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Abstract

Neutron scattering experiments have undergone signif-
icant technological development through large area detec-
tors with concurrent enhancements in neutron transport and
electronic functionality. Data collected for neutron events
include detector pixel location in 3D, time and associated
metadata, such as sample orientation, neutron wavelength,
and environmental conditions. Working with single-crystal
diffraction data, live streaming from the TOPAZ detector, we
are developing both interactive and automated 3D analysis
of neutron data by leveraging NVIDIA’s Omniverse technol-
ogy. We have implemented machine learning techniques to
automatically identify Bragg peaks and separate them from
diffuse backgrounds and analyze the crystalline lattice param-
eters for further analysis. A novel CNN architecture has been
developed to identify anomalous background from detector
instrumentation for dynamical cleaning of measurements.
Our approach allows scientists to visualize and analyze data
in real-time from a conventional browser, which promises
to improve experimental operations and enable new science.
We have deployed a cloud based server, leveraging Sirepo
technology, to make these capabilities available to beamline
users in the control room.

BACKGROUND IDENTIFICATION

The experimental samples are often held within an Alu-
minum sample holder at Topaz. This sample holder gives
rise to a background signal that should be removed in order
to distinguish it from the signal coming from the sample
itself. The data from the Aluminum sample holder shows a
ring-like structure in g-space. We here describe our method
to detect and remove these Aluminum rings. We want to
ensure that only the rings are removed and not the Bragg
peaks.

The first step to identification of the Aluminum rings is
to normalize the data. We define the normalized intensity

data as follows:
B InW+1

o

where W is the unnormalized intensity and C is a constant
we will choose such that the most frequently occurring voxel
intensity is at a value of Wy = 1. This allows us to use a
consistent intensity cut across all data in which the same
Aluminum sample holder was used.
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Figure 1: A 3D visual of the identified clusters from a Alu-
minum dataset.

Applying this intensity normalization to data with the
Aluminum sample holder and with or without an additional
sample, we see that the sample contains higher intensi-
ties, which can be cut out of the data with an intensity
cut. Once we have applied this normalization to a sam-
ple, we have found that the aluminum background can be
found at 2.08 < Wy < 3.25 in units of normalized inten-
sity. We have investigated how to best identify the voxels
from the aluminum background. We have identified a set of
DBSCAN hyperparameters that can identify the aluminum
rings, though we do not plan to integrate this into the final
workflow since the computation time can take many minutes
and is not suitable for data streaming. However, since it is
able to identify the background from a range of datasets we
can use it to create a labelled dataset for training a neural
network.

As we look at a 3D representation of the aluminum rings,
we see pairs of layers that are perpendicular to a vector
emitting from the center of the g-space. Knowing that the
background should form a segmented sphere in g-space, we
can identify the structure in a radius vs intensity plot, such as
Fig. 1. The background has a near vertical distribution which
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shows that is occupies a small radius for each layer. There
are some points that have a angular distribution that corre-
spond to identified background that does not correspond to
the aluminum background. In Fig. 1, we see the 3D represen-
tation of the aluminum background and the corresponding
radius vs normalized intensity plot. It is straight forward to
see that the angular distrubutions is the later plot correspond
to spurious background in the former plot. We are looking
into methods to reduce these spurious background points
from our labelled datasets. Methods such as a t-SNE [1] or
PCA analysis [2], perform well with aluminum background
alone, but are not able to isolate the background from all
sample types. Once we have a labelled dataset we can move
on to training a neural network to identify and remove the
aluminum background.

In addition to the cut based method above, we have also
developed a weight based method for the labelling of the
Aluminum rings. We bin the voxels of a given sample in
concentric spheres which shows the large peak in the number
of voxels at finite radii which is a standard attribute of the
Aluminum background. Utilizing this knowledge we define
a scale factor, see Eq. (2), that is the maximum gradient in
a window that rolls along the interated radius that we have
defined, see Fig. 2.

Srings = w 2
1 - bin

This value is then normalized by the mean in the window and
weighted to prioritize bins closer to the origin. We can then
put this into a DBSCAN clustering algorithm and use the
scale factor to prioritize clustering the rings. After clustering
the data we decompose the voxels positions, normalized
intensities, and scale factor into a 1D representation. Using
a PCA analysis, we use the normalized voxel intensity, scale
factor, and 3 dimensional location to further separate out
the correct labelled voxels from the false positives. A cut,
approx. 1072, can then be applied that removes most of the
falsely identified voxels, see Fig. 2.

