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The Composition Algebra-based Methodology (CAM) [B. Wolk, Pap. Phys. 9, 090002
(2017); Phys. Scr. 94, 025301 (2019); Adv. Appl. Clifford Algebras 27, 3225 (2017);

J. Appl. Math. Phys. 6, 1537 (2018); Phys. Scr. 94, 105301 (2019), Adv. Appl. Clifford

Algebras 30, 4 (2020)], which provides a new model for generating the interactions of the
Standard Model, is geometrically modeled for the electromagnetic and weak interactions

on the parallelizable sphere operator fiber bundle Bn = (TM, Sn → S n, SO(n + 1), π)

consisting of base space, the tangent bundle TM of space–time M, projection operator
π, the parallelizable spheres Sn = {S1, S3} conceived as operator fibers Sn → S n

attaching to and operating on TpM ∀p ∈ M as p varies over M, and as structure
group, the norm-preserving symmetry group SO(n+ 1) for each of the division algebras

which is simultaneously the isometry group of the associated unit sphere. The massless

electroweak SU(2)L ⊗ U(1)Y Lagrangian is shown to arise from B3⊗1’s generation of a
local coupling operation on sections of Dirac spinor and Clifford algebra bundles over

M. Importantly, CAM is shown to be a new genre of gauge theory which subsumes

Yang–Mills Standard Model gauge theory. Local gauge symmetry is shown to be at
its core a geometric phenomenon inherent to CAM gauge theory. Lastly, the higher-

dimensional, topological architecture which generates CAM from within a unified eleven

(1, 10)-dimensional geometro-topological structure is introduced.

Keywords: Parallelizable spheres; division algebras; differential geometry; differential

topology; fiber bundles; complexified Clifford algebras; Standard Model; Yang–Mills
theory; string theory; compactification.

PACS numbers: 12.10.Dm, 12.90.+b

“Physics is an attempt conceptually to grasp reality as it is thought

independently of its being observed.”

— Albert Einsteina

This is an Open Access article published by World Scientific Publishing Company. It is distributed

under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.
aAutobiographical notes, reprinted in S. Hawking, A Stubbornly Persistent Illusion, The Essential

Scientific Works of Albert Einstein (Running Press Book Publishers, Philadelphia, 2007), p. 376.
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Table 1. CAM coupled operators.

U(1) η∂C η̄ηC —

SU(2) η∂H η̄ηH —

SU(3) η∂OZ η̄ηOZ η̄ηO

1. The CAM Framework

The CAM frameworkb uses the unique operator structure of the equally unique com-

position algebras to generate the Standard Model (SM) Lagrangian of elementary-

particle physics as well as the Lagrangian for general relativity. The theory has

proven to be a successful alternative to Yang–Mills (YM) gauge theory for generat-

ing the SM pre-Higgs left-chiral electroweak and quantum chromodynamic Lagran-

gians in intrinsic local gauge symmetric form.1–5 CAM’s current additional successes

include intrinsic accommodation of chiral asymmetry for SU(2),2 natural provision

of a noninteractive right-chiral neutrino,2 imposition of experimentally verified phe-

nomenological constraints on gauge mediated proton decay,5 and introduction of a

Higgs-like field intrinsically coupled to the space–time continuum.95

What is interesting about these theoretic successes is that each evidences quali-

tative and quantitative differences between the CAM and YM models. And each of

these theoretic successes points to CAM as the more fundamental framework for

generating the elementary-particle forces. For example, the CAM phenomenology

of proton decay is confirmed by experiment, whereas YM proton decay predictions

have consistently been experimentally invalidated.5

2. Primary Motivation

This paper postulates the parallelizable spheres as the core geometric entities which

induce the CAM formalism.c The motivation for this postulate is immediately evi-

dent upon inspection of the CAM operators in Table 1, used for generating the

U(1), SU(2), SU(2)⊗ U(1) and SU(3) Lagrangians.1–5

bThe CAM gauge model is an alternative to Yang–Mills theory for generating the Standard Model

Lagrangian of elementary-particle physics (Ref. 1–5 and Sec. 1 herein), while also generating the

Lagrangian of general relativity theory.95 Composition algebras are algebras A such that for any
two elements the algebraic norm of their product equals the product of their norms:13,14 ‖xy‖ =

‖x‖‖y‖ ∀x, y ∈ A. These composition algebras exist only in 1, 2, 4 and 8 dimensions, corresponding
to K = {R,C,H,O} (Refs. 11–14) and their split versions K′ = {C′,H′,O′}.12,13 Only the K
algebras are division algebras (composition algebras without zero divisors).12,13 However, since

the nondivision, composition algebra O′ was used along with the K algebras in generating both
QCD’s SU(3)c and GR’s Lagrangians, the term CAM is the appropriate designation for the

formalism in general.
cThe unique, closed set of parallelizable unit spheres SP = {S0, S1, S3, S7}.6–11,14–17 S0 =

{−1, 1} is trivially isomorphic to the unit reals.14 S7 will be considered in subsequent work, and

will be shown to generate the SU(3)c Lagrangian for the strong force — the fiber bundle geometry
of which will prove to be more involved than that of SU(2)⊗ U(1)’s herein.
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But though the CAM formalism has been revealed using the algebraic struc-

ture of the division algebras, the essential beauty of the division algebras resides

elsewhere — namely, within the fundamental geometric structure11–14

Ru ∼= S0 , Cu ∼= S1 , Hu ∼= S3 , Ou ∼= S7 . (1)

That is to say, the unit division algebras Ku, which carry with them the division

algebraic operator structure, are isomorphic to the unique, closed set of smooth

parallelizable unit spheres SP . This intimate relation between CAM’s algebraic

operator structure and what is considered its more fundamental manifold structure

is the pivotal topic of this paper. For it is held to be self-evident that, with regard to

the fundamental laws of physics, to be theoretically and aesthetically viable detailed

algebraic form must of necessity be intrinsically contained within and naturally

emanate from unified geometric structure.

In keeping with this modern theoretical approach of striving for a “unified geo-

metric description of the fundamental physical interactions,”11,16,17,21,22,25,36,40,d

we are thus logically compelled to a contemplation of the parallelizable spheres as

the natural underlying structure for a CAM geometric program.

3. Synopsis

But for the existence of the parallelizable spheres, the elementary-particle forces

would not exist, if at all, in their known form. The CAM formalism is generated by

these spheres via their coaction with space–time. Demonstrating and elaborating

on these two assertions is the goal of this and the subsequent papers which will con-

sider CAM’s underlying geometric structure and which proffers the CAM model’s

structure as emanating from a (1, 10)-dimensional space–time.

Just as YM is a gauge theory, so CAM will also be seen herein to be a gauge

theory — of a sort more fundamental than YM gauge theory. Just as YM began as

a formalism of theoretical physics which only thereafter realized a geometric, fiber

bundle underpinning,18,19 so CAM will herein also be given a source fiber bundle

geometry. Just as YM is modeled on a certain fiber bundle structure,11,16,17,20,21 so

CAM is also modeled on a certain fiber bundle structure which differs in a nontrivial

way from that of the YM structure. Furthermore, just as string/M-theory takes YM

as contained within a compactified higher-dimensional space–time,20,23,60,61 so the

dReference 40, Preface. As the author further writes, “The most remarkable characteristic of this
theoretical approach is the firm and fundamental conviction that all hypotheses concerning the
real physical world can be given — before quantization — in purely geometric terms” (p. 2). The
program set forth herein for the CAM formalism follows this approach, as an underlying geometric
structure is shown to first generate the CAM formalism which in turn generates a relativistic,

local gauge symmetric Lagrangian, which pursuant to the fundamental postulates underlying the
canonical quantization (or the path-integral approach) remains the Lagrangian for constructing a

quantum field theory.37 CAM’s possession of these two attributes of (1) having a geometric base,
and (2) generating pre-quantization Lagrangians, distinguishes it from all other solely algebraic
formalisms (see Fn. (ii), herein), which have neither.
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CAM fiber bundle structure will be seen to arise from the compactification of a

(1, 10)-dimensional space–time.

Of the various differences between the CAM and YM fiber bundle structures, one

particular distinction rates immediate articulation. At its most fundamental level

theoretical physics must not simply describe the universe but must also explain

why it exists as it does.22 As Weinberg emphasizede

The aim of physics at its most fundamental level is not just to describe the

world but to explain why it is the way it is.

This notion forms a qualitatively dispositive distinction as between the two theoretic

structures — both YM and CAM describe the SM interactions, but whereas YM

fiber bundle theory is but a descriptive gauge theory23 CAM’s fiber bundle theory

is explanatory as well.

This paper develops the basic theoretical and conceptual structure of CAM’s

fiber bundle geometry for SU(2)⊗U(1). This fiber bundle structure is based on the

existence of two of the three parallelizable spheres Sn =
{
S1, S3

}
of the unique,

closed set of three nontrivial parallelizable spheres SX =
{
S1, S3, S7

}
.11,14–17

The Sn =
{
S1, S3

}
will be contained within the sphere operator fiber bundle

Bn =
(
TM, Sn → S n, SO(n+ 1), π

)
(2)

with projection operator π and fiber operators S n ∨ TpM operating point-wise

over M via the wedge sum action ∨ which projects the division algebraic cou-

pling operator ◦ in the tangent space TpM over the tangent bundle TM. CAM’s

unique coupling operator ◦1,2,5 is inherently encoded within each fiber operator

Sn∨TpM→ S n∨TpM =
{
S 1∨TpM,S 3∨TpM

}
and is operationally attached to

TpM ∀p ∈M via Sn’s unique attribute (among the spheres) of parallelizability. The

structure group SO(n + 1) acts simultaneously as the isometry (automorphism)

group of the subject unit sphere as well as the norm-preserving symmetry group

of its associated division algebra.11,13,16,17 The Bn structure is proffered as the

fiber bundle framework which induces creation of the pre-Higgs SU(2)L ⊗ U(1)Y
Lagrangian.

Within this fiber bundle arena, the gauge fields and currents are sections of the

complexified Clifford algebra bundle Cl1,3M while matter-wave fields are sections

of the Dirac spinor bundle SM. These sections are locally coupled by the CAM

operator φX which is generated via S n’s local ◦-coupling action on the CAM

operator set Ω ≡ {η, ∂} intrinsically embedded in TpM. The SU(2)L, U(1)EM and

SU(2)L ⊗ U(1)Y Lagrangians thereby manifest.

The CAM fiber bundle structure will also be shown to offer a straightforward

geometric explanation for the existence of local gauge symmetry within the funda-

mental laws of particle physics. Lastly, the CAM architecture will be shown to arise

from a (1, 10)-dimensional space–time.

eReference 22, p. 219.
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4. Geometro-Algebraic Structures

Numerous well-established geometric and algebraic structures over Minkowski

space–time M play a fundamental part in the CAM fiber bundle geometry. There

is a tremendous topical depth to all of these structures and objects, but the fairly

minimal depth as given herein is what is needed in order to set forth the essential

structure of CAM fiber bundle theory.

4.1. Minkowski space time

There exists the single, absolute, unique Lorentzian space–time manifold M with

metric η having standard basis components ηµν = diag(+1,−1,−1,−1).21,24,25 The

remainder of CAM’s geometry revolves around structures inherent to (M,η) and

their associations with Sn.

Relativistic physics demands locality in physical theories,24–26 and thus physics

initiates in or about the tangent spaces of M: TpM,24,27 which designates the col-

lection of all vectors tangent to M at p ∈ M.11,16,17 The union of all TpM over M
is the tangent bundle TM:46

TM =
⋃
p∈M

TpM , (3)

of which the fiber at p is TpM. The bundle TM is a smooth manifold in its own

right.11,16,17,64

(M,η) induces three structures in TpM which play a pivotal part in CAM’s

SU(2)⊗ U(1) fiber bundle makeup, to wit

(1) the Levi-Civita connection ∇η,21,24,31

(2) the Clifford algebra Cl1,3,27–30 and

(3) CAM’s operator set Ω ≡ {η, ∂}.1,2

CAM fiber bundle theory exploits this tripartite internal space–time structure for

its theoretical construction.

