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Abstract

We propose a systematic procedure for the construction of exactly solvable
kN-body systems which are natural generalisations of Calogero models.
As examples, we present two new 3N-body models and determine explicit
expressions for their eigenvalues and eigenfunctions.
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1. Introduction

Exactly solvable (ES) quantum many-body problems attract considerable research activity due
to their connections with many branches of physics, e.g. [1-8]. In 1969, Calogero obtained
the exact solution for a three-particle system with pairwise interactions via square and inverse
square potentials [9], and later generalized this result to the N-body case [10]. In 1974, Wolfes
extended Calogero’s three-body problem by adding terms which are inverse squares of certain
linear combinations of the three-particle coordinates [11]. In [12], Sutherland proposed ES
models with trigonometric potentials [12]. In the 1980s, Olshanetsky and Perelomov carried
out a survey and gave a classification of ES models according to the root systems of simple
Lie algebras [13].

Over recent decades, models of the Calogero type (i.e. those where the potential is of the
form ‘oscillator/inverse square’) have received considerable attention, and many interesting
properties have been discovered [14-26]. There are also many works which have attempted
to obtain new ES models by extending existing ones through separation of variables [27-29].
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More complicated extensions, which have connections with orthogonal polynomials, can be
obtained by P7T (parity and time reversal) symmetric quantum mechanics [30-32]. In this
work, we propose a systematic method for constructing ES kN-body systems in one dimen-
sion. Such models consist of N interacting blocks, each of which contains k particles. The
blocks interact through their centres of mass, while particles in each block interact via A or G,
type potential. As examples, we provide two new ES 3N-body models and obtain their corre-
sponding eigenvalues and eigenfunctions.

The paper is organized as follows. In section 2, we describe a general procedure for con-
structing ES many-body quantum Hamiltonians in terms of pre-superpotentials. By choosing
an appropriate form of pre-superpotential, we derive a rational ansatz whose solutions give
rise to ES models. All Calogero type models associated with the root systems of simple Lie
algebras satisfy this ansatz. We list the Hamiltonians of such Calogero systems, and their
corresponding ground state energies and wave functions. In section 3, we combine distinct
A or G, type models together to form a new family of ES models through a coupling func-
tion. Various types of coupling functions will be studied. We show that every member in this
family satisfies the rational ansatz, thus proving these new models remain ES. As examples,
in section 4 we present two new 3N-body systems. Applying appropriate coordinate transfor-
mations, we separate the 3N-body eigenvalue problem into equations for radial, angular, and
center-of-mass parts coordinates. We solve these equations to give the eigenvalues and eigen-
functions of the 3N-body models. We summarize our work in the final section.

2. General discussion and results
Throughout this paper we set i = 2m = 1. We start with the basic relation [26],

N 2 N
oW Pw ?
W w2
e Z[(@xi> " ax%}e 7 i=1 Ox;

i=1

This relation guarantees that ¢" is an eigenfunction of the following Hamiltonian

ow W
A2
S5 + 5

with zero eigenvalue, i.e.

HeV =0, (1)

provided that e" is square-integrable. Such a function W is called a pre-superpotential. Now
we set W to be of the form

M N
- w
W:Zailog|vi~x|752xf, 2)
i=1 i=1
where X = (x1,x2,- -+ ,Xxy), and T;’s are some distinct vectors. Then (1) becomes
M
041 o — |Uz| o P W
+ w? + @ % +2 === (0 v) — E =0,
ooy ety o) -a )

where Ey = 2w Zi:l «; + Nw. Thus if we choose 7; and o such that the following so-called
rational ansatz is satisfied
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and denote the corresponding Hamiltonian as IQVCal, we then have

2
(6%} (Jé U;
Hew = 7 wzx +z 1o ' ailai — Digil

I:ICal eV = <2w2a,~ +Nw> ev. 4)

i=1
In other words, if (3) is satisfied, the Hamiltonian (4) admits a ground state ¢" with corre-
sponding energy Ej.

It is straightforward to show that e=W Hcye" gives

. N M
e WHegeV = p* —2 Z Z
i=1 j=1

where vj; denotes the ith component of the vector ;. We find e—W/HaeWPn(I) C Pu(t) for any
positiver integer n, where P,(¢) is defined by

l

N
Pu(t) =span{l.t,2%,--- 1"}, 1= .
i=1

That is, e—@ew preserves the infinite flag of spaces
Po(t) CPi(r) -+ C Palt) C
It is not difficult to obtain

M
e~ WHegeV LI (4wt) = (4wn + Eo) LI (4wt), a = 42 a; + 2N + 1,
j=1

where L,(f‘) (4wr) is the Laguerre polynomial of degree n. Moreover, the results from [23-25]
can be generalized to show the exact solvability of the Hamiltonian Hcy. Indeed, from (5),
we find
. N
g 'e"WHcae"g = p* + w? lez + Ey — Nw,
i=1

e R !

i=1 j=lI i=1

In terms of the ladder operators

ot

4= - +twx, 4

J A .
o
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we have

N
1 .
. WHC eVg = 3 _g nal Y + Ey — Nw.

