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1. Introduction

The 331 Model [1-6] is an extension of the Standard Model
(SM) where the non-abelian gauge group SU(2) of the electroweak
symmetry is promoted to an SU(3), thus replacing the symme-
try pattern from SU(3), x SUQR); x U(1)y to SUB), x SUB) x
U(1)x. This assumption redefines the SM hypercharge as Y =
Bo T8 + XTI, where T? is one of the well-known Gell-Mann ma-
trix acting on SU(3)., X is a new abelian charge assignment, I is
the identity matrix and Bq is a free parameter of the model. When
the latter is not specified, the setup is called “general 331 Model”.

Whilst each generation of the SM is anomaly free, in the general
331 Model the cancellation of gauge anomalies occurs if and only
if the total number of generations is (a multiple of) three. So far,
all the experimental evidences seem to indicate that three is the
number of active flavours in Nature. In contrast to the SM, where
this fact represents a puzzling assumption, the general 331 Model
would represent an elegant and appealing solution to the mystery
of flavour.

Concerning its particle spectrum, any realisation of the 331
Model is accompanied by a rich variety of beyond-the-SM (BSM)
particles that allows for heavy and potentially exotic states. Given
the paucity of “standard candles” for new physics (NP) at the Large
Hadron Collider (LHC) and low-energy experiments, a considerable
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attention was recently devoted to analysing exotic signatures of the
331 Model in atomic physics [7], flavour experiments [8-10], and
high-energy searches [11-14].

Even though different 331 Model realisations provide very dis-
tinct phenomenological implications, all of them are characterised
by the scalar potential detailed in Section 2 of this paper. Remark-
ably, theoretical constraints on the scalar potential of such class of
models were not systematically covered in previous literature. This
article aims to fill this gap.

When studying the scalar potential of a model, one should de-
rive a set of non-trivial conditions for its boundedness-from-below
(BFB). Consequently, only the portion of the parameter space that
fulfils them can be associated to existing vacua. In Section 3, this
paper presents a set of necessary and sufficient conditions that
applies to the case of the general 331 Model, and can be easily
implemented in future phenomenological studies.

Perturbative unitarity must be classified among the most im-
portant theoretical constraints to guarantee that perturbative scat-
tering amplitudes at every order are related to a well-defined uni-
tary S-matrix. This is especially important in BSM extensions with
weak (rather than strong) new dynamics, as occurs in the general
331 Model. In Section 4, this paper describes how to organise the
computation of the unitarity constraints in this framework.

Additional criteria should be fulfilled by physical parameters
(masses and mixing angles) to ensure that every coupling of the
scalar potential is perturbative, i.e. less than or equal to 4. In Sec-
tion 5, this paper shows that perturbativity constraints can place
further conditions on the boson mass spectrum.
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All the results presented in this article were obtained with
the support of automated computational tools: both a SARAH [15]
and a FeynRules [16] model files were created and cross-checked
against the model version already uploaded in the FeynRules
Model Database [17]; the FeynArts interface of FeynRules [18]
was exploited to produce a model file for the FeynArts [19] and
FormCalc [20,21] packages; furthermore, the combined packages
FeynArts and FormCalc were largely employed to study the per-
turbative unitarity constraints. All these results are collected in a
dedicated Mathematica [22] file! to open the way for a fast se-
lection of theoretically allowed portions of the general 331 Model
parameter space.

2. The scalar sector of the general 331 Model

The general 331 Model represents a class of SM extensions con-
taining the enlarged gauge group SU(3). x SU(3); x U(1)x. Several
specific versions can be obtained by a particular choice of the 8q
parameter present in the definition of the electromagnetic charge
operator:

Q=T3+Bo T8+ XI. (1)

In the following sections, the scalar sector of the 331 Model will
be explored without any specific assumption on Bq. Besides, any
details about the fermionic and gauge content of the model will be
disregarded as can be found in dedicated literature [8,9,23,24].