4.1.1. The connection ∇η

A metric g defined on a Riemannian manifold M induces a unique metric-preserving

and torsion-free connection — the Levi-Civita connection∇ which in the frame field

{eµ} acts on TpM as the covariant operator ∇ 7→ ∇µ.16,21,31 The covariant opera-

tor’s action on a vector field X = Xµeµ is given by ∇µXν = ∂µXν − ΓξµνXξ,
24,32

where Γξµν are the connection coefficients defined with respect to {eµ} as31,32

∇µeν = Γξµνeξ . (4)

As applied to CAM fiber bundle theory, we have (M,η) inducing the flat Levi-

Civita connection ∇η: (M,η) 7→ (M,∇η).11,21,24,33 In the coordinate basis {∂µ} of

M associated to the local coordinates {xµ} the metric η → ηµν induces the covariant
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operator ∇η 7→ ∇∂µ on TpM for which the Γξµν are the Christoffel symbols (of the

second kind) defined by ∇∂µ∂ν = Γξµν∂ξ.
11,21,31,32

In relativity theory, the Christoffel symbols Γξµν are the components of the

gravitational field,34 which vanish everywhere on M.24,35 Thus, using ∇µXν =

∂µXν −ΓξµνXξ, we see that ∇∂µ forms the partial differential operators ∂µ on TpM.

Because the ∂µ globally satisfy the holonomic commutation relations [∂µ, ∂ν ] = 0,31

they therefore simultaneously form a covariantly constant coordinate frame field

over M: {eµ} → {∂µ},11,21,31 for which we have the flat connection equation31

∇η∂µ = 0 , (5)

and for which both the curvature tensor R(eµ, eν) and torsion tensor T (eµ, eν)

vanish on M.16,31

4.1.2. The Clifford algebra Cl1,3

(M, ηµν) induces the Clifford algebra Cl1,3 via generation of the basis elements {γµ}
through the anticommutation relation:2,14,17,28

{γµ, γν} = 2ηµν . (6)

Also known as the space–time algebra, Cl1,3 is induced by M in TpM at all points

p ∈ M28,32,43 and is the natural, minimal algebraic construct belonging to the

geometry of M.28 Cl1,3 consists of 16 linearly independent elements generated by

the {γµ}:17,30

Γz = [{1}, {γµ}, {γ0γk}, {γjγk : j 6= k}, {i ≡ γ0γ1γ2γ3}, {iγµ}] , (7)

where z runs from 1 to 16 with each Γz representing one of the elements. Cl1,3 is

spanned by Γz and constitutes a 16-dimensional vector space.17,32,36,37

The Γz are abstract entities unto themselves, and their common depiction as

matrices are but representations of these elements.12,30,38 For instance, complexify-

ing Cl1,3
⊗C−→ Cl1,3 with C-unit i , we can then write the 4×4 chiral representation of

the Clifford generators {γµ} and the chirality operator γ5 using the Pauli matrices

σk satisfying σk = 1
i γkγ0 and the identity element σ0:2,32,39,40

γµ =

(
σµ

σ̄µ

)
, γ5 = ii =

(
−1

1

)
. (8)

A generic field F(xµ) of Cl1,3 can be written as36

F(xµ) =

16∑
z=1

αzΓz , (9)

in which we take each αz to represent complexified scalar, vector, tensor or spinor

field components. For instance, 1Ψ + γµB
µ + λγjγk and γkA

k
µν + iγ0γkB

k
µ + γ5Cµ

are examples of Cl1,3 fields.
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4.1.3. The operator set Ω ≡ {η, ∂}

Using ∇∂µ and Cl1,3, the CAM operators1,2

∂ = ∂/∂t+ i∂/∂x+ j∂/∂y + k∂/∂z (10)

and

η = γ0 + iγ1 + jγ2 + kγ3 (11)

can be constructed, where the {1, i, j,k} are the basis elements of the quaternions

H with 1 the unit identity element (being notationally suppressed) and {i, j,k}
Hamilton’s imaginary elements identified with the even subalgebra Cl+3 of Cl3 ⊂
Cl1,3.2,28,30 The quaternionic basis elements are a subset of Γz, induced by the Cl1,3
generators {γµ} via the relations:27,28,30

1 = γ0γ0 , i = γ2γ3 , j = γ3γ1 , k = γ1γ2 . (12)

The operator ∂ is nothing other than the generalization of the Cauchy–Riemann

operator ∂x+ i∂y of complex analysis to (1, 3) dimensions which is used throughout

Clifford algebraic analysis17,28,f and which is isomorphic to the special-relativistic

operator ∂µ.2,27,28

As to the operator η, it can be utilized to generate the Lie algebra of the Lorentz

group,2 and is a simple and aesthetically symmetric composition of the four unit

Clifford–Dirac elements {γµ}:1,2,14,17,27,28

η ≡ γ0γ0γ0 + γ1γ2γ3 + γ1γ2γ3 + γ1γ2γ3

= γ0 + iγ1 + jγ2 + kγ3 , (13)

where we have used the relations γiγj = −γjγi, and (12).27,28

Since both ∇∂µ and Cl1,3 are manifestly embedded within TpM, so is Ω. The

relation between {Ω, Ω̄} and its generation of the algebra of the Poincaré group was

previously shown.2 The Poincaré group represents the inherent symmetry of M —

its true group of automorphisms,41 and it is thus not unreasonable to suppose that

Ω will play a vital role in construction of the CAM fiber bundle geometry.

4.2. The algebra bundle AM

Noted above was that M intrinsically generates and contains the space–time algebra

Cl1,3 which is induced by M in TpM at all points p ∈M. Nature requires complexi-

fication of Cl1,3
⊗C−→ Cl1,3 within TM, for without the C-unit i , the chirality

operator γ5 would not be constructable and there would be no chiral matter in

nature.14 Furthermore, C-unit complexification was required in order to estab-

lish Ω’s part in generating the Poincaré algebra of transformations of M.2 Im-

portantly, this mandated i-plexification generates the Pauli algebra P in TM since

fSee Ref. 28, Chap. 3 and Subsec. 3.3.
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H ∼= Cl+3 ⊂ Cl3 ⊂ Cl1,3,2,28,30 and P ∼= C⊗H,14 which in turn trivially implies the

existence of R⊗ C⊗H within TM.14

The complexified space–time algebra Cl1,3 is taken to form the fibers of the

space–time algebra bundle Cl1,3M ≡ AM,11,16,32 with Cl1,3(TpM), the fibers

∀p ∈M:29,32,42

AM =
⋃
p∈M

Cl1,3(TpM) . (14)

Thus, AM is a bundle of complexified Clifford algebras over M. It is the natural

complexified algebra bundle associated with TM and M.28,30,36 The connection ∇η
induces a connection on AM,29,33,42 and all Clifford algebra operations carry over

into the AM bundle.32,42

4.3. The Lorentz frame bundle

Associated with TM is the Lorentz frame bundle16

LM =
⋃
p∈M

LpM , (15)

of which the fiber LpM represents the collection of all tangent Lorentzian frames of

reference at p. Since all Lorentz frames can be reached by operation of the Lorentz

group O(1, 3) on some fixed Lorentz frame, the fiber becomes O(1, 3) itself11 and

thus, LM is a principal fiber bundle.

4.4. The spinor bundle SM

We have11,16,17,32

wk(TM) = 0 (16)

for the Stiefel–Whitney classes k = 1, 2. Therefore M is a spin manifold,40,42 and but

for such result the Dirac equation could not be considered.17 The essential relation

between spinors and the space–time algebra Cl1,3 reveals the fundamental geometro-

algebraic nature of CAM’s makeup,17,44,45,g and we therefore briefly review this

relationship before defining the spinor bundle.

Since Cl1,3 is an associative algebra it has a matrix representation.30,36 An

n × n matrix representation Cn of an algebra can be conceived as a set of linear

operators on an n-dimensional vector space V whose vectors v are represented

column-wise36,39,44,45

ν = (v1, v2, . . . , vn)T . (17)

The vectors ν of the vector representation space V acted upon by the matrix

representation Cn of a Clifford algebra are spinors.32,36,44 In particular, quantum

gAs Zee notes, “spinor representations exist because Clifford algebras exist,” (Ref. 38, p. 561).
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mechanical matter-wave fields ψ such as the electron are Hilbert space H = C4

vectors (Dirac spinors) ψ on M17,36,45

ψ = (ψ1, ψ2, ψ3, ψ4)T (18)

of the four-dimensional spinor representation space acted upon by a matrix repre-

sentation of Cl1,3,11,32,36 with basis elements {γµ} given a matrix representation

such as in (8)’s chiral representation.

The Dirac spinor bundle SM along with subsets the chiral Weyl bundles

(WM, WM) are given by16

SM = (M,C4, SL(2,C)⊕ SL(2,C), π) ,

WM = (M,C2, SL(2,C), π) ,

WM =
(
M,C2, SL(2,C), π

)
.

(19)

To construct these spinorial fiber bundles a structure group over M with spinor

representation which lifts to a spin group is requisite.11,16 In particular, we consider

the structure group of the Lorentz frame bundle LM with a definite space and time

orientation — the proper, orthochronous group with Lorentz transformation Λ:16,40

SO0(1, 3) ≡ {Λ ∈ O(1, 3)|det Λ = +1,Λ0
0 > 0} . (20)

Because of (16), SO0(1, 3) lifts without obstruction to the spin group Spin1,3
∼=

SL(2,C) over M,12,16,46 and thus M admits a spin structure.40 The connection

on SM is induced by ∇η.11,16,24,32 The space–time bundle AM is trivial on M,32

and therefore the standard Dirac operator �∂ of relativistic quantum mechanics is

generated thereon.32,42,43

SM corresponds to the (1/2, 0)⊕ (0, 1/2) representation of SL(2,C),15,39 while

WM and WM, respectively correspond to the (1/2, 0) and (0, 1/2) representations.

Thus, we see that H-space matter-wave fields ψ are sections of SM.11

4.5. The parallelizable spheres Sn = {S1, S3}

The largest number q of independent vector fields that can exist on some manifold

M is n = dim(M).11 When q = n the manifold is parallelizable.15,17 One can

continuously assign a globally smooth covariantly constant frame field {eµ} on

TM at all points of a parallelizable manifold M with connection ∇,11,31,32 for

which the covariant derivative in any direction vanishes: ∇V eµ = 0 ∀V ∈ TpM

∀p ∈ (M,∇).11,31,h This yields the teleparallel connection equation over (M,∇):31

∇eµ = 0 . (21)

hIn this paper, differentio-geometric structures such as a connection and a metric are used in

discussing the critical trait of parallelizability of Sn. However, it is important to emphasize here
that the parallelizability of SX : X = 1, 3, 7 is more fundamentally a differentio-topological topic

and structure,8,10 and further falls under algebraic K-theory.6,7,10,11 Specifically, no notion of a

metric structure on SX need be defined in order for SX to be parallelizable or proven such8,9,65

(see, e.g. Ref. 65, Subsec. 21.3).
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If a manifold M is not parallelizable, then one cannot continuously assign a

globally smooth covariantly constant frame field {eµ} on TM for all points of

M such that (21) is satisfied, for example for the 2-sphere S2.11,31 If in addition

[eµ, eν ] = 0, then {eµ} is a coordinate frame field {eµ} → {∂µ} for which (5) is also

satisfied, for example for M.11,31,32

The spheres Sn = {S1, S3} are respectively defined as follows:14,16,21,32

S1 =

{
(x1, x2);xj ∈ R

∣∣∣∣∣
2∑
j=1

(xj)
2 = 1

}
,

S3 =

{
(x1, x2, x3, x4);xj ∈ R

∣∣∣∣∣
4∑
j=1

(xj)
2 = 1

}
,

(22)

where S1 and S3 are respectively isomorphic to the unit complex (quaternion) ele-

ments Cu and Hu,11,14 which in turn form the simply-connected symmetry groups

U(1) and SU(2).16,21,38 For example, U(1) is the circle generated by the unit com-

plex elements:21,27,38

S1 =

{
z = x1 + ix2 ∈ C

∣∣∣∣∣‖z‖2 =

2∑
j=1

(xj)
2 = 1

}
. (23)

The norm symmetry groups of the unit division algebras Cu and Hu are the

special orthogonal groups SO(2) and SO(4), for which the norms of S1 and S3 are

preserved.13,i

As for M so the Sn are also parallelizable,8,11,14,16 and thus, the teleparallel

connection equation ∇eµ = 0 is satisfied over Sn as well. However, the torsion

tensor T (eµ, eν) need not vanish on a manifold M though the curvature tensor

R(eµ, eν) does,16,31 and in such a case the flat connection equation as in (5) is not

satisfied. Such is the case for instance on S3 and S7.11,16 Thus for CAM’s fiber

bundle makeup the more general teleparallel connection equation is considered the

pivotal operative equation permitting Sn to attach to and operate on M.

