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This article reviews the theoretical constraints on the scalar potential of a general extension of the 
Standard Model that encompasses a SU (3)c × SU (3)L × U (1)X gauge symmetry. In this respect, the 
boundedness-from-below is analysed to identify the correct criteria for obtaining the physical minima 
of the Higgs parameter space. Furthermore, perturbativity and unitarity bounds are discussed in light of 
the exact diagonalisation of the scalar fields. This study represents a framework for fast numerical checks 
on specific 331 Model benchmarks that are relevant for future collider searches.
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1. Introduction

The 331 Model [1–6] is an extension of the Standard Model 
(SM) where the non-abelian gauge group SU (2) of the electroweak 
symmetry is promoted to an SU (3), thus replacing the symme-
try pattern from SU (3)c × SU (2)L × U (1)Y to SU (3)c × SU (3)L ×
U (1)X . This assumption redefines the SM hypercharge as Y =
βQ T 8 + XI, where T 8 is one of the well-known Gell–Mann ma-
trix acting on SU (3)L , X is a new abelian charge assignment, I is 
the identity matrix and βQ is a free parameter of the model. When 
the latter is not specified, the setup is called “general 331 Model”.

Whilst each generation of the SM is anomaly free, in the general 
331 Model the cancellation of gauge anomalies occurs if and only 
if the total number of generations is (a multiple of) three. So far, 
all the experimental evidences seem to indicate that three is the 
number of active flavours in Nature. In contrast to the SM, where 
this fact represents a puzzling assumption, the general 331 Model 
would represent an elegant and appealing solution to the mystery 
of flavour.

Concerning its particle spectrum, any realisation of the 331
Model is accompanied by a rich variety of beyond-the-SM (BSM) 
particles that allows for heavy and potentially exotic states. Given 
the paucity of “standard candles” for new physics (NP) at the Large 
Hadron Collider (LHC) and low-energy experiments, a considerable 
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attention was recently devoted to analysing exotic signatures of the 
331 Model in atomic physics [7], flavour experiments [8–10], and 
high-energy searches [11–14].

Even though different 331 Model realisations provide very dis-
tinct phenomenological implications, all of them are characterised 
by the scalar potential detailed in Section 2 of this paper. Remark-
ably, theoretical constraints on the scalar potential of such class of 
models were not systematically covered in previous literature. This 
article aims to fill this gap.

When studying the scalar potential of a model, one should de-
rive a set of non-trivial conditions for its boundedness-from-below 
(BFB). Consequently, only the portion of the parameter space that 
fulfils them can be associated to existing vacua. In Section 3, this 
paper presents a set of necessary and sufficient conditions that 
applies to the case of the general 331 Model, and can be easily 
implemented in future phenomenological studies.

Perturbative unitarity must be classified among the most im-
portant theoretical constraints to guarantee that perturbative scat-
tering amplitudes at every order are related to a well-defined uni-
tary S-matrix. This is especially important in BSM extensions with 
weak (rather than strong) new dynamics, as occurs in the general 
331 Model. In Section 4, this paper describes how to organise the 
computation of the unitarity constraints in this framework.

Additional criteria should be fulfilled by physical parameters 
(masses and mixing angles) to ensure that every coupling of the 
scalar potential is perturbative, i.e. less than or equal to 4π . In Sec-
tion 5, this paper shows that perturbativity constraints can place 
further conditions on the boson mass spectrum.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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All the results presented in this article were obtained with 
the support of automated computational tools: both a SARAH [15]
and a FeynRules [16] model files were created and cross-checked 
against the model version already uploaded in the FeynRules 
Model Database [17]; the FeynArts interface of FeynRules [18]
was exploited to produce a model file for the FeynArts [19] and 
FormCalc [20,21] packages; furthermore, the combined packages 
FeynArts and FormCalc were largely employed to study the per-
turbative unitarity constraints. All these results are collected in a 
dedicated Mathematica [22] file1 to open the way for a fast se-
lection of theoretically allowed portions of the general 331 Model 
parameter space.

