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The Composition Algebra-based Methodology (CAM) [B. Wolk, Pap. Phys. 9, 090002
(2017); Phys. Scr. 94, 025301 (2019); Adv. Appl. Clifford Algebras 27, 3225 (2017);
J. Appl. Math. Phys. 6, 1537 (2018); Phys. Scr. 94, 105301 (2019), Adv. Appl. Clifford
Algebras 30, 4 (2020)], which provides a new model for generating the interactions of the
Standard Model, is geometrically modeled for the electromagnetic and weak interactions
on the parallelizable sphere operator fiber bundle Bn, = (T'M, S™ — ™, SO(n + 1), 7)
consisting of base space, the tangent bundle T'M of space—time M, projection operator
7, the parallelizable spheres S™ = {S!, 53} conceived as operator fibers S™ — .7
attaching to and operating on T,M Vp € M as p varies over M, and as structure
group, the norm-preserving symmetry group SO(n + 1) for each of the division algebras
which is simultaneously the isometry group of the associated unit sphere. The massless
electroweak SU(2)r, ® U(1)y Lagrangian is shown to arise from B3g1’s generation of a
local coupling operation on sections of Dirac spinor and Clifford algebra bundles over
M. Importantly, CAM is shown to be a new genre of gauge theory which subsumes
Yang—Mills Standard Model gauge theory. Local gauge symmetry is shown to be at
its core a geometric phenomenon inherent to CAM gauge theory. Lastly, the higher-
dimensional, topological architecture which generates CAM from within a unified eleven
(1,10)-dimensional geometro-topological structure is introduced.

Keywords: Parallelizable spheres; division algebras; differential geometry; differential
topology; fiber bundles; complexified Clifford algebras; Standard Model; Yang—Mills
theory; string theory; compactification.
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“Physics is an attempt conceptually to grasp reality as it is thought
independently of its being observed.”
— Albert Einstein®

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

a Autobiographical notes, reprinted in S. Hawking, A Stubbornly Persistent Illusion, The Essential
Scientific Works of Albert Finstein (Running Press Book Publishers, Philadelphia, 2007), p. 376.
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Table 1. CAM coupled operators.
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1. The CAM Framework

The CAM framework® uses the unique operator structure of the equally unique com-
position algebras to generate the Standard Model (SM) Lagrangian of elementary-
particle physics as well as the Lagrangian for general relativity. The theory has
proven to be a successful alternative to Yang—Mills (YM) gauge theory for generat-
ing the SM pre-Higgs left-chiral electroweak and quantum chromodynamic Lagran-
gians in intrinsic local gauge symmetric form. > CAM’s current additional successes
include intrinsic accommodation of chiral asymmetry for SU(2),2 natural provision
of a noninteractive right-chiral neutrino,? imposition of experimentally verified phe-
nomenological constraints on gauge mediated proton decay,” and introduction of a
Higgs-like field intrinsically coupled to the space-time continuum.??

What is interesting about these theoretic successes is that each evidences quali-
tative and quantitative differences between the CAM and YM models. And each of
these theoretic successes points to CAM as the more fundamental framework for
generating the elementary-particle forces. For example, the CAM phenomenology
of proton decay is confirmed by experiment, whereas YM proton decay predictions
have consistently been experimentally invalidated.®

2. Primary Motivation

This paper postulates the parallelizable spheres as the core geometric entities which
induce the CAM formalism.¢ The motivation for this postulate is immediately evi-
dent upon inspection of the CAM operators in Table 1, used for generating the
U(1), SU(2), SU(2) ® U(1) and SU(3) Lagrangians.1>

bThe CAM gauge model is an alternative to Yang—Mills theory for generating the Standard Model
Lagrangian of elementary-particle physics (Ref. 1-5 and Sec. 1 herein), while also generating the
Lagrangian of general relativity theory.?5 Composition algebras are algebras A such that for any
two elements the algebraic norm of their product equals the product of their norms:'3:14 ||zy|| =
lz|llly]] Vz, y € A. These composition algebras exist only in 1, 2,4 and 8 dimensions, corresponding
to K = {R,C,H,0} (Refs. 11-14) and their split versions K’ = {C/,H',0’}.1213 Only the K
algebras are division algebras (composition algebras without zero divisors).!2:13 However, since
the nondivision, composition algebra Q' was used along with the K algebras in generating both
QCD’s SU(3). and GR’s Lagrangians, the term CAM is the appropriate designation for the
formalism in general.

°The unique, closed set of parallelizable unit spheres S¥ = {S°,51,53
{—1,1} is trivially isomorphic to the unit reals.!* S7 will be considered in subsequent work, and
will be shown to generate the SU(3). Lagrangian for the strong force — the fiber bundle geometry
of which will prove to be more involved than that of SU(2) ® U(1)’s herein.

’57}.6711,14717 SO —
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But though the CAM formalism has been revealed using the algebraic struc-
ture of the division algebras, the essential beauty of the division algebras resides

elsewhere — namely, within the fundamental geometric structure!' 14

R, =S, C,=s', H,=2S* 0,=5. (1)

That is to say, the unit division algebras K,,, which carry with them the division
algebraic operator structure, are isomorphic to the unique, closed set of smooth
parallelizable unit spheres S¥. This intimate relation between CAM’s algebraic
operator structure and what is considered its more fundamental manifold structure
is the pivotal topic of this paper. For it is held to be self-evident that, with regard to
the fundamental laws of physics, to be theoretically and aesthetically viable detailed
algebraic form must of necessity be intrinsically contained within and naturally
emanate from unified geometric structure.

In keeping with this modern theoretical approach of striving for a “unified geo-
metric description of the fundamental physical interactions,”!1:16:17,21,22,25,36,40,d
we are thus logically compelled to a contemplation of the parallelizable spheres as
the natural underlying structure for a CAM geometric program.

3. Synopsis

But for the existence of the parallelizable spheres, the elementary-particle forces
would not exist, if at all, in their known form. The CAM formalism is generated by
these spheres via their coaction with space-time. Demonstrating and elaborating
on these two assertions is the goal of this and the subsequent papers which will con-
sider CAM’s underlying geometric structure and which proffers the CAM model’s
structure as emanating from a (1, 10)-dimensional space-time.

Just as YM is a gauge theory, so CAM will also be seen herein to be a gauge
theory — of a sort more fundamental than YM gauge theory. Just as YM began as
a formalism of theoretical physics which only thereafter realized a geometric, fiber

18,19 5o CAM will herein also be given a source fiber bundle
11,16,17,20,21 o

bundle underpinning,
geometry. Just as YM is modeled on a certain fiber bundle structure,
CAM is also modeled on a certain fiber bundle structure which differs in a nontrivial

way from that of the YM structure. Furthermore, just as string/M-theory takes YM

as contained within a compactified higher-dimensional space-time,2%:23:60.61 g0 the

dReference 40, Preface. As the author further writes, “The most remarkable characteristic of this
theoretical approach is the firm and fundamental conviction that all hypotheses concerning the
real physical world can be given — before quantization — in purely geometric terms” (p. 2). The
program set forth herein for the CAM formalism follows this approach, as an underlying geometric
structure is shown to first generate the CAM formalism which in turn generates a relativistic,
local gauge symmetric Lagrangian, which pursuant to the fundamental postulates underlying the
canonical quantization (or the path-integral approach) remains the Lagrangian for constructing a
quantum field theory.3” CAM’s possession of these two attributes of (1) having a geometric base,
and (2) generating pre-quantization Lagrangians, distinguishes it from all other solely algebraic
formalisms (see Fn. (ii), herein), which have neither.
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CAM fiber bundle structure will be seen to arise from the compactification of a
(1, 10)-dimensional space—time.

Of the various differences between the CAM and YM fiber bundle structures, one
particular distinction rates immediate articulation. At its most fundamental level
theoretical physics must not simply describe the universe but must also explain
why it exists as it does.?? As Weinberg emphasized®

The aim of physics at its most fundamental level is not just to describe the
world but to explain why it is the way it is.

This notion forms a qualitatively dispositive distinction as between the two theoretic
structures — both YM and CAM describe the SM interactions, but whereas YM
fiber bundle theory is but a descriptive gauge theory?3 CAM’s fiber bundle theory
is explanatory as well.

This paper develops the basic theoretical and conceptual structure of CAM’s
fiber bundle geometry for SU(2)®@U(1). This fiber bundle structure is based on the
existence of two of the three parallelizable spheres S™ = {S L 53} of the unique,
closed set of three nontrivial parallelizable spheres SX = {51, 5%, 57} 11,1417

The 5™ = {5*, 5%} will be contained within the sphere operator fiber bundle

B, = (TM, 58" = ",S0(n + 1), ) (2)

with projection operator 7 and fiber operators . V T,M operating point-wise
over M via the wedge sum action V which projects the division algebraic cou-
pling operator o in the tangent space T,M over the tangent bundle 7M. CAM’s
unique coupling operator o%25 is inherently encoded within each fiber operator
S"VIL,M — S VI,M = {Yl vVT,M, .73 vaM} and is operationally attached to
T,M V¥p € M via S™’s unique attribute (among the spheres) of parallelizability. The
structure group SO(n + 1) acts simultaneously as the isometry (automorphism)
group of the subject unit sphere as well as the norm-preserving symmetry group
of its associated division algebra.!!:13:16:17 The B, structure is proffered as the
fiber bundle framework which induces creation of the pre-Higgs SU(2), @ U(1)y
Lagrangian.

Within this fiber bundle arena, the gauge fields and currents are sections of the
complexified Clifford algebra bundle Cl; sM while matter-wave fields are sections
of the Dirac spinor bundle SM. These sections are locally coupled by the CAM
operator ¢x which is generated via .#™’s local o-coupling action on the CAM
operator set 2 = {n, 0} intrinsically embedded in T,M. The SU(2)r, U(1)gm and
SU(2)r, ® U(1)y Lagrangians thereby manifest.

The CAM fiber bundle structure will also be shown to offer a straightforward
geometric explanation for the existence of local gauge symmetry within the funda-
mental laws of particle physics. Lastly, the CAM architecture will be shown to arise
from a (1,10)-dimensional space—time.

°Reference 22, p. 219.
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4. Geometro-Algebraic Structures

Numerous well-established geometric and algebraic structures over Minkowski
space—time M play a fundamental part in the CAM fiber bundle geometry. There
is a tremendous topical depth to all of these structures and objects, but the fairly
minimal depth as given herein is what is needed in order to set forth the essential
structure of CAM fiber bundle theory.

4.1. Minkowski space—time

There exists the single, absolute, unique Lorentzian space—time manifold M with
metric  having standard basis components 7,,, = diag(+1, —1, —1, —1).21:2%:25 The
remainder of CAM’s geometry revolves around structures inherent to (M, n) and
their associations with S™.

24726 and thus physics

Relativistic physics demands locality in physical theories,
initiates in or about the tangent spaces of M: T,M,?%27 which designates the col-
lection of all vectors tangent to M at p € M.2116:17 The union of all T,M over M

is the tangent bundle T"M:46

™ = | T,M, (3)
peEM
of which the fiber at p is T,M. The bundle TM is a smooth manifold in its own
right.11:16,17,64

(M, n) induces three structures in 7,M which play a pivotal part in CAM’s
SU(2) ® U(1) fiber bundle makeup, to wit

(1) the Levi-Civita connection V7212431
(2) the Clifford algebra Cl; 3,27 3% and
(3) CAM’s operator set Q = {n,d}.1:2

CAM fiber bundle theory exploits this tripartite internal space-time structure for
its theoretical construction.