We see that Hamiltonian Hc, can be mapped to independent harmonic oscillators and thus is ES.
It is straightforward to show that the transformed ‘number operators” J; = ¢"gala;g~'e™ ",

i=1,2,---,N are conserved
Jii» Heal] = 0,

as expected.

It can be shown that the rational ansatz (3) has non-trivial solutions. With appropriate «;’s
root vectors of simple Lie algebras satisfy (3) and the corresponding I:ICal in (4) give the
Hamiltonians of the Calogero type models. On the other hand, it is worth noting that [27]
provides an example of an ES Hamiltonian corresponding to 7;’s in (3) which are not related
to a root system of a Lie algebra.

We now list some known results, taken from [15, 16, 20, 26], for later use. While the gen-
eral discussion above is valid for parameters M and N are independent, the fact that the results
below are expressed in terms of root systems imposes a relation between M and N.

2.1. A type Calogero model

For the Calogero model associated with A type root system, the positive root vectors are

éi_éj:(... 1, ,_1’...) I1<i<j<N
where €; denotes a standard basis element in N-dimensional Euclidean space RY, and
the dots represent zeros. We set Uy = € — €, U» = € — €3, ..., Uy = €y_1 — €y, where
M =N(N—1)/2. Wealso set @; = --- = ayy = ain (2), such that
N o
W= aZlog|xi —xj| — EZX?
i<j i=1
20(a — 1) N
oo 7 - 2 2
D D=L S o]
i<j Xi J i=1
Hye" = [Nw+ N(N — 1)wale". (6)

2.2. BC type Calogero model

For the Calogero model associated with BC type root system, the positive root vectors are
é+e=(,1,-,+l,---), 1<i<j<N,
&=(-,1,---), i=12,...,N.

We set =@ — &, 0, =& —&,...0u 0 =€y_1 — &y, Ty jop1 = & + &,..., Ty = éy_1 + &y
where M’ =N(N — 1), and Oyqi =€, i=1,..,N. We also set aj =---=ay = S,
ayr41 =+ =oy = Prin (2), where M = M’ + N. Then
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W =3 Z{log |xi — x;| + log |x; + x|} +ﬁ2210g x| — le,

i<j

pe 281(B1 — 1) | 2B1(B1 — > Ba(B2—1)
N ATOIIDN o

i<j

Hpce" = [2N(N — 1)wp + 2Nwp; + Nw]e" @

If B, = 0, then BC type reduces to D type.

2.3. Egtype Calogero model

Before defining this model, we need to introduce some notation. For j =1,---,7leta; € Z,
and let Z denote the set of septuples a = (ay, - - - a7) such that

7
Z a; = 0.
i=1

Then for the Calogero model associated with Eg type root system, the positive root vectors are

&te=(-,1,--,%1,---) 1<i<j<s8,
%+Z: D% = (1), -, (=)™, 1), (an, - a7) € L. ®)

We set U; = €] — €, Usq = €7 + €g, while the remaining Us7, ..., U129 have the form (8). We
also set ay = -+ - = ap9 = B in (2), so

8 7 8
w
W =8 {log|xi — x| +loglxi+ x|} + 8 loglxs + Y (—1)"x| — ) > ",
i=1

i<j a€T i=1
8
. . 2 -1 83(5 —1 )
o=t e S D O s Py
i xz - x]) (x, +xj> acT (x8 + Zizl(_l)aixi)z i=1
Hg,e" = (24000 + 8w)e"
2.4. F4type Calogero model
For the Calogero model associated with F4 type root system, the vectors are
&&= (,1,--,%l,---) 1<i<j<4,
4
&+ (—1)% = (1, £1,£1,%1),
i=2
é=(--.1,---), i=1,273,4
We set U =€ —éz,...,512=é3—|—é4, 5132 (1,1,1,1),...,620: (1,—1,—1,—1) and
Uyri=¢€,i=1,..,4 Wealsoseta; =--- =p =1, Q3 = -~ = Q4 = pin (2), so
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4 4
W =v {loglxi — x| +log|x; + x|} + 1 Y _ log |xi
i<j i=1
4
O WTRD DRI W)
a;EZZ i=1
4 A“Z{Z””l 2u<u1>}+ 1) Z
F. - — w X
4 P x,—i—x] (x,»—xj)z pn xi2 P i
4p(p—1)

