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Abstract
We propose a systematic procedure for the construction of exactly solvable 
kN-body systems which are natural generalisations of Calogero models. 
As examples, we present two new 3N-body models and determine explicit 
expressions for their eigenvalues and eigenfunctions.
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1.  Introduction

Exactly solvable (ES) quantum many-body problems attract considerable research activity due 
to their connections with many branches of physics, e.g. [1–8]. In 1969, Calogero obtained 
the exact solution for a three-particle system with pairwise interactions via square and inverse 
square potentials [9], and later generalized this result to the N-body case [10]. In 1974, Wolfes 
extended Calogero’s three-body problem by adding terms which are inverse squares of certain 
linear combinations of the three-particle coordinates [11]. In [12], Sutherland proposed ES 
models with trigonometric potentials [12]. In the 1980s, Olshanetsky and Perelomov carried 
out a survey and gave a classification of ES models according to the root systems of simple 
Lie algebras [13].

Over recent decades, models of the Calogero type (i.e. those where the potential is of the 
form ‘oscillator/inverse square’) have received considerable attention, and many interesting 
properties have been discovered [14–26]. There are also many works which have attempted 
to obtain new ES models by extending existing ones through separation of variables [27–29]. 
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More complicated extensions, which have connections with orthogonal polynomials, can be 
obtained by PT  (parity and time reversal) symmetric quantum mechanics [30–32]. In this 
work, we propose a systematic method for constructing ES kN-body systems in one dimen-
sion. Such models consist of N interacting blocks, each of which contains k particles. The 
blocks interact through their centres of mass, while particles in each block interact via A or G2 
type potential. As examples, we provide two new ES 3N-body models and obtain their corre
sponding eigenvalues and eigenfunctions.

The paper is organized as follows. In section 2, we describe a general procedure for con-
structing ES many-body quantum Hamiltonians in terms of pre-superpotentials. By choosing 
an appropriate form of pre-superpotential, we derive a rational ansatz whose solutions give 
rise to ES models. All Calogero type models associated with the root systems of simple Lie 
algebras satisfy this ansatz. We list the Hamiltonians of such Calogero systems, and their 
corresponding ground state energies and wave functions. In section 3, we combine distinct 
A or G2 type models together to form a new family of ES models through a coupling func-
tion. Various types of coupling functions will be studied. We show that every member in this 
family satisfies the rational ansatz, thus proving these new models remain ES. As examples, 
in section 4 we present two new 3N-body systems. Applying appropriate coordinate transfor-
mations, we separate the 3N-body eigenvalue problem into equations for radial, angular, and 
center-of-mass parts coordinates. We solve these equations to give the eigenvalues and eigen-
functions of the 3N-body models. We summarize our work in the final section.

2.  General discussion and results

Throughout this paper we set � = 2m = 1. We start with the basic relation [26],

p̂2eW = −
N∑

i=1

[(
∂W
∂xi

)2

+
∂2W
∂x2

i

]
eW , p̂2 = −

N∑
i=1

∂2

∂x2
i

.

This relation guarantees that eW is an eigenfunction of the following Hamiltonian

Ĥ = p̂2 +

N∑
i=1

[(
∂W
∂xi

)2

+
∂2W
∂x2

i

]
,

with zero eigenvalue, i.e.

ĤeW = 0,� (1)

provided that eW is square-integrable. Such a function W is called a pre-superpotential. Now 
we set W to be of the form

W =

M∑
i=1

αi log |�vi ·�x| −
ω

2

N∑
i=1

x2
i ,� (2)

where �x = (x1, x2, · · · , xN), and �vi’s are some distinct vectors. Then (1) becomes
{

p̂2 + ω2
N∑

i=1

x2
i +

M∑
i=1

αi(αi − 1)|�vi|2

(�vi ·�x)2 + 2
M∑

i<j

αiαj

(�vi ·�x)(�vj ·�x)
(�vi ·�vj)− E0

}
eW = 0,

where E0 = 2ω
∑M

i=1 αi + Nω . Thus if we choose �vj and αj such that the following so-called 
rational ansatz is satisfied
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M∑
i<j