5. S Structure Theory

5.1. The invariant algebraic operation ◦

Since S1 ∼= U(1) and S3 ∼= SU(2),11,14,16,17,37 group theory requires that S1(S3)

possess at least one elemental binary operation ∗1(∗3), respectively on them.38,39

Furthermore, group closure requires that the binary combination α ∗ β of any two

elements {α, β} ∈ S1(S3) generates another element δ ∈ S1(S3).38,39,47 Thus the

operations ∗1(∗3) are to be invariant closed binary operations on S1(S3).

iReference 13, Subsec. 12.1.
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The closed, binary operation ◦ which is unique to the division algebras takes

the form1–5,28,j

α ◦ β =

(
α0β0 −α · β, α0β +αβ0 +

1

2
[α,β]

)
, (24)

when acting within a space with local Euclidean metric for the spatial components

permitting the standard R3(R7) dot and cross products, where α = (α0,α);β =

(β0,β) are division algebraic operator fields16,36 separated into their real and imag-

inary components, and the right-hand side (α · β) and (α × β = 1
2 [α,β]) opera-

tions are the standard metric-equipped R3(R7) dot and cross products. Since a

metric g on a manifold M is the structure that smoothly assigns to each point

p ∈ M a metric gp on TpM
21 by which dot and cross products manifest,21,39,48

the form of (24) requires operation within a manifold equipped with a metric. In

point of fact, α0β0 − α · β implies the Minkowski metric: αµβ
µ = ηµνα

νβµ ≡
α0β0 −α · β.

We have seen that S1 and S3 are isomorphic to the unit complex (quaternion)

elements, respectively.11,16,38 It follows that ◦ = ∗ for both S1 and S3. Since a

Sn is parallelizable its tangent spaces TmS
n ∀m ∈ Sn are isomorphic, with the

isomorphism independent of the curve γ joining any two points of Sn that a vector is

parallel-transported over.11,16,17 Thus the division algebraic structure of Sn remains

invariant as one parallel-transports over Sn. Since the binary ◦-coupling is part of

this division algebraic structure of Sn it follows that the ◦-operation is an invariant,

smooth algebraic operation on Sn.15,47 Thus the ◦-operator is an invariant, smooth

and closed elemental binary operation on both S1 and S3.

5.2. The Sn → S n structural attachment

As noted above, from a differentio-geometric viewpoint we have the teleparallel

connection equation∇eµ = 0 necessarily globally vanishing on Sn, M (and therefore

also in TM);31 all three manifolds {Sn,M} are parallelizable. For a covariantly

constant frame field {eµ} established over M in TM we can thus always associate

a covariantly constant frame field {eν} over Sn in TSn which smoothly varies with

{eµ} as p moves over M ∀p ∈M.11,16,17,31,k

The tangent space TqS
n for q ∈ Sn with Sn the fiber of a bundle over M will

thus be said to attach to TpM at all points p ∈M since an associated, common set

of basis frame fields can be established between the tangent spaces of Sn and M at

all space–time points. In this way we view Sn → S n as structurally attached to

jSee in particular, Refs. 2 and 5, and references therein for a more detailed discussion of this

operation.
kSee Ref. 16, pp. 258–260 (Subsec. 7.3.2).
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M at all space–time points p ∈M via mutual association of the global frame fields

within the respective tangent bundles.l

Importantly, since ∇en = 0 is true only for Sn (and S7), no other unit spheres

besides these can possess this smooth structural frame attachment to TM over M.

Thus, for example, since there does not exist a single, global nowhere-vanishing

parallel frame field {eα} on the 2-sphere S2,11,31 it follows that the 2-sphere cannot

smoothly attach to TM throughout M as the Sn do.

5.3. The ◦-operational attachment and wedge action ∨

Accompanying this structural frame attachment we can also conceive of an opera-

tional fiber attachment between S n
p and M at p via a morphism ϕ which preserves

the ◦-operator division algebraic structure of Sn in double projection ϕ ≡ κ · π :

Sn 7→M, where κ is the tangent bundle projection of TpM into M.

For any s, r ∈ Sn with s ◦ r = t ∈ Sn we have {r, s, t} ∈ Cu or Hu. Recalling

that Cl1,3 is intrinsic to and that Cl1,3 is a physically necessary structure of M
both which are induced in TpM, and noting C ⊆ Cl1,3 and {i, j,k} ∼= Cl+ ⊆ Cl1,3
we have {r, s, t} ∈ TpM. We can thus define a map f : Sn → TpM at p ∈ M
∀x ∈ Cu or Hu given by f : x → x ∈ TpM which is invariant with respect to the

composition rule of elements: f(x◦y) = f(x)
(
•TpM

)
p
f(y), in which

(
•TpM

)
p

is the

applicable binary operation on TpM at p. We have f(s◦r)p = f(t)p = t = (s◦r)p =(
f(s) •TpM f(r)

)
p

= (s •TpM r)p, from which we see that (•TpM)p ∼= ◦.
We can thus conceive of the projection κ :

(
•TpM

)
7→ ◦(M)p within the morphism

ϕ into M as inducing an Sn bundle action on M, where we consider the induced

action as occurring locally at the space–time event p via the attachment of the

mutually related covariantly constant frame fields of TSn and TM.m

To mathematically model the structural attachment of the S n to all points of

M together with projection of the division algebraic operation into TM the wedge

sum operation ∨ between topological spaces is utilized.97 The wedge operation

∨ identifies distinct points on two or more manifolds to a single point. Thus for

lAs Robinson has stated, “The idea of various geometries attached to space–time and the physically

observable effects they have on what we can see is in many ways the dominant theme of particle

physics.” (Ref. 39, p. 161). Further, since “the tangent space TpM is attached to a point p ∈ M”
(Ref. 28, p. 16), “we may visualize velocity (a tangent vector v ∈ TpM) as an arrow touching the

surface at a given point (p ∈ M) . . . which is strictly confined to a point” (Ref. 31, pp. 21–22).

Mathematically speaking a space (e.g. the tangent space) is not conceived of as attached to
a manifold in “a direct geometrical way” (see Ref. 48, p. 43), the attachment sometimes being

considered but a “mere pictorial resource” (Ref. 65, Subsec. 6.1.1). In this paper, a fundamentally
different tack is taken. From a physical and operational standpoint in generating the fundamental
particle interactions in space–time the CAM model conceives (and postulates) the parallelizable

spheres (comprehended as operator structures) as so attached via TpM.
mSince the underlying division algebraic composition of elements does not require a metric12,14

and since the composition is smooth it is sufficient that Sn be a differentio-topological entity

with no equipped metric (vice a metric-equipped differentio-geometric entity). In this light the

f -mapping of ◦ into the metric-equipped
(
TpM, ηµν , •TpM

)
is seen to induce S n’s ◦-operation to

manifest in the metricized form of (24).
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example S1∨S1 is equivalent to a figure-8 — being two circles touching at a point.97

Within the current theory, it is irrelevant as to which point of Sn is used, since by

parllelizabilty any and every point induces the division algebraic operation. We thus

take the wedge action M∨Sn as occurring over all points of M and as attaching the

parallelized operator-spheres S n to each point therein, where we emphasize that

as always we are dealing with maps and operations occurring between and in the

tangent spaces of these manifolds.64

5.4. Bundle candidates

We wish to condense these various notions into a fiber bundle structure which will

represent the generating geometric structure of CAM’s geometro-algebraic formal-

ism. A few alternatives we might consider are:

(1) The principal operator fiber bundle P (M, Sn, π);

(2) The operator fiber bundle En = (M, TpM, Sn, π);

(3) The sphere operator fiber bundle Bn =
(
TM, Sn, SO(n+ 1), π

)
;n

(4) The automorphism operator fiber bundle An = (M, Sn, A(n), π), with A(n) the

automorphism group of the associated division algebra.

Options (1) and (2) suffer from a slight potential flaw. Namely, both have as struc-

ture group the spheres themselves.

Use of P (M, Sn, π) implies that the fiber Sn is isomorphic to a group,38,65 since

principal fiber bundles have as structure group the fiber itself.11,46,65 A principal

fiber bundle is nothing else than a local group on a manifold.46 Thus this structure

might work for geometrically representing S1 and S3 as operator fibers, since these

spheres are isomorphic to U(1) and SU(2). But, unlike S1 and S3, the sphere S7

is not isomorphic to a group.11,16 As such, when developing the theory to gener-

ate QCD’s SU(3)c Lagrangian via S7 → S 7 the use of P (M, S7, π) would prove

problematic. The same issue arises with the operator fiber bundle of option (2):

En = (M, TpM, Sn → S n, π). So, unless one is willing to generalize the type of

structure which can exist in the place of a structure group for a fiber bundle, other

options should be considered.

We might instead postulate the parallelizable sphere operator fiber bundle

Bn =
(
TM, Sn → S n, SO(n + 1), π

)
, in which we now have the base space

TM =
⋃
p∈M TpM with operator fibers the spheres Snp attaching to and operat-

ing on TpM ∀p ∈ M in the specific manner (Sn → S n) via the ∨-action as set

forth herein as p varies over M. Use of TM as the base space emphasizes that the

Sn are attaching to and operating through TpM via mutual compatible covariantly

constant frame fields. In addition we now take the structure group as the norm

symmetry group SO(n+ 1) for each of the division algebras, namely SO(2), SO(4)

and SO(8).13

nWe leave open imposition of the more refined double cover structure carrying a temporal dimen-
sion: SO(n+ 1)→ Spin(n, 1).
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It should be clear that use of Bn now permits incorporation of S7 into the

geometric framework.o This option is also quite aesthetic, for it is naturally a sphere

fiber bundle62,63,66 with structure group the inherent norm symmetry group and

with the main postulated theoretic construct being that the Sn bundle is to be an

operator fiber bundle on and over TM.p

Furthermore, the structure groups of Bn may provide for further interesting

and explanatory physics. One need only consider the family generation issue and

its oft-conjectured relation to SO(8)’s unique triality symmetry,13,38,57,85 or the

fact that the spin covering groups Spin(n) of SO(n) and their complexifications

are used to describe neutral and electrically charged fermions and are used as the

structure groups of spinor bundles.31,32,43–45

For instance, concerning SO(8)’s triality symmetry and its relation to S7, we

can write three representations of SO(8) related to one another via triality sym-

metry as:87

SO(8) = {x 7→ pxp : x ∈ O, p ∈ Ou} ,

SO(8) = {x 7→ px : x ∈ O, p ∈ Ou} ,

SO(8) = {x 7→ xp : x ∈ O, p ∈ Ou} .

