0.151 39.08 452.2 0.09 41.87 35.79 k

FRB 20180920A 0 78.9 28.3 14.75 2.22 0.86 8.50 9.10 20.10 −26.30 787.4 435.9 585.9 0.360 40.24 478.2 1.63 42.38 33.57 k

FRB 20180920B 0 191.1 63.5 10.81 2.33 0.35 1.70 1.73 12.30 −121.00 483.4 400.2 421.1 0.401 39.49 116.5 1.66 41.95 33.83 both
FRB 20180921A 0 28.9 5.0 3.93 1.14 0.92 2.30 1.50 1.00 −10.40 672.2 400.2 419.9 0.319 39.42 358.8 0.86 42.14 34.92 k

FRB 20180922A 0 342.3 69.7 2.95 0.81 2.60 7.70 0.31 −4.00 −9.20 555.9 400.2 400.2 0.383 40.08 215.3 0.58 42.75 35.83 both

FRB 20180923A 0 327.6 71.9 1.97 0.15 0.76 1.20 0.21 18.20 −57.40 572.9 400.2 468.9 0.026 36.96 177.2 0.15 39.77 33.12 both
FRB 20180923D 0 169.1 48.8 0.98 0.10 2.40 2.20 0.11 20.90 −92.70 524.4 400.2 448.0 0.248 39.20 155.0 0.08 42.33 36.27 both

FRB 20180923C 0 239.1 22.9 1.97 0.32 0.89 1.37 0.50 1.00 −10.20 675.6 400.2 420.5 0.059 37.69 291.7 0.30 40.53 34.01 both

FRB 20180925B 0 145.4 21.0 5.90 1.15 0.76 2.70 1.40 15.00 −41.50 606.9 400.2 479.6 0.623 40.14 335.5 0.71 42.80 34.97 both

FRB 20180928A 0 312.9 30.9 2.95 0.27 1.34 2.50 0.15 −2.93 −39.70 492.1 400.2 400.2 0.002 35.08 92.1 0.27 37.81 31.02 both
FRB 20181012B 0 206.3 64.2 3.93 0.56 0.49 1.44 0.26 20.90 −154.00 483.9 400.2 428.3 0.682 39.90 140.8 0.33 42.66 35.31 both

FRB 20181013A 0 262.8 38.4 0.98 0.51 2.81 3.50 0.56 1.08 −5.20 800.2 400.2 443.7 0.204 39.22 481.5 0.43 42.20 36.16 k

FRB 20181013E 0 307.3 69.0 2.95 0.86 0.62 2.03 1.10 −5.60 0.90 623.0 400.2 400.2 0.208 38.96 269.1 0.71 41.52 34.66 both

FRB 20181013B 0 97.2 52.0 119.93 2.80 0.56 21.00 65.60 −0.50 −4.20 790.4 400.2 400.2 0.119 39.47 436.5 2.50 40.95 30.90 k

FRB 20181013C 0 146.1 34.1 4.92 0.76 0.44 1.64 0.43 −3.70 −0.80 698.0 400.2 400.2 1.001 40.26 595.8 0.38 42.99 35.46 k

FRB 20181014C 0 117.9 41.6 3.93 0.79 0.57 1.48 1.00 18.00 −30.50 707.7 408.6 537.7 0.694 40.03 506.7 0.47 42.84 35.20 k

FRB 20181017B 0 237.8 78.5 12.78 2.31 1.06 6.50 4.30 61.00 −77.00 704.8 499.3 593.2 0.207 39.63 248.0 1.91 41.92 33.27 k

FRB 20181018B 0 336.8 71.9 0.98 0.48 5.10 7.90 0.50 7.30 −10.45 800.2 400.2 567.4 0.105 39.09 441.9 0.43 41.94 35.62 k

FRB 20181018C 0 67.2 37.6 0.98 0.48 2.40 3.30 0.51 −0.61 −7.60 668.2 400.2 400.2 0.208 39.17 323.8 0.39 42.11 36.21 both

FRB 20181022C 0 141.6 83.8 3.93 0.80 0.91 3.20 0.68 2.90 −14.20 664.2 400.2 443.9 0.456 39.90 384.3 0.55 42.52 35.19 k

FRB 20181022D 0 179.2 36.5 1.97 0.59 2.90 6.20 0.63 18.20 −14.40 800.2 505.7 754.7 0.473 40.46 433.8 0.40 43.29 35.87 both
FRB 20181022E 0 221.2 27.1 2.95 0.40 0.69 2.08 0.63 8.70 −42.30 560.3 400.2 443.7 0.207 39.01 193.3 0.33 41.61 34.61 both

FRB 20181027A 0 131.9 −4.2 5.90 0.72 4.90 22.00 4.72 −0.40 6.10 800.2 530.0 800.2 0.662 41.33 449.2 0.43 43.90 35.39 both

FRB 20181030C 0 309.8 4.0 0.98 0.61 1.60 5.50 0.74 10.00 −22.20 691.2 400.2 500.9 0.587 40.42 461.7 0.38 43.08 36.76 k

FRB 20181030D 0 81.8 16.1 2.95 0.36 2.74 5.90 0.87 1.51 −3.00 800.2 400.2 514.8 0.086 38.74 434.4 0.33 41.45 34.30 k

FRB 20181030E 0 135.7 8.9 5.90 0.40 2.00 6.30 0.97 22.30 −69.00 564.8 400.2 470.5 0.013 37.09 166.8 0.39 39.59 31.99 both

FRB 20181101A 0 21.3 53.9 30.47 6.03 0.50 10.70 10.00 16.40 −37.70 636.8 400.2 497.4 1.413 41.46 571.0 2.50 43.51 34.03 k

FRB 20181115A 0 143.0 56.4 4.92 1.83 0.44 1.92 2.10 19.60 −62.00 568.4 400.2 468.8 0.972 40.37 331.7 0.93 43.03 35.30 both

FRB 20181116A 0 36.0 4.5 1.97 0.44 4.00 5.23 0.47 2.37 −11.00 704.7 400.2 445.8 0.271 39.65 387.2 0.35 42.64 35.96 k

FRB 20181116B 0 232.7 64.9 3.93 0.64 0.74 1.92 0.17 −8.80 −4.70 505.5 400.2 400.2 0.336 39.36 140.6 0.48 42.07 34.92 both

FRB 20181117B 1 81.1 80.0 7.86 1.28 3.60 11.00 1.30 11.40 −31.20 630.4 400.2 480.4 0.449 40.46 333.7 0.88 43.14 35.10 both

FRB 20181119B 0 299.4 31.1 22.61 3.33 4.50 94.00 16.59 2.72 −4.65 800.2 400.2 536.4 0.087 39.98 434.9 3.06 41.69 32.72 k
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Table 6
(Continued)

FRB Name Sub Num R.A.(J2000)
Decl.