2. The scalar sector of the general 331 Model

The general 331 Model represents a class of SM extensions con-
taining the enlarged gauge group SU (3)c × SU (3)L ×U (1)X . Several 
specific versions can be obtained by a particular choice of the βQ

parameter present in the definition of the electromagnetic charge 
operator:

Q = T 3 + βQ T 8 + XI. (1)

In the following sections, the scalar sector of the 331 Model will 
be explored without any specific assumption on βQ . Besides, any 
details about the fermionic and gauge content of the model will be 
disregarded as can be found in dedicated literature [8,9,23,24].

In the general 331 Model, the electroweak symmetry break-
ing is realised by scalars accommodated within three triplets of 
SU (3)L

χ =
⎛⎝ χ A

χ B

χ0

⎞⎠ , ρ =
⎛⎝ ρ+

ρ0

ρ−B

⎞⎠ , η =
⎛⎝ η0

η−
η−A

⎞⎠ (2)

where each triplet belongs to (1, 3, X) with

Xχ = βQ /
√

3, Xρ = 1/2 − βQ /(2
√

3),

Xη = −1/2 − βQ /(2
√

3). (3)

In addition to neutral and singly charged states, there are fields 
with charge

Q A = 1

2
+

√
3

2
βQ , Q B = −1

2
+

√
3

2
βQ . (4)

The symmetry breaking pattern SU (3)L × U (1)X → U (1)Q is 
obtained in two steps. Firstly, the vacuum expectation value (VEV) 
of the neutral component of χ gives masses to the extra gauge 
bosons and the extra quarks, triggering the pattern SU (3)L ×
U (1)X → SU (2)L × U (1)Y . Afterwards, the usual spontaneous sym-
metry breaking mechanism SU (2)L × U (1)Y → U (1)Q is realised 
by the VEVs of the neutral components of ρ and η.

The scalar potential reads

V = m2
1 ρ∗ρ + m2

2 η∗η + m2
3 χ∗χ + √

2 fρηχρ ηχ

+ λ1(ρ
∗ρ)2 + λ2(η

∗η)2 + λ3(χ
∗χ)2

+ λ12ρ
∗ρ η∗η + λ13ρ

∗ρ χ∗χ + λ23η
∗ηχ∗χ

+ ζ12ρ
∗ηη∗ρ + ζ13ρ

∗χ χ∗ρ + ζ23η
∗χ χ∗η, (5)

where the neutral component of each triplet is expanded around 
its VEV as

1 Available on request.
ρ0 → 1√
2

(
vρ + Reρ0 + i Imρ0

)
, (6)

η0 → 1√
2

(
vη + Reη0 + i Imη0

)
, (7)

χ0 → 1√
2

(
vχ + Reχ0 + i Imχ0

)
. (8)

The dimensionless parameter κ , that stems from the redefinition 
fρηχ = κvχ , can be also introduced to deal with only two scales, 
vχ and v =

√
v2
η + v2

ρ . The ratio of the two light VEVs is conve-

niently redefined via tan β = vη/vρ .
The minimisation conditions of the potential, defined by ∂V /

∂�|�=0 = 0, are given by

m2
1 vρ + λ1 v3

ρ + λ12

2
vρ v2

η − fρηχ vηvχ + λ13

2
vρ v2

χ = 0, (9)

m2
2 vη + λ2 v3

η + λ12

2
v2
ρ vη − fρηχ vρ vχ + λ23

2
vηv2

χ = 0, (10)

m2
3 vχ + λ3 v3

χ + λ13

2
v2
ρ vχ − fρηχ vρ vη + λ23

2
v2
ηvχ = 0. (11)

Using these conditions, one can compute the mass matrices for 
the scalar degrees of freedom. In Appendix A, a diagonalisation 
procedure is discussed in details. Moreover, it is shown how the 
ten parameters of the scalar potential λ1, λ2, λ3, λ12, λ13, λ23, ζ12, 
ζ13, ζ23, κ , can be traded for the three physical neutral masses 
mh1 , mh2 , mh3 , the singly charged mass m2

h±
1

, the two A- and B-

charged masses m2
h±A

1
, m2

h±B
1

, the pseudoscalar mass m2
a1

and the 

three mixing angles α1, α2 and α3 of the neutral scalar fields. This 
is considerably important to allow for an automation in benchmark 
selections for future phenomenological analysis.