(25)

Notice that the triality generating operator is p ∈ Ou ∼= S7 → S 7 operating

via octonionic multiplication,87 i.e. via the CAM operator ◦. The mapping pxp

corresponds to the vector representation 8v, the mapping px to the spinor repre-

sentation 8+, and xp to the dual spinor representation 8−.13,85,87,88 Triality is the

implicit mapping between these representations determined through use of some

p ∈ S7 cyclically acting on an element x of O.85,87,88 Thus, the three copies of

SO(8) are equivalent under triality symmetry,87 and it is the sphere S7 in the role

of an operator which generates this symmetry equivalence.

Additionally, the set

[Bn] = {B0, B1, B3, B7, Bi⊗j , Bi⊗j⊗k, . . .} , i, j, k, . . . = 0, 1, 3, 7 , (26)

where Bi⊗j··· ⇔ Si ⊗ Sj · · · , is uniquely closed under the product composition

⊗ since ⊗-compositions of parallelizable manifolds are themselves parallelizable.59

These ⊗-composition product manifolds will provide for the unified interaction

Lagrangians of SU(2)⊗ U(1) and SU(3)⊗ SU(2)⊗ U(1).

oThe S7 structure will prove a bit more involved, but nevertheless still consistent with this fiber
bundle framework. For instance, the base space for S 7 theory will make use of TM ⊗ TM vice

simply TM.
pThis notion of a parallelizable manifold (Sn) smoothly acting point-wise on another manifold (M)
is analogous to the mathematical notion of Lie group elements, which are points on differentiable,

parallelizable manifolds, smoothly acting on various kinds of objects — such as vectors or other
manifolds32,39,71,86 (see, e.g. Ref. 71, pp. 411–412; Ref. 86, Subsec. 3.2). The essential difference

is the mechanism of action; for Lie groups action on other objects is achieved via a representation
of the group, whereas with the parallelizable spheres herein action is achieved via an algebraic
structure intrinsic to the sphere.
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Lastly, note that the SO(n + 1) contain the division algebraic automor-

phism groups as subgroups:13 U(1) ⊆ SO(2); SU(2) ⊂ SO(4); G2 ⊂ SO(8).

These automorphism groups are associated with the fourth bundle option above.

Though we will presuppose Bn for this introductory paper the fiber bundle

An = (M, Sn, A(n), π), where A(n) is the automorphism group of the associated

division algebra, deserves future in-depth consideration along with Bn.

The pivotal attribute of A(n) of An is that it maintains invariance of the alge-

braic binary operation ◦ as one moves over the associated sphere Sn. Since this

algebraic operation is the defining, core operation of the CAM formalism which

simultaneously permits association of teleparallel frame fields between Sn and M,16

A(n) might be called the CAM symmetry group and An the CAM operator bundle.

This invariance property of the CAM operation gives weight to use of

An. Interestingly, A1 and A3 reduce to the principal bundles P (M, S1, π) and

P (M, S3, π). Also, in using A7 the SU(3) symmetry group naturally arises as the

subgroup of G2 which maintains invariance of the complex octonion element `.87

However, with An we lose SO(8) triality. Furthermore, SO(n + 1) is the isometry

(automorphism) group of the associated unit sphere and is thus the symmetry group

which maintains the structure of the manifold itself which in turn intrinsically con-

tains CAM’s binary operation ◦ — thus SO(n + 1) preserves the CAM algebraic

operator structure while simultaneously preserving the underlying geometric struc-

ture. Lastly, we note that since we have G2 ⊂ SO(8) we still may arrive at SU(3)

as the symmetry group of the subgroup of G2 which maintains invariance of the

complex octonion element `.

Thus, despite the intriguing properties of An, the operator bundle Bn better

provides the attributes for geometrically representing and generating the CAM for-

malism and for inducing the elementary-particle force Lagrangians, and is chosen

for such. Deeper future geometric analysis and theoretic or phenomenological

considerations may further compare and contrast An with Bn and highlight their

respective parts within CAM. At this stage of theoretic development, the more im-

portant objective is to have a viable and robust fiber bundle structure to house the

sphere operator fibers within, and Bn — which contains An — meets this criteria.

5.4.1. The sphere operator fiber S n

Because of the aforementioned structural and operational attachments we conceive

of Bn’s operator Sn as attached to M via TpM at all p ∈M and acting therein. These

notions of structural and operational attachment of Sn to M via their respective

tangent bundles form the foundation for the postulate that the parallelizable spheres

are operator fibers operating directly on M via TpM.

The bundles B1 and B3 are thus postulated as operator bundles with paral-

lelizable spheres Sn postulated as operator fibers S n operating point-wise via the

coupling operator ◦ on M in the tangent space TpM over the tangent bundle TM

Sn ∨ TpM→ S n ∨ TpM =
{
S 1 ∨ TpM,S 3 ∨ TpM; ∀p ∈M

}
, (27)
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where for brevity we will henceforth write S nTpM as the operation. We reiterate

that this global operator structure over M is only possible because of the mutually

compatible global teleparallel structure of the manifolds {TM,M, Sn} revealed

by (21), and that this teleparallel structure exists inherently within these mani-

folds.16,31,q We further reiterate the critical point that since ∇en = 0 is globally

true only for the unique parallelizable spheres of one, three (and seven) dimen-

sions, no other unit spheres SN besides these can possess this postulated Bn oper-

ator structure. Thus, for example, S2 cannot generate a smooth operator structure

B2 = (TM, S2 → S 2, SO(3), π) over M for which S2TpM→ S 2TpM for all p ∈M,

as in (27).

5.5. Conceiving Bn’s operation

Armed with the operator bundle structure Bn we can now abstractly conceive of

how a Lagrangian manifests through Bn’s coaction with space–time.

Given that the ◦-coupling operator is the invariant operator embedded in Sn →
S n at all points m ∈ Sn and that S n attaches to M via S nTpM’s attachment

to TpM at all p ∈ M, the ◦-operator is the natural candidate for the operating

mechanism which effects the postulated Bn-action on M.

Given that the CAM operator η generates the Lie algebra of SL(2,C) — the

double cover of the Lorentz group — and that Ω ≡ {η, ∂} generates the Poincaré

algebra,2 along with Ω’s intrinsic inducement in TpM ∀p ∈M taken with the man-

dated complexification Cl1,3 → Cl1,3, the set {Ω, Ω̄} ≡ {η, η̄, ∂, ∂̄} is a reasonable

candidate for the space–time entities which S n
p will operate on in Bn’s ◦-action in

TpM, and are premised as such.

Bn’s ◦-action of the sphere operators Snp → S n
p on an operator subset ω ⊂

{Ω, Ω̄} in TpM generates a coupled operator φ at p whose function it is to operate

qThis theoretical notion of structural attachment permitted by a concurrent global parallelizability

of the manifolds (per (21)) will come further into consideration when gravity is addressed within
the geometry of the CAM model. This will require, inter alia, introduction of a general Levi-

Civita connection ∇g for some Riemannian space–time manifold (B, g) on which R(eµ, eν) does

not globally vanish (thus calling into question the global applicability of (21) and thus also the
global structural attachment between Sn and B), but for which via the principle of equivalence

(21) may be recovered in a limited domain of B locally approximating M for a sufficiently small

neighborhood of a space–time point p ∈ B,35,49,50 and thus Sn and M can be considered locally
structurally attachable.

Thus, the fiber bundle makeup of CAM is consistent with the general relativistic framework for
gravity. General relativity deals with the phenomenon that a global free-float frame is not possible
within a gravitationally endowed space–time region X ⊂ B.49 If such a global free-float frame were

possible throughout X, then the Sn would still globally attach to space–time therein, which would
mean that use of CAM’s differential operator ∂ (i.e. special relativity) would be sufficient for the

description of physics within X — which is in contradiction with general relativity theory. But the

impossibility of a global free-float frame in a region of space–time is equivalent to the impossibility
of a global covariantly constant frame field in this region such that parallel transport between two
events therein is path independent31 — thus the Sn cannot globally attach to space–time within

X. Thus, the need for a general relativistic formulation of CAM when considering the gravitational
interaction.
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on and couple any interacting array of j sections sj(p) existing at the space–time

event p and belonging to either SpM or ApM:

S n
p : ω

◦7−→ (φω)psj(p) , ω ⊂ {Ω, Ω̄} , sj(p) ∈ SpM ∪ApM . (28)

Since φ couples sections of bundles at p it “stitches” the fiber bundles together

at the coupling event p. As Bn’s ◦-coupling operation is invariant on S n and exists

at all p ∈M we may write the bundle section coupler as: (φω)p ≡ φω. This bundle-

stitching process induced by φω thus occurs throughout space–time at all p where

the subject interactions occur between sections s of the fiber bundles {SM, AM}.
The coupled operator’s φω action on and coupling of the sections sj(p) gener-

ates a set of k φω-associated fields Fkφω at p from which a local gauge invariant

Lagrangian Lp manifests and governs the local dynamics and interactions induced

at p

φω : sj(p) 7→ Lp
(
Fkφω

)
. (29)

Equations (28) and (29) combine to

S n
p : ω

◦7−→ φω
(
sj(p)

)
7→ Lp

(
Fkφω

)
, (30)

which abstractly exhibits how the CAM fiber bundle geometry encompassed in Bn
generates the CAM geometro-algebraic operator formalism along with its attendant

results.1–5,r

Thus the CAM formalism is theorized to be locally executable space–time opera-

tor machinery intrinsically encoded within an underlying geometric source — in

particular within the smooth manifold structure of the parallelizable spheres co-

acting locally on the space–time manifold via the operator fiber bundle Bn.

5.6. S 3 ⊗S 1

The sections si of the SM and AM bundles applicable to electromagnetic S 1 →
U(1) theory are1,2

Spinor: ψ

Space–time Algebra:

�Aµ(x) = γ0A
0(x) + γ1A

1(x) + γ2A
2(x) + γ3A

3(x)

ZZKµ = γ5g1ψ̄γ
µψ

where we use the notationZZK to signify that we have a section of AM with compo-

nents attached to Clifford elements other than the {γµ}.

rSee Ref. 2, Subsec. 1.1 and Eq. (1), which matches (30) with the CAM formalism.
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A satisfying and natural outcome of the geometry is that though the matter-

wave field ψ itself is a section of the spinor bundle the currentZZKµ which ψ induces

is a section of the space–time bundle, thus the couplings are naturally between

sections (the gauge and current fields) of the same bundle AM.