(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin
νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20181119C 0 190.1 82.2 0.98 0.45 2.80 3.50 0.48 −1.81 −5.70 657.7 400.2 400.2 0.178 39.06 303.4 0.38 42.03 36.13 both
FRB 20181122A 0 60.0 55.5 2.95 0.68 0.53 1.42 0.18 −4.90 0.60 661.4 400.2 400.2 0.442 39.48 376.7 0.47 42.21 35.27 k

FRB 20181122B 0 281.1 85.0 0.98 0.25 14.70 22.00 0.14 4.86 −13.27 729.1 400.2 480.7 0.093 39.36 359.5 0.23 42.22 36.12 k

FRB 20181123A 0 300.8 55.9 1.97 0.58 0.99 2.50 1.92 25.60 −64.30 590.2 404.2 488.5 0.697 40.22 315.7 0.34 43.04 36.12 both

FRB 20181125A 0 147.9 33.9 14.75 1.28 0.39 3.20 1.50 9.00 −54.00 533.7 400.2 434.5 0.171 39.02 156.3 1.09 41.17 32.81 both
FRB 20181125A 1 147.9 33.9 14.75 1.44 0.39 3.20 1.50 7.30 −41.80 552.0 400.2 436.6 0.171 39.02 177.8 1.23 41.17 32.81 both

FRB 20181125A 2 147.9 33.9 14.75 1.58 0.39 3.20 1.50 7.30 −58.00 520.9 400.2 426.5 0.171 39.01 141.3 1.35 41.16 32.83 both

FRB 20181126A 0 262.1 81.2 1.97 0.41 3.50 9.40 0.16 17.93 −90.70 518.1 400.2 441.8 0.417 40.29 167.1 0.29 43.01 36.30 both
FRB 20181127A 0 243.8 25.4 3.93 0.74 0.78 2.90 0.58 18.50 −51.30 592.3 400.2 479.3 0.923 40.52 369.4 0.38 43.23 35.68 both

FRB 20181128B 0 157.2 38.3 5.90 1.68 0.34 1.95 0.44 −3.50 −2.20 661.3 400.2 400.2 0.392 39.51 363.6 1.21 41.90 34.37 k

FRB 20181128D 0 215.6 59.9 1.97 1.07 2.60 7.00 0.11 −2.48 0.28 800.2 400.2 400.2 0.018 37.36 407.4 1.05 39.94 33.50 k

FRB 20181128C 0 268.8 49.7 14.75 2.30 0.39 3.40 2.32 27.40 −75.00 572.1 403.2 480.3 0.557 40.14 263.0 1.48 42.40 33.79 both
FRB 20181128C 1 268.8 49.7 14.75 0.10 0.39 3.40 2.32 23.30 −60.00 590.8 400.2 485.8 0.557 40.15 296.8 0.06 42.40 33.78 both

FRB 20181129B 0 307.6 81.3 1.97 0.36 4.00 9.50 0.83 73.80 −112.00 642.7 482.3 556.8 0.301 40.10 208.7 0.28 42.84 35.87 both

FRB 20181130A 0 355.2 46.5 0.98 0.48 0.97 1.27 0.51 2.70 −45.70 515.9 400.2 412.1 0.033 37.14 119.5 0.46 40.04 34.16 both

FRB 20181203A 0 33.6 23.6 2.95 0.17 1.74 3.60 1.44 13.20 −8.50 800.2 515.2 800.2 0.580 40.43 450.2 0.11 43.31 35.42 both
FRB 20181203B 0 47.3 24.0 3.93 0.58 1.45 4.50 2.32 47.80 −43.60 800.2 550.8 693.2 0.272 39.78 317.2 0.45 42.39 34.54 both

FRB 20181209A 0 98.2 68.7 1.97 0.60 2.50 3.20 0.64 0.42 −25.50 544.7 400.2 403.5 0.206 39.15 174.2 0.50 42.12 35.60 both

FRB 20181213B 0 183.5 53.7 4.92 0.85 0.75 1.70 1.20 45.60 −45.10 800.2 529.6 664.0 0.587 40.03 429.5 0.54 42.88 34.79 both

FRB 20181213C 0 216.4 47.5 2.95 1.25 0.62 1.86 1.50 −2.10 1.20 800.2 400.2 400.2 0.309 39.27 523.5 0.96 41.91 35.01 k

FRB 20181214A 0 70.0 43.1 2.95 0.53 0.16 0.41 0.44 23.30 −139.00 494.6 400.2 435.0 0.231 38.39 116.2 0.43 41.06 34.08 both

FRB 20181214F 0 252.6 32.4 8.85 2.30 0.31 2.21 1.52 8.00 −65.00 514.1 400.2 425.7 2.324 41.09 378.6 0.69 43.76 35.42 both

FRB 20181215A 0 93.4 39.3 4.92 1.34 0.34 0.72 1.70 −2.40 −1.10 800.2 400.2 400.2 0.231 38.60 492.4 1.09 41.37 34.05 k

FRB 20181216A 0 306.3 53.5 1.97 0.22 0.94 1.70 0.89 14.80 −16.10 800.2 434.2 634.0 0.362 39.58 498.3 0.16 42.45 35.29 k

FRB 20181218A 0 5.1 71.3 5.90 1.39 0.83 1.59 0.22 19.00 −83.60 529.3 400.2 448.4 1.894 40.82 373.6 0.48 44.00 36.00 both

FRB 20181218B 0 18.0 69.4 2.95 1.69 0.56 1.80 2.00 −2.70 −2.30 708.8 400.2 400.2 0.573 39.81 485.6 1.07 42.50 35.52 k

FRB 20181218C 0 286.0 58.2 4.92 5.20 0.25 1.73 6.80 4.40 −13.10 718.5 400.2 472.7 0.273 39.20 405.3 4.08 41.47 33.92 k

FRB 20181219C 0 17.8 14.1 2.95 1.26 0.21 0.57 0.53 −1.00 −4.60 735.5 400.2 400.2 0.605 39.36 538.0 0.79 42.13 35.14 k

FRB 20181220A 0 346.1 48.4 2.95 0.43 1.33 3.00 0.46 −5.26 −1.30 596.4 400.2 400.2 0.002 35.16 196.6 0.43 37.81 31.02 both

FRB 20181220B 0 277.4 84.9 1.97 0.56 2.90 3.80 0.62 0.45 −4.80 800.2 400.2 419.5 0.134 38.86 453.7 0.49 41.80 35.25 k

FRB 20181221A 0 230.6 25.9 4.92 0.75 1.25 5.80 1.32 62.10 −128.00 583.3 446.1 510.1 0.240 39.65 170.2 0.61 42.07 34.44 both
FRB 20181221B 0 306.3 81.0 2.95 1.04 0.97 3.30 1.10 25.30 −61.20 597.6 405.4 492.2 1.419 40.94 465.0 0.43 43.80 36.36 k

FRB 20181222D 0 188.2 56.2 22.61 3.75 0.22 1.23 1.95 8.40 −41.10 561.3 400.2 443.0 1.481 40.51 399.8 1.51 43.15 34.07 both

FRB 20181222E 0 50.6 87.0 3.93 0.25 1.12 5.50 0.79 5.13 −19.90 639.5 400.2 455.2 0.212 39.46 290.0 0.21 41.86 34.57 both
FRB 20181222E 1 50.6 87.0 3.93 0.91 1.12 5.50 0.79 9.90 −23.80 672.3 400.2 492.8 0.212 39.50 329.8 0.75 41.89 34.50 k

FRB 20181223B 0 174.9 21.6 8.85 1.57 0.68 4.10 3.50 33.30 −41.00 761.2 473.8 600.6 0.525 40.27 438.2 1.03 42.67 34.22 k

FRB 20181223C 0 181.1 27.6 1.97 0.51 1.36 2.84 0.11 2.68 −7.40 800.2 400.2 479.2 0.002 35.21 400.9 0.51 37.89 31.23 k

FRB 20181224A 0 355.1 44.6 1.97 0.39 4.30 3.30 0.40 3.85 −6.08 800.2 400.2 549.5 0.160 39.07 464.0 0.33 42.25 35.34 k

FRB 20181224E 0 239.3 7.3 1.97 1.06 3.60 10.30 1.10 −1.18 −4.40 729.5 400.2 400.2 0.530 40.50 504.0 0.69 43.23 36.61 k

FRB 20181225B 0 36.8 88.2 2.95 1.30 1.90 7.50 1.40 6.80 −10.10 800.2 400.2 560.7 0.179 39.54 471.7 1.10 42.01 34.72 k

FRB 20181226C 0 349.1 44.9 3.93 0.63 0.88 2.70 1.98 −1.09 −1.90 800.2 400.2 400.2 0.268 39.31 507.0 0.50 41.92 34.79 k

FRB 20181226D 0 120.2 22.2 1.97 0.57 1.89 3.00 0.62 0.44 −5.20 800.2 400.2 417.2 0.274 39.39 509.6 0.45 42.30 35.70 k

FRB 20181226B 0 182.7 12.4 1.97 0.59 8.90 52.00 1.10 4.10 −14.40 687.5 400.2 461.1 0.201 40.40 345.2 0.49 42.71 36.01 k

FRB 20181226B 1 182.7 12.4 1.97 0.87 8.90 52.00 1.10 1.03 −7.00 764.2 400.2 430.7 0.201 40.37 437.3 0.72 42.68 36.07 k

FRB 20181226B 2 182.7 12.4 1.97 1.00 8.90 52.00 1.10 11.50 −18.10 784.9 400.2 549.7 0.201 40.47 462.2 0.84 42.79 35.86 k
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Table 6
(Continued)

FRB Name Sub Num R.A.(J2000)
Decl.

