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Solving Sign Problems with Meron Cluster Algorithms:Simulating Field Theories at Non-Zero Chemi
al PotentialbyBenjamin S. S
arletSubmitted to the Department of Physi
son August 24, 2000, in partial ful�llment of therequirements for the degree ofDo
tor of PhilosophyAbstra
tNumeri
al simulation of quantum systems develop sign problems upon the introdu
-tion of a 
hemi
al potential. The sign problem thus makes many interesting physi
alsystems very diÆ
ult to study numeri
ally. In this thesis, two related systems whi
hdevelop sign problems in this way are 
onsidered: a D-Theory representation of a1+1 dimensional O(3) quantum �eld theory with a 
hemi
al potential, and antiferro-magneti
 Heisenberg quantum spin ladders in a magneti
 �eld. In both 
ases, meron
luster algorithms are used to 
ompletely solve the sign problem. Using these al-gorithms, numeri
al results were generated in the two models for, respe
tively, theparti
le number as a fun
tion of the 
hemi
al potential and magnetization as a fun
-tion of the external �eld. These results are in agreement with 
orresponding analyti
predi
tions.Thesis Supervisor: Uwe-Jens WieseTitle: Asso
iate Professor of Physi
s
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Chapter 1
Introdu
tion
1.1 Motivation from Strongly Coupled SystemsMany physi
al phenomena are des
ribed by strongly 
oupled systems. Nu
lear andquark matter are des
ribed by strongly 
oupled quarks and gluons in quantum 
hro-modynami
s. High T
 super
ondu
tors are des
ribed by strongly 
oupled ele
trons.Magnets are des
ribed by strongly 
oupled spins. All these systems 
an be stud-ied numeri
ally, but 
urrent numeri
al te
hniques en
ounter serious ineÆ
ien
ies forthese models be
ause of 
omplex a
tion problems.1.1.1 Quantum Chromodynami
sQuantum 
hromodynami
s (QCD) is the part of the Standard Model whi
h des
ribesthe strong for
e. It des
ribes hadrons and their intera
tions. It des
ribes systems ofhadrons su
h as nu
lei. It des
ribes more exoti
 systems whi
h form when hadroni
systems are subje
ted to extremes of temperature or density { su
h as the 
ores ofneutron stars, the very early universe, and 
olliding heavy nu
lei.QCD is a theory of fermions 
alled quarks intera
ting via the ex
hange of bosons
alled gluons whi
h arise from an SU(3) gauge symmetry 
alled 
olor. It is an asymp-toti
ally free theory { at suÆ
iently large energy s
ales it is weakly 
oupled, and so
an be studied perturbatively. At smaller energies, however, the formerly weak inter-10



a
tions be
ome very strong, and the parti
les be
ome bound up in intri
ate stru
tures.The gluons are ex
luded from free spa
e { like a magneti
 �eld from a super
ondu
tor{ and so they form 
ux tubes 
onne
ting the 
olor-
harged quarks. The quarks, nowbound together by a for
e whi
h does not de
rease with their separation, form tightlybound 
olle
tives with no net 
olor 
harge: hadrons.This rudimentary des
ription suÆ
es to motivate the theory, but it is in
ompleteand oversimpli�ed. The range of theorized phenomena whi
h may o

ur in quark andgluon physi
s is both broadly varied and deeply 
omplex. It in
ludes not only thequalitative pi
ture of 
on�nement des
ribed above, but also more exoti
 phenomena.A 
olor-super
ondu
ting phase is theorized to exist at extreme densities, perhaps inneutron stars [3, 44℄. A quark-gluon plasma is theorized to exist at high temperatureand high density; su
h a plasma may be 
reated in heavy ion 
ollisions at RHIC,for example [43℄. In order to study the strongly 
oupled regime in suÆ
ient detailto understand these phenomena it is ne
essary to use quantitative, non-perturbativete
hniques.The most prominent su
h method is Monte Carlo latti
e simulation. This te
h-nique is e�e
tive for studying QCD at �nite temperatures but zero 
hemi
al potential,and so exploring its phase transitions and attempting better to understand the phe-nomenon of 
on�nement. For �nite density, however, when a 
hemi
al potential isne
essary, 
urrent Monte Carlo te
hniques are not e�e
tive. The introdu
tion of
hemi
al potential 
auses Monte Carlo simulation to be
ome very ineÆ
ient be
ause
omplex a
tion problems develop. Thus the realm of the phase diagram away fromzero 
hemi
al potential is 
urrently ina

essible to numeri
al study. At extremelylarge 
hemi
al potential, the typi
al energy s
ale (determined by the Fermi energy)be
omes large enough that the 
oupling des
ends into the perturbative regime. Un-fortunately, the density range whi
h 
an be treated this way is impra
ti
ally dense {far denser than nu
lear matter.
11



1.1.2 High T
 Super
ondu
torsSome layered 
uprates, su
h as La2CuO4, exhibit high T
 super
ondu
tivity when ap-propriately doped with barium. These materials 
an be modeled as two dimensionallatti
es of strongly 
oupled ele
trons be
ause the 
oupling between layers is rela-tively weak. Before doping, these materials exhibit the symmetry breaking pattern ofthe Heisenberg antiferromagnet: SO(3) ! SO(2) produ
ing two Goldstone modes:magnons. After doping, when super
ondu
tivity appears, they instead exhibit a dif-ferent pattern: the U(1) gauge group of ele
tromagnetism breaking 
ompletely. Theme
hanism by whi
h super
ondu
tivity develops in these materials is not at presentunderstood; phonon ex
hange is not the phenomenon responsible for the formationof Cooper pairs.When undoped, these strongly 
oupled systems 
an be modeled e�e
tively andeÆ
iently as a Heisenberg antiferromagnet [5℄, yet the qualitative 
hanges indu
ed bydoping the system ne
essitate the use of a di�erent model. The Hubbard model is a
andidate to �ll this role, but in order to represent the doped materials it is ne
essaryto introdu
e a 
hemi
al potential. For the Hubbard model as with QCD, the zero
hemi
al potential 
ase 
an be e�e
tively simulated, but when a 
hemi
al potentialis introdu
ed a sign problem develops.1.1.3 AntiferromagnetsA mu
h simpler and better understood system, the quantum Heisenberg antiferro-magnet, is also a strongly 
oupled system whi
h 
an be studied numeri
ally. It isa latti
e of quantum spins with a global O(3) symmetry intera
ting through an an-tiferromagneti
 nearest-neighbor 
oupling. In this 
ase an external magneti
 �eld,with whi
h the spins tend to align, plays the role of a 
hemi
al potential. As in theother systems, when the �eld is swit
hed on traditional Monte Carlo methods be
omeineÆ
ient.Interestingly, in this 
ase it is not immediately apparent that a sign problem isinvolved in the ineÆ
ien
y whi
h develops in simulation. With the simplest 
hoi
e of12



quantization axis { along the magneti
 �eld { the ineÆ
ien
y appears in a di�erentform. Only when one makes a 
ounterintuitive 
hoi
e for the quantization axis {transverse to the �eld { is the ineÆ
ien
y for
ed to manifest itself as a sign problem.This 
hoi
e at �rst appears ill made pre
isely be
ause it leads to a sign problem(a known sour
e of diÆ
ulty), and so it seems a poor way to simulate the magnet.However, for the purpose of exploring the sign problem this 
hoi
e is very favorable.By subsequently solving the sign problem, one 
an 
ir
umvent the original ineÆ
ien
yand so the model 
an be e�e
tively simulated.1.2 D-TheoryModels for systems su
h as these are usually formulated in terms of path integrals. ABoltzmann weight is formed from a 
lassi
al Eu
lidean a
tion in the 
ase of Eu
lidean�eld theory, or from a 
lassi
al or quantum Hamiltonian in the 
ase of statisti
al me-
hani
s. This Boltzmann weight is in turn integrated over all physi
al 
on�gurationsto yield a partition fun
tion. The partition fun
tion generates all observables. D-Theory is a new modi�ed formulation of quantum �eld theory in whi
h the usual
ontinuous �elds arise from dis
rete variables that undergo dimensional redu
tion.1.2.1 An Extra QuantizationThe formal similarity between a 
lassi
al Hamilton fun
tion and a 
lassi
al Eu
lideana
tion is 
ommonly exploited to draw an analogy between 
lassi
al statisti
al me
han-i
s and quantum �eld theory. By further exploiting that analogy, one 
an 
onstru
ta se
ond possibility for quantum �eld theories: using a \quantum" Eu
lidean a
tion.Just as a quantum Hamiltonian 
an be formed from a 
lassi
al one by promotingvariables to operators, so 
an a quantum Eu
lidean a
tion be formed from a 
lassi
alone. These operators a
t in a new Hilbert spa
e.� Just as a traditionally formulated �eld theory uses a 
lassi
al a
tion analogous toa 
lassi
al Hamiltonian in 
lassi
al statisti
al me
hani
s; so this new formulation13



Classi
al Stat. Me
h., H quantize������! Quantum Stat. Me
h., Hformal analogy??y ??yformal analogyTraditional Field Theory, S quantize������! D-Theory, SFigure 1-1: The relationship of the D-Theory formulation to traditional �eld theoryand statisti
al me
hani
s.of �eld theory uses an a
tion whi
h is an operator analogous to a quantumHamiltonian operator in quantum statisti
al me
hani
s.� Just as a system in quantum statisti
al me
hani
s 
an have a 
lassi
al limitreprodu
ing the 
orresponding system in 
lassi
al statisti
al me
hani
s; so 
anthis new system with an a
tion operator have a limit whi
h reprodu
es theoriginal quantum �eld theory with the 
lassi
al a
tion.The analogy between D-Theory and quantum statisti
al me
hani
s is useful, butit is not perfe
t. In quantum statisti
al me
hani
s, one usually has the luxury ofbeing interested, �nally, in the quantum system. In D-Theory, one is interestednot in the newly quantized system but in the original quantum �eld theory with a
lassi
al a
tion. Thus one must somehow re
over some 
lassi
al limit of the newsystem. Moreover, just as the a
tion of a quantum Hamiltonian may be interpretedas generating translations through time, so may the a
tion of this new D-Theoryquantum a
tion be interpreted as generating translations through a new dimension. Inorder to re
over the original system, one must somehow dispose of this new dimension.1.2.2 Dimensional Redu
tionThe original system 
an be re
overed by exploiting the phenomenon of dimensionalredu
tion. When a D + 1 dimensional system is formulated at �nite temperature,and the 
orrelation length 
an be made signi�
antly larger than the extent of thelast dimension, then the system 
an be 
aused to behave e�e
tively like a systemof one less dimension but of the same symmetry 
lass. Under these 
ir
umstan
es,14



the thi
kness of the system in the (D + 1)st dire
tion is redu
ed to be very small inthe physi
al units determined by the 
orrelation length. Presuming the limit maybe taken in su
h a way that the other dimensions do not also disappear, the systembe
omes e�e
tively D dimensional and so is said to be dimensionally redu
ed.The pro
ess of dimensional redu
tion does not a�e
t the symmetry properties ofthe system, and so the low energy e�e
tive theory whi
h des
ribes the system afterdimensional redu
tion will have the same symmetries as the quantized Eu
lidean a
-tion. The quantized a
tion, by 
onstru
tion, has the same symmetries as the original
lassi
al a
tion. Thus the e�e
tive theory after dimensional redu
tion should be inthe same universality 
lass as the original a
tion, and so to this extent the originalsystem 
an be re
overed.It may seem strange that one would de
ide to add an extra dimension to a systemto be simulated, as the 
omputing time ne
essary is heavily dependent on the volumeof the system simulated. The bene�ts whi
h 
an be derived from the use of thedis
rete variables in a quantized system, however, are very signi�
ant.1.2.3 A Useful Example: (1+1+1)D O(3)Consider the aforementioned Heisenberg quantum antiferromagnet, in the 
ase of2+1 dimensions. At low temperature the system develops long range order, and theglobal O(3) symmetry breaks down to O(2). The dynami
s of the system with brokensymmetry are des
ribed by two Goldstone modes { perturbations around the brokenground state in the 
oset spa
e O(3)=O(2) = S2. In fa
t, the 
orrelation length isexponentially dependent on the extent of the third dimension. For an appropriatetemperature, the extent of the third dimension will be
ome negligible and the resultingsystem may then be interpreted as a (Eu
lidean) 1+1 dimensional system. Thus thesystem redu
es to a 1+1 dimensional quantum �eld theory of a unit ve
tor �eld { i.e.(1+1)D O(3). This is a well understood system, and has some properties whi
h makeit a good toy model for QCD: it is asymptoti
ally free and it has a mass gap.
15



1.2.4 Appli
ation to QCDD-Theory formulations also exist for gauge theories. It is ne
essary that one �ndoperators with suitable 
ommutation relations to serve as promotions of the 
lassi
alvariables, and it is ne
essary that the 
orrelation in the resulting system may bemade signi�
antly larger than the extent of the extra dimensional. Through the useof quantum link models, systems satisfying these 
onstraints have been found forU(1), SU(2) gauge theories, and for QCD, in
luding quarks [13, 19℄.1.3 The Sign ProblemTraditionally formulated numeri
al latti
e studies [25℄ generally en
ounter signi�
antte
hni
al problems when a 
hemi
al potential is introdu
ed. These methods are sta-tisti
al, using Monte Carlo integration: they estimate physi
al quantities by averaging
ontributions randomly sele
ted from a vast spa
e of possibilities. On
e a 
hemi
alpotential is introdu
ed, the individual 
ontributions 
u
tuate mu
h more dramati-
ally, varying not only in magnitude but in phase or sign: the method develops asign problem. These additional 
u
tuations introdu
e so mu
h noise to the aver-ages that in order to produ
e meaningful answers it would be ne
essary to generatesamples of a size exponential in the volume of the system. Samples of su
h a largesize are prohibitively expensive to generate, and so these traditional methods are notpra
ti
al.Be
ause of the sign problem, the useful tool of latti
e study is unavailable forsystems with a 
hemi
al potential. As demonstrated above, the list of su
h systemsin
ludes several whi
h are of signi�
ant interest. A method to 
ir
umvent the signproblem 
ould allow latti
e studies of all these systems, and so provide answers tomany questions about them.A di�erent, more intri
ate formulation for Monte Carlo integration, 
luster al-gorithms, may provide su
h a method. Cluster algorithms make greater use of thestru
ture of the model to whi
h they are applied than traditional methods, and assu
h they are more diÆ
ult to devise for any parti
ular system. On
e 
onstru
ted,16



they provide a ri
h environment for further work be
ause the algorithm is 
loselytied to the physi
s of the system being simulated. Re
ently, 
luster algorithms havebeen used to solve sign problems in some fermion models [20, 17℄. In these 
ases,the sign problems arise not be
ause a 
hemi
al potential is introdu
ed, but be
auseof the anti
ommuting nature of the fermions. It shall be shown below that 
lusteralgorithm framework 
an be used also to solve the sign problems whi
h arise due tothe introdu
tion of a 
hemi
al potential.Cluster algorithms are mu
h easier to 
onstru
t for systems whose lo
al degreesof freedom are dis
rete. In fa
t, there are extremely few known 
ases of any 
lusteralgorithm for whi
h the lo
al degrees of freedom are 
ontinuous. With this in mind,one 
an see the advantage of the D-Theory representation. It may be possible toimplement 
luster algorithms for a broader range of symmetry 
lasses by formulatingthem with D-Theory in terms of dis
rete lo
al degrees of freedom. Unfortunately,no e�e
tive 
luster algorithm is yet known for gauge theories formulated in terms ofD-Theory. The la
k of eÆ
ient 
luster algorithms for gauge theories is a signi�
anthurdle remaining between the te
hniques presented here and their appli
ation toQCD.
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Chapter 2
Ba
kground
2.1 AlgorithmsIn numeri
al simulations of �eld theories, the �eld theory is regularized on a spa
e-time latti
e. Crystal stru
tures like the magnet exist on a latti
e a priori. In either
ase, the 
ore 
omputational task in su
h a simulation is to evaluate integrals gener-ated by the partition fun
tion over the enormous spa
e of all �eld 
on�gurations onthe latti
e.2.1.1 Constru
ting the Path IntegralTime Sli
esGiven a Hamiltonian operator H , either from quantum statisti
al me
hani
s or froman analogous D-Theory quantized a
tion S, the partition fun
tion Z is given byZ = Tr �e��H �. In order to express the a
tion of H over the extent � in a manageableform, it is split into N sli
es of thi
kness �. Between ea
h pair of sli
es an expli
itstate of the system is inserted. NowZ = Tr �e��H � = Tr �e��H �N = Z [D ℄ NYt=1 h t+1je��H j ti; (2.1)where the integral is over all values of ea
h  t.18