A final remark is required before discussing the following sec-
tions. The cases βQ = ±1/

√
3 support an extended potential with 

extra terms among fields. This occurs because two of the scalars 
that generally belong to different representations would eventu-
ally collapse into the same representation of SU (3)L × U (1)X . The 
potential can be protected from developing these terms by impos-
ing a new extra symmetry. We report as an example a global U (1)

symmetry acting on the potential (à la Froggatt–Nielsen [25]). Still, 
an extra set of two neutral scalars could support the presence of 
a fourth VEV2 that triggers the first symmetry breaking pattern 
together with vχ . If the extra U (1) symmetry is kept intact the 
minimisation conditions would call for a zero value of the new 
VEV, thus restoring the setup where only three VEVs are included. 
However, such a model will come along with specific phenomeno-
logical implications. In fact, the exact global U (1) symmetry will 
force a pseudoscalar to be massless. On the contrary, when the 
symmetry is softly broken, the physical spectrum changes and our 
conclusions do not hold anymore. For these reasons, the study of 
the scalar potential in the βQ = ±1/

√
3 case requires a dedicated 

analysis, far beyond the scope of this work.

3. Boundedness from below

In models with many Higgs fields, proving the existence of a 
finite absolute minimum for the scalar potential is generally a del-
icate issue. Such a matter presents many issues that have been 
often addressed [26–28], especially in models with many Higgs 
doublets [29–34]. In this section, a solution for the general 331
Model is delivered: a set of necessary and sufficient conditions to 
ensure the BFB of the potential in Eq. (5) is presented.

2 Formally, one should also introduce a fifth VEV that would always be reab-
sorbed by a suitable transformation of the fields.
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In general, one has to analyse the behaviour of the highest pow-
ers of the fields, i.e. the properties of the quartic couplings of the 
ultraviolet-complete theory. For this purpose, it is convenient to 
parameterise a triplet in the following form:

�i = √
rie

i γi

⎛⎝ sin ai cos bi

ei βi sin ai sin bi

ei αi cos ai

⎞⎠ , i = 1,2,3, (12)

where the fields are complex numbers, ai, bi, βi, γi and αi are an-
gular parameters, and ri is the radial part of the field. Manifestly, 
one finds �†

i �i = ri ≥ 0.
For the sake of convenience, the following quantity is intro-

duced:

τi j =
(
�

†
i �i

) (
�

†
j� j

)
−

(
�

†
i � j

) (
�

†
j�i

)
, (13)

where the non-negativity of τi j is ensured by the Cauchy–Schwarz 
inequality.

Then, the underlying gauge symmetry allows to write the triplet 
fields in the form

�1√
r1

=
⎛⎝ 0

0
1

⎞⎠ ,
�2√

r2
=

⎛⎝ 0
sin a2

eiα2 cos a2

⎞⎠ ,
�3√

r3
=

⎛⎝ sin a3 cos b3
sin a3 sin b3

eiα3 cos a3

⎞⎠ .

(14)

The quartic part of the scalar potential in Eq. (5) can be written 
in terms of a radial and an angular block:

V (4) = V R + ζ ′
12τ12 + ζ ′

13τ13 + ζ ′
23τ23 = V R + V A, (15)

where the ζ parameter were conveniently traded with ζ ′
i j = −ζi j

and the radial part reads

V R = λ1(ρ
∗ρ)2 + λ2(η

∗η)2 + λ3(χ
∗χ)2

+ λ′
12ρ

∗ρ η∗η + λ′
13ρ

∗ρ χ∗χ + λ′
23η

∗ηχ∗χ, (16)

with λ′
i j = λi j + ζi j .

The radial part of the scalar potential has no dependence on 
the angular parameters of the fields. Conversely, V A = ζ ′

12τ12 +
ζ ′

13τ13 + ζ ′
23τ23 depends on both radial and angular variables. The 

two blocks should be analysed separately.
The BFB of the radial part of the scalar potential is obtained 

by imposing the co-positivity constraints [26,31,34] on the matrix 
Q ij , defined by

V R ≡ Q ijrir j. (17)

This is the set of necessary and sufficient conditions for the BFB of 
the potential for the case ζ ′

12 = ζ ′
13 = ζ ′

23 = 0.
A good strategy to get rid of the angular information of V A is to 

search for the “angular minima”. This can partially solve the prob-
lem and give an “angularly minimised” scalar potential with radial 
dependence only. On top of this, one can apply the co-positivity 
criterion on V R + V A , thus obtaining a complete set of necessary 
and sufficient conditions [34].