(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin
νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20181226E 0 303.6 73.6 2.95 1.17 0.48 1.35 1.30 −5.80 −3.40 558.3 400.2 400.2 0.178 38.64 186.2 0.99 41.26 34.41 both
FRB 20181228B 0 250.4 63.9 4.92 0.10 0.40 1.67 1.16 59.30 −353.00 471.8 401.5 435.2 0.512 39.72 106.3 0.07 42.28 34.76 both

FRB 20181229B 0 238.4 19.8 20.64 3.36 0.42 4.90 5.10 22.00 −103.00 517.5 400.2 445.5 0.320 39.77 154.8 2.55 41.83 33.09 both

FRB 20181230A 0 346.7 83.4 34.41 1.64 0.94 18.00 41.00 33.00 −27.80 800.2 543.5 724.8 0.704 41.25 437.4 0.96 43.20 33.28 both

FRB 20181231B 0 128.8 56.0 2.95 0.34 0.89 2.34 1.75 59.60 −60.00 800.0 540.6 657.7 0.066 38.22 276.6 0.32 40.82 33.37 both
FRB 20181231C 0 197.1 69.2 1.97 0.39 0.68 1.20 0.41 0.41 −9.60 667.0 400.2 408.8 0.503 39.53 400.9 0.26 42.46 35.82 k

FRB 20190101B 0 307.8 29.9 2.95 0.32 1.02 4.40 5.16 41.70 −36.10 800.2 554.3 713.6 1.139 41.05 526.0 0.15 43.74 35.88 both

FRB 20190102A 0 9.3 26.7 3.93 0.82 1.12 4.20 0.99 28.90 −67.80 595.5 411.9 495.2 0.653 40.39 303.6 0.50 43.03 35.51 both
FRB 20190102B 0 21.7 21.4 2.95 0.85 1.71 3.90 0.93 0.60 −4.40 800.2 400.2 428.8 0.281 39.54 512.2 0.66 42.29 35.31 k

FRB 20190103B 0 93.6 19.7 31.46 5.83 0.68 12.90 5.40 7.70 −16.30 738.4 400.2 507.0 0.313 40.23 444.1 4.44 42.07 32.81 k

FRB 20190106A 0 22.2 46.1 6.88 0.94 0.27 0.81 5.80 9.00 −5.00 800.2 493.5 800.2 0.192 38.79 365.5 0.79 41.38 32.89 both

FRB 20190106B 0 335.6 46.1 1.97 0.58 1.70 3.80 0.60 16.58 −68.00 543.5 400.2 452.1 0.098 38.61 157.3 0.53 41.30 34.67 both
FRB 20190107A 0 0.9 21.8 47.19 25.90 0.49 6.30 20.40 −4.30 −0.40 666.9 400.2 400.2 0.824 40.68 486.5 14.20 42.83 33.38 k

FRB 20190107B 0 33.5 83.4 0.98 0.45 2.80 4.30 0.50 −1.30 −3.10 785.3 400.2 400.2 0.002 35.31 386.0 0.45 38.13 32.30 k

FRB 20190109A 0 108.0 5.2 13.76 1.65 1.19 6.40 2.20 6.10 −8.10 800.2 400.2 583.0 0.100 38.97 440.0 1.50 41.28 32.63 k

FRB 20190109A 1 108.0 5.2 13.76 3.40 1.19 6.40 2.20 4.60 −8.50 800.2 400.2 523.6 0.100 38.92 440.0 3.09 41.23 32.72 k

FRB 20190109B 0 253.5 1.2 6.88 0.34 1.20 3.00 0.26 2.50 −65.00 492.4 400.2 408.1 0.009 36.40 93.1 0.34 39.00 31.46 both

FRB 20190110A 0 65.0 47.4 2.95 0.20 1.54 3.80 0.38 6.30 −118.00 472.7 400.2 411.0 0.231 39.34 89.3 0.16 42.03 35.13 both

FRB 20190110C 0 247.0 41.4 2.95 0.39 0.64 1.40 0.22 24.50 −186.00 477.7 400.2 427.4 0.112 38.27 86.2 0.35 40.98 34.06 both

FRB 20190111A 0 217.0 26.8 5.90 0.36 3.60 17.00 0.54 6.35 −6.78 800.2 400.2 638.9 0.066 39.07 426.6 0.34 41.42 33.40 k

FRB 20190111A 1 217.0 26.8 5.90 0.44 3.60 17.00 0.54 7.91 −23.30 649.7 400.2 474.4 0.066 38.94 266.1 0.41 41.29 33.66 both

FRB 20190111A 2 217.0 26.8 5.90 0.79 3.60 17.00 0.54 −2.30 −5.80 635.8 400.2 400.2 0.066 38.87 251.2 0.74 41.22 33.81 both

FRB 20190111B 0 260.0 13.5 3.93 0.16 0.32 0.78 0.20 1.90 −17.20 609.1 400.2 422.5 1.348 40.21 490.5 0.07 43.19 35.72 k

FRB 20190112A 0 258.0 61.2 9.83 1.64 1.40 16.20 11.01 57.10 −51.40 800.2 564.6 697.7 0.348 40.56 317.5 1.22 42.63 33.95 both

FRB 20190113A 0 108.1 −3.0 6.88 1.82 1.30 5.60 2.20 7.30 −2.80 800.2 491.9 800.2 0.190 39.62 366.9 1.53 42.06 33.56 both

FRB 20190114A 0 8.9 19.2 4.92 1.34 0.55 2.30 0.38 11.10 −89.00 500.0 400.2 425.8 0.869 40.31 186.5 0.72 42.96 35.38 both

FRB 20190116F 0 261.7 75.0 2.95 1.23 0.49 1.54 1.50 3.60 −3.80 800.2 400.2 637.5 0.214 39.07 485.7 1.01 41.65 34.18 k

FRB 20190118A 0 253.3 11.6 1.97 0.14 9.30 18.00 0.28 19.42 −56.71 580.9 400.2 474.9 0.093 39.27 197.6 0.13 42.02 35.32 both

FRB 20190122C 2 200.6 17.6 14.75 2.94 4.20 47.00 0.10 4.20 −13.10 714.3 400.2 469.5 0.664 41.43 522.8 1.77 43.60 34.99 k

FRB 20190122C 3 200.6 17.6 14.75 8.90 4.20 47.00 0.10 −2.00 −4.00 669.5 400.2 400.2 0.664 41.36 448.2 5.35 43.53 35.13 k

FRB 20190122C 5 200.6 17.6 14.75 5.00 4.20 47.00 0.10 −1.40 −4.40 715.1 400.2 400.2 0.664 41.36 524.1 3.00 43.53 35.13 k

FRB 20190124C 0 217.2 28.4 13.76 0.29 2.50 13.70 0.67 0.42 −3.54 800.2 400.2 424.6 0.229 39.90 491.5 0.24 42.25 33.96 k

FRB 20190124C 1 217.2 28.4 13.76 1.77 2.50 13.70 0.67 1.31 −8.59 724.9 400.2 431.9 0.229 39.90 399.0 1.44 42.26 33.95 k