αiαj

(�vi ·�x)(�vj ·�x)
(�vi ·�vj) = 0,� (3)

and denote the corresponding Hamiltonian as ĤCal, we then have

ĤCal = p̂2 + ω2
N∑

i=1

x2
i +

M∑
i=1

αi(αi − 1)|�vi|2

(�vi ·�x)2 ,

ĤCal eW =

(
2ω

M∑
i=1

αi + Nω

)
eW .

�

(4)

In other words, if (3) is satisfied, the Hamiltonian (4) admits a ground state eW with corre
sponding energy E0.

It is straightforward to show that ̂e−WHCaleW  gives

̂e−WHCaleW = p̂2 − 2
N∑

i=1

M∑
j=1

αjvji

�vj ·�x
∂

∂xi
+ 2ω

N∑
i=1

xi
∂

∂xi
+ E0� (5)

where vji denotes the ith component of the vector �vj. We find ̂e−WHCaleWPn(t) ⊂ Pn(t) for any 
positiver integer n, where Pn(t) is defined by

Pn(t) = span{1, t, t2, · · · , tn}, t =
N∑

i=1

x2
i .

That is, ̂e−WHCaleW  preserves the infinite flag of spaces

P0(t) ⊂ P1(t) · · · ⊂ Pn(t) ⊂ · · · .

It is not difficult to obtain

̂e−WHCaleW L(α)
n (4ωt) = (4ωn + E0) L(α)

n (4ωt), α = 4
M∑

j=1

αj + 2N + 1,

where L(α)
n (4ωt) is the Laguerre polynomial of degree n. Moreover, the results from [23–25] 

can be generalized to show the exact solvability of the Hamiltonian ĤCal. Indeed, from (5), 
we find

̂ĝ−1e−WHCaleWĝ = p̂2 + ω2
N∑

i=1

x2
i + E0 − Nω,

ĝ = exp

{
1

4ω

[
p̂2 − 2

N∑
i=1

M∑
j=1

αjvji

�vj ·�x
∂

∂xi

]}
· exp

{
− 1

4ω
p̂2
}
· exp

{
ω

2

N∑
i=1

x2
i

}
.

In terms of the ladder operators

âj =
∂

∂xj
+ ωxj, â†j = − ∂

∂xj
+ ωxj,
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we have

ĝ−1 ̂e−WHCaleWĝ =
1
2

N∑
i=1

{âi, â†i }+ E0 − Nω.

We see that Hamiltonian ĤCal can be mapped to independent harmonic oscillators and thus is ES. 
It is straightforward to show that the transformed ‘number operators’ Ĵii = eWĝâ†

i âiĝ−1e−W , 
i = 1, 2, · · · , N  are conserved

[Ĵii, ĤCal] = 0,

as expected.
It can be shown that the rational ansatz (3) has non-trivial solutions. With appropriate αj’s,  

root vectors of simple Lie algebras satisfy (3) and the corresponding ĤCal in (4) give the 
Hamiltonians of the Calogero type models. On the other hand, it is worth noting that [27] 
provides an example of an ES Hamiltonian corresponding to �vj’s in (3) which are not related 
to a root system of a Lie algebra.

We now list some known results, taken from [15, 16, 20, 26], for later use. While the gen-
eral discussion above is valid for parameters M and N are independent, the fact that the results 
below are expressed in terms of root systems imposes a relation between M and N.

