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Abstract. We propose a “guide” towards quantisation of gravity based on quantum matter
in a statistical mechanics context. On one hand, a statistical mechanics model naturally arises
from the thermodynamic interpretation of horizons in Rindler space. On the other hand, the
path integral formulation of quantum field theory can be interpreted from the point of view of
statistical mechanics. From these perspectives, gravity and matter are related to each other in
the same way as a gas and its chemical potential are. This statistical mechanics interpretation
of gravity and matter suggests that gravity should be quantised in a precise way which is
determined by the quantisation of matter. Although, in a first step, quantisation of gravity
applies for small perturbations of the metric with respect to the vacuum, the most central
and general features of quantisation (quantisation prescription, quantum space dimensions) are
supported from statistical mechanics and remain valid non-perturbatively.

1. Introduction
There is, currently, a large uncertainty on how to treat gravity in a quantum mechanics context.
Although it is mainly believed that gravity is required to be quantised, it is at least unclear which
type of quantisation mechanism should be used, or which variables should be the preferred ones
to start with. To a large part, this situation is certainly due to a lack of available experimental
data which could give insight to near-Planck scale physics.

Nevertheless, important hints should also be available from well-controlled knowledge of
quantum matter. Indeed, the consequences are not obvious to investigate because we first
need to understand the fundamental role of matter within the framework of gravity. By
considering gravity via its statistical mechanics interpretation, matter acquires a new quality
in the thermodynamic context, i.e. it acts in the same way as does the fugacity or the
chemical potential in a grand canonical ensemble. The chemical potential interpretation of
matter has already been proposed in [1], but an important new development step is given by
identifying the grand canonical ensemble which explicitly deals with open systems both with
respect to “gravitational particles” and an “energy-like” extensive quantity which comes from the
Lagrangian. With the grand canonical ensemble interpretation, the quantisation of gravity can
first be obtained in the perturbative regime (linearised gravity). Due to the statistical mechanical
context, important features of quantisation still survive in a non-perturbative concept, namely
the path integral quantisation ansatz, the preferred canonical variables for quantisation and
the space dimension 3 for gravitational quantum statistical mechanics. Despite the undeniable
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importance of these conceptual features, their role is not to constitute the full information for
presenting a complete quantum theory of gravity. Rather, the importance of the this article
relies in improving the confidence for how gravity is quantised.

The concept of the statistical mechanics interpretation of the boundary term of gravity is
introduced in Section 2. It is based on an argument in [2]. The newer interpretation in this
article has some different features; the main one is the open system property of a compact space
region, thus providing to the total action the quality of a grand canonical potential. To lowest
perturbation order, a matter field has the effect to linearly shift the gravitational field away
from the classical vacuum solution.

There is a subtile connection between matter and gravity: the radiated matter perceived
by accelerated observers (Unruh effect) is nothing but the heat (matter particles) crossing the
Rindler horizon [3, 4, 5]. An equivalent process is the Hawking radiation produced in conjunction
with black hole entropy [6, 7, 8]. It is therefore natural to interpret the radiated matter as a
thermodynamical manifestation of gravity, although this does not mean that gravity itself is
specific to or can be identified with particular species of matter or their Hamiltonians. The
open system concept and grand canonical ensemble view is introduced in Section 3.

In Section 4, we conclude from Sections 2 and 3 how quantisation of gravity follows from
quantisation of matter. The same type of canonical quantisation procedure as for flat space-
time Quantum Field Theory (QFT) applies for linearised gravity, with the requirement that
one of the canonical variables has to be the vielbein, and path integral quantisation applies in
a similar way as for QFT, appart from the evolution aspect. The path integral concept for
gravity and matter has a one-to-one correspondence with the statistical mechanics formulation
of gravity, i.e. it is not bound to a perturbative treatment, and the vielbeins therefore must
keep their role of canonical functional variable for the non-perturbative quantisation procedure.
The matter part in the path integral corresponds to the term containing the chemical potential
µ in the exponent of the grand canonical partition function of a gas.

From Section 2, the general form of quantisation of gravity must have its most natural
formulation in 3d-space since this is the dimension of the Rindler horizon hypersurfaces which the
initial microcanonical ensemble treatment is originating from. This dimension is automatically
recovered in the path integral treatment when the “external time evolution” problem is removed.
The reduced dimension 3 indeed corresponds to the requirement for a unitary quantum gravity
theory [9].