TrotterizationThe a
tion of the Hamiltonian, even in one sli
e, remains diÆ
ult to analyze be
auseeverything a
ross the whole system happens at on
e. Thus one introdu
es a Trotterde
omposition, taking advantage of the lo
ality of the Hamiltonian. In terms of thelatti
e, lo
ality implies that sites intera
t only with nearby sites. For the purposes ofthis thesis, it will be suÆ
ient to 
onsider only square latti
es with nearest-neighbor
ouplings. The ideas presented here are readily generalizable to more 
omplex s
e-narios. The Hamiltonian 
an now be written as H = Px;� H x;� , where � runs overall dire
tions { unit ve
tors aligned with the latti
e { (+x̂0;+x̂1; : : : ;�x̂0;�x̂1; : : : ),and x 
orrespondingly runs for ea
h � over half the sites on the latti
e, so that thepairs of sites (x; x + �) 
over the whole latti
e. Note that H x;� and H y;� will not
ommute when the pairs of sites a
ted upon by ea
h share a site, but H x;� and H y;�must 
ommute. Now the lo
ality of the Hamiltonian 
an be exploited by expandingthe exponential:e��H = e��Px;� Hx;� �Y� e��Px Hx;� =Y�  Yx e��Hx;�! (2.2)The Trotterization step does introdu
e errors at order �2, but for suÆ
iently small �the approximation 
an be made a

eptable.In prin
iple, it is not ne
essary to use the Trotter de
omposition or even to dis-
retize the time dire
tion at all. For some 
luster algorithms, it is possible to workdire
tly in 
ontinuous Eu
lidean time [8℄. Su
h algorithms are signi�
antly more dif-�
ult to implement, and the improvement they o�er is 
hie
y in speed rather thaninsight. Sin
e the latter was the purpose of this thesis, the Trotter s
heme was 
hosen.
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An Easily Representable Latti
eWith the a
tion of the Hamiltonian thus broken down, the partition fun
tion 
an nowbe written as Z = Z [D ℄ NYt=1 h t+1j Y� Yx e��Hx;�! j ti (2.3)= Z [D ℄Yt;�;x h t0;�0;xjh t0 ;�0;x+�je��Hx;� j t;�;xij t;�;x+�i: (2.4)Given t and �, t0 and �0 spe
ify the next sli
e. Ex
ept when � is the last dire
tion,t0 = t and �0 is the dire
tion after �. When there is no next �, �0 reverts to the �rstdire
tion and t0 = t+ 1. The operatorTt;�;x = e��Hx;� (2.5)is 
alled the transfer matrix. The 
orresponding element of this matrix in a parti
ular
on�guration  is writtenTt;�;x � h t0;�0;xjh t0;�0;x+�jTt;�;xj t;�;xij t;�;x+�i: (2.6)T is a lo
al quantity of manageable size, and so the partition 
an �nally be writtenas Z = Z [D ℄Yt;�;xTt;�;x (2.7)where the integral runs simply over all states of ea
h site in the Trotterized latti
e.The Stru
ture of the Transfer MatrixThe transfer matrix T on any given plaquette is a a
tually a four index tensor Ti;j;k;l.There are two ways in whi
h two obje
ts like the transfer matrix 
an me multi-plied, 
orresponding to the two dire
tions de�ning its plaquette. Given another su
h20
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Figure 2-1: The two multipli
ations for transfer matri
es. The time-like and spa
e-likemultipli
ations 
orrespond to time-like and spa
e-like 
on
atenation of plaquettes.obje
t U, the two may be multiplied in time-like order, as(UT)m;n;i;j = Um;n;k;lTk;l;i;j (2.8)or in spa
e-like order, as (U ? T)k;n;i;m = Ul;n;j;mTk;l;i;j: (2.9)If a transfer matrix is written out as a matrix { so that its indi
es are paired up toprodu
e a two index obje
t { there are two valid pairings, one for ea
h multipli
ation.Usually, but not always, the pairing for time-like multipli
ation shall be used.Making MeasurementsThe partition fun
tion is a generating fun
tion for physi
al observables. Generally,one extra
ts a
tual physi
al quantities from the partition fun
tion by di�erentiatinglnZ and hen
e bringing some quantity of interest down into the integral out of theHamiltonian. In the end, one is interested in 
al
ulatinghOi = 1Z Z [D ℄O[ ℄Yt;�;xTt;�;x (2.10)
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for some observable O. Both the integral for these measurements and Z itself arethus all of the form Z [D ℄O[ ℄Yt;�;xTt;�;x (2.11)with O � 1 for Z.2.1.2 Importan
e SamplingBe
ause the domain of these integrals is huge, it is impra
ti
al to use most simplenumeri
al integration te
hniques. Instead, one takes advantage of the sharply peakednature of the integrand arising from its exponential form. This property rendersthe integral sus
eptible to approximation by importan
e sampling te
hniques: onegenerates an ensemble of representative 
on�gurations from the integration domain,
hosen to be distributed a

ording to their signi�
an
e in 
ontributing to the integral.Be
ause of the relation between the distribution of 
on�gurations and their relativesigni�
an
e, a sample of a reasonable size from the ensemble is suÆ
ient to makea de
ent approximation of the integral even though su
h a sample 
overs only aminis
ule fra
tion of the whole integration domain.On
e a distribution is determined, it is ne
essary to generate from it some �niteensemble. The usual method for generating the ensemble is to use a Markov pro
ess.The distribution assigns a Boltzmann weight to every 
on�guration. One takes arandom walk through the 
on�guration spa
e, 
hoosing ea
h step a

ording to theweights. As a parti
le walking randomly in a potential spends most time at thebottom, so su
h a walk spends most of its time in 
on�gurations with the greatestBoltzmann weight. When taken as an orderless 
olle
tion, the set of states visited isthe ensemble.To use a Markov pro
ess, it is ne
essary only to �nd some method of taking stepswhi
h satis�es both ergodi
ity and detailed balan
e. These two requirements guaran-tee �rst that a walk may in prin
iple rea
h any 
on�guration, and se
ond that a stepbetween any two states respe
ts the relative weights of two. Taken together, the two22



requirements guarantee that a walk will eventually generate the desired distribution.2.1.3 MetropolisThe most 
ommon method for taking Markov steps is a lo
al Metropolis algorithm.The lo
al Metropolis algorithm has the advantages both of being relatively simpleand of being widely appli
able. It has the disadvantage of long auto
orrelation time{ it makes only small 
hanges to the latti
e in ea
h step, and it may make no 
hangeat all. Be
ause the steps taken through a very large 
on�guration spa
e are verysmall, the Metropolis algorithm ne
essarily takes many steps to walk between anytwo given 
on�gurations.Given a starting 
on�guration for a step, one pi
ks a point on the latti
e, generatesa random new state for that point, and proposes the new 
on�guration as the nextstep. By 
omparing the new and old Boltzmann weights, one determines a probabilitywith whi
h the new 
on�guration should be a

epted. One then 
hooses a

ording tothat probability either to a

ept or to reje
t the proposal. If the proposal is a

epted,the 
on�guration added to the walk is the one with the 
hanged state. If the proposalis reje
ted, the 
on�guration added is the same as the previous one.2.1.4 ClustersIn 
ontrast, a more advan
ed method of taking Markov steps is to use a 
lusteralgorithm. Cluster algorithms have the advantage of having short auto
orrelationtimes. Be
ause ea
h step makes broad 
hanges a�e
ting large regions of the latti
ethese algorithms 
an move between any two states in 
on�guration spa
e in relativelyfew steps. Cluster algorithms have the disadvantages of being 
ompli
ated and, moreimportantly, of being diÆ
ult to devise. Constru
ting a 
luster algorithm for a givenphysi
al system remains something of a bla
k art.Given a starting 
on�guration, one breaks up the volume into regions 
alled 
lus-ters a

ording to 
luster rules whi
h bond together sites on the latti
e. Then oneperforms some 
luster 
ip on ea
h 
luster. A 
luster 
ip is some 
hange of ea
h state23



in the 
luster, 
oordinated a
ross the entire 
luster. In a two state model it might be
ipping every spin in a 
luster or it might be doing nothing; in a 
lassi
al spin modelwith 
ontinuous spins it might be re
e
ting all spins in a 
luster a
ross a given plane.The 
luster rules determine whi
h elements of the latti
e may be bound together intothe same 
luster. Moreover, it is required of the rules that, on
e the 
lusters are
hosen, a randomly 
hosen 
ip will ne
essarily be a

eptable.For a partition fun
tion of the general form Z = R [D ℄W [ ℄, the integral ofinterest for an observable O is Z [D ℄O[ ℄W [ ℄: (2.12)A 
luster algorithm 
an be viewed as an expansion of the 
on�guration spa
e ofa system. To the physi
al degrees of freedom, new lo
al variables are added 
alledbreakups whi
h des
ribe the 
luster 
onne
tions. Breakups exist on the same elementsof the latti
e as the transfer matrix { in the 
ases here, on plaquettes. They 
an beenvisioned as patterns of bonds between sites in a plaquette { 
hoi
es of how to
onne
t nearby latti
e elements and so to break up the latti
e into 
lusters. Clusteralgorithms thus di�erentiate in1 new breakup degrees of freedom b on ea
h plaquette,so that Z [D ℄ [Db℄O[ ℄W [ ; b℄: (2.13)W [ ; b℄ is restri
ted to take the formW [ ; b℄ = Æ[ ; b℄W [b℄ (2.14)where Æ[ ; b℄ 2 f0; 1g, whi
h implies thatZ [Db℄W [ ; b℄ =W [ ℄: (2.15)1the opposite of integrating out 24



The remaining details of the breakups are left to be determined by the physi
s ofthe system: pre
isely what 
onstraint between sites a bond implies, what patterns ofbonds are allowed, and with what frequen
y ea
h pattern appears. The 
lusters arethe per
olated sets of bonds and sites into whi
h the bonds break up the latti
e.The details of Æ en
ode a sense of satis�ability { a given physi
al 
on�gura-tion either does or does not satisfy a given 
luster 
on�guration. Æ 
an be furtherbroken down, as it may enfor
e 
onstraints only upon sites whi
h are bonded to-gether. Thus when a given 
on�guration of breakups b results in a set of Nb 
lustersCb = 
1; 
2; : : : ; 
Nb , Æ 
an be writtenÆ[ ; b℄ = NbYn=1 Æ
n (2.16)where Æ
n = 1 if all the bonds in 
luster 
n are satis�ed, and Æ
n = 0 otherwise. Of
ourse, any term in the path integral for whi
h any Æ
n is zero will drop out, and theterms whi
h remain 
an be des
ribed by independently varying ea
h 
luster over aset of states for its sites whi
h satisfy its bonds.The integral 
an be reinterpreted in this light, putting the 
luster stru
ture fore-most: Z [Db℄W [b℄ Z [D ℄ Æ[ ; b℄O[ ℄ (2.17)= Z [Db℄W [b℄ Z [D ℄ NbYn=1 Æ
nO[ ℄ (2.18)= Z [Db℄W [b℄ Z  NbYn=1 d 
n!O[ ℄: (2.19)Here  
n represents the state of the 
luster 
n. Finally, the original integral over allstates of the latti
e has been rewritten as an integral over all 
lusters on the latti
eand all states of those 
lusters.
25



2.2 The Sign Problem RevisitedMetropolis algorithms for numeri
al study of latti
e theories en
ounter signi�
antproblems when a 
hemi
al potential is introdu
ed. In parti
ular, the introdu
tionof the 
hemi
al potential generally 
auses a 
omplex a
tion problem or sign problem.Despite di�eren
es between the details in the formulations of di�erent theories, ageneral pattern still exists: while the 
hemi
al potential is zero, the phase of theintegrand in the partition fun
tion is 
onstant over the integration domain; on
e the
hemi
al potential introdu
es a non-zero 
harge, the phase is no longer 
onstant. Thedetails of the me
hanism by whi
h the varying phase is introdu
ed 
an di�er greatlybetween models, but the result is the same: if the importan
e sampling te
hnique isused unmodi�ed, the varying phase of the integrand leads to a very serious signal-to-noise problem.2.2.1 What Goes WrongWhen the 
hemi
al potential is zero, the Eu
lidean a
tion of a �eld theory is real.The integrand in eq. (2.7) is 
orrespondingly both real and positive, and so, for a wellbehaved observable, the phase of the integrand in eq. (2.10) 
an be fa
tored out ofthe integration. The remaining integration is then one of positive real quantities, andit 
an pro
eed with no 
an
ellations.When the 
hemi
al potential introdu
es a non-zero 
harge, however, the a
tion of a�eld theory will, in general, be
ome 
omplex. Correspondingly, after the 
onstru
tionof the path integral and Trotterization, the elements of the transfer matrix will pi
kup signs or phases. The phase of the integrand { now 
hanging from 
on�guration to
on�guration within the integration domain { must be in
luded in the observable tobe averaged over the integration domain. Of 
ourse, a less well behaved observablewhi
h is not always real and positive 
ould also introdu
e a sign problem.In order to 
ontinue to make use of importan
e sampling in the presen
e of thesevarying phases, the integrals 
an be rewritten in terms of a stri
tly positive real
26



weight: Z [D ℄O[ ℄Yt;�;xTt;�;x � Z [D ℄O[ ℄sign[ ℄W [ ℄ (2.20)whereW [ ℄ � �����Yt;�;xTt;�;x����� and sign[ ℄ �  Yt;�;xTt;�;x!W�1[ ℄: (2.21)This new Boltzmann weight W 
an be thought of as arising from the a
tion of amodi�ed system in whi
h the transfer matrix elements are for
ed to be real andpositive. Denoting by hOim the expe
tation value of an observable in this modi�edensemble, an expe
tation value in the original ensemble 
an now be 
al
ulated ashOi = 1Z Z [D ℄O[ ℄Yt;�;xTt;�;x (2.22)= R [D ℄O[ ℄sign[ ℄W [ ℄R [D ℄ sign[ ℄W [ ℄ (2.23)= hO[ ℄sign[ ℄imhsign[ ℄im : (2.24)The average of the sign in the modi�ed ensemble is a ratio of the two partitionfun
tions: hsign[ ℄im = 1Zm Z [D ℄ sign[ ℄W [ ℄ = ZZm = e��V�f : (2.25)Thus, sin
e Zm � Z, hsign[ ℄im is exponentially small in both � and V . The individ-ual 
ontributions from single 
on�gurations, however, do not diminish so dramati
allywith the volume. The small magnitude of the average is a result of the averaging pro-
ess itself { the result is small be
ause of 
an
ellations between terms whi
h are notso small.If Monte Carlo methods are applied dire
tly to 
al
ulate the integrals in eq. (2.23),simply using W to determine an importan
e sampling ensemble, then these 
an
el-lations lead to una

eptable errors. Sin
e individual 
ontributions to the integral27



are 
hosen probabilisti
ally a

ording to their magnitude without 
onsideration ofthe 
an
ellation pro
ess, parti
ular 
an
ellations do not ne
essarily o

ur. A termmay be present in the estimating sum while a 
an
eling partner to that term is notpresent. Be
ause individual terms are dramati
ally larger than the �nal average,the error 
ontributed to the estimate by a single un
an
elled term overwhelms anymeaningful result from a simulation. The relative error in hsignim is�signhsignim = q
sign2�m � hsigni2mpNhsignim � e�V�fpN : (2.26)Thus hOi, while itself of order 1, has wound up being 
al
ulated as a ratio of twoquantities whi
h are exponentially small relative to their respe
tive errors. Whileextremely large statisti
al samples (exponentially large as a fun
tion of the volume)
ould in prin
iple over
ome this signal-to-noise problem, su
h exponentially largesamples are prohibitively expensive and so not pra
ti
al.2.2.2 A S
heme to Build a SolutionFortunately, the signal-to-noise problems whi
h o

ur in this simplest appli
ationof Monte Carlo methods are not endemi
 to the physi
s or even to the importan
esampling te
hnique { other formulations may su

eed where the simplest has failed.The method presented in this thesis uses su
h a new formulation. It uses 
lusterte
hniques and the notion of improved estimators to generate a more intelligently
hosen ensemble, in whi
h the 
an
ellation problems do not o

ur.The dire
t method fails be
ause the importan
e sampling ensemble has be
ome
orrupted. Con�gurations whi
h generate 
ontributions of large magnitude to theintegrand are all 
onsidered important, yet in most 
ases their 
ontribution eventuallywill be 
an
eled out.If some greater organization 
an be imposed upon the domain of integration,
lassifying 
on�gurations into small groups most of whi
h will 
an
el out internally,then a more useful ensemble may be generated. Given su
h a 
lassi�
ation s
heme,28



the importan
e of 
on�gurations whi
h will 
an
el out in the end 
an be understoodto be mu
h less than their absolute magnitude would imply. By suppressing theo

urren
e of su
h 
on�gurations in the distribution whi
h determines the estimatingensemble, one 
an drasti
ally redu
e the varian
e of the estimate of the integral.On
e one has a 
lassi�
ation s
heme, one 
an 
onstru
t an improved estimator.An improved estimator for an observable averaged over an ensemble is a di�erentobservable with the same ideal average but whi
h varies less widely between indi-vidual elements of the ensemble. In the idealized limit of a very large ensemble, animproved estimator will, by de�nition, average out to the same result as would theoriginal observable; in a more realisti
 representative but �nite ensemble, averagingthe improved estimator will yield a better estimate of the ideal average { one with alesser varian
e.Given an appropriate 
lassi�
ation s
heme, an improved estimator 
an be 
on-stru
ted using a simple pro
edure. The domain of the average is broken down intomany small subdomains by the 
lassi�
ation s
heme. Over ea
h su
h subdomain, onemust be able to 
al
ulate the average expli
itly. The value of the improved estimatorfor any state shall be the average over the sub-domain in whi
h the state sits. Ifthe s
heme is 
onstru
ted as des
ribed above { so that usually the phases within agroup 
an
el { then the value of the improved estimator will be zero on most of the
on�guration spa
e. That these zeroes 
an be un
overed is a re
e
tion of the natureof the sign problem { what was previously a jumble of large 
ontributions 
an
elingout to a small result is now a set of pre-averaged pie
es, most of whi
h 
ontributenothing. On
e the improved estimator has un
overed the 
an
ellation, the impor-tan
e sampling distribution 
an be modi�ed to re
e
t the true signi�
an
e of ea
h
on�guration.In order to apply this method, one must �nd an appropriate 
lassi�
ation ofthe 
on�guration spa
e into subdomains over whi
h one 
an perform the averageexpli
itly. This thesis shall demonstrate that the use of 
luster te
hniques 
an providea framework in whi
h the physi
al symmetries of the system 
an be exploited to �nda natural and e�e
tive 
hoi
e of subdomains.29