+ 7 PRETE
a; €% ()C] + Zi:2(71) lxi)

Hpe" = (4w + 24wy + 24wv)eV

2.5. G, type Calogero model
For the Calogero model associated with G, type root system, the vectors 7;, i = 1, ...,6 are
given by
7 = (1,-1,0), ¥, = (1,0, 1), 73 = (0,1,-1),
54: (1,1,—2), 55: (1,—2,1), 56:(_271,1)

We also set ay = ap = a3 = 31, g = a5 = ag = B in (2), so

3 3 3
w
W:51210g|xi*xj|+52 Z 10g|xi+xj*2)€l|*zzxi2’

i<j I#i<j£l
3
X 261(B _65(B—1)
5 2
+Z fx) Z (szrX*le T Zx"
i<j 7 I£i<j7#l 7
Hg,e" = (3w + 661w + 66,w)e”

The Es and E5 cases have constraints on the coordinates [20]. These do not lend to a conve-
nient physical interpretation, so we omit them.

(10)

3. Construction of new models

In this section, we present a systematic approach for constructing ES kN-body systems in one
dimension. Such models describe systems of N interacting blocks, each of which has k par-
ticles interacting via an A type or G, type potential.

The kN-body system is proposed to have a Hamiltonian H given by

H = H;+C(X1, X, , Xn). (11)

Here X; = % Jl;l xj, i=1,2,--- N, is the center-of-mass of the ith block, C(Xi,-- -, Xy)
is called the coupling function, and H; is the Hamiltonian for the ith block,
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pl+w22xy+v,, = Zaz, i=1,2,---,N. (12)

The potential V; above is of the inverse square form:

m;

8il
Vi = e
> i

=1
In this model, H; is assigned m; vectors, ¥y is the Ith vector associated with H;,
Ui = (070’ Tt ’O’ Oin» Oin, -« + * 9vilk50’ t ’O)’
———
in the ith block
and X is the collection of coordinates of the form,
X= (Xll, Xkt s Xl s Xkt S AN, AN2, ,XNk)-
—_——

ith block

(13)

We take the coupling function to be of the inverse square form, i.e.
/81 ﬁz — 1 i 2
C(Xls"', Z |M|,
i=1

where X = (X1,-+-,Xy) and [i; = (,u,q,-~- ,u,-N), i=1,2,---,r.In fact, we have
kii; - X = fil - %,

where X is given by (13), and ji} is some ‘expansion’ of [;,

=/
Hj = (Mil?"' s Jbils M2y = 0 s b2yttt sttt s N, 7/’1/1'1\7)'
—_—
k copies of w1k copies of i k copies of pin

It is then clear that the inner product ji; - ¥; is well defined. Putting ¥, ¥y and /! into (3), and
using the relations

Uir - Opp = iUy - Uy

k
=/
Ky = Wi Uils»
s=1

fi - i = (7} - 1),
we arrive at S| + S, + 53 = 0 where

N m;

oo L
51 :ZZ = (Ui - T ),

(T - %) (O - %)

i=1 1<l
k
o B;
SZ — — — — — . v.l s
%/: (Vi - %) (fF} - X) (s ; )

I B B;

S3= - —— (il - ij). (14)
k i<j (i - X) (.uj - X)
We want Sy, S> and S5 in (14)}0 vanish individually. First,A let us examine Sy, it is nothing but a
sum of ansatzes (3) of each H;. For the ith Hamiltonian H;, we can choose ¥;;’s to be the root
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system of a simple Lie algebra, with appropriate a;;’s such that S; vanishes. For S,, we can
make it vanish by choosing 7j;’s to be root vectors of Lie algebra A or G,, i.e. by choosing the
potential V; to have the form

20 — 1)
Vi= — 3 15
j; (x5 — xa)? (15)
or
3 3
2)\,‘1()\,‘1 — 1) 6)\,‘2()\,'2 — 1)
Vi=Yy TSt T 16

To make S5 vanish, we can just choose [i;’s to be the root vectors of some Lie algebra. That is

we choose the coupling function C to be one of the A, BC, Eg, F4 or G, types. It is seen from

() . So we

can readily give the ground state wavefunction and energy of the Hamiltonian (11), for each
choice of C, as follows.