2. Summary of the statistical mechanical interpretation of gravity
We first shortly review the required parts from [2] and references therein and strengthen the
required chain of argumentation as well as the physical picture of the statistical mechanical
interpretation of space-time. As is well-known from [4, 5], space-time has a thermodynamical
interpretation. Any spatial 2-surface on any 3-dimensional null-hypersurface is perceived as
a Rindler horizon by a suitably located, uniformly accelerated observer, with an associated
temperature T = κ/(2π) (κ is the accelleration of the observer or Rindler surface gravity) and
an entropy Shor = A/(4L2

p) related to a surface area A, where Lp is the Planck length, and the
horizon of the Rindler wedge is equivalent to a black hole horizon. It should be stressed that the
unboosted original space with coordinates (t, x, y, z) does not need to be flat, it may, in general,
have a non-singular metric gαβ 6= 0,±∞. By the generalised terminology “Rindler space”, we
therefore mean the boosted space defined by the coordinates (T,X, y, z),
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t = X sinhT, x = X coshT. (1)

According to [10, 5], a 3-dimensional null-hypersurface in Einstein gravity contributes a surface
action Asur (which corresponds in part to the boundary term), and Asur is interpreted as the
time integrated “heat”

∫
dt Q =

∫
dt TS when evaluated on the Rindler horizon (taking care of

the order of evaluation steps for taking the null limit). We have:

Asur =
c4

16πG

∫
N c
ab f

ab d3Σc, fab =
√
−g gab, N c

ab d
3Σc = Nab d3x, (2)

where, in the notation of [5], fab is the entropy density, N c
ab is its conjugate momentum, and d3Σc

is the 3-surface element covector. On the right hand side of (2), Nab = Kab −Kc
cγab and Kab is

the second fundamental form [11, 12]. The interpretation of (2) and of the elaborations of [4, 5]
is that every spatial surface represents a “gas” of gravitational building blocks (“gravitational
particles”). Notice that, in order to keep the entropy and thus the sample of these “particles”
finite while avoiding infinitely long observer orbits, it is preferable to integrate over a finite
section of 3d-hypersurface. However, this must be handled with care since cutting a finite
section out of an infinite hypersurface yields an open system, we consider this in more detail in
the next section.

The basic idea of our effort is that, whenever a space-time region possesses a boundary surface
and we compute the physical content by varying the bulk gravitational action for this space-
time region, we omit to vary the divergence term integrated over the space-time part beyond
the boundary surface, and this missing information content is equivalent to the missing content
that we suffer by placing a Rindler horizon exactly in that boundary surface and observing the
Unruh radiation. In order to obtain a one-to-one correspondence, the observer must choose
the accelleration κ so that the hidden heat contents of both frames match. In the frame
of original space, the omitted part of the action is a surface contribution of the boundary
term ∆S∂V , and this is equal to Asur = −

∫
dtHsur in the language of [10], provided that a

proper gauge of the metric is chosen. The boost accelleration κ must be chosen in such a
way that Hsur in original space is equal to its value TS computed in the Rindler frame, i.e.
T must have the same value in both frames since the surface areas in the yz-subspace (i.e.
the entropies) are equal. There remains an issue that 3-surfaces of boundary terms are not
null. However, as shown in [2], any non-null section of smooth 3d-hypersurface in the boundary
term integral can be replaced to any desirable accuracy by a sequence of narrow sections of
null-surfaces (strips) glued together (much like a smooth ramp would be approximated by
narrow stairs), by replacing

∫
∆x∆A →

∫
∆u∆A +

∫
∆v∆A (the strip widths ∆u, ∆v being the null

decomposition of ∆x). Consider now a compact space-time region V with piece-wise smooth
boundary ∂V =

∑
ABA, where every component BA is non-null (time- or space-like). Then,

the boundary term is the sum of the time integrated heats as perceived by all the accelerated
observers related to the null-strips covering the boundary ∂V :

S∂V = −
∫
dt
∑
k

TkSk|∆∂Vk , (3)

where ∆∂Vk are small sections covering ∂V =
⋃
k ∆∂Vk with the associated temperatures Tk

and entropies Sk = ln Ωk, and Ωk is the number of distinct microstates which are compatible
with the macroscopic state of ∆∂Vk.