In the general 331 Model, the electroweak symmetry break-
ing is realised by scalars accommodated within three triplets of
SU@B)L

XA p+ nO
x=xB]. p=| 0° |. n=[ n" (2)
XO p—B 77_A

where each triplet belongs to (1, 3, X) with

Xy =Bo/V3. Xp,=1/2—Bq/(2V3).
Xy =—1/2 = o /2V3). (3)

In addition to neutral and singly charged states, there are fields
with charge

a_ 1 V3 B
Q—2+25Q, Q"= 2+2/3Q- (4)

The symmetry breaking pattern SU3). x U(1)x — U(1)q is
obtained in two steps. Firstly, the vacuum expectation value (VEV)
of the neutral component of x gives masses to the extra gauge
bosons and the extra quarks, triggering the pattern SU(3); x
U(l)x — SUR)L x U(1)y. Afterwards, the usual spontaneous sym-
metry breaking mechanism SU(2); x U(1)y — U(1)q is realised
by the VEVs of the neutral components of p and 7.

The scalar potential reads

1 V3

V=mip*o+min* n+mix*x +~2fpuxpnx
+11(p*p)* + a0 + A3 (x* x)?
+ 220" PN N+ 1130 XX A+ A3 XX
+ep NN o+ L3 X XTp + L3 X X, (5)

where the neutral component of each triplet is expanded around
its VEV as

1 Available on request.

1 .

poeﬁ(vp+Rep0+1Imp0>, (6)
1 .

noeﬁ(vn—i-Reno—HImno), (7)
1

XO%E(VX +Rex°+ilmx0). (8)

The dimensionless parameter k, that stems from the redefinition
fonx =KVy, can be also introduced to deal with only two scales,
vy and v = /vZ +v2. The ratio of the two light VEVs is conve-
niently redefined via tang =v,/v,.

The minimisation conditions of the potential, defined by 9V /
9®|p_g =0, are given by

A2 A13

2 3 2 2

m1vp+A1vp+7vpvn—fp,7Xvan+7vpvx=O, (9)
A2 A23

m%v,,—}—)\zv%—i-va)vn—fpnxvpvx+7vnvi:O, (10)

A13
PR
Using these conditions, one can compute the mass matrices for
the scalar degrees of freedom. In Appendix A, a diagonalisation
procedure is discussed in details. Moreover, it is shown how the
ten parameters of the scalar potential A1, A2, A3, A12, A13, A23, {12,
£13, {23, k, can be traded for the three physical neutral masses
Mp,, Mp,, Mp,, the singly charged mass mi]i, the two A- and B-

A23
m3vy +A3v) + vX—fanvpvn+7v,27vX=0. (11)

charged masses miiA, miﬂ, the pseudoscalar mass mgl and the
1 1

three mixing angles o1, ap and a3 of the neutral scalar fields. This
is considerably important to allow for an automation in benchmark
selections for future phenomenological analysis.

A final remark is required before discussing the following sec-
tions. The cases Bq = £1 /+/3 support an extended potential with
extra terms among fields. This occurs because two of the scalars
that generally belong to different representations would eventu-
ally collapse into the same representation of SU(3); x U(1)x. The
potential can be protected from developing these terms by impos-
ing a new extra symmetry. We report as an example a global U(1)
symmetry acting on the potential (a la Froggatt-Nielsen [25]). Still,
an extra set of two neutral scalars could support the presence of
a fourth VEV? that triggers the first symmetry breaking pattern
together with v,. If the extra U(1) symmetry is kept intact the
minimisation conditions would call for a zero value of the new
VEV, thus restoring the setup where only three VEVs are included.
However, such a model will come along with specific phenomeno-
logical implications. In fact, the exact global U(1) symmetry will
force a pseudoscalar to be massless. On the contrary, when the
symmetry is softly broken, the physical spectrum changes and our
conclusions do not hold anymore. For these reasons, the study of
the scalar potential in the Sq = +1/+/3 case requires a dedicated
analysis, far beyond the scope of this work.

3. Boundedness from below

In models with many Higgs fields, proving the existence of a
finite absolute minimum for the scalar potential is generally a del-
icate issue. Such a matter presents many issues that have been
often addressed [26-28], especially in models with many Higgs
doublets [29-34]. In this section, a solution for the general 331
Model is delivered: a set of necessary and sufficient conditions to
ensure the BFB of the potential in Eq. (5) is presented.