(6) and (10) that each H in (11) admits a ground state " with ground energy E

3.1. A type coupling
If C is A type, i.e.

2a a—l
kZ a >0, (17)

j<s

we have the pre-superpotential

WA—ZW +OzZlog|X X;)-

j<s
So e% is the ground state of the Hamiltonian (11), with ground-state energy

N
Eo=Y E +N(N - 1)wa.

i=1

3.2. BC type coupling
If C is BC type, i.e.

N
kz{z(@ ﬁ];)ﬁ(ﬁ)}(il;l } Z 2B 50850,
Jj<s =

we have the pre-superpotential

N N N
Wee = > Wi+ B Y {log|X; — X,| +log |X; + X,|} + 5 > _ log |Xil.
i=1 Jj<s i=1
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Then "¢ is the ground state of the Hamiltonian (11), with ground-state energy
N -
Ey=Y E +2N(N — 1)wpi + 2Nwp,.
i=1
We remind that when 3, = 0, BC type reduces to D type.

3.3. Eg type coupling
If C is Eg type (so N = 8), i.e.

L1281 1 85(5 1)
kz{ TR x)? }+k2<x8+23_1<—1>afx,-)2’ﬁ>0’

i<j acl

we have the pre-superpotential

ZW +5Z{10g|X Xj| + log |X; +X|}+5Zlog\Xg+Z

i=1 i<j acl
Then "% is the ground state of the Hamiltonian (11), with ground-state energy

8
Ey =Y EY +240wp.
i=1

3.4. F4type coupling
If C is Fy type (so N =4), i.e.

4 4
1 w(v—1) 12v(v— 1)} 1 ulp—1) 1 4p(p—1)
C:fE{ + 7 D :
k i<j X+ X2 k(X - X))? k i—1 X k €7, (X1 + Z?zz(_l)a’xi)z

we have the pre-superpotential

ZW +uZ{1og\X X;| + log |X; +X|}+uZlog|X\ +p Z log | X, —0—2 1)%X;|.

i<j a;i €7

Then %74 is the ground state of the Hamiltonian (11), with ground-state energy

4
Ey = Z E(()l) + 24wy + 24w
i=1

3.5. G type coupling

If C is G, type (so N = 3), i.e.

3
251 51 - 1) 1 632(8 — 1)
Z 2 T Z . _ 2751>07ﬂ2>0,
k Jj<s ) k I#j<s#l (ij + X 2Xl)
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we have the pre-superpotential

3

3 3
=D Wit i) loglXi—Xi| +52 D loglX; + X, —2Xi|.

i=1 Jj<s [#j<s#l
Then Ve is the ground state of the Hamiltonian (11), with ground-state energy

N

Ey =Y E +6w(Bi + 5.

i=1

4. Exactly solvable 3N-body problems

As examples of the general results above, we consider the k = 3 case and construct two ES
3N-body systems.

Model 1:We choose all V;’s in (12) to be G, type and set g;; = g; forall [ = 1,2,3, i.e.
each H; is of the form
2 3 3 3

3
g 0 2 2, 2 8i 2
e Z@xz_'_w in+9z<;(xij—xﬂ)2+3

A
(Xij “+ X — 2x,~1)2 '
(18)
We choose C in (11) to be A type, i.e. C is given by (17). Putting (18) and (17) into (11)
gives the Hamiltonian

) N 3 82 2 :

(xyj — Xis)

sAEj<IF#s

N3
2 Ai 6c(a—1)

+2 + :
3 Z Z (X + Xis — 2xi1)? P (Xi1 + xi + Xxi3 — X1 — Xpp — Xj3)?

In order to solve the Schrodinger equation H¥ = EW, we first make a transformation for
each triplet {x;1, xn, X3 }

V3
Xi| = \[ \/7 ( —cosl; + — 2 smH,-),
\/7r,cost9,,
V3
X3 = \[ c0s0 - sin 6; (19)

such that X; = ¥;/+/3. Then H becomes

Xip =

N

N
N 9? 92 1 0 1 62 , . i
H=- <8Y2+8r2 rlaﬁ+y'128(912)+w Z(Yi—l—ri)

i=1
N N
g A 2a(a — 1)
+ + T2y e
; (r2 sin?360; 17 cos? 391‘) ; (Yi - Y2

This means we can partially factorize the eigenfunction W:

10
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N N
U = Py o) (Yo Yn) [[ RiCr) TT OS2 (62)
i=1 i=1
which leads to 2N + 1 independent equations:
N L& Ai
90?  sin?36;  cos?30;