Now that we have two methods to label voxels as Alu-
minum rings, we need to determine which performs the best.
We are currently working to summarize the efficiencies of
each method to finalize the method to use for labelling.

3D U-net Aluminum Ring Prediction Once we have
a robust method for automatic identification of Aluminum
rings within a sample, we can add the labelling to each sam-
ple for training within a neural network. Since the aluminum
rings in the reciprocal space are inherently three dimensional,
we have developed a three dimensional U-net [3] architec-
ture for training and predicting this background process, see
Fig. 3. A 3D U-net is used for learning dense volumetric
segmentation from sparse annotations and includes a con-
traction path down to a latent layer and expansion path to the
same size as the input. It is possible that the latent layer could
include some relevant physical information about the back-
ground process and could provide some insight to scientists
at ORNL.

THPG84
3466

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-THPG84

1.0 —— Scale Factor

Number of Voxels

0.8

0.6 4

0.4

Normalized Units

0.2 A

—
e

';
il

o U

o]

T T T T T T T
50 500 750 1000 1250 1500 1750 2000
Integrated number of bins from Center

100 4 10
PCA Aluminum 47829

1071 4 L n' 1 0.8

1072 4 I

107 4
0.4
1074 §
1
1
.

1075 4

0.1 0.2 0.3 0.4 0.5

Figure 2: Example of the radius defined scale factor for a
sample of Aluminum data (left) and the PCA analysis after
clustering (right).

Initially there was difficulties constructing a valid U-net
model, due to not enough memory when trying to create
the simplest network. This is caused by the 1000* resolu-
tion of each voxel dataset. We did not want to reduce the
resolutions since it’s not guaranteed that the aluminum ring
structure is resolution invariant. Due to this we developed a
framework to take the entire voxel dataset and apply a robust
data splitting framework. First, we isolate the innermost
500° space of the dataset since the Aluminum background
is concentrated towards the origin of the reciprocal space.
Second, we divide the volume into a subset of smaller cubes
that can be feed into the NN. We have allowed for a varied
approach for model testing where a cube can be any divisor
of 500. After extensive testing, our best performing model
that was able to be trained and evaluated within a singe GPU
was trained and evaluated on 1003 cubes. We have provided
methods to input the full voxel dataset, split out the cube
subsets, evaluate them with our model, and combine them
back into the original sample after removing the identified
voxels from the prediction.
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Figure 3: Diagram of three dimentional convolutions for
a possible convolutional layer (left) and a standard model
definition for a U-net (right).

These methods have been developed into a module for
use in the streaming framework in a similar manner to the
UB matrix analysis methods. While we put extensive work
in correctly identifying the Aluminum background with DB-
SCAN, the clustering method takes several minutes to run
on a single sample. The 3D U-net can predict the Aluminum
background voxels on the order of 5 seconds for each sample.
With the improved speed of this prediction we will be able
to actively remove the background during data streaming
and detector operation.

In Fig. 4, we show an example of the prediction of the
3D U-net where each voxel is evaluated to give a discrimi-
nator. We still need to robustly fine tune the discriminator
output, but a conservative cutoff of 0.05 provided a con-
sistent prediction of the Aluminum background. Now that
we have a robust method to provide a ground truth label to
the U-net model training. This trained model can then be
used to provide a prediction for each voxel that is part of the
background. We are able to remove these voxels and display
the cleaned dataset to the user using NVIDIA Omniverse,
see Fig. 5. Omniverse is a service that enables developers
to easily integrate Universal Scene Description (OpenUSD)
and RTX rendering technologies into existing software tools
and simulation workflows for building Al systems [4].
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Figure 4: An example distribution of the voxel discriminator
output from the U-net.

Figure 5: An example of identifies aluminum background
viewed in Omniverse. On the left is the entire dataset show-
casing the background and on the right is the same dataset
with the background removed.

CONCLUSION

The structured aluminum background of the TOPAZ ex-
periment at SNS is a well-known background for analysis.
Our investigation has shown two viable methods for iden-
tifying this background to provide a ground truth label for
machine learning. We have developed a novel 3D U-net
architecture to identify and remove the structured aluminum
background from neutron scattering datasets. These mod-
els and in-parallel visualization on NVIDIA’s Omniverse
can provide accelerated feedback to users within the con-
trol. A user will be able to view, predict, and remove this
background during live operation of the detector.
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