2 Formally, one should also introduce a fifth VEV that would always be reab-
sorbed by a suitable transformation of the fields.



A. Costantini et al. / Physics Letters B 808 (2020) 135638 3

In general, one has to analyse the behaviour of the highest pow-
ers of the fields, i.e. the properties of the quartic couplings of the
ultraviolet-complete theory. For this purpose, it is convenient to
parameterise a triplet in the following form:

sina; cos b;
etPising; sinb;
e'% cosq;

®; = Jrielti ; i=12,3, (12)

where the fields are complex numbers, a;, b;, Bi, ¥; and «; are an-
gular parameters, and r; is the radial part of the field. Manifestly,
one finds d>:rd>i =r;>0.

For the sake of convenience, the following quantity is intro-
duced:

vy =(0]0,) (o]e;) - (o]0)) (¢]a,). (13)
where the non-negativity of 7;; is ensured by the Cauchy-Schwarz
inequality.

Then, the underlying gauge symmetry allows to write the triplet
fields in the form

@, 0 @y 0 s sinas cosbs
— = ,—= = sinay ,—— = | sinassinbs
v 1] V2 ei% cosay VT3 e'% cosas

(14)

The quartic part of the scalar potential in Eq. (5) can be written
in terms of a radial and an angular block:

VO = Vp 4+ 0{,Ty5 + §3Ty3 + 833Ty3 = VR + Va, (15)

where the ¢ parameter were conveniently traded with ¢}, = —¢
and the radial part reads

ij

VR =21(0*p)* + ka0 ) + A3(x* )

+ X0 0N N+ M3pTp XX + My XX (16)
with A;j = Ay + &

The radial part of the scalar potential has no dependence on
the angular parameters of the fields. Conversely, V4 = ¢{,7y, +
13743 + {33753 depends on both radial and angular variables. The
two blocks should be analysed separately.

The BFB of the radial part of the scalar potential is obtained
by imposing the co-positivity constraints [26,31,34] on the matrix
Qij, defined by

Vg = Qjjrir;. (17)

This is the set of necessary and sufficient conditions for the BFB of
the potential for the case ¢{, =¢{53 =53 =0.

A good strategy to get rid of the angular information of V4 is to
search for the “angular minima”. This can partially solve the prob-
lem and give an “angularly minimised” scalar potential with radial
dependence only. On top of this, one can apply the co-positivity
criterion on Vg + V4, thus obtaining a complete set of necessary
and sufficient conditions [34].

Using the parameterisation in Eqs. (14), one can firstly min-
imise V4 along the phase direction by imposing dsV4 = 0 with
8§ = ap — a3, and secondly obtain the following (normalised) com-
ponents of the V4 gradient:

aaz VA . ’
——— =sin2a,1 ¢,
2

+ (sin2a; cos 2a, sin b

2

+ sin2a,(cos” a; — sin“ a3 sin” by)) 3 &5,

0, V
asr—A =sin2a;r, {13 (18)
3
+ (sin2a, cos 2a5 sinb,

+ sin 2a5(cos? a, — sin®a, sin® b3)) 1, £y,
O3 VA

rrs

2 : /
az sinbs) £p3.

1 . . . .
=5 cos b3(sin2a, sin2a; — 4sin? a, sin
Setting all the components of the V4 gradients equal to zero and
solving the correspondent system of equations lead to trivial so-
lutions for ay, as, b3 =k /2 with k € Z. Correspondingly, one ob-
tains four angular minima for V4:

min(Va){ =&, 117y + 337573, (19)
min(Va)} = &{3ryrs + {33 7r3. (20)
min(Va)j = &ip 11y + i3 13, (21)
min(Va)g = &ip 17y + {3773+ {3173, (22)

After the minimisation of the angular part of the potential, the
BFB conditions call for co-positivity constraints applied on the new
matrices Qy defined by

Ve +min(Vol =Q/rr;, k=1,....4. (23)

i
This is the set of necessary and sufficient conditions for the BFB of
the potential when at least one of the ¢’ is zero.