2.2.3 Improved Estimators from Cluster AlgorithmsCluster algorithms provide an ex
ellent foundation upon whi
h to 
onstru
t improvedestimators as des
ribed above. On
e the 
on�guration spa
e has been expanded toin
lude not only the physi
al degrees of freedom but also the breakups, a 
lassi�-
ation s
heme for 
onstru
ting improved estimators is readily apparent: All joint
on�gurations with the same 
luster 
on�guration shall be grouped together into asubdomain. Improved estimators 
an then be 
onstru
ted as the average over all
luster orientations for a given 
luster 
on�guration.Eq. (2.19) has the form ne
essary for an improved estimator for the integral ineq. (2.12). If the inner integral { the integral over the states of ea
h 
luster in a given
luster 
on�guration { 
an be performed expli
itly, then an improved estimator willbe available. Given a 
luster 
on�guration b, it is ne
essary that it be possible to
al
ulate O[b℄ � Z  NbYn=1 d 
n!O[ ℄: (2.27)If the number of 
lusters in any given 
on�guration be
omes large, integrals su
has this one will not ne
essarily be easy { there will still be too many variables tointegrate at on
e. However, if the observable O 
an be fa
tored so thatO[ ℄ = NbYn=1O
n( 
n) (2.28)then the integral in eq. (2.27) will also fa
torO[b℄ � Z  NbYn=1 d 
n!O[ ℄ = NbYn=1�Z d 
nO
n( 
n)� (2.29)and ea
h integral 
an be performed separately. To reiterate: to 
onstru
t an improvedestimator of pra
ti
al value using 
luster algorithms, it is ne
essary that the observableto be averaged 
an be fa
tored into independent 
ontributions from ea
h 
luster.30



2.2.4 Solving the Sign ProblemIn order to solve the sign problem using a 
luster algorithm, two requirements must besatis�ed. Firstly, the sign must obey the fa
toring 
onstraint eq. (2.28). Se
ondly, theimproved estimator must be a suÆ
ient improvement, in that it must un
over enough
an
ellation in the sense of se
tion 2.2.2. In order to satisfy these requirements, ithelps for a model to have a referen
e 
on�guration. A referen
e 
on�guration isa physi
al 
on�guration  ref whi
h satis�es all 
luster 
on�gurations and for whi
hsign[ ref℄ = 1.Using a 
luster algorithm to 
al
ulate the integral in eq. (2.25),Z [D ℄ sign[ ℄W [ ℄ = Z [Db℄W [b℄ Z  NbYn=1 d 
n! sign[ ℄: (2.30)The �rst requirement imposes the restri
tion that for any 
luster 
on�guration bsign[ ℄ = NbYn=1 sign
n( 
n): (2.31)This requirement will be satis�ed if a sign 
an be assigned to ea
h state of ea
h
luster. For the models treated in this thesis, sites and 
lusters have just two states.If 
ipping a 
luster 
hanges its sign, that 
luster shall be 
alled a meron2. Thus ifthere are any merons at all, the value of the improved estimator for the signsign[b℄ = NbYn=1�Z d 
nsign
n( 
n)� (2.32)will be zero.The simplest way to guarantee that the se
ond requirement will be met is to im-pose the stronger requirement that all 
an
ellation be un
overed { i.e. the value ofthe improved estimator for the sign should never be negative. Given a referen
e 
on-�guration, this stronger requirement 
an be satis�ed. In the referen
e 
on�guration,2The term meron originally denoted a half instanton. In an earlier algorithm, the 
lusters whi
h
ould 
hange the sign were asso
iated with half instantons.[11℄31



for any 
luster 
on�guration,sign[ ref℄ = NbYn=1 sign
n( 
nref) = 1: (2.33)Here  
nref is that state of the nth 
luster whi
h 
oin
ides with the global referen
e
on�guration. In this state, all the 
luster signs may be set to 1. Any other state ofthese 
lusters 
an be rea
hed by 
ipping some of the 
lusters; if the sign for su
h a
on�guration is negative, then some of the 
lusters 
ipped must be merons.Given an improved estimator with this stru
ture, the sign problem 
an be solvedby in
orporating the value of the improved estimator in the integration into theweight fa
tor. Using this modi�ed weight, a Markov walk will avoid not only those
on�gurations for whi
h the magnitude of the observable is small, but also those forwhi
h the 
ontribution will eventually 
an
el out.Exa
tly how the value of the improved estimator is in
orporated into the Boltz-mann weight is not 
ompletely determined. If it is used dire
tly, so that the Boltz-mann weight of a 
on�guration is set to zero if there are any merons, then a largesegment of 
on�guration spa
e is 
ompletely avoided. Although the spa
e avoideddoes not 
ontribute to the integral, in pra
ti
e it 
an be detrimental to avoid it 
om-pletely. Complete avoidan
e 
an lead to problems with the ergodi
ity of a Markovpro
ess used in simulation. Be
ause the se
tors of 
on�guration spa
e whi
h havemerons may obstru
t the walk, it may have diÆ
ulty moving between 
on�gurationswhi
h do 
ontribute. For this reason it 
an be better to reweight 
on�gurations sothat it is not impossible but merely unlikely that the walk take a step whi
h in-
reases the number of merons. By biasing the walk against the higher meron se
torsin this way, one 
an gain the bene�t of the improved importan
e sampling while stillmaintaining ergodi
ity.Making MeasurementsOn
e the expe
tation value of the sign 
an be 
omputed, it is ne
essary to move on to
omputing physi
al quantities. Be
ause the sign dependen
e appears not only in the32



denominator but also in the numerator of eq. (2.23), the integral in the numeratorshould also be estimated using an improved estimator. Thus one �nally 
omputeshOi as hOi = hO[ ℄sign[ ℄imhsign[ ℄im (2.34)= Z [Db℄W [b℄ Z  NbYn=1 d 
n!O[ ℄sign[ ℄Z [Db℄W [b℄ Z  NbYn=1 d 
n! sign[ ℄ (2.35)
= Z [Db℄W [b℄ (O � sign) [b℄Z [Db℄W [b℄sign[b℄ : (2.36)Here, the inner integrations in eq. (2.35) may be 
omputed expli
itly, as they rangeonly over all orientations of given 
lusters. If the 
luster algorithm is suÆ
iently well
onstru
ted, these expli
it integrations will average out the dramati
 
u
tuationsof their integrand, and the remaining integrals 
an be eÆ
iently estimated usingimportan
e sampling.
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Chapter 3
D-Theory for (1+1+1)D O(3)
The 1 + 1 dimensional O(3) model shares some properties with QCD su
h as a massgap, asymptoti
 freedom, instantons and theta-va
ua. It is also relatively simple andwell understood. In fa
t, the mass gap and the the parti
le number density as afun
tion of 
hemi
al potential 
an be 
al
ulated to very high pre
ision in the in�nitevolume, zero temperature limit [32, 33℄. This model has a D-Theory formulation,in whi
h numeri
al simulations may easily be performed using 
luster algorithms.Like more 
omplex systems, su
h simulations en
ounter eÆ
ien
y problems when a
hemi
al potential is introdu
ed. All these qualities make it a good 
andidate forexperimenting with a solution for the sign problem.3.1 De�ning the System3.1.1 The Classi
al A
tionThe Eu
lidean a
tion for this system takes the formS[ê℄ = 12g2 Z d2x��ê � ��ê; (3.1)whi
h readily exhibits the global O(3) symmetry of the system as it is invariant underê(x) ! Rê(x) for any rotation R. Regularizing this a
tion on a latti
e by repla
ing34



the derivatives by �nite di�eren
es with latti
e spa
ing a, S be
omesS[ê℄ = 12g2 Xx a2X� (êx+� � êx)a � (êx+� � êx)a = 1g2 Xx;� (1� êx � êx+�) : (3.2)Dropping the irrelevant leading 
onstant, this is simplyS[ê℄ = � 1g2 Xx;� êx � êx+�: (3.3)3.1.2 Constru
ting a Quantized A
tionA D-Theory quantized Eu
lidean a
tion Smay be 
onstru
ted from S by repla
ing the
omponents of êx with appropriately 
hosen operators êx. These operators must be
hosen so as to represent the 
omponents of unit ve
tors { i.e. the ve
tor of operatorsmust transform in the adjoint representation of the rotation group, and operatorsat di�erent sites must 
ommute. For rotation generators ~L , the operators êx mustsatisfy �Li ; ejx� = i�ijkekx and �eix; ejy� / Æxy: (3.4)These requirements 
an, of 
ourse, be satis�ed with a Pauli spin 12 operator ~�x onea
h site, ~ex � 12~�x and ~L �Px ~Lx �Px 12~�x. Thus the quantized a
tion takes theform S= JXx;� êx � êx+�: (3.5)Here, one of the imperfe
tions in the analogy depi
ted in �g. 1-1 
omes to the fore.The value of J is not determined by the 
orresponding fa
tor in eq. (3.3). In the
lassi
al latti
e model, a 
hange in the overall sign 
an be absorbed in a rede�nitionon half the sites on the latti
e, êx ! �êx for every other x. For the quantized 
ase,this rede�nition is no longer a

eptable, be
ause the operators �ei do not satisfy thesame 
ommutation relations as the operators ei.35



The quantization pres
ription suÆ
es, however, as a guide for 
onstru
ting 
an-didate quantized systems. By utilizing the formal analogy with quantum statisti
alme
hani
s, this 
andidate 
an be re
ognized as a quantum Heisenberg magnet withHamiltonian operator H in terms of spins ~Sx:H = JXx;� ~Sx � ~Sx+�: (3.6)For J < 0 this is a ferromagnet, for J > 0 an antiferromagnet.Even in a �nite volume, the ferromagnet has a highly degenerate ground state,and its order parameter is 
onserved { the (unstaggered) magnetization 
ommuteswith the Hamiltonian. Also, the Goldstone bosons have a non-relativisti
 dispersionrelation. For these reasons, although dimensional redu
tion 
an o

ur for this system,the ferromagneti
 
ase is more 
ompli
ated than ne
essary.In 
ontrast, the antiferromagneti
 
hoi
e is relatively simple. At low temperature,the system exhibits long range N�eel order { the order parameter in this 
ase is thestaggered magnetization, whi
h does not 
ommute with H . This ordered state breaksthe globalO(3) symmetry to O(2), and so produ
es two Goldstone modes { spin-wavesor magnons. As long range perturbations around the ground state in the 
oset spa
eO(3)=O(2) = S2, these magnons are des
ribed by a 
ontinuum e�e
tive Lagrangianfor a 
lassi
al unit ve
tor. This e�e
tive a
tion 
an be shown to beS[~e℄ = Z �0 dt Z d2x �s2 ���~e � ��~e+ 1
2�t~e � �t~e� (3.7)to lowest order [14, 15℄. Here �s is the spin sti�ness and 
 is the magnon velo
ity.This e�e
tive system may be 
onsidered as a three dimensional 
lassi
al statisti
alme
hani
s problem with �nite extent in the third dire
tion. The Goldstone bosonsin this theory, being massless in the � ! 1 limit, will 
orrespond to very long
orrelation length ex
itations at �nite �. Thus at least as far as those ex
itationsare 
on
erned, the �nite extent of the third dire
tion will be in�nitesimal, and sodimensional redu
tion down to two dimensions will o

ur in the large � limit. As the36
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hoi
e of �, �
� � � L.Figure 3-1: Dimensional redu
tion of a (2+1)D Heisenberg antiferromagnet to produ
ea (1+1)D O(3) quantum �eld theory.
orrelation length be
omes greater than �
, ~e must be
ome essentially independentof t. Thus t 
an be integrated out of the a
tion:S[~e℄ = Z �0 dt Z d2x �s2 ���~e � ��~e+ 1
2�t~e � �t~e� (3.8)� �Z �0 dt�Z d2x �s2 ��~e � ��~e (3.9)= ��s2 Z d2x ��~e � ��~e: (3.10)The resulting approximate two dimensional a
tion has pre
isely the form of eq. (3.1)with 1g2 = �s�. Moreover, the approximation gets better as � ! 1 and the tdependen
e of ~e be
omes smaller.Unlike in the three dimensional system, in the two dimensional system the Gold-stone bosons 
annot be massless. The Mermin-Wagner-Coleman theorem asserts thatmassless, non-intera
ting ex
itations do not o

ur in two or fewer dimensions. Essen-tially, there is not suÆ
ient 
onne
tivity between points in a two dimensional spa
efor information to propagate well enough to form in�nite 
orrelation length stru
ture.Indeed, the resulting (1+1)D O(3) model is known to have a non-perturbatively gen-erated mass gap.Using 
hiral perturbation theory, one 
an express the 
oupling 
onstant g of the37



resulting 1+1 dimensional theory in terms of the parameters in the 3 dimensionala
tion [33℄: 1g2 = ��s � 316�2��s +O� 1�2�2s� ; (3.11)and 
an show the mass gap to be [33, 15℄m = 16��se
 e�2���s �1 + 14���s +O� 1�2�2s�� : (3.12)Thus during the 
rossover into the dimensionally redu
ed system as � ! 1, the
orrelation length � � 1m grows exponentially with �. This exponential dependen
emakes it relatively easy to 
hoose a pra
ti
al � { one not too large for simulation butlarge enough that � � �
 and dimensional redu
tion o

urs.3.2 Adding Chemi
al Potential3.2.1 The Original ContinuumGiven an a
tion with a global symmetry, a 
hemi
al potential 
an be introdu
ed aswould a 
onstant, imaginary, time-like gauge �eld. Note that in this one aspe
t thismodel is more 
ompli
ated than QCD: the global symmetry here is O(3) { whi
h isnon-Abelian { while in QCD the symmetry of interest is the U(1) of baryon number{ whi
h is Abelian. Thus here the 
hemi
al potential is a three 
omponent ve
tor ~h.A normal gauge �eld would modify the derivative in equation (3.1) as��ê(x)! ��� � iAk�(x)Lk� ê(x); (3.13)where Ak�(x) is real and the Lk are a hermitian generators of rotations for ê. Sin
e êis in the fundamental representation of O(3), this amounts to��ê(x)! ��ê(x)� ~A�(x)� ê(x); (3.14)38



in whi
h all fa
tors are real. A

ording to the pres
ription above, in order to introdu
ea 
hemi
al potential, an imaginary term should be introdu
ed into eq. (3.1) as Ak�(x) =iÆ�;1hk, so that ��ei(x)! ��ei(x) + Æ�;1hkLijk ej(x): (3.15)Thus, the e�e
t of the 
hemi
al potential is to rotate spins transported along the �rstdire
tion (the time-like dire
tion in the 1 + 1 dimensional model) by an imaginaryangle. In parti
ular, ��ê(x)! ��ê(x)� iÆ�;1~h� ê(x) (3.16)whi
h is not real, and so the two dimensional a
tion be
omesS[ê℄ = 12g2 Z d2x���ê� iÆ�;1~h� ê� � ���ê� iÆ�;1~h� ê� (3.17)= 12g2 Z d2x ���ê � ��ê� 2i�~h� ê(x)� � �1ê� �~h� ê(x)�2� : (3.18)This a
tion is expli
itly 
omplex, and so dire
t simulation of the 1 + 1 dimensionalO(3) model en
ounters a 
omplex a
tion problem.3.2.2 On the D-Theory Latti
eIn order to add the 
hemi
al potential in the D-Theory formulation, it must be in-trodu
ed into the latti
e a
tion eq. (3.3). The version of eq. (3.15) for the latti
e, interms of �nite di�eren
es, is(êx+� � êx)a ! �R(�iÆ�;1ahk)êx+� � êx� ;a (3.19)where R(~n) is a rotation operator about axis n̂ by angle jnj. Sin
e the operators~e transform in the adjoint representation, the quantized a
tion in equation (3.5)
39