4.1.1. The connection V"

A metric g defined on a Riemannian manifold M induces a unique metric-preserving
and torsion-free connection — the Levi-Civita connection V which in the frame field
{e,} acts on T, M as the covariant operator V ~ V,.16:21:31 The covariant opera-
tor’s action on a vector field X = X*e, is given by V,X, = 0, X, — FEVXE,M’SQ

where I‘fw are the connection coefficients defined with respect to {e, } as®!:32

Ve, = I‘fweg . (4)

As applied to CAM fiber bundle theory, we have (M, n) inducing the flat Levi-
Civita connection V7: (M, n) — (M, V7).11:21.24.33 Ty the coordinate basis {9,,} of
M associated to the local coordinates {z*} the metric 17 — 7, induces the covariant
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operator V' — Vj _ on T,M for which the Ffw are the Christoffel symbols (of the
second kind) defined by Vy,8, =I5, 0, 11:21:31:32

In relativity theory, the Christoffel symbols I‘fw are the components of the
gravitational field,®® which vanish everywhere on M.?%35 Thus, using V,X, =
0 X, — Fwag, we see that Vy, forms the partial differential operators 0, on T,M.
Because the d,, globally satisfy the holonomic commutation relations [, d,] = 0,3
they therefore simultaneously form a covariantly constant coordinate frame field
over M: {e, } — {9, },*121:3L for which we have the flat connection equation®!

V"9, =0, ()

and for which both the curvature tensor R(e,,e,) and torsion tensor T'(e,,e,)
vanish on M.16:31

4.1.2. The Clifford algebra Cly 3

(M, 1) induces the Clifford algebra Cl; 3 via generation of the basis elements {~,}

through the anticommutation relation:21417:28

{'V;u 'YV} = 20y - (6)

Also known as the space-time algebra, Cl; 3 is induced by M in T,M at all points
p € M28:32.43
geometry of M.28 Cl; 5 consists of 16 linearly independent elements generated by
the {7,,}:17:30

.= [{1}7 {’YM}’ {'YO’Yk}’ {’Vj')/k 1] F k}a {Z = '70'71'72’73}) {i’YM}] ) (7)

where z runs from 1 to 16 with each I', representing one of the elements. Cl; 3 is
spanned by I', and constitutes a 16-dimensional vector space.!7-32:36:37

The T', are abstract entities unto themselves, and their common depiction as
matrices are but representations of these elements.'2:39:38 For instance, complexify-

and is the natural, minimal algebraic construct belonging to the

ing Cly 3 LN Cly,3 with C-unit i, we can then write the 4 x4 chiral representation of
the Clifford generators {7, } and the chirality operator «5 using the Pauli matrices

oy, satisfying o = Ty, and the identity element g:2-3%3%:40

w=<5u C’“), %zii:(_l 1). (8)

A generic field F(xz,) of Cly 3 can be written as3¢

16
Flay) =Y ol (9)

in which we take each a, to represent complexified scalar, vector, tensor or spinor
field components. For instance, 1¥ 4, B* 4+ Avy;v, and 'ykAﬁV + i'y(kaﬁ +v5C,
are examples of Cl; 5 fields.

2050037-6
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4.1.3. The operator set Q = {n, 0}
Using Vy, and Cly 3, the CAM operators!?

0=0/0t+10/0x + jO/0y + kD/D=z (10)
and

n =10+ iy +Jv2 + k3 (11)

can be constructed, where the {1,%,j, k} are the basis elements of the quaternions
H with 1 the unit identity element (being notationally suppressed) and {1, 7, k}
Hamilton’s imaginary elements identified with the even subalgebra Clj of Cly C
Cly 3.2:2830 The quaternionic basis elements are a subset of I',, induced by the Cl; 3

generators {7, } via the relations:27:28:30

1=7%%, t=7%7%3, Jj=77N, k=717%. (12)

The operator 0 is nothing other than the generalization of the Cauchy—Riemann
operator J, + 10, of complex analysis to (1,3) dimensions which is used throughout
Clifford algebraic analysis'”2%f and which is isomorphic to the special-relativistic
operator §,,.%27:28

As to the operator 7, it can be utilized to generate the Lie algebra of the Lorentz

group,? and is a simple and aesthetically symmetric composition of the four unit
Clifford-Dirac elements {~, }:121417:27.28

N = YoY0Y0 + Y172Y3 + Y1Y2Y3 + Y1273
= +in+jve + ks, (13)

where we have used the relations v;y; = —7;7;, and (12).27:28

Since both Vg, and Cly 3 are manifestly embedded within T, M, so is €. The
relation between {2, 2} and its generation of the algebra of the Poincaré group was
previously shown.? The Poincaré group represents the inherent symmetry of M —
its true group of automorphisms,*! and it is thus not unreasonable to suppose that
Q will play a vital role in construction of the CAM fiber bundle geometry.

4.2. The algebra bundle AM

Noted above was that M intrinsically generates and contains the space—time algebra
Cly 3 which is induced by M in T,M at all points p € M. Nature requires complexi-
fication of Cl 3 o8 Cly,3 within TM, for without the C-unit i, the chirality
operator 75 would not be constructable and there would be no chiral matter in
nature.!* Furthermore, C-unit complexification was required in order to estab-
lish s part in generating the Poincaré algebra of transformations of M.? Im-
portantly, this mandated i-plexification generates the Pauli algebra P in TM since

fSee Ref. 28, Chap. 3 and Subsec. 3.3.
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H = Clk;)|r C Cl3 C Cly 3,22830 and P = C ® H,'* which in turn trivially implies the
existence of R ® C ® H within 7M.14

The complexified space-time algebra Cl; 3 is taken to form the fibers of the
space-time algebra bundle Cly sM = AM,1:16:32 yith Cly 3(T,M), the fibers
Vp € M:29:32:42

AM = | Cly3(T,M). (14)

peM
Thus, AM is a bundle of complexified Clifford algebras over M. It is the natural
complexified algebra bundle associated with M and M.28:39:36 The connection V7
induces a connection on AM,2%3342 and all Clifford algebra operations carry over

into the AM bundle.32:42

4.3. The Lorentz frame bundle
Associated with TM is the Lorentz frame bundle!®

IM = |J LM, (15)
peEM
of which the fiber L,M represents the collection of all tangent Lorentzian frames of
reference at p. Since all Lorentz frames can be reached by operation of the Lorentz
group O(1,3) on some fixed Lorentz frame, the fiber becomes O(1,3) itself'! and
thus, LM is a principal fiber bundle.

4.4. The spinor bundle SM

We havell:16:17,32
wi(TM) =0 16)

for the Stiefel-Whitney classes k = 1, 2. Therefore M is a spin manifold,*%42 and but
for such result the Dirac equation could not be considered.!” The essential relation
between spinors and the space-time algebra Ci; 3 reveals the fundamental geometro-
algebraic nature of CAM’s makeup,'”4445:8 and we therefore briefly review this
relationship before defining the spinor bundle.

Since Cl; 3 is an associative algebra it has a matrix representation.3%36 An
n X n matrix representation C,, of an algebra can be conceived as a set of linear
operators on an n-dimensional vector space V whose vectors v are represented

column-wise36:39:44,45

V:(Ulav%"'vvn)T' (17)

The vectors v of the vector representation space V acted upon by the matrix
representation C,, of a Clifford algebra are spinors.32:3644 In particular, quantum

8As Zee notes, “spinor representations exist because Clifford algebras exist,” (Ref. 38, p. 561).
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mechanical matter-wave fields v such as the electron are Hilbert space H = C*
vectors (Dirac spinors) ¢ on M!7:36:45

¥ = (1, 92,93, 94)" (18)
of the four-dimensional spinor representation space acted upon by a matrix repre-
sentation of (CZL3,11’32’36
such as in (8)’s chiral representation.

The Dirac spinor bundle SM along with subsets the chiral Weyl bundles
(WM, WM) are given by!¢

SM = (M, C* SL(2,C) ® SL(2,C),n),

with basis elements {7,} given a matrix representation

WM = (M,C? SL(2,C),n), (19)
WM = (M,C?, SL(2,C), ).

To construct these spinorial fiber bundles a structure group over M with spinor
representation which lifts to a spin group is requisite.!!:16 In particular, we consider
the structure group of the Lorentz frame bundle LM with a definite space and time
orientation — the proper, orthochronous group with Lorentz transformation A:6-40

SO0y(1,3) = {A € O(1,3)|det A = +1,A) > 0}. (20

Because of (16), SOy(1,3) lifts without obstruction to the spin group Spin, 5 =
SL(2,C) over M,'2:1646 and thus M admits a spin structure.* The connection
on SM is induced by V7.11:16:24:32 The space-time bundle AM is trivial on M,32
and therefore the standard Dirac operator J of relativistic quantum mechanics is
generated thereon.32:42:43

SM corresponds to the (1/2,0) @ (0, 1/2) representation of SL(2,C),!5:3 while
WM and W M, respectively correspond to the (1/2,0) and (0, 1/2) representations.
Thus, we see that H-space matter-wave fields 1) are sections of SM.1!

~~

2

4.5. The parallelizable spheres S™ = {S*, S3}

The largest number ¢ of independent vector fields that can exist on some manifold
M is n = dim(M).}X When ¢ = n the manifold is parallelizable.!>17 One can
continuously assign a globally smooth covariantly constant frame field {e,} on
TM at all points of a parallelizable manifold M with connection V,'1:31:32 for
which the covariant derivative in any direction vanishes: Vye, = 0 VV € T,M
Vp € (M, V).153Lh This yields the teleparallel connection equation over (M, V):3t

Ve, =0. (21)

hIn this paper, differentio-geometric structures such as a connection and a metric are used in
discussing the critical trait of parallelizability of S™. However, it is important to emphasize here
that the parallelizability of SX : X = 1,3,7 is more fundamentally a differentio-topological topic
and structure,®10 and further falls under algebraic K-theory.%:7:10:11 Specifically, no notion of a
metric structure on SX need be defined in order for SX to be parallelizable or proven such®:9:65
(see, e.g. Ref. 65, Subsec. 21.3).
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If a manifold M is not parallelizable, then one cannot continuously assign a
globally smooth covariantly constant frame field {e,} on T'M for all points of
M such that (21) is satisfied, for example for the 2-sphere S2.11:31 If in addition
leusen] =0, then {e,} is a coordinate frame field {e,} — {0,} for which (5) is also
satisfied, for example for M.11:31,32

The spheres S™ = {S1, 53} are respectively defined as follows:

> (z)? = 1} ,

j=1

14,16,21,32

St = {(xl,xz);xj eR

(22)

S3 = {(xl,xg,xg,:c4 z; €R

4
> ot -1},
j=1
where S and S? are respectively isomorphic to the unit complex (quaternion) ele-
ments C,, and H,,,!""!4 which in turn form the simply-connected symmetry groups
U(1) and SU(2).16:21:38 For example, U(1) is the circle generated by the unit com-

plex elements:21:27:38

Sl{leJria:gG(C

21> =D (2))* = 1} : (23)

j=1

The norm symmetry groups of the unit division algebras C, and H, are the
special orthogonal groups SO(2) and SO(4), for which the norms of S and S® are
preserved. 131

As for M so the S™ are also parallelizable 111416

and thus, the teleparallel
connection equation Ve, = 0 is satisfied over S™ as well. However, the torsion
tensor T'(ey,e,) need not vanish on a manifold M though the curvature tensor
R(ep, e,) does,'031 and in such a case the flat connection equation as in (5) is not
satisfied. Such is the case for instance on $% and S7.1116 Thus for CAM’s fiber
bundle makeup the more general teleparallel connection equation is considered the
pivotal operative equation permitting S™ to attach to and operate on M.