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012034

IOP Publishing
doi:10.1088/1742-6596/2533/1/012034

4

For theories of gravity beyond Einstein gravity, the definition of temperature and heat can
be redefined in such a way that the interpretation of the boundary term as in (3) is preserved,
while the integrands of the null-strip integrals will normally undergo a higher order modification
(in terms of the metric), depending on the theory. In this sense, our statistical mechanical
considerations are not restricted to Einstein gravity.

3. The grand canonical ensemble interpretation
Expression (3) is not best suited to describe finite sections of 3-surfaces. Since the bounds

of a section are not bounds of an autonomous physical system, there must be an uncertainty
about the number of “building blocks” of gravity that are located inside of a section. Even
more, since quanta of matter are subject to the Heisenberg uncertainty relation and thereby
affect the gravitational field so as to make it blurred, the “gravitational particles” may hardly
be localisable, and a section may contain anything between zero and all of the “gravitational
particles”. A finite section therefore represents an open thermodynamic system with respect to
the exchange of “gravitational particles” and also with respect to the exchange of independent
extensive quantities associated with the “gravitational particles” – we will find such one (much
like the “energy” of a molecular gas), and the part of the 3-surface outside the section is a
particle bath and a “thermal” bath. The suitable ensemble is therefore the grand canonical
ensemble for which the density of states is formally given by

ρi =
exp [(−Ei + µNi)/(kBT )]

Z
(4)

with the grand canonical partition function

Z =
∑
i

exp [(−Ei + µNi)/(kBT )]. (5)

In (5), the sum is over a phase space partition with (infinitesimal) cell label i. Since (4) does
not represent a classical “molecular gas”, the symbol E may be a quantity different from the
“energy”. The precise interpretation of the Ei and “chemical potential” µ is non-trivial and
cannot be derived from the 3-surface consideration of Section 2, but can be identified via
general thermodynamic properties of the ensemble. A key quantity is the grand canonical
potential Φ = kBT lnZ which is minimised in the state of thermodynamic equilibrium. Taking
the logarithm of (5) yields

Φ = U − TS − µN, (6)

where U = 〈E〉 =
∑

i ρiEi is the ensemble mean of E , likewise N = 〈N〉 =
∑

i ρiNi, and
S = 〈−kB ln ρ〉 =

∑
i−kBρi ln ρi. In terms of dynamics, the quantity which must be extremised

is the gravitational action Sg plus boundary term Sg∂V , supplemented by the action Sm for
matter plus boundary term Sm∂V , this altogether must be proportional to Φ in order for (3) to
be satisfied under general conditions:

−tΦ = Sg + Sg∂V + Sm + Sm∂V . (7)

The term Sm∂V is required if matter contributes on the boundary, which is expected for
compact V . For instance, a real scalar field has the boundary term −

∫
∂V d

3x
√
−gϕ∇⊥ϕ. As

indicated by the sum of expression (3), T and µ may be allowed to vary between small 3d-volume
elements. However, these variations must evolve slowly, i.e. the variation (wave) length scale e.g.
of T should be much larger then the mean free path λ as given from interaction theory (such
lengths are expected to be much smaller than experimentally achievable spatial resolutions),
according to standard kinetic theory of gases. Accordingly, (5) should be extended to
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Z =
∑
i

exp

[ ∫
Σ

(−εi + µηi)/(kBT )

]
, (8)

where the sum over 3-volume elements has been converted to an integral, εi and ηi are 3d-
densities of Ei and Ni, respectively, and Σ ⊂ ∂V is the space-like boundary section on the past
3-surface). Then, (7) becomes:∫

dt

∫
Σ

[
− ε+ Ts+ µη

]
= Sg + Sg∂V + Sm + Sm∂V , (9)

where s is the 3d entropy density. Now, whenever we vary the metric both in V and on ∂V , the
effect is to change the values Sg and Sg∂V . Notice that s and η are independent variables (since
heat and “particle” density vary independently from each other), i.e. we can have a variation
δs for fixed η. Minimisation of Φ only implies a change δε, i.e. we can separate, in this scenario,
the gravitational part of (9) from the matter part:

∫
dt

∫
Σ

[
− ε+ Ts

]
= Sg + Sg∂V , (10)∫

dt

∫
Σ
µη = Sm + Sm∂V . (11)