be
omes S= JXx;� êx � �R(�iÆ�;1ahk)êx+�R�1(�iÆ�;1ahk)� (3.20)= JXx;� êx � h�e�Æ�;1ahkLkx+�� êx+� �eÆ�;1ahkLkx+��i : (3.21)Equivalently, in the language of the quantum magnet,H = JXx;� ~Sx � h�e�Æ�;1ahkSkx+��~Sx+��eÆ�;1ahkSkx+��i : (3.22)This modi�
ation of the Hamiltonian in eq.(3.6) should result in a 
orrespondingmodi�
ation to the low energy e�e
tive a
tion in eq. (3.7):S[~e℄ = Z �0 dtZ d2x�s2 ����ê� iÆ�;1~h�ê� � ���ê� iÆ�;1~h�ê�+ 1
2�t~e � �t~e� : (3.23)In turn, this 2 + 1 dimensional e�e
tive a
tion should dimensionally redu
e as the
orrelation length be
omes larger than �, �nally produ
ingS[~e℄ = Z �0 dt Z d2x �s2 ����ê� iÆ�;1~h�ê� � ���ê� iÆ�;1~h�ê�+ 1
2�t~e � �t~e� (3.24)� �Z �0 dt�Z d2x �s2 ���ê� iÆ�;1~h�ê� � ���ê� iÆ�;1~h�ê� (3.25)= �s�2 Z d2x ���ê� iÆ�;1~h�ê� � ���ê� iÆ�;1~h�ê� (3.26)� 12g2 Z d2x ���ê� iÆ�;1~h�ê� � ���ê� iÆ�;1~h�ê� : (3.27)Thus numeri
al study of the system des
ribed by eq. (3.22) 
an produ
e results forthe target theory des
ribed in eq. (3.17).3.2.3 Known Exa
t ResultsThe response of the parti
le number density to a 
hemi
al potential in the (1+1)DO(3) model is known exa
tly in the limit of zero temperature and in�nite volume from40



Bethe ansatz te
hniques [32, 33℄. Spe
i�
ally, when the magnitude of the 
hemi
alpotential h is larger than the mass gap m, the free energy density f is given byf(h)� f(0) = � 12� Z �0��0d��(�) m 
osh �; (3.28)where the fun
tion �(�) satis�es the integral equation�(�)� Z �0��0d�0 �(�0)(�0 � �)2 + �2 = h�m 
osh �; (3.29)and �0 is de�ned by the boundary 
ondition �(��0) = 0. For any �xed �0, thisequation is an inhomogeneous Fredholm integral equation of the se
ond kind and 
anbe solved for �(�) with standard numeri
al te
hniques [39℄. The boundary 
onditionon �0 
an then be enfor
ed simply by sear
hing in �0 for the root of �(�0). For h < m,no parti
les are formed, and so at zero temperature, f(h) = f(0). On
e f(h) isknown, the parti
le number density is given by df(h)dh . This result provides a knownpoint of 
omparison for a numeri
al study of the parti
le number density at �nitetemperature.When the 
hemi
al potential is below the threshold of the mass gap, the solutionabove predi
ts no parti
le density at all, as it is valid only at zero temperature andin�nite volume. When the temperature is non-zero and the size of the system is �nite,parti
les will o

asionally be 
reated even when the 
hemi
al potential is below themass gap be
ause of thermal 
u
tuations. At suÆ
iently low temperatures, the resultwill be a dilute gas of parti
les. Although the parti
les are intera
ting bosons, inthis one dimensional system the behaviors of hard-
ore bosons and non-intera
tingfermions are suÆ
iently similar that the parti
le number density in the thresholdregion may be modeled as a simple dilute gas of non-intera
ting fermions in a box.Without antiparti
les, su
h a model yields the predi
tionNp(h) = 1L L�1Xn=0 �1 + e��pm2+4 sin2 n�L �h���1 : (3.30)Antiparti
les behave exa
tly the same way ex
ept their response to h is opposite { i.e.41



Fermion Approximation for L = L0 = 30Fermion Approximation for L = L0 = 20Zero Temperature, In�nite Volume limit

Parti
le Number Response at � = 2:5) m = 0:160(5)

Chemi
al Potential h
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leNum
berDensity
N
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0.10.010.0010.0001
Figure 3-2: Exa
t results for the parti
le number density in 1+1 dimensional O(3) atm = 0:160(5). The solid line is the Bethe ansatz result for the L = L0 = 1 limit.The upper and lower dashed lines are the dilute fermion gas estimates from eq. (3.31)for L = L0 = 20 and L = L0 = 30 respe
tively.Na(h) = Np(�h). Sin
e the fermions are non-intera
ting, the total parti
le numberdensity is then N(h) = Np(h)�Na(h): (3.31)Both the Bethe ansatz solution and some examples of the fermion gas approxima-tion are shown in �g. 3-2.
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Chapter 4
Constru
ting a Cluster Algorithmfor (1+1+1)D O(3)
Several steps must be taken to build a 
luster algorithm in order to explore the D-Theory representation of the (1+1)D O(3) model. First, the transfer matrix mustbe 
al
ulated from the D-Theory Hamiltonian. Se
ond, the transfer matrix must beanalyzed and separated into breakups so as to satisfy eq. (2.14). Third, if any elementsof the transfer matrix are negative, the appli
ability of eq. (2.31) must be veri�ed, andrules must be found to determine the signs of the 
lusters. Fourth and �nally, having
onstru
ted an algorithm to estimate the partition fun
tion, an improved estimatormust be 
onstru
ted for any observable whi
h is to be measured. The observable ofinterest here is the parti
le number density.Be
ause the 
hemi
al potential in this model is 
oupled to a 
harge of a non-Abelian symmetry { the global O(3) symmetry { the introdu
tion of the 
hemi
alpotential breaks the symmetry. It is ne
essary to 
hoose an axis around whi
h hprefers to rotate the spins. Having thus 
hosen an axis, there is further a 
hoi
e: theangle between the quantization axis and the 
hemi
al potential. Although this anglehas no physi
al signi�
an
e, it 
an dramati
ally a�e
t the stru
ture of a 
luster algo-rithm 
onstru
ted from the transfer matrix. When the quantization axis is parallel tothe 
hemi
al potential, no signs are introdu
ed. Nevertheless, the 
luster algorithmbe
omes ineÆ
ient. When the quantization axis is transverse to the 
hemi
al poten-43



tial, a sign problem develops. The algorithm be
omes ineÆ
ient, but this ineÆ
ien
y
an now be repaired using merons.4.1 Without Chemi
al PotentialThe introdu
tion of a 
hemi
al potential modi�es the Hamiltonian of the system, andin turn modi�es the transfer matrix and the stru
ture of the 
luster algorithm. Asa point of referen
e, 
onsider �rst the system without 
hemi
al potential. For thesake of 
onsisten
y, the language of statisti
al me
hani
s shall be used hen
eforth,des
ribing the system in terms of a Hamiltonian H .4.1.1 The Transfer MatrixThe Hamiltonian for the antiferromagnet is shown in eq. (3.6) asH = JXx;� ~Sx � ~Sx+�; (4.1)where J > 0. From eq. (2.5), the transfer matrix is thenT = e��J~Sx�~Sx+�: (4.2)Writing the ve
tor produ
t in index notation, suppressing the spatial indi
es, andusing the order a
ross the tensor produ
t 
 to keep tra
k of the di�eren
e betweenx and x+ �, this is T = e��JSi
Si: (4.3)This obje
t has four indi
es, one for the spin at ea
h 
orner of a plaquette, ea
hof whi
h takes on two values, " and #. By 
onvention, " shall always 
ome before#. In order to write this matrix out, it is ne
essary to pair up its indi
es in orderto bring the number of indi
es down enough to �t onto a two dimensional sheet of44



paper. Again by 
onvention, whenever two indi
es are paired, the latter index shallvary fastest { the order shall be ""; "#; #"; ##. For the moment, the indi
es shall bepaired for time-like multipli
ation, as in eq. (2.8).In this basis, the transfer matrix isT = e� �J4 �i
�i
= e� �J4 0BBBB�266664 0 0 0 10 0 1 00 1 0 01 0 0 0 377775+266664 0 0 0 �10 0 1 00 1 0 0�1 0 0 0 377775+266664 1 0 0 00 �1 0 00 0 �1 00 0 0 1 3777751CCCCA
= e� �J4 0BBBB�I+266664 0 0 0 00 �2 2 00 2 �2 00 0 0 0 3777751CCCCA= e �J4 0B�Ie� �J2 + sinh �J2 264 0 0 0 00 1 �1 00 �1 1 00 0 0 0 3751CA :

(4.4)
The overall multipli
ative fa
tor 
an be absorbed in the normalization of the partitionfun
tion, and so will be dis
arded. Expanding to �rst order in �, the transfer matrixbe
omes T � �1� �J2 �264 1 0 0 00 1 0 00 0 1 00 0 0 1 375+ �J2 264 0 0 0 00 1 �1 00 �1 1 00 0 0 0 375 (4.5)

= 264 1� �J2 0 0 00 1 � �J2 00 � �J2 1 00 0 0 1� �J2 375 : (4.6)The negative signs in this matrix may at �rst seem disturbing, as there shouldnot be a sign problem in this 
ase with no 
hemi
al potential { no terms in thepartition fun
tion integral should be negative. These signs will 
an
el out. They areo� diagonal in T, and hen
e they are asso
iated with transitions1. It is not possibleto have a 
on�guration on the latti
e with an odd number of transitions on a periodi
1instan
es where a spin 
hanges state between time sli
es45



latti
e with even spatial extents.4.1.2 BreakupsEquation (4.5) is of the form T = nbXb=1 wbB b ; (4.7)where in this 
ase nb = 2. The two matri
es B 1 and B 2 have entries whi
h are all ofmagnitude either one or zero. They 
an be interpreted as 
onstraints upon the spinsat the four 
orners of the plaquette on whi
h T is a
ting { i.e. breakups. To ea
hbreakup B b is assigned a 
orresponding weight wb.The �rst matrix, B 1 , is the identity. It represents the 
onstraint \no spin shall
hange as it propagates in the third dire
tion". It is non-zero only for four 
on-�gurations. It 
orresponds to a pattern of bonds { two bonds 
onne
ting the spins
onstrained to be the same { those paired verti
ally, and so shall be 
alled the verti
albreakup.The se
ond matrix, B 2 , represents the 
onstraint \ea
h spin shall be the oppositeof its sideways partner". It also is non-zero only for four 
on�gurations. It 
orrespondsto a pattern of bonds 
onne
ting the spins 
onstrained to be di�erent { this time theyare paired horizontally, and so B 2 shall be 
alled the horizontal breakup.Note that the spin 
on�gurations allowed for these two breakups are the only 
on-�gurations for whi
h the Boltzmann weight is not zero. These two breakups and theirrespe
tive allowed spins are depi
ted in table 4.1. If the spins on a given plaquettesatisfy the verti
al breakup, the state of that plaquette is 
alled a 
ontinuation. Ifthey do not, so that only the horizontal breakup applies, the state a transition.Expanding an entire integral of the form of eq. (2.12) using this de
omposition ofT, and using the global 
an
ellation of the signs to justify ignoring them,Z [D ℄O[ ℄Yt;�;xTt;�;x = Z [D ℄O[ ℄�����Yt;�;xTt;�;x����� (4.8)46



= Z [D ℄O[ ℄Yt;�;x jTt;�;xj (4.9)= Z [D ℄O[ ℄Yt;�;x ������ nbXbt;�;x=1wnt;�;xBbt;�;x������: (4.10)Be
ause there are no 
an
ellations in eq. (4.7), it is= Z [D ℄O[ ℄Yt;�;x24 nbXbt;�;x=1wnt;�;x��Bbt;�;x��35 : (4.11)Rewriting the many small sums as one big path integral, the integral is= Z [D ℄Z [Db℄O[ ℄Yt;�;xwbt;�;x��Bbt;�;x�� (4.12)= Z [D ℄ [Db℄O[ ℄ Yt;�;xwbt;�;x! Yt;�;x ��Bbt;�;x��! (4.13)� Z [D ℄ [Db℄O[ ℄W [b℄Æ[ ; b℄ (4.14)= Z [Db℄W [b℄ Z  NbYn=1 d 
n!O[ ℄: (4.15)whi
h, �nally, reprodu
es the stru
ture promised in se
tion 2.1.4 and in eq. (2.19).To put this representation into use, a Markov walk is used to generate an ensemblefor the joint distribution of breakups and spins determined by W [ ; b℄ =W [b℄Æ[ ; b℄.For any spin 
on�guration there is a �xed set of breakups with non-zero weight. Givena spin 
on�guration on the latti
e, breakups are 
hosen for ea
h plaquette randomly,a

ording to their relative weight among the a

eptable possibilities. The relevantinformation is summarized in table 4.2. For example, given the spin 
on�guration onthe se
ond row of the table, the verti
al breakup would be 
hosen with probability(1 � �J2 )=1, while the horizontal breakup would be 
hosen with probability ( �J2 )=1.Given the 
on�guration on the third row, the horizontal breakup would be 
hosenwith probability ( �J2 )=( �J2 ) = 1. A typi
al joint 
on�guration for a 1+1 dimensionalsystem is shown in �g. 4-1. 47



Matrix Diagram Allowed 
on�gurationsB 1 = " 1 0 0 00 1 0 00 0 1 00 0 0 1 #B 2 = " 0 0 0 00 1 �1 00 �1 1 00 0 0 0 # ������
������
������
������

������
������
������
������

Table 4.1: The verti
al and horizontal breakups for (1+1+1)D O(3) and the spin
on�gurations whi
h satisfy them. The horizontal bonds are 
ross-hat
hed (������
���
���) toindi
ate that the sign 
ontributed by the plaquette 
hanges when the spins on the bondare 
ipped. Typi
alSpins TotalWeight

������
������
������
������

������
������
������
������1� �J2 �J21� �J2 +

1 + +
� �J2 �Table 4.2: The assignment of weights to the breakups for (1+1+1)D O(3) with no
hemi
al potential. In ea
h row, the weights of the breakups sele
ted, multiplied bythe indi
ated signs, add up to the total weight for the row. In ea
h 
olumn, onlyspin 
on�gurations allowed for the breakup are sele
ted, and the sign 
orresponds towhether the bonds 
ipped relative to the staggered referen
e 
on�guration is 
ross-hat
hed (������

���
���). 48
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Figure 4-1: A typi
al joint 
on�guration of spins and 
lusters for a 1+1 dimensionalHeisenberg antiferromagnet 
luster algorithm. The grey squares are those on whi
hthe transfer matrix a
ts, while white squares are empty spa
e imposed by the Trotterde
omposition. Thus this latti
e is only 2� high. Only the small square loop in themiddle is oriented against the referen
e 
on�guration.4.1.3 The Can
eling of the Minus SignsA minus sign must be in
luded for every transition plaquette. In fa
t, althoughthere will be no 
on�gurations with minus signs in the end, proving as mu
h is anex
ellent task for a �rst appli
ation of the meron 
on
ept. To attribute these signs to
lusters, it will help to �nd a referen
e 
on�guration. This system has two potentialreferen
e 
on�gurations { those in whi
h the spins are 
ompletely staggered in thespatial dire
tions, but aligned with their neighbors in the third dire
tion.Consider 
hoosing one of the two possibilities as referen
e 
on�guration. Transi-tions always o

ur along with horizontal breakups. Moreover, the two bonds in thehorizontal breakup must be aligned di�erently for there to be a transition. Thus ifNh;a is the number of horizontal bonds whi
h are oriented against the referen
e 
on-�guration, the sign is (�1)Nh;a. By 
olle
ting all the signs from horizontal bonds ina given 
luster, ea
h 
luster 
an be assigned a sign. If a 
luster is oriented againstthe referen
e 
on�guration and it has an odd number of horizontal bonds, then it willprodu
e a minus sign. The global sign is then the produ
t of the 
luster signs, ina

ordan
e with eq. (2.31). 49



A 
luster is hen
e a meron pre
isely when it has an odd number of horizontalsegments. However, 
areful inspe
tion of the possible 
luster shapes will reveal { forthis simple 
ase with no 
hemi
al potential { that 
lusters must have an even numberof horizontal segments. The 
lusters are loops, and they step horizontally at the sametimes that they turn around in the third dire
tion. In order to 
lose, a loop mustturn around an even number of times, hen
e it must step horizontally an even numberof times. Thus one 
an see that the signs whi
h appear on individual plaquettes asre
orded in eq. (4.6) 
an
el out on
e the whole latti
e is taken into a

ount.4.1.4 The Operation of the Cluster AlgorithmStarting from a physi
al 
on�guration, the 
luster algorithm generates a Markovstep by tiling the latti
e with randomly 
hosen breakups as des
ribed above, andthen 
hoosing at random a new orientation for ea
h 
luster. The orientations forthe 
lusters are easy to 
hoose be
ause { by 
onstru
tion { the Boltzmann fa
tor
ontributed by ea
h plaquette for a �xed breakup is independent of the physi
alstate, in a

ordan
e with eq. (2.19). In other words, on
e the 
luster 
on�guration is
hosen, any one set of 
luster orientations has pre
isely the same Boltzmann weightas any other.When implementing this algorithm, it is not a
tually ne
essary to re
ord thespins on the latti
e at all. They 
an always be inferred from the 
luster 
on�gurationand orientations. Instead of wiping the latti
e 
lean of 
luster 
on�gurations andstarting fresh, it is suÆ
ient to break up su
h a large update into many smaller(and proportionally faster) updates. One 
an pi
k a plaquette at random, 
hooseat random an orientation for all 
lusters tou
hing that plaquette to determine itsspins, and given the spins 
hoose a new breakup. Thus the joint 
on�guration 
anbe updated without a
tually keeping any permanent re
ord of the spins a
ross thelatti
e at all.
50