5. . Structure Theory
5.1. The tnvariant algebraic operation o

Since S! = U(1) and $3 = SU(2),1114161737 group theory requires that S1(S3)
possess at least one elemental binary operation ;(x3), respectively on them.3%:39
Furthermore, group closure requires that the binary combination « * 8 of any two
elements {a, 3} € S1(S9%) generates another element § € S*(5%).383947 Thus the

operations *; (*3) are to be invariant closed binary operations on S*(S3).

iReference 13, Subsec. 12.1.
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The closed, binary operation o which is unique to the division algebras takes

the form15:28:]

aof= (aoﬂo—a'@aoﬂ‘i‘aﬁo‘*‘;[&M)7 (24)

when acting within a space with local Euclidean metric for the spatial components
permitting the standard R3(R7) dot and cross products, where a = (ag, a); 3 =
(Bo, B) are division algebraic operator fields'6:36 separated into their real and imag-
inary components, and the right-hand side (- 3) and (a x 3 = %[a,,@]) opera-
tions are the standard metric-equipped R?*(R”) dot and cross products. Since a
metric ¢ on a manifold M is the structure that smoothly assigns to each point
p € M a metric g, on T, M 2L by which dot and cross products manifest,2!:39:48
the form of (24) requires operation within a manifold equipped with a metric. In
point of fact, agBy — a - B implies the Minkowski metric: o, 8" = n,,a"8" =
apfo —a - B.

We have seen that S and S® are isomorphic to the unit complex (quaternion)
elements, respectively.!!:16:38 Tt follows that o = * for both S' and S3. Since a
S™ is parallelizable its tangent spaces T;,S™ Vm € S™ are isomorphic, with the
isomorphism independent of the curve - joining any two points of S™ that a vector is
parallel-transported over.!1:16:17 Thus the division algebraic structure of S™ remains
invariant as one parallel-transports over S™. Since the binary o-coupling is part of
this division algebraic structure of S™ it follows that the o-operation is an invariant,
smooth algebraic operation on S™.2247 Thus the o-operator is an invariant, smooth
and closed elemental binary operation on both S' and S3.

5.2. The S™ — ™ structural attachment

As noted above, from a differentio-geometric viewpoint we have the teleparallel
connection equation Ve, = 0 necessarily globally vanishing on S™, M (and therefore
also in TM);3! all three manifolds {S™, M} are parallelizable. For a covariantly
constant frame field {e,} established over M in TM we can thus always associate
a covariantly constant frame field {e,} over S™ in T'S™ which smoothly varies with
{e,} as p moves over M Vp € M.1L16:17:31.k

The tangent space T,S™ for ¢ € S™ with S” the fiber of a bundle over M will
thus be said to attach to T,M at all points p € M since an associated, common set
of basis frame fields can be established between the tangent spaces of S™ and M at
all space-time points. In this way we view S™ — %" as structurally attached to

iSee in particular, Refs. 2 and 5, and references therein for a more detailed discussion of this
operation.
kSee Ref. 16, pp. 258-260 (Subsec. 7.3.2).
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M at all space—time points p € M via mutual association of the global frame fields
within the respective tangent bundles.!

Importantly, since Ve, = 0 is true only for S (and S7), no other unit spheres
besides these can possess this smooth structural frame attachment to TM over M.
Thus, for example, since there does not exist a single, global nowhere-vanishing
parallel frame field {e, } on the 2-sphere S%1:3L it follows that the 2-sphere cannot
smoothly attach to TM throughout M as the S™ do.

5.3. The o-operational attachment and wedge action V

Accompanying this structural frame attachment we can also conceive of an opera-
tional fiber attachment between .#" and M at p via a morphism ¢ which preserves
the o-operator division algebraic structure of S™ in double projection ¢ = K - 7 :
S™ — M, where & is the tangent bundle projection of T,M into M.

For any s, r € S™ with sor =t € S™ we have {r,s,t} € C, or H,. Recalling
that Cl; 3 is intrinsic to and that Cl; 3 is a physically necessary structure of M
both which are induced in 7,M, and noting C C Cly 5 and {¢,7,k} =2 CIT C Cly 3
we have {r,s,t} € T,M. We can thus define a map f : S" — T,M at p € M
Ve € C, or H, given by f: 2 = x € T,M Which is invariant with respect to the
composition rule of elements: f(zoy) = f(z)(er,m ,in Wthh (or,m )p is the
applicable binary operation on T,M at p. We have f(psor ft)p =t=(sor), =
(f(s) or,m f(r ))p = (s e7,m 7)p, from which we see that (e7,m), = o.

We can thus conceive of the projection & : (oTpM) — o(M), within the morphism
@ into M as inducing an S™ bundle action on M, where we consider the induced
action as occurring locally at the space—time event p via the attachment of the
mutually related covariantly constant frame fields of T'S™ and TM.™

To mathematically model the structural attachment of the .#™ to all points of
M together with projection of the division algebraic operation into TM the wedge
sum operation V between topological spaces is utilized.?” The wedge operation
V identifies distinct points on two or more manifolds to a single point. Thus for

I As Robinson has stated, “The idea of various geometries attached to space—time and the physically
observable effects they have on what we can see is in many ways the dominant theme of particle
physics.” (Ref. 39, p. 161). Further, since “the tangent space T,M is attached to a point p € M”
(Ref. 28, p. 16), “we may visualize velocity (a tangent vector v € T,M) as an arrow touching the
surface at a given point (p € M) ... which is strictly confined to a point” (Ref. 31, pp. 21-22).
Mathematically speaking a space (e.g. the tangent space) is not conceived of as attached to
a manifold in “a direct geometrical way” (see Ref. 48, p. 43), the attachment sometimes being
considered but a “mere pictorial resource” (Ref. 65, Subsec. 6.1.1). In this paper, a fundamentally
different tack is taken. From a physical and operational standpoint in generating the fundamental
particle interactions in space-time the CAM model conceives (and postulates) the parallelizable
spheres (comprehended as operator structures) as so attached via Tp,M.
MSince the underlying division algebraic composition of elements does not require a metric
and since the composition is smooth it is sufficient that S™ be a differentio-topological entity
with no equipped metric (vice a metric-equipped differentio-geometric entity). In this light the
f-mapping of o into the metric-equipped (TpM, Nuws .TPM) is seen to induce .#™’s o-operation to
manifest in the metricized form of (24).

12,14
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example S'V S is equivalent to a figure-8 — being two circles touching at a point.?”
Within the current theory, it is irrelevant as to which point of S™ is used, since by
parllelizabilty any and every point induces the division algebraic operation. We thus
take the wedge action MV .S™ as occurring over all points of M and as attaching the
parallelized operator-spheres .#" to each point therein, where we emphasize that
as always we are dealing with maps and operations occurring between and in the
tangent spaces of these manifolds.4

5.4. Bundle candidates

We wish to condense these various notions into a fiber bundle structure which will
represent the generating geometric structure of CAM’s geometro-algebraic formal-
ism. A few alternatives we might consider are:

1) The principal operator fiber bundle P(M, S™, 7);

2) The operator fiber bundle E,, = (M, T,M, 5™, 7);

3) The sphere operator fiber bundle B,, = (TM, S™.SO(n+ 1), 7r);n

4) The automorphism operator fiber bundle A,, = (M, S™, A(n), ), with A(n) the
automorphism group of the associated division algebra.

(
(
(
(

Options (1) and (2) suffer from a slight potential flaw. Namely, both have as struc-
ture group the spheres themselves.

Use of P(M, S™, 7) implies that the fiber S™ is isomorphic to a group,
principal fiber bundles have as structure group the fiber itself.!1:46:65 A principal

38,65 gince

fiber bundle is nothing else than a local group on a manifold.4® Thus this structure
might work for geometrically representing S' and S® as operator fibers, since these
spheres are isomorphic to U(1) and SU(2). But, unlike S* and S3, the sphere S”
is not isomorphic to a group.'% As such, when developing the theory to gener-
ate QCD’s SU(3). Lagrangian via S7 — .7 the use of P(M, S7,7) would prove
problematic. The same issue arises with the operator fiber bundle of option (2):
E, = (M,T,M,S" — " x). So, unless one is willing to generalize the type of
structure which can exist in the place of a structure group for a fiber bundle, other
options should be considered.

We might instead postulate the parallelizable sphere operator fiber bundle
B, = (TM,S" - .#™,SO(n + 1),7), in which we now have the base space
™ = UpeM T,M with operator fibers the spheres S} attaching to and operat-
ing on T,M Vp € M in the specific manner (S™ — ") via the V-action as set
forth herein as p varies over M. Use of TM as the base space emphasizes that the
S™ are attaching to and operating through 7,M via mutual compatible covariantly
constant frame fields. In addition we now take the structure group as the norm
symmetry group SO(n+ 1) for each of the division algebras, namely SO(2), SO(4)
and SO(8).13

"We leave open imposition of the more refined double cover structure carrying a temporal dimen-
sion: SO(n + 1) — Spin(n, 1).
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It should be clear that use of B, now permits incorporation of S7 into the
geometric framework.® This option is also quite aesthetic, for it is naturally a sphere
fiber bundleb2:63:66 with structure group the inherent norm symmetry group and
with the main postulated theoretic construct being that the S™ bundle is to be an
operator fiber bundle on and over T'M.P

Furthermore, the structure groups of B, may provide for further interesting
and explanatory physics. One need only consider the family generation issue and
its oft-conjectured relation to SO(8)’s unique triality symmetry,3:3857:85 or the
fact that the spin covering groups Spin(n) of SO(n) and their complexifications
are used to describe neutral and electrically charged fermions and are used as the
structure groups of spinor bundles.3!:32:43-45

For instance, concerning SO(8)’s triality symmetry and its relation to S7, we
can write three representations of SO(8) related to one another via triality sym-

metry as:37

SO@B)={z—prp: 2z Q,pec0,},
SO@B)={z—pr:zc0,pec0,}, (25)
SO@B)={z—azp:x€Q,pe0,}.