FRB 20190124D 0 237.3 81.2 4.92 0.50 0.50 1.90 0.97 0.10 −9.90 651.0 400.2 402.1 0.243 39.07 311.8 0.40 41.59 34.26 both
FRB 20190124E 0 297.8 20.6 18.68 5.74 0.64 7.30 7.50 9.10 −10.20 800.2 400.2 625.6 0.161 39.48 464.3 4.95 41.48 32.45 k

FRB 20190124F 0 338.9 5.3 1.97 0.73 3.90 6.40 0.16 2.05 −16.60 617.4 400.2 425.6 0.150 39.19 249.8 0.64 42.04 35.46 both

FRB 20190125A 0 45.7 27.8 13.76 3.21 0.37 2.60 4.10 36.00 −37.00 800.2 510.1 655.5 0.484 40.04 430.6 2.16 42.36 33.43 both

FRB 20190125B 0 231.4 50.5 6.88 2.47 0.83 4.70 0.95 5.70 −6.80 800.2 400.2 609.9 0.059 38.39 423.7 2.33 40.66 32.57 k

FRB 20190128B 0 127.4 23.3 1.97 0.60 0.81 1.64 0.21 5.30 −10.30 800.2 400.2 515.9 0.118 38.47 447.1 0.54 41.21 34.40 k

FRB 20190128C 0 69.8 78.9 15.73 6.16 0.71 5.90 7.60 22.60 −55.00 603.2 400.6 491.6 0.177 39.37 238.5 5.23 41.52 32.94 both

FRB 20190128D 0 283.3 17.4 4.92 1.27 1.20 3.60 1.50 0.80 −8.50 705.4 400.2 419.5 0.126 38.78 343.6 1.13 41.35 34.01 k

FRB 20190129A 0 45.1 21.4 8.85 1.13 0.49 5.00 10.20 43.00 −37.80 800.2 552.8 707.7 0.404 40.19 347.2 0.81 42.33 33.70 both
FRB 20190130A 0 25.6 13.2 14.75 0.99 0.47 4.40 3.20 19.30 −62.00 567.2 400.2 467.7 1.416 41.05 403.5 0.41 43.46 34.69 both

FRB 20190130B 0 172.1 16.1 3.93 0.27 0.77 2.95 0.77 55.40 −140.80 553.6 428.6 487.1 0.992 40.59 249.0 0.13 43.31 35.72 both

FRB 20190131E 0 195.7 80.9 0.98 0.23 3.00 5.10 0.16 22.00 −63.10 576.8 400.2 476.5 0.174 39.27 207.3 0.20 42.11 35.99 both
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Table 6
(Continued)

FRB Name Sub Num R.A.(J2000)
Decl.

(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin
νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20190201B 0 118.2 55.6 2.95 0.80 0.81 2.30 0.57 1.80 −14.80 632.1 400.2 425.9 0.697 40.12 393.6 0.47 42.90 35.80 k

FRB 20190201A 0 64.0 84.8 0.98 0.61 2.60 3.10 0.72 0.10 −0.20 800.2 400.2 476.6 0.103 38.59 441.4 0.55 41.56 35.46 k

FRB 20190202A 0 344.2 17.1 1.97 0.71 41.00 95.00 0.72 5.13 −12.38 757.8 400.2 492.3 0.210 40.73 432.8 0.59 43.44 36.66 k

FRB 20190203B 0 130.6 61.9 2.95 0.30 0.49 0.93 0.58 1.50 −8.50 735.7 400.2 437.5 0.520 39.48 510.1 0.20 42.38 35.30 k

FRB 20190203A 0 133.7 70.8 3.93 0.55 1.21 4.00 0.83 25.00 −75.00 563.4 400.2 472.9 0.337 39.76 218.2 0.41 42.36 34.99 both
FRB 20190204A 0 161.3 61.5 7.86 1.81 0.24 1.50 0.88 2.40 −28.00 557.9 400.2 418.2 0.382 39.39 217.9 1.31 41.73 33.90 both

FRB 20190205A 0 342.2 83.4 2.95 0.60 0.74 1.70 0.69 18.30 −47.30 605.6 400.2 485.7 0.622 39.95 333.2 0.37 42.80 35.55 both

FRB 20190206B 0 49.8 79.5 19.66 7.10 0.95 9.60 9.00 11.60 −24.60 687.6 400.2 506.4 0.219 39.78 350.3 5.82 41.86 33.04 k

FRB 20190206A 0 244.8 9.4 5.90 0.80 1.40 9.10 2.74 38.00 −65.70 644.6 443.2 534.5 0.062 38.66 213.8 0.76 40.87 33.08 both

FRB 20190208B 0 91.0 80.9 0.98 0.10 10.30 14.30 0.12 0.69 −8.02 713.9 400.2 417.9 0.651 40.85 518.0 0.06 43.92 37.82 k

FRB 20190208C 0 141.6 83.6 0.98 0.41 1.27 1.74 0.45 18.70 −54.60 583.2 400.2 474.9 0.115 38.43 204.0 0.37 41.35 35.25 both

FRB 20190210B 0 104.2 23.7 2.95 0.40 2.60 5.30 0.36 −2.45 −3.09 696.1 400.2 400.2 0.488 40.14 440.4 0.27 43.00 36.05 k

FRB 20190210D 0 307.8 55.5 1.97 0.58 1.37 2.50 0.27 20.70 −24.40 800.2 449.9 611.8 0.151 38.95 403.2 0.50 41.75 34.70 k

FRB 20190210E 0 313.6 86.7 1.97 0.96 0.69 1.45 1.10 13.40 −40.50 599.4 400.2 472.2 0.505 39.68 299.8 0.64 42.53 35.71 both

FRB 20190211B 0 299.6 61.4 0.98 0.10 0.30 1.35 0.15 1.40 −7.50 764.9 400.2 440.1 0.099 38.16 400.9 0.09 40.55 34.56 k

FRB 20190212B 0 140.0 52.1 2.95 0.23 1.55 3.70 0.50 −2.05 −3.60 702.0 400.2 400.2 0.546 40.08 466.5 0.15 42.89 35.92 k

FRB 20190212D 0 178.8 66.7 21.63 1.05 0.42 5.70 15.90 −4.20 −0.30 681.6 400.2 400.2 1.156 40.92 606.6 0.49 43.12 34.28 k

FRB 20190214C 0 218.9 19.4 6.88 1.68 1.02 5.20 1.08 4.90 −16.70 671.7 400.2 463.1 0.492 40.20 405.1 1.13 42.67 34.79 k

FRB 20190215B 0 335.0 45.3 1.97 0.86 2.20 5.60 0.92 −1.27 −2.09 800.2 400.2 400.2 0.051 38.15 420.3 0.82 40.76 34.31 k

FRB 20190218B 0 268.7 17.9 17.69 2.05 0.57 5.90 14.10 46.20 −60.00 715.2 483.4 588.0 0.442 40.26 334.2 1.42 42.41 33.41 both
FRB 20190218C 0 157.0 78.0 0.98 0.21 19.00 31.00 0.11 3.08 −16.09 643.0 400.2 440.4 0.221 40.24 296.4 0.17 43.11 37.07 both

FRB 20190220A 0 237.2 74.2 1.97 0.55 0.34 0.68 0.24 −3.30 −3.30 642.4 400.2 400.2 0.098 37.81 265.9 0.50 40.55 34.08 both

FRB 20190221A 0 132.6 9.9 2.95 0.97 1.23 2.33 0.41 5.10 −23.90 606.5 400.2 444.8 0.092 38.34 225.4 0.89 41.10 34.14 both
FRB 20190221B 0 286.8 27.9 6.88 3.94 0.69 5.60 4.90 −0.30 −2.40 800.2 400.2 400.2 0.163 39.18 465.2 3.39 41.34 33.75 k

FRB 20190221D 0 24.8 60.9 1.97 0.77 0.65 1.13 0.95 0.30 −2.40 800.2 400.2 427.2 0.231 38.83 492.5 0.63 41.68 35.07 k