4.2 Adding the Chemi
al PotentialHaving 
onstru
ted a 
luster algorithm for the simple 
ase with no 
hemi
al potential,one 
an now pro
eed to introdu
e the 
hemi
al potential and see what 
hanges arene
essary. The Hamiltonian now takes the form given in eq. (3.22):H = JXx;� ~Sx � h�e�Æ�;1ahkSkx+��~Sx+��eÆ�;1ahkSkx+��i : (4.16)Be
ause the rotation operators at x 
ommute with the spin operators at y 6= x,they 
an be taken down out of the exponent de�ning the transfer matrix, and eq. (4.4)be
omesT = �eÆ�;1~h�~Sx+�� e��J~Sx�~Sx+� �e�Æ�;1~h�~Sx+�� (4.17)= eÆ�;1hi��I
�i2 �e� �J4 �i
�ie�Æ�;1hi��I
�i2 � (4.18)/ e� �J2 + sinh �J2 0B�eÆ�;1hi��I
�i2 � 264 0 0 0 00 1 �1 00 �1 1 00 0 0 0 375 e�Æ�;1hi��I
�i2 �1CA : (4.19)The rotation operators 
an be expandedehi���I
�i2 � = I
 �I
osh�Æ�;1h2� + �Æ�;1ĥ � ~�� sinh�Æ�;1h2�� (4.20)� I
 h
�I+ s� �Æ�;1ĥ � ~��i (4.21)where 
� and s� have been de�ned as
� � 
osh�Æ�;1h2� s� � sinh�Æ�;1h2� : (4.22)
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The term in parentheses in eq. (4.19) is thenI
 h
�I+ s� �Æ�;1ĥ � ~��i� � h 1 00 0 i
 h 0 00 1 i� h 0 10 0 i 
 h 0 01 0 i � h 0 01 0 i
 h 0 10 0 i+ h 0 00 1 i
 h 1 00 0 i �� I
 h
�I� s� �Æ�;1ĥ � ~��i (4.23)Rather than pro
eeding in generality from here, it will be simpler now to 
hoosethe relative orientation between ~h and the quantization axis. Two simple 
hoi
espresent themselves: quantize either parallel to or perpendi
ular to ~h.4.3 Quantize Parallel to the Chemi
al Potential4.3.1 The Basi
 Constru
tionChoosing ~h � ~� to be h�3, the exponential in eq. (4.21) is2I
 �
�I+ s� � 1 00 �1 �� = I
 � a� 00 b� � (4.24)where a� � eÆ�;1 h2 and b� � e�Æ�;1 h2 . Now (4.23) be
omesh 1 00 0 i
 h 0 00 1 i� h 0 10 0 i
 h 0 0b2� 0 i� h 0 01 0 i
 h 0 a2�0 0 i+ h 0 00 1 i
 h 1 00 0 i= 264 0 0 0 00 1 �b2� 00 �a2� 1 00 0 0 0 375 (4.25)
and, again dis
arding the irrelevant multipli
ative 
onstant, the full transfer matrixfor a plaquette along the dire
tion � is nowT� / Ie� �J2 + sinh �J2 264 0 0 0 00 1 �b2� 00 �a2� 1 00 0 0 0 375 : (4.26)2W.l.o.g., h 
an be taken to be positive. Negative h amounts to the same thing as re
e
ting thelatti
e. 52



Expanding T� to �rst order in �, the matrix analogous to eq. (4.6) isT� � �1� �J2 �264 1 0 0 00 1 0 00 0 1 00 0 0 1 375 + �J2 264 0 0 0 00 1 �b2� 00 �a2� 1 00 0 0 0 375 (4.27)
= 264 1� �J2 0 0 00 1 � �J2 b2� 00 � �J2 a2� 1 00 0 0 1� �J2 375 : (4.28)T� is, predi
tably, un
hanged when � 6= 1. However, when � = 1 the matrixwhi
h 
orresponds to the horizontal breakup has been modi�ed by the introdu
tionof the 
hemi
al potential. Now, its elements are no longer all of magnitude 1, whi
hmeans it is not 
ompatible with the Æ-fun
tion stru
ture of eq. (2.14).4.3.2 Adding a Metropolis StepIn order to 
ontinue, it is ne
essary to sa
ri�
e some of the purity of the 
lusteralgorithm { the a2 and b2 fa
tors must be in
luded in the inner integral of eq. (2.19).That equation be
omesZ [Db℄W [b℄ Z  NbYn=1 d 
nW [ 
n℄!O[ ℄: (4.29)where W [ 
n ℄ will en
ode the a2 and b2 fa
tors. Thus some importan
e samplingwork will remain after the implementation of the 
luster algorithm { some 
lusterorientations will be more important than others. In order to implement this part ofthe importan
e sampling, it will be ne
essary to add a Metropolis step, a

epting orreje
ting 
ips of 
lusters. The need for this a

ept/reje
t step bodes ill for the su

essof this implementation.Presuming that the a2 and b2 fa
tors will thus not be handled by the breakupsbut elsewhere instead, the breakups for this algorithm are the same as for the 
asewith no 
hemi
al potential. As the 
lusters are still 
losed loops and the minus signso

ur in the same pla
es in the transfer matrix, the argument that the signs 
an
el53



PlaquetteStateMetropolisWeight e�h eh 1 1Table 4.3: Metropolis weights for states of the horizontal breakup in (1+1+1)D O(3)with quantization axis along the 
hemi
al potentialout whi
h worked in the h = 0 
ase still holds. There is no sign problem.In order to understand how the a2 and b2 fa
tors must enterW [ 
n℄ the algorithm,
onsider the plaquette states whi
h they a�e
t: the transitions, whi
h are listed intable 4.3. The weights 
an be attributed to fa
tors from ea
h bond: on the top bond,a fa
tor of e�h2 for "#, and a fa
tor of eh2 for #"; on the bottom bond, the reverse.A simpli�ed pi
ture, in 1+1 dimensions, is given in �g. 4-2. These rules 
onspire tomeasure a winding number of 
lusters. Any 
luster whi
h does not wind around the�rst dire
tion 
ontributes a 
umulative fa
tor of 1. Clusters whi
h do wind 
ontributea

ording to their winding by fa
tors of eLh2 , where L is the size of the latti
e in the�rst dire
tion.In order to update a 
on�guration with this new algorithm, the latti
e is tiledwith breakups as before, but when 
lusters are to be 
ipped, the e�e
t of the 
lusterwinding must be 
onsidered. If, for instan
e, a given 
luster winds on
e around thelatti
e, then one of its states is more weighty than the other by a fa
tor of eLh, andits should only be 
ipped a

ordingly.4.3.3 Measuring the Parti
le Number DensityNow that an algorithm to estimate the partition fun
tion has been built, it is ne
essaryto 
onstru
t an improved estimator for the parti
le number. It is not immediatelyapparent what property of the Heisenberg antiferromagnet 
orresponds to the parti
le54
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Figure 4-2: Signs indi
ating the 
ontribution to the Metropolis weight from ea
h hor-izontal segment of ea
h 
luster. The signs for 
lusters whi
h do not wind 
an
el out,whereas for 
lusters whi
h wind, they add up.number of the (1+1)D model. Before an improved estimator 
an be 
onstru
ted, thequantity to measure must be identi�ed, and it must be expressed in the language ofeq. (2.10). On
e that is a

omplished, an improved estimator may be 
onstru
ted byintegrating over 
luster orientations as in eq. (4.29).Finding What to MeasureFormally, the parti
le number density is given byhNi � 1L ��h lnZ = 1LZ ��hZ: (4.30)Expanding in terms of eqs. (2.7) and (4.9),hNi = 1LZ ��h Z [D ℄Yt;�;x jTt;�;xj (4.31)= 1LZ Z [D ℄ ��h Yt;�;x jTt;�;xj (4.32)= 1LZ Z [D ℄"Xt;�;x Yt0;�0;x0 6=t;x;�jTt0;�0;x0j! ��h jTt;�;xj# : (4.33)
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The ensemble generated to estimate Z is determined by the weightW [ ℄ = Yt;�;x jTt;�;xj: (4.34)In order to 
ontinue to use the same ensemble it is desirable to write eq. (4.33) interms of the same weight. Thus 
onsider3hNi = 1LZ Z [D ℄ Yt;�;x jTt;�;xj! Xt0;�0;x0 jTt0;�0;x0j�1 ��h jTt0;�0;x0j! : (4.35)Cal
ulating the derivative in the non-trivial 
ase (when � = 1),��h 264 1� �J2 0 0 00 1 �J2 e�h 00 �J2 eh 1 00 0 0 1� �J2 375 = 264 0 0 0 00 0 � �J2 e�h 00 �J2 eh 0 00 0 0 0 375 : (4.36)Thus, performing the element-by-element division of eq. (4.35), the quantity to beevaluated on ea
h plaquette is 264 0 0 0 00 0 �1 00 1 0 00 0 0 0 375 : (4.37)For ea
h transition where #" be
omes "# the observable measures a �1, while forevery transition of the opposite type it measures a 1.This result may be derived by another more 
ompli
ated method whi
h will beuseful later as a point of 
omparison. The produ
t in eq.(4.33) la
ks a single fa
torof T . Previously, the missing fa
tor was repla
ed separately for ea
h physi
al state , whi
h resulted in the element-by-element division above. Consider instead �xingthe produ
t for all states of the plaquette at t; �; x at on
e.Re
all that the fa
tors of T in the path integral arise from plaquette operatorsT. The result of the di�erentiation is to repla
e one operator T with a di�erent3remember T is a matrix, but T is an element thereof { just a number56
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T ��hTT T

T T
T T
T T MT T

T T

Figure 4-3: An extra operator M , inserted into a (1+1)D latti
e, to reprodu
e thee�e
t of 
hanging one transfer matrix. Note that two extra spins are required.operator ��hT: ��hTt;�;x = h t0 ;�0;xjh t0;�0;x+�j ��hTt;�;xj t;�;xij t;�;x+�i: (4.38)If the same result 
ould be obtained not by repla
ing an operator, but by insertingone, then { at least for some inserted operators, the produ
t 
ould again be repaired.Remember now that the 
hemi
al potential is a
ting in a dire
tion transverse to thatin whi
h the Hamiltonian a
ts. Thus it would be natural to insert an operator notabove or below T but beside it. A typi
al su
h repla
ement is depi
ted in �g. 4-3.Plaquette operators a
ting su

essively left to right must be multiplied di�erentlythan operators a
ting bottom to top { their 
omponents must be arranged withrespe
t to a di�erent sense of \later", using the spa
e-like multipli
ation ?. Su
h aninsertion requires summing over two additional spins { i.e. if M is the operator whi
h
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shall be inserted, it must satisfy4��hTt;�;x =Z d 0t0;�0;x+�d 0t0;�0+�M t;�;x�� 0t0;�0;x+���� 0t;�;x+��
 0t0;�0;x+���
 0t;�;x+���Tt;�;x� M t;�;x ? Tt;�;x: (4.39)If M , when written for the ? multipli
ation, happens to be diagonal then thetwo spins inserted will be redundant. It would be possible to evaluate the result ofinserting M using the 
on�gurations already generated, be
ause then it would happenthatM t;�;x�� 0t0 ;�0;x+���� 0t;�;x+��
 0t0;�0;x+���
 0t;�;x+���= �� 0t0;�0;x+���� 0t;�;x+��Mt;�;x
 0t0;�0;x+���
 0t;�;x+��� (4.40)in whi
h 
ase ��hTt;�;x = h t0;�0;xjh t0;�0;x+�j ��hTt;�;xj t;�;xij t;�;x+�i (4.41)=Mt;�;xTt;�;x: (4.42)This situation with diagonal M is depi
ted in �g. 4-4.In order to �nd M , it is ne
essary to express T as a four by four matrix with itselements ordered not for the normal time-like multipli
ation, but for ?, the spa
e-like4The order of T and M here is a matter of 
onvention { it 
orresponds to whether one 
hoosesM to be inserted on the left or on the right of T.
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T M T
Figure 4-4: Computing an observable with diagonal M . Be
ause M is diagonal, themiddle two spins in the diagram on the left drop out, produ
ing the diagram on theright. A fa
tor remains, determined by the state of the rightmost two spins. Here thestate of the T plaquette is a transition, and the M produ
es a 1.multipli
ation. This amounts simply to rearranging the 
omponents thus:a b 
 de f g hi j k lm n o p ! a b e f
 d g hi j m nk l o p (4.43)
Under this rearrangement, the transfer matrix T1 from eq. (4.28) 
hanges as follows:T1 =264 1� �J2 0 0 00 1 � �J2 b21 00 � �J2 a21 1 00 0 0 1� �J2 375 (4.44)

