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ABSTRACT

CÔNSOLE, F. C. C. Black Holes, instability and scalar-tensor gravity. 2019.
83p. Dissertation (Master in Science) - Instituto de Física de São Carlos, Universidade de
São Paulo, São Carlos, 2019.

In this work, we review three topics which are relevant on its own but which are also
interconnected through the AdS/CFT correspondence: (i) black holes in AdS and its
thermodynamics, (ii) nonlinear instability of AdS and (iii) scalar- tensor theory of grav-
ity. Each one of these topics find applications in holography using the above mentioned
correspondence. We review the various coordinate systems used to write the AdS metric
and discuss the main black holes with AdS asymptotics as well as their thermodynamical
properties. We also review current results on linear and nonlinear stability for various
spacetimes, presenting a heuristic explanation for the nonlinear instability of AdS. The
discussion about alternative theories of gravity is restricted to the case of scalar-tensor
theories (Horndeski theories, specially). We study the multipole expansion of the electro-
magnetic field in the solitonic background of a shift-symmetric scalar-tensor model (up
to second order in the scalar field coupling constant with the Gauss-Bonnet term). We
find that the multipoles are everywhere regular and finite except for the monopole l = 0,
which diverges at the origin of the spacetime coordinates.

keywords: Scalar-Tensor gravity. Black holes. Anti-de Sitter spacetime. Stability.





RESUMO

CÔNSOLE, F. C. C. Buracos negros, instabilidade e gravidade
escalar-tensorial. 2019. 83p. Dissertação (Mestrado em Ciências) - Instituto de Física
de São Carlos, Universidade de São Paulo, São Carlos, 2019.

Neste trabalho, temos como objetivo fazer uma revisão sobre três temas de grande relevância
por si só mas, que também se interligam através da correspondencia AdS/CFT: (i) buracos
negros em AdS e sua termodinâmica, (ii) a instabilidade não-linear de AdS e (iii) teorias
escalar-tensoriais da gravidade. Cada um destes temas encontram aplicações em holografia
usando a correspondencia citada acida. Revisamos as diversas formas de escrever a métrica
de AdS e discutimos os principais buracos negros assintóticamentes AdS assim como
suas propriedades termodinâmicas. Nós também revisamos os resultados atuais sobre a
estabilidade linear e não-linear para diversos espaços-tempos, reproduzindo uma explicação
heurísitca sobre a instabilidade não-linear do espaço-tempo AdS. A discussão das teorias
alternativas à Relatividade Geral é restrita ao caso das teorias escalar-tensorias da gravidade
(a teoria de Horndeski, especialmente). Nós estudamos a expansão multipolar do campo
electromagnético em um espaço-tempo que é solução do modelo "shift-symmetric scalar
tensor gravity" (até segunda ordem na constante de acoplamento do campo escalar com o
termo de Gauss-Bonnet) com características solitônicas. Encontramos que os multipolos
são regulares e finitos em todo espaço-tempo com exceção do monopolo l = 0, que diverge
na origem do sistema de coordenadas.

Palavras-chave: Gravidade escalar-tensorial. Buracos negros. Espaço-tempo Anti-de
Sitter. Estabilidade.
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1 INTRODUCTION

General Relativity (GR) is the best theory of gravity that physicists have created
up to today, in the sense that its predictions are in accordance with all observations that
have ever been made with an incredible accuracy. Nonetheless, the majority of GR tests
that have been carried out is within the weak field regime such as solar system tests. An
example of an indirect test of GR in strong regime is through the emission of gravitational
waves in a binary system. For the first time in 1974, gravitational waves were detected
indirectly through a binary system of neutron stars5 (a neutron star next to a pulsar -
a radiating neutron star) in orbit around the center of mass of the system. This system
presented variation of the emission of radio waves exactly as predicted in the theory of GR
through the emission of gravitational waves. Recently, GR was tested in the strong field
regime using two intriguing and fascinating predictions of GR: (i) black holes (BHs) which
are predict to be the end state of the gravitational collapse of very massive stars with a
gravitational field so strong that not even light can escape and (ii) gravitational waves
(GWs), ripples of spacetime that propagates at the speed of light. On 14th of September
2015 the same GW signal was observed at two earth based light interferometers and its
analysis fits extremely well with the templates of BHs merger. When two BHs merge, the
final result is a BH with a smaller mass than the sum of the masses of the two initial BHs.
The difference in mass is irradiated through GWs. The analyze of the data showed that the
signal comes from the coalescence of two black holes with the emission of 3 solar masses of
energy through GWs. 6 This observation was followed by others BH-BH mergers and one
neutron star-neutron star merger, where the latter allow us to look at both gravitational
waves and electromagnetic waves coming from the same event and possibly discover some
hints of how matter behaves in regimes of high pressure and strong gravity as is the case
in neutron stars. As precision detection is advancing it will be possible to test GR in these
strong gravity regimes and look, for example, for additional fundamental fields which may
be relevant in the strong gravity regime.

In GR, the laws of Physics are governed by two principles: the equivalence principle
and the principle of general covariance. The former means that locally, the motion of freely-
falling particles are the same in a gravitational field and a uniformly accelerated frame. The
latter states that the metric of the spacetime is the only quantity "pertaining to spacetime"
that can appear in the laws of physics. 7 Einstein postulated the equation that governs
GR, partly motivated by the the relation between the tidal forces in Newtonian gravity
and the relative acceleration between nearby geodesics in curved spacetime. Nowadays,
however, it’s common to obtain the equations of motion of the system using the principle
of least action, which is omnipresent in modern Physics. So in this context, one can derive
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the equation that Einstein postulated by varying the Einstein-Hilbert action∗

SE−H = 1
16π

ˆ
d4x
√
−gR. (1.1)

R is a scalar quantity constructed from the metric field known as Ricci scalar. In this
setup, the geometry of spacetime is described by the metric field, gµν , which is the principal
object in GR. The equation that governs the dynamics of the metric field is given by the
Einstein’s equation

Rµν −
1
2Rgµν = 8πTµν (1.2)

where Rµν and Tµν are the Ricci tensor and the energy-momentum tensor of energy and
matter, respectively. The energy momentum tensor is defined as the variation of the matter
action with respect to the metric

Tµν = −2√
−g

δSm
δgµν

. (1.3)

The phrase by John Wheeler illustrate the idea behind GR: "Spacetime tells matter how
to move; matter tells spacetime how to curve". Einstein’s field equation (1.2) is a set of
coupled nonlinear partial differential equations which are very hard to solve (analytically
and numerically) without the use of symmetry. Notably, just after the final formulation of
GR by Einstein, Karl Schwarzschild discovered a static solution to Einstein’s equation in
vacuum, Tµν = 0, assuming spherical symmetry. This solution is known nowadays as the
Schwarzschild solution and describes a non-rotating black hole of mass m. In spherical
coordinates (t, r, θ, φ), the metric is

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2dθ2 + r2 sin2 θ2dφ2, f(r) = 1− 2m
r
. (1.4)

At r = 2m and r = 0, the metric function grr diverges indicating that the spacetime at
these coordinate values is not well behaved. Nonetheless, a more careful analysis based on
physical invariant quantities tells us that the apparent singularity at r = 2m is due to a
bad choice of coordinates and in fact, all physical quantities computed at this coordinate
value remain finite. On the other hand, the coordinate value r = 0 is really a physical
singularity with scalar quantities diverging there: GR predicts its own demise. In fact, it
was proven that singularities must form within GR, under general assumptions on the
nature of the matter such as the positivity of the energy density but it’s conjectured that
these singularities must be hidden inside an event horizon and do not affect the spacetime
outside. This is the so called cosmic censorship conjecture†. If a naked singularity is visible
to an outside observer, an end is placed to the predictive power of GR. It’s believed,
∗ We use geometric units where the Newton constant and the speed of light are set to unity,

GN = c = 1.
† A rigorous statement of the cosmic censorship and its proof is one of the biggest open

problems in GR.
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however, that these singularities will be resolved by a quantum description of spacetime.
This is a difficult topic that physicists have been trying to understand better for quite a
long time and develop a consistent quantum theory of gravity.

One approach to such a quantum description of gravity is through the AdS/CFT
correspondence. Here AdS stands for Anti-de Sitter spacetime (see Section 2.1) and CFT
for conformal field theory (see Section B). This correspondence, in a specific limit, relates
physical observables in a classical theory of gravity in AdS spacetime to a physical
observable in a strongly coupled conformal field theory that lives in at least one lower
dimension‡. This duality is an example of the holography principle. 8 The holographic
principle states that for any consistent quantum theory of gravity the number of microscopic
degrees of freedom necessary to describe a region of spacetime must be proportional to
the area of that region instead of the volume of the region. The principle has its origins in
the Bekenstein-Hawking formula for the entropy of a black hole, which is proportional to
the area of the BH rather than the volume as it is usual for thermodynamical systems
(see Section 2.4). Since the duality is of the weak/strong type, one can study classical
GR and use the correspondence to learn about strongly coupled quantum field theories
(QFTs), such as the ones believed to describe superconductors at high critical temperature.
9 In this context, BHs plays an essential role since it’s a thermodynamic system and its
temperature is associated with the QFT temperature through the correspondence. Also,
BH formation in the bulk is interpreted as thermalization of the dual theory, so the study
of stability of spacetimes (see Chapter 3), besides being important on its own, is related
to thermalization properties of strongly coupled QFTs.

Alternatives theories of gravity (that is, theories of gravity different from GR) have
been extensively studied in the last few years. Motivation mainly comes from cosmology:
when trying to explain the accelerated expansion of the universe through a model that has
GR as a limit, since in the solar system scale GR is very well tested. Recently, however,
motivation to study alternative models of gravity has also come from holography. These
models can be used as toy models when trying to understand strongly coupled QFTs. This
works as follows. Introduce the necessary ingredients (fields) in the gravity theory that
is believed to approximately describe the properties of the QFT of interest even though
there’s no exact duality between the two theories. This approach is called bottom-up in
contrast to the top-down approach which starts with a formulation of string theory and
derives the precise relation between the two theories.

Outline of this dissertation

This dissertation is organized as follows: In chapter 2 we review Anti-de Sitter

‡ The duality is sometimes referred as bulk-boundary duality since the CFT can be seen as
living on the conformal boundary of AdS.
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(AdS) spacetime and show its metric in different coordinate systems, each one of them
being more suitable to discuss specific problems. We briefly discuss a scalar field in the
fixed AdS background and show the origin of the Breitenlohner-Freedman (BF) bound.
Then, we show the most common BHs solutions within AdS spacetime and mention the
no hair conjecture giving a sketch of the no-scalar-hair theorem. This is followed by a
discussion of BH thermodynamics and the chemistry of BHs. Chapter 3 is devoted to
the study of stability. We briefly discuss the stability of the most popular spacetimes in
theoretical physics. The linear stability problem is not as difficult to solve as the nonlinear
stability, so we begin that chapter with the discussion of quasinormal modes (QNMs) and
mention one application in astrophysics and holography. The nonlinear instability of AdS is
analyzed based on reference 10 and at the end of the chapter we discuss the generalizations
that have been considered in the literature. We deal with scalar-tensor theories of gravity
in Chapter 4. We briefly mention how to go beyond GR and introduce new degrees of
freedom while preserving properties of GR. An Einstein-scalar-Gauss-Bonnet model is
discussed both for the asymptotically flat and asymptotically AdS case. Chapter 5 contains
the final remarks and conclusions. Let us mention that this dissertation does not intend
to be a comprehensive review on any of the subjects discussed in here and we refer the
reader to the original articles whenever we think it appropriate.
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2 ANTI-DE SITTER, BLACK HOLES AND THERMODYNAMICS

This chapter discusses Anti-de Sitter spacetime (AdS), we show some coordinate
systems used to describe it and discuss some of its distinguishing properties. We briefly
mention the origin of the Breitenlohner-Freedman (BF) bound for a scalar field in fixed
AdS background and then we discuss some black hole solutions in AdS spacetime as well
as their thermodynamics.

2.1 Anti-de Sitter and its avatars

This section is devoted to a brief introduction to Anti-de Sitter (AdS) spacetime
and the coordinate systems used to write down the AdS metric. We follow the references
1,11. To begin, AdS is a maximally symmetric spacetime. This means that it has the
maximum number of symmetries a D-dimensional spacetime can have. In General Relativity,
symmetries are described by Killing vectors, this is, vectors ξµ satisfying the Killing equation

∇µξν +∇νξµ = 0. (2.1)

It can be show that the second derivative of a Killing tensor is proportional to the Riemann
tensor

∇µ∇νξ
ρ = Rρ

µνδξ
δ. (2.2)

Indeed, acting with the commutator [∇µ,∇ν ] on the Killing vector ξλ and summing cyclic
permutations of the indices

∇[µ∇νξλ] = Rρ
[λµν]ξρ = 0 (2.3)

where the right hand side of the equation vanishes by the first Bianchi identity. The left
hand side of (2.3) can be written as

∇µ∇νξλ +∇λ∇µξν +∇ν∇λξµ = 0. (2.4)

Using the Killing equation and rearranging the above equation we have

∇λ∇µξν = −[∇µ,∇ν ]ξλ = Rρ
λµνξρ (2.5)

which shows that the second covariant derivative of a Killing vector at a given point is
proportional to the Killing vector at the same point. Therefore, given the Killing vector
ξµ(x0) and its derivative ∇νξ

µ(x0) in the spacetime point x0, it’s sufficient to completely
characterize the Killing vector everywhere. Using the fact that in a D-dimensional spacetime
we can only have, at most, D independent vectors and the anti-symmetry property of the
Killing equation, the number of independent Killing vectors a D-dimensional spacetime can
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have is D +D(D − 1)/2 = D(D + 1)/2. Any D-dimensional spacetime with this maximal
number of independent Killing vectors is said to be maximally symmetric. A simple
example of a maximally symmetric spacetime is 4-dimensional Minkowski spacetime. It has
4(4 + 1)/2 = 10 independent Killing vectors; 4 translations in space and time coordinates,
and 3 Lorentz boosts and 3 spatial rotations. It also can be shown that in a maximally
symmetric spacetime, the Riemann tensor is proportional to the metric in the following
way

Rµνρσ = k (gµρgνσ − gµσgνρ) (2.6)

for some constant k. The idea to proof this result goes as follows: in Riemann normal
coordinates∗ at a point x0, use isotropy of space to write the metric at x0 as gµν(x0) = ηµν .
By assumption, the metric is isotropic at x0, then the curvature tensor must be invariant
under Lorentz rotations. We use the fact that the only invariant tensors under Lorentz
rotations are the Minkowski metric ηµν and the Levi-Civita tensor εijkl. This implies that
the Riemann curvature tensor must have the following form

Rµνρσ(x0) = aηµνηρσ + bηµρηνσ + cηµσηνρ + dεµνρσ. (2.7)

a,b, c and d are constants.The symmetries of the Riemann tensor† implies that a = d =
b+ c = 0 and the Riemann tensor simplifies to

Rµνρσ(x0) = b(ηµρηνσ − ηµσηνρ). (2.8)

Therefore, in an arbitrary coordinate system, the Riemann tensor takes the form

Rµνρσ(x0) = b(gµρ(x0)gνσ(x0)− gµσ(x0)gνρ(x0)). (2.9)

Using the homogeneity property of a maximally symmetric spacetime, we can write the
Riemann tensor in an arbitrary point x as

Rµνρσ(x) = b(x)(gµρ(x)gνσ(x)− gµσ(x)gνρ(x)). (2.10)

Contracting the above equation to obtain the Ricci tensor and the Ricci scalar

Rij(x) = (D − 1)b(x)gij (2.11)

R(x) = D(D − 1)b(x) (2.12)

substituting b(x) in Eq. (2.10), the Riemann tensor can be finally written as

Rijkl(x) = R

D(D − 1)(gikgjl − gilgjk). (2.13)

∗ Riemann normal coordinate always can be constructed around a given point, p, such that
the metric at this point is the Minkowski metric, gµν(p) = ηµν , and the Christoffel symbols
vanish at this point, Γµνρ(p) = 0.