2.1.  A type Calogero model

For the Calogero model associated with A type root system, the positive root vectors are

êi − êj = (· · · , 1, · · · ,−1, · · · ) 1 � i < j � N

where êi denotes a standard basis element in N-dimensional Euclidean space RN , and 
the dots represent zeros. We set �v1 = ê1 − ê2, �v2 = ê1 − ê3, ...,�vM = êN−1 − êN , where 
M = N(N − 1)/2. We also set α1 = · · · = αM = α in (2), such that

W = α

N∑
i<j

log |xi − xj| −
ω

2

N∑
i=1

x2
i ,

ĤA = p̂2 +

N∑
i<j

2α(α− 1)
(xi − xj)2 + ω2

N∑
i=1

x2
i ,

ĤAeW = [Nω + N(N − 1)ωα]eW .

�

(6)

2.2.  BC type Calogero model

For the Calogero model associated with BC type root system, the positive root vectors are

êi ± êj = (· · · , 1, · · · ,±1, · · · ), 1 � i < j � N,
êi = (· · · , 1, · · · ), i = 1, 2, . . . , N.

We set �v1 = ê1 − ê2, �v2 = ê1 − ê3, ...,�vM′/2 = êN−1 − êN , �vM′/2+1 = ê1 + ê2, ...,�vM′ = êN−1 + êN  
where M′ = N(N − 1), and �vM′+i = êi, i = 1, ..., N . We also set α1 = · · · = αM′ = β1, 
αM′+1 = · · · = αM = β2 in (2), where M = M′ + N. Then

Z Chen et alJ. Phys. A: Math. Theor. 51 (2018) 455203



5

W = β1

N∑
i<j

{log |xi − xj|+ log |xi + xj|}+ β2

N∑
i=1

log |xi| −
ω

2

N∑
i=1

x2
i ,

ĤBC = p̂2 +

N∑
i<j

{
2β1(β1 − 1)
(xi − xj)2 +

2β1(β1 − 1)
(xi + xj)2

}
+ ω2

N∑
i=1

x2
i +

N∑
i=1

β2(β2 − 1)
x2

i
,

ĤBCeW = [2N(N − 1)ωβ1 + 2Nωβ2 + Nω]eW .

�

(7)

If β2 = 0, then BC type reduces to D type.

2.3.  E8 type Calogero model

Before defining this model, we need to introduce some notation. For j = 1, · · · , 7 let aj ∈ Z2 
and let I  denote the set of septuples a = (a1, · · · a7) such that

7∑
i=1

ai = 0.

Then for the Calogero model associated with E8 type root system, the positive root vectors are

êi ± êj = (· · · , 1, · · · ,±1, · · · ) 1 � i < j � 8,

ê8 +
7∑

i=1

(−1)ai êi = ((−1)a1 , · · · , (−1)a7 , 1), (a1, · · · , a7) ∈ I.
�

(8)

We set �v1 = ê1 − ê2, �v56 = ê7 + ê8, while the remaining �v57, ...,�v120 have the form (8). We 
also set α1 = · · · = α120 = β in (2), so

W = β
8∑

i<j

{log |xi − xj|+ log |xi + xj|}+ β
∑
a∈I

log |x8 +
7∑

i=1

(−1)ai xi| −
ω

2

8∑
i=1

x2
i ,

ĤE8 = p̂2 +
8∑

i<j

{
2β(β − 1)
(xi − xj)2 +

2β(β − 1)
(xi + xj)2

}
+

∑
a∈I

8β(β − 1)

(x8 +
∑7

i=1(−1)ai xi)2
+ ω2

8∑
i=1

x2
i ,

ĤE8 eW = (240ωβ + 8ω)eW .

� (9)

2.4.  F4 type Calogero model

For the Calogero model associated with F4 type root system, the vectors are

êi ± êj = (· · · , 1, · · · ,±1, · · · ) 1 � i < j � 4,

ê1 +

4∑
i=2

(−1)ai êi = (1,±1,±1,±1),

êi = (· · · , 1, · · · ), i = 1, 2, 3, 4.