Setting ω1 = (η, ∂); ω2 = (η̄, η) and applying (28) gives:1,2,s

S 1
p : ω1

◦7−→ (φω1)p ≡ (η ◦ ∂)p ≡ η∂C

= (γ0∂/∂t− γ · ∇, γ0∇+ γ∂/∂t+ γ ×∇) ,

S 1
p : ω2

◦7−→ (φω2
)p ≡ (η̄ ◦ η)p ≡ η̄ηC = (C, 2γ0γ) ,

(31)

where C is a constant which has no effect on the Euler–Lagrange field equa-

tions. Applying (29), the operator φω1
acts on the sections sj(p) = (ψ,�Aµ(x)) ∈

(SM, AM),1 while φω2 operates on the section ZZKµ,1,2 with the resulting chirally

symmetric local gauge invariant Lagrangian L⊕
i φωi

for U(1) following as a matter

of course.1,2

The sections of the SM and AM bundles applicable to weak S 3 → SU(2)

theory are2

Spinor: Ψ doublet

Space–time Algebra:

��W i
µ(x) = γ1W

1
µ(x) + γ2W

2
µ(x) + γ3W

3
µ(x)

ZZK
µ

= (1 + γ5)g2Ψ̄γµτΨ

Following the regime of (28) and (29) the same operators,
⊕

i φωi , are generated

for S 3; however, in this instance because the Lie algebra su(2) structure constants

are not identically zero we get for SU(2)’s (φω2
)p:

2

(φω2)p ≡ (η̄ ◦ η)p ≡ η̄ηH =

(
C, 2γ0γ +

1

2
[γ,γ]

)
. (32)

The extra operator term [γ,γ] generates the nonlinear ��W i
µ(x) gauge field self-

interaction terms of the SU(2) field strength tensor.2 Furthermore due to the struc-

ture ofZZK
µ

for S 3 theory, chiral asymmetry may spontaneously arise in the local

gauge symmetric SU(2)L Lagrangian.2

As the product manifold S3⊗S1 is parallelizable,59 the product operator geom-

etry S 3 ⊗S 1 of the operator bundle B3⊗1 can be used to generate the pre-Higgs

locally gauge symmetric, left-chiral electroweak Lagrangian L⊕
i φωi

locally on M
in TM2 (

S 3 ⊗S 1
)
TpM 7→ (SU(2)L ⊗ U(1)Y )p . (33)

sSee Ref. 1, Eq. (8); Ref. 2, Eq. (9), Fn. (7), and Subsec. 2.2.2 and (3)’s generation of the U(1)
current.
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6. The Geometry of Local Gauge Symmetry

In YM bundle theory local gauge transformations are changes in fiber coordinates of

an associated principal fiber bundle,11,46 for example for the gauge group U(1). Con-

sider the parameter θ for electromagnetism’s principal fiber bundle P (M, U(1)).11

All global gauge transformations are generated by the gauge group transformation

element z = e iθ ∈ U(1)28,31,37 and identically operate instantaneously throughout

space–time. All local gauge transformations are generated by z(p) = e iθ(x,t),31,37

where e iθ(x,t) ∈ U(1) with p = (x, t) ∈ M and θ(x, t) varying locally throughout

space–time as one moves from point pn to point pm therein.11,16

Within CAM, the geometry of local gauge symmetry is based on the paralleliz-

ability of the spheres and is clearly visualized.

In the CAM model, we utilize the fundamental geometric fact that U(1) is

contained in the circle since isomorphic thereto:11,21 U(1) ∼= S1 7→ S 1. Thus any

choice of gauge group element z = e iθ(x,t) ∈ U(1) at p ∈M is more fundamentally

a geometric choice of a point z on the 1-sphere operator fiber S 1 of the circle

operator bundle B1 acting in TpM at p = (x, t) ∈M.

If θ is varied from point pn to pm of M the element zpn = e iθpn ∈ S1
pn 7→ S 1

pn

concomitantly varies to zpm = e iθpm ∈ S1
pm 7→ S 1

pm . As discussed above, since

S1 is parallelizable S 1 attaches to and operates in TpM with the algebraically

invariant ◦-coupling operator at all space–time points p. Thus with the variation

θpn → θpm ⇒ zpn → zpm the S 1 coupling mechanism exists and is operatively

invariant on TpM ∀p ∈ M, thereby producing the correct coupled, local gauge

invariant Lagrangian ∀p ∈M.

This presents an example of a symmetry principle enunciated by Weyl:41 if a

condition which determines an effect possesses a certain symmetry, then the effect

will exhibit the same symmetry. S 1 is the condition which determines the local

gauge invariant laws of physics for U(1) as the effect — such as for electromag-

netism.11 Since the ◦-coupling is an invariant on S 1, its generation of the laws of

physics in a local gauge invariant form will remain invariant as z ∈ S 1 varies with

variation of the point p ∈M and the operator fiber S 1 operates via the attachment

and action S 1
z TpM, where this reads: “at the point z ∈ S1 the sphere operator fiber

S1 → S 1 attaches to and acts on M at the point p ∈M via TS1 and TM’s mutually

compatible covariantly constant frame fields.”

Consider now the alternative scenario — if S1 were not parallelizable. Then

its Euler–Poincaré characteristic χ 6= 0,11,65 and S1 would possess at least one

singular point z at which all vector fields on S1 vanish.65,84 At any point p ∈ M a

simple phase (gauge) transformation eiα of S1
nTpM→ S 1

nTpM would then bring this

singular point z in contact with p, i.e. S 1
nTpM 7→ S 1

z TpM, and there would then be

no attachment of any covariantly constant frame fields between TS1 and TM at p —

and thus there could be no Bn action at p and therefore no Lagrangian. Thus at any

point p where a Lagrangian is initially considered locally gauge symmetric a simple

gauge transformation would make it not so, thereby violating the fundamental

2050037-19

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

02
0.

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

06
/2

8/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 13, 2020 11:10 IJMPA S0217751X20500372 page 20

B. J. Wolk

principle that the laws of physics are to be invariant under gauge transformations.

Thus since S 1 could not be said to attach to and ◦-operate in TpM ∀p ∈M it could

not then generate a locally gauge symmetric Lagrangian throughout M. Local gauge

symmetry in elementary-particle physics for SU(2) and U(1) is thus seen at its core

as an attribute of the parallelizability of the 1 and 3-spheres.

7. Contrasting the YM and CAM Gauge Theories

7.1. CAM is a gauge theory

Often stated as “the principle of gauge theory”t for SM physics is that matter-

wave fields are to be described by sections of gauge group vector bundles in locally

gauge invariant field equations.11,16,17,21,26,32,46 Stated in this way the principle

presupposes that YM theory must be used in constructing SM, for it is within the

fiber bundle structure of YM that matter-wave fields are sections of gauge group

bundles for which local gauge invariant field equations result.

This form of the gauge principle thus assumes that YM is the only formalism

that can generate the SM laws of physics within a locally gauge invariant envi-

ronment, and thus YM theory is presumptively considered the SM local gauge

theory. In short, the term “Yang–Mills theory” has often been held synony-

mous with the term “gauge theory” or “non-Abelian gauge theory” for SM

physics.11,21,27,32,39,47,51–53,u

But it is now known that CAM also generates the local gauge invariant SM

gauge group Lagrangians with inherently accompanying gauge fields.1–5 To make

amends of this, gauge invariance must not be conceived of simply as a set of math-

ematical tools, but instead as, “the physical principle governing the fundamental

forces between the elementary particles.”v

Given this understanding, a simple way to state the gauge principle is taken

from Weyl, Yang and Mills26,40,54,55,w

The gauge field is to be a necessary accompaniment of the matter-wave

field within a locally gauge symmetric setting.

Stated in this way the gauge principle has two requirements: (1) Weylian accom-

paniment, and (2) Yang–Millian locality.

The Weylian accompaniment requirement stems from Weyl’s dynamical view

of matter as both the “inducing agent” of a gauge field as well as the interacting

agent involved in a gauge field’s “transferring interactions from matter to matter,”x

whereas the YM locality condition of local gauge symmetry is a requirement for

relativistic field theories.18,26

tReference 21, p. 222.
uThus Kane writes, “The Standard Model is called a Yang–Mills gauge theory” (Ref. 23, p. 1–2).
vReference 91, p. 5 (emp. supp.).
wReference 54, p. 331; Ref. 26, p. 192.
xReference 55, p. 609.
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Using this form of the gauge principle as the guiding principle we see that the

YM and CAM systems are but two differing methodologies for effecting this prin-

ciple and thereby producing local gauge symmetric SM gauge group Lagrangians

with coupled matter and gauge fields. They are thus to be considered as two sep-

arate gauge theoretic models for generating the local gauge symmetric Standard

Model of particle physics.

Therefore it is more accurate to state that in YM-based SM gauge theory

matter-wave fields are described by sections of simply-connected gauge group

vector bundles with gauge fields being the connections of the associated principal

fiber bundle of the structure group through which the required accompaniment-

coupling is generated; whereas in CAM-based SM gauge theory matter-wave fields

are sections of the spinor bundle while gauge fields and four-currents are sections

of the space–time algebra bundle which interact via CAM’s bundle coupling tech-

nology, thereby intrinsically generating a local gauge invariant theory.

7.2. Distinctions

Though both gauge theories intrinsically produce coupled, locally gauge invariant

Lagrangians for the SM simply-connected gauge groups nevertheless there are im-

portant conceptual, theoretical and phenomenological differences between them,

some of which follows:

(1) YM theory is a gauge theory based on the groups SU(N) : N ≥ 1. The CAM

model is a gauge theory based on the parallelizable spheres SN : N = 1, 3, 7.

In YM-based gauge theory a different choice of gauge group corresponds to a

different elementary-particle force.39 Thus in YM forces are initially and pri-

marily related to gauge groups. In CAM-based gauge theory a different choice

of parallelizable sphere (or composition thereof) corresponds to a different

elementary-particle force. Thus in CAM the forces are initially and primarily

related to spheres. No longer do we generate a force by specifying a Lie gauge

group; we now generate a force by specifying a parallelizable sphere.

(2) In CAM the sphere operators Sp are conceived as operationally attaching to

space–time. In YM the gauge group fibers Gp are conceived only as “standing,

in some sense, above”27 or “sitting right over”21 space–time and operating not

on space–time but on matter-wave sections of another fiber bundle over space–

time.

(3) YM deals with connections of various fiber bundles. CAM deals only with the

connection ∇ on the tangent bundle TM, and is therefore more fundamentally

geometric than YM. As Baez noted regarding general relativity’s relation to

YM theory, “general relativity is even more (emp. Baez) geometrical [than

Yang–Mills theory], since it concerns, not just any old bundle, but the tangent

bundle!”y

yReference 21, pp. 365–366.
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(4) A fundamental question remains as to the origin of the SM gauge group sym-

metries.27 The YM-based SM remains silent on why the symmetries are U(1),

SU(2) and SU(3). No theoretical basis for the symmetries exists within YM.

As Kane noted, “The Standard Model is a descriptive theory. It does not

explain why its particular electroweak and color forces are what they are, and

whether they are inevitable . . . .”z Comparatively, CAM specifically establishes

where and why the U(1), SU(2) and SU(3) symmetries arise through genera-

tion of the characteristic structure constants of these simply-connected sym-

metry groups, and these alone.aa According to the CAM model these forces,

and these alone, are inevitable. In this way CAM theory mandates the sym-

metry groups U(1), SU(2) and SU(3) for the elementary-particle forces of

nature.

(5) CAM finalizes the singular elementary-particle forces at SU(3), since S7 is the

last parallelizable sphere. YM contains no such constraint, which has proven

to be an issue for YM theory in regards to proton decay phenomenology.5 This

CAM constraint thus answers the question echoed throughout the theoretical

physics community as stated by Schwichtenberg:bb “[T]he three fundamental

forces described by the standard model correspond to the symmetry groups

U(1), SU(2) and SU(3). Why is there no fundamental force following from

SU(4)? Nobody knows!” Now we know.

(6) In YM numerous curvatures over the various gauge group bundles necessarily

arise. In CAM the only required connection is ∇η of M, and thus no group

bundle curvatures exist in CAM.

(7) In YM the gauge fields are connections. In CAM the gauge fields are not

connections, but Clifford fields. Now Clifford elements operate on spinor

fields,16,27,36,38 which are the matter-wave fields in both CAM and YM.

Furthermore gauge fields also operate on the spinor matter-wave fields in trans-

ferring interactions.36,39,40,53 Therefore it is reasonable to postulate that the

gauge fields should have a direct nexus with the Clifford elements and thus

take their values in the Clifford space–time bundle, i.e. be Clifford fields. This

is argued to be a more natural procedure than the YM gauge theory’s proce-

dure of the gauge fields being the connection coefficients of a specified principal

gauge group bundle thereafter effecting operation on the spinor matter-wave

fields via a representation ρ on an associated vector bundle of the matter-wave

field.