† The symmetries of the Riemann tensor used: Rµνρσ = −Rνµρσ = −Rµνσρ, Rµνρσ = Rρσµν .
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Furthermore, D-dimensional AdS spacetime is a solution to Einstein’s equation with a
negative cosmological constant in vacuum

Rµν −
1
2gµνR + Λgµν = 0. (2.14)

Substituting the expressions for the Ricci tensor and the Ricci scalar in Eq. (2.14), we
find that the cosmological constant is related to the Ricci scalar as

Λ = D − 2
2D R. (2.15)

from now on we write D = d+ 1, where d is the number of spatial dimensions. The AdSd+1

metric can be cast in many different ways. In what follows we will review some of the
main coordinate systems that are used in the literature. As usual for constant curvature
spacetimes (spheres and hyperboloids), the (d+1)-dimensional AdS metric, AdSd+1, can
be obtained by embedding the hypersurface

−(X0)2 +
d∑
i=1

(X i)2 − (Xd+1)2 = −L2 (2.16)

into a (d+ 2) dimensional Minkowski spacetime with two timelike coordinates, R2,d with
coordinates (X0, X i, Xd+1), i = 1, ..., d. L has length dimension and is called the AdS
radius. The metric is

ds2 = −(dX0)2 +
d∑
i=1

(dX i)2 − (dXd+1)2. (2.17)

The advantage of this construction of AdSd+1 spacetime is that it makes explicit that it
has SO(2, d) as the isometry group. Using the following coordinates transformations

X0 = L cosh ρ cos τ, X i = L sinh ρΩi, Xd+1 = L cosh ρ sin τ (2.18)

the constraint (2.16) is automatically satisfied and we obtain AdS spacetime in so-called
global coordinates (τ, ρ,Ωi)

ds2 = −L2
(
cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

d−1

)
. (2.19)

The τ coordinate is periodic with period 2π and introduces the problem of closed timelike
curves. One can evade this complication by going to the universal covering group of the
hyperboloid (2.16) which essentially consists of taking the τ coordinate to be in the range
−∞ < τ < ∞ without identifying τ with τ + 2π. What is usually called AdS space in
the literature is the universal covering group of AdS. With the change of coordinates
tan θ = sinh ρ, (0 ≤ θ < π/2)) we arrive at the conformal metric for AdSd+1:

ds2 = L2

cos2 θ

(
−dτ 2 + dθ2 + sin2 θdΩ2

d−1

)
= L2

cos2 θ

(
−dτ 2 + dΩ2

d

)
. (2.20)
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Figure 1 – Penrose diagram for AdS.
Source: BLAU. 1

This coordinate system for AdSd+1 tell us that it’s conformal to the upper half of the
Einstein static universeR x Sd. With this metric we can draw a Penrose diagram for AdSd+1

spacetime (Fig. 1). Penrose diagrams are useful because they enable us to encapsulate the
causal structure of the entire spacetime in a compact picture. This is done by a coordinate
transformation that preserves the timelike, null or spacelike separation between points.
As usually we suppress d− 1 angular coordinates. Note that the θ coordinate is compact
while τ is not. We cannot make both of these coordinates compact without changing the
fact that light rays travel at 45º in the diagram. Fig. 1 tell us another important feature
of AdSd+1 space: it has a timelike conformal boundary. In other words, spatial infinity
ρ→∞ corresponds to θ = π/2 in the conformal metric (2.20) and the induced metric on
the conformal boundary θ = π/2 has Lorentzian signature

ds2
|θ=π

2
= −dτ 2 + dΩ2

d−1 (2.21)

with topology I = R x Sd−1. One can see that a point p in the future of a spacelike
hypersurface Σ as the one drawn at the bottom of Fig. 1 has past directed timelike or null
casual geodesics that do not intercept Σ. That is, AdS has no Cauchy hypersurface. For
this reason, AdS is not globally hyperbolic and the initial data on a hypersurface is not
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enough to describe the evolution of a system; we also need to prescribe conditions on the
boundary.

Yet another coordinate system which is used in the AdS/CFT correspondence (CFT
stands for conformal field theory. See Appendix B) is the Poincaré coordinate (t, z, xi). 1

It’s obtained by the following coordinate transformation:

X0 = 1
2z (z2 + L2 − t2 + x2

1 + ...+ x2
d−1)

Xd+1 = 1
2z (z2 − L2 − t2 + x2

1 + ...+ x2
d−1)

X i = L

z
xi, (i = 1, ..., d)

where z > 0 and the AdSd+1 metric becomes

ds2 = L2

z2

(
−dt2 + dx2

1 + ...+ dx2
d−1 + dz2

)
. (2.22)

The motivation to consider this coordinate system for AdSd+1 is because it makes the
Poincaré symmetry of AdS explicit. Nonetheless, the Poincaré coordinates do not cover
the whole AdS spacetime, since the relation between the coordinates are

z = L2

X0 −Xd+1 (2.23)

and we must have z > 0, the Poincaré coordinates only cover the region X0 > Xd+1 of
the entire AdS spacetime.
In gravitational physics, a useful coordinate system for the AdS spacetime is the system of
static coordinates (t, r,Ωi), which are obtained from the global coordinates (2.19) by the
following coordinate transformation:

t = Lτ, r = L sinh ρ. (2.24)

Then the AdSd+1 metric becomes

ds2 = −
(

1 + r2

L2

)
dt2 +

(
1 + r2

L2

)−1

dr2 + r2dΩ2
d−1. (2.25)

One intriguing property of AdS is that light rays reach the conformal boundary in finite
proper time. To see this, let us consider the trajectory of a radial outgoing light ray. We
use the conformal metric (2.20) and set dΩ2 = 0 since we want to analyze purely radial
null geodesics. Null geodesics satisfies the equation ds2 = 0, which implies

−dτ 2 + dθ2 = 0, dθ

dτ
= ±1, (2.26)

we choose the plus signal for outgoing light rays and the solution is given by

τ(θ)− τ(θ0) = θ − θ0 (2.27)
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remembering that θ = π/2 (the conformal boundary) corresponds to ρ =∞, we conclude
that the (coordinate) time a light ray takes to go from the deep inside (θ = 0 ) of AdS to
the conformal boundary is δτ = π/2. The facts presented in this section about AdSd+1 i.e.,
the presence of a timelike boundary which is conformal to Minkowski spacetime, the need
to prescribe boundary conditions and the fact that AdSd+1 has SO(2, d) as the symmetry
group, which is the same symmetry group of conformal transformations in d dimensions
(see Appendix B), make it possible to construct the dictionary between the bulk and the
boundary theory.

2.2 Scalar fields in Anti-de Sitter

There’s a non trivial property of scalar fields in AdSd+1 background: they can be
stable even with negative mass as long as their mass isn’t too negative. The reason for this
is that AdS spacetime gives a contribution for the mass term of the scalar field, generating
an effective mass m2

ef = m2 + d2/4L2. To check this, we consider a minimally coupled
scalar field, φ, in fixed AdS spacetime, whose action is given by‡

S =
ˆ
dd+1x

√
−g

(
gµν∇µφ∇ν −

1
2m

2φ2
)

(2.28)

where ∇µ is the covariant gravitational derivative with respect to the AdS metric and,
µ = 0, ..., d. The equation of motion for the scalar field is obtained by varying the above
action with respect to the scalar field and reads(

∇µ∇µ −m2
)
φ = 0, . (2.29)

The above equation can be written explicitly using the Poincaré form (2.22) of the AdS
metric and reads

1
L2

(
z2∂2

z − (d− 1)∂z + z2ηij∂i∂j −m2L2
)
φ(z, xi) = 0. (2.30)

Where i = 0, 1, ..., d− 1 and ηij is the Minkowski metric. Assuming translation invariance
and taking the Fourier transform with respect to xi coordinates

φ(z, xi) =
ˆ

ddx

(2π)d e
ikix

i

φk(z), (2.31)

Eq. (2.30) becomes (
z2∂z − (d− 1)z∂z − (m2L2 + z2k2)

)
φk(z) = 0 (2.32)

There is an exact solution for this equation in terms of the Bessel’s functions but generally,
the case of interest is the behaviour of this scalar field in the asymptotic regime which
in the Poincaré coordinates means z → 0. In this case, the term z2k2 can be neglect in
‡ We set c = ~ = 1.
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relation to m2L2 and substituting the ansatz φk(z) ∼ ckz
∆, we obtain an algebraic second

order equation for ∆
m2L2 = ∆(∆− d). (2.33)

The solutions are ∆± = d
2 ±

√
d2

4 +m2L2. Reality of ∆± implies that

m2L2 ≥ −d
2

4 . (2.34)

This is the Breitenlohner-Freedman (BF) bound. It was shown 12 that for theories satisfying
the BF bound (2.34) the energy of the spacetime is positive and the theory is stable. When
∆+ 6= ∆−, the asymptotic solution in positions space is given by

φ(z → 0, xi) = φ0(xi)z∆− + φ1(xi)z∆+ + ... (2.35)

where · · · denote corrections to the expansion. We can define an inner product on AdS 13

given by
(φ1, φ2) == −i

ˆ
Στ
dzddx

√
−ggtt (φ∗1∂tφ2 − φ2∂tφ

∗
1) (2.36)

then, the solution (2.35) will have different properties according to the values of ∆±. The
modes are split in two sets

• −d2

4 ≤ m2L2 < −d2

4 + 1;

• −d2

4 + 1 ≤ m2L2.

In the first set, both modes, ∆− and ∆+, are normalizable§ with respect to the inner
product defined in Eq. (2.36). While in the second set, the modes z∆− are non-normalizable
and the modes z∆+ are normalizable. We can think of the non-normalizable mode as living
on the boundary of AdS, since

φ0(x) = lim
z→0

1
z∆−

φ(z, x) (2.37)

This function has scaling dimension ∆− (see Appendix B), since under a scale transforma-
tion xi → x′i = λxi, the field transform as

φ0(x)⇒ φ′0(x′) = lim
z→0

1
z∆−

φ′(z, λx) (2.38)

= lim
z′→0

λ−∆−

z′∆−
φ′(λz′, λx) (2.39)

= λ−∆−φ0(x) (2.40)

where in the first step we have defined z′ = z/λ and in the second step we used the
transformation property of the scalar field. This fact indicates that we can think of φ0(x)
§ Normalizable in the sense that we can define a convergent norm for φ. Non-normalizable

means that the norm of φ with respect to the inner product do not converge to a finite value.
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as being a source for an operator in the CFT with scaling dimension ∆+, since this would
make the action

S =
ˆ
ddxφ0(x)O(x). (2.41)

invariant under scale transformation; the sum of the scaling dimension of each term in the
action vanish, using the fact that ∆− + ∆+ = d.
For the normalizable modes, it’s possible to quantize the action (2.28) and construct the
Hilbert space of the theory in the bulk which is identified with the Hilbert space in the
dual theory. In resume, normalizable modes corresponds to sates of the dual theory and
non-normalizable modes corresponds to a source for an operator with scaling dimension
∆+.

2.3 Black holes in Anti-de Sitter

In common language, a black hole (BH) is a region of the spacetime from which
nothing can escape, not even light. In technical terms, given a spacetime provided with a
metric (M, gab), a black hole is the region B =M−I−(I+). That is, the entire spacetime
excluded the chronological past of the future null infinity. The event horizon, H, is the
boundary of B. This definition encapsulates the idea that what is outside the event horizon
can reach out spatial (or null) infinity while what has passed through the event horizon
cannot escape to spatial or null infinity.

There are black holes within the AdS spacetime analogous to the asymptotically
flat Schwarzschild, Reissner-Nördstron and Kerr BH usually called Schwarzschild-AdS,
Reissner-Nördstron-AdS and Kerr-AdS black holes, respectively¶. We don’t give the
derivation of these solutions here and simply write the relevant metric for our purposes.
One can check that they’re solutions to the Einstein field equation in vacuum with a
negative cosmological constant by explicitly calculating the Ricci tensor and substituting
into the equation.