We set �v1 = ê1 − ê2, ...,�v12 = ê3 + ê4, �v13 = (1, 1, 1, 1), ...,�v20 = (1,−1,−1,−1) and 
�v20+i = êi, i = 1, ..., 4. We also set α1 = · · · = α12 = ν, α13 = · · · = α24 = µ in (2), so

Z Chen et alJ. Phys. A: Math. Theor. 51 (2018) 455203
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W = ν

4∑
i<j

{log |xi − xj|+ log |xi + xj|}+ µ

4∑
i=1

log |xi|

+ µ
∑

ai∈Z2

log |x1 +

4∑
i=2

(−1)ai xi| −
ω

2

4∑
i=1

x2
i ,

ĤF4 = p̂2 +

4∑
i<j

{
2ν(ν − 1)
(xi + xj)2 +

2ν(ν − 1)
(xi − xj)2

}
+

4∑
i=1

µ(µ− 1)
x2

i
+ ω2

4∑
i=1

x2
i

+
∑

ai∈Z2

4µ(µ− 1)

(x1 +
∑4

i=2(−1)ai xi)2
,

ĤF4 eW = (4ω + 24ωµ+ 24ων)eW .

2.5.  G2 type Calogero model

For the Calogero model associated with G2 type root system, the vectors �vi, i = 1, ..., 6 are 
given by

�v1 = (1,−1, 0), �v2 = (1, 0,−1), �v3 = (0, 1,−1),
�v4 = (1, 1,−2), �v5 = (1,−2, 1), �v6 = (−2, 1, 1).

We also set α1 = α2 = α3 = β1, α4 = α5 = α6 = β2 in (2), so

W = β1

3∑
i<j

log |xi − xj|+ β2

3∑
l �=i<j�=l

log |xi + xj − 2xl| −
ω

2

3∑
i=1

x2
i ,

ĤG2 = p̂2 +

3∑
i<j

2β1(β1 − 1)
(xi − xj)2 +

3∑
l �=i<j�=l

6β2(β2 − 1)
(xi + xj − 2xl)2 + ω2

3∑
i=1

x2
i ,

ĤG2 eW = (3ω + 6β1ω + 6β2ω)eW .

�

(10)

The E6 and E7 cases have constraints on the coordinates [20]. These do not lend to a conve-
nient physical interpretation, so we omit them.

3.  Construction of new models

In this section, we present a systematic approach for constructing ES kN-body systems in one 
dimension. Such models describe systems of N interacting blocks, each of which has k par-
ticles interacting via an A type or G2 type potential.

The kN-body system is proposed to have a Hamiltonian Ĥ  given by

Ĥ =

N∑
i=1

Ĥi + C(X1, X2, · · · , XN).� (11)

Here Xi =
1
k

∑k
j=1 xij, i = 1, 2, · · · , N, is the center-of-mass of the ith block, C(X1, · · · , XN) 

is called the coupling function, and Ĥi  is the Hamiltonian for the ith block,

Z Chen et alJ. Phys. A: Math. Theor. 51 (2018) 455203
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Ĥi = p̂2
i + ω2

k∑
j=1

x2
ij + Vi, p̂2

i = −
k∑

j=1

∂2

∂x2
ij

, i = 1, 2, · · · , N.� (12)

The potential Vi above is of the inverse square form:

Vi =

mi∑
l=1

gil

(�vil ·�x)2 .

In this model, Ĥi  is assigned mi vectors, �vil is the lth vector associated with Ĥi ,

�vil = (0, 0, · · · , 0, vil1, vil2, · · · , vilk︸ ︷︷ ︸
in the ith block

, 0, · · · , 0),

and �x  is the collection of coordinates of the form,

�x = (x11, · · · , x1k, · · · , xi1, · · · , xik︸ ︷︷ ︸
ith block

, · · · , xN1, xN2, · · · , xNk).
� (13)

We take the coupling function to be of the inverse square form, i.e.