Notice that the triality generating operator is p € @, = S7 — .7 operating

87 i.e. via the CAM operator o. The mapping pxp

via octonionic multiplication,
corresponds to the vector representation 8”, the mapping px to the spinor repre-
sentation 8%, and xp to the dual spinor representation 8~.13:8587:88 Tyiality is the
implicit mapping between these representations determined through use of some
p € S7 cyclically acting on an element z of Q.8%8788 Thus, the three copies of
SO(8) are equivalent under triality symmetry,8” and it is the sphere S7 in the role
of an operator which generates this symmetry equivalence.

Additionally, the set
[Bn] :{BOaBlaBSaB7vBi®j7Bi®j®k)a"'}7 i,j,k,...:O,1,3,7, (26)

where Bjgj.. <& S'® S7---, is uniquely closed under the product composition
® since ®-compositions of parallelizable manifolds are themselves parallelizable.??
These ®-composition product manifolds will provide for the unified interaction
Lagrangians of SU(2) ® U(1) and SU(3) ® SU(2) @ U(1).

°The S7 structure will prove a bit more involved, but nevertheless still consistent with this fiber
bundle framework. For instance, the base space for .77 theory will make use of TM ® T'M vice
simply TM.

PThis notion of a parallelizable manifold (S™) smoothly acting point-wise on another manifold (M)
is analogous to the mathematical notion of Lie group elements, which are points on differentiable,
parallelizable manifolds, smoothly acting on various kinds of objects — such as vectors or other
manifolds32:39,71,86 (see, e.g. Ref. 71, pp. 411-412; Ref. 86, Subsec. 3.2). The essential difference
is the mechanism of action; for Lie groups action on other objects is achieved via a representation
of the group, whereas with the parallelizable spheres herein action is achieved via an algebraic
structure intrinsic to the sphere.
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Lastly, note that the SO(n + 1) contain the division algebraic automor-
phism groups as subgroups:** U(1) C SO(2); SU(2) C SO(4); G C SO(8).
These automorphism groups are associated with the fourth bundle option above.
Though we will presuppose B, for this introductory paper the fiber bundle
A, = M, 8™, A(n), ), where A(n) is the automorphism group of the associated
division algebra, deserves future in-depth consideration along with B,,.

The pivotal attribute of A(n) of A4, is that it maintains invariance of the alge-
braic binary operation o as one moves over the associated sphere S™. Since this
algebraic operation is the defining, core operation of the CAM formalism which
simultaneously permits association of teleparallel frame fields between S™ and M6
A(n) might be called the CAM symmetry group and A,, the CAM operator bundle.

This invariance property of the CAM operation gives weight to use of
A,,. Interestingly, A; and A3 reduce to the principal bundles P(M,S!, 7) and
P(M, S3, 7). Also, in using A7 the SU(3) symmetry group naturally arises as the
subgroup of G5 which maintains invariance of the complex octonion element ¢.57
However, with A,, we lose SO(8) triality. Furthermore, SO(n + 1) is the isometry
(automorphism) group of the associated unit sphere and is thus the symmetry group
which maintains the structure of the manifold itself which in turn intrinsically con-
tains CAM’s binary operation o — thus SO(n + 1) preserves the CAM algebraic
operator structure while simultaneously preserving the underlying geometric struc-
ture. Lastly, we note that since we have Go C SO(8) we still may arrive at SU(3)
as the symmetry group of the subgroup of G5 which maintains invariance of the
complex octonion element £.

Thus, despite the intriguing properties of A,,, the operator bundle B, better
provides the attributes for geometrically representing and generating the CAM for-
malism and for inducing the elementary-particle force Lagrangians, and is chosen
for such. Deeper future geometric analysis and theoretic or phenomenological
considerations may further compare and contrast A, with B, and highlight their
respective parts within CAM. At this stage of theoretic development, the more im-
portant objective is to have a viable and robust fiber bundle structure to house the
sphere operator fibers within, and B,, — which contains A,, — meets this criteria.

5.4.1. The sphere operator fiber L™

Because of the aforementioned structural and operational attachments we conceive
of By,’s operator S™ as attached to Ml via T,M at all p € M and acting therein. These
notions of structural and operational attachment of S™ to M via their respective
tangent bundles form the foundation for the postulate that the parallelizable spheres
are operator fibers operating directly on M via 7}, M.

The bundles By and B3 are thus postulated as operator bundles with paral-
lelizable spheres S™ postulated as operator fibers .#" operating point-wise via the
coupling operator o on M in the tangent space 7,M over the tangent bundle 7'M

S"VIT,M— " VIT,M = {S"VIT,M,7*VT,M;VpeM}, (27)
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where for brevity we will henceforth write " T,M as the operation. We reiterate
that this global operator structure over M is only possible because of the mutually
compatible global teleparallel structure of the manifolds {TM, M, S™} revealed
by (21), and that this teleparallel structure exists inherently within these mani-
folds.16:3L:9 We further reiterate the critical point that since Ve, = 0 is globally
true only for the unique parallelizable spheres of one, three (and seven) dimen-
sions, no other unit spheres S~ besides these can possess this postulated B,, oper-
ator structure. Thus, for example, S? cannot generate a smooth operator structure
By = (TM, 5% — .#2,50(3), ) over M for which S?*T,M — .>T,M for all p € M,
as in (27).

5.5. Conceiving B,,’s operation

Armed with the operator bundle structure B,, we can now abstractly conceive of
how a Lagrangian manifests through B,’s coaction with space-time.

Given that the o-coupling operator is the invariant operator embedded in S™ —
" at all points m € S™ and that #" attaches to M via #"1,M’s attachment
to T,M at all p € M, the o-operator is the natural candidate for the operating
mechanism which effects the postulated B,,-action on M.

Given that the CAM operator 7 generates the Lie algebra of SL(2,C) — the
double cover of the Lorentz group — and that = {5, 0} generates the Poincaré
algebra,? along with {’s intrinsic inducement in T,M Vp € M taken with the man-
dated complexification Cly 3 — Cly 3, the set {Q,Q} = {n,7,9,0} is a reasonable
candidate for the space-time entities which .} will operate on in B,,’s o-action in
Tp,M, and are premised as such.

B,’s o-action of the sphere operators S;' — ;" on an operator subset w C
{Q,Q} in T,M generates a coupled operator ¢ at p whose function it is to operate

9This theoretical notion of structural attachment permitted by a concurrent global parallelizability
of the manifolds (per (21)) will come further into consideration when gravity is addressed within
the geometry of the CAM model. This will require, inter alia, introduction of a general Levi-
Civita connection V9 for some Riemannian space-time manifold (B, g) on which R(e,,e,) does
not globally vanish (thus calling into question the global applicability of (21) and thus also the
global structural attachment between S™ and B), but for which via the principle of equivalence
(21) may be recovered in a limited domain of B locally approximating M for a sufficiently small
neighborhood of a space-time point p € B,3549:50 and thus S™ and M can be considered locally
structurally attachable.

Thus, the fiber bundle makeup of CAM is consistent with the general relativistic framework for
gravity. General relativity deals with the phenomenon that a global free-float frame is not possible
within a gravitationally endowed space-time region X C B.42 If such a global free-float frame were
possible throughout X, then the S™ would still globally attach to space—time therein, which would
mean that use of CAM’s differential operator O (i.e. special relativity) would be sufficient for the
description of physics within X — which is in contradiction with general relativity theory. But the
impossibility of a global free-float frame in a region of space—time is equivalent to the impossibility
of a global covariantly constant frame field in this region such that parallel transport between two
events therein is path independent3! — thus the S™ cannot globally attach to space-time within
X. Thus, the need for a general relativistic formulation of CAM when considering the gravitational
interaction.
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on and couple any interacting array of j sections s;(,) existing at the space-time
event p and belonging to either S,M or A,M:

yp” fw (gbw)psj(p) , wc{Q, Q}, 5ip) € SpMU APM. (28)

Since ¢ couples sections of bundles at p it “stitches” the fiber bundles together
at the coupling event p. As B,,’s o-coupling operation is invariant on .#™ and exists
at all p € M we may write the bundle section coupler as: (¢.,)p, = ¢.,. This bundle-
stitching process induced by ¢, thus occurs throughout space—time at all p where
the subject interactions occur between sections s of the fiber bundles {SM, AM}.

The coupled operator’s ¢, action on and coupling of the sections s;,) gener-
ates a set of k ¢,-associated fields .F(I;w at p from which a local gauge invariant
Lagrangian £, manifests and governs the local dynamics and interactions induced
at p

Pt 5j(p) = L (f(];w) : (29)
Equations (28) and (29) combine to
i w e Gulsy) = Ly (FL). (30)

which abstractly exhibits how the CAM fiber bundle geometry encompassed in B,
generates the CAM geometro-algebraic operator formalism along with its attendant
results. 2"

Thus the CAM formalism is theorized to be locally executable space—time opera-
tor machinery intrinsically encoded within an underlying geometric source — in
particular within the smooth manifold structure of the parallelizable spheres co-

acting locally on the space—time manifold via the operator fiber bundle B,,.

5.6. .3 ® .71

The sections s; of the SM and AM bundles applicable to electromagnetic .1 —
U(1) theory arel:?

Spinor:
Space-time Algebra:
Au(@) = 10A%x) + 11 AN (2) + 7247 (2) + 1343 (2)

K = y50109"9

where we use the notation K to signify that we have a section of AM with compo-
nents attached to Clifford elements other than the {v,}.

'See Ref. 2, Subsec. 1.1 and Eq. (1), which matches (30) with the CAM formalism.
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A satisfying and natural outcome of the geometry is that though the matter-
wave field 1) itself is a section of the spinor bundle the current K* which 1) induces
is a section of the space-time bundle, thus the couplings are naturally between
sections (the gauge and current fields) of the same bundle AM.

Setting w1 = (1, 8); we = (77,n) and applying (28) gives::2:5
Ty w1 (Gun)p = (0 0)p = nde
= (%00/0t — -V, 70V +70/0t + v x V), (31)

I wy = (Guy)p = (Mo ), = M = (C, 2707)

where C' is a constant which has no effect on the FEuler-Lagrange field equa-
tions. Applying (29), the operator ¢, acts on the sections s;(,) = (Y, A, (z)) €
(SM, AM),! while ¢, operates on the section K* 2 with the resulting chirally
symmetric local gauge invariant Lagrangian L:@i o, for U(1) following as a matter
of course.!+?

The sections of the SM and AM bundles applicable to weak .72 — SU(2)

theory are?

Spinor: ¥ doublet
Space—time Algebra:
W (2) = nWi(z) + 72 W2(x) + Wi ()
K = (14 75) gy 1T

Following the regime of (28) and (29) the same operators, @, ¢.,,, are generated
for .#’3; however, in this instance because the Lie algebra su(2) structure constants
are not identically zero we get for SU(2)’s (¢, )p:2

(@un)p = (o) = i = (€207 + 5177 (32)

The extra operator term [v,-] generates the nonlinear W ;(1:) gauge field self-
interaction terms of the SU(2) field strength tensor.? Furthermore due to the struc-
ture of K" for % theory, chiral asymmetry may spontaneously arise in the local
gauge symmetric SU(2); Lagrangian.?