=264 1 0 0 00 1 0 00 0 1 00 0 0 1 375� �J2 264 1 0 0 00 0 e�h 00 eh 0 00 0 0 1 375 (4.45)
�!264 1 0 0 10 0 0 00 0 0 01 0 0 1 375� �J2 264 1 0 0 00 0 e�h 00 eh 0 00 0 0 1 375 (4.46)
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and so ��hT1 = ��J2 264 0 0 0 00 0 �e�h 00 eh 0 00 0 0 0 375 : (4.47)Given these expressions for T1 and ��hT1written for spa
e-like multipli
ation, one 
aneasily verify that the 
hoi
e M = 264 0 0 0 00 �1 0 00 0 1 00 0 0 0 375 (4.48)satis�es eq. (4.39). This M is in fa
t diagonal, and so it is not ne
essary to integrateover any extra spins. All that remains are the fa
tors M determined by the tworemaining spins. M will be non-zero only when T is a transition, and in fa
t, theresulting 
ontribution is exa
tly that given by eq. (4.37).The integral to 
al
ulate the parti
le number density thus be
omeshNi = 1LZ Z [D ℄ Xt;�;xMt;�;x! Yt0;�0;x0 jTt0;�0;x0j! : (4.49)When the dust settles, the integral simply measures the di�eren
e between the numberof instan
es of the two kinds of transitions on the latti
e.Interpreting MPhysi
al 
on�gurations on the 2+1 dimensional latti
e 
an be interpreted in terms ofworld lines for the spins, be
ause the Hamiltonian 
ommutes with the magnetizationalong the quantization axis:"H ;Xz S3z# = "JXx;� ~Sx � h�e�Æ�;1ahS3x+��~Sx+��eÆ�;1ahS3x+��i ;Xz S3z# (4.50)= JXx;�;z hSjxh�e�Æ�;1ahS3x+��Sjx+��eÆ�;1ahS3x+��i ;S3zi (4.51)
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Figure 4-5: The world lines of of up and down spins on a (1+1)D latti
e, in grey( ) and bla
k ( ) respe
tively. In this 
on�guration, no world lines wind aroundthe spatial dire
tion.= JXx;�;z24 [Sjx;S3z℄�e�Æ�;1ahS3x+��Sjx+��eÆ�;1ahS3x+��+Skx�e�Æ�;1ahS3x+�� �Skx+�;S3z� �eÆ�;1ahS3x+�� 35 (4.52)= JXx;� 24 i�j3lSlx�e�Æ�;1ahS3x+��Sjx+��eÆ�;1ahS3x+��+Skx�e�Æ�;1ahS3x+�� i�k3mSmx+��eÆ�;1ahS3x+�� 35 (4.53)= JXx;� hSlx�e�Æ�;1ahS3x+��Sjx+��eÆ�;1ahS3x+��i �i�j3l + i�l3j� (4.54)= 0 (4.55)Every plaquette on the latti
e is either a 
ontinuation or a transition. On a 
ontin-uation, the spins are understood to stay put spatially during that time sli
e. On atransition, the two spins at the bottom of the plaquette swap pla
es on their way tothe top. A typi
al spin 
on�guration along with the world lines for a (1+1)D latti
e isdepi
ted in �g. 4-5. On one kind of transition, in their progress toward the top of thelatti
e, up spins hop right while down spins hop left. On the other kind of transitionthe opposite happens. Thus the di�eren
e between the numbers of the two kinds oftransitions in the 1st dire
tion is the winding of the up spins minus the winding ofthe down spins around the 1st dire
tion. 61
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Figure 4-6: A 
luster 
hanging the winding of the world lines. The world lines of upspins are shown in grey ( ). A 
luster is shown in 
ross-hat
hing (������
���
���). Down spinsand their world lines are not shown. Flipping the 
luster, whi
h winds, 
hanges thewinding of the world lines.With this understanding of the parti
le number, one 
an better to understandthe Metropolis weight for 
ipping the 
lusters. A 
luster whi
h itself winds is a
luster whi
h when 
ipped will 
hange the winding of the world lines, and hen
e theparti
le number. It is possible to simplify measuring the parti
le number, be
ausethe winding of the world lines 
an be measured by 
onsidering any one verti
al planethrough whi
h the world lines must pass. The winding 
an be 
al
ulated by 
ountingtransitions in one spatial sli
e alone.4.3.4 The Failure of this MethodThis algorithm proves to be ineÆ
ient. The reasons for its failure are subtle, butthe result is drasti
. Although the Metropolis step is properly biased toward oneorientation of ea
h 
luster whi
h winds, the 
luster rules are not biased to 
reate su
h
lusters. As a result, this algorithm does not e�e
tively update the winding number.It is ergodi
, so eventually it will explore di�erent winding se
tors. The 
onstru
tion of
lusters whi
h wind around the latti
e is a rare event, however, and so the Metropolisstep only very rarely gets a 
han
e to impose its bias. In this formulation, the 
hemi
alpotential has been somewhat 
rudely grafted onto the 
luster algorithm. The result62



is that the 
luster growth is only indire
tly and o

asionally a�e
ted by the 
hemi
alpotential and so the method is ine�e
tive.4.4 Quantize Transverse to the Chemi
al PotentialIn 
ontrast to the 
hoi
e above, one 
an instead 
hoose the quantization axis to betransverse to the 
hemi
al potential. This 
hoi
e will lead to a sign problem, and sothe ineÆ
ien
y des
ribed above will not immediately vanish. By atta
king this signproblem head on instead of avoiding it, however, one may �x the ineÆ
ien
y.4.4.1 The Basi
 Constru
tionChoosing ~h � ~� to be h�1, the exponential in eq. (4.21) is this time5I
 �
�I+ s� � 0 11 0 �� = I
 � 
� s�s� 
� � : (4.56)For � 6= 1, T� will of 
ourse redu
e to the h = 0 
ase. Considering the � = 1 
aseand suppressing the unne
essary index, now eq. (4.23) be
omes� 1 00 0 �
 h �s2 s
�s
 
2 i� � 0 10 0 �
 h s
 �s2
2 �s
 i� � 0 01 0 �
 h �s
 
2�s2 s
 i+ � 0 00 1 �
 h 
2 �s
s
 �s2 i= 264 �s2 s
 �s
 s2�s
 
2 �
2 s
s
 �
2 
2 �s
s2 �s
 s
 �s2 375 : (4.57)
Dis
arding a multipli
ative 
onstant and expanding to �rst order in � as before, forthis 
hoi
e of quantization axis,

T1 � 26666664 1� 
2 �J2 s
 �J2 �s
 �J2 s2 �J2�s
 �J2 1 + s2 �J2 �
2 �J2 s
 �J2s
 �J2 �
2 �J2 1 + s2 �J2 �s
 �J2s2 �J2 �s
 �J2 s
 �J2 1� 
2 �J2
37777775 : (4.58)

5Again, h is taken to be positive w.l.o.g. 63



4.4.2 BreakupsUnlike the previous 
ase, the transfer matrix has mu
h more stru
ture when h 6= 0than when h = 0. Not only does it have some more negative entries, but it has noneof the zeroes present in eq. (4.6). Moreover, there are latti
e 
on�gurations for whi
hthe signs in this new transfer matrix do not 
an
el out { there is a sign problem.The de
omposition in terms of breakups used for the 
ase of non-zero 
hemi
alpotential will not be suÆ
ient for this transfer matrix. Instead, it is ne
essary togo ba
k to the transfer matrix and �nd a new set of breakups. To ensure that thereferen
e 
on�guration still be valid, all the bonds used in these new breakups shouldstill be satis�ed on the same staggered latti
e whi
h was the referen
e 
on�gurationwith no h. The expansion of the new transfer matrix analogous to eq. (4.7) is:T1 = �1� 
2 �J2 �264 1 0 0 00 1 0 00 0 1 00 0 0 1 375 + 
 (
� 2s) �J2 264 0 0 0 00 1 �1 00 �1 1 00 0 0 0 375+ s2 �J2 264 0 0 0 10 1 0 00 0 1 01 0 0 0 375+ s
�J2 264 0 0 0 0�1 1 �1 11 �1 1 �10 0 0 0 375 + s
�J2 264 0 1 �1 00 1 �1 00 �1 1 00 �1 1 0 375 : (4.59)The �rst two of these matri
es appeared in the h = 0 
ase. The other three 
orrespondto three new breakups depi
ted in table 4.4. The de
omposition is summarized intable 4.5. The most notable feature of this new set of breakups is the appearan
eof unbonded sites. Ea
h of the last two matri
es above 
orresponds to a breakupwith only a single bond. Thus the 
lusters in the new algorithm will not ne
essarilybe 
losed loops { they may also be open 
hains. Note that unbonded sites 
ome inpairs, as if some horizontal bonds had broken. Note also that horizontal bonds 
arrya sign, and so also does one pie
e of ea
h unbonded pair. The remaining breakup
orresponds to a pair of 
rossed bonds. Thus the shapes of 
lusters are mu
h more
ompli
ated in this 
ase than they were previously, as depi
ted in �g. 4-7.
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Matrix Diagram Allowed 
on�gurations" 0 0 0 10 1 0 00 0 1 01 0 0 0 #" 0 1 �1 00 1 �1 00 �1 1 00 �1 1 0 # ������
������
������
������

��
��
��
��

" 0 0 0 0�1 1 �1 11 �1 1 �10 0 0 0 # ������� �������

��� ���

Table 4.4: Three new breakups for (1+1+1)D O(3) introdu
ed by quantizing transverseto the 
hemi
al potential, and the spin 
on�gurations whi
h satisfy them. As before,bonds are 
ross-hat
hed (������
���
���) to indi
ate that the sign 
hanges when they are 
ipped.
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Typi
alSpins TotalWeight
������
������
������
������

������
������
������
������

������
������
������
������

��
��
��
�� ������� �������

��� ���1� 
2 �J2 
(
�2s) �J2 s2 �J2 s
 �J2 s
 �J21� s2 �J2 + + + + +
1� 
2 �J2 +
�
2 �J2 � � �
s2 �J2 +
s
 �J2 +
�s
 �J2 �
s
 �J2 +
�s
 �J2 �Table 4.5: The assignment of weights to the breakups when the quantization axis istransverse to the 
hemi
al potential. The stru
ture is the same as in table 4.2.66
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Figure 4-7: A typi
al joint 
on�guration of spins and 
lusters in a (1+1)D Heisenbergantiferromagnet when the quantization axis is transverse to ~h. The breakups used tobuild the 
luster 
on�guration are shown on the right. There are two open 
hainsand one 
losed loop in this example. Only the longer 
hain is oriented against thereferen
e 
on�guration. The single minus sign marks the one plaquette on this latti
ewhi
h has a spin 
on�guration for whi
h the sign is negative.4.4.3 Handling the SignsIn the h = 0 
ase, although there were signs asso
iated with horizontal segments,
lusters always had an even number of horizontal segments. Be
ause they had to be
losed loops, the signs always 
an
eled. Now 
lusters 
an break open, and there is nosu
h guarantee.The sign[ ℄ does fa
tor as required in eq. (2.31) be
ause the global sign { a produ
tover signs from plaquettes { has been written as a produ
t over signs from bonds. Byde
omposing ea
h plaquette sign into a produ
t of signs from ea
h bond, the sign hasbeen split up into fa
tors whi
h 
an be grouped together by 
luster. In the referen
e
on�guration, the sign is still positive, but now if a 
luster has an odd number ofsegments with signs { those shown with 
ross-hat
hing (������
���
���) { 
ipping that 
lusterwill 
hange the global sign. Su
h a 
luster is 
alled a meron.Note that 
losed loop 
lusters are still never merons. Moreover, the only 
lustersegments with signs are either horizontal bonds or half of broken horizontal bonds.By imagining repairing the broken bonds, one should be able to see that the total67



number of segments 
arrying signs must be even. Thus, if there are any merons, theymust 
ome in pairs.Consider the (1+1)D example given in �g. 4-7, whi
h has two merons. The short
hain has one segment with a minus sign, and the long 
hain has three. The loop,being 
losed, must have an even number of horizontal segments and so is not a meron.Sin
e exa
tly one of the two merons (the long 
hain) is oriented against the referen
e
on�guration, the 
on�guration's global sign would be negative. One 
an 
he
k this bymultiplying together the sign for ea
h a
tive plaquette. As indi
ated in the diagram,only one plaquette 
arries a minus sign, and so this 
al
ulation yields the same answeras predi
ted by the merons.Having �rst determined that there are non-trivial signs, and then having 
on-stru
ted a 
luster system with merons, one 
an now put into pra
ti
e the generalmethod des
ribed in se
tion 2.2.4 and hen
e solve the sign problem. An improvedestimator for the sign as in eq. (2.30) is simple to 
onstru
t on
e merons have beenidenti�ed.The 
onstru
tion pro
eeds in pre
ise analogy with eqs. (4.8)-(4.15), where in this
ase nb = 5 and O[ ℄ � sign[ ℄. As des
ribed in se
tion 2.2.4, if there are any meronsthen in averaging over all 
luster orientations one half will have the opposite signfrom the other, and the average will be zero. If there are no merons the sign willnever 
hange; sin
e the sign is known to be positive in the referen
e 
on�guration,the average of the sign in a 
ase with no merons must be one.Thus an importan
e sampling ensemble 
an be 
onstru
ted with a proper sense ofimportan
e. Con�gurations whi
h have merons, regardless of the weight determinedby the magnitude of the transfer matrix elements, are not important { they 
ontributezero to the average of the sign. Hen
e the ensemble should be reweighted to re
e
t abias against merons.Thus the solution to this sign problem pro
eeds in two steps. The meron 
on
eptis used to 
onstru
t an improved estimator for the sign, whi
h for every 
luster 
on-�guration produ
es either 0 or 1. Although there are no more negative 
ontributionsand hen
e no more 
an
ellation, this step alone does not solve the sign problem. Sin
e68



the result of the average is known to be exponentially small in the volume, there mustbe very few 1s amid a sea of 0s. By subsequently reweighting the ensemble, biasingit toward 
on�gurations whi
h are truly signi�
ant, the sea of 0s 
an be avoided, andthe algorithm thus made to be eÆ
ient.4.4.4 Measuring The Parti
le Number DensityBe
ause there is a sign problem to be solved, observables must now be estimated usingeq. (2.35). The method of dire
t element-by-element di�erentiation used �rst for theprevious 
hoi
e of quantization axis is very messy in this 
ase. Every element of Thas some h dependen
e, and so the result of the di�erentiation is very 
ompli
ated.The se
ond method { �nding an operator to insert { is easier.Returning to the new transfer matrix and applying the rearrangement des
ribedby eq. (4.43), the transfer matrix T1 from eq. (4.58) 
hanges as follows:
T1 =26666664 1� 
2 �J2 s
 �J2 �s
 �J2 s2 �J2�s
 �J2 1 + s2 �J2 �
2 �J2 s
 �J2s
 �J2 �
2 �J2 1 + s2 �J2 �s
 �J2s2 �J2 �s
 �J2 s
 �J2 1� 
2 �J2

37777775 (4.60)
=264 1 0 0 00 1 0 00 0 1 00 0 0 1 375 + �J2 264 �
2 s
 �s
 s2�s
 s2 �
2 s
s
 �
2 s2 �s
s2 �s
 s
 �
2 375 (4.61)

�!264 1 0 0 10 0 0 00 0 0 01 0 0 1 375 + �J2 264 �
2 s
 �s
 s2�s
 s2 �
2 s
s
 �
2 s2 �s
s2 �s
 s
 �
2 375 (4.62)and so ��hT1 = �J4 264 �2s
 s2 + 
2 �s2 � 
2 2s
�s2 � 
2 2s
 �2s
 s2 + 
2s2 + 
2 �2s
 2s
 �s2 � 
22s
 �s2 � 
2 s2 + 
2 �2s
 375 (4.63)
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= 12 264 0 1 �1 01 0 0 �1�1 0 0 10 �1 1 0 375 ? T: (4.64)Hen
e M , the operator inserted to 
ompute the parti
le number, 
an be taken to beM = 12 264 0 1 �1 01 0 0 �1�1 0 0 10 �1 1 0 375 (4.65)This matrix is not diagonal, so its operation in the 
ontext of the path integral ismore 
ompli
ated than was that of the equivalent matrix with the other quantizationaxis. In order better to understand the a
tion of M , de�neM l � 12 264 0 0 1 00 0 0 11 0 0 00 1 0 0 375 and M u � 12 264 0 1 0 01 0 0 00 0 0 10 0 1 0 375 (4.66)so that M = M u � M l . This de
omposition separates M into two parts ea
h of whi
his blo
k anti-diagonal. If not diagonal, these are at least deterministi
 in that if theya
t on a single state in the path integral the result will not be a superposition ofstates. Instead, the result will be another element of the basis in whi
h the pathintegral is being 
al
ulated. In fa
t, the insertion of either of these operators 
ips asingle spin in its passage sideways. M l 
ips the lower one and M u 
ips the upper one,as shown in �g. 4-8.Be
ause these matri
es 
hange spins, the physi
al 
on�gurations generated forevaluating the expe
tation value of the sign { the denominator in eq. (2.23) { are notdire
tly usable for evaluating the integral in the numerator. For any insertion of anM , those physi
al 
on�gurations la
k the extra spins inserted between the transfermatrix and the M .However, although the spin 
on�guration is not usable, the 
luster 
on�guration isusable[12℄. For the deterministi
 M u and M l , a given 
luster 
on�guration { formerlymeaning a 
onstraint on the latti
e without any M { 
an be reinterpreted to meanalso a di�erent 
onstraint on the latti
e with one inserted M .70



M uT M lTFigure 4-8: The e�e
t of inserting the non-diagonal M u and M l . These two matri
esrespe
tively 
ip the upper and lower spin on a plaquette as it pro
eeds sideways afterthe a
tion of T.The insertion of M u or M l at one plaquette on the latti
e has the e�e
t of 
ippingone spin as it pro
eeds sideways. As a 
luster 
rosses the site where an M is a�e
tinga spin, the orientation of the 
luster 
hanges. If it is aligned with the referen
e
on�guration on one side of the insertion, then it is aligned against it on the other.An example is shown in �g. 4-9.Be
ause only one M is inserted into the latti
e at a time, there will be exa
tlyone su
h extra 
ip imposed on the latti
e at a time. Closed 
lusters will thereforeprodu
e no 
ontribution, as the two parts of the 
luster for
ed at the insertion tobe di�erently oriented will be 
onne
ted elsewhere. When an open 
luster passesthrough the insertion the M will produ
e a 
ontribution of 12 or �12 , depending onwhether the insertion is at an upper or a lower spin. This 
ontribution will, in turn,be multiplied by the global sign.Sin
e merons 
ome in pairs, the value of the improved estimator must be zero ifthere are any merons. Although the insertion of an M may a�e
t one meron, therewill always be another to 
ip and 
an
el out any 
ontribution. Suppose, however,that an insertion should happen to land in an open 
hain whi
h has an even numberof signed segments. Suppose further that it should split the 
luster into two halvesea
h of whi
h has an odd number of signed segments. In su
h a 
ase, no matter howthe 
luster is 
ipped, half of it will be against the referen
e 
on�guration and thathalf will 
arry a sign. Hen
e there will be an extra sign.71
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Figure 4-9: Computing an observable with the non-diagonal M u . The insertion ofM u has 
hanged the interpretation of the longer open 
hain. The 
hain still has justtwo orientations, but where it 
rosses the insertion (
���
���
���

���
���
���), the orientation 
hanges.Compare this to �g. 4-7, whi
h has the same 
luster 
on�guration with no insertion.Interpreting MAs with the previous 
hoi
e of quantization axis, further geometri
al interpretationof the insertion of M 
an provide insight into the nature of the improved estimator.Whenever 
luster segments step horizontally in the dire
tion of the 
hemi
al poten-tial, the 
ontributions a

umulate. Whenever 
luster segments step verti
ally, the
ontributions 
an
el out. The 
ontributions from M add up to measure a windingnumber { this time of the loops whi
h would result from re
onne
ting the open 
lus-ters. An example in (1+1)D is given in �g. 4-10. The (2+1)D 
ase is of 
ourse more
ompli
ated, but the result is the same.When the spins were quantized parallel to ~h, the 
luster algorithm is ineÆ
ientbe
ause it is ne
essary for the 
lusters themselves to wind around the latti
e in orderto 
hange a winding number. At any �nite 
orrelation length, that is a rare event ona large enough latti
e, and so the update be
omes less and less e�e
tive as the latti
egets bigger. Now, with the spins quantized transverse to ~h, updating the relevantwinding number no longer requires a 
luster whi
h itself winds. Instead, many small
lusters may 
onspire to wind as a whole. Thus the original ineÆ
ien
y is not present.72
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Figure 4-10: Cal
ulating the parti
le number when the quantization axis is transverseto the 
hemi
al potential, in (1+1)D. The signs on the grey transfer matri
es indi
atethe sign 
ontributed by M l or M u . The signs in white 
ir
le indi
ate the �nal 
ontribu-tions from the improved estimator. On the 
losed 
luster, there are no 
ontributions.On the open 
lusters, the sign 
ontributed by M is multiplied by a sign from how the
luster is split: if the site splits the 
luster into pie
es with an odd number of signedsegments, there is an extra sign. The 
ontributions add up to measure the windingnumber of the re
onne
ted open 
lusters.4.4.5 The Sign Problem is SolvedQuantizing the spins transverse to the 
hemi
al potential results in a sign problem.By expressing the path integral in terms of a 
luster algorithm, it is possible to bringthat sign problem under 
ontrol. The stru
ture of the 
luster algorithm { breakingdown the transfer matrix in terms of breakups and bonds { provides a ri
h stru
ture inwhi
h to seek a solution. By expressing the global sign in terms of fa
tors attributableto ea
h 
luster and its respe
tive orientation, an improved estimator for the sign 
anbe 
onstru
ted. With that powerful tool in hand, the importan
e sampling ensemble
an be reweighted to use a more a

urate notion of importan
e, and so an ensembleuseful for making measurements 
an be generated pra
ti
ally.
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Chapter 5
Numeri
al Results for (1+1+1)DO(3)
The meron algorithm in
luding the improved estimator for the parti
le number den-sity des
ribed in se
tion 4.4 was applied on su

essively larger latti
es, and so numer-i
al estimates were generated for hNi as a fun
tion of h.In this 
hapter, the physi
al extent of the spatial dimension of the 1+1 dimensionalO(3) theory shall be 
alled L, the inverse temperature of the 1+1 dimensional systemshall be 
alled L0, and the extent of the third dimension { the inverse temperature ofthe Heisenberg magnet { shall be 
alled �. The fa
tor � determining the quality ofthe Trotter approximation is thus �n where n is the number of time sli
es introdu
edin the path integral.For all the 
al
ulations in this 
hapter, the 
oupling 
onstant of the magnet J {redundant ex
ept for its sign { was taken to be 1. The mass gap m is determined by �as des
ribed in eq. (3.12). The a
tual value of m as thus determined was taken froma numeri
al study of the 
orrelation length � = 1m in the Heisenberg antiferromagnet[5℄, as was the value of the magnon velo
ity 
 = 0:1657(2).Ex
ept where stated otherwise, the value � = 2:5 was used. This 
orresponds to� = 6:23(1) and m = 0:160(5). This is a relatively modest 
hoi
e for �. Dimensionalredu
tion o

urs in the limit in whi
h � � �
, but with this 
hoi
e �
 = 4:143, whi
his only somewhat smaller than �. 74



5.1 The Severity of the Sign ProblemIn order better to understand the severity of the sign problem, the algorithm wasrun without any reweighting, allowing merons to develop unhindered. The resultingdistributions of meron 
ounts, plotted in �g. 5-1, make 
learer the nature of theproblem. At very small latti
e sizes, only a few merons will �t on the latti
e, but,on
e the latti
e rea
hes reasonable sizes, the vast majority of the 
on�guration spa
eis o

upied by the higher meron 
ount se
tors. All 
on�gurations whi
h make non-zero 
ontributions to the expe
tation value of the sign lie in the zero meron se
tor,whi
h 
omprises only a tiny fra
tion of the 
on�guration spa
e at a far end of onetail of the distribution of meron 
ounts.L = L0 = 4
80400

5002500
L = L0 = 10

80400
5002500L = L0 = 20

80400
5002500Figure 5-1: Meron distribution as a fun
tion of system size. The algorithm was runfor 1000 sweeps after 100 sweeps for thermalization at h = 0:15, for three (L; L0)pairs.To see the e�e
t of the reweighting, the algorithm was run at progressively largervalues of the reweighting. The e�e
t of the reweight is shown in �g. 5-2. For a reweightfa
tor of r, the weight in the distribution of a 
on�guration with nm merons was thusarti�
ially suppressed by a fa
tor of rnm . Any 
ontribution from a 
on�guration withmerons would in prin
iple need to be in
ated by a 
orresponding fa
tor. However,75



for both the quantities measured, all 
ontributions in the non-zero meron se
tors areidenti
ally zero. Thus the reweight serves only to amplify the measured signal relativeto the statisti
al noise in the ensemble.reweight 1
3020100

10005000
reweight 16

3020100
10005000reweight 256

3020100
10005000Figure 5-2: The e�e
t of reweighting on meron distribution in (1+1+1)D O(3) whenthe quantization axis is transverse to the 
hemi
al potential. The algorithm was runfor 1000 sweeps after 100 sweeps for thermalization, at L = 10, L0 = 10 and h = 0:15,for three reweights, 1, 16, and 256.

5.2 Parti
le Number DensityThe algorithm was �nally run with full reweighting at several latti
e sizes, and theparti
le number density was measured as a fun
tion of 
hemi
al potential. A smallMarkov step was used, in whi
h a single plaquette was updated. A large 
ompositeMarkov step or sweep was made by sequentially 
hoosing Np plaquettes at randomand updating them, where Np is the number of plaquettes on the latti
e. The valueof the improved estimators for the parti
le number and sign were measured after ea
hsweep.For ea
h value of h on ea
h latti
e size, several runs were made in parallel. Ea
hrun began with Ntherm sweeps of the latti
e without measurements in order to let76



the latti
e thermalize. After this thermalization, Nsweep sweeps were made in totala
ross all parallel runs. These Nsweep measurements were grouped into blo
ks ofNest and an estimate was 
al
ulated from ea
h blo
k a

ording to eq. (2.24). TheseNsweepNest estimates were then averaged to yield a �nal data point, and their deviation
al
ulated to yield an error estimate. The blo
k size of Nest was 
hosen to insure thatany auto
orrelation would not 
ause the errors to be underestimated.5.2.1 L = L0 = 20For the L = L0 = 20 latti
e, � = 2:5, and n = 50 were used, resulting in � = 0:05.The data were generated using Ntherm = 500, with Nsweep = 8000 grouped by blo
ksof Nest = 1600. The data 
al
ulated are listed in table 5.1, and plotted in �g. 5-3.The meron algorithm su

essfully solves the sign problem; statisti
al errors are wellunder 
ontrol.The validity of the Trotter expansion was veri�ed by 
omparing { for a single valueof h { the result for � = 0:05 with a se
ond 
al
ulation at �0 � �2 . The value of h 
hosenwas 0:13, and at the stated �0 = 0:025 the value 
al
ulated was hNi = 0:018� 0:0005,in whi
h is indeed 
ompatible with the value from the table of hNi = 0:019� 0:0010.In order to 
he
k that the spatial dis
retization was suÆ
ient, a data point wasgenerated at a longer 
orrelation length on a 
orrespondingly larger latti
e. Referringagain to previously 
al
ulated values of the 
orrelation length [5℄, � was 
hosen tobe 3:0 so as roughly to double �: at this value of � = 3:0 the 
orrelation lengthis � = 11:60. At the same time, the number of sites in ea
h spatial dire
tion onthe latti
e was doubled, yielding L = L0 = 40. The same Trotter dis
retization of� = 0:05 was used. A single data point was generated for at h = 0:055, yieldinghNi = 0:0065 � 0:00045. This datum may be reinterpreted as a measurement forL = L0 = 20 with the latti
e spa
ing a halved. In this interpretation, h would be2� 0:005 = 0:11, the 
orrelation length would be 12 � 11:60 = 5:8, and the mass gapwould be m = 0:172(4). Correspondingly hNi would be 0:013 � 0:00090. Thus thelatti
e dis
retization has e�e
tively been re�ned by a fa
tor of two. The 
orrespondingestimate from the fermion gas model is hNi = 0:012.77



h L = L0 = 20 L = L0 = 30hNi �hNi hNi �hNi0:01 0:00093 0:000068 0:00014 0:0000470:03 0:0024 0:00022 0:00079 0:0000660:05 0:0040 0:00023 0:0014 0:000120:07 0:0066 0:00035 0:0027 0:000140:09 0:0089 0:00044 0:0048 0:000320:11 0:014 0:0012 0:0082 0:000530:13 0:019 0:0010 0:0135 0:000480:15 0:028 0:0019 0:0236 0:000970:17 0:037 0:0014 0:0316 0:000940:19 0:047 0:0021 0:049 0:00150:21 0:054 0:0042 0:060 0:00180:23 0:073 0:0054 0:073 0:00230:25 0:085 0:0050 0:085 0:00230:27 0:100 0:0024 0:107 0:00120:29 0:11 0:011 0:119 0:0022Table 5.1: Numeri
al results for the parti
le number density in (1+1+1)D O(3)5.2.2 L = L0 = 30For the L = L0 = 30 latti
e � = 2:5 and n = 25 was used, resulting in � = 0:1.The data were generated using Ntherm = 1000, with Nsweep = 8000 grouped by blo
ksof Nest = 1000. The data 
al
ulated are listed in table 5.1, and plotted in �g. 5-3.Again, statisti
al errors are well under 
ontrol. The validity of the Trotter expansionwas again veri�ed this time with a se
ond 
al
ulation at �0 � �2 = 0:05. The value ofh 
hosen was 0:07, and at �0 = 0:05 the value 
al
ulated was hNi = 0:0027� 0:00022.Again, this is 
ompatible with the value in the table 
al
ulated at the larger value of� = 0:1, hNi = 0:0027� 0:00014.
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Parti
le Number Response at � = 2:5) m = 0:160(5)

Chemi
al Potential h
Parti
leNum
berDensity
N

0.10.01

0.1
0.01
0.001
0.0001

Figure 5-3: Numeri
al results for the parti
le number density at L = L0 = 20 andL = L0 = 30. The solid line is the Bethe ansatz result for the L = L0 = 1 limit.The upper and lower dashed lines are the dilute fermion gas estimates from eq. (3.31)respe
tively for L = L0 = 20 and L = L0 = 30. Espe
ially given that for this � thesystem is not very far into the dimensionally redu
ed limit, the agreement with thefermion and Bethe ansatz models is quite good.
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Chapter 6
Antiferromagneti
 Spin Ladders ina Magneti
 Field
The 2 + 1 dimensional Heisenberg antiferromagnet has thus far been used be
ause itis a D-Theory formulation of 1+1D O(3) �eld theory, but it is an interesting systemin its own right.The introdu
tion of the 
hemi
al potential in the previous 
hapters was, there,the 
ause of an ineÆ
ien
y whi
h 
ould manifest itself as sign problem. However, themodi�
ation made to the antiferromagnet's Hamiltonian in order to add a 
hemi
alpotential to the dimensionally redu
ed theory had no dire
t interpretation for thephysi
al magnet. In fa
t, simply introdu
ing a 
hemi
al potential dire
tly to the2+1 dimensional antiferromagnet 
auses a very similar ineÆ
ien
y. Su
h a 
hemi
alpotential is physi
ally realized as an external magneti
 �eld.When one of the two spatial dimensions of a two dimensional magnet is very small,su
h a system is 
alled a spin ladder. Su
h ladders in magneti
 �elds are yet anotherstrongly 
oupled system whi
h en
ounters a sign problem when a 
hemi
al potentialis introdu
ed. Thus this system is another good 
andidate for solving a sign problemusing meron te
hniques [18℄.
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6.1 The Physi
al SystemA general antiferromagneti
 Heisenberg spin ladder (with isotropi
 
ouplings) in amagneti
 �eld ~B is des
ribed by the Hamiltonian operatorH = LXx=1 L0Xy=1 24J X�2fx̂;ŷg~S(x;y) � ~S(x;y)+�� ~B � ~S(x;y)35 (6.1)with J > 0, where L0 � L.Su
h spin ladders interpolate between one and two dimensional spin systems.Wider ladders approa
h being fully two dimensional systems. Narrower ladders arelike one dimensional 
hains of spins { the spins on ea
h rung of the ladder 
oupletogether to form a larger e�e
tive spin.The full 2+1 dimensional magnet { the 
ase when both L and L0 are large {has been dis
ussed in 
hapter 3. Its low energy dynami
s are des
ribed by the threedimensional e�e
tive a
tion given in eq. (3.7):S[ê℄ = Z �0 dt Z d2x �s2 ���ê � ��ê+ 1
2�tê � �tê� (6.2)For the other limit, the one dimensional 
ase when L0 = 1, Haldane 
onje
tured[30℄ that a one dimensional length L 
hain of spin-S spins at temperature � is de-s
ribed by a similar 
ontinuum �eld theory, this time in 1+1 dimensions, with a
tionS[ê℄ = Z �0 
dt Z L0 dx � 12g2 ��xê � �xê+ 1
2�tê � �tê�+ i�4� ê � (�xê� �tê)� : (6.3)Here the 
oupling 
onstant g is given by 1g = S2 for large S, and the va
uum angle� is given by 2�S. For half integer spin and hen
e � = �, this system has no massgap. However, � = 0 when the spin is an integer. In that 
ase, after s
aling out 
,this system is another version of the (1+1)D 
ontinuum theory des
ribed in 
hapter3, and it has a mass gap m / e� 2�g .As reviewed in [26℄, Haldane's result has been extended to spin ladders: ladders
onsisting of an odd number of transversely 
oupled spin 1=2 
hains are gapless, while81