Using the parameterisation in Eqs. (14), one can firstly min-
imise V A along the phase direction by imposing ∂δ V A = 0 with 
δ ≡ α2 − α3, and secondly obtain the following (normalised) com-
ponents of the V A gradient:

∂a2 V A

r2
= sin 2a2 r1 ζ ′

12

+ (sin 2a3 cos 2a2 sin b3

+ sin 2a (cos2 a − sin2 a sin2 b )) r ζ ′ ,
2 3 3 3 3 23
∂a3 V A

r3
= sin 2a3 r1 ζ ′

13 (18)

+ (sin 2a2 cos 2a3 sin b3

+ sin 2a3(cos2 a2 − sin2 a2 sin2 b3)) r2 ζ ′
23,

∂b3 V A

r2r3
= 1

2
cos b3(sin 2a2 sin 2a3 − 4 sin2 a2 sin2 a3 sin b3) ζ ′

23.

Setting all the components of the V A gradients equal to zero and 
solving the correspondent system of equations lead to trivial so-
lutions for a2, a3, b3 = k π/2 with k ∈ Z. Correspondingly, one ob-
tains four angular minima for V A :

min(V A)T
1 = ζ ′

12 r1r2 + ζ ′
23 r2r3, (19)

min(V A)T
2 = ζ ′

13 r1r3 + ζ ′
23 r2r3, (20)

min(V A)T
3 = ζ ′

12 r1r2 + ζ ′
13 r1r3, (21)

min(V A)T
4 = ζ ′

12 r1r2 + ζ ′
13 r1r3 + ζ ′

23 r2r3. (22)

After the minimisation of the angular part of the potential, the 
BFB conditions call for co-positivity constraints applied on the new 
matrices Q̃ k defined by

V R + min(V A)T
k = Q̃ i j

k rir j, k = 1, . . . ,4. (23)

This is the set of necessary and sufficient conditions for the BFB of 
the potential when at least one of the ζ ′ is zero.

Apart from the trivial stable points described above, there can 
be more solutions to the system of equations ∂i V A = 0 with i =
a2, a3, b3. For the convenience of the reader, they can be written 
in the following form:

∂a2
V A = f (a2) r1r2 ζ ′

12 + g(a2,a3,b3) r2r3 ζ ′
23, (24)

∂a3
V A = f (a3) r1r3 ζ ′

13 + h(a2,a3,b3) r2r3 ζ ′
23, (25)

∂b3
V A = k(a2,a3,b3) r2r3 ζ ′

23. (26)

Since Eq. (26) does not contain any radial information, the best 
strategy to search for more stable points is to set it equal to zero 
and find solutions for all the angular variables. It can be proven 
that all the solutions obtained with respect to a2 and a3 lead again 
to the trivial cases discussed above. On the other hand, when

b3 is considered, one finds candidates for b̃3 ≡ b3(a2, a3) that 
lead to

g(a2,a3, b̃3) = h(a2,a3, b̃3). (27)

Therefore, the requirement ∂i V A = 0 with i = a2, a3, ̃b3 implies 
that

f (a2) r1r2 ζ ′
12 = −g(a2,a3, b̃3) r2r3 ζ ′

23 = f (a3) r1r3 ζ ′
13. (28)

The explicit solutions are f (x) = sin 2x and g(a2, a3, ̃b3) = sin(a2 −
a3), which are the only non-trivial stable points of V A .

By analogy with the analysis in [34], Eq. (28) can be interpreted 
as the Law of Sines of a triangle. In such framework, it is proven 
that the non-trivial cases can be recast in the following expression:

min(V A)NT = ζ ′
12ζ

′
13ζ

′
23

4

(
r1

ζ ′
23

+ r2

ζ ′
13

+ r3

ζ ′
12

)2

. (29)

In order to grant the BFB of the scalar potential, the matrix Q̂ i j

defined by

V R + min(V A)NT = Q̂ i jrir j, (30)

is also required to fulfil the co-positivity criterion, once the trans-
formation described in [34] is applied. Hence, the co-positivity of 
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both Q̃ and the transformed Q̂ is the necessary and sufficient con-
dition to have a stable potential when all the ζ ′ are different from 
zero. The co-positivity criteria for a generic rank-3 matrix A are

Aii ≥ 0, with i = 1,2,3, (31)

Åi j ≡ √
Aii A jj + Aij ≥ 0, with i, j = 1,2,3, (32)√

A11 A22 A33 + A12

√
A33 + A13

√
A22 + A23

√
A11

+
√

2 Å12 Å13 Å23 ≥ 0 . (33)

These are the first conditions implemented in the Mathematica file 
described in Section 1.