2.3.1 Schwarzschild-AdS

The spacetime for a spherically symmetric BH with AdS asymptotics is described
in the static coordinates by

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2dΩ2
d−1, f(r) = 1 + r2

L2 −
2m
rd−2 . (2.42)

Where d is the number of spatial dimensions. The resemblance with the Schwarzschild
metric is immediate; there’s an additional term r2/L2 in the warp function f . The constant
¶ There’s a famous example of BH in 2+1 dimensions called BTZ (the letters coming from

Bañados, Teitelboim, and Zanelli) black hole. It has properties similar to the Kerr BH; an
event horizon, an inner horizon and an ergosphere however it is asymptotically AdS. This
BH has been studied as a toy model to gain insight into quantum gravity. 14
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m is related to the mass M of the black hole by

m = 8πM
(d− 1)V ol(Sd−1) (2.43)

the locus of the event horizon can be found to be at r = rh, largest value of r that fulfills
the equation f(rh) = 0. Sometimes it’s useful to write the metric in terms of rh instead of
the parameter m. Then the metric function becomes

f(r) = 1 + r2

L2 −
rd−2
h

rd−2

(
1 + r2

h

L2

)
. (2.44)

If we send L → ∞, (which corresponds to setting Λ = 0) we recover the Schwarzschild
spacetime. In section 2.4 we review some interesting properties of the Schwarzschild-AdS
black hole concerning its thermodynamics. Surprisingly, one can generalize this black hole
solution by changing the unity in the metric function f by k, where k = 0,−1 and then
replacing the (d-1)-sphere Ω2

d−1 by the euclidean plane Rd−1 or the (d-1)-dimensional
torus Td−1 for k = 0 and hyperboloid Hd−1 for k = −1, respectively. These are known
as topological black holes 15 more or less motivated by the fact that the event horizon no
longer has a spherical symmetry.

2.3.2 Reissner-Nordströn-AdS

A spherically symmetric charged BH in AdS spacetime is a gravitational solution
to the Einstein equation with negative cosmological constant coupled to a U(1) gauge
filed Aµ with field strength tensor Fµν = ∂µAν − ∂νAµ. Assuming that the BH carries
only electric charge, the only non-vanishing component of this field tensor which gives the
electric field is

Frt = Q

rd−1 , (2.45)

in the static coordinates (t, r,Ωi) the corresponding spacetime is described by the metric
16

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2dΩ2
d−1, f(r) = 1− 2m

rd−2 + Q2

r2(d−2) + r2

L2 , (2.46)

where the parameter m is related to the mass of the BH and the parameter Q to the total
electric charge. Inspection on the curvature invariants indicates that this solution possesses
a single physical singularity located at r = 0. The metric function f can be written as

f(r) ≡ ∆(r)
L2r2d−4 , ∆(r) = L2r2d−4 − 2mL2rd−2 +Q2L2 + r2d−2. (2.47)

∆(r) is a polynomial of degree 2d−2 for d ≥ 3, so in d = 3, ∆(r) has 4 roots that we will not
give here because they’re large expressions. 17 The event horizon is located at the largest
value of r that is a solution of f(rh) = 0 which implies ∆(rr) = 0. In d = 3 and for Λ = 0,
there are two horizons (an event and a Cauchy horizon) which reads r± = m±

√
m2 − q2.
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The condition m2 ≥ q2 prevents the appearance of a naked singularity. When Λ is small
compared to m−2 we expect the same structure to be present in the RN-AdS as in the
flat RN black hole: for values of q2 less than some critical value, q2

cr,there will be an outer
horizon (the event horizon) and an inner event horizon (a Cauchy Horizon). These two
horizon coincide when q2 = q2

cr and we obtain what is called an extremal RN black hole.
For q2 > q2

cr we have two complex roots, i.e. the event horizon does not shield the physical
singularity from external observation, which is referred to as a naked singularity.
It’s convenient to write the mass m in terms of rh:

2m = rh + Q2

rh
+ r3

h

L2 . (2.48)

The area of the event horizon at given time t = t0 is obtained by fixing r = rh and
integrating the angular variable θ and ϕ

A =
ˆ 2π

0
dϕ

ˆ π

0
dθ r2

+ sin θ = 4πr2
+ (2.49)

In section 2.4 we will study the thermodynamical properties of some asymptotically AdS
black holes (the RN-AdS BH displays a rich thermodynamic phase structure and possesses
some similarities with a van der Waals liquid gas system 18) and the area of the event
horizon divided by 4 is associated with the entropy of the black hole. Taking the limit
L → ∞, one recovers the asymptotically flat RN black hole. It is believed that the flat
counterpart of the RN-AdS solution is not relevant to astrophysics, since any net charge
would tend to neutralize within an astrophysical environment. But it has interesting
and curious properties that make it instructive to study, and in particular it has similar
properties than the spinning black holes that are astrophysically relevant.

2.3.3 Kerr-AdS

Before discussing the asymptotically AdS spinning black hole, we briefly review
some properties of the asymptotically flat spinning black hole. It took nearly 50 years after
the publication of the final version of GR to find the solution of a spinning black hole.
19 In 1963 through a tour de force, Roy Kerr found the most astrophysically important
solution of a black hole: the Kerr black hole. In Boyer-Lindquist coordinates, (t, r, θ, φ), its
metric reads

ds2 = −
(

1− 2mr
ρ2

)
dt2 − 2arsin2θ

ρ2 (dtdφ+ dφdt) + ρ2

∆dr2 + ρ2dθ2

+ sin2θ

ρ2

((
r2 + a2

)2
− a2∆sin2θ

)
dφ2

(2.50)

where
∆(r) = r2 − 2mr + a2, ρ2(r, θ) = r2 + a2cos2θ. (2.51)
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Figure 2 – Horizons, singularities and ergosphere of asymptotically flat Kerr black hole.
Source: VISSER. 2

m is the BH mass and J = ma is the BH angular momentum. The event horizon is located
at r+ = m+

√
m2 − a2, the large root of ∆(r) = 0. The induce metric on the event horizon

H is
ds2 =

(
r2

+ + a2 cos2 θ
)
dθ2 +

(
(r2

+ + a2)2

r2
+ + a2 cos2 θ

)
sin2 θdφ2 (2.52)

Let h = (r2
+ + a2)2 sin2 θ be the determinant of the induced metric on the event horizon,

then the area of the event horizon is given by

A =
ˆ
H

√
hdθdφ =

ˆ 2π

0
dφ

ˆ π

0
dθ(r2

+ + a2) sin θ = 4π(r2
+ + a2). (2.53)

This black hole possesses novel characteristics that are not found in the Schwarzschild and
Reissner-Nordströn black holes. It’s stationary, different from the Schwarzschild and RN
black holes which are static. Both terms encompasses the idea of time independent metric
but static is a stronger condition. One way to characterize them is to say that stationary
metrics are invariant under time translations while static metrics are invariant under time
translation and invariant under time reflections t→ −t. The Kerr geometry also possesses
an infinite-redshift surface∗∗ known as (outer) ergosurface outside the horizon defined by
KµKµ = 0, where K = ∂t is the Killing vector timelike at infinity. In fact, if a black hole
∗∗ That is, any light ray emitted from this surface will be infinitely redshifted when observed

at infinity.
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event horizon is present in a stationary and axisymmetric spacetime, there will be an
ergoregion. For the metric (2.50), the ergosurface is located at

rergo = m+
√
m2 − a2 cos2 θ (2.54)

the region between the ergorsurface and the event horizon is the ergoregion. Due to the
presence of an ergosphere††, it’s possible to extract energy from the Kerr black hole by a
process know as Penrose process. Another difference from Schwarzschild BH is the nature
of the singularity: for ρ = 0 the curvature invariants diverges. But ρ = 0 defines a ring in
space given by r = 0 and θ = π/2. We should remember the reader at this point that in
the Boyer-Lindquist coordinates r is not an euclidean radial coordinate but rather related
to the euclidean coordinates (x, y, z) by

x = (r2 + a2)1/2 sin θ cosφ, y = (r2 + a2)1/2 sin θ sinφ, z = r cos θ. (2.55)

The generalization of the Kerr BH to include a negative cosmological constant was found
in 1968 for d+ 1 = 4 spacetime dimensions 20 and to all d+ 1 > 5 spacetime dimensions
in. 21 The d+ 1 = 4 Kerr-AdS black hole metric is given by

ds2 = −∆r

ρ2

(
dt− a

Σ sin2 θdφ
)2

+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2 + ∆θ

ρ2 sin2 θ

(
adt− r2 + a2

Σ dφ

)2

(2.56)

with

∆r =
(
r2 + a2

)(
1 + r2

L2

)
− 2Mr, Σ = 1− a2

L2 (2.57)

∆θ = 1− a2

L2 cos2 θ, ρ2 = r2 + a2 cos2 θ. (2.58)

The solution is valid for a2 < L2 and becomes singular for a2 = L2. The event horizon,
H, is located at r = r+, the largest root of ∆r(r) = 0. The induced metric on the event
horizon is formally obtained from Eq. (2.56) by setting r = r+, dt = dr = 0 and the fact
that r+ is solution to ∆r(r) = 0 and is given by

ds2
H = ρ2

∆θ

dθ2 + ∆θ sin2 θ

ρ2

(
(r2

+ + a2)
Σ

)2

dφ2. (2.59)

The determinant, h, of the induced metric is h = sin2 θ(r2
+ + a2)2/Σ2. Then the area, A,

of the event horizon is given by

A =
ˆ
H

√
hdθdφ = 4π

(
r2

+ + a2
)

Σ (2.60)

†† In this region is impossible to "stand still" since the time-translation Killing vector becomes
spacelike 19 and the observer is forced to rotate with the BH. However, the observer can still
move toward or away the event horizon.
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comparison with Eq. (2.53), the area of an asymptotically flat Kerr BH, we see that it
increases with L decreasing (or alternatively, with Λ increasing in absolute value) and that
in the limit L→∞ reduces to the area of the asymptotically flat Kerr BH given in (2.53).

2.3.4 Gauss-Bonnet-AdS

The Einstein-Hilbert action (Eq. 1.1) contain only one curvature term, the Ricci
scalar. Theories with higher order curvature terms, (such as R2, RµνRµν , RµνR

µσRν
σ, ...)

appears as low energy limit of string theories and in the context of AdS/CFT correspondence
the additional higher order curvature terms are seeing in the dual theory as corrections
to the large N expansion. Considering only second order curvature terms, BH solutions
were found in. 22 The second order curvature term is the Gauss-Bonnet (GB) term, G, a
specific combination of curvature quantities which is a topological invariant‡‡ in (3+1)
dimensions. It is given by

G = RµνσρRµνσρ − 4RµνRµν +R2. (2.61)

The action of Einstein-Gauss-Bonnet gravity is given by

S = 1
16π

ˆ
dd+1x

√
−g (R− 2Λ + αG) . (2.62)

where α is the GB coefficient with dimension (lenght)2. In d = 3 Einstein-GB gravity
reduces to GR and from now on we consider d ≥ 4. With an static and spherically
symmetric ansatz of the form

ds2 = −e2νdt2 + e2λdr2 + r2hijdx
idxj, (2.63)

BH solution was found. 23 hij is the metric on a d − 1 dimensional hypersurface with
constant curvature, which can be positive, negative of null. The metric functions ν and λ
are assumed to depend only on the radial coordinate r. The solutions are given by

e2ν = e−2λ = k + r2

2α̃

(
1∓

√
1 + 64πα̃M

(d− 1)Σkrd
− 4α̃
L2

)
. (2.64)

where α̃ = α(d − 2)(d − 3) and k = 0, 1,−1. Σk is the volume of the d − 1 dimensional
hypersurface and M the gravitational mass of the solution. The solution given by Eq.
(2.64) is asymptotically AdS and has two branches: "-" and "+" sign. When M = 0, we
see from Eq. (2.64) that the coupling constant must satisfies 4α̃/L2 ≤ 1 in order for the
solution to be real. Thermodynamics properties of this solutions is analyzed in Section 2.4.

‡‡ The integral over the entire four dimensional spacetime (manifold) of the GB term is a
characteristic of the spacetime (manifold) and do not contribute to the equations of motion.
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2.3.5 No hair conjecture

The black holes spacetime discussed so far are fully characterized by the parameters
{M,J,Q}, related to the mass, angular momentum and charge, respectively, and the AdS
radius L which can always be set to unity by a coordinate redefinition. It is because of
the few parameters needed to describe the classical spacetime of a black hole that leads
to the statement that black holes are simple objects. This is certainly not true for other
astrophysically relevant objects. For example, to describe the exterior region of a neutron
star with sufficient accuracy, one would need to know all the distribution of matter inside
the star and therefore, all the multipole moments of the configuration of matter inside
the star, while two black holes with the same parameters and asymptotics are exactly
equal. The simplicity of black holes is described by the famous phrase black holes have
no hair. 24 "Hair" is used as a metaphor for complicated things and with the idea that if
everyone were bald, we would be more alike. For 4-dimensional electro-vacuum GR with
flat asymptotics, there are theorems known as uniqueness theorems 25,26 assuring us that
the only possible parameters that can be observed at infinity are {M,J,Q}. However,
when one of the theorem’s assumptions is violated, there can be black hole solutions with
hair, that is, with an additional parameter§§ beyond the standard ones describing the
exterior region of the black hole spacetime. And indeed, a variety of hairy black hole have
been found within theories with non-linear matter sources. 27

Scalar fields are the simplest type of field one can conceive and in 2012 scientists
at CERN have found a fundamental scalar field in nature: the Higgs field. So, to consider
if a scalar field in a black hole spacetime contributes with an additional type of hair for
this black hole is a very natural question to ask, and indeed, there’s a set of no-scalar-hair
theorems. 28 In general, these theorems make assumptions about the coupling between the
scalar field and gravity, which may be minimal or non-minimal, the inherited spacetime
symmetries for the scalar field and the types of potential for the scalar field. Violation
of one of these assumptions can make it possible to find a hairy black hole. For example,
Kerr black holes with scalar hair have been found 29 violating the assumption about the
symmetries of the scalar field and the spacetime being the same.

Following 30 we sketch the proof a no-scalar-hair theorem for a minimally coupled
scalar field in a generic BH spacetime with flat asymptotic. The idea is to consider the
scalar field equation with a potential U(φ) on a fixed curved background

�φ = U ′(φ). (2.65)

Where ′ represents derivative with respect to the scalar field and � = ∇µ∇µ is the
covariant d’Alembertian. We assume the background to be stationary, asymptotically flat
§§ In the literature, the hair is usually classified as primary or secondary. Primary hair being a

new global charge and secondary hair being not independent from the standard ones.