As the product manifold S%® S! is parallelizable,? the product operator geom-
etry .72 ® .71 of the operator bundle Bsg1 can be used to generate the pre-Higgs
locally gauge symmetric, left-chiral electroweak Lagrangian E@i o, locally on M

in TM?
(7@ SNT,M = (SU@2)L @ U(1)y),. (33)

SSee Ref. 1, Eq. (8); Ref. 2, Eq. (9), Fn. (7), and Subsec. 2.2.2 and (3)’s generation of the U(1)
current.
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6. The Geometry of Local Gauge Symmetry

In YM bundle theory local gauge transformations are changes in fiber coordinates of
an associated principal fiber bundle,'*#¢ for example for the gauge group U(1). Con-
sider the parameter 6 for electromagnetism’s principal fiber bundle P(M, U(1)).1!
All global gauge transformations are generated by the gauge group transformation
element z = e¢'? € U(1)?3137 and identically operate instantaneously throughout
space—time. All local gauge transformations are generated by z(p) = elf(x:t) 31,37
where ¢'?@®! ¢ U(1) with p = (x,t) € M and 6(z,t) varying locally throughout
space-time as one moves from point p,, to point p,, therein.'16

Within CAM, the geometry of local gauge symmetry is based on the paralleliz-
ability of the spheres and is clearly visualized.

In the CAM model, we utilize the fundamental geometric fact that U(1) is
contained in the circle since isomorphic thereto:11:21 U(1) & S! s &1, Thus any
choice of gauge group element z = et ¢ U/ (1) at p € M is more fundamentally
a geometric choice of a point z on the l-sphere operator fiber .#! of the circle
operator bundle B; acting in T,M at p = (x,t) € M.

If 6 is varied from point p, to p,, of M the element z, = e'%n € S;n — Ypln
concomitantly varies to z,, = e'’rm € S} — .7} . As discussed above, since
St is parallelizable %! attaches to and operates in T,M with the algebraically
invariant o-coupling operator at all space—time points p. Thus with the variation
0p, — Op. = zp, — 2, the .#' coupling mechanism exists and is operatively
invariant on T,M Vp € M, thereby producing the correct coupled, local gauge
invariant Lagrangian Vp € M.

This presents an example of a symmetry principle enunciated by Weyl:4! if a
condition which determines an effect possesses a certain symmetry, then the effect
will exhibit the same symmetry. % is the condition which determines the local
gauge invariant laws of physics for U(1) as the effect — such as for electromag-
netism.!! Since the o-coupling is an invariant on .7, its generation of the laws of
physics in a local gauge invariant form will remain invariant as z € .1 varies with
variation of the point p € M and the operator fiber .#! operates via the attachment
and action .#} T,M, where this reads: “at the point z € S' the sphere operator fiber
S1 — &1 attaches to and acts on M at the point p € M via T'S' and TM’s mutually
compatible covariantly constant frame fields.”

Consider now the alternative scenario — if S' were not parallelizable. Then
its Euler-Poincaré characteristic y # 0,1 and S' would possess at least one
singular point z at which all vector fields on S* vanish.%%84 At any point p € M a
simple phase (gauge) transformation e of S} T,M — .7 T,,M would then bring this
singular point z in contact with p, i.e. YJTPM — ylepM, and there would then be
no attachment of any covariantly constant frame fields between 7'S' and TM at p —
and thus there could be no B,, action at p and therefore no Lagrangian. Thus at any
point p where a Lagrangian is initially considered locally gauge symmetric a simple

gauge transformation would make it not so, thereby violating the fundamental
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principle that the laws of physics are to be invariant under gauge transformations.
Thus since .#’! could not be said to attach to and o-operate in T, M Vp € M it could
not then generate a locally gauge symmetric Lagrangian throughout M. Local gauge
symmetry in elementary-particle physics for SU(2) and U(1) is thus seen at its core
as an attribute of the parallelizability of the 1 and 3-spheres.

7. Contrasting the YM and CAM Gauge Theories
7.1. CAM is a gauge theory

Often stated as “the principle of gauge theory”! for SM physics is that matter-
wave fields are to be described by sections of gauge group vector bundles in locally
gauge invariant field equations.!1:16:17:21,26,32,46 GQtated in this way the principle
presupposes that YM theory must be used in constructing SM, for it is within the
fiber bundle structure of YM that matter-wave fields are sections of gauge group
bundles for which local gauge invariant field equations result.

This form of the gauge principle thus assumes that YM is the only formalism
that can generate the SM laws of physics within a locally gauge invariant envi-
ronment, and thus YM theory is presumptively considered the SM local gauge
theory. In short, the term “Yang—Mills theory” has often been held synony-
mous with the term “gauge theory” or “non-Abelian gauge theory” for SM
physics,11:21,27,32,39,47,51-53,u

But it is now known that CAM also generates the local gauge invariant SM
gauge group Lagrangians with inherently accompanying gauge fields.!™ To make
amends of this, gauge invariance must not be conceived of simply as a set of math-
ematical tools, but instead as, “the physical principle governing the fundamental
forces between the elementary particles.”"

Given this understanding, a simple way to state the gauge principle is taken
from Weyl, Yang and Millg26:40:54.55,w

The gauge field is to be a necessary accompaniment of the matter-wave
field within a locally gauge symmetric setting.

Stated in this way the gauge principle has two requirements: (1) Weylian accom-
paniment, and (2) Yang-Millian locality.

The Weylian accompaniment requirement stems from Weyl’s dynamical view
of matter as both the “inducing agent” of a gauge field as well as the interacting

NX

agent involved in a gauge field’s “transferring interactions from matter to matter,

whereas the YM locality condition of local gauge symmetry is a requirement for

relativistic field theories.!8:26

tReference 21, p. 222.

“Thus Kane writes, “The Standard Model is called a Yang—Mills gauge theory” (Ref. 23, p. 1-2).
VReference 91, p. 5 (emp. supp.).

WReference 54, p. 331; Ref. 26, p. 192.

*Reference 55, p. 609.
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Using this form of the gauge principle as the guiding principle we see that the
YM and CAM systems are but two differing methodologies for effecting this prin-
ciple and thereby producing local gauge symmetric SM gauge group Lagrangians
with coupled matter and gauge fields. They are thus to be considered as two sep-
arate gauge theoretic models for generating the local gauge symmetric Standard
Model of particle physics.

Therefore it is more accurate to state that in YM-based SM gauge theory
matter-wave fields are described by sections of simply-connected gauge group
vector bundles with gauge fields being the connections of the associated principal
fiber bundle of the structure group through which the required accompaniment-
coupling is generated; whereas in CAM-based SM gauge theory matter-wave fields
are sections of the spinor bundle while gauge fields and four-currents are sections
of the space—time algebra bundle which interact via CAM’s bundle coupling tech-
nology, thereby intrinsically generating a local gauge invariant theory.

7.2. Distinctions

Though both gauge theories intrinsically produce coupled, locally gauge invariant
Lagrangians for the SM simply-connected gauge groups nevertheless there are im-
portant conceptual, theoretical and phenomenological differences between them,
some of which follows:

(1) YM theory is a gauge theory based on the groups SU(N) : N > 1. The CAM
model is a gauge theory based on the parallelizable spheres SV : N = 1,3,7.
In YM-based gauge theory a different choice of gauge group corresponds to a
different elementary-particle force.3? Thus in YM forces are initially and pri-
marily related to gauge groups. In CAM-based gauge theory a different choice
of parallelizable sphere (or composition thereof) corresponds to a different
elementary-particle force. Thus in CAM the forces are initially and primarily
related to spheres. No longer do we generate a force by specifying a Lie gauge
group; we now generate a force by specifying a parallelizable sphere.

(2) In CAM the sphere operators ., are conceived as operationally attaching to
space-time. In YM the gauge group fibers G}, are conceived only as “standing,
in some sense, above” 27 or “sitting right over”2! space-time and operating not
on space—time but on matter-wave sections of another fiber bundle over space—
time.

(3) YM deals with connections of various fiber bundles. CAM deals only with the
connection V on the tangent bundle 7'M, and is therefore more fundamentally
geometric than YM. As Baez noted regarding general relativity’s relation to
YM theory, “general relativity is even more (emp. Baez) geometrical [than
Yang—Mills theory], since it concerns, not just any old bundle, but the tangent
bundle!”¥

YReference 21, pp. 365-366.

2050037-21



Int. J. Mod. Phys. A 2020.35. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 06/28/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

B. J.

(4)

Wolk

A fundamental question remains as to the origin of the SM gauge group sym-
metries.2” The YM-based SM remains silent on why the symmetries are U(1),
SU(2) and SU(3). No theoretical basis for the symmetries exists within YM.
As Kane noted, “The Standard Model is a descriptive theory. It does not
explain why its particular electroweak and color forces are what they are, and
whether they are inevitable . . ..”* Comparatively, CAM specifically establishes
where and why the U(1), SU(2) and SU(3) symmetries arise through genera-
tion of the characteristic structure constants of these simply-connected sym-
metry groups, and these alone.?® According to the CAM model these forces,
and these alone, are inevitable. In this way CAM theory mandates the sym-
metry groups U(1), SU(2) and SU(3) for the elementary-particle forces of
nature.

CAM finalizes the singular elementary-particle forces at SU(3), since S is the
last parallelizable sphere. YM contains no such constraint, which has proven
to be an issue for YM theory in regards to proton decay phenomenology.® This
CAM constraint thus answers the question echoed throughout the theoretical
physics community as stated by Schwichtenberg:*® “[T]he three fundamental
forces described by the standard model correspond to the symmetry groups
U(1), SU(2) and SU(3). Why is there no fundamental force following from
SU(4)? Nobody knows!” Now we know.

In YM numerous curvatures over the various gauge group bundles necessarily
arise. In CAM the only required connection is V7 of M, and thus no group
bundle curvatures exist in CAM.

In YM the gauge fields are connections. In CAM the gauge fields are not
connections, but Clifford fields. Now Clifford elements operate on spinor
fields,16:27:36:38 wwhich are the matter-wave fields in both CAM and YM.
Furthermore gauge fields also operate on the spinor matter-wave fields in trans-
ferring interactions.36:39:40:53 Therefore it is reasonable to postulate that the
gauge fields should have a direct nexus with the Clifford elements and thus
take their values in the Clifford space—time bundle, i.e. be Clifford fields. This
is argued to be a more natural procedure than the YM gauge theory’s proce-
dure of the gauge fields being the connection coefficients of a specified principal
gauge group bundle thereafter effecting operation on the spinor matter-wave
fields via a representation p on an associated vector bundle of the matter-wave
field.

In YM gauge theory, there is “no necessary correlation whatsoever between
the geometry of the base manifold and the geometry of the fiber.”°¢ Thus
although on one hand the tangent bundle is “intimately associated” with the

“Reference 23, pp. 1-3.

a2See Ref. 5, Fn. (15) and related content for further discussion of the structure constant topic.
bbReference 86, p. 3.

““Reference 48, p. 379.
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base space manifold M, on the other hand there “is no pre-existing reason to
add a spinor space” as a fiber bundle for associating material fields.*® In CAM,
the relation between the base space Ml and the spinor and Clifford bundles
is more subtle and intimate. For instance in CAM bundle theory there is a
pre-existing reason to add a spinor space to M, since CAM generates the Dirac
operator @ which operates on spinors. Although it remains to be seen whether
the spinor and Clifford fields can “arise as a result of any natural structure on
the base manifold,”#® nevertheless the structure of these fields is intimately
and necessarily correlated with the form of the operators generated by .-
action on M. Thus (30)’s generated operators determine to various extent the
form of the fields that can be operated on and thus the nature of the fiber
bundles of which these fields are sections.