4. Perturbative unitarity

The methodology to obtain perturbative unitarity constraints on 
the SM was described for the first time in [35]: all the possible 
2 → 2 processes with a given total charge Q should be consid-
ered and the corresponding amplitudes arranged in a scattering 
matrix. Each row (column) of this matrix corresponds to a differ-
ent possible initial (final) state. For each element of this matrix, 
from the partial-wave expansion of the corresponding amplitude 
A(s, θ), only the spherical wave

a0 = 1

32π

1∫
−1

d cos θA(s, θ) (34)

should be retained, as it is known to give the leading contribu-
tion at large energies. The perturbative unitarity condition imposes 
then that the real part of the largest eigenvalue of this matrix 
should not exceed 1/2. Because what matters is the behaviour at 
large energies, the calculation can be simplified by replacing the 
external vector bosons with the corresponding Goldstone bosons, 
in accordance with the equivalence theorem [35–37].

In the general 331 Model, the scalars of Eq. (2) can have charges 
0, ±1, ±Q A and ±Q B , where Q A and Q B take different values 
depending on the specific realisation of the 331 Model, i.e. of the 
value of βQ (see Eq. (4)). It follows that there are 13 scattering 
matrices, corresponding to the initial total charge of the 2 → 2
processes

Q = 0, 1, 2, Q A, Q B , Q A + 1, Q B + 1, Q A − 1, Q B − 1,

Q A + Q B , Q A − Q B , 2Q A, 2Q B . (35)

Notice that opposite charge signs would lead to equivalent con-
straints. The final condition for the perturbative unitarity is then

|a| ≤ 1

2
(36)

where a identifies all eigenvalues. Their form is shown in the fol-
lowing list

a=
{ λi

8π
,

λi j

16π
,
λi j ± ζi j

16π
,
λi j + 2ζi j

16π
,
λi + λ j ±

√
(λi − λ j)

2 + ζ 2
i j

16π
,

P3
1 (λm, λmn, ζmn)

32π
,

P3
2 (λm, λmn, ζmn)

32π

}
(37)

where P3
1,2 are the solutions of third-grade polynomials given by

3∑
i, j,k=1

[
x3

27
− 4

9
λi x

2 +
(

2
(

4λiλ j − ζ 2
i j

)
x − 8

3

(
ζi jζikζ jk − 3λiζ

2
jk

+4λiλ jλk
)) (

εi jk
)2

]
, (38)

∑
i, j,

wit

and
tot
tric
ma
for
wit
the
sib
ma
a g
the
the
βQ

nal
enc
ma
abo
ter
Fey
age
Ma
the
Mo

5. 

but
of 
for
the

cor
par

cou
par
in 

ficu
cas
the
larg
the
to 
sho
sio
to 

λ1
3

k=1

[
x3

27
− 16

9
λi x

2 +
(

2(64λiλ j − (3λi j + ζi j)
2)x

−8

3

(
ζikζ jk(9λi j + ζi j) + 27λi jλik(λ jk + ζ jk)

+4λi
(
64λ jλk − 3(3λ jk + ζ jk)

2))) (
εi jk

)2
]
, (39)

h λ ji = λi j , ζ ji = ζi j .
It is easy to see that this condition does not change when Q A

 Q B are such that some values of Q in Eq. (35) are equal: the 
al number of matrices would be smaller than 13, and the ma-
es corresponding to the equal values of Q would have blocks, 
king the condition on the largest eigenvalue unchanged. There-
e, the method outlined above is valid for the general 331 Model, 
hout any need to specify the value of βQ . The only exception is 
 case β = ±1/

√
3, where the Lagrangian can contain more pos-

le interactions among the scalars and the rank of the scattering 
trices can be larger. This case must be treated separately, unless 
lobal U (1) symmetry is imposed. Such a symmetry would bring 
 scalar potential back to Eq. (5), as discussed in Section 2, and 
 calculation of the perturbative unitarity constraint with generic 
would then apply again.