FRB 20190222B 0 160.7 19.6 21.63 1.52 0.40 4.40 5.26 −1.80 −10.20 593.5 400.2 400.2 0.439 39.96 278.2 1.06 42.08 33.41 both

FRB 20190222C 0 239.2 40.0 1.97 0.68 0.44 0.83 0.74 9.30 −53.90 536.4 400.2 436.3 0.473 39.34 200.7 0.46 42.24 35.52 both
FRB 20190223A 0 64.7 87.7 3.93 0.76 0.47 1.58 0.87 21.80 −103.00 516.5 400.2 444.8 0.286 39.18 149.6 0.59 41.76 34.49 both

FRB 20190224A 0 60.5 83.4 16.71 2.04 0.63 8.50 5.77 2.60 −60.00 497.5 400.2 408.9 0.762 40.75 171.4 1.16 42.86 34.30 both

FRB 20190224E 0 183.0 61.5 1.97 0.55 2.03 4.00 0.57 2.22 −8.64 762.2 400.2 454.9 0.369 39.82 495.7 0.40 42.67 35.93 k

FRB 20190226B 0 273.6 61.8 18.68 4.00 0.38 2.38 4.90 29.90 −39.30 745.3 459.4 585.2 0.570 40.10 448.9 2.55 42.49 33.42 k

FRB 20190226C 0 17.5 26.8 4.92 1.31 0.39 1.41 1.50 6.60 −42.00 548.3 400.2 433.3 0.795 40.03 265.9 0.73 42.73 35.14 both

FRB 20190227B 0 220.5 39.8 0.98 0.40 0.48 0.71 0.47 −0.50 −0.80 800.2 400.2 400.2 0.259 38.70 503.4 0.32 41.63 35.70 k

FRB 20190228A 0 183.5 22.9 30.47 2.25 1.79 35.80 18.91 52.60 −51.90 800.2 538.4 664.7 0.365 40.93 357.3 1.65 42.76 33.16 both
FRB 20190301B 0 69.5 74.1 3.93 1.32 0.40 0.85 1.60 −1.50 −13.40 575.5 400.2 400.2 0.523 39.41 267.0 0.87 42.26 35.05 both

FRB 20190301D 0 278.7 74.7 5.90 0.36 0.39 1.50 0.54 3.60 −29.40 562.7 400.2 425.4 1.159 40.37 350.9 0.17 43.12 35.32 both

FRB 20190303B 0 128.7 66.0 4.92 0.72 9.40 42.00 1.57 −1.68 −2.56 786.7 400.2 400.2 0.061 39.19 410.1 0.67 41.56 34.31 k

FRB 20190303D 0 179.6 70.8 2.95 0.81 0.59 1.17 1.00 −0.90 −5.60 704.3 400.2 400.2 0.674 39.77 509.1 0.48 42.70 35.69 k

FRB 20190304A 0 124.5 74.6 2.95 0.41 0.71 2.90 0.90 6.30 −67.30 504.7 400.2 419.4 0.405 39.73 146.8 0.29 42.27 35.28 both

FRB 20190304B 0 204.9 24.2 2.95 0.33 0.67 2.22 0.62 −1.24 −7.40 646.5 400.2 400.2 0.420 39.63 349.8 0.23 42.26 35.32 k

FRB 20190304C 0 223.0 26.7 2.95 0.95 0.53 1.32 1.10 22.30 −87.00 535.2 400.2 454.9 0.528 39.66 206.2 0.62 42.45 35.32 both

FRB 20190308C 0 188.4 44.4 21.63 0.40 0.47 4.80 2.29 15.20 −61.00 550.7 400.2 453.4 0.454 40.09 218.9 0.28 42.24 33.40 both
FRB 20190308C 1 188.4 44.4 21.63 0.55 0.47 4.80 2.29 13.90 −60.50 545.7 400.2 449.0 0.454 40.08 211.6 0.38 42.24 33.41 both

FRB 20190308B 0 38.6 83.6 1.97 0.19 1.11 1.39 0.13 18.60 −52.90 587.9 400.2 477.2 0.015 36.57 190.6 0.18 39.48 32.82 both

FRB 20190308B 1 38.6 83.6 1.97 0.52 1.11 1.39 0.13 9.50 −37.00 585.3 400.2 455.5 0.015 36.55 187.9 0.51 39.46 32.86 both
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Table 6
(Continued)

FRB Name Sub Num R.A.(J2000)
Decl.

(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin
νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20190309A 0 279.0 52.4 1.97 0.58 0.39 0.72 0.75 12.90 −64.00 535.8 400.2 442.9 0.248 38.71 169.2 0.47 41.54 34.88 both
FRB 20190318A 0 324.1 74.5 12.78 0.93 1.55 14.20 6.23 0.04 −3.04 800.2 400.2 402.9 0.290 40.10 515.9 0.72 42.25 34.08 k

FRB 20190320C 0 254.7 22.4 3.93 1.04 1.24 3.14 1.30 0.40 −2.20 800.2 400.2 442.0 0.275 39.44 510.2 0.82 42.14 34.88 k

FRB 20190320E 0 76.6 89.2 2.95 0.83 4.40 12.30 0.72 6.06 −7.70 800.2 400.2 592.6 0.182 39.79 472.8 0.70 42.42 35.05 k

FRB 20190322B 0 132.0 73.3 2.95 1.30 0.61 2.04 1.70 −0.10 −6.20 725.7 400.2 400.2 0.513 39.77 492.6 0.86 42.43 35.46 k

FRB 20190323C 0 199.5 40.1 2.95 0.31 0.56 1.38 1.08 2.70 −10.70 722.5 400.2 454.3 0.317 39.22 424.5 0.24 41.95 34.88 k

FRB 20190323D 0 56.9 46.9 12.78 5.43 0.37 2.49 7.00 −7.50 −3.00 528.8 400.2 400.2 0.593 39.99 204.9 3.41 42.36 34.10 both

FRB 20190325A 0 130.4 83.1 2.95 1.56 1.31 4.60 1.80 −0.80 −1.20 800.2 400.2 400.2 0.260 39.51 503.9 1.24 42.07 35.18 k

FRB 20190326A 0 161.9 74.2 0.98 0.46 1.02 1.51 0.55 2.10 −7.70 791.7 400.2 458.0 0.181 38.76 462.4 0.39 41.67 35.59 k

FRB 20190327A 0 281.3 34.3 1.97 0.30 2.43 5.20 0.33 −0.79 −2.15 800.2 400.2 400.2 0.200 39.33 479.8 0.25 42.08 35.57 k

FRB 20190329A 0 65.5 73.6 11.80 1.04 0.52 2.24 0.90 42.00 −272.00 473.9 400.2 432.3 0.001 34.42 73.8 1.04 36.79 28.70 both

FRB 20190402A 0 178.6 47.1 15.73 5.33 0.30 1.34 6.60 4.10 −16.70 657.4 400.2 453.3 1.340 40.47 602.0 2.28 43.19 34.42 k

FRB 20190403G 0 81.7 25.8 1.97 1.59 0.75 1.59 1.90 35.70 −76.00 603.2 425.5 506.6 0.703 40.04 302.6 0.93 42.95 35.98 both

FRB 20190403B 0 135.5 1.5 10.81 2.35 2.70 23.80 5.78 2.80 −11.10 714.3 400.2 453.2 0.176 39.93 369.4 2.00 42.06 33.91 k

FRB 20190403C 0 249.8 58.7 4.92 0.87 0.37 1.53 1.86 −1.30 −6.70 659.0 400.2 400.2 0.921 40.16 497.1 0.45 42.83 35.32 k

FRB 20190403D 0 326.5 84.3 2.95 1.31 0.65 1.75 1.70 −2.40 −3.10 700.9 400.2 400.2 0.536 39.74 462.0 0.85 42.50 35.53 k