(8) In YM gauge theory, there is “no necessary correlation whatsoever between

the geometry of the base manifold and the geometry of the fiber.”cc Thus

although on one hand the tangent bundle is “intimately associated” with the

zReference 23, pp. 1–3.
aaSee Ref. 5, Fn. (15) and related content for further discussion of the structure constant topic.
bbReference 86, p. 3.
ccReference 48, p. 379.
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base space manifold M, on the other hand there “is no pre-existing reason to

add a spinor space” as a fiber bundle for associating material fields.48 In CAM,

the relation between the base space M and the spinor and Clifford bundles

is more subtle and intimate. For instance in CAM bundle theory there is a

pre-existing reason to add a spinor space to M, since CAM generates the Dirac

operator �∂ which operates on spinors. Although it remains to be seen whether

the spinor and Clifford fields can “arise as a result of any natural structure on

the base manifold,”48 nevertheless the structure of these fields is intimately

and necessarily correlated with the form of the operators generated by S -

action on M. Thus (30)’s generated operators determine to various extent the

form of the fields that can be operated on and thus the nature of the fiber

bundles of which these fields are sections.

(9) CAM naturally accommodates intrinsic spontaneous generation of chiral

asymmetry for SU(2). YM does not, and only imposes parity violation

ad hoc36,39,52 or derives parity violation from the renormalization effects

within the causal gauge invariance of second order tree graphs for leptonic

couplings.56

(10) CAM intrinsically accommodates a right-chiral neutrino; YM does not.

(11) CAM places constraints on proton decay which are consistent with experiment;

YM does not.

(12) CAM generates Einstein’s equations of general relativity and provides a place

for the Higgs field to enter the physics arena and inherently couple to the

space–time metric.

7.3. Connections

Despite these differences, the principal connection between the YM and CAM gauge

theories is readily shown. This theoretic crossroads between the two approaches

reveals the Yang–Mills methodology as derivative of the CAM methodology, a sub-

ject which was previously alluded to.dd

7.3.1. YM gauge theory

The core of Yang–Mills gauge theory rests upon the building blocks of a chosen

non-Abelian gauge symmetry group and a subsequently derived connection asso-

ciated with the gauge potential field of the symmetry group.18,26,91,94 The appli-

cable covariant derivative arises thereafter from this derivation, and a Yang–Mills

Lagrangian and the equations of motion are developed under the guidance of a man-

dated local gauge symmetry.17,39,46,91 Reduction to the Abelian symmetry group

U(1) results in Maxwell’s electromagnetism.36,53,91,94

Construction of modern non-Abelian gauge theory begins with identification of

the Lie algebra for an arbitrarily chosen non-Abelian group for which the local

ddReference 5, Fn. (14).
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symmetry transformation of a wave function is:12,91,94,ee

Uψ = exp

(
−ig

∑
k

θk(x)Gk

)
ψ , (34)

where the internal space parameters θk(x) are continuous functions of the space–

time coordinates (x) and Gk are the generators of the chosen symmetry group’s Lie

algebra abiding by the ubiquitous Lie bracket relations:[
Gi, Gj

]
= icijkGk . (35)

Here we make the pivotal observation that within YM gauge theory the ini-

tial choice of a simply-connected local gauge symmetry group for (34)–(35) is

arbitrary — we could with equal theoretical justification choose the symmetry group

SU(6) or SU(2), SU(4) rather than SU(5) or SU(3), Spin(13) as for Spin(10); in

short, no internal guidance is given within YM gauge theory for guiding the choice

of gauge group so as to be in line with the SM gauge groups. No inherent direc-

tive or self-constraining mechanism exists within YM gauge theory which would

mandate the SM gauge groups or restrict use of symmetry groups for generating a

Yang–Mills gauge interaction. It is here where CAM gauge theory essentially differs

with YM theory, and ironically it is the core interconnection between the YM and

CAM gauge constructs which reveals this distinction.

Continuing with the Yang–Mills approach, we write a particle’s wave function

in the internal basis of the chosen symmetry group’s internal space:91

ψ(x) =
∑
α

ψα(x)uα , (36)

where uα are the basis vectors for the internal symmetry space. Calculating the

differential change in the wave function as the particle moves through an external

potential field gives

dψ =
∑
α

[
∂µψα dx

µuα + ψα duα
]
. (37)

Focusing on the change in the internal space bases duα will yield the connec-

tion.91,94 Consider the infinitesimal internal precession associated with the external

space–time displacement dx and caused by the external potential field:

U(dx) = exp

(
−ig

∑
k

dθkGk

)
, (38)

where dθk = ∂µθ
k dxµ. The associated internal displacement of the uα is of course

U(dx)u = u+ du, which may be written as91

U(dx)uα = exp

(
−ig

∑
k

∂µθ
k dxµ(Gk)αβ

)
uβ , (39)

eeSee, e.g. Ref. 12, Subsec. 9.1; Ref. 91, Subsec. 3.1.
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and which yields after expansion to first order the change in internal space bases:

duα = −ig
∑
k

∂µθ
k dxµ(Gk)αβuβ . (40)

The connection is defined from (40) as53,91,94

(Aµ)αβ =
∑
k

∂µθ
k(Gk)αβ . (41)

Looking back to (37), we thus have for the total change in the wave function

dψ =
∑
αβ

[
∂µψαδαβ − ig(Aµ)αβψα

]
dxµ uβ , (42)

from which we can resect the general covariant derivative operator Dµ:91,94

Dµψβ =
∑
α

[
δαβ∂µ − ig(Aµ)αβ

]
ψα . (43)

By way of example, using (43) for the one-dimensional Abelian symmetry group

U(1) gives the well-known covariant derivative or minimal coupling for the electro-

magnetic interaction:39,47,52,91

Dµ = ∂u − iqAµ , (44)

use of which permits the applicable local gauge symmetric Lagrangian and equations

of motion to follow.17,36,53,94

7.3.2. CAM as primordial YM gauge theory

Within the CAM model, we begin further back in the process, before emergence of

any applicable Lie symmetry group. CAM theory in fact reveals and generates the

applicable local symmetry groups for the elementary-particle interactions — the

SM local symmetry groups — by generating the Lie algebra structure constants

necessarily attached to and associated with these symmetry groups.

The fundamental theorems of Lie group theory reveal the central role that the

structure constants have therein,92 and therefore also within particle physics gauge

theory. The structure constants possess a certain symmetry which the generators

lack — namely, they are invariant with respect to changes in the representation of

a group.38,39,92 In contrast, the generators lack this symmetry.39

Furthermore, the structure constants are characteristic of a Lie group, and thus

all Lie groups (and for our purposes the simply-connected ones) are classifiable from

them.92,93 Any particular set of structure constants are necessarily and uniquely

related to (and so isolate) a distinguished, simply-connected Lie group and therefore

its associated geometric manifold.36,38,92,93 Finally from the structure constants the

adjoint representation immediately follows,38 from which all theoretic SM results

are derivable since the group structure is independent of the representation.38,39,92
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It is from (35) that the structure constants indicate a specific Lie algebra and

thus mandate its associated simply-connected Lie symmetry group to be used in

(34). From this indication the flow of YM gauge theory begins and its theoretic

structure is established — from (34) through (44) and beyond. The structure con-

stants thus indicate and generate the building blocks of YM gauge theory, namely

the local gauge symmetry groups and connections along with associated covariant

derivatives.

It has been previously shown that CAM indicates and mandates the SM gauge

groups through generation of the applicable structure constants for the Lie algebras

of the U(1), SU(2) and SU(3) symmetry groups, and these alone.2,4,5 For the SU(2)

weak interaction the operator [γ,γ] (based in the quaternions H) generated the

structure constants for the Lie algebra su(2),2 just as the same operator [γ,γ] —

but in this instance based in the octonions O — generated the structure constants

for the su(3) Lie algebra of the SU(3) interaction.4 There are of course no structure

constants for the U(1) interaction based in C and so the operator [γ,γ] vanishes

and does not come into play.1,2 It is in this way that CAM gauge theory begins

further back in the process than YM gauge theory, indicating the applicable simply-

connected symmetry groups through generation of their respective Lie algebras that

YM gauge theory must introduce ad hoc.

We thus arrive at the result that Yang–Mills gauge theory is derivable from,

and therefore less fundamental than, CAM gauge theory. This also means that the

gauge theoretic structure of YM is utilizable within CAM gauge theory.

For instance, noted above was that whereas YM deals with connections of

various fiber bundles, CAM deals only with the connection ∇ on the tangent bundle

TM. This means that CAM gauge theory needs only the connection on TM to

generate the SM interactions. But this is not to say that YM gauge theoretic con-

nections and all their related fiber bundle structures (such as bundle curvature)

cannot be utilized within CAM’s theoretical analysis. On the contrary, they can

be; it simply means that neither the covariant derivative nor connection (nor the

symmetry group for that matter) is the nascent, determinative structure to be used

for deriving or postulating an elementary-particle force. Thus, if CAM gauge theory

places an ab initio restriction or prohibition on use of a certain covariant deriva-

tive or symmetry group, then it and its associated connection cannot be used in

violation of this restriction in contemplating the fundamental laws of elementary-

particle physics. It is this YM theoretic assumption of the viability of extension of

the covariant derivative and connection in postulating an SU(5) (or other symme-

try gauge group) interaction which has created internally unresolvable issues in YM

theory for such things as proton-decay phenomenology.5

We conclude that CAM is a more primordial gauge theoretic structure than YM.

Furthermore, since CAM gauge theory generates the building blocks for the gauge

theoretic mechanisms which are integral to YM gauge theory, and thus generates

and subsumes YM gauge theory itself, CAM might be more easily grasped if con-

sidered as a refinement of YM gauge theory or as primordial YM gauge theory.
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8. Discussion

For YM fiber bundle gauge theory to work it is essential that the applicable

principal and associated fiber bundles have certain exact symmetries. As Penrose

contemplated, this contingency “raises fundamental questions as to the origin of

such symmetries, and what these symmetries actually are,”ff for which YM theory

does not provide an answer.

In CAM fiber bundle gauge theory, however, the answers to these questions are

firmly rooted in the geometric structure of the formalism itself. No longer is the SM

symmetry group “put into the theory by hand.”gg The origin and operation of the

symmetries of the SM forces inherently exist within the dynamic symbiosis of the

parallelizable spheres and space–time, which generates CAM’s geometro-algebraic

formalism.

This notion is fundamentally important, and so warrants emphasis. Symmetry

does indeed dictate design,18,57 but what dictates the symmetry? What distin-

guishes this from that symmetry as operative in the structure and function of the

fundamental laws of physics and so in the real world? It would seem logical to pos-

tulate that some mechanism or structure functioning behind the scenes generates

and picks out a symmetry as that symmetry which is to apply to the design of

reality in distinction to the plethora of other mathematical symmetries which do

not. Is there something more fundamental lying behind the operative symmetries of

reality which generates those symmetries in the first instance? This paper theorizes

in the affirmative for the elementary-particle forces — the parallelizable spheres

dictate these particular symmetries of reality which in turn dictate reality’s design.

Thus though we can conceive YM theory as a formalism for mathematically

representing the SM interactions, the CAM model goes further and can be viewed

as also generating the structure of these interactions. The gauge theory of YM is but

descriptive, while the gauge theory of CAM is both descriptive and generative. This

theoretic and conceptual contrast between the theories justifies the introductory

statement that but for the particular structure of the three unique parallelizable

spheres the fundamental elementary-particle forces would not exist in the form in

which they do, if at all.