39

and at spatial infinity we should have φ = φ0, U ′(φ0) = 0. We also assume that the scalar
field to respect the symmetries of the background. The stationary assumption implies
the existence of a timelike Killing vector ξ at infinity and if we’re considering vacuum
solutions to Einstein’s equation, it will have to be axysymmetric as well by Hawking’s
theorem 31, implying the existence of second Killing vector ζ that has closed orbits. Then,
multiplying Eq. (2.65) by U ′(φ) and integrating over the volume V

ˆ
V
d4x
√
−g U ′(φ)�φ =

ˆ
V
d4x
√
−g U ′2(φ). (2.66)

We construct the volume V in such way that it’s spatially bounded by a timelike 3-surface
at infinity, S0, and by the BH event horizon, H, and temporally bounded by two surfaces
S1 and S2. S1 is a partial Cauchy hypersurface and S2 is obtained from S1 by a shifting
each point of S1 by a unit parameter distance along integral curves of ξµ. Using Integration
by parts on the l.h.s of Eq. (2.66) and rearranging the equation gives

ˆ
V
d4x
√
−g [U ′′(φ)∇µφ∇µφ+ U

′2(φ)] =
ˆ
∂V
d3x

√
|h| U ′(φ)nµ∇µφ. (2.67)

On the r.h.s, the boundary integration is over the surfaces S0, H, S1 and S2 . The
integration over the timelike 3-surface, S0, vanish because we assume φ→ φ0 at spatial
infinity. The integration over H vanish because the normal vector to the horizon, ηµ, is a
linear combination of ξ and ζ which are orthogonal to the horizon. The last part of the
boundary integral is over the surfaces S1 and S2 which do not vanish but exactly cancel
each other by the stationarity condition. On the l.h.s. of Eq. (2.67) we have the sum of a
non-negative term, U ′2(φ), with U ′′(φ) multiplying ∇µφ∇µφ. However, the gradient of the
scalar cannot be timelike anywhere or null everywhere as it is orthogonal to both of the
Killing vectors. So, as long as U ′′(φ) > 0, the only possible way for the integration of two
non-negative terms to vanish is if the scalar field is trivial φ = φ0 (which implies U ′(φ) = 0
) outside the event horizon. The U ′′ > 0 condition can be seen as a local stability condition
for the scalar field. It must be said that there is not only one no-scalar-hair theorem but
in fact, there’s a few of them, each one with different assumptions suitable for the theory
of interest.

It turns out that the possibility of forming non-trivial hair is a necessary ingredient
in the case of AdS/CFT applications to condensed matter and the different boundary
conditions of AdS invalidates the class of no-scalar-hair theorems proved for asymptot-
ically flat spacetimes. As an example, the holographic models used to describe high Tc
superconductors need that the scalar field becomes unstable to formation of non trivial
hair near the black hole horizon at low temperature. 32 This instability to form scalar
hair at low temperature mimics the second order phase transition that happens in the
superconductor.
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2.4 Black hole thermodynamics

It was a milestone in the history of physics when Hawking discovered that due to
quantum effects, black holes can emit radiation with a perfect thermal spectrum. 33 The
temperature associated with the black hole is given by

T = κ

2π (2.68)

in units where the Newton constant, the speed of light, the reduced Planck constant and
the Boltzmann constant are equal to one. κ is the surface gravity and it is defined by the
equation

∇a(ξbξb) = −2κξa (2.69)

where ξa is a Killing vector normal to the event horizon. The surface gravity can be though
of as the acceleration of a static ¶¶ observer near the BH event horizon as measured by an
observer near infinity. To avoid confusion, we explicitly state that T given by (2.77) is the
temperature as measured by an observer near infinity.

Bekenstein did not accept that throwing stuff inside a black hole would diminish the
entropy of the universe since the no-hair theorem states that the only charges characterizing
the black hole were their mass, charge and angular momentum. He would rather "save"
thermodynamics than accept that thermodynamics does not work when considering black
holes. Motivated by a geometric theorem stating that the horizon area of black holes never
decreases and associating this result with the second law of thermodynamics, he proposed
to consider a black hole having an entropy proportional to its event horizon area. 34 At
the time this idea was not very well accepted, but everything changed with the discovery
of Hawking that when considering quantum effects, a black hole is not a perfect sponge
anymore; it emits radiation.

Hawking’s results originated from the analysis of particle creation in curved space-
time. He considered the gravitational collapse to form a Schwarzschild BH and then
considering a free scalar field a with vacuum initial state ∗∗∗, he calculated the expected
number of particles of the scalar field at spatial infinity at late times. The conclusion is
that the expected number of particles is equal to the emission of particles by a black body
at temperature given by (2.77). This important discovery allows one to treat black holes
as thermodynamical objects. But this discovery also brought a new paradox to theoretical
physics: the information loss paradox.

Let us state the 4 laws of black hole thermodynamics based on. 35,36

• 0. The 0-th law states that the surface gravity κ of a stationary black hole is
constant all along the event horizon.
¶¶ A static observer keeps its spatial coordinates fixed.
∗∗∗ State containing no incoming particle fromm the past null infinity I−.
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• 1. The first law of BH thermodynamics states that the increase in the BH mass
is mediated by the changes in the BH area, A, angular momentum, J , and charge, Q

dM = κ

8πdA+ ΩHdJ + ΦdQ. (2.70)

where κ is the surface gravity, ΩH is the angular velocity of the event horizon, and Φ is
the electric potential at the horizon. Equation 2.70 is the gravitational version of the first
law of thermodynamics

dU = TdS − PdV µdN + ΦdQ. (2.71)

where µ is the chemical potential and N the particle number.
• 2. The generalized 2nd law states that in a system containing black hole and matter, the
total amount of entropy never decreases

δSBH + δSext ≥ 0. (2.72)

• 3. Also known as Nernst’s law, the 3rd law states that it is impossible to reduce the
surface gravity to zero by a finite sequence of operations and it is not really a fundamental
law in thermodynamics.

We give a basic idea of how to calculate the temperature of a stationary black hole
by the euclidean path integral method. It’s not as rigorous as Hawking’s derivation but
gives the same results saving us a lot of work. First, we consider the euclidean version
of the stationary metric, which we obtain by performing a Wick rotation in the time
coordinate: t→ iτ

ds2 = f(r)dτ 2 + 1
f(r)dr

2 + r2dΩ2
d−1. (2.73)

we assume the function f(r) has a simple zero on the horizon rh (this is, f(rh) = 0 and
f ′(rh) 6= 0) and expand this function near the horizon: f(r) ∼ f ′(rh)(r − rh). Then (2.73)
becomes

ds2 = f ′(rh)(r − rh)dτ + 1
f ′(rh)(r − rh)

dr2 + r2dΩ2
d−1 (2.74)

= dρ2 + ρ2dϕ2 + r2
hdΩ2

d−1 (2.75)

where in the last equality we have introduced the following quantities

ρ =

√√√√4(r − rh)
f ′(rh)

, ϕ = 1
2 |f

′(rh)|τ (2.76)

the first two terms in the metric (2.74) look like polar coordinates for R2 if ϕ has period
2π. The crucial argument is: the Lorentzian metric (2.42) is not singular at the horizon
and we have no reason to believe that the Euclidean version is going to be singular at the
horizon. But the metric (2.74) has a conical singularity††† at ρ = 0 which corresponds to
††† There are geometric quantities that diverges when computed at ρ = 0 unless ϕ is 2π

periodic.
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r = rh. To avoid this conical singularity the coordinate ϕ must be periodic with period
given by β = 4π

|f ′(rh)| . Then, using the fact that the partition function of a statistical system
at temperature T = 1/β is given by the closed periodic (in euclidean time) path integral
of period β, we arrive at the Hawking temperature associated with the black hole

T = |f
′(rh)|
4π . (2.77)

From this expression we see that the Schwarzschild BH is unstable (since its temperature
is T = 1/8πm): the radiation emitted by the black hole will make it loose mass and so
increase its temperature making the loss of mass increase. The situation changes when we
put the black hole in a box, that is, a Schwarzschild-AdS BH can be stable or unstable
depending on it’s mass.
• SAdS
The temperaure of a d-dimensional SAdS black hole can be obtained by applying equation
2.77 to the metric function (2.44)

T = dr2
h + (d− 2)L2

4πL2rh
, (2.78)

for rh � L the temperature behaves as T ≈ 1/rh while for rh � L we have T ≈ rh/L
2.

These two limits are known as small (rh � L) and large (rh � L) SAdS black holes. For
small SAdS black holes the temperature decreases when we increase rh while for large
SAdS black holes the temperature increases when we increase rh so, there must be a point
of inflection. Indeed, there’s a minimum temperature at rhmin =

√
(d− 2)/dL given by

Tmin =
√
d(d− 2)/2πL. The heat capacity is given by

C ∝ ∂M

∂T
= ∂M

∂rh

(
∂T

∂rh

)−1

(2.79)

the factor ∂M/∂rh is always non-negative for d ≥ 2 and then the sign of the heat capacity
C is determined by the sign of the derivative ∂T/∂rh. From the analysis above we see
that small black holes have negative heat capacity signaling that they are unstable. While
large SAdS black holes have positive heat capacity signaling that they may be stable
thermodynamically, that is, they can be in thermal equilibrium with their Hawking
radiation. A more rigorous way to check thermodynamical stability of these large black
holes is to calculate the free energy, F , and to show that it is minimized by the black hole
solution. 7 In fact, there is a critical temperature above which large black holes minimize
the free energy, that is, they’re the preferred state. Small black hole are unstable and
not the preferred state. This tells us that there is a phase transition know as Hawking-
Page transition from small to large black holes at rh = L. This phase transitions can
be interpreted as a confinement/deconfinement phase transition in the dual quark gluon
plasma through the AdS/CFT correspondence. 37

• RN-AdS
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Figure 3 – Temperature T of d+ 1 = 4 RN-AdS black hole as a function of horizon radius rh for
different values of the charge Q: we plotted the solid black line with 0 < 36Q2 < 1,
the dashed blue line with 36Q2 = 1 and the dot-dashed orange line with 36Q2 > 1.
For 36Q2 < 1, the points of inflection that causes the heat capacity to diverges are r1
and r2 and between the range r1 < r < r2 the RN-AdS is unstable. For 36Q2 = 1, rc
also causes the divergence of the heat capacity.
Source: By the author.

Applying Eq. (2.77) to a d = 3 RN AdS black hole 2.46 and setting the AdS radius to
unity, we obtain

T = 1
4π

(
3rh −

Q2

r3
h

+ 1
rh

)
(2.80)

using the expression for the mass in terms of rh (see (2.48)) we can find the heat capacity
at constant charge

CQ = ∂M

∂T
= ∂M

∂rh

∂rh
∂T

= 2πr2
h

(
r2
h −Q2 + 3r4

h

3r4
h + 3Q2 − r2

h

)
= 8π2r5

hT

3r4
h + 3Q2 − r2

h

. (2.81)

We can see from the denominator that there are configurations in the parameter space
(M,Q) that cause the heat capacity to diverge. We can obtain the values of rh for which
the heat capacity diverges by solving the quadratic equation in r2

h

3r4
h − r2

h + 3Q2 = 0, ⇒ r± = 1
6 ±

1
6

√
1− 36Q2. (2.82)

The critical value for the radial coordinate is rc = 1/6, when 36Q2 = 1. When the condition
36Q2 ≤ 1 is satisfied and the charge, Q, is fixed, the heat capacity is positive for r < r−,
becomes negative for r− < r < r+ and then becomes positive again for r > r+. Hence there
are two phases of stable black hole, one with horizon radius less than the other separated
by a thermodynamically unstable black hole with intermediate horizon radius (Fig. 3).
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• Gauss-Bonnet-AdS

The event horizon radius, rh, is given by the largest value of r that is a solution of
e2v = 0, where e2ν is given by Eq. (2.64), and can be inverted to express the mass of the
BH as a function of the horizon radius

M = (d− 1)Σkr
d−2
h

16π

(
k + α̃k2

r2
h

+ r2
h

L2

)
. (2.83)

Then, the temperature of the GB-AdS black hole is obtained using Eq. (2.77) with (e2ν)′|rh
instead of f ′(rh)

T = 1
4π

(
e2ν
)′

= d r4
h + (d− 1)kL2rh2 + (d− 4)α̃k2L2

4πrh(r2
h + 2α̃)k . (2.84)

When higher order curvature terms are introduced, the entropy is no longer given by one
quarter of the horizon area, but the 1st law of BH thermodynamics is still valid and one
can obtain the entropy using it

S =
ˆ
T−1dM =

ˆ rh

0
T−1

(
∂M

∂rh

)
drh. (2.85)

We assume that the entropy of the BH goes to zero when the horizon radius goes to zero.
The explicit form of the entropy can be find by substituting the expressions for M and T
into the integral and evaluating it. The result is

S = Σkr
d−1
h

4

(
1 + (d− 1)2α̃k

(d− 3)r2
h

)
. (2.86)

With the quantities M,T, S given above, we can construct the thermodynamic poten-
tial and study the globally preferred solutions. In Fig. 4 we show the BH temperature
for d + 1 = 5 without the GB term for different horizon topology, k = −1, 0, 1. In the
case of hyperbolic horizon (solid black line), black holes only exists with horizon radius
greater than a minimun value and are always thermodynamically stable. Thermodynamics
properties of planar BHs (dashed blue line) are independent of the GB coupling constant
although both solutions are very different they present the same thermodynamics and
are always thermodynamically stable. Spherical horizons (orange dot-dashed line) are not
always thermodynamically stable; they exhibit a first order phase transitions between
small (unstable) and large black holes (stable).
GB-AdS spherical black holes with d+ 1 = 5 and d+ 1 > 5 have very different thermody-
namic properties as can be seen from the expression of the temperature Eq. (2.84). For
d+ 1 = 5 the BH temperature has T = 0 for r → 0 while for d ≥ 6, the BH temperature
behave as T → ∞ for rh → 0 and shows a behavior similar to BH without GB term.
The temperature T of a d + 1 = 5 GB-AdS BH is show in Fig. 5 as a function of the
horizon radius rh for different values of the coupling constant. The introduction of the
GB term brings out a new region where small BHs are stable: considering the dashed
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Figure 4 – Temperature T of d + 1 = 5 topological BHs without the GB term (α = 0) as a
function of the horizon radius rh. The solid black line is the BH with hyperbolic
horizon k = −1. The blued dashed line is the BH with planar horizon k = 0 and the
orange dot-dashed line is the BH with spherical horizon k = 1.
Source: By the author.
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Figure 5 – Temperature T of d + 1 = 5, k = 1 GB-AdS black hole as a function of horizon
radius rh for different values of the coupling constant α: we plotted the solid black
line with α̃ = 0, the dashed blue line with α̃ = 0.01 and the dot-dashed orange line
with α̃ = 0.1.
Source: By the author.
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blue line in Fig. 5, the heat capacity starts positivity from rh = 0, becomes negative and
then positive again (analogous to the RN-AdS BH discussed above). BHs with spherical
horizon (without the GB term) in AdS do not posses the first stable region. We should
mention that the preferred thermodynamics configuration will be the one which minimizes
the free energy F = M − TS. BHs in the GB-AdS theory with spherical horizon and fixed
parameters (rh, α) is not the solution which minimizes the free energy (thermal AdS does).