As we see, the density of Hsur reappears in Ts and is also contained in Sg∂V , therefore ε must
contain the (densitised) gravitational bulk Lagrangian. It is also apparent that the term Sg∂V
acts as a Legendre transformation since the variable to be varied on the boundary changes
(gab → Γcab) and the left-hand-side term Ts performs the same Legendre transformation in
thermodynamic language (S → T ), i.e. ε is precisely the bulk Lagrangian density. From (11), µ
represents the (densitised) matter Lagrangian per particle (including the divergence contribution
constituting the boundary term). There is also another way to see that the µη-term represents
matter: A variation δη around η = 0 causes a change δ(ε− Ts) upon minimisation of (9), which
modifies the physical metric in V such that the vacuum equations of gravity are violated. In
the Einstein gravity limit, we only vary the metric, and it is required to add a matter term and
vary the matter field in order to restore thermal equilibrium, hence the µη-term corresponds to
the matter contribution to the action.

In order to deepen our understanding of the role of matter in the context of gravity, it is useful
to consider linearised gravity with matter. For any Lagrangian theory of gravity, the general
field equations are

δ(
√
−gLg) = −8πG

c4
δ(
√
−gL), (12)

where Lg and L are the gravitational and matter Lagrangian, respectively. We linearise (12)
and neglect sources for torsion (or for any other extra-variables) for consistency, thus obtaining
the linearised Einstein equations with stress tensor Tαβ:

gαβ,µ,
µ + gµν,α,βη

µν − gµα,µ,β − g
µ
β,µ,α = −8πG

c4

[
Tαβ −

T

2
ηαβ

]
, (13)

where the cosmological constant has been omitted. In linearised theory, it is sufficient to neglect
couplings between interacting matter fields and to take into account terms up to second order
only in the matter field for Tαβ. In the scope of the standard model,
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Tαβ = 2
∂L
∂gαβ

− Lgαβ (14)

and L = K − V with the kinetic term K and the potential term V (K,V each admit one
contribution per species). We evaluate ∂L/∂gαβ, then eliminate all V -contributions to Tαβ via
the equations of motion of matter, e.g.

L = α∇µ(
∂K

∂∇µϕ
ϕ)− β∂K

∂ϕ
ϕ− γ(∇µ

∂K

∂∇µϕ
)ϕ (15)

is the Lagrangian for every single species, where e.g. α = 1/2, β = γ = 0 for a neutral scalar
field (ϕ = ϕ†), and supplementing an index (ϕ→ ϕµ) in the case of a vector field and like-
wise in any later expressions. For an (approximately) monochromatic field (single-k-mode
idealisation for linearised theory) of a single species with Fourier transform ϕ̃(kµ), a straight-
forward computation yields that it is proportional to the tetrad perturbation hI α = eI α − δIα
in the neighbourhood of a space-time point and the non-oscillatory background frame is chosen
to be locally Minkowski:

h̃Iα = ϑIαϕ̃, gαβ = hIα ηIJ h
J
β + g0αβ. (16)

E.g. for a neutral scalar field, we have

hIα = −2

√
πL2

p

~
δIα ϕ0 sin(kµx

µ),

g0αβ = ηαβ − 2
πL2

p

~
ηαβ ϕ

2
0 (17)

with plane wave field amplitude ϕ0. (16) may be extended to admit severel species l by replacing

gαβ →
∑

l g
(l)
αβ and writing the proportionality for each contribution h

(l)I
α . Despite the special

limit, (16) reveals that the presence of matter acts as a shift constraint for gravity, i.e. the matter
field must be compensated by a shift of the tetrad. This translates to the thermodynamics view
according to which a change δN of particles causes a shift δE in order to keep the “gas” in
equilibrium (minimisation of Φ). At least in the monochromatic linearised case, the particle
number N corresponds to the number of building blocks of gravity to be generated in order for
the matter field to emerge. Due to the fundamental nature of the thermodynamics concept,
the basic interpretation of N should persist even when nonlinear corrections to (16) gradually
become relevant.