# 10 B o .
[6;’,21’,8}’, +w I‘:|R( i) fEiR,-(ri), 1= 1,2,'“ ,N, (21)

}@Q@ﬁﬁwb@ﬁ@x i=12-- N, (20)

i
and

I:IYw(nl,-u,nN) = EY’(/}(nl,n-,nN)v
N
. 0? 20(a — 1)
5 ol EAENS e Cea))
i=1 i<j

The total energy E is given by

N
E=Ey+ ZE
i=1

For each i, equation (20) has a known solution, with eigenvalue and eigenfunction given
by
@,(,f) (6;) = sin®"(36;) cosznf(395)Pf,?”’_1/2'2”‘_1/2) (cos 66;),
BY = 6(n+vi+n), ni=0,1,2---, i=12--- N,
34+ /9 +4g; 34+V94+4N
S R T R (22)

where P&/ 122171/ (063 66,) is the Jacobi polynomial of degree n;.
Now we look at (21): for each i, (21) is recognized from Calogero’s work [9], with solu-

tion given by
B,(l/) (Bm) w
Ri(ri)) =r," L. " (wr?) x exp{ — zriz},

E =2w(2k+BY +1), k=0,1,2,--- i=12,--- N, (23)
B f
where L,({l_ ) is Laguerre polynomial of degree k; with parameter B,(,,.).
To solve the last equation Hy1,, = Eyi,, we adopt the approach of [17] involving Dunkl
operators. Define

N
N 0 1 4

D =—i— +i« g ——ojy, - =D;+iwY,j=1,2,---N
J ] it J J

[Hy,A] = £2mwAt,

1



J. Phys. A: Math. Theor. 51 (2018) 455203 Z Chenetal

where the o;; interchange coordinates, i.e. oyf (- - - xi, - -+ , x5, -+ ) =f (- x5, , X3, -+ ).
The solutions are given by
N N o
_ A+ \ni _ 2
w(nl,---,m\]) _HI(AI )nwO’ wo_lréj[YI_YAanp{ _ZZ;YI}’
i= i=

Ey =2nw+ Nw + NN — 1)aw
where

N

n:Zini, n=0,1,2,---.

i=1
The total energy E for H is then
N
E=2nw+Nw+ NN - 1aw + 2w Y [2k + 6(n; + vi + 1) + 1].
i=1
Model 2: We again choose V; to be G, type but choose C to be D type. This gives rise to
the following Hamiltonian:

N3 N 3 Y N3
Iy 2
H==3 3 ga+&d >+ §sz_x
i=1 j=I v i=1 j=1 i=1 j<s v ”
N 3 N
2 68(8 —1)
+ = A S
3 ;l;ﬁ;;él (xzj +xzs - 2)6] Z xll +x12 +xl3 _-le 2 xj3)
N
N 68(8 —1) y
i< (xi1 + xi2 + X3 4+ x5 + x4 x33)? 24

It can be seen that when transformation (19) is applied again, the equations for r;’s and
0;’s are the same as (20) and (21), as well as the solutions (22) and (23). The equation for
Yi is

I:IYi/)n:EYd)n,
N L 1 28(8 - 1)
Hyz,;[ o 2Y2]+Z Z,mwj)f

In order to solve this equation, we again use results from [17]:

1
IBZ { J ij + Y] T Ystjt‘vo-js}’

s#j
ar :Djiiwyj, j=1,2,---,N
A N
i =3,
i=I
where the 7; change coordinate signs, i.e. t;f(---Y;---) =f(--- — ¥;-- ). Eigenfunctions

and eigenvalues of (24) are given by

12
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N N
R w
e = (AT)"0o, o =]]1¥: = Y11V + Yﬂexp{ =32 Y?},
i<j '
Ey =4nw+28N(N — )w + Nw, n=0,1,2,---.

In this case, the total energy E is then

N
E=4nw+2BN(N — Dw + Nw + 2w Y [2ki + 6(n; + v; + ;) + 1].
i=1

5. Conclusion

In this work, we have presented a general approach for constructing ES kN-body systems
in one dimension. In our construction the coupling function C plays a crucial role. We give
examples which demonstrate that, in some instances, these can be chosen in relation to the
root system of a simple Lie algebra. For each listed choice of C, we give the ground state and
ground-state energy of the corresponding ES model. As non-trivial examples, we have pre-
sented two 3N-body systems. We have solved the two models by separating their Schrodinger
equations into the centers-of-mass, radial, and angular parts. The equations for radial and
angular parts are familiar ones, and can be solved analytically. The equation for the centers-
of-mass is not generally separable, but can be solved by using Dunkl operators [17].

For more general kN-body systems with £ > 3, we have found that the procedure for sepa-
rating variables does not generalise in an obvious manner. The solution to this problem will be
the subject of future investigations.
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