Given the dimensionality of the scattering matrices, the diago-
isation problem should be solved numerically due to the pres-
e of the third-degree polynomials. For this purpose, a Mathe-
tica file was developed to perform the computation described 
ve: a FeynRules model file was created and the FeynArts in-

face of FeynRules was exploited to produce a model file for the 
nArts and FormCalc packages; furthermore, the combined pack-
s FeynArts and FormCalc were linked to the aforementioned 
thematica file to allow for an automated numerical approach to 
 study of perturbative unitarity constraints in the general 331
del.

Perturbativity

Requesting perturbative unitarity to be respected is necessary 
 not sufficient to guarantee the correct perturbative behaviour 
the model. Perturbativity of the couplings should also be en-
ced, setting further theoretical constraints on the parameters of 
 model.
Perturbativity constraints act on the adimensional couplings ac-
ding to the condition |λ J | ≤ 4πk, where k ≤ 1 is an arbitrary 
ameter designed to tune the bound.
These constraints turn out to be especially effective when the 
plings of the scalar potential are recast in terms of physical 
ameters according to the diagonalisation procedure described 
Appendix A.
Even if the explicit expressions are too cumbersome and dif-
lt to interpret, it is always possible to consider a limiting 

e that comprise some phenomenological information. In fact, 
 general 331 Model is built upon a gauge symmetry that is 
er than the SM ones. This implies that VEV responsible for 
 SU (3) × U (1) → SU (2) × U (1) symmetry-breaking pattern has 
be (much) larger than the electroweak scale. Consequently, one 
uld consider the limit vχ 
 v and expand the explicit expres-

ns for the adimensional couplings given in Eqs. (A.13)-(A.18) up 
the first meaningful order:

= −m2
a1

tan2 β

2v2
+ m2

h1

C2
2C

2
3 sec2 β

2v2

+ m2
h

sec2 β(S1S2C3 − C1S3)
2

2
2 2v
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+ m2
h3

sec2 β(C1S2C3 + S1S3)
2

2v2
+ O

(
m

vχ

)
(40)

λ2 = −m2
a1

cot2 β

2v2
+ m2

h1

C2
2S

2
3 csc2 β

2v2

+ m2
h2

csc2 β
(
S2

1S
2
2S

2
3 + 2S1C1S2C3S3 + C2

1C
2
3

)
2v2

+ m2
h3

csc2 β
(
C1S2

(
C1S2S2

3 − 2S1C3S3
) + S2

1C
2
3

)
2v2

+ O

(
m

vχ

)
,

(41)

λ12 = m2
a1

v2
+ m2

h1

C2
2S3C3 csc β sec β

v2

+ m2
h2

csc β sec β

4v2

(
4C1S1S2(C

2
3 − S2

3)

−C3S3

(
2S2

1(C
2
2 − S2

2) + 6C1S1 + 1
))

− m2
h3

csc β sec β

4v2

(
4C1S1S2(C

2
3 − S2

3)

+C3S3

(
2C2

1(C
2
2 − S2

2) − 3(C2
1 − S2

1) + 1
))

+ O

(
m

vχ

)
,

(42)

ζ12 = 2

v2

(
m2

h±
1

− m2
a1

)
+ O

(
m

vχ

)
, (43)

λ3 = λ13 = λ23 = ζ13 = ζ23 = O

(
m

vχ

)
. (44)

Ideally, all the terms in the right-hand sides of the Eqs. (40)-(44)
should combine to keep the couplings on the left-hand sides below 
the perturbativity threshold. Remarkably, for a mass spectrum that 
lives above the electroweak VEV, Eq. (43) calls for a certain de-
gree of degeneracy between m2

h±
1

and m2
a1

. Beyond that, the set of 
Eqs. (40)-(44) does not provide any general take-home messages. 
Even if specific benchmark choices could lead to more manageable 
formulae, a numerical approach is always required to investigate 
generic scenarios. Consequently, the perturbativity conditions on 
the left-handed side of Eqs. (A.13)-(A.18) were unified with the 
bounds presented in Sections 3 and 4 to complete the Mathe-
matica file designed for a fast selection of theoretically allowed 
portions of the general 331 Model parameter space.