(9) CAM naturally accommodates intrinsic spontaneous generation of chiral
asymmetry for SU(2). YM does not, and only imposes parity violation
ad hoc3%3952 or derives parity violation from the renormalization effects
within the causal gauge invariance of second order tree graphs for leptonic
couplings.®%

(10) CAM intrinsically accommodates a right-chiral neutrino; YM does not.

(11) CAM places constraints on proton decay which are consistent with experiment;
YM does not.

(12) CAM generates Einstein’s equations of general relativity and provides a place
for the Higgs field to enter the physics arena and inherently couple to the
space-time metric.

7.3. Connections

Despite these differences, the principal connection between the YM and CAM gauge
theories is readily shown. This theoretic crossroads between the two approaches
reveals the Yang—Mills methodology as derivative of the CAM methodology, a sub-
ject which was previously alluded to.4

7.3.1. YM gauge theory

The core of Yang-Mills gauge theory rests upon the building blocks of a chosen
non-Abelian gauge symmetry group and a subsequently derived connection asso-

18,26,91,94 The appli—

ciated with the gauge potential field of the symmetry group.
cable covariant derivative arises thereafter from this derivation, and a Yang-Mills
Lagrangian and the equations of motion are developed under the guidance of a man-
dated local gauge symmetry.!7:39:46:91 Reduction to the Abelian symmetry group
U(1) results in Maxwell’s electromagnetism.36:53:91,94

Construction of modern non-Abelian gauge theory begins with identification of

the Lie algebra for an arbitrarily chosen non-Abelian group for which the local

ddReference 5, Fn. (14).
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symmetry transformation of a wave function is:12:91:94,ce

wmeQmZW%me7 (34)
k

where the internal space parameters 6% (x) are continuous functions of the space—
time coordinates (x) and Gy, are the generators of the chosen symmetry group’s Lie
algebra abiding by the ubiquitous Lie bracket relations:

[Gi,Gj] = icijka . (35)

Here we make the pivotal observation that within YM gauge theory the ini-
tial choice of a simply-connected local gauge symmetry group for (34)—(35) is
arbitrary — we could with equal theoretical justification choose the symmetry group
SU(6) or SU(2), SU(4) rather than SU(5) or SU(3), Spin(13) as for Spin(10); in
short, no internal guidance is given within YM gauge theory for guiding the choice
of gauge group so as to be in line with the SM gauge groups. No inherent direc-
tive or self-constraining mechanism exists within YM gauge theory which would
mandate the SM gauge groups or restrict use of symmetry groups for generating a
Yang—Mills gauge interaction. It is here where CAM gauge theory essentially differs
with YM theory, and ironically it is the core interconnection between the YM and
CAM gauge constructs which reveals this distinction.

Continuing with the Yang—Mills approach, we write a particle’s wave function

in the internal basis of the chosen symmetry group’s internal space:?!

P(@) =) Ya(@)ta, (36)

where u,, are the basis vectors for the internal symmetry space. Calculating the
differential change in the wave function as the particle moves through an external
potential field gives

dp =Y [Optha da' g + o dug] - (37)

Focusing on the change in the internal space bases du, will yield the connec-

91,94

tion. Consider the infinitesimal internal precession associated with the external

space—time displacement dx and caused by the external potential field:

Ul(dz) = exp (—z’gz de’fc;k> , (38)

k

where df* = B,ﬂk dx*. The associated internal displacement of the u,, is of course

U(dz)u = u + du, which may be written as®!
U(dz)uq = exp (—@Z&,ﬂk daz“(Gk)w)u,g, (39)
k

€cSee, e.g. Ref. 12, Subsec. 9.1; Ref. 91, Subsec. 3.1.
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and which yields after expansion to first order the change in internal space bases:

dug = —ig Y  9,0% de"(Gr)apus - (40)
k
The connection is defined from (40) as®391:94
(Ap)ap = Zaugk(Gk)aﬁ . (41)
k
Looking back to (37), we thus have for the total change in the wave function
dp = Z [aﬂwaéaﬁ - ig(AM>a,8wa] dat ug , (42)
ap

from which we can resect the general covariant derivative operator D,,:21:94

Db = [0ap0u — ig(Au)as]ta (43)

[e3%

By way of example, using (43) for the one-dimensional Abelian symmetry group
U(1) gives the well-known covariant derivative or minimal coupling for the electro-

magnetic interaction:3%:47,52:91

D, =8, —igA (44)

)

use of which permits the applicable local gauge symmetric Lagrangian and equations

of motion to follow.17-36,53,94

7.3.2. CAM as primordial YM gauge theory

Within the CAM model, we begin further back in the process, before emergence of
any applicable Lie symmetry group. CAM theory in fact reveals and generates the
applicable local symmetry groups for the elementary-particle interactions — the
SM local symmetry groups — by generating the Lie algebra structure constants
necessarily attached to and associated with these symmetry groups.

The fundamental theorems of Lie group theory reveal the central role that the
structure constants have therein,”? and therefore also within particle physics gauge
theory. The structure constants possess a certain symmetry which the generators
lack — namely, they are invariant with respect to changes in the representation of
a group.3®3%:92 In contrast, the generators lack this symmetry.3?

Furthermore, the structure constants are characteristic of a Lie group, and thus
all Lie groups (and for our purposes the simply-connected ones) are classifiable from
them.293 Any particular set of structure constants are necessarily and uniquely
related to (and so isolate) a distinguished, simply-connected Lie group and therefore
its associated geometric manifold.?6:38:92:93 Finally from the structure constants the
adjoint representation immediately follows,3® from which all theoretic SM results

are derivable since the group structure is independent of the representation.3®39:92
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It is from (35) that the structure constants indicate a specific Lie algebra and
thus mandate its associated simply-connected Lie symmetry group to be used in
(34). From this indication the flow of YM gauge theory begins and its theoretic
structure is established — from (34) through (44) and beyond. The structure con-
stants thus indicate and generate the building blocks of YM gauge theory, namely
the local gauge symmetry groups and connections along with associated covariant
derivatives.

It has been previously shown that CAM indicates and mandates the SM gauge
groups through generation of the applicable structure constants for the Lie algebras
of the U(1), SU(2) and SU(3) symmetry groups, and these alone.?* For the SU(2)
weak interaction the operator [y,4] (based in the quaternions H) generated the
structure constants for the Lie algebra su(2), just as the same operator [vy,~] —
but in this instance based in the octonions @ — generated the structure constants
for the su(3) Lie algebra of the SU(3) interaction.* There are of course no structure
constants for the U(1) interaction based in C and so the operator [v,~] vanishes
and does not come into play.>2 It is in this way that CAM gauge theory begins
further back in the process than YM gauge theory, indicating the applicable simply-
connected symmetry groups through generation of their respective Lie algebras that
YM gauge theory must introduce ad hoc.

We thus arrive at the result that Yang—Mills gauge theory is derivable from,
and therefore less fundamental than, CAM gauge theory. This also means that the
gauge theoretic structure of YM is utilizable within CAM gauge theory.

For instance, noted above was that whereas YM deals with connections of
various fiber bundles, CAM deals only with the connection V on the tangent bundle
TM. This means that CAM gauge theory needs only the connection on TM to
generate the SM interactions. But this is not to say that YM gauge theoretic con-
nections and all their related fiber bundle structures (such as bundle curvature)
cannot be utilized within CAM’s theoretical analysis. On the contrary, they can
be; it simply means that neither the covariant derivative nor connection (nor the
symmetry group for that matter) is the nascent, determinative structure to be used
for deriving or postulating an elementary-particle force. Thus, if CAM gauge theory
places an ab initio restriction or prohibition on use of a certain covariant deriva-
tive or symmetry group, then it and its associated connection cannot be used in
violation of this restriction in contemplating the fundamental laws of elementary-
particle physics. It is this YM theoretic assumption of the viability of extension of
the covariant derivative and connection in postulating an SU(5) (or other symme-
try gauge group) interaction which has created internally unresolvable issues in YM
theory for such things as proton-decay phenomenology.’

We conclude that CAM is a more primordial gauge theoretic structure than YM.
Furthermore, since CAM gauge theory generates the building blocks for the gauge
theoretic mechanisms which are integral to YM gauge theory, and thus generates
and subsumes YM gauge theory itself, CAM might be more easily grasped if con-
sidered as a refinement of YM gauge theory or as primordial YM gauge theory.
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8. Discussion

For YM fiber bundle gauge theory to work it is essential that the applicable
principal and associated fiber bundles have certain exact symmetries. As Penrose
contemplated, this contingency “raises fundamental questions as to the origin of
such symmetries, and what these symmetries actually are,” for which YM theory
does not provide an answer.

In CAM fiber bundle gauge theory, however, the answers to these questions are
firmly rooted in the geometric structure of the formalism itself. No longer is the SM
symmetry group “put into the theory by hand.”8® The origin and operation of the
symmetries of the SM forces inherently exist within the dynamic symbiosis of the
parallelizable spheres and space—time, which generates CAM’s geometro-algebraic
formalism.

This notion is fundamentally important, and so warrants emphasis. Symmetry
does indeed dictate design,'®°” but what dictates the symmetry? What distin-
guishes this from that symmetry as operative in the structure and function of the
fundamental laws of physics and so in the real world? It would seem logical to pos-
tulate that some mechanism or structure functioning behind the scenes generates
and picks out a symmetry as that symmetry which is to apply to the design of
reality in distinction to the plethora of other mathematical symmetries which do
not. Is there something more fundamental lying behind the operative symmetries of
reality which generates those symmetries in the first instance? This paper theorizes
in the affirmative for the elementary-particle forces — the parallelizable spheres
dictate these particular symmetries of reality which in turn dictate reality’s design.

Thus though we can conceive YM theory as a formalism for mathematically
representing the SM interactions, the CAM model goes further and can be viewed
as also generating the structure of these interactions. The gauge theory of YM is but
descriptive, while the gauge theory of CAM is both descriptive and generative. This
theoretic and conceptual contrast between the theories justifies the introductory
statement that but for the particular structure of the three unique parallelizable
spheres the fundamental elementary-particle forces would not exist in the form in
which they do, if at all.

That the elementary-particle forces have a core structure contingent upon the
most symmetric of immutable topological structures — the spheres — and what
is more only those spheres endowed with the uniqueness and universality of par-
allelizability — is an aesthetically compelling paradigm for comprising a corpus of
fundamental physical law which once grasped cannot easily be castaway.?2:41:58

The paradigm strongly resonates with Yau’s aesthetic conviction that"®

The deepest ideas of math, if shown to be true, would almost invariably
have consequences for physics and manifest themselves in nature in general,
ffReference 27, p. 354.
28Reference 14, p. 29.
hhReference 60, p. 78.
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in providing (in part) a resolution to the theoretical questions which have resonated
in the physics community for some time — as echoed by Peskin®® and Furey?®7ii
What makes SU(3) ® SU(2) ® U(1) so special™®?