That the elementary-particle forces have a core structure contingent upon the

most symmetric of immutable topological structures — the spheres — and what

is more only those spheres endowed with the uniqueness and universality of par-

allelizability — is an aesthetically compelling paradigm for comprising a corpus of

fundamental physical law which once grasped cannot easily be castaway.22,41,58

The paradigm strongly resonates with Yau’s aesthetic conviction thathh

The deepest ideas of math, if shown to be true, would almost invariably

have consequences for physics and manifest themselves in nature in general,

ffReference 27, p. 354.
ggReference 14, p. 29.
hhReference 60, p. 78.
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in providing (in part) a resolution to the theoretical questions which have resonated

in the physics community for some time — as echoed by Peskin96 and Furey78,79,ii

What makes SU(3)⊗ SU(2)⊗ U(1) so special78?

Of the infinite number of imaginable gauge groups, why this gauge group79?

Of all the ways that nature could be built, how do we know that the

Standard Model is the correct one96 (Sec. 1)?

through theoretical authentication of Dixon’s aesthetic intuition thatjj

The parallelizable spheres . . . are the only ones of their kind . . . and,

I believe, an inevitable part of the design of reality.

9. Higher-Dimensional Unification

Given the above aesthetic paradigm one is justified in casting still further out and

postulating that the elementary-particle forces are “the result of the hidden (topo-

logical structure of the spheres) that conducts its business behind the scenes,”kk

where here “the scenes” is taken as the metric-equipped four-dimensional space–

time continuum as part of the (1, 10)-dimensional geometro-topological struc-

ture22,23,27,51,61

M1,10 ∼

noncompact︷︸︸︷
M1,3 ×

compactified︷︸︸︷
X 7 , (45)

where M1,3 = (M,η) is the simplest choice.61

ii“In part” for two reasons: (1) the role of S 7 has not yet been mathematically set forth — though

from this paper’s structure S 7’s role can be fairly intuited, and (2) as Furey notes,79 “Even if we
were to understand why nature’s local symmetries should be given by SU(3)⊗ SU(2)⊗ U(1), we

would still be at a loss to explain SM’s particle content.” In this regard we must emphasize that we

hold it to be self-evident that if the detailed structure of some algebraic framework (such as the
division algebraic systems proffered by Dixon14,81 or Furey,78,79 Gogberashvili80 or Günaydin

and Gürsey,82 Dray and Manogue87 or Pushpa and Bisht,83 or otherwise) is in fact nature’s

choice for accommodating the particulars of SM particle and quantum number content, then —
in keeping with this paper’s core motivation and the modern ideal of perfecting an explanation

of the fundamental physical interactions via a unifying geometry — assimilation of the proffered

algebraic system into an underlying, unifying and inducing geometric structure (such as with the
CAM formalism herein) is mandated. In short, with regard to the fundamental laws of physics, to

be theoretically and aesthetically viable detailed algebraic form must of necessity be intrinsically

contained within and naturally emanate from unified geometric structure.
It is by the light of this unity-through-geometry mandate that Eq. (1) addresses Furey’s addi-

tional inquiry: “If SM’s group representation structure is indeed a result of the algebras R, C, H,
and O, then what is it exactly that is so special about these algebras?”79

jjReference 14, p. 160.
kkReference 60, p. xvii. The term “topological structure of the spheres” has been substituted for
Yau’s original term “geometrical structure” since Yau considers geometrical structure as coinciding

with the existence of a metric on a space (see, e.g. Ref. 60, pp. 18, 25, 79) (and in particular Calabi–
Yau geometric structures), but as has been emphasized in this paper the qualities and operations

contemplated of the spheres (such as parallelizability and algebraic composition) do not require
equipping the spheres with this extra metric structure.
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9.1. A nonmetric source space

As the first critical theoretic and philosophic departure from standard conceptions

in string/M-theory for conceiving a higher-dimensional structure for generating the

CAM model, we take R7 ⊂ M1,10 (from which X 7 will arise) to be a nonmetric

topological space (R7, τ) endowed with the usual topology τ .11,16,24,62,84,ll The space

(R7, τ) is not Euclidean space E7 endowed with the standard Euclidean metric

d(p, q) =
√∑7

i=1(pi − qi)2.62,63,65,84,mm Since in standard Kaluza–Klein theory

and its string/M-theory successors higher-dimensional space–time is presumed

to have a metric structure,50 this forms a fundamental distinction between the

approaches.

Despite being devoid of all metric structure (R7, τ) is a well-defined, deep-

structured topological space which is locally homeomorphic to E7.62,65,70 This

homeomorphism exists because (R7, τ) and E7 ≡ (R7, d), though having different

topological bases, correspond to the same topology.11,16,24,62–65,70,84,nn This cor-

respondence of topologies is an interesting mathematical result which warrants

application in fundamental theoretical physics.

For if we can generate the self-same deep topological structure as a metrizable

space does without recourse to the additional metric structure, then the metric

structure has become superfluous for the purposes at hand and novacula Occami,

simplicity and aesthetics mandate that we forgo it. Such a theoretic program of

abstraction and nonmetric generalization is also physically justified since our intui-

tion can easily be led astray when considering particular representations of spaces

in metricized Euclidean space En.66,oo

The operative philosophic notion here is that there is no logical reason theo-

retical physics cannot nor should not (with sundry reasons why it should) consider a

more general yet well-defined, structured higher-dimensional space in which we “free

ourselves from the straitjacket of having to work inside some Euclidean space.”pp As

Armstrong emphasized, “In defining neighborhoods in a Euclidean space we used

very strongly the Euclidean distance between points. In constructing an abstract

space we would like to retain the concept of neighborhood but rid ourselves of any

dependence on a distance function.”qq

llReference 11, pp. 9 and 13; Ref. 16, p. 81; Ref. 62, p. 43.
mmReference 11, p. 28; Ref. 62, Subsec. 2.2; Ref. 65, Subsec. 1.2.6.
nnReference 24, App. A; Ref. 62, pp. 18, 24 and 43; Ref. 65, Subsec. 1.2.8; Ref. 70, p. 47;
Ref. 84, pp. 1–2.
ooSee Ref. 66, pp. 10–11, Figs. 1.14–1.15, for an excellent example of this intuition-misleading

phenomenon using the Möbius strip M generated by i = 1/2 and k = 3/2 twists. We have
Mi ' Mk. Yet despite Mi ' Mk when using representations of Mi and Mk in En no amount

of stretching, bending or twisting can deform Mi into Mk (Ref. 66) — which would lead one’s
intuition to conclude, incorrectly, that the spaces are not homeomorphic.
ppReference 66, p. 14.
qqReference 66, pp. 12–13, emphasis author.
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Considering only the three-dimensional spatial component of four-dimensional

space–time, for two-and-a-half millennia from Aristotle through Newton to

Descartes its structure was presumed to be E3 endowed with the standard Euclidean

metric d(p, q).65,66 But as Aldrovandi and Pereira have noted:rr

We are by now sure that the standard Euclidean one which has been taken

for granted for millennia is not valid at distances of interest at the quantum

level. The last few decades have brought to light doubts about its validity

also at very large, cosmological distances.

This experimentally backed, slow-developing realization regarding our directly

measurable 3D space further emphasizes the need for theoretical physics not to

incipiently constrain itself to a metric space when considering higher-dimensional

theory. One is in fact logically led in the alternative direction of a more general

space. Furthermore, there is no experimental mandate requiring there be a metric

associated with this higher-dimensional space. Such a mandate is a theoretical

straitjacket. More general, all-encompassing spaces are valid as fair-game which

may serve the qualitative purposes of theoretical physics for modeling our reality

in a much simpler and more aesthetic way than demanding a superfluous higher-

dimensional structure of Euclidean or general metric geometry.

In short, the fundamental laws of physics are not to be arbitrarily constrained

by a physically and mathematically unfounded proclamation that the necessary,

“a priori , eternal truths” of Euclidean geometry govern either the construction

or perception of our universe.35,67,73,ss The basic philosophy of higher-dimensional

CAM thus follows the modern “heretical movement”tt in theoretical physics, from

general relativity to quantum theory, of liberating ourselves from the “undue and

superfluous restrictions” engendered within the classical comforts of a metricized

“ambient Euclidean space.”uu

Since topology can be thought of as a kind of generalization of Euclidean geom-

etry,11 it is natural that our theoretical considerations begin within its domain. In

point of fact, “topology has taken on the role of providing the foundations for just

about every branch of mathematics that has any use for a concept of ‘space’,”vv and

all the relevant, deep structural properties of a space such as continuity, open sets,

boundedness, connectedness, compactness, contractibility, convergence, dimension,

point-distinguishability, qualitative proximity and even differentiability are “quite

independent of any notion of distance” or metric.64,65,70,ww

rrReference 65, Preface to 2nd edition.
ssReference 35, pp. 15–20; Ref. 67, pp. 8–13; Ref. 73, p. 329 and Subsec. VII.6 (“Mathematics and
Reality”).
ttAs the mathematician and theoretical physicist Carl Friedrich Gauss feared his ideas on non-
Euclidean geometry would be viewed (Ref. 35, p. 5), and for which Gauss was attacked by philo-

sophers (Ref. 73, p. 329).
uuReference 64, p. 1.
vvReference 70, p. 4.
wwReference 65, p. 8.
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As the geometric notion of distance is not invariant under homeomorphism and

therefore not a topological symmetry,11,62,64,66,70 a metric d — being defined so

as to correspond to our intuitive notion of the geometric distance between two

points11,65,70 — “contains extraneous (nontopological) information” and thus its

metric structure is irrelevant to our foundational topological purposes.65,70 This

being the case we require that any and all metric structure of CAM’s theorized

higher-dimensional compactified topological space X 7 be extracted .

To adequately liberate the topology of X 7 from all metric structure, we are

then compelled to initiate its compactification from a nonmetric source space. We

are thus and in this way naturally led to postulate the aforesaid nonmetric space(
R7, τ

)
as our pre-compactification source space:

(
R7, τ

)
⊂M1,10.

9.2. Source space compactification

As a second theoretic departure we apply the specific topological procedure of one-

point compactification Θ to the source space (R7, τ):11,16,17,62,65,66,xx

Θ : R7 c
99K X 7 , (46)

which yields X 7 as a space homeomorphic to the topological 7-sphere:11,16,62,yy

X 7 ' S7
τ . (47)

We know that the 7-sphere is isomorphic to the unit octonions.11,14,17 Yet no

division algebraic composition rule exists on (47)’s S7
τ . This seems a contradic-

tion at first blush, but it is not. For the division algebraic binary operation is a

smooth algebraic structure belonging to S7 as a smooth manifold and not to S7 as

a topological space — there is no notion of smooth algebraic composition defined in

the topology of S7. Smoothness and smooth structures are not purely topological

properties,64,65 and so such structure will have to be appended.zz

In this regard it is imperative here to recognize that there are different layers

of structure which might exist in S7. In fact, there are generally four layers of

increasingly refined structure:64,69,70,aaa

xxReference 11, Chap. 6 and Subsec. 10.2; Ref. 16, Subsec. 2.3.5; Ref. 17, p. 15: Ex. (v); Ref. 62,
Sec. 19.
yyPer Moira, the one-point compactification of

(
R7, τ

)
happens to be homeomorphic to S7

τ . Other-

wise, (45)’s higher-dimensional structure would not be a viable CAM unification candidate.
zzFor example, the geometric objects that the Lie groups U(1) and SU(2) are associated with

must be differentiable (smooth) manifolds with a group → manifold operation which induces a
differentiable map of the manifold into itself;16,17,38,86 this group → manifold operation for the

unit 1 and 3-spheres is of course division algebraic multiplicative binary composition. Thus the
purely topological manifolds S1

τ and S3
τ lacking smooth structure are insufficient as the manifolds

to associate with U(1) and SU(2), and the additional smooth structure will have to be appended.