2.4.1 Black hole chemistry

Black hole chemistry is essentially incorporating the PdV term of the 1st law of
thermodynamics in the thermodynamics of black holes and studying the phase structure
of the black holes. There’s no obvious way to introduce the concept of pressure for a
black hole, which historically justifies the omission of the PdV term in the first law of
BH thermodynamics. But from the cosmological perspective, it’s natural to consider the
cosmological constant as the pressure when treating the vacuum as a perfect fluid. To
see this, consider Einstein’s equation with cosmological constant and treat the vacuum
as a perfect fluid, Gab = −Λgab = 8πTab. The stress-energy tensor of a perfect fluid is
Tab = (ρ+ p)uaub + pgab, where p and ρ are the pressure and energy density, respectively
and ua is the velocity field of the fluid. Comparing both sides of the equation leads to the
identification

p = − Λ
8π , (2.87)

and when Λ < 0 we obtain a positive pressure. The generalized 1st law of thermodynamics
(treating Λ as a dynamical variable) was obtained in 38 and is given by

dM = TdS + V dP + ΩdJ + ΦdQ (2.88)

where V , the thermodynamic volume, is defined to be the conjugate variable to the pressure

V ≡
(
∂M

∂P

)
S,Q,J

(2.89)

The thermodynamic volume is independent of the geometric volume for most black holes 39

and in general, cannot be given a geometric interpretation. Comparison between the first
law of thermodynamics (2.71) and the generalized first law of BH thermodynamics (2.88)
leads us to the conclusion that M is no longer associated with the internal energy but
rather with the chemical enthalpy‡‡‡: the internal energy E plus the energy PV required
to displace the vacuum energy of its environment. 40 Once the identifications are properly
made, we can start studying the phase structure of some black holes in AdS space. Black
hole chemistry is a novel area of research with interesting phenomena appearing: black
holes with phase structure similar to van der Waals fluids, solid liquid transition, triple
‡‡‡ One is related to the other by a Legendre transformation.
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points and reentrant phase transitions have beeb found. See 40,41 for a review. In particular,
one can understand stability of BH by looking at the BH compressibility k, defined to be

k = − 1
V

(
∂V

∂P

)
S,Q,J

. (2.90)
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3 STABILITY

This chapter is devoted to the study of stability of solutions to Einstein equation.
We introduce the concept of quasinormal modes which can indicate linear stability using
as reference 42 and discuss the role that these modes play in the holographic duality. Then
we study the nonlinear stability of AdS spacetime based on reference. 10

3.1 Introduction

The question about stability of solutions to theories of gravity is important to
understand better the physical significance of these solutions. This is, if the solution is
unstable (a sufficiently small perturbation leads to an unbounded growth), we probably
will not find the object described by the solution in nature, unless the timescale of the
instability is much larger than another timescale (e.g. the age of the universe) present in
the system.

Regarding the stability of spacetimes, it was proven that Minkowski spacetime
and de Sitter spacetime are nonlinearly stable. 43,44 The mechanism responsible for the
stability in Minkowski and de Sitter is related to the fact that linear fields decay sufficiently
fast at infinity. Stability of black hole spacetimes is an active topic of research nowadays
and recently it was proven that the asymptotically flat Schwarzschild 45 and non-extreme
Kerr 46 spacetimes are linearly stable. The nonlinear stability problem of these spacetimes
is much harder and has not yet been proven.

Concerning asymptotically AdS spacetimes, the linear stability of pure AdS has
been proven 47 but no proof has been given with respect to the nonlinear stability. In
fact, it’s conjectured that AdS spacetime is nonlinearly unstable [Dafermos, 2006], which
means that arbitrarily small perturbations will lead to the formation of black holes. What
makes difficult to proof the nonlinearly (in)stability of AdS is the fact that AdS has a
timelike boundary and therefore, energy cannot disperse to infinity. It should be said that
the stability question of AdS is dependent on the boundary conditions chosen for AdS
of which the most common is the reflecting boundary condition on conformal infinity I,
which does not permit any flux of energy through the boundary. Recently, the nonlinear
instability of a Einstein null dust system has been proven for this boundary condition. 48 A
remarkable attempt to resolve the problem of AdS stability was given in. 10 Their numerical
results support the conjecture of instability of AdS and they also give some heuristic
arguments explaining the reason why AdS is nonlinearly unstable under arbitrarily small
perturbations against the formation of black holes. After this work, a large number of
papers on the subject was published examining different models and assumptions.
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Before discussing the results of 10 about the nonlinear instability of AdS, we review
the topic of quasinormal modes (QNMs) which can indicate stability or instability of black
holes at the linear level and also has applications in astrophysics and holography.

3.2 Quasinormal modes

Linear perturbations around solutions to Einstein’s field equation can indicate
stability or instability of such geometry and they can be used to learn more about black
holes and stars. When the spacetime is perturbed, it will oscillate. These oscillations,
that go to spatial infinity or fall into a black hole, are known as quasinormal modes. The
term "quasi" here indicates that we’re dealing with a dissipative (the black hole event
horizon behaves as a one-way membrane) and open system such that energy is dispersed
through gravitational waves and/or electromagnetic and scalar waves if matter is present.
Formally, in a vacuum spacetime the linearized Einstein’s equation around a fixed black
hole spacetime whose metric is known takes the form 42

δRµν = 0, (3.1)

where the metric deviations from the fixed background is assumed to be small. In general,
Eq. (3.1) can be rewritten in the form of a wave equation for the metric perturbations. Once
the equations are obtained what remains to be done is solve them with the appropriate
boundary conditions: purely outgoing waves at infinity and purely incoming waves at the
event horizon. The boundary conditions cause the spectrum to become discrete. The radial
part of the wave equation behaves as

ψ ∼ e−iωt = e−i(ωR+iωI)t = eωI t cos(ωRt) (3.2)

where ωR, the real part of the complex frequency, is related to the period of oscillation

T = 2π
ωR

(3.3)

and the imaginary part ωI gives a characteristic time scale

τ = 1
ωI
. (3.4)

A first and sometimes naive∗ analysis may give us indications about the stability of the
spacetime under these perturbations, since

ωI < 0, exponential damping (stable);

ωI > 0, exponential growth (unstable).

∗ Naive since higher order corrections can render a linearly unstable spacetime to become
nonlinearly stable in the full nonlinear regime.
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The wave equation obtained solely perturbing the spacetime metric is similar to the one
obtained when analyzing classical fields in fixed black hole spacetimes. To illustrate this,
we consider the simplest case of a scalar field in an asymptotically flat Schwarzschild
spacetime whose dynamics are governed by the Klein-Gordon equation

1√
−g

∂µ
(
gµν
√
−g∂νψ

)
= 0. (3.5)

The line element of the Schwarzschild black hole reads:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2, f(r) = 1− 2M
r
. (3.6)

To solve Eq. (3.5), we make the following separation of variables

ψ(t, r, θ, φ) =
∑
l,m

e−iωtYlm(θ, φ)ϕ(r)
r

(3.7)

where Ylm are the spherical harmonics. Plugging this ansatz into Eq. (3.5) we obtain

1
f
∂2
t ψ + 1

r2

(
∂r
(
r2f∂rψ

))
+ 1
r2 sin θ (∂θ (sin θ∂θψ)) + 1

r2 sin2 θ
∂2
φψ = 0 (3.8)

and the equation for ϕ(r) is

ω2ϕ+ f

r

[
∂r

(
fr2∂r

(
ϕ

r

))]
− f (l(l + 1))

r2 ϕ = 0. (3.9)

In order to put Eq. (3.9) into a Schrödinger-like form, we need to get rid of the first order
derivative. We accomplish this by using the following coordinate transformation

dr∗
dr

= 1
f

=⇒ r∗ = r + 2M ln(r − 2M) (3.10)

the coordinate r∗ is called the tortoise coordinate and the black hole event horizon (which
in the coordinates (t, r, θ, φ) is located at r = 2M), is located at r∗ = −∞. Finally, the
radial equation for φ(r) can be put in a Schrödinger-like form

(
ω2 + ∂2

r∗

)
φ =

(
1− 2M

r

) [
l(l + 1)
r2 + 2M

r3

]
φ. (3.11)

In the above equation, r is to be understood as a function of r∗. The effective potential on
the r.h.s of Eq. (3.11) can be generalized for different types of perturbation 49 as

Vl(r) =
(

1− 2M
r

) [
l(l + 1)
r2 + 2M(1− s2)

r3

]
φ. (3.12)

where s = 0, 1, 2 for scalar, electromagnetic and axial† gravitational perturbations, respec-
tively. The axial perturbations have parity (−1)l+1 while polar perturbations have parity
† Axial perturbations are the ones that induce frame dragging and rotation to the black hole.

On the other hand, polar perturbations are perturbations on the already non-vanishing metric
components.
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(−1)l. Symmetry consideration constrain the possible values of l for the different types of
perturbations. For scalar, electromagnetic and gravitational perturbations, we have l ≥ 0,
l ≥ 1 and l ≥ 2, respectively.

The QNMs are intimately related with gravitational wave astronomy and can
be used to test GR. They have the extraordinary property to depend only on the BH
parameters and are independent of the initial perturbation. 3,49 As discussed in Section
(2.3.5), astrophysically relevant black holes in GR depend only on their parameters (M,J).
Considering the coalescence of two black holes, just after the merger the final state consists
of a single black hole emitting gravitational waves. Then, the precise measurement of the
1st ringdown QNM in earth based interferometers ( such as LIGO and VIRGO) enables
us to invert the relation between the measured quantities (ωR, ωI) to obtain the final
BH parameters (M,J). If the precision is accurate enough to measure the 1st and 2nd
ringdown modes, it’s possible to test GR in the strong gravity regimes of the merging of
two black holes, two neutron stars or the merger between a black hole and a neutron star.
In the case involving neutron stars, the measurement and analysis of the signal will give
us information about the equation of state of the matter inside the neutron star, which is
not well known currently.

3.2.1 Holography and quasinormal modes

In addition to the applications of QNMs in astrophysics, they can also be used to
study hydrodynamic properties of quantum systems through the AdS/CFT correspon-
dence. This requires the study of QNMs of asymptotically AdS BH which corresponds to
perturbations of the dual CFT on the boundary. 50,51

Considering asymptotically AdS BHs, conservation of energy implies we should
adopt reflective boundary conditions at infinity (the analogous of the potential (3.12) for
the AdS case diverge at infinity so the wave function must vanishes there) and at the
horizon we should require only incoming waves. These boundary conditions will only be
satisfied by some discrete set of values of complex ω and in general, it will not be possible
to solve the perturbation equations exactly determining the spectrum of the QNMs and
one should use numerics. 52

The imaginary part of ω, ωI , governs the damping (or growth) of the BH perturba-
tions. From the AdS/CFT correspondence, a large and static BH in AdS approximately
corresponds to a thermal state in the conformal field theory and then perturbations of the
BH are interpreted as perturbations on the CFT. Therefore, the thermalization timescale
of the CFT will be dictated by the τ = 1/ωI , which for strongly coupled CFTs are usually
difficult to calculate. Scalar QNMs for Schwarzschild-AdS were computed in 50 and for l = 0
and it was verified that for large black holes (rh � L) the thermalization timescale scales
as τ ∼ 1/T , where T is the BH temperature. While electromagnetic and gravitational
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Figure 6 – Scalar, electromagnetic and gravitational quasinormal modes for (3+1) dimensional
and large Schwarzschild-AdS black hole computed for l = s.
Source: BERTI; CARDOSO; STARINETS. 3

QNMs for Schwarzschild-AdS were computed in 52 and it was found that ωI < 0 indicating
linear stability of this black hole against such perturbations. Also, QNM frequencies are
practically independent of l for l� r+/L (Fig. 6).