Of the infinite number of imaginable gauge groups, why this gauge group™?

Of all the ways that nature could be built, how do we know that the
Standard Model is the correct one® (Sec. 1)?

through theoretical authentication of Dixon’s aesthetic intuition that#

The parallelizable spheres... are the only ones of their kind... and,
I believe, an inevitable part of the design of reality.

9. Higher-Dimensional Unification

Given the above aesthetic paradigm one is justified in casting still further out and
postulating that the elementary-particle forces are “the result of the hidden (topo-
logical structure of the spheres) that conducts its business behind the scenes,”*%
where here “the scenes” is taken as the metric-equipped four-dimensional space—

time continuum as part of the (1,10)-dimensional geometro-topological struc-

fure22:23,27,51,61

noncompact compactified
MU0 M e 2T (45)
1,3 _ - - o 61
where M = (M, n) is the simplest choice.

i«In part” for two reasons: (1) the role of .#7 has not yet been mathematically set forth — though
from this paper’s structure .#7’s role can be fairly intuited, and (2) as Furey notes,” “Even if we
were to understand why nature’s local symmetries should be given by SU(3) ® SU(2) @ U(1), we
would still be at a loss to explain SM’s particle content.” In this regard we must emphasize that we
hold it to be self-evident that if the detailed structure of some algebraic framework (such as the
division algebraic systems proffered by Dixonl481 or Furey,”®7 Gogberashvili®? or Giinaydin
and Giirsey,82 Dray and Manogue®” or Pushpa and Bisht,®3 or otherwise) is in fact nature’s
choice for accommodating the particulars of SM particle and quantum number content, then —
in keeping with this paper’s core motivation and the modern ideal of perfecting an explanation
of the fundamental physical interactions via a unifying geometry — assimilation of the proffered
algebraic system into an underlying, unifying and inducing geometric structure (such as with the
CAM formalism herein) is mandated. In short, with regard to the fundamental laws of physics, to
be theoretically and aesthetically viable detailed algebraic form must of necessity be intrinsically
contained within and naturally emanate from unified geometric structure.

It is by the light of this unity-through-geometry mandate that Eq. (1) addresses Furey’s addi-
tional inquiry: “If SM’s group representation structure is indeed a result of the algebras R, C, H,
and Q, then what is it exactly that is so special about these algebras?”79
liReference 14, p. 160.
kkReference 60, p. xvii. The term “topological structure of the spheres” has been substituted for
Yau’s original term “geometrical structure” since Yau considers geometrical structure as coinciding
with the existence of a metric on a space (see, e.g. Ref. 60, pp. 18, 25, 79) (and in particular Calabi—
Yau geometric structures), but as has been emphasized in this paper the qualities and operations
contemplated of the spheres (such as parallelizability and algebraic composition) do not require
equipping the spheres with this extra metric structure.
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9.1. A nonmetric source space

As the first critical theoretic and philosophic departure from standard conceptions
in string/M-theory for conceiving a higher-dimensional structure for generating the
CAM model, we take R” C M0 (from which 277 will arise) to be a nonmetric
topological space (R7, 7) endowed with the usual topology 7.11:16:24:62.84.1l The gpace
(R7,7) is not Euclidean space E7 endowed with the standard Euclidean metric

d(p,q) = ZZ=1(P2' — q;)2.62.6365.84,mm Gince in standard Kaluza—Klein theory

and its string/M-theory successors higher-dimensional space-time is presumed
to have a metric structure,’® this forms a fundamental distinction between the
approaches.

Despite being devoid of all metric structure (R7,7) is a well-defined, deep-
structured topological space which is locally homeomorphic to E7.62:6570 Thig
homeomorphism exists because (R, 7) and E” = (R7,d), though having different
topological bases, correspond to the same topology.t1:16:24,62-65,70,84,nn T}iq
respondence of topologies is an interesting mathematical result which warrants
application in fundamental theoretical physics.

For if we can generate the self-same deep topological structure as a metrizable
space does without recourse to the additional metric structure, then the metric
structure has become superfluous for the purposes at hand and novacula Occami,

Cor-

simplicity and aesthetics mandate that we forgo it. Such a theoretic program of
abstraction and nonmetric generalization is also physically justified since our intui-
tion can easily be led astray when considering particular representations of spaces
in metricized Euclidean space E™.66:00

The operative philosophic notion here is that there is no logical reason theo-
retical physics cannot nor should not (with sundry reasons why it should) consider a
more general yet well-defined, structured higher-dimensional space in which we “free
ourselves from the straitjacket of having to work inside some Euclidean space.”PP As
Armstrong emphasized, “In defining neighborhoods in a Euclidean space we used
very strongly the Euclidean distance between points. In constructing an abstract
space we would like to retain the concept of neighborhood but rid ourselves of any
dependence on a distance function.” 94

IReference 11, pp. 9 and 13; Ref. 16, p. 81; Ref. 62, p. 43.

mmReference 11, p. 28; Ref. 62, Subsec. 2.2; Ref. 65, Subsec. 1.2.6.

nnReference 24, App. A; Ref. 62, pp. 18, 24 and 43; Ref. 65, Subsec. 1.2.8; Ref. 70, p. 47;
Ref. 84, pp. 1-2.

©°See Ref. 66, pp. 10-11, Figs. 1.14-1.15, for an excellent example of this intuition-misleading
phenomenon using the Mobius strip .# generated by ¢ = 1/2 and k = 3/2 twists. We have
M ~ My,. Yet despite M; ~ M), when using representations of .#; and .#; in E™ no amount
of stretching, bending or twisting can deform .#; into .#} (Ref. 66) — which would lead one’s
intuition to conclude, incorrectly, that the spaces are not homeomorphic.

PPReference 66, p. 14.

d9Reference 66, pp. 12—-13, emphasis author.
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Considering only the three-dimensional spatial component of four-dimensional
space—time, for two-and-a-half millennia from Aristotle through Newton to
Descartes its structure was presumed to be E3 endowed with the standard Euclidean
metric d(p, q).9>% But as Aldrovandi and Pereira have noted:™

We are by now sure that the standard Euclidean one which has been taken
for granted for millennia is not valid at distances of interest at the quantum
level. The last few decades have brought to light doubts about its validity
also at very large, cosmological distances.

This experimentally backed, slow-developing realization regarding our directly
measurable 3D space further emphasizes the need for theoretical physics not to
incipiently constrain itself to a metric space when considering higher-dimensional
theory. One is in fact logically led in the alternative direction of a more general
space. Furthermore, there is no experimental mandate requiring there be a metric
associated with this higher-dimensional space. Such a mandate is a theoretical
straitjacket. More general, all-encompassing spaces are valid as fair-game which
may serve the qualitative purposes of theoretical physics for modeling our reality
in a much simpler and more aesthetic way than demanding a superfluous higher-
dimensional structure of Euclidean or general metric geometry.

In short, the fundamental laws of physics are not to be arbitrarily constrained
by a physically and mathematically unfounded proclamation that the necessary,
“a priori, eternal truths” of Euclidean geometry govern either the construction
or perception of our universe.3%:67:73,%% The basic philosophy of higher-dimensional
CAM thus follows the modern “heretical movement”** in theoretical physics, from
general relativity to quantum theory, of liberating ourselves from the “undue and
superfluous restrictions” engendered within the classical comforts of a metricized
“ambient Euclidean space.” "™

Since topology can be thought of as a kind of generalization of Euclidean geom-
etry,}! it is natural that our theoretical considerations begin within its domain. In
point of fact, “topology has taken on the role of providing the foundations for just
about every branch of mathematics that has any use for a concept of ‘space’,”VV and
all the relevant, deep structural properties of a space such as continuity, open sets,
boundedness, connectedness, compactness, contractibility, convergence, dimension,
point-distinguishability, qualitative proximity and even differentiability are “quite

independent of any notion of distance” or metric.64:6570,ww

''Reference 65, Preface to 2nd edition.

sSReference 35, pp. 15-20; Ref. 67, pp. 8-13; Ref. 73, p. 329 and Subsec. VIL.6 (“Mathematics and
Reality”).

t As the mathematician and theoretical physicist Carl Friedrich Gauss feared his ideas on non-
Euclidean geometry would be viewed (Ref. 35, p. 5), and for which Gauss was attacked by philo-
sophers (Ref. 73, p. 329).

YU Reference 64, p. 1.

VVReference 70, p. 4.

wwWReference 65, p. 8.
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As the geometric notion of distance is not invariant under homeomorphism and

11,62,64,66,70

therefore not a topological symmetry, a metric d — being defined so

as to correspond to our intuitive notion of the geometric distance between two

11,6570 “contains extraneous (nontopological) information” and thus its

points
metric structure is irrelevant to our foundational topological purposes.5®™ This
being the case we require that any and all metric structure of CAM’s theorized
higher-dimensional compactified topological space 27 be extracted.

To adequately liberate the topology of 2°7 from all metric structure, we are
then compelled to initiate its compactification from a nonmetric source space. We
are thus and in this way naturally led to postulate the aforesaid nonmetric space

(R7, T) as our pre-compactification source space: (R7, T) c M0,

9.2. Source space compactification

As a second theoretic departure we apply the specific topological procedure of one-
point compactification © to the source space (R7,7):11:16:17,62,65,66,xx

0:R"-5 27, (46)

which yields 27 as a space homeomorphic to the topological 7-sphere:!1:16:62.yy

X7~ ST, (47)

We know that the 7-sphere is isomorphic to the unit octonions.!*%17 Yet no
division algebraic composition rule exists on (47)’s S7. This seems a contradic-
tion at first blush, but it is not. For the division algebraic binary operation is a
smooth algebraic structure belonging to S” as a smooth manifold and not to S7 as
a topological space — there is no notion of smooth algebraic composition defined in
the topology of S7. Smoothness and smooth structures are not purely topological
properties,54.6°

In this regard it is imperative here to recognize that there are different layers

and so such structure will have to be appended.””

of structure which might exist in S7. In fact, there are generally four layers of

increasingly refined structure:54:69:70,aaa

**Reference 11, Chap. 6 and Subsec. 10.2; Ref. 16, Subsec. 2.3.5; Ref. 17, p. 15: Ex. (v); Ref. 62,
Sec. 19.

¥¥YPer Moira, the one-point compactification of (R7, 7') happens to be homeomorphic to S7. Other-
wise, (45)’s higher-dimensional structure would not be a viable CAM unification candidate.
ZZFor example, the geometric objects that the Lie groups U(1) and SU(2) are associated with
must be differentiable (smooth) manifolds with a group — manifold operation which induces a
differentiable map of the manifold into itself;16:17:38:86 this group — manifold operation for the
unit 1 and 3-spheres is of course division algebraic multiplicative binary composition. Thus the
purely topological manifolds S} and S32 lacking smooth structure are insufficient as the manifolds
to associate with U(1) and SU(2), and the additional smooth structure will have to be appended.
Though S7 is not a group, the same reasoning applies as to the associated unit octonions.
aaaSee Ref. 64, Chap. 1. As the author Lee470.72 gtates in giving a nice explanation of these
various structures on a unit-sphere:”2 “One reason it's easy to get confused about these layers
of structure is that when there are obvious “natural” choices such as the ones I described above,
we often don’t even mention that a choice is being made. For example, if an author writes

footnote aaa (Continued on next page)
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(1) ST as a set;

(2) ST = (57, 7') as a topological space with topology 7 structure;

(3) ST, = (S7,7,4) as a differentio-topological®® manifold with smooth & struc-
ture;

(4) Sg7 = (57, T, g) as a differentio-geometric manifold with Riemannian metric
g structure.

bbb

9.3. Transport of algebraic structure into 577_

Equation (36)’s homeomorphism 27 ~ S7 admits seven-dimensional manifolds
other than S7, such as 27 = S;;i = 1 — 28, where S; for some i is one of the
28 orientation-preserving exotic spheres homeomorphic to S7.8:16:64.68.69 Ajthough
the differentiable S; structures may contain division algebraic structure,3%:90,ddd for
the purposes of this introductory paper we will maintain use of the 7-sphere with

standard smooth &7 structure (a maximal smooth atlas equipped with the standard

smooth structure®16:64) cee

CAM’s compactification scenario will thus require a subsequent topological de-

16,68

formation event

a: 27487 (48)

necessarily occurring before the transport of o/ structure induced by (49) below.
This topological deformation is required because the S; are not diffeomorphic to
S7,9:6368 while the smooth & structure being transported via (49) morphs 277
into S7,. Thus without (48) a mapping such as (49), which would make 277 = S;
an o/ -carrier diffeomorphic to S7,, could not exist.