Apart from the trivial stable points described above, there can
be more solutions to the system of equations 9;V4 =0 with i =
ay,as, bs. For the convenience of the reader, they can be written
in the following form:

3, Va = f(ay)ryry 515 + 8y, a3, b3) 1573 835, (24)
303VA=f(a3)r1r3 {1’3+h(a2,a3,b3)r2r3 §2/3s (25)
3y, Va =k(ay, a3, b3)ryr3 £p3. (26)

Since Eq. (26) does not contain any radial information, the best
strategy to search for more stable points is to set it equal to zero
and find solutions for all the angular variables. It can be proven
that all the solutions obtained with respect to a, and a3 lead again
to the trivial cases discussed above. On the other hand, when

b3 is considered, one finds candidates for 53 = b3(ay, a3) that
lead to

g(az, a3, b3) = h(az, a3, b3). (27)
Therefore, the requirement 9;V4 = 0 with i = ay, as, 53 implies
that

fap)ryry¢iy =—8(ay.a3,b3)Tyr3 ¢35 = f(az)ryr3 815 (28)

The explicit solutions are f(x) =sin2x and g(ay, as, 53) =sin(ay —
as), which are the only non-trivial stable points of V4.

By analogy with the analysis in [34], Eq. (28) can be interpreted
as the Law of Sines of a triangle. In such framework, it is proven
that the non-trivial cases can be recast in the following expression:

) é./ é./ é./ r r r 2

min(VNT = 212°13°23 (-1 4 2 4 2 ) (29)
4 $3 Gz Sz

In order to grant the BFB of the scalar potential, the matrix @j

defined by

Vi +min(Va)NT = QUrir;, (30)

is also required to fulfil the co-positivity criterion, once the trans-
formation described in [34] is applied. Hence, the co-positivity of
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both a and the transformed a is the necessary and sufficient con-
dition to have a stable potential when all the ¢’ are different from
zero. The co-positivity criteria for a generic rank-3 matrix A are

Ajj >0, withi=1,2,3, (31)
AijE,/AiiAjj+Aij20, withi, j=1,2,3, (32)

vV A11A22A33 4 A12+/ A33 + A13v/ A2 + A3V A1
+\/2A12A13A23 >0. (33)

These are the first conditions implemented in the Mathematica file
described in Section 1.

4. Perturbative unitarity

The methodology to obtain perturbative unitarity constraints on
the SM was described for the first time in [35]: all the possible
2 — 2 processes with a given total charge Q should be consid-
ered and the corresponding amplitudes arranged in a scattering
matrix. Each row (column) of this matrix corresponds to a differ-
ent possible initial (final) state. For each element of this matrix,
from the partial-wave expansion of the corresponding amplitude
A(s, 0), only the spherical wave

1

ap=—— | dcos6.A(s,0) (34)

- 327
-1

should be retained, as it is known to give the leading contribu-
tion at large energies. The perturbative unitarity condition imposes
then that the real part of the largest eigenvalue of this matrix
should not exceed 1/2. Because what matters is the behaviour at
large energies, the calculation can be simplified by replacing the
external vector bosons with the corresponding Goldstone bosons,
in accordance with the equivalence theorem [35-37].

In the general 331 Model, the scalars of Eq. (2) can have charges
0, +1, £Q4 and +Q5, where Q# and Q5 take different values
depending on the specific realisation of the 331 Model, i.e. of the
value of Bq (see Eq. (4)). It follows that there are 13 scattering
matrices, corresponding to the initial total charge of the 2 — 2
processes

9=0,1,2,0" 0% 04+1,Q8+1,04-1,08 -1,
Q1+ Q8 Q" -k 204 205 (35)

Notice that opposite charge signs would lead to equivalent con-
straints. The final condition for the perturbative unitarity is then

1
al < - 36
la] < 2 (36)
where a identifies all eigenvalues. Their form is shown in the fol-
lowing list

it JOu— a2 42
a—[ Mook Ay hyt2g MEAEYGR AT

8T ’ 167

)