4. From quantum matter to the quantisation of gravity
From the above considerations, the properties of quantum matter in the flat space-time
approximation allow to infer certain properties of gravity at microscopic level. In the flat space-
time approximation, the partition function (8) simplifies:

Zflat =
∑
i

exp

[ ∫
Σ
µηi/(kBT )

]
, (18)

Zflat corresponds to the path integral for matter for a space-time “region” with spacelike
boundary contributions in the form of time slices at t = 0 and t = T ; we consider one species
with label l:



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012034

IOP Publishing
doi:10.1088/1742-6596/2533/1/012034

7

Z
(l)
flat

∣∣
0→T = 〈ϕ(l)(t = T , xi)|e−iHT |ϕ(l)(t = 0, xi)〉 =

∫
Dϕ(l) ei

∫ T
0 d4xL[ϕ(l)]/~. (19)

(8) together with (18) and (19) imply that the gravitational extension must be of the form

Z
∣∣
0→T =

∫
f(X)DX

∏
l

Dϕ(l) ei[Sgrav∆V +Sgrav∆∂V ]0→T /L
2
p+i

∑
l[S

(l)
mV +S

(l)
m∂V ]0→T /~, (20)

where X is the (not yet determined) gravitational functional variable which is related (but
does not need to be equal) to the thermodynamic quantity ε, the function f(X) allows for an
adaptation factor which has the value 1 in flat space-time approximation; f may be necessary
at least to ensure invariance of the density of states under gauge transformations. The fixed
time limits 0, T are still present as a parameter to use for time evolution. However, the phase
space over which the ensemble sum is taken departs from the original idea in (19), namely
that the integral should have a common time interval, possibly an observable temporal distance
〈
√

∆xµgµν∆xν〉 and not a meaningless coordinate time. Moreover, it is not clear, in the context
of a covariant theory of gravity, why one should evolve paths along time rather than along space.
One possible modification would be to represent all the space-time orientations in the sum over
path evolutions. However, this would require to reduce the degrees of freedom afterwards in
order to recover (19), and the problem of ensemble averaged evolution parameter would persist.
These concerns may directly be avoided if we remove the time limit and abandon the time
dimension from the beginning. We shall come back to this idea later.

From (20) and from the point of view of the present statistical mechanical interpretation, (19)
does not represent a canonical partition function since it is reminiscent of the µN -part of (20).
In the form (20), the gravitational path integral already reveals a basic consequence, namely
that the gravitational field must be quantised in order for the matter field to be quantised, since
matter plays the role of fugacity within gravity. Starting with classical statistical mechanics on
the gravity side would make quantum matter (µN -part) incompatible. More precisely, when

the particle number is promoted to a quantum operator N̂ , with generally mixed states in
particle number representation, gravity itself must have mixed states in terms of its number of
building blocks, via the relation (16), i.e. we must introduce operators êIα and therefore X̂. The
properties of gravitational quantum mechanics is even forced to be compatible with quantum
mechanics of matter since, for linearised theory, the transition functions with time slices t = 0, T
for the boundary exhibit the same formal behaviour for gravity and matter, as suggested by the
following symmetric notation and admitting a single species:

〈X(0, xi), ϕ(0, xi)|e−iHT |X(T , xi), ϕ(T , xi)〉

=
∫
DXDϕ ei

∫ T
0 d4x

√
−gLg/L2

p+i
∫ T
0 d4x

√
−gL/~. (21)

In linearised theory, the path integral quantisation (21) is equivalent to canonical quantisation:

[Π̂(xa, t), X̂(ya, t)] ∼ L2
pδ(x

a − ya), [π̂(xa, t), ϕ̂(ya, t)] = i~δ(xa − ya), (22)

where Π̂ and π̂ are the momenta canonically conjugate to X̂ and ϕ̂, respectively. Using (16) and
the symmetry X ↔ ϕ of (21), we see that any variation δϕ̃ modifies in the exact same way the
weights in the sum of paths as does the variation of its counter-part δẽIα = ϑIαδϕ̃, i.e. if we set
X = eIα, both variables will generate the exact same patterns of transition matrix elements (21),
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i.e. both variables have the same states (|ϕ〉 and |eIα〉) and commute. This is also equivalent to
writing the operator version of (16):

ˆ̃
hIα = ϑIα ˆ̃ϕ. (23)

As an example, a real scalar with plane wave amplitude ϕ0 =
√
~c2/(2V3ω′k) will yield

ĥIα =

√
πL2

p

~
δIα ϕ0

(
−ie−ikµxµ âki + ieikµx

µ
â†
ki

)
. (24)

The first quantisation prescription in (22) is thus satisfied if we identify X̂ → ĥIα or X̂ → êIα. In
linearised theory, the following simple commutation relations apply:

[
êIα(xi, t), êJβ,0(x′i, t)

]
∼ L2

pδ
I
αδ

J
β δ(x

i − x′i), (25)[
êIα(xi, t), êJβ(x′i, t)

]
=

[
êIα,0(xi, t), êJβ,0(x′i, t)