FRB 20190403E 0 220.2 86.5 18.68 2.20 3.90 76.00 18.20 31.70 −36.20 798.7 482.1 620.6 0.099 40.06 348.0 2.00 41.81 32.81 both

FRB 20190404B 0 259.8 40.0 0.98 0.33 8.60 16.30 0.11 −2.29 −2.66 725.3 400.2 400.2 0.417 40.49 460.6 0.23 43.36 37.38 k

FRB 20190405A 0 337.0 21.0 13.76 1.11 0.65 2.50 2.49 3.30 −11.70 716.7 400.2 460.0 0.340 39.55 424.2 0.83 42.09 33.66 k

FRB 20190408A 0 262.2 71.6 1.97 0.84 0.64 1.51 1.00 35.70 −49.00 716.5 464.1 576.6 0.833 40.23 462.7 0.46 43.12 35.94 k

FRB 20190409B 0 126.7 63.5 30.47 2.34 0.39 6.80 20.90 21.10 −34.10 707.3 420.6 545.5 0.175 39.46 337.0 1.99 41.29 32.01 k

FRB 20190410A 0 263.5 −2.4 6.88 1.01 1.59 5.80 1.20 43.00 −85.00 607.9 437.4 515.7 0.073 38.59 182.9 0.94 41.06 33.18 both

FRB 20190410B 0 265.8 15.2 1.97 0.42 0.22 0.45 0.21 18.70 −73.40 542.5 400.2 454.4 0.551 39.23 220.7 0.27 42.11 35.32 both
FRB 20190411C 0 9.3 20.5 2.95 1.02 3.19 9.30 1.10 24.30 −26.10 800.2 473.1 636.5 0.122 39.35 367.2 0.91 41.93 34.49 both

FRB 20190411C 1 9.3 20.5 2.95 0.89 3.19 9.30 1.10 11.70 −12.50 800.2 416.6 640.1 0.122 39.35 430.6 0.79 41.93 34.49 k

FRB 20190412B 0 285.6 19.2 42.27 6.80 0.68 12.80 15.50 −4.00 −2.70 625.5 400.2 400.2 0.015 37.42 228.6 6.70 39.15 30.05 both

FRB 20190414A 0 181.4 38.9 4.92 1.95 0.44 1.74 2.40 −3.40 −0.70 728.1 400.2 400.2 0.805 40.10 591.8 1.08 42.76 35.27 k

FRB 20190415C 0 74.8 34.8 4.92 0.55 0.46 0.77 0.87 13.40 −32.00 648.9 400.2 495.3 0.459 39.34 362.9 0.38 42.28 34.61 k

FRB 20190416B 0 172.2 36.0 5.90 0.79 0.69 1.47 0.49 −3.60 −23.50 511.9 400.2 400.2 0.541 39.67 172.1 0.51 42.53 34.96 both

FRB 20190417C 0 45.7 71.3 0.98 0.41 7.90 10.80 0.43 24.78 −32.41 765.8 449.3 586.6 0.127 39.41 356.6 0.37 42.32 35.95 both

FRB 20190418A 0 65.8 16.0 1.97 0.71 0.99 2.20 0.78 −4.80 −3.70 579.7 400.2 400.2 0.019 36.89 183.0 0.69 39.55 33.11 both
FRB 20190419A 0 105.0 64.9 3.93 1.85 0.41 0.77 2.40 1.00 −29.00 538.6 400.2 407.1 0.341 38.99 185.5 1.38 41.84 34.66 both

FRB 20190419B 0 255.3 86.7 1.97 0.66 4.60 7.90 0.25 5.65 −14.30 728.4 400.2 487.6 0.017 37.43 333.8 0.64 40.20 33.51 k

FRB 20190420A 0 106.5 56.0 1.97 0.77 0.88 3.11 2.64 11.50 −6.10 800.2 528.7 800.2 0.528 40.28 414.9 0.50 42.92 35.40 both
FRB 20190420C 0 248.1 37.2 13.76 1.95 0.44 4.13 8.00 −0.50 −6.40 700.0 400.2 400.2 0.585 40.19 475.2 1.23 42.42 34.10 k

FRB 20190421B 0 82.5 62.3 2.95 1.12 5.10 16.40 1.20 −0.13 −0.80 800.2 400.2 400.2 0.245 40.01 498.0 0.90 42.60 35.72 k

FRB 20190422A 0 48.6 35.1 29.49 3.22 0.60 9.10 2.70 42.00 −46.90 781.4 501.7 626.1 0.335 40.23 373.4 2.41 42.18 32.68 both

FRB 20190422A 1 48.6 35.1 29.49 2.31 0.60 9.10 2.70 54.20 −63.70 740.5 506.3 612.3 0.335 40.22 312.6 1.73 42.17 32.70 both
FRB 20190422A 2 48.6 35.1 29.49 2.00 0.60 9.10 2.70 24.00 −32.00 763.7 444.8 582.8 0.335 40.20 425.7 1.50 42.14 32.75 k

FRB 20190423A 0 179.7 55.2 5.90 0.41 10.80 55.40 0.54 11.19 −30.52 632.6 400.2 480.7 0.143 40.14 265.5 0.36 42.48 34.80 both

FRB 20190423A 1 179.7 55.2 5.90 2.37 10.80 55.40 0.54 −3.66 −5.59 593.0 400.2 400.2 0.143 40.06 220.3 2.07 42.40 34.96 both

FRB 20190423B 0 298.6 26.2 9.83 2.49 0.87 7.00 3.00 62.40 −106.00 623.1 463.8 537.6 0.003 35.93 159.8 2.48 38.03 29.81 both
FRB 20190423B 1 298.6 26.2 9.83 8.50 0.87 7.00 3.00 63.00 −116.00 604.1 455.6 524.6 0.003 35.92 149.0 8.47 38.02 29.83 both

FRB 20190423C 0 349.1 87.0 7.86 0.16 1.23 4.37 2.48 1.90 −12.30 668.0 400.2 433.0 0.808 40.54 484.3 0.09 43.24 35.25 k

FRB 20190425A 0 255.7 21.5 0.98 0.38 18.60 31.60 0.38 8.26 −10.56 800.2 400.2 591.8 0.002 36.35 400.9 0.38 39.12 32.78 k
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Table 6
(Continued)

FRB Name Sub Num R.A.(J2000)
Decl.

(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin
νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20190425B 0 210.1 88.6 1.97 1.11 1.25 3.10 1.30 22.40 −65.60 572.6 400.2 474.8 1.014 40.62 347.2 0.55 43.53 36.57 both
FRB 20190426A 0 115.0 59.1 1.97 0.40 1.59 2.01 0.43 27.00 −71.70 577.8 403.7 483.0 0.232 39.13 214.5 0.32 42.12 35.35 both

FRB 20190427A 0 78.9 7.8 1.97 0.34 3.90 9.50 0.65 −2.62 3.30 800.2 400.2 400.2 0.333 40.05 533.0 0.25 42.79 36.23 k

FRB 20190428A 0 170.7 23.3 3.93 0.37 2.22 7.40 3.63 54.00 −48.80 800.2 560.1 696.0 0.973 41.13 473.7 0.19 43.90 35.85 both

FRB 20190429B 0 329.9 4.0 16.71 6.38 0.74 5.00 7.80 99.00 −910.00 444.1 401.7 422.4 0.194 39.31 50.6 5.34 41.56 33.12 both
FRB 20190430A 0 77.7 87.0 19.66 3.38 0.75 7.70 3.23 4.70 −29.10 574.6 400.2 433.8 0.228 39.65 214.1 2.75 41.73 33.11 both

FRB 20190430C 0 277.2 24.9 2.95 0.89 2.17 5.10 1.10 48.70 −48.80 800.2 530.6 659.3 0.252 39.75 337.5 0.71 42.47 34.94 both