87’167’ 16w = 167
‘@%()&mv)\mny &mn) @S(Am, Amns Smn) }
327 ’ 327

where @13’2 are the solutions of third-grade polynomials given by

(37)

3 3
> [ Sh (2 (ahin — ) x— o (st — 3t
ijk_l 27 9 J 1 3 J J Jjk

+4)\.i)nj)\k)) (8,‘j]<)2] s (38)

3 3
X 16, , 2
iﬂgl [ﬁ — X+ (2(64mj — (3hij + &) *)x

8
—3 (Cikgjk Ohij + Cij) + 27hijhik (A ji + Ejio)
+42.;(64x A — 3(3Ajk + ;jk)z))) (si,-k)z], (39)

with Aji = Aij, Cji = &ij.

It is easy to see that this condition does not change when Q4
and QB are such that some values of Q in Eq. (35) are equal: the
total number of matrices would be smaller than 13, and the ma-
trices corresponding to the equal values of Q would have blocks,
making the condition on the largest eigenvalue unchanged. There-
fore, the method outlined above is valid for the general 331 Model,
without any need to specify the value of 8¢ . The only exception is
the case f = +1/+/3, where the Lagrangian can contain more pos-
sible interactions among the scalars and the rank of the scattering
matrices can be larger. This case must be treated separately, unless
a global U (1) symmetry is imposed. Such a symmetry would bring
the scalar potential back to Eq. (5), as discussed in Section 2, and
the calculation of the perturbative unitarity constraint with generic
Bq would then apply again.

Given the dimensionality of the scattering matrices, the diago-
nalisation problem should be solved numerically due to the pres-
ence of the third-degree polynomials. For this purpose, a Mathe-
matica file was developed to perform the computation described
above: a FeynRules model file was created and the FeynArts in-
terface of FeynRules was exploited to produce a model file for the
FeynArts and FormCalc packages; furthermore, the combined pack-
ages FeynArts and FormCalc were linked to the aforementioned
Mathematica file to allow for an automated numerical approach to
the study of perturbative unitarity constraints in the general 331
Model.

5. Perturbativity

Requesting perturbative unitarity to be respected is necessary
but not sufficient to guarantee the correct perturbative behaviour
of the model. Perturbativity of the couplings should also be en-
forced, setting further theoretical constraints on the parameters of
the model.

Perturbativity constraints act on the adimensional couplings ac-
cording to the condition |Aj| < 4wk, where k <1 is an arbitrary
parameter designed to tune the bound.

These constraints turn out to be especially effective when the
couplings of the scalar potential are recast in terms of physical
parameters according to the diagonalisation procedure described
in Appendix A.

Even if the explicit expressions are too cumbersome and dif-
ficult to interpret, it is always possible to consider a limiting
case that comprise some phenomenological information. In fact,
the general 331 Model is built upon a gauge symmetry that is
larger than the SM ones. This implies that VEV responsible for
the SU(3) x U(1) - SU(2) x U(1) symmetry-breaking pattern has
to be (much) larger than the electroweak scale. Consequently, one
should consider the limit v, > v and expand the explicit expres-
sions for the adimensional couplings given in Eqs. (A.13)-(A.18) up
to the first meaningful order:

2 2 22 corl
S _ Mg tan B , C5C5sec B
1T T2 T2

, sec? B(S1S2C3 — C183)2
+m’12 2V2
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2 2
sec C18,C S1S m
+m? B(C1S2C3 + S183) +O<—> (40)
3 2v? Vy
mZ cot? B c2sicsc? B
Ay == 212 My, 212
. csc? B (S§s35% + 25101520383 + C2CY)
Mz 2v2
2 csc? B (C182 (C18283 — 281C383) + 51C3) o™
iy 2v? vy )’
(41)
m2 m? c2S3C3cscBsec
My = — + M)~
v
cscﬁ sec 8
+ mﬁz . (4clslsz(c§ -89
4y
—C383 (25%((:% — s +6C181 + 1))
5 CscBsecB 5 o
h3 T (4C1S‘182 (C3 - S3)
m
+C3S3 (ZC%(cg —82)—3(Cct—sh + 1)) +0 <V—> ;
X
(42)
2 /5 m
=—(m +0 s 43
G2 v2( o ) (VX> (43)
m
AM=lM3=A3=03=03=0|—|. (44)
Vx
Ideally, all the terms in the right-hand sides of the Eqs. (40)-(44)