6. Conclusions

Theoretical constraints play a key role in selecting the viable 
portion of the parameter space of multi-Higgs models. Specifically, 
any scalar potential has to fulfil the requirements of boundedness 
from below and perturbativity of the couplings. Moreover, scatter-
ing matrices must satisfy perturbative unitarity conditions. In this 
article these constraints were studied in the context of the general 
331 Model.

For the first time, these constraints were systematically anal-
ysed and combined in a framework that allows for fast numerical 
checks of specific 331 Model benchmarks.

The present analysis of the boundedness from below of the 
scalar potential led to a set of necessary and sufficient conditions 
specific to the general 331 Model that were overlooked in previ-
ous literature. As a general approach of this work, the Lagrangian 
parameters were expressed in terms of the physical parameters, 
namely masses and mixing angles, by means of a systematic diag-
onalisation of all the mass matrices of the scalar sector. Perturba-
tivity and perturbative unitarity were then discussed in this spirit 
and maintaining a consistent general approach.
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All these results were added together in a Mathematica file to 
n the way for future collider studies of specific realisations of 
 331 Model in light of a systematic analysis of the parameter 
ce of the scalar sector.
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endix A. Diagonalisation of the scalar sector

After the spontaneous symmetry breaking mechanism, the 
ge eigenstates ρ , η and χ are rotated into the mass eigenstates. 
t of all, the parameter κ is directly related to the massive pseu-
calar state obtained from the CP-odd neutral scalars. In fact, 
h

R P
i j A j, (A.1)

re �A = (Imρ0, Imη0, Imχ0) and �a = (aG Z , aG Z ′ , a1), the mass 
rix3 for the neutral pseudoscalars is

=
⎛⎝ κv2

χ tanβ κv2
χ κvχ v sinβ

∼ κv2
χ cotβ κvχ v cosβ

∼ ∼ κv2 cosβ sinβ

⎞⎠ , (A.2)

ce

m2
a1

(v2
χ cscβ secβ + v2 cosβ sinβ)

. (A.3)

In the CP-even neutral sector, the rotation implies

R S
i j H j (A.4)

re �H = (Reρ0, Reη0, Reχ0) and �h = (h1, h2, h3). The explicit 
ression of the mass matrix of the neutral scalars is given by

;1,1 = κ tanβv2
χ + 2λ1 v2 cos2 β, (A.5)

;2,2 = κ cotβv2
χ + 2λ2 v2 sin2 β, (A.6)

;3,3 = 2λ3 v2
χ + κv2 cosβ sinβ, (A.7)

;1,2 = λ12 v2 cosβ sinβ − κv2
χ , (A.8)

;1,3 = vχ v(λ13 cosβ − κ sinβ), (A.9)

;2,3 = vχ v(λ23 sinβ − κ cosβ). (A.10)

Therefore, the diagonalisation is realised by means of an or-
gonal rotation involving three different mixing angles:

The mass matrices of the scalar sector are expressed in the unitary gauge, 
re the Nambu–Goldstone bosons are the eigenvectors corresponding to the null 
values.
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R S =
⎛⎝ C2C3 C3S1S2 − C1S3 C1C3S2 + S1S3
C2S3 C1C3 + S1S2S3 C1S2S3 − C3S1
−S2 C2S1 C1C2

⎞⎠ (A.11)

where Ci ≡ cosαi and Si ≡ sinαi . This leads to the physical scalar 
mass matrix

M̂2
h = diag(m2

h1
,m2

h2
,m2

h3
) = (R S)T · M2

h · R S . (A.12)

The solution of the diagonalisation conditions given in Eqs. (A.3)
and (A.12) is

λ1 = −m2
a1

4v2
χ tan2 β

8v2
χ v2 + v2(1 − cos 4β)

+ m2
h1

C2
2C

2
3 sec2 β

2v2

+ m2
h2

sec2 β(S1S2C3 − C1S3)
2

2v2

+ m2
h3

sec2 β(C1S2C3 + S1S3)
2

2v2
, (A.13)

λ2 = −m2
a1

4v2
χ cot2 β

8v2
χ v2 + v2(1 − cos 4β)