]
= 0, (26)

where the δ-function is restricted to 3 dimensions. Since we assumed vanishing torsion,
(25) can be obtained directly from the right hand side of (22). For comparison, the
technique equivalent to matter quantisation is to use the first derivative Einstein Lagrangian
LE ∼ gαβ(ΓγαδΓ

δ
γβ − ΓγαβΓδδγ) [12] and then to compute the momentum ∂(

√
−gLE)/∂eIα,0

canonically conjugate to eIα, a lengthy but straight-forward calculation yields an expression

of the form Πα
I = FαβγIJ (eKµ )eJβ,γ , where Fαβ,γIJ (eKµ ) is a tensorial function of the tetrad and its

inverse. One could wonder why we should not simply use the right hand side of (22) which
seems to work for linearised quantisation. However, as soon as some torsion is present, the right
hand side of (22) provides species-dependent and thus inconsistent commutators. Moreover,
the symmetry of (21) clearly requires that we must use the calculation method by canonical
conjugation using LE . If we extend the theory to admit some torsion (e.g. caused by the
spin of a fermion species [13]), the connection with contorsion in LE will naturally lead to a
torsion contribution to Πα

I . For the full gravity variable X, one may want to consider that eIα
might have to be multiplied by a function ε(e) which would be unity in linearised theory, with

e =
√
−g, yielding the operator X̂ = (ε(e)eIα)̂. However, since ε(e)eIα ∼ ϕ∗ = ε(ϕ)ϕ (formally)

at lowest perturbation order, the resulting commutation relation [π̂∗, ϕ̂∗] for matter would be
incompatible with the right hand side of (22) or not even exist; this prevents us from allowing
an extra factor ε(e) for X. The only way to escape from this restriction would be to redefine
the matter field as ϕ∗ = ε(e)ϕ, but this would require a complicated and not intuitive matter
Lagrangian.

We turn back to the problem of time limits in (20) and procede with the removal of the
fixed time limits from (20) and dimensional reduction. We first have to get rid of the time
dynamics. This is done by choosing T small, i.e. ||hIα,0||cT /||hIα|| � 1.The integration over time
can then be replaced by a constant factor T , and only the timelike parts of the boundary terms
contribute. Now that the system has lost the time dynamics, we can reformulate it explicitly in
3 dimensions using the ADM-decomposition and remove the components g0α from our system,
thus reducing at once the gauge degrees of freedom. E.g. in the case of Einstein gravity, we
apply the Gauss-Codazzi equations:

Z
∣∣
τ0

=

∫
f(e)DeI a

∏
l

Dϕ(l) e
iτ0(

∫
Σf

d3x
√
e[R+KabK

ab−K2]/L2
p+

∑
l

∫
Σf

d3x
√
eL(l)/~+...)

, (27)



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012034

IOP Publishing
doi:10.1088/1742-6596/2533/1/012034

9

where τ0 =
√
g00∆T is a fixed small timelike distance, R is the 3d-Riemann curvature, Kab

is the second fundamental form, eIa are triads (with 3d-indices I, a), e =
√

det(gab), and the
boundary terms are indicated by periods. We shall bear in mind that the sum over geometries
in (27) is subject to the constraints of the initial value problem. By removing the time limits,
the gravitational path integral quantisation has naturally led us to a 3-dimensional theory.
This, however, is what we have expected from [9] and from the fact that we have started with
3-dimensional statistical mechanics of the Rindler horizon.

5. Conclusions
This article has shown that knowledge from horizon thermodynamics and reliable knowledge
from quantum matter can be useful to enforce our confidence in the choice of the road-map
towards quantisation of gravity. Although quite some open questions are not answered in a
definitive way and although this procedure is not intended to yield a full theory with all its
details, the findings nevertheless suggest the type of required quantisation procedure and the
canonical variables required for the quantisation prescription, and new ways of interpretation of
the physical situation are opened. As a key feature, the statistical mechanical interpretation of
gravity within compact regions yields a grand canonical ensemble which is naturally related to
the path integral concept originating from quantum field theory. In the gravitational context,
matter is interpreted as the fugacity. This results in a natural gravitational extension of the
path integral quantisation and provides a pair of (main) canonical variables, namely the triad
and its conjugate momentum. Appart from the flat space limit, quantised gravity is preferably
operating in 3d-coordinates so as to avoid the appearance of an unpleasant “external” time
evolution parameter.
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