FRB 20190501B 0 261.4 54.4 5.90 0.93 0.88 3.20 1.10 −0.03 −6.80 714.8 400.2 400.2 0.748 40.30 549.8 0.53 42.98 35.35 k

FRB 20190502C 0 155.6 83.0 1.97 0.53 3.60 8.30 0.32 9.00 −26.80 634.3 400.2 473.2 0.308 39.99 306.2 0.40 42.75 35.98 both

FRB 20190515B 0 0.8 3.4 4.92 0.38 2.80 11.30 1.88 0.77 −9.30 685.6 400.2 417.0 0.802 40.93 514.4 0.21 43.58 36.04 k

FRB 20190515D 0 67.1 −5.0 4.92 0.42 3.00 8.80 1.49 30.60 −54.30 651.5 431.6 530.2 0.341 40.16 294.9 0.31 42.82 35.10 both

FRB 20190516B 0 167.3 7.4 13.76 1.49 1.13 9.90 3.72 1.10 −12.20 647.1 400.2 419.4 1.267 41.26 559.8 0.66 43.67 35.14 k

FRB 20190517C 0 87.5 26.6 1.97 0.38 3.10 8.70 0.15 8.48 −50.20 539.4 400.2 435.5 0.063 38.56 147.9 0.35 41.14 34.57 both

FRB 20190518C 0 242.0 4.6 2.95 0.64 6.70 14.80 0.29 6.39 −15.10 730.2 400.2 494.3 0.369 40.43 451.7 0.46 43.22 36.02 k

FRB 20190518D 0 174.7 89.3 1.97 0.26 1.36 3.00 0.39 5.40 −15.60 698.5 400.2 475.6 0.064 38.15 317.3 0.24 40.84 34.15 k

FRB 20190518G 0 94.8 75.5 0.98 0.67 0.99 1.76 0.72 19.80 −75.30 543.6 400.2 456.4 0.437 39.62 206.0 0.46 42.53 36.37 both
FRB 20190519E 0 168.3 41.6 0.98 0.41 1.00 1.46 0.45 2.00 4.10 800.2 551.0 800.2 0.665 40.16 415.0 0.25 43.21 36.26 both

FRB 20190519F 0 165.6 77.2 6.88 1.36 0.75 4.00 1.36 21.70 −86.40 534.4 400.2 453.9 0.765 40.47 236.8 0.77 42.99 35.06 both

FRB 20190519H 0 343.0 87.4 2.95 0.25 3.20 6.60 0.31 2.33 −14.00 652.9 400.2 435.0 1.164 41.03 546.8 0.12 44.05 36.82 k

FRB 20190519J 0 296.2 86.9 1.97 0.46 0.63 1.70 0.50 24.30 −259.00 461.0 400.2 419.5 0.577 39.82 95.9 0.29 42.58 35.89 both
FRB 20190520A 0 273.5 26.3 1.97 0.65 1.08 2.40 0.71 11.40 −54.30 546.0 400.2 444.4 0.312 39.44 191.3 0.49 42.21 35.52 both

FRB 20190527A 0 12.4 8.0 57.02 2.67 0.47 10.10 5.08 47.00 −122.00 556.1 422.4 484.7 0.537 40.59 205.5 1.74 42.44 32.65 both

FRB 20190527A 1 12.4 8.0 57.02 2.47 0.47 10.10 5.08 30.70 −133.00 512.2 400.2 449.1 0.537 40.55 172.1 1.61 42.41 32.72 both
FRB 20190529A 0 68.1 40.3 3.93 1.04 0.47 1.45 1.50 24.20 −97.00 528.9 400.2 453.4 0.523 39.69 196.1 0.68 42.39 35.01 both

FRB 20190530A 0 68.7 60.6 1.97 1.02 0.58 1.69 1.30 17.70 −91.00 517.3 400.2 441.1 0.385 39.47 162.1 0.74 42.15 35.45 both

FRB 20190531C 0 331.1 43.0 2.95 1.45 0.37 1.20 1.90 18.30 −74.00 540.6 400.2 453.0 0.304 39.12 183.0 1.11 41.73 34.67 both

FRB 20190531E 0 15.2 0.5 0.98 0.47 2.70 5.30 0.56 1.10 4.60 800.2 527.0 800.2 0.245 39.82 340.2 0.37 42.63 35.80 both
FRB 20190601B 0 17.9 23.8 24.58 4.04 1.00 13.00 5.67 9.70 −68.60 515.9 400.2 429.5 0.754 40.94 202.9 2.30 43.07 34.11 both

FRB 20190601C 0 88.5 28.5 5.90 0.68 1.32 5.80 0.12 35.30 −68.80 620.8 430.6 517.0 0.175 39.37 223.5 0.58 41.80 34.01 both

FRB 20190601C 1 88.5 28.5 5.90 0.51 1.32 5.80 0.12 36.10 −79.50 595.4 423.6 502.2 0.175 39.36 201.9 0.43 41.79 34.03 both

FRB 20190603B 0 48.9 74.3 3.93 1.54 1.70 6.20 1.90 −0.20 −6.80 706.1 400.2 400.2 0.371 39.96 419.3 1.12 42.54 35.37 k

FRB 20190604C 0 77.4 49.3 20.64 5.41 1.56 26.20 11.00 2.56 −10.59 719.8 400.2 451.6 0.310 40.48 418.8 4.13 42.37 33.62 k

FRB 20190604G 0 120.8 59.5 4.92 1.19 1.15 4.49 0.31 −2.52 −0.50 800.2 400.2 400.2 0.106 38.70 442.4 1.08 41.15 33.88 k

FRB 20190605C 0 168.3 −5.2 0.98 0.49 4.60 4.40 0.52 9.90 −40.50 573.9 400.2 452.2 0.066 38.32 185.1 0.46 41.37 35.35 both
FRB 20190606B 0 108.8 86.8 6.88 1.01 2.62 17.40 4.81 12.40 −17.50 800.2 400.2 569.2 0.157 39.79 462.6 0.87 42.03 33.99 k

FRB 20190609A 0 345.3 87.9 4.92 0.43 3.60 10.40 0.50 62.40 −84.00 683.4 491.0 579.3 0.200 39.79 230.9 0.36 42.41 34.62 k

FRB 20190609A 1 345.3 87.9 4.92 2.12 3.60 10.40 0.50 55.00 −67.00 722.4 499.1 600.5 0.200 39.81 268.0 1.77 42.43 34.59 k

FRB 20190609B 0 210.5 88.3 0.98 0.55 11.50 22.20 0.57 4.11 −10.46 778.7 400.2 487.1 0.178 39.94 445.8 0.47 42.73 36.57 k

FRB 20190609C 0 73.2 24.1 0.98 2.07 0.64 1.91 2.60 15.20 −138.00 481.3 400.2 422.9 0.329 39.37 107.8 1.56 42.01 35.99 both

FRB 20190609D 0 115.9 51.7 2.95 1.58 0.66 2.36 2.00 −1.60 −17.00 552.6 400.2 400.2 0.428 39.67 217.6 1.11 42.27 35.33 both

FRB 20190612B 0 222.2 4.3 0.98 0.19 2.41 3.78 0.12 10.60 −25.90 662.1 400.2 491.3 0.078 38.45 282.4 0.17 41.29 35.16 both

FRB 20190613B 0 65.8 42.7 0.98 0.43 1.08 1.26 0.45 2.52 −8.22 792.2 400.2 466.6 0.022 36.82 400.5 0.42 39.77 33.73 k

FRB 20190614A 0 179.8 88.3 3.93 1.30 0.83 2.21 0.77 1.60 −29.00 544.0 400.2 411.1 1.051 40.44 294.9 0.63 43.33 35.95 both

FRB 20190616A 0 234.0 34.5 1.97 0.65 0.73 1.67 0.79 −0.80 −1.80 800.2 400.2 400.2 0.113 38.33 445.1 0.59 41.01 34.54 k