should combine to keep the couplings on the left-hand sides below
the perturbativity threshold. Remarkably, for a mass spectrum that
lives above the electroweak VEV Eq. (43) calls for a certain de-
gree of degeneracy between mhi and m . Beyond that, the set of

Eqs. (40)-(44) does not prov1de any general take-home messages.
Even if specific benchmark choices could lead to more manageable
formulae, a numerical approach is always required to investigate
generic scenarios. Consequently, the perturbativity conditions on
the left-handed side of Eqs. (A.13)-(A.18) were unified with the
bounds presented in Sections 3 and 4 to complete the Mathe-
matica file designed for a fast selection of theoretically allowed
portions of the general 331 Model parameter space.

6. Conclusions

Theoretical constraints play a key role in selecting the viable
portion of the parameter space of multi-Higgs models. Specifically,
any scalar potential has to fulfil the requirements of boundedness
from below and perturbativity of the couplings. Moreover, scatter-
ing matrices must satisfy perturbative unitarity conditions. In this
article these constraints were studied in the context of the general
331 Model.

For the first time, these constraints were systematically anal-
ysed and combined in a framework that allows for fast numerical
checks of specific 331 Model benchmarks.

The present analysis of the boundedness from below of the
scalar potential led to a set of necessary and sufficient conditions
specific to the general 331 Model that were overlooked in previ-
ous literature. As a general approach of this work, the Lagrangian
parameters were expressed in terms of the physical parameters,
namely masses and mixing angles, by means of a systematic diag-
onalisation of all the mass matrices of the scalar sector. Perturba-
tivity and perturbative unitarity were then discussed in this spirit
and maintaining a consistent general approach.

All these results were added together in a Mathematica file to
open the way for future collider studies of specific realisations of
the 331 Model in light of a systematic analysis of the parameter
space of the scalar sector.
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Appendix A. Diagonalisation of the scalar sector

After the spontaneous symmetry breaking mechanism, the
gauge eigenstates p, n and x are rotated into the mass eigenstates.
First of all, the parameter k is directly related to the massive pseu-
doscalar state obtained from the CP-odd neutral scalars. In fact,
with

—RPA.
aj = G%UA], (A1)
where A = (Im p°, Im7°, Im x°) and @ = (ag, . ag,, . ai), the mass
matrix> for the neutral pseudoscalars is

2

Kvatanp  Kkv? KVyvsinp
m? = ~ kvicotp  kvyveosp |, (A.2)
~ ~ kv2cos Bsin B
hence
2
m
= a —. (A3)
(v& cscpsec B + v2cos Bsin B)
In the CP-even neutral sector, the rotation implies

hi = R3Hj (A4)

where H = (Re p°, Ren®, Re x°) and h = (hy, ha, hs). The explicit
expression of the mass matrix of the neutral scalars is given by

Mp., | =« tan Bv3, + 211v? cos® B, (A5)
M., , =K cot Bva + 2i,v* sin® B, (A.6)
mﬁ;w =2k3v§( + kv2cos Bsin B, (A7)
’mﬁ;u = Apv? cos Bsin —Kvi, (A.8)
7)2,21;]!3:vxv()q3cosﬂ—/<sin,3), (A.9)
mﬁ;m =V, V(A23sinB — Kk cos ). (A10)

Therefore, the diagonalisation is realised by means of an or-
thogonal rotation involving three different mixing angles:

3 The mass matrices of the scalar sector are expressed in the unitary gauge,
where the Nambu-Goldstone bosons are the eigenvectors corresponding to the null
eigenvalues.
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C2C3 C351S2 —C1S3 C1C3S2 + S1S3
RS = 383 C1C34 515293 C18283 — C357
—S2 C2Sq C1C2