C(X1, · · · , XN) =
1
k

r∑
i=1

βi(βi − 1)|�µi|2

(�µi · �X)2
,

where �X = (X1, · · · , XN) and �µi = (µi1, · · · ,µiN), i = 1, 2, · · · , r . In fact, we have

k�µi · �X = �µ′
i ·�x,

where �x  is given by (13), and �µ′
i  is some ‘expansion’ of �µi,

�µ′
i = (µi1, · · · ,µi1︸ ︷︷ ︸

k copies of µi1

,µi2, · · · ,µi2︸ ︷︷ ︸
k copies of µi2

, · · · , · · · ,µiN , · · · ,µiN︸ ︷︷ ︸
k copies of µiN

).

It is then clear that the inner product �µ′
i ·�vil is well defined. Putting �x , �vil and �µ′

i  into (3), and 
using the relations

�vil ·�vi′l′ = δii′�vil ·�vil′ ,

�vil · �µ′
j = µji

k∑
s=1

vils,

�µi · �µj = k(�µ′
i · �µ′

j),

we arrive at S1 + S2 + S3 = 0 where

S1 =

N∑
i=1

mi∑
l<l′

αil

(�vil ·�x)
αil′

(�vil′ ·�x)
(�vil ·�vil′),

S2 =
∑
i,l,j

αil

(�vil ·�x)
βj

(�µ′
j ·�x)

(µji

k∑
s=1

vils),

S3 =
1
k

r∑
i<j

βi

(�µi · �X)
βj

(�µj · �X)
(�µi · �µj).

�

(14)

We want S1, S2 and S3 in (14) to vanish individually. First, let us examine S1, it is nothing but a 
sum of ansatzes (3) of each Ĥi . For the ith Hamiltonian Ĥi , we can choose �vil’s to be the root 

Z Chen et alJ. Phys. A: Math. Theor. 51 (2018) 455203
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system of a simple Lie algebra, with appropriate αil’s such that S1 vanishes. For S2, we can 
make it vanish by choosing �vil’s to be root vectors of Lie algebra A or G2, i.e. by choosing the 
potential Vi to have the form

Vi =

k∑
j<l

2λi(λi − 1)
(xij − xil)2 ,� (15)

or

Vi =

3∑
j<l

2λi1(λi1 − 1)
(xij − xil)2 +

3∑
s�=j<l �=s

6λi2(λi2 − 1)
(xij + xil − 2xil)2 .� (16)

To make S3 vanish, we can just choose �µi’s to be the root vectors of some Lie algebra. That is 
we choose the coupling function C to be one of the A, BC, E8, F4 or G2 types. It is seen from 

(6) and (10) that each Ĥi  in (11) admits a ground state eWi with ground energy E(i)
0 . So we 

can readily give the ground state wavefunction and energy of the Hamiltonian (11), for each 
choice of C, as follows.

3.1.  A type coupling

If C is A type, i.e.

C =
1
k

N∑
j<s

2α(α− 1)
(Xj − Xs)2 , α > 0,� (17)

we have the pre-superpotential

WA =

N∑
i=1

Wi + α

N∑
j<s

log |Xj − Xs|.

So eWA is the ground state of the Hamiltonian (11), with ground-state energy

E0 =

N∑
i=1

E(i)
0 + N(N − 1)ωα.

3.2.  BC type coupling

If C is BC type, i.e.

C =
1
k

N∑
j<s

{
2β1(β1 − 1)
(Xj − Xs)2 +

2β1(β1 − 1)
(Xj + Xs)2

}
+

1
k

N∑
j=1

β2(β2 − 1)
X2

j
, β1 > 0, β2 > 0,

we have the pre-superpotential

WBC =

N∑
i=1

Wi + β1

N∑
j<s

{log |Xj − Xs|+ log |Xj + Xs|}+ β2

N∑
i=1

log |Xi|.