3.3 Nonlinear instability

The influential paper 10 (from now on referred as BR) gives numerical evidence
that AdS is nonlinearly unstable against generic initial perturbations that lead to the
formation of black holes and gives a heuristic argument to explain this result based on a
nonlinear perturbation analysis. The time scale for black hole formations is of the order
1/ε2, where ε is the amplitude of the initial perturbation.
In this section, we show the heuristic arguments in favor of the conjecture as presented
by BR. They work within a 3+1 dimensional spacetime and assume spherical symmetry
of the spacetime. Birkhoff’s theorem states that any spherically symmetric solution of
the vacuum field equations must be static. In order to evade the absence of dynamical
degrees of freedom due to Birkhoff’s theorem, it’s necessary to add matter. For simplicity
the matter chosen is a minimally coupled massless scalar field, φ, with spherical symmetry.
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Their model is then given by the action

S = 1
16πG

ˆ
d4x
√
−g (R− 2Λ + ∂µφ∂

µφ) . (3.13)

The equations of motion are given by

Rαβ −
1
2gαβR + Λgαβ = 8πG

(
∂αφ∂βφ−

1
2gαβ(∂φ)2

)
(3.14)

gαβ∇α∇βφ = 0. (3.15)

The ansatz for an asymptotically AdS4 spacetime is chosen to be (compare with the
conformal metric (2.20))

ds2 = L2

cos2 x

(
−Ae2δdt2 + A−1dx2 + sin2 xdΩ2

)
. (3.16)

The functions A and δ depend only on (t, x) and L is the AdS4 radius. Using the ansatz
(3.16) and the auxiliary variables Φ = φ′ and Π = A−1eδφ̇, the field equations become

Φ̇ =
(
Ae−δΠ

)′
, Π̇ = 1

tan2 x
(tan2 xAe−δΦ)′

A′ = 1 + 2 sin2 x

sin x cosx (1− A)− sin x cosxA(Φ2 + Π2)

δ′ = − sin x cosx(Φ2 + Π2)

(3.17)

where a prime ′ denotes derivative with respect to the radial coordinate x and a dot ˙
denotes derivative with respect to the time coordinate t. The first two equations in (3.17)
are a wave equation written as two first order equations and are coupled to the remaining
two elliptic equations in (3.17) usually referred to as constrains. The task is to solve the
initial-boundary value problem for the system (3.17) under small perturbations of the AdS
spacetime A = 1, δ = 0, φ = 0.
Heuristics - weakly nonlinear perturbation analysis
The initial data is assumed to be smooth and small

(φ, φ̇)|t=0 = (εf(x), εg(x)), (3.18)

where f and g are fixed functions satisfying the boundary conditions and ε is a parameter
assumed to be small. We expand the fields in power series near the pure AdS solution

φ = εφ1 + ε3φ3 + ... (3.19)

δ = ε2δ2 + ε4δ4 + ... (3.20)

A = 1 + ε2A2 + ε4A4 + ... (3.21)

where (φ1, φ̇1)|t=0 = (f(x), g(x)) and (φj, φ̇j)|t=0 = (0, 0) for j ≥ 2. Inserting the above
expansion in the field Eq. (3.17) and collecting the terms with the same power in ε results
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in a hierarchy of linear equations which can be solved order by order.
• First order. The first order in ε equation for the scalar field φ is

φ̈1 + Lφ1 = 0, L = − 1
tan2 x

∂x(tan2 x∂x). (3.22)

The operator L is essentially self-adjoint on L2([0, π/2], tan2 xdx). The eigenvalues, ωj,
and eigenvectors, ej(x), of this linear operator are known and have the following values 47

ω2
j = (3 + 2j)2, ej(x) = dj cos3 x 2F1(−j, 3 + j,

3
2; sin2 x). (3.23)

The dj’s are normalization constants guaranteeing that (ei, ej) = δij
‡ We see that all the

eigenvalues of the operator L are strictly positive which means that the solution is linearly
stable. So any solution of Eq. (3.22) can be written as

φ1 =
∞∑
j=0

aj cos(ωjt+ βj)ej(x) (3.24)

where the amplitudes aj and the phases βj are determined by the initial data.
• Second order. Looking at the system (3.17), the equations for the metric functions A and
δ are quadratic in the scalar field, which means that the first perturbation on the metric
appears at second order. So, once the first-order solution is known, the back-reaction to
the metric can be found. The second order in ε equations for the metric functions A and δ
are

A′2 + 1 + 2 sin2 x

sin x cosx A2 = sin x cosx(φ̇2
1 + φ

′2
1 ) (3.25)

δ′2 = − sin x cosx(φ̇2
1 + φ

′2
1 ). (3.26)

The equation for δ2 can be trivially integrated once the solution φ1 is known while the
equation for A2 can be solved by the integrating factor method to give

A2 = cos3 x

sin x

ˆ x

0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
tan2 ydy (3.27)

δ2 = −
ˆ x

0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
sin y cos ydy. (3.28)

• Third order. The first non trivial property of the system appears at third order. The
equation for the scalar field is

φ̈3 + Lφ3 = S(φ1, A2, δ2) (3.29)

where S := 2(A2 + δ2)φ̈1 + (Ȧ2 + δ̇2)φ̇1 + (A′2 + δ′2)φ′1. In order to analyze solutions of Eq.
(3.29), we project onto the basis {ej} of the linear solution obtaining an infinite system of
‡ The inner product of f and g on the Hilbert space L2([0, π/2], tan2 xdx) is denoted and given

by (f ,g) :=
´ π/2

0 f(x)g(x) tan2 xdx.
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decoupled forced harmonic oscillators for the generalized Fourier coefficients cj(t) = (φ3, ej)

c̈j + ω2
j cj = Sj := (S, ej). (3.30)

The principal point in this heuristic discussion is that there are resonant terms in Sj,
that is, terms proportional to cosωjt or sinωjt which make the solution grow linearly
with t and invalidates perturbation theory. More exactly, let J = {j ∈ N0 : aj 6= 0} be a
set of indices of non zero modes in the linearized solution (3.24). Then it can be shown
that for each triad (j1, j2, j3) ∈ J 3 such that ωj = ωj1 + ωj2 − ωj3 gives rise to a resonant
term in Sj. 53 Some of these resonant modes can be eliminated by the Poincaré–Lindstedt
method (see Appendix A). But, since there is an infinite number of resonant terms, we
cannot eliminate all of them. This resonant mode, it’s believed, will trigger an (turbulent)
instability by transferring energy from low to high energy modes. Eventually, energy will
be concentrated is such small scale that a black hole will form. Note that BR do not claim
that there will be BH formation for all small perturbations. If there’s only one initial
mode in the perturbation, instead of a linear combination of them, it’s possible to add
nonlinear corrections systematically in order to avoid the resonant terms.
A number of comments on papers that followed BR are necessary. The generalization
to consider a complex scalar field was done in 54 and similar results were found. The
purely gravitational problem of the nonlinear stability of (3+1) dimensional AdS was
studied in 55 and similar results were also found. In this study, they had to give up
the spherical symmetry which implies more coupled differential equations to solve and
numerical calculations become considerably difficult. The analysis of BR was made for
(3+1) dimensional spacetime. The authors of 56 looked at the same model but for (4+1)
dimensional spacetime and arrived at the conclusion that there’s no BH formation, which
was subsequently contested in 57 where they argue that the same mechanism presented in
BR is valid for higher dimensional AdS spacetimes and so, AdSd+1 is unstable to black hole
formation under arbitrarily small scalar perturbations for all d ≥ 3. They say the erroneous
conclusion of 56 was caused by the insufficient spatial resolution in their numerical code and
the lesson to be learned is to be careful about the conclusions from numerical simulations
of asymptotically AdS spacetimes. Gravitational perturbations were considered in 58 for
AdS5 and there is also numerical evidence of black hole formation on time scale of the
order O(ε−2), where ε is the amplitude of the perturbation. The addition of high order
curvature terms was analyzed in 59 for spherically symmetric (4+1) dimensional spacetime
minimally coupled to a massless scalar field. The high order curvature considered is the
Gauss-Bonnet (GB) term and evidence is given that the inclusion of the GB term renders
the spacetime to be stable under such arbitrarily small perturbations. From the AdS/CFT
viewpoint, higher order curvature corrections translate to finite N and ’tHooft coupling
corrections in the dual theory and the absence of BH formation leads to the conclusion
that the perturbations on the dual theory do not thermalize.
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4 SCALAR-TENSOR GRAVITY

This chapter is devoted to discuss how to modify GR as a theory of gravity while
preserving some of its properties. We restrict the discussion to scalar-tensor theories of
gravity with higher order curvature terms. At the end of the chapter, we discuss the
multipole expansion for the electromagnetic field in a fixed solitonic background.

4.1 Introduction

In order to modify GR, one can adopt the following line of reasoning. The Einstein
equation is given by

Gµν + Λgµν = 8πTµν (4.1)

relating the geometry of the spacetime with its matter content. The l.h.s. is a symmetric
and divergence-free rank-2 tensor depending only on the metric and its first and second
derivatives. A natural question to ask is if the l.h.s is the only possible choice while
preserving these characteristics. A theorem proved by Lovelock 60 guarantees that, in four
dimensions, the unique symmetric rank-2 divergence-free tensor depending only on the
metric and its first and second derivatives are the Einstein tensor and the metric itself
and therefore, GR is the only theory constructed from the metric with such properties. So,
to modify GR while requiring it to have second-order field equations, be diffeomorphism
covariant and arise from an action principle one should relax some assumptions. The
possibilities are

• consider higher dimensions;

• add degrees of freedom.

In the first case, the theories are known as Lovelock theories and are the most general
diffeomorphic invariant gravity theory in higher dimensions with second order equation
of motion for the metric field. Lovelock theories have the property that gravitational
waves (GWs) can propagate faster or slower than the speed of light, so GWs detection can
rule out some of these theories as candidates to describe gravity. The second alternative
allows for a plethora of modifications depending on what additional degree of freedom you
consider (scalar, vector, tensor...) and how to couple it with the metric field. The simplest
modification one can think in this context is to add a scalar field giving rise to what is
know as scalar-tensor (ST) theories of gravity. Another useful theorem classifying all ST
theories of gravity in four dimensions was proved by Horndeski 61 and states that the
only class of four dimensional ST theories giving rise to 2nd order equations of motion for
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both the metric and the scalar field are the Horndeski Theories (also known as generalized
galileons)∗:

S =
ˆ
d4x
√
−g (L2 + L3 + L4 + L5) (4.2)

where

L2 = K(φ,X), L3 = −G3(φ,X)∇α∇αφ,

L4 = G4(φ,X)R +G4X [(∇α∇αφ)2 − (∇µ∇νφ)2],

L5 = G5(φ,X)Gµν∇µ∇νφ− 1
6G5X [(∇α∇αφ)3 − 3∇α∇αφ(∇µ∇νφ)2 + 2(∇µ∇νφ)3],

(4.3)

and K,G3, G4, G5 are arbitrary functions of the scalar field φ and X = −∂µφ∂µφ/2. Gµν

is the Einstein tensor and fX denotes the derivative of the function f with respect to
X. If one considers the subclass of Horndeski theories in which the scalar field has shift
symmetry φ→ φ+ c, then we have what is called the shift-symmetric Horndeski theory.
The most general shift-symmetric Horndeski theory was proven 63 to be given by Horndeski
action (Eq. 4.2) with the substitutions

K(φ,X)→ K(X), G3(φ,X)→ G3(X),

G4(φ,X)→ G4(X), G5(φ,X)→ G5(X).
(4.4)

We should comment on the requirement of the equations of motion to be second order.
Higher order equations, in general, introduce additional degrees of freedom known as
ghosts which cause instability of the theory (Ostrogradsky instability). Although the action
for Horndeski theory contain second order derivatives of the scalar field, it can be show
61 that the equations of motion remains second order and are free from Ostrogradsky
instability. However, second order equations of motion are not necessary conditions for the
absence of the Ostrogradsky instability in theories with multiple fields. 64 Exist theories
with higher order equations of motion free from Ostrogradsky instability, these are the
so-called degenerate higher-order scalar-tensor (DHOST) theories. DHOST theories were
first found by performing a disformal transformation

gµν → g̃µν = C(φ,X)gµν +D(φ,X)∇µφ∇νφ (4.5)

in a Horndeski theory. The resulting equations contain higher order derivatives. The
condition for the existence of an inverse disformal transformation is given by

C
(
C −XCX + 2x2DX

)
6= 0. (4.6)

With the above condition satisfied, both theories (the Horndeski and the theory with
higher order equation of motion) are related by a field redefinition and contain the same
∗ The Horndeski theories was rediscovered a few years ago 62 motivated by cosmology.
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Figure 7 – Map of scalar-tensor theories of gravity.
Source: LANGLOIS.4

quantity of degrees of freedom. 4 A map of the space of the ST theories is shown in the
Fig. 7.

In what follows we consider only the subclass of Horndeski theories which are
shift invariant. Reference 65 proved a no-hair theorem for the generalized galileons: static,
spherically symmetric black hole do not sustain non trivial galileon field outside the horizon.
To prove the theorem, the symmetry of the galileon φ → φ + c, which gives rise to a
conserved Noether current, the symmetries of the background and regularity of physical
quantities on the BH event horizon was used. Evading the assumption about regularity of
the norm of the Noether current on the event horizon was a step towards constructing
hairy BHs in the model. 63

4.2 Gauss-Bonnet scalar-tensor gravity

In the low energy limit, string theory reduces to GR, essentially. First order
corrections in α′† introduce second order curvature terms and a scalar field known as the
dilaton field. A special case of interest in which there is an asymptotically flat and static
hairy black hole solution 66 is given by the action‡

S =
ˆ
d4x
√
−g

(
R− 1

2∂µφ∂
µφ+ α′eφG

)
. (4.7)

† The string length scale squared.
‡ In this section we set 16πG = c = 1.
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where the second order curvature term is the Gauss-Bonnet (GB) term, G, (see Section
2.3.4) which is given by

G = RµνσρRµνσρ − 4RµνRµν +R2. (4.8)

The scalar field is nontrivial outside the horizon characterizing what we call hair but it
is a secondary hair (see Section 2.3.5) in the sense that it depends on the BH mass and
does not have an independent parameter. The black hole solutions exist up to a certain
value for the coupling constant α above which there’s a naked singularity. Recently, it was
proven in 67 that when choosing the arbitrary functions of Horndeski theory (Eq. 4.3) to
be

K = G3 = G4 = 0, G5 = −2γ ln|X|. (4.9)

where γ is a constant, one obtains a model with a linear coupling between the scalar field
and the GB term

S =
ˆ
d4x
√
−g

(
R− 1

2∂µφ∂
µφ+ γ

2φG
)

(4.10)

and hairy black hole solutions in this shift-symmetric Horndeski theory are quite general
unless one excludes by hand the coupling between the scalar field and the Gauss-Bonnet
term. This can be seen by the scalar field equation

∇α∇αφ+ γ

2G = 0. (4.11)

The GB term only vanishes identically in flat spacetime, requiring φ to have a nontrivial
configuration for the above equation to be satisfied. The model given by Eq. (4.10) is
invariant under φ→ φ+aµxµ+c (aµ, c being constant) because the GB term is a topological
invariant in 4 spacetime dimensions. This leads to a conserved Noether current which
can be used to understand better the model. Although not stated in 63, the norm of the
Noether current diverges at the BH horizon not violating, therefore, the theorem on no
galileon hair proved in 65, which assume the norm of the Noether current to be finite at
the horizon.