(A11)

where Cj = cosw; and S; = sina;. This leads to the physical scalar
mass matrix

ME =diagmy .mp .mp )= (R M7 - RS (A12)

The solution of the diagonalisation conditions given in Egs. (A.3)
and (A.12) is

5 4v? tan’ B , C3C%sec’ B
M=y, o5 h 2
8va 4+ v4(1 — cos4p) 1 2v
2 2
sec S152C3 —C1S
+m B(5152C3 — C1S3)
2 2v2
2 2
5 sec” B(C1S2C3 + S1S3)
+m2, s , (A13)
5 4v2 cot? B , C3s2cesc? B
A= M e 2 M = 5yz
8va + v<(1 — cos4p) 1 2v
o csc? B (s3s2s2 +251C15,C383 + C3C3)
ha 272
2 2 202
CSC C1S2(C1S28% —251C383) + 84C
+m? B (C152(C15283 1C383) ]3)’ (A14)
3 2v2
) 8v2 , C2S3C3cscfsecp
A"12=rr1(1 h .2
18v§( v2 4+ v2(1 — cos4p) 1 v2
5 CscBsecB 5 o
hZT (4C]S]Sz(C3 - 83)
—C383 (25%((:% —sH 460181 + 1))
5 cscBsecp 5 2
_ h3T (4C]S]Sz(C3 —53)
+0383 (2633 - 83) -3¢t — 8D +1)). (A15)
) 8cos? B 5, S2C283¢Cs¢p
A23 =My, 2 2 '
8vx+v (1 —cos4p) VyV
2 Cacsch (2825283 +2C181C3)
ha 2vyv
Cypesc B (2018103 — 2C28,8
_m? 20s¢ B (2C181C3 1S2 3)’ (A16)
3 2vyv
) 8sin’ B 5, S2C2C3secf
M3 =Mg, o 2 i
8vx+v (1 —cos4p) VyV
S1Cysecp(S1S2C3 —C1S
+m? 1C2sec B(S152C3 — C1S3)
2 VyV
C1Cysecp(C1SyC S1S
+m? 1C2sec B(C152C3 + S 3)’ (A17)
3
Vyv
2 cin2
v<sin© 2
A3 =m§1 /3
v}( <v2(cos4ﬂ -1 —SV}()
s? s?c? c?c?
2 52 2 5152 2 ©155
+mh1ﬂ +my, 22 +mp, 207 (A18)

Furthermore, it is straightforward to express the massive states
of the charged sector of the general 331 model in terms of the
parameters of Eq. (5). The three rotations read

— Cpy— A AfA B BB
h =RGH;. WA =RAH} . hP=REHE, (A19)

where H™ = ((p1)*. n7), h™ = (hg,. hy). HA = (17", x4,
W= (hg . i), H = ((o~")*, xP) and h® = (h¢ . h?). The
mass matrices for the singly charged, A-charged and B-charged
states are

2. — <Ktan,3v§( +3012v2sin® B kv2 + Jeipv2cos Bsin B
h* —

~ K cot Bv3 + 3¢12v% cos? B
(A20)
e 3V2 (23 +2KCOtB)  3Vy V(2K COS B + L3 5in B)
h*=A ~ 3v2sin B(2k cos B + {23 sin B)
(A21)
2 :(%vi(fn +2ktanf) vy V(2K sinp + ¢13cos f)
h*B ~ Tv2 cos B(2« sin  + ¢13 cos B)
(A.22)
From the equations above, one obtains:
2 ( 8mg, v4
=—|mii— , A23
f12 v2 \hy 8vZ 4 vZ —v2cos4f (A.23)
2
thlﬁ 16mZ cos® B
3= e 2 8v2 +v2—y2cosdp’ (A.24)
vesin© B + vy X
2m? 2 2
ptB 16m; . sin
{13 1 = il (A.25)

~vZcos? B4 v 8v2 4 v2—v2cos4p’

These expressions show how to trade the 10 parameters of
Eq. (5) with the 3 physical rotation angles and the 7 physical scalar
masses.
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