FRB 20190617A 0 178.6 83.9 4.92 1.49 5.80 21.00 1.50 0.45 −9.35 673.2 400.2 409.9 0.065 38.94 290.6 1.40 41.41 34.13 both
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Table 6
(Continued)

FRB Name Sub Num R.A.(J2000)
Decl.
(J2000) Δtbc Δtfitb Sν Fν Δtsc γ r nmax nmin

νpeak z Elog Δν Δtrw Llog Tlog B Note

(deg) (deg) (ms) (ms) (Jy)
(Jy

· ms) (ms) (MHz) (MHz) (MHz) (erg) (MHz) (ms) (erg s−1) (K)

FRB 20190617B 0 56.4 1.2 13.76 7.58 0.99 9.20 9.50 10.60 −38.40 586.7 400.2 459.3 0.166 39.47 217.4 6.50 41.57 33.20 both

FRB 20190618A 0 321.2 25.4 1.97 0.55 2.40 4.30 0.58 3.34 −35.80 540.4 400.2 419.3 0.068 38.31 149.7 0.51 41.08 34.56 both

FRB 20190619B 0 231.7 82.2 0.98 0.52 1.96 4.50 0.59 −0.50 −5.60 731.8 400.2 400.2 0.159 39.06 384.5 0.45 41.77 35.88 k

FRB 20190619D 0 114.8 41.6 32.44 1.39 0.48 6.50 12.00 −6.46 4.90 800.2 400.2 400.2 0.267 39.69 506.8 1.10 41.66 32.69 k

FRB 20190621B 0 193.1 55.6 1.97 1.38 0.30 1.19 1.80 −0.50 −7.70 670.9 400.2 400.2 1.072 40.18 560.9 0.67 42.90 36.15 k

FRB 20190621C 0 206.6 5.2 0.98 0.44 1.98 2.38 0.51 39.10 −101.00 564.4 417.5 485.4 0.530 39.95 224.7 0.29 43.05 36.79 both

FRB 20190621D 0 270.6 78.9 3.93 2.29 0.89 4.30 2.60 7.40 −22.30 651.1 400.2 472.1 0.588 40.29 398.4 1.44 42.80 35.36 k

FRB 20190622A 0 299.0 85.8 1.97 1.19 0.61 1.28 1.40 0.90 −15.60 605.0 400.2 411.9 1.112 40.25 432.6 0.56 43.26 36.46 k

FRB 20190624A 0 168.3 69.8 5.90 1.52 0.58 3.01 0.95 −5.30 2.20 704.0 400.2 400.2 0.966 40.49 597.2 0.77 43.07 35.39 k

FRB 20190624B 0 304.6 73.6 0.98 0.37 16.50 20.00 0.40 34.80 −43.20 754.3 475.4 598.8 0.058 39.00 295.2 0.35 41.94 35.56 both
FRB 20190625A 0 227.9 32.9 58.00 3.92 0.35 11.90 16.90 −1.10 −8.10 639.7 400.2 400.2 0.225 39.80 293.4 3.20 41.35 31.89 both

FRB 20190625C 0 73.2 11.1 0.98 0.55 2.22 4.02 0.63 0.30 −5.90 768.7 400.2 410.7 0.327 39.67 489.1 0.41 42.54 36.55 k

FRB 20190625D 0 115.0 4.9 1.97 0.69 5.30 12.10 0.72 17.84 −76.10 535.5 400.2 450.0 0.610 40.75 217.8 0.43 43.60 36.80 both

FRB 20190627A 0 195.9 0.8 1.97 0.66 1.98 2.62 0.80 9.30 −27.30 634.6 400.2 474.6 0.336 39.57 313.2 0.50 42.58 35.80 both
FRB 20190628B 0 248.5 80.1 2.95 0.27 0.75 1.39 0.47 −6.00 −0.40 583.5 400.2 400.2 0.322 39.18 242.3 0.20 42.04 35.13 both

FRB 20190629A 0 6.3 12.7 3.93 1.14 0.82 3.05 1.70 24.70 −35.30 733.6 440.1 568.2 0.444 39.97 423.9 0.79 42.56 34.91 k

FRB 20190630D 0 143.4 8.9 1.97 0.56 1.73 2.60 0.63 −2.30 −1.60 780.6 400.2 400.2 0.226 39.14 466.3 0.45 42.05 35.53 k

FRB 20190701C 0 96.4 81.6 1.97 1.44 0.88 2.50 1.80 46.20 −211.00 495.5 402.2 446.4 0.943 40.44 181.3 0.74 43.27 36.41 both
FRB 20190701D 0 112.1 66.7 8.85 1.40 1.33 8.60 1.53 6.49 −20.90 651.8 400.2 467.6 0.900 40.96 478.1 0.74 43.42 35.21 k

FRB 20190609C 0 73.3 24.1 3.93 2.07 0.64 1.91 4.10 15.20 −138.00 481.3 400.2 422.9 0.328 39.36 61.1 1.56 42.01 35.34 both

FRB 20190226B 0 273.6 61.7 10.81 4.00 0.38 2.38 8.00 29.90 −39.30 706.4 474.3 578.8 0.570 40.09 147.8 2.55 42.49 34.77 both

FRB 20190430C 0 277.2 24.8 2.95 0.89 5.80 15.20 1.80 48.70 −48.80 800.2 527.8 655.2 0.251 40.21 217.7 0.71 42.89 36.41 both
FRB 20190110C 0 249.3 41.4 2.95 0.75 0.64 1.40 1.50 28.20 −202.00 477.7 400.2 427.4 0.110 38.26 69.8 0.68 40.96 35.24 both

FRB 20190113A 0 108.3 −3.0 6.88 1.82 1.10 5.70 3.60 7.30 −2.80 800.2 491.9 800.2 0.191 39.63 258.8 1.53 41.99 34.65 both

FRB 20180910A 0 354.8 89.0 0.98 0.21 6.50 5.60 0.24 0.05 −0.53 800.2 400.2 417.6 0.623 40.40 246.4 0.13 43.67 38.94 k

FRB 20190303D 0 185.3 70.7 2.95 0.81 0.59 1.17 1.60 −0.90 −5.60 564.8 400.2 440.8 0.674 39.81 98.3 0.48 42.74 36.73 both

FRB 20190328C 0 75.6 82.1 3.93 0.77 4.70 14.90 2.30 0.70 −2.70 800.2 400.2 459.0 0.376 40.41 290.6 0.56 43.05 37.12 k

FRB 20190107B 0 49.3 83.4 0.98 0.45 2.80 4.30 0.90 −1.30 −3.10 784.4 400.2 400.2 0.002 35.31 383.3 0.45 38.13 32.98 k

FRB 20190210C 0 313.9 89.2 1.97 0.29 2.37 3.60 0.25 0.35 −1.50 800.2 400.2 448.5 0.580 40.17 253.2 0.18 43.19 38.09 k

FRB 20190127B 0 169.3 83.5 67.83 2.50 0.63 11.40 42.80 5.30 −7.70 800.2 400.2 562.2 0.609 40.82 248.6 1.55 42.77 35.48 both

FRB 20180909A 0 120.0 57.0 15.73 6.31 0.43 0.90 13.00 −0.30 −1.30 800.2 400.2 400.2 0.316 38.98 304.0 4.80 41.78 34.21 k

FRB 20190201A 0 95.9 83.8 0.98 0.61 2.60 3.10 1.20 0.10 −0.20 789.0 400.2 464.9 0.109 38.63 350.5 0.55 41.60 35.95 k

FRB 20190308B 0 49.3 83.4 1.97 0.19 1.11 1.39 0.13 18.60 −52.90 587.9 400.2 477.2 0.016 36.63 184.7 0.18 39.54 34.92 both
FRB 20190308B 1 49.3 83.4 1.97 0.52 1.11 1.39 0.13 9.50 −37.00 585.3 400.2 455.5 0.016 36.61 182.1 0.51 39.52 34.07 both
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