Following topological deformation, development of (47) to the operator sphere
27— 7 occurs as the result of a transport of o structure®® event induced by

footnote aaa (Continued)

“Let S? be the unit sphere in R3,” you have to decide from the context whether she’s thinking
of it as a set, or a topological space with the subspace topology, or a smooth manifold with the
induced smooth structure, or as a Riemannian manifold with the induced Riemannian structure. ..
Technically speaking, S? is only a set. The topological space is an ordered pair (Sz, 7') where T is a
topology; the smooth manifold is an ordered triple (52, T, 42/) where &7 is a smooth structure; and
the Riemannian manifold is an ordered quadruple (527 T, g) where ¢ is a Riemannian metric.
To keep the notation from getting too cumbersome, we usually omit all those additional structures
when they’re understood from context.”

bbbThere is a further delineation here, in which a topological manifold is defined as a topological
space which also has the properties of being Hausdorff, second-countable and everywhere locally
homeomorphic to an open subset of E™.6%70 Topological manifolds are the simplest type of mani-
fold.63:64:.70 Given this definition it can be shown that both (]R7, 7') and S7 are in fact topological
manifolds.21:62,64

cccWe follow Milnor’s use of the term differential topology,® vice the use of the phrase “smooth
manifold theory.”64

dddFor instance, in constructing the first exotic 7-sphere, Milnor used boundaries S3 x S3, for
which each S3 is identified with the unit quaternions with standard multiplicative structure.20
This raises an intriguing possibility for future study.

cc¢Reference 8, p. 2; Ref. 16, p. 174; Ref. 64, pp. 5 and 20.
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the canonical isomorphism

0: X"=8T 857, p(s,) =5,Vs, €857, (49)
where S(Z{ is the differentio-topological 7-sphere equipped with the smooth division
algebraic structure 8 which is taken as a subset of the &/ structure: § C o/. We

know that the § structure is smooth structure since, as previously discussed, the

division algebraic composition of elements yields a smooth global frame field on
AL16,64 .

the division algebra’s associated isomorphic unit parallelizable sphere
instance, octonion multiplication yields a smooth global frame on S7 .
The transport of 3 structure S7, £> S7 induces the division algebraic binary
multiplicative operation - on S7 via
5182 = (s1) * p(s2) (50)
for all s, € ST, where * is the binary operation of multiplication on S7, existing as
part of the 3 structure of S‘Z{.

9.3.1. The B structure

We briefly consider the essential 3 structure of S7, in order to emphasize its purely
algebraic nature by first considering the complex numbers which can then in turn
be generalized to the quaternion and octonion algebraic structure.!?14:28 We have
the fundamental algebraic identity'2

(23 +22) (53 + 52) = (wow0 — 2131)” + (w1 +2190)” (51)

which by introducing the imaginary unit i = —1 and defining the complex number
q = qo + ig; and the algebraic norm ||g|| = v/¢2 + ¢? can be expressed as!?13

eyl = llzlllyll, (52)
where we note the multiplicative composition operation
z -y = (zoyo — z1y1) + 1(Toy1 + 21%0) - (53)

The same applies to the algebra of the real numbers.13
Consider now the algebraic identity!2

(25 +af+a5+a3) (WS +ui+u3 +13) = (5 + 21 + 25+ 23), (54)
with
20 = ToYo — T1Y1 — T2Y2 — X3Y3,
21 = XoY1 + T1Yo + T2Y3 — T3Y2,
22 = XoY2 + T2Yo + T3Y1 — T1Y3,
Z3 = XoYs + T3Yo + T1Y2 — T2Y1 -

fffSee, e.g. Ref. 64, pp. 20, 179 and 200. The spheres SX = {51,33,57} are the only spheres

which admit globally smooth parallel frame fields via their associated division algebraic struc-

ture.8:11,16,64
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Equation (54) can also be expressed in the form of (52) by introducing the unit
quaternions {4, j, k}, defining a quaternion ¢ = qo+14q; +j¢2+kqs and the extended

12,13,74 and where the algebraic multiplicative composition - of two
12,14,74

algebraic norm,
quaternions is given by

Ty = (1‘0 +ir1 + Jro + kl‘g) (yo +iy1 +Jy2 + kyg)
=zo+11z1 +J20 + kzs. (56)

This algebraic structure can then be generalized to the octonions O, which is the
last algebra with this structure.12-14

The above 8 structure constitutes purely algebraic structure. However, in the
literature, a Euclidean metric is often attached to this algebraic structure. For
instance, quaternion composition is often put in the form of (24) from which the
quaternions H are designated as arriving within a metric space.®88 In this way the
quaternions are appended to a metric space R*.hbh

However, the quaternions H (and the other division algebras) are fundamentally
not a metric space, but an algebraic structure — a noncommutative unital division
ring possessing two binary operations, that of multiplication - and addition +,%%74
and the unit quaternions are a purely algebraic structure (H,,-) under the binary
operation of multiplication.

We thus emphasize that the transport of smooth & structure contemplated
herein neither contains nor postulates any metric structure, and CAM’s 5 C &
structure is a smooth, nonmetric algebraic structure. Furthermore, only when acting
within a space with the Minkowski metric structure 7 can the algebraic composition
of two quaternions (octonions) be put in the form of (24). As previously stated
in Subsec. 5.1, the form of (24) only comes about in CAM via the .#™ bundle
operator’s local action in T,M (which is endowed with 7, thereby permitting this
metric-based form).

9.4. CAM compactification sequence
The entire CAM compactification sequence in which transport of algebraic structure

ST, fi ST follows one-point compactification © and topological deformation « is

d
R7-% 27 -5 87 -5 87, s o7 (57)
: d
where -Z» denotes the one-point compactification © procedure, --+ the topological

deformation event «, L5 the transport of 8 structure SZ{ Ci S7, and + the operator
bundle B,, postulate of Subsec. 5.4.

g28See Ref. 28, Subsecs. 1.3 and 1.3.2, in which the author writes, “The 4D linear space R%,
endowed with the quaternion product, is denoted H.”
hhhDefined in Ref. 28, Subsec. 1.2.1 as a metric space.

2050037-34



Int. J. Mod. Phys. A 2020.35. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 06/28/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

The underlying geometry of the CAM gauge model

As we have the submanifold chain S c S' ¢ §% ¢ §7,1214.64 we thus have
Stcy’, ScoT, (58)

thereby permitting the .#* VI M, .#3VTM and (5” 3.7 1) VTM operator technolo-
gies as set forth herein as well as .77 technologies to be considered in subsequent
work. Using (45) we can thus write

MB35 2T = Mg ST, (59)

where Vg indicates that it is only the parallelized spheres S™ — %™ associated with
the division algebras K which can and do take part in the wedge action between
the manifolds.

9.5. Conclusion

We conclude that the CAM compactification postulate encompassed within (45)—
(48) evidences various fundamental differences (both mathematical and physical)
from the Klein compactification postulate which is generalized and utilized in
string/M-theory.23:°0:51,60.6L,76,77.iil The two contrasting postulates can in their
essence be simply put:

Klein compactification postulate

Higher metric dimensions compactify into a
Planck-size space with intricate geometry.

CAM compactification postulate

Higher nonmetric dimensions compactify into a
space homeomorphic to the topological 7-sphere.

Some basic contrasts follow from the two compactification scenarios:

(1) With the Klein postulate, the extra metric dimensions 27 of M110 cannot
be measured because they are curled up into an experimentally essentially
nonobservable Planck-size space.?3:36:50:51,60.61,76,77 With the CAM postulate,
the extra dimensions 27 of M1? cannot be measured because they contain
no metric by which to be measured. They form but a nonmetricized opera-
tor space — however its higher-dimensional existence is indicated by the very
existence of the elementary-particle forces which it generates;

liigee, e.g. Ref. 76, Ch. 1, Fn. (99).
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(2)

Given the CAM postulate, every point p of space—time is occupied not by a
Planck-size Calabi—Yau manifold ¥ or a G9 manifold derived from the com-
pactification of a higher-dimensional metricized geometrical space,23:69:6L.77 Lyt
instead by an operator sphere fiber .#7 generated from the one-point compact-
ification of a higher-dimensional nonmetric topological manifold;

Within CAM 11-dimensional unification there is no chirality issue such

36,51 gince there is, again, no higher-

as occurred within the Klein regime,
dimensional metric tensor and no use of a higher-dimensional Dirac equation
which would require a seven-dimensional chirality operator;

CAM’s metric-free extra dimensions do not inherit potential instability from
the classical instability arguments on extra dimensions;¥

Within CAM unification the SM symmetry group is not obtained via its exis-
tence as the isometry group of a certain manifold as is done in the Kaluza—Klein

5L since there is no higher-dimensional metric whose invariance need be

regime,
maintained. Instead the (Lagrangian of the) SM symmetry group is generated
by the differentio-topologically induced bundle operator space B,, itself acting
locally on the differentio-geometric base space (T'M, n) of M, which is the local
manifold (arrived at via the principle of equivalence3!:35:49:50.76) of some global
Riemannian manifold (B, g);<*

Although the CAM model’s higher-dimensional topological manifold .27 does
not have the refined geometric structure of string/M-theory’s 27 manifold it
nevertheless is far from being the devoid nonentity of an outdated absolute
space.” 7 As Aldrovandi and Pereira noted, “The study of this primitive
structure [i.e. a topological space] makes use of very simple concepts. .. but the
structure itself may be very involved and may leave an important (eventually
dominate) imprint on the physical objects present in the space under considera-
tion.” ™™™ CAM’s 27 plays such a dynamic and dominant part in the form and
function of our relativistic reality which invites extensive investigation into its
causes, its effects and any capabilities we might be able to discern and develop
in order to potentially detect and affect it.
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