Though S7 is not a group, the same reasoning applies as to the associated unit octonions.
aaaSee Ref. 64, Chap. 1. As the author Lee64,70,72 states in giving a nice explanation of these
various structures on a unit-sphere:72 “One reason it’s easy to get confused about these layers
of structure is that when there are obvious “natural” choices such as the ones I described above,

we often don’t even mention that a choice is being made. For example, if an author writes

footnote aaa (Continued on next page)
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(1) S7
s as a set;

(2) S7
τ ≡

(
S7, τ

)
as a topological space with topology τ structure;bbb

(3) S7
A ≡

(
S7, τ,A

)
as a differentio-topologicalccc manifold with smooth A struc-

ture;

(4) S7
g ≡

(
S7, τ,A , g

)
as a differentio-geometric manifold with Riemannian metric

g structure.

9.3. Transport of algebraic structure into S7
τ

Equation (36)’s homeomorphism X 7 ' S7
τ admits seven-dimensional manifolds

other than S7
τ , such as X 7 = Si; i = 1 − 28, where Si for some i is one of the

28 orientation-preserving exotic spheres homeomorphic to S7
τ .8,16,64,68,69 Although

the differentiable Si structures may contain division algebraic structure,89,90,ddd for

the purposes of this introductory paper we will maintain use of the 7-sphere with

standard smooth A structure (a maximal smooth atlas equipped with the standard

smooth structure8,16,64).eee

CAM’s compactification scenario will thus require a subsequent topological de-

formation16,68 event

α : X 7 d
99K S7

τ (48)

necessarily occurring before the transport of A structure induced by (49) below.

This topological deformation is required because the Si are not diffeomorphic to

S7
A ,9,63,68 while the smooth A structure being transported via (49) morphs X 7

into S7
A . Thus without (48) a mapping such as (49), which would make X 7 = Si

an A -carrier diffeomorphic to S7
A , could not exist.

Following topological deformation, development of (47) to the operator sphere

X 7 7→ S 7 occurs as the result of a transport of A structure64 event induced by

footnote aaa (Continued)
“Let S2 be the unit sphere in R3,” you have to decide from the context whether she’s thinking

of it as a set, or a topological space with the subspace topology, or a smooth manifold with the

induced smooth structure, or as a Riemannian manifold with the induced Riemannian structure . . .
Technically speaking, S2 is only a set. The topological space is an ordered pair

(
S2, τ

)
where τ is a

topology; the smooth manifold is an ordered triple
(
S2, τ,A

)
where A is a smooth structure; and

the Riemannian manifold is an ordered quadruple
(
S2, τ,A , g

)
where g is a Riemannian metric.

To keep the notation from getting too cumbersome, we usually omit all those additional structures
when they’re understood from context.”
bbbThere is a further delineation here, in which a topological manifold is defined as a topological
space which also has the properties of being Hausdorff, second-countable and everywhere locally
homeomorphic to an open subset of En.64,70 Topological manifolds are the simplest type of mani-

fold.63,64,70 Given this definition it can be shown that both
(
R7, τ

)
and S7

τ are in fact topological
manifolds.21,62,64

cccWe follow Milnor’s use of the term differential topology,8 vice the use of the phrase “smooth
manifold theory.”64

dddFor instance, in constructing the first exotic 7-sphere, Milnor used boundaries S3 × S3, for

which each S3 is identified with the unit quaternions with standard multiplicative structure.90

This raises an intriguing possibility for future study.
eeeReference 8, p. 2; Ref. 16, p. 174; Ref. 64, pp. 5 and 20.
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the canonical isomorphism

ϕ : X 7 ≡ S7
τ → S7

A , ϕ(sn) = sn ∀sn ∈ S7 , (49)

where S7
A is the differentio-topological 7-sphere equipped with the smooth division

algebraic structure β which is taken as a subset of the A structure: β ⊆ A . We

know that the β structure is smooth structure since, as previously discussed, the

division algebraic composition of elements yields a smooth global frame field on

the division algebra’s associated isomorphic unit parallelizable sphere;11,16,64 for

instance, octonion multiplication yields a smooth global frame on S7.fff

The transport of β structure S7
A

β
↪→ S7

τ induces the division algebraic binary

multiplicative operation · on S7
τ via

s1 · s2 ≡ ϕ(s1) ∗ ϕ(s2) , (50)

for all sn ∈ S7
τ , where ∗ is the binary operation of multiplication on S7

A existing as

part of the β structure of S7
A .

9.3.1. The β structure

We briefly consider the essential β structure of S7
A in order to emphasize its purely

algebraic nature by first considering the complex numbers which can then in turn

be generalized to the quaternion and octonion algebraic structure.12,14,28 We have

the fundamental algebraic identity12(
x2

0 + x2
1

)(
y2

0 + y2
1

)
=
(
x0y0 − x1y1

)2
+
(
x0y1 + x1y0

)2
, (51)

which by introducing the imaginary unit i2 = −1 and defining the complex number

q = q0 + iq1 and the algebraic norm ‖q‖ =
√
q2
0 + q2

1 can be expressed as12,13

‖xy‖ = ‖x‖‖y‖ , (52)

where we note the multiplicative composition operation

x · y = (x0y0 − x1y1) + i(x0y1 + x1y0) . (53)

The same applies to the algebra of the real numbers.13

Consider now the algebraic identity12(
x2

0 + x2
1 + x2

2 + x2
3

)(
y2

0 + y2
1 + y2

2 + y2
3

)
=
(
z2

0 + z2
1 + z2

2 + z2
3

)
, (54)

with

z0 = x0y0 − x1y1 − x2y2 − x3y3 ,

z1 = x0y1 + x1y0 + x2y3 − x3y2 ,

z2 = x0y2 + x2y0 + x3y1 − x1y3 ,

z3 = x0y3 + x3y0 + x1y2 − x2y1 .

(55)

fffSee, e.g. Ref. 64, pp. 20, 179 and 200. The spheres SX =
{
S1, S3, S7

}
are the only spheres

which admit globally smooth parallel frame fields via their associated division algebraic struc-
ture.8,11,16,64
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Equation (54) can also be expressed in the form of (52) by introducing the unit

quaternions {i, j,k}, defining a quaternion q = q0+iq1+jq2+kq3 and the extended

algebraic norm,12,13,74 and where the algebraic multiplicative composition · of two

quaternions is given by12,14,74

x · y =
(
x0 + ix1 + jx2 + kx3

)(
y0 + iy1 + jy2 + ky3

)
= z0 + iz1 + jz2 + kz3 . (56)

This algebraic structure can then be generalized to the octonions O, which is the

last algebra with this structure.12–14

The above β structure constitutes purely algebraic structure. However, in the

literature, a Euclidean metric is often attached to this algebraic structure. For

instance, quaternion composition is often put in the form of (24) from which the

quaternions H are designated as arriving within a metric space.ggg In this way the

quaternions are appended to a metric space R4.hhh

However, the quaternions H (and the other division algebras) are fundamentally

not a metric space, but an algebraic structure — a noncommutative unital division

ring possessing two binary operations, that of multiplication · and addition +,65,74

and the unit quaternions are a purely algebraic structure (Hu, ·) under the binary

operation of multiplication.

We thus emphasize that the transport of smooth A structure contemplated

herein neither contains nor postulates any metric structure, and CAM’s β ⊆ A

structure is a smooth, nonmetric algebraic structure. Furthermore, only when acting

within a space with the Minkowski metric structure η can the algebraic composition

of two quaternions (octonions) be put in the form of (24). As previously stated

in Subsec. 5.1, the form of (24) only comes about in CAM via the S n bundle

operator’s local action in TpM (which is endowed with ηµν thereby permitting this

metric-based form).

9.4. CAM compactification sequence

The entire CAM compactification sequence in which transport of algebraic structure

S7
A

β
↪→ S7

τ follows one-point compactification Θ and topological deformation α is

R7 c
99K X 7 d

99K S7
τ

t
99K S7

A 7→ S 7 , (57)

where
c

99K denotes the one-point compactification Θ procedure,
d

99K the topological

deformation event α,
t

99K the transport of β structure S7
A

β
↪→ S7

τ , and 7→ the operator

bundle Bn postulate of Subsec. 5.4.

gggSee Ref. 28, Subsecs. 1.3 and 1.3.2, in which the author writes, “The 4D linear space R4,
endowed with the quaternion product, is denoted H.”
hhhDefined in Ref. 28, Subsec. 1.2.1 as a metric space.
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As we have the submanifold chain S0 ⊂ S1 ⊂ S3 ⊂ S7,12,14,64 we thus have

S1 ⊂ S 7 , S 3 ⊂ S 7 , (58)

thereby permitting the S 1∨TM, S 3∨TM and
(
S 3⊗S 1

)
∨TM operator technolo-

gies as set forth herein as well as S 7 technologies to be considered in subsequent

work. Using (45) we can thus write

M1,3 ×X 7 ⇒M ∨K S7 , (59)

where ∨K indicates that it is only the parallelized spheres Sn → S n associated with

the division algebras K which can and do take part in the wedge action between

the manifolds.

9.5. Conclusion

We conclude that the CAM compactification postulate encompassed within (45)–

(48) evidences various fundamental differences (both mathematical and physical)

from the Klein compactification postulate which is generalized and utilized in

string/M-theory.23,50,51,60,61,76,77,iii The two contrasting postulates can in their

essence be simply put:

Klein compactification postulate

Higher metric dimensions compactify into a

Planck-size space with intricate geometry.

CAM compactification postulate

Higher nonmetric dimensions compactify into a

space homeomorphic to the topological 7-sphere.

Some basic contrasts follow from the two compactification scenarios:

(1) With the Klein postulate, the extra metric dimensions X 7 of M1,10 cannot

be measured because they are curled up into an experimentally essentially

nonobservable Planck-size space.23,36,50,51,60,61,76,77 With the CAM postulate,

the extra dimensions X 7 of M1,10 cannot be measured because they contain

no metric by which to be measured. They form but a nonmetricized opera-

tor space — however its higher-dimensional existence is indicated by the very

existence of the elementary-particle forces which it generates;

iiiSee, e.g. Ref. 76, Ch. 1, Fn. (99).
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(2) Given the CAM postulate, every point p of space–time is occupied not by a

Planck-size Calabi–Yau manifold C or a G2 manifold derived from the com-

pactification of a higher-dimensional metricized geometrical space,23,60,61,77 but

instead by an operator sphere fiber S 7 generated from the one-point compact-

ification of a higher-dimensional nonmetric topological manifold;

(3) Within CAM 11-dimensional unification there is no chirality issue such

as occurred within the Klein regime,36,51 since there is, again, no higher-

dimensional metric tensor and no use of a higher-dimensional Dirac equation

which would require a seven-dimensional chirality operator;

(4) CAM’s metric-free extra dimensions do not inherit potential instability from

the classical instability arguments on extra dimensions;jjj

(5) Within CAM unification the SM symmetry group is not obtained via its exis-

tence as the isometry group of a certain manifold as is done in the Kaluza–Klein

regime,51 since there is no higher-dimensional metric whose invariance need be

maintained. Instead the (Lagrangian of the) SM symmetry group is generated

by the differentio-topologically induced bundle operator space Bn itself acting

locally on the differentio-geometric base space (TM, η) of M, which is the local

manifold (arrived at via the principle of equivalence31,35,49,50,76) of some global

Riemannian manifold (B, g);kkk

(6) Although the CAM model’s higher-dimensional topological manifold X 7 does

not have the refined geometric structure of string/M-theory’s X 7 manifold it

nevertheless is far from being the devoid nonentity of an outdated absolute

space.73,75,lll As Aldrovandi and Pereira noted, “The study of this primitive

structure [i.e. a topological space] makes use of very simple concepts . . . but the

structure itself may be very involved and may leave an important (eventually

dominate) imprint on the physical objects present in the space under considera-

tion.”mmm CAM’s X 7 plays such a dynamic and dominant part in the form and

function of our relativistic reality which invites extensive investigation into its

causes, its effects and any capabilities we might be able to discern and develop

in order to potentially detect and affect it.
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