The study of the addition of a cosmological constant to the model given by Eq.
(4.10) was first analyzed in 68 and then generalized for arbitrary coupling of the scalar
field to the GB term in. 69 The action for the linear coupling is then given by

S =
ˆ
d4x
√
−g

(
R− 2Λ + γ

2φG − ∂µφ∂
µφ
)

(4.12)

in order to look for solutions to the above model one should make an ansatz about the
metric. For simplicity, the ansatz chosen is a static spherically symmetric one and reads

ds2 = N(r)σ2(r)dt2 + 1
N(r)dr

2 + r2(dθ2 + sin2 φ2), φ = φ(r) (4.13)

The equations of motion are given by varying the action (Eq. (4.12)) with respect to the
metric and the scalar field and its explicit form are found in. 68 They’re a set of four
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coupled nonlinear differential equations with unknown analytical solution and have to be
solved numerically with the appropriate boundary conditions. When the coupling constant
γ vanishes, there’s an exact static and spherically symmetric BH solution given by the
Schwarzschild-AdS BH (Eq. (2.42)). So we can think of finding perturbative solutions in
the coupling constant γ. The asymptotic behaviour of the metric functions is found to be
AdS only up to linear order in γ because the curvature sources the scalar field equation
even at r →∞. 68 It was found that with the addition of a cosmological constant BHs with
regular horizon and non-trivial scalar field only exist for some intervals of the coupling
constant, there exists a gap in the coupling constant parameter where there’s no black hole
solution with regular event horizon. Also, for specific values of the parameters (Λ, γ, rh),
the scalar field derivative can diverge at the horizon.

Solitonic solutions to the model given by the action Eq. (4.12) were also found,
differently of what was shown in the flat counterpart case where solitonic solution was
proven to not exist. 70 The addition of a U(1) gauge field to the model was discussed in. 71

The action is given by

S =
ˆ
d4x
√
−g

(
R− 2Λ + γ

2φG − ∂µφ∂
µφ− 1

4FµνF
µν
)
, (4.14)

the solitonic background spacetime is described by the metric (4.13) with the metric
functions up to second order in the coupling constant given by

N = 1 + x2 + ζ2
(
−2− 10

3 x
2 + 2

x
arctan(x)

)
, σ = 1− ζ2

9
1

1 + x2 , (4.15)

where we have defined ζ2 = γ2Λ2/9 and x =
√
−Λ/3 r. Motivated by 72,73 where have

been found static and everywhere regular multipole moments with finite energy of the
electromagnetic field, we study the multipole expansion for the electromagnetic field in
the solitonic background given by Eq. (4.13) with the metric functions N and σ given by
Eq. (4.15).

4.2.1 Electromagnetic multipoles

We choose the ansatz for the vector potential to be

Aµdx
µ = At(r, θ)dt+ Aϕ(r, θ)dϕ. (4.16)

To study purely an electric field on the solitonic background given by the metric functions
(4.15), we choose Aϕ = 0 and then use separation of variables

At(r, θ) =
∞∑
l=0

Rl(r)Pl(cos θ) (4.17)

where Pl(cos θ) is the Legendre polynomials with l ≥ 0. Plugging Eq. (4.17) into the
Maxwell’s equation in the background given by Eq. (4.15) we find the equation satisfied
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Figure 8 – The radial function Rl for the electric multipoles. On the left, we plot the dipole l = 1
radial function for increasing values of the coupling constant γ. On the right, we plot
the first five radial functions for fixed value of γ = 0.54.
Source: By the author.

by the radial function for a given l

R
′′

l = l (l + 1) Rl

x2N
+R′l

(
σ′

σ
− 2
x

)
, (4.18)

with ′ denoting derivative with respect to the radial coordinate x. For ζ = 0, there is
analytical solution given in terms of hypergeometric functions for any l ≥ 1. The case
l = 0, the monopole, has trivial solution R0 = 1. While in the case ζ 6= 0, we have to solve
Eq. (4.18) numerically except for the monopole where the radial equation reduces to

R′′0(x)−R′0(x)
(
σ′(x)
σ(x) −

2
x

)
= 0 (4.19)

which has the solution

R0(x) = c1 + c2

(
ζ2 − 9
x

+ ζ2 tan−1(x)
)

(4.20)

with c1, c2 arbitrary constants. So we see that the monopole l = 0 is not regular everywhere,
diverging at the origin unless one sets c2 = 0 or a specific value for the coupling constant
ζ2 = 9, but this case is excluded because ζ is assumed to be small in the derivation of
the metric functions N and σ. Choosing c2 = 0 leads to the trivial solution R0 = c1, but
in this case, the boundary conditions, Rl(0) = 0 and Rl(r → ∞) = 1, is not satisfied.
Therefore, "spherically symmetric, static and charged generalisations of the scalar-tensor
solitons with approximate AdS asymptotics are not possible." 71

We show the numerical solution for the the multipoles l = 1, ..., 5 in Fig. 8.
The equations were solved numerically up to second order in ζ and a critical value for
the coupling constant was found above which the solutions vanish. Solving the equations
numerically for all orders in γ, it was shown in 71 that the solutions exist for all values of the
coupling constant ζ. The boundary conditions imposed are Rl(0) = 0 and Rl(r →∞) = 1.

The energy-momentum tensor of the electromagnetic field is given by

Tµν = FµαF
α
ν −

1
4gµνF

2, (4.21)
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Figure 9 – The energy density, −T 0
0 , for the electric quadrupole l = 2 for γ = 0 (left) and

γ = 0.54 (right) as functions of the radial coordinate r and the polar coordinate θ.
Source: By the author.

we have computed the energy density, −T tt , of the electric and magnetic multipoles
as seen by a static observer with four velocity uµ ∝ (1, 0, 0, 0). The energy density for the
quadrupole l = 2, is shown in Fig. 9 for the electric field and in Fig. 10 for the magnetic
field as functions of the radial coordinate r and the polar coordinate θ and specific values
of the coupling constant: γ = 0 on the left and γ = 0.54 on the right. The distribution of
the energy density is symmetric about θ = π/2, concentrates near the origin and decreases
when γ increases. To study the magnetic multipoles, we choose At = 0 in the ansatz (4.16)
and assume the separation of variables

Aϕ(t, θ) = Sl(r)Ul(θ). (4.22)

We use the electromagnetic duality to relate the functions Rl and Pl of the electric case to
Sl and Ul of the magnetic case. The duality relates them by
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Figure 10 – The energy density, −T 0
0 , for the magnetic quadrupole l = 2 for γ = 0 (left) and

γ = 0.54 (right) as functions of the radial coordinate r and the polar coordinate θ.
Source: By the author.

Sl(r) = r2

σ(r)
dRl

dr
, Ul(θ) = sin θdPl

dθ
. (4.23)
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In conclusion, we have found that the multipole expansion of the electromagnetic field in
the solitonic background with metric given by (4.13) and the metric functions by (4.15)
is everywhere finite and regular except for the monopole l = 0. Our result is valid up to
second order in the coupling constant γ and it has been generalized to arbitrarly orders in
reference. 71 The energy density of the multipoles l ≥ 1 is concentrated near the origin of
the coordinates system r = 0, and indicates that the solutions possesses finite energy.



65

5 CONCLUSIONS

This dissertation deals with extensions of General Relativity in the form of scalar-
tensor gravity. We have been primarily interested in asymptotically Anti-de Sitter spacetime
which is quite popular in theoretical physics nowadays because of its role in describing
strongly coupled QFTs through the AdS/CFT correspondence. We have two main reasons
to have studied the topics in this dissertation: (i) astrophysical/cosmological in the sense
of a better understanding of gravity theories in these spacetimes by compare its prediction
with what is observed through gravitational wave detections and others observations. (ii)
use these theories as toy models to understand strongly coupled quantum field theories
better through the above mentioned correspondence. We have mentioned the existing
applications of the topics discussed in here in holography such as the description of
holographic superconductors through the coupling of a charged scalar field to an AdS
black hole and the role that the quasinormal modes of a black hole plays in the process
of thermalization in the dual theory. We also have discussed new current research topics
such as BH chemistry and the nonlinear instability of Anti-de Sitter spacetime reviewing
the main results.

Chapter 2 is devoted to study anti-de Sitter spacetime and black hole solutions
inside AdS. We only have discussed a few among the most popular BH solutions with AdS
asymptotics (Schwarzschild-AdS, Reissner-Nordström-AdS, Kerr-AdS and Gauss-Bonnet-
AdS) which we think is enough to illustrate the main points and features of these BHs.
BH thermodynamics in AdS is a very active topic of research and we have mentioned some
thermodynamic properties of AdS BHs.

We dealt with the instability issues of solutions to Einstein’s equation with AdS
asymptotic in Chapter 3. QNMs can indicate linear (in)stability of BHs and this is also a
very active area of research. Its relation with GWs was clarified and the interpretation
within the dual field theory was discussed. Currently, there’s enough evidence (both
numerical and analytical) in favor of the nonlinear instability of AdS. An analytical proof
of the nonlinear instability, however, is a work in progress and a great deal of new results
on the subject are expected in the coming years.

Some specific scalar-tensor theories of gravity have been discussed in Chapter 4.
They’re mainly motivated in order to explain the accelerated expansion of the universe.
The scalar-tensor gravity theories discussed in this dissertation are not favored by the
analyzes of the GW observations but this does not mean that they are useless: they also find
applications in holography. From the bottom-up approach it is not always straightforward
to find the dual theory, since the phase structure is, in general, more complicated. This
is a topic that will be addressed in the future. We also have discussed the multipole
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expansion of the electromagnetic field in a shift-symmetric scalar-tensor theory in which
the background has solitonic-like properties and our numerical results show the existence
of everywhere regular multipoles except for monopole l = 0.

To summarize, all the topics discussed in here are central in order to better
understand theoretical physics, specially BHs. These object plays such a major role in
theoretical physics nowadays that they can be called the "harmonic oscillator of the 21st
century"74 and a proper understanding of Nature certainly requires a deep understanding
of these objects.
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APPENDIX A – POINCARÉ-LINDSTEDT METHOD

In this appendix, we deal with the Poincaré-Lindstedt method, which eliminates
resonant terms appearing in nonlinear perturbation theory. Some resonant terms appearing
in Eq. (3.30) can be eliminated by a specific time coordinate transformation and frequency
shift (but not all of them). To illustrate this procedure, we study the following example of
a 1-dimensional anharmonic oscillator 75

ẍ+ x+ εx3 = 0, (A.1)

for initial conditions (x(0), ẋ(0)) = (1, 0) and ε assumed to be a small parameter. Dot ˙
represents derivative with time coordinate t. We assume the existence of a perturbative
solution

x(t) = x0(t) + εx1(t) + .... (A.2)

The solution at 0th order in ε is x0 = cos t. The 1st order in ε equation is

ẍ1 + x1 + x3
0 = 0. (A.3)

Using some trigonometric identities, we rewrite x3
0 = cos3 t as x3

0 = (3 cos t + cos 3t)/4.
The 1st order in ε equation is a inhomogeneous second order differential equation. It’s
solution is given by

x1 = 1
32 (cos 3t− cos t)− 3

8t sin t. (A.4)

The last term on the r.h.s of Eq. (A.4) is responsible for invalidating the perturbation
theory since it grows linearly with t and is called secular term. The Poincaré-Lindstedt
method enable us to eliminate the secular term t sin t. Considering the transformation

τ = ωt, ω = ω0 + εω1 + ... (A.5)

Eq. (A.1) becomes
ω2x′′(τ) + x(τ) + εx(τ)3 = 0, (A.6)

with the same initial conditions as the original problem. Where a prime ′ denote derivative
with respect to τ . We chose ω0 = 1 since it’s the 0th order frequency. The solutions to the
0th and 1st order equations are

x0(τ) = cos τ, (A.7)

x1(τ) = 1
32 (cos 3τ − cos τ) +

(
ω1 −

3
8

)
τ sin τ. (A.8)

Choosing ω1 = 3/8 we eliminate the secular term. This procedure can be applied for higher
order secular terms if necessary and the final perturbative solution up to 1st order is

x(t) = cos
((

1 + 3
8ε
)
t
)

+ 1
32ε

[
cos

(
3
(

1 + 3
8ε
)
t
)
− cos

((
1 + 3

8ε
)
t
)]
. (A.9)
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APPENDIX B – CONFORMAL FIELD THEORY

A conformal field theory (CFT) is a particular example of Quantum Field Theory
(QFT) in which besides Poincaré invariance, it also has conformal invariance. For our
purposes this will always be equivalent to the statement that the theory is invariant under
scale transformations xµ → λxµ. To put in a different way, this means that the theory
has no length or mass scale and we only care about angles between curves at a given
point being preserved under such transformations. When studying CFTs one realize the
great difference between two dimensional and higher dimensional CFTs. The conformal
group in two dimensions has as elements of the group, all the analytical functions which
makes it infinite dimensional. This property of CFTs in two dimensions is responsible for
a variety of exact results obtained for 2-dimensional theories. 76 All the conformal groups
with dimension higher than three are finite dimensional.