Z Chen et alJ. Phys. A: Math. Theor. 51 (2018) 455203
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Then eWBC is the ground state of the Hamiltonian (11), with ground-state energy

E0 =

N∑
i=1

E(i)
0 + 2N(N − 1)ωβ1 + 2Nωβ2.

We remind that when β2 = 0, BC type reduces to D type.

3.3.  E8 type coupling

If C is E8 type (so N  =  8), i.e.

C =
1
k

8∑
i<j

{
2β(β − 1)
(Xi − Xj)2 +

1
k

2β(β − 1)
(Xi + Xj)2

}
+

1
k

∑
a∈I

8β(β − 1)

(X8 +
∑7

i=1(−1)ai Xi)2
, β > 0,

we have the pre-superpotential

WE8 =
8∑

i=1

Wi + β
8∑

i<j

{log |Xi − Xj|+ log |Xi + Xj|}+ β
∑
a∈I

log |X8 +
7∑

i=1

(−1)ai Xi|.

Then eWE8 is the ground state of the Hamiltonian (11), with ground-state energy

E0 =

8∑
i=1

E(i)
0 + 240ωβ.

3.4.  F4 type coupling

If C is F4 type (so N  =  4), i.e.

C =
1
k

4∑
i<j

{
2ν(ν − 1)
(Xi + Xj)2 +

1
k

2ν(ν − 1)
(Xi − Xj)2

}
+

1
k

4∑
i=1

µ(µ− 1)
X2

i
+

1
k

∑
ai∈Z2

4µ(µ− 1)

(X1 +
∑4

i=2(−1)ai Xi)2
,

we have the pre-superpotential

WF4 =
4∑

i=1

Wi + ν
4∑

i<j

{log |Xi − Xj|+ log |Xi + Xj|}+ µ
4∑

i=1

log |Xi|+ µ
∑

ai∈Z2

log |X1 +
4∑

i=1

(−1)ai Xi|.

Then eWF4 is the ground state of the Hamiltonian (11), with ground-state energy

E0 =

4∑
i=1

E(i)
0 + 24ων + 24ωµ.

3.5.  G2 type coupling

If C is G2 type (so N  =  3), i.e.

C =
1
k

3∑
j<s

2β1(β1 − 1)
(Xj − Xs)2 +

1
k

3∑
l �=j<s�=l

6β2(β2 − 1)
(Xj + Xs − 2Xl)2 , β1 > 0, β2 > 0,
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we have the pre-superpotential

WG2 =

3∑
i=1

Wi + β1

3∑
j<s

log |Xj − Xs|+ β2

3∑
l �=j<s�=l

log |Xj + Xs − 2Xl|.

Then eWG2 is the ground state of the Hamiltonian (11), with ground-state energy

E0 =

N∑
i=1

E(i)
0 + 6ω(β1 + β2).

4.  Exactly solvable 3N-body problems

As examples of the general results above, we consider the k  =  3 case and construct two ES 
3N-body systems.

		 Model 1:�We choose all Vi’s in (12) to be G2 type and set gil = gi for all l = 1, 2, 3, i.e. 
each Ĥi  is of the form

Ĥi = −
3∑

j=1

∂2

∂x2
ij
+ ω2

3∑
j=1

x2
i +

2
9

3∑
j<l

gi

(xij − xil)2 +
2
3

3∑
s�=j<l �=s

λi

(xij + xil − 2xil)2 .

� (18)
		 We choose C in (11) to be A type, i.e. C is given by (17). Putting (18) and (17) into (11) 

gives the Hamiltonian

Ĥ =−
N∑

i=1

3∑
j=1

∂2

∂x2
ij
+ ω2

N∑
i=1

3∑
j=1

x2
ij +

2
9

N∑
i=1

3∑
j<s

gi

(xij − xis)2

+
2
3

N∑
i=1

3∑
l �=j<s�=l

λi

(xij + xis − 2xil)2 +
N∑

i<j

6α(α− 1)
(xi1 + xi2 + xi3 − xj1 − xj2 − xj3)2 .