+ m2
h1

C2
2S

2
3 csc2 β

2v2

+ m2
h2

csc2 β
(
S2

1S
2
2S

2
3 + 2S1C1S2C3S3 + C2

1C
2
3

)
2v2

+ m2
h3

csc2 β
(
C1S2

(
C1S2S2

3 − 2S1C3S3
) + S2

1C
2
3

)
2v2

, (A.14)

λ12 = m2
a1

8v2
χ

8v2
χ v2 + v2(1 − cos 4β)

+ m2
h1

C2
2S3C3 cscβ secβ

v2

+ m2
h2

cscβ secβ

4v2

(
4C1S1S2(C

2
3 − S2

3)

−C3S3

(
2S2

1(C
2
2 − S2

2) + 6C1S1 + 1
))

− m2
h3

cscβ secβ

4v2

(
4C1S1S2(C

2
3 − S2

3)

+C3S3

(
2C2

1(C
2
2 − S2

2) − 3(C2
1 − S2

1) + 1
))

, (A.15)

λ23 = m2
a1

8 cos2 β

8v2
χ + v2(1 − cos 4β)

− m2
h1

S2C2S3 cscβ

vχ v

+ m2
h2

C2 csc β
(
2S2

1S2S3 + 2C1S1C3
)

2vχ v

− m2
h3

C2 csc β
(
2C1S1C3 − 2C2

1S2S3
)

2vχ v
, (A.16)

λ13 = m2
a1

8 sin2 β

8v2
χ + v2(1 − cos 4β)

− m2
h1

S2C2C3 secβ

vχ v

+ m2
h2

S1C2 secβ(S1S2C3 − C1S3)

vχ v

+ m2
h3

C1C2 secβ(C1S2C3 + S1S3)

vχ v
, (A.17)

λ3 = m2
a1

v2 sin2 2β

v2
χ

(
v2(cos 4β − 1) − 8v2

χ

)
+ m2

h1

S2
2

2v2
χ

+ m2
h2

S2
1C

2
2

2v2
χ

+ m2
h3

C2
1C

2
2

2v2
χ

. (A.18)

Furthermore, it is straightforward to express the massive states 
of the charged sector of the general 331 model in terms of the 
parameters of Eq. (5). The three rotations read

h− = RC H−, hA = R A H A, hB = R B H B , (A.19)
i i j j i i j j i i j j
where �H− = ((ρ+)∗, η−), �h− = (h−
GW

, h−
1 ), �H A = ((η−A)∗, χ A), 

�hA = (hA
G V A

, hA
1 ), �H B = ((ρ−B)∗, χ B) and �hB = (hB

G V B
, hB

1 ). The 
mass matrices for the singly charged, A-charged and B-charged 
states are

M2
h± =

(
κ tan βv2

χ + 1
2 ζ12 v2 sin2 β κv2

χ + 1
2 ζ12 v2 cosβ sin β

∼ κ cot βv2
χ + 1

2 ζ12 v2 cos2 β

)
(A.20)

M2
h±A =

( 1
2 v2

χ (ζ23 + 2κ cotβ) 1
2 vχ v(2κ cosβ + ζ23 sinβ)

∼ 1
2 v2 sinβ(2κ cos β + ζ23 sin β)

)
(A.21)

M2
h±B =

( 1
2 v2

χ (ζ13 + 2κ tanβ) 1
2 vχ v(2κ sinβ + ζ13 cosβ)

∼ 1
2 v2 cosβ(2κ sinβ + ζ13 cosβ)

)
(A.22)

From the equations above, one obtains:

ζ12 = 2

v2

(
m2

h±
1

− 8m2
a1

v2
χ

8v2
χ + v2 − v2 cos 4β

)
, (A.23)

ζ23 =
2m2

h±A
1

v2 sin2 β + v2
χ

− 16m2
a1

cos2 β

8v2
χ + v2 − v2 cos 4β

, (A.24)

ζ13 =
2m2

h±B
1

v2 cos2 β + v2
χ

− 16m2
a1

sin2 β

8v2
χ + v2 − v2 cos 4β

. (A.25)

These expressions show how to trade the 10 parameters of 
Eq. (5) with the 3 physical rotation angles and the 7 physical scalar 
masses.
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