It’s not straightforward to find a system in which conformal transformations are
symmetries of it. Our Universe is by no means conformal invariant since there is universal
length scales intrinsic to it such as the radius of the hydrogen atom. However, one example of
a conformal invariant system of great importance to Physics is the critical phenomena such
as phase transitions in statistical mechanics. The correlation length diverges at the critical
values of the parameters and the system is conformal invariant. It’s worth mentioning that
CFTs also play an important role in string theory, due to the reparametrization invariance
of the world-sheet, which is a 2-dimensional hypersurface embedded in spacetime. In
the rest of this appendix, we discuss in more details the conformal transformations, the
conformal group, and its algebra using as references. 76,77

B.1 Conformal transformations

A conformal transformation is a transformation of the spacetime coordinates,
xµ → x′µ, which leaves the metric invariant up to a scale factor Ω(x)

g′µν(x′) = Ω(x)gµν(x). (B.1)

Where the primed quantities are the ones obtained after the transformation. Under a
generic coordinate transformation the metric, being a rank-2 tensor, transform as

gρσ(x)→ g′ρσ(x′) = ∂x′µ

∂xρ
∂x′ν

∂xσ
gµν(x), (B.2)

Restricting the analysis for the Minkowski metric, gµν = ηµν , from Eqs. (B.1) and (B.2), a
conformal transformation must obeys

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Ω(x)ηµν . (B.3)
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As usual in the study of symmetries, we study infinitesimal transformations satisfying
Eq. (B.3). Finite transformations is expected to be obtained from the infinitesimal ones
by acting with them an appropriate number of times. The infinitesimal transformation is
given by

xµ → x′µ = xµ + εµ, (B.4)

we assume that εµ � 1. since Eq. (B.3) has partial derivatives of the transformed
coordinates with respect to the old ones, let us compute these quantities

∂x′ρ

∂xµ
= δρµ + ∂ερ

∂xµ
, (B.5)

substituting these partial derivatives in Eq. (B.3) and only taking into account first-order
terms in ε

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηρσ

(
δρµ + ∂εσ

∂xν

)(
δσν + ∂εσ

∂xν

)
= ηµν +

(
∂εµ
∂xν

+ ∂εν
∂xµ

)
, (B.6)

inspection on the right-most term of Eq. (B.6) tell us that it should be proportional to
the metric in order for Eq. (B.3) to hold. So the last term in Eq. (B.6) should be

∂µεν + ∂νεµ = f(x)ηµν . (B.7)

Tracing both sides of Eq. (B.7) with ηµν , and using ηµνηµν = d, we obtain f(x) = (∂µεµ)2/d.
Then, substituting the form of the function f in Eq. (B.7),

∂µεν + ∂νεµ = 2
d

(∂ρερ) ηµν . (B.8)

Acting on Eq. (B.8) with ∂ν , commuting the derivatives and relabeling dummy indices,

∂µ (∂νεν) + ∂ν∂νεµ = 2
d
∂µ (∂νεν) . (B.9)

Acting on this last expression again with ∂ν gives

∂µ∂ν (∂αεα) + (∂α∂α)∂νεµ = 2
d
∂µ∂ν (∂αεα) , (B.10)

exchanging µ↔ ν, in Eq. (B.10),

∂ν∂µ (∂αεα) + (∂α∂α)∂µεν = 2
d
∂ν∂µ (∂αεα) , (B.11)

adding Eq. (B.10) with Eq. (B.11), and using the commutativity property of partial
derivatives,

2∂µ∂ν
(
∂βε

β
)

+ ∂α∂α (∂µεν + ∂νεµ) = 4
d
∂ν∂µ

(
∂βε

β
)
, (B.12)

Using Eq. (B.8) in the second term on the l.h.s of Eq. (B.12) and rearranging,

[ ηµν∂α∂α + (d− 2)∂µ∂ν ]
(
∂βε

β
)

= 0. (B.13)
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Finally, contracting the above equation with ηµν gives

[d ∂α∂α + (d− 2)∂α∂α]
(
∂βε

β
)

= (d− 1) ∂α∂α
(
∂βε

β
)

= 0. (B.14)

This equation implies that, for d ≥ 3, (∂αεα) can be at most linear in xµ, therefore, εµ can
be at most quadratic in xµ∗.

B.2 Infinitesimal conformal transformations

In order to find the commutation relations satisfied by the conformal algebra,
we look at the infinitesimal transformations. From Eq. (B.14) we wee that a general
infinitesimal conformal transformation has the following form

εµ = aµ + bµνx
ν + cµνρx

νxρ (B.15)

where aµ, bµν , cµνρ are constants and assumed to be small. To obtain the generators
corresponding to each of the three terms in (B.15), we consider that under a transformation
of the coordinates and the fields, collectively denoted as Φ, behave as

xµ → x′µ, (B.16)

Φ(x)→ Φ′(x′), (B.17)

where x′ is understood to be a function of the old coordinates x and the new fields Φ′ at
the new position x′, is assumed to be a function of the old function at the old position,
that is, Φ′(x′) = F(Φ(x)). The changes in the fields Φ comes in two ways: (i) the functional
change, which depends on the function F and (ii) the change in the argument x → x′.
Generic infinitesimal transformations can be written as

x′µ = xµ + εα
δxµ

δεα
,

Φ′(x′) = Φ(x) + εα
δF

δεα(x)(x).
(B.18)

Where the parameters {εα} are assumed to be small and kept to first order. We define the
generators of the transformation, Gα, through the functional difference

Φ′(x)− Φ(x) ≡ −iεαGαΦ(x). (B.19)

On the other hand, we can Taylor expand Φ′(x′) up to first order in ε

Φ′(x′) = Φ′(x) + εα
δxµ

δεα
∂µΦ′(x). (B.20)

∗ The case d = 2 requires special attention, as said in the introduction of this appendix (Eq.
(B.14) do not folllows from Eq. (B.13)). In the case d = 1, Eq. (B.14) do not impose restrictions
on the functional dependence of ε and any smooth function is a conformal transformation
which is a trivial result since in this case there is no notion of angle.
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Isolating Φ′(x) in Eq. (B.20) and substituting it into the Eq. (B.19), we have

Φ′(x′)− εα
δxµ

δεα
∂µΦ′(x)− Φ(x) = −iεαGαΦ(x). (B.21)

Using Eq. (B.18) we can rewrite Eq. (B.21) as

iεαG
αΦ(x) = εα

δxµ

δεα
∂µΦ′(x)− εα

δF
δεα(x)(x). (B.22)

From Eq. (B.18) we have ∂µΦ′ = ∂µΦ up to 0th order in ε. Then, Eq. (B.22) can be
rewritten as

iGαΦ = δxµ

δεα
∂µΦ− δF

δεα
. (B.23)

If we impose that the fields are unaffected by the transformation, such that F(Φ) = Φ,
the last term on the r.h.s of Eq. (B.23) vanish and we obtain the following expression for
the generators:

Ga = −iδx
µ

δεa
∂µ. (B.24)

To discover the physical meaning of each term in (B.15), we study them separately. Setting
bµν = 0 and cµνρ = 0, the transformation is

xµ → x′µ = xµ + aµ, (B.25)

an infinitesimal translation in spacetime (aµ � 1). Therefore,

δxµ ≡ x′µ − xµ = aµ ⇒ δxµ

δaν
= δµν . (B.26)

Using Eq. (B.24) and Eq. (B.26), the generator of translations is given by

Pµ = −i∂µ . (B.27)

Let us look at the linear term. If we substitute εµ = bµνx
ν into Eq. (B.8), we find

that the symmetric part of bµν is proportional to the metric

bµν + bνµ = 2
d
bγγηµν , (B.28)

so we decompose bµν as a symmetric part and an antisymmetric part

bµν = αηµν +mµν (B.29)

with α being a small constant and mµν = −mνµ. If we set mµν = 0 and consider only the
transformation proportional to the metric, we have

xµ → x′µ = (1 + α)xµ, (B.30)

an infinitesimal dilation (or infinitesimal scale transformation, since α� 1). Therefore,

δxµ ≡ x′µ − xµ = αxµ ⇒ δxµ

δα
= xµ. (B.31)
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Using Eq. (B.24) and Eq. (B.30), the generator of dilation is given by

D = −ixµ∂µ. (B.32)

Now we consider only the antisymmetric part of bµν . The transformation is given
by

xµ → x′µ = (δµν +mµ
ν)xν (B.33)

with mµ
ν � 1 and mµν = −mνµ. Therefore, using the antisymmetry

δxµ ≡ x′µ − xµ = mµνxν ⇒ δxµ

δmαβ
=
(
δµαδ

ν
β − δναδ

µ
β

)
xν (B.34)

Substituting Eq. (B.34) into the expression for the generator of the transformation, Eq.
(B.24), we obtain

Lαβ = −i
(
δµαδ

ν
β − δναδ

µ
β

)
xν∂µ = i (xα∂β − xβ∂α) (B.35)

which we recognize as the Lorentz generators; they generates rotations and boost in
Minkowski spacetime.

The only term that has left to be scrutinized is the quadratic one, cµνρ. To obtain
more information about the cµνρ, we act with ∂ρ on Eq. (B.7), permute the indices and
take a linear combination to obtain

2∂µ∂νερ = ηµν∂νf + ηνρ∂µf − ηµν∂ρf. (B.36)

Substituting εµ = cµνρx
νxρ and f = 2(∂αεα)/d into Eq. (B.36), we obtain an expression

for the parameter cµνρ given by

cµνρ = ηµρbν + ηµνbρ − ηνρbµ, bµ = 1
d
cννµ. (B.37)

The infinitesimal transformation is given by

xµ → x′µ = xµ + ηµαcανρx
νxρ = xµ + ηµα (ηαρbν + ηανbρ − ηνρbα)xνxρ

= xµ + 2xµ(bαxα)− bµxαxα.
(B.38)

Therefore,

δxµ ≡ x′µ − xµ = 2xµ(bαxα)− bµxαxα ⇒ δxµ

δbα
= 2xαxµ − xαxαδµα. (B.39)

This transformation is called special conformal transformation. Substituting Eq. (B.39)
into the expression for the generator of this transformation, Eq. (B.24), we obtain

Kµ = −i
(
2xµxν∂ν − x2∂µ

)
. (B.40)

It’s not straightforward to see the physical meaning of this generator, but it can be shown
that a special conformal transformation is equivalent to a inversion, xµ → xµ/x2, followed
by a translation of bµ, followed by another inversion.
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B.3 Conformal algebra

Having the explicit expressions for all the generators of the conformal transforma-
tions, we calculate the commutation relations between them

D = −ixµ∂µ dilation (B.41)

Pµ = −i∂µ translation (B.42)

Lµν = i (xµ∂ν − xν∂µ) rotation (B.43)

Kµ = −i
(
2xµxν∂ν − x2∂µ

)
special conformal transformation (B.44)

The commutation relation between dilation and translation is

[D,Pµ] = DPµ − PµD = (−ixα∂α (−i∂µ))− ((−i∂µ) (−ixα∂α))

= −xα∂α∂µ + ∂µ (xα∂α) = ∂µ = iPµ.

The commutation relation between dilation and special conformal transformation is

[D,Kµ] = DKµ −KµD = −ixα∂α
(
−i
(
xµx

α∂α − x2∂µ
))
−
(
−i
(
xµx

α∂α − x2∂µ
))

(−ixα∂α)

= −xα∂α
(
xµx

α∂α − x2∂µ
)

+
(
xµx

α∂α − x2∂µ
)

(xα∂α)

= −xα∂α(xµxν∂ν) + xα∂α(x2∂µ) + xµx
ν∂ν(xα∂α)− x2∂µ(xα∂α)

= −xα(∂αxµ)xν∂ν − xαxµ(∂αxanu)∂ν − xαxµxν∂α∂ν + 2xαxα∂µ
+ xαx2∂µ∂α + xµx

ν∂ν − x2∂µ − x2xα∂α∂µ

= x2∂µ − 2xµxν∂ν = −i
(
2xµxν∂ν − x2∂µ

)
= −iKµ.

The commutation relation between translation and rotation is

[Pρ, Lµν ] = PρLµν − LµνPρ = ∂ρ (xµ∂ν − xν∂µ)− (xµ∂ν − xν∂µ) ∂ρ
= ηρµ∂ν + xµ∂ρ∂ν − ηρν∂µ − xν∂ρµ − xµ∂νρ + xν∂µ∂ρ

= ηρµ∂ν − ηρν∂µ = i (ηρµPν − ηρνPµ)

The commutation relation between rotations is is

[Lµν , Lρσ] = LµνLρσ − LρσLµν
= − (xµ∂ν − xν∂µ) (xρ∂σ − xσ∂ρ) + (xρ∂σ − xσ∂ρ) (xµ∂ν − xν∂µ)

= −xµ∂ν (xρ∂σ − xσ∂ρ) + xν∂µ (xρ∂σ − xσ∂ρ) + xρ∂σ (xµ∂ν − xν∂µ)− xσ∂ρ (xµ∂ν − xν∂µ)

= −xµηνρ∂σ − xµxρ∂ν∂σ + xµηνσ∂ρ + xµxσ∂ν∂ρ + xνηµρ∂σ + xνxρ∂µ∂σ − xνηµσ∂ρ − xνxσ∂µ∂ρ
+ xρησµ∂ν + xρxµ∂σ∂ν − xρησν∂µ − xρxν∂σ∂µ − xσηρµ∂ν − xσxµ∂ρ∂ν + xσηρν∂µ + xσxν∂ρ∂µ

= ηρν (xσ∂µ − xµ∂σ) + ηνσ (xµ∂ρ − xρ∂µ) + ηµρ (xν∂σ − xσ∂ν) + ησµ (xρ∂ν − xν∂ρ)

= i (ηρνLµσ + ηνσLρµ + ηρµLσν + ησµLνρ) .
(B.45)
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In a similar way, we obtain the remaining non trivial commutation relation between special
conformal transformations and translations,

[Kµ, Pν ] = 2i (ηµνD − Lµν) ,

and between the special conformal transformations and rotation,

[Kρ, Lµν ] = i (ηρµKν − ηρνKµ) .

These commutation relations define the conformal algebra. The number of generators of an
algebra is an important quantity that characterize the associated group (the dimension of
the group). We can count them in this case: 1 generator for dilation, d for the translations,
d for the special conformal transformations and d(d− 1)/2 for the Lorentz transformations.
The total number of generators of the conformal group in d dimensions is, therefore,
(d+ 2)(d+ 1)/2.

The AdSd+1 metric as given in Eq. (2.17) has an explicit SO(2, d) invariance. The
group SO(2, d) is the group of orthogonal real (d+2) dimensional matrices with unit
determinant and 2 timelike components, generated by antisymmetric (d+2) dimensional
matrices. The number of generator of SO(2, d) is, therefore, (d+ 2)(d+ 1)/2. Which is
exactly the same number of generators of the conformal transformations. This apparent
coincidence raise the question if the two groups, the group of conformal transformations
in d dimensions and the group SO(2, d) are isomorphic. Turns out that, in fact, they’re
isomorphic. This can be seen as follows. We consider a linear combination of the generators
as

Jµν ≡ Lµν , J−1µ ≡
1
2(Pµ −Kµ)

J−10 ≡ D J0µ ≡
1
2(Pµ +Kµ)

(B.46)

and Jmn = −Jnm withm,n ∈ {−1, 0, 1, ..., d}. We can write a unique expression comprising
all the commutation relations of the conformal algebra using the definition (B.46) as

[Jmn, Jpq] = i (ηmqJnp + ηnpJmq − ηmpJnq − ηnqJmp) (B.47)

where ηmn = diag(−1,−1, 1, ...1). This is the commutation relations for the Lie algebra
so(2, d) (compare with (B.45), the commutation relation of the generators of the Lorentz
group SO(1, d− 1)).

The results above show that the conformal group in flat d-dimensional spacetime
is the same as the symmetry group SO(2, d) of AdSd+1 spacetime. This is one indication
that theories living on both spacetimes can be seen as dual to one another, but solely
the matching of the symmetries is not enough. Additionally, one should associate to
each physical observable in one theory, another physical observable in the other. The
duality AdS/CFT was proved for specific examples of gravity theories and conformal field
theories and is undeniable the profound impact it caused in theoretical physics, providing
framework to attack some of the most intricate problems.
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