		 In order to solve the Schrödinger equation ĤΨ = EΨ, we first make a transformation for 
each triplet {xi1, xi2, xi3}

xi1 =
Yi√

3
+

√
2
3

ri

(
− 1

2
cos θi +

√
3

2
sin θi

)
,

xi2 =
Yi√

3
+

√
2
3

ri cos θi,

xi3 =
Yi√

3
+

√
2
3

ri

(
− 1

2
cos θi −

√
3

2
sin θi

)
�

(19)

		 such that Xi = Yi/
√

3 . Then Ĥ  becomes

Ĥ =−
N∑

i=1

(
∂2

∂Y2
i
+

∂2

∂r2
i
+

1
ri

∂

∂ri
+

1
r2

i

∂2

∂θ2
i

)
+ ω2

N∑
i=1

(Y2
i + r2

i )

+

N∑
i=1

(
gi

r2
i sin

2 3θi
+

λi

r2
i cos

2 3θi

)
+

N∑
i<j

2α(α− 1)
(Yi − Yj)2 .

		 This means we can partially factorize the eigenfunction Ψ:
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Ψ = ψ(n1,··· ,nN)(Y1, · · · , YN)
N∏

i=1

Ri(ri)
N∏

i=1

Θ(i)
ni
(θi),

		 which leads to 2N  +  1 independent equations:
[
− ∂2

∂θ2
i
+

gi

sin2 3θi
+

λi

cos2 3θi

]
Θ(i)

ni
(θi) = (B(i)

ni
)2Θ(i)

ni
(θi), i = 1, 2, · · · , N,

�

(20)

[
− ∂2

∂r2
i
− 1

ri

∂

∂ri
+

(B(i)
ni )

2

r2
i

+ ω2r2
i

]
Ri(ri) = EiRi(ri), i = 1, 2, · · · , N,

�

(21)

		 and

ĤYψ(n1,··· ,nN) = EYψ(n1,··· ,nN),

ĤY =

N∑
i=1

[
− ∂2

∂Y2
i
+ ω2Y2

i

]
+

N∑
i<j

2α(α− 1)
(Yi − Yj)2 .

		 The total energy E is given by

E = EY +
N∑

i=1

Ei.

		 For each i, equation (20) has a known solution, with eigenvalue and eigenfunction given 
by

Θ(i)
ni
(θi) = sin2νi(3θi) cos

2ηi(3θi)P(2νi−1/2,2ηi−1/2)
ni

(cos 6θi),

B(i)
ni

= 6(ni + νi + ηi), ni = 0, 1, 2, · · · , i = 1, 2, · · · , N,

νi =
3 +

√
9 + 4gi

12
, ηi =

3 +
√

9 + 4λi

12
,

�

(22)

		 where P(2νi−1/2,2ηi−1/2)
ni (cos 6θi) is the Jacobi polynomial of degree ni.

		 Now we look at (21): for each i, (21) is recognized from Calogero’s work [9], with solu-
tion given by

Ri(ri) = r
B(i)

ni
i L

(B(i)
ni

)

ki
(ωr2

i )× exp

{
− ω

2
r2

i

}
,

Ei = 2ω(2ki + B(i)
ni

+ 1), ki = 0, 1, 2, · · · i = 1, 2, · · · , N,
�

(23)

		 where L
(B(i)

ni
)

ki
 is Laguerre polynomial of degree ki with parameter B(i)

ni .
		 To solve the last equation ĤYψn = EYψn, we adopt the approach of [17] involving Dunkl 

operators. Define

D̂j = −i
∂

∂Yj
+ iα

N∑
l �=j

1
Yj − Yl

σjl, â±j = Dj ± iωYj, j = 1, 2, · · ·N,

Â±
m =

N∑
j=1

(â±j )m, m = 1, 2, · · · , N,

[HY , Â±
m ] = ±2mωÂ±

m ,
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		 where the σij interchange coordinates, i.e. σijf (· · · xi, · · · , xj, · · · ) = f (· · · xj, · · · , xi, · · · ). 
The solutions are given by

ψ(n1,··· ,nN) =

N∏
i=1

(Â+
i )

niψ0, ψ0 =

N∏
i<j

|Yi − Yj|α exp

{
− ω

2

N∑
i=1

Y2
i

}
,

EY = 2nω + Nω + N(N − 1)αω

		 where

n =

N∑
i=1

ini, ni = 0, 1, 2, · · · .

		 The total energy E for Ĥ  is then

E = 2nω + Nω + N(N − 1)αω + 2ω
N∑

i=1

[2ki + 6(ni + νi + ηi) + 1].

		 Model 2: We again choose Vi to be G2 type but choose C to be D type. This gives rise to 
the following Hamiltonian:

Ĥ =−
N∑

i=1

3∑
j=1

∂2

∂x2
ij
+ ω2

N∑
i=1

3∑
j=1

x2
ij +

2
9

N∑
i=1

3∑
j<s

gi

(xij − xis)2

+
2
3

N∑
i=1

3∑
l �=j<s�=l

λi

(xij + xis − 2xil)2 +
N∑

i<j

6β(β − 1)
(xi1 + xi2 + xi3 − xj1 − xj2 − xj3)2

+
N∑

i<j

6β(β − 1)
(xi1 + xi2 + xi3 + xj1 + xj2 + xj3)2 .

�

(24)

		 It can be seen that when transformation (19) is applied again, the equations for ri’s and  
θi’s are the same as (20) and (21), as well as the solutions (22) and (23). The equation for 
Yi is

ĤYψn = EYψn,

ĤY =

N∑
i=1

[
− ∂2

∂Y2
j
+ ω2Y2

i

]
+

N∑
i<j

2β(β − 1)
(Yi − Yj)2 +

N∑
i<j

2β(β − 1)
(Yi + Yj)2 .

		 In order to solve this equation, we again use results from [17]:

D̂j = −i
∂

∂Yi
+ iβ

N∑
s�=j

{
1

Yj − Ys
σjs +

1
Yj + Ys

tjtsσjs

}
,

â±j = D̂j ± iωYj, j = 1, 2, · · · , N,

Â± =

N∑
i=1

(â±i )2,

		 where the ti change coordinate signs, i.e. ti f (· · · Yi · · · ) = f (· · · − Yi · · · ). Eigenfunctions 
and eigenvalues of (24) are given by
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ψn = (Â+)nψ0, ψ0 =
N∏

i<j

|Yi − Yj|β |Yi + Yj|β exp
{
− ω

2

N∑
i=1

Y2
i

}
,

EY = 4nω + 2βN(N − 1)ω + Nω, n = 0, 1, 2, · · · .

		 In this case, the total energy E is then

E = 4nω + 2βN(N − 1)ω + Nω + 2ω
N∑

i=1

[2ki + 6(ni + νi + ηi) + 1].

5.  Conclusion

In this work, we have presented a general approach for constructing ES kN-body systems 
in one dimension. In our construction the coupling function C plays a crucial role. We give 
examples which demonstrate that, in some instances, these can be chosen in relation to the 
root system of a simple Lie algebra. For each listed choice of C, we give the ground state and 
ground-state energy of the corresponding ES model. As non-trivial examples, we have pre-
sented two 3N-body systems. We have solved the two models by separating their Schrödinger 
equations  into the centers-of-mass, radial, and angular parts. The equations  for radial and 
angular parts are familiar ones, and can be solved analytically. The equation for the centers-
of-mass is not generally separable, but can be solved by using Dunkl operators [17].

For more general kN-body systems with k  >  3, we have found that the procedure for sepa-
rating variables does not generalise in an obvious manner. The solution to this problem will be 
the subject of future investigations.
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