ladders 
onsisting of an even number of 
hains have a gap [36, 49, 46℄. If the numberof 
hains is kept even, these intermediate systems are des
ribed by the a
tionS[ê℄ = Z �0 dt Z L0 dx Z L00 dy �s2 [�xê � �xê + �y ê � �y ê+ 1
2�tê � �tê℄: (6.4)As L0 { the width of the ladder { is in
reased (keeping the number of spins even),the e�e
tive spin S of a step on the ladder in
reases and the gap m / e� 2�g = e��Sde
reases exponentially. Thus the ladder behaves very mu
h like a rotated version ofthe system 
onsidered in the previous 
hapters { the ladder 
an be made to undergodimensional redu
tion. Previously, the extent of the third dimension was made smallin the physi
al units of the 
orrelation length by in
reasing �. Now, the extent of these
ond dire
tion { the width of the ladder { 
an be made small by in
reasing L0.Introdu
ing an external magneti
 �eld has an analogous e�e
t to the introdu
tionof the 
hemi
al potential to the 1+1 dimensional O(3) �eld theory in se
tion 3.2.1.The magneti
 �eld is 
oupled to the magnetization { the 
onserved 
harge of theglobal O(3) symmetry { hen
e it is a 
hemi
al potential. It is therefore introdu
edinto the 
ontinuum a
tion (6.4) as a 
onstant, imaginary, time-like gauge �eld. Se
tion3.2.1 introdu
ed a 
hemi
al potential to a (1+1)D theory, so there \time-like" meantthe one of two dire
tions { in that 
ase the �rst. Here, the magneti
 �eld ~B will beintrodu
ed to a (2 + 1)D system, and so \time-like" will mean the third dire
tion.Thus the derivative �tê will be
ome �tê+i ~B�ê, and the 
ontinuum a
tion will be
omeS[ê℄ = Z �0 dt Z L0 dx Z L00 dy �s2 ��xê � �xê + �y ê � �y ê+ 1
2 (�tê+ i ~B�ê) � (�tê+ i ~B�ê)� :(6.5)As des
ribed above, for suÆ
iently large L0 (meaning L0 � �s
 ) this system willundergo dimensional redu
tion, and the 
orrelation length will be
ome large 
omparedto L0. At that point, y may be integrated out of eq. (6.5). The result is an e�e
tive
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a
tion for a 1+1 dimensional O(3) �eld theory:S[ê℄ = Z �0 dt Z L0 dx�sL02 ��xê � �xê + 1
2 (�tê+ i ~B�ê) � (�tê + i ~B�ê)� : (6.6)Comparing this a
tion to eq. (3.17), one 
an see that the original (1+1)D theory with
hemi
al potential will be re
overed if 1g2 = �sL02 and ~h = ~B
 . With this identi�
ationin mind, the exa
t results listed in se
tion 3.2.3 
an be used for 
omparison withnumeri
al results for the dimensionally redu
ed limit of the spin ladder, just as theywere for the previous algorithm.6.2 Constru
ting a Cluster AlgorithmIn the absen
e of a magneti
 �eld, antiferromagneti
 spin systems 
an be simulatedwith the loop 
luster algorithm des
ribed in se
tion 4.1. As in 
hapter 4, there is a
hoi
e of axis for quantizing the spins. Quantizing along the magneti
 �eld 
hanges theweights of 
lusters whi
h wind; quantizing transverse to the �eld 
auses the 
lusterloops to break open. The details from whi
h these properties arise, however, aredi�erent be
ause the magneti
 �eld a
ts in the same dire
tion as the Hamiltonian.Thus the 
onstru
tion of 
luster algorithms for the antiferromagnet in a magneti
 �eldis another instru
tive example of the appli
ation of merons to solving sign problems.6.2.1 Introdu
ing the FieldAs shown in eq. (6.1), the introdu
tion of the magneti
 �eld adds a term to theHamiltonian. Be
ause of this simple additive stru
ture, the only 
hange whi
h needsto be made to the path integral is the introdu
tion of an additional sli
e in the Trotterde
omposition. The de
omposition given in eq. (2.2) is modi�ed to be
omee��H = e��Px[P� Hx;�+Hx ℄ � "Y�  Yx e��Hx;�!#Yx e��Hx : (6.7)
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Figure 6-1: A (1+1)D latti
e with a extra sli
es inserted for the a
tion of ~B. Theoperators T a
t on plaquettes, but the operators M a
t just on time-like links.Here x represents all spatial 
oordinates. H has been de
omposed into a bond in-tera
tion term H x;� for the bond between x and x + �, and a lo
al term H x . Theresult of adding the magneti
 �eld is thus to add an extra sli
e to the latti
e afterea
h set of sli
es for a given value of t. The form of the partition fun
tion used forthese simulations will thus beZ = Z [D ℄Yt " Y�;x Tt;�;x!Yx Mt;x# : (6.8)Here M sits in the new time sli
e { i.e.Mt;x = h t+1;+x̂;xjM t;x j t;�ŷ;xi: (6.9)The stru
ture of this modi�ed latti
e is shown in �g. 6-1.The transfer matrix T is not modi�ed by the introdu
tion of the �eld { it is stillgiven by eq. (4.6), and it will still be de
omposed into breakups a

ording to eq. (4.5).
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The operator M t;x arises dire
tly from the new � ~B � ~S term:M = e� ~B�~S: (6.10)Quantizing Parallel to the FieldWhen the quantization axis is 
hosen to be parallel to the �eld, M is given byM = e�BS3 = e �B2 �3 = 24 e �B2 00 e� �B2 35 : (6.11)Be
ause this M is diagonal, it does not 
hange the shapes of the 
lusters. Thereis only one breakup for the M links, and it bonds the bottom site to the top site.Instead the weights of the di�erent orientations for 
lusters whi
h wind around thetime dire
tion must 
hange.The magnetization indu
ed by the magneti
 �eld is proportional to the di�eren
ebetween the total number of up spins and down spins. The world line interpretationdis
ussed in se
tion 4.3.3 is again valid for this 
hoi
e of quantization, be
ause theHamiltonian again 
ommutes with the magnetization along the quantization axis:"H ;Xz S3z# = " JXx;� ~Sx � ~Sx+�� BXx S3x! ;Xz S3z# (6.12)= JXx;�;z �SjxSjx+�;S3z�� 0 (6.13)= JXx;�;z ��Sjx;S3z�Sjx+�+ Skx �Skx+�;S3z�� (6.14)= JXx;� �i�j3lSlxSjx+�+ Skxi�k3mSmx+�� (6.15)= JXx;� �SlxSjx+�� �i�j3l + i�l3j� (6.16)= 0: (6.17)In terms of the world lines, the magnetization is proportional to the di�eren
e betweenthe number of spin up world lines and spin down world lines. Just as in the analogous85



situation in 
hapter 4, the weights appearing for winding 
lusters arise be
ause it isthese 
lusters whi
h 
hange the magnetization.Using this 
hoi
e of quantization axis leads to the same sort of problem as o
-
urred in se
tion 4.3. As the latti
e be
omes larger in the time dire
tion, it be
omesin
reasingly rare that su
h winding 
lusters exists. The algorithm is not eÆ
ient atupdating this winding number, despite its physi
al signi�
an
e.Quantizing Transverse to the FieldWhen the quantization axis is 
hosen to be transverse to the �eld, M 
an be givenby1 M = e�BS1 = e �B2 �1 = 24 
osh � �B2 � sinh � �B2 �sinh � �B2 � 
osh � �B2 � 35 (6.18)= e� �B2 � 1 00 1 �+ sinh��B2 �� 1 11 1 � ; (6.19)or expanding to �rst order in �,M � 24 1 �B2�B2 1 35 = �1� �B2 �� 1 00 1 �+ �B2 � 1 11 1 � : (6.20)The appearan
e of non-zero o�-diagonal elements in this matrix signals the breakingof the 
lusters. Now there are two breakups for the M links; the sites may be bonded ornot, as shown in table 6.1. The simple stru
ture of this de
omposition is summarizedin table 6.2.Be
ause the 
lusters 
an now break open, the argument for the 
an
ellations usedwhen the 
lusters were 
losed loops fails again. A typi
al 
on�guration for a 1+1dimensional version of this system is shown in �g. 6-2. The horizontal breakup stillhas its signs, and so the horizontal bonds still 
hange the global sign when they are
ipped. Thus, with open 
lusters in whi
h there 
an be any number of horizontal1As with h in 
hapter 4, B shall be taken to be positive w.l.o.g.86



Matrix Diagram Allowed 
on�gurationsh 1 00 1 ih 1 11 1 iTable 6.1: The bonded and unbonded breakups for the extra sli
e in the Heisenbergantiferromagnet in a magneti
 �eld. None of these breakup segments have signs as-so
iated with them.
Typi
alSpins TotalWeight 1� �B2 �B21 + +

�B2 +Table 6.2: The assignment of weights to the breakups for the extra sli
e in the anti-ferromagneti
 Heisenberg model. The stru
ture is the same as in table 4.2.
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Figure 6-2: A typi
al 
luster 
on�guration for the antiferromagneti
 Heisenberg modelwith magneti
 �eld ~B when the spins are quantized along an axis transverse to ~B. This
on�guration has two merons, one of whi
h is oriented against the referen
e 
on�gu-ration, hen
e its global sign should be negative. Flipping the 
luster has 
ipped threehorizontal segments 
arrying minus signs. This in turn has resulted in three pla-quettes 
hanging from the referen
e 
on�guration to 
on�gurations whi
h have signs.All other plaquettes 
ontribute positive signs. The produ
t of these signs is indeednegative, hen
e the meron 
al
ulation is 
orre
t.bonds, there may be merons. However, be
ause the global sign 
an still be written interms of merons, the meron 
luster algorithm again suÆ
es to solve the sign problem.This situation is very mu
h analogous to that des
ribed in se
tion 4.4.3.6.3 Numeri
al ResultsThe meron algorithm for the spin ladders thus designed was implemented by S. Chan-drasekharan and applied on several latti
es, and numeri
al estimates were thus gen-erated for the magnetization [18℄. In order to demonstrate the ineÆ
ien
y of the loop
luster algorithm whi
h results from quantizing the spins on an axis parallel to the�eld, that algorithm and the meron algorithm were 
ompared on a relatively small88



latti
e. The meron algorithm was then run on two larger latti
es and used to generateestimates of the magnetization whi
h 
an be 
ompared with the known results from(1+1)D O(3).6.3.1 The IneÆ
ien
y of the Loop AlgorithmBoth the loop algorithm and the meron algorithm were run on latti
es with L =L0 = 8, and �J = 10. The latti
e was initially 
on�gured so as to have a largemagnetization while the �eld was kept relatively weak. The moderate �eld was 
hosenso as to instigate an ineÆ
ien
y, but not to support the very strong magnetizationof the initial 
on�guration. As ea
h algorithm runs, the 
on�guration of the latti
eprogresses toward thermal equilibrium and so the initial magnetization fades. TheineÆ
ien
y of the loop algorithm is 
lear in that the number of sweeps requiredfor the initial extreme magnetization to fade away is very large. In 
omparison,the magnetization equilibrates almost immediately using the meron algorithm. Themagnetization is plotted as a fun
tion of the number of sweeps for the two algorithmsand for two di�erent values of the �eld in �g. 6-3. For the latter of the two 
ases,when B = J , the loop algorithm takes more than 100000 sweeps to rea
h equilibriumwhile the meron 
luster algorithm has no thermalization problem.By 
omparing the graphs one 
an see that the ineÆ
ien
y of the loop algorithmbe
omes worse as the strength of the �eld grows. It is true that the loop algorithm 
anwork tolerably when the magneti
 �eld is very weak. However, as the �eld be
omesstronger the loop algorithm be
omes grossly impra
ti
al and in order to pro
eed it isne
essary to use another method, su
h as the meron algorithm.6.3.2 Comparison with (1+1)D O(3)The meron algorithm was run to evaluate the response of the magnetization of thespin ladder to the magneti
 �eld for two di�erent latti
e sizes. Values of � were
hosen small enough that the results generated are indistinguishable from the time
ontinuum limit within statisti
al errors. 89
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Figure 6-3: A 
omparison of thermalization between the two 
hoi
es of quantizationaxis for the Heisenberg quantum antiferromagnet in a magneti
 �eld. The magneti-zation is shown with solid lines for the meron algorithm used when the quantizationaxis is transverse to the �eld, and with dashed lines for the loop 
luster algorithm usedwhen the quantization axis is parallel to the �eld. The �rst graph is for a magneti
�eld B = 0:75J and the se
ond graph is for B = J.

90



L �J � BJ hM1iL20 15 0.075 0.10 0.0048(4)20 15 0.075 0.20 0.0184(4)20 15 0.075 0.30 0.0452(8)20 15 0.075 0.40 0.086(2)20 15 0.075 0.50 0.120(4)20 15 0.075 1.00 0.324(4)20 15 0.075 2.00 0.76(2)20 15 0.075 3.00 1.280(8)20 15 0.075 4.00 1.93(3)20 15 0.075 4.20 2.000(8)20 15 0.075 4.40 2.000(8)40 24 0.08 0.10 0.00104(8)40 24 0.08 0.20 0.0096(6)40 24 0.08 0.30 0.042(2)40 24 0.08 0.40 0.085(3)40 24 0.08 0.50 0.117(7)40 24 0.08 1.00 0.332(4)Table 6.3: Numeri
al results for the magnetization density hM1iL for two latti
e sizes(L = 20, �J = 15) and (L = 40, �J = 24). In both 
ases L0 = 4.Using the inverse 
orrelation length m = 0:141(2) from [48℄ and the magnonvelo
ity 
 = 1:657(2) from [5℄, the results 
al
ulated with the meron algorithm 
an be
ompared to the known exa
t results both for the in�nite volume zero temperaturelimit and for �nite size and temperature. The data generated is summarized in table6.3, and shown in �g. 6-4. Considering that the data were generated on latti
es withL0 = 4 while the analyti
 expressions were derived in the large L0 limit, the agreementof the numeri
al data with the theoreti
al results is quite remarkable.
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1010.10.010.0010.00011e-05
Figure 6-4: Magnetization density hM1i=L of quantum spin ladders 
onsisting ofL0 = 4 
oupled 
hains as a fun
tion of the magneti
 �eld B. The numeri
al data arefor two systems: one of size L = 20 at inverse temperature �J = 15 (
ir
les) and theother for L = 40 at �J = 24 (diamonds). The solid 
urve is the in�nite volume, zerotemperature analyti
 result, while the two dashed 
urves are �nite volume, non-zerotemperature analyti
 results for the two simulated systems in the small B region. Thedotted 
urve represents saturation of the magnetization per spin at 1=2.
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Chapter 7
Con
lusions
7.1 Summary and InterpretationMonte Carlo integration is the most e�e
tive tool 
urrently available for studyingstrongly 
oupled systems, but the introdu
tion of a 
hemi
al potential to these sys-tems renders the traditional formulation of this tool ine�e
tive be
ause of 
omplexa
tion problems. The 
lass of physi
al systems for whi
h numeri
al study is thusunavailable in
ludes both systems whi
h are ubiquitous { su
h as �nite density nu-
lear matter { and systems whi
h are potentially of great utility { su
h as high T
super
ondu
tors. The la
k of e�e
tive tools for studying strongly 
oupled systems inthe presen
e of 
hemi
al potentials is thus a signi�
ant hindran
e be
ause it obstru
tsthe understanding of important physi
al systems.In an e�ort to understand this hindran
e and learn how to 
ir
umvent it, twosimilar models whi
h exhibit sign problems { but are otherwise well understood {were 
hosen for study: the D-Theory representation of 1+1 dimensional O(3) �eldtheory with 
hemi
al potential and the Heisenberg quantum antiferromagnet in amagneti
 �eld. These models provided an arena in whi
h the sign problem 
ould beatta
ked without the distra
tions inherent in more 
omplex systems. With the signproblem thus separated from other diÆ
ulties in a limited environment in whi
h thearsenal of 
luster te
hniques 
ould be brought to bear, it was possible to eliminatethe problem 
ompletely. 93



Both of the models 
onsidered 
an manifest their ineÆ
ien
y in di�erent waysdepending on the 
hoi
e of the quantization axis.An axis parallel to the 
hemi
al potential appears at �rst to be the most natural
hoi
e; the parti
le number is then measured with a diagonal operator and the relationbetween the spins on the latti
e and the 
harge 
oupled to the 
hemi
al potentialis readily apparent in terms of spin world lines. This 
hoi
e, however, does notsuÆ
iently involve the 
hemi
al potential with the 
luster algorithm. Unless a 
lusterhappens to be 
onstru
ted whi
h winds around the latti
e, the 
hemi
al potential doesnot enter a simulation at all. Thus the algorithms whi
h result from this 
hoi
e ofquantization axis are not eÆ
ient { they en
ounter severe auto
orrelation problems.If, instead, the spins are quantized along an axis transverse to the �eld, the worldline interpretation fails and a sign problem is introdu
ed. Without meron 
lusterte
hniques, this sign problem renders this 
hoi
e of quantization axis as ineÆ
ient asthe previous one. However, by de
omposing the global sign in ea
h 
on�guration interms of fa
tors attributable to individual 
lusters, the sign problem 
an be broughtunder 
ontrol. All 
an
ellation 
an be for
ed to o

ur expli
itly, and thus the 
or-ruption of the importan
e sampling ensemble introdu
ed with the sign problem 
anbe eliminated. With an a

urate weight thus assigned to ea
h 
on�guration { onere
e
ting the 
on�guration's �nal signi�
an
e { importan
e sampling 
an pro
eedunimpeded. Thus is the sign problem solved.The meron te
hnique has proven to be very e�e
tive. The data generated mea-suring the parti
le number and magnetization using the meron algorithms mat
h the
orresponding theoreti
al predi
tions quite well, and statisti
al errors are well under
ontrol.This investigation of the nature of sign problems has proven to be very fruitful.For the �rst time, a severe sign problem whi
h appears be
ause of a 
hemi
al potentialhas been 
ompletely solved. The 
onsiderable pre
ision and a

ura
y of the numeri
aldata generated by the meron algorithm attests to the e�e
tiveness of the meronte
hnique.This su

ess 
an be taken as eviden
e not only that sign problems 
an be solved94



using meron 
lusters, but more broadly both of the power of 
luster te
hniques ingeneral and of the validity of D-Theory. The algorithmi
 
exibility to be gained byusing 
luster te
hniques to represent physi
al systems is not to be underestimated.Moreover, the D-Theory 
onstru
tion used to apply the 
luster te
hniques to the(1+1)D O(3) model { despite its apparent 
omplexity { has been demonstrated towork as intended, �nally produ
ing numeri
al results in a

ordan
e with the original
ontinuum theory.7.2 Future Dire
tionsHaving solved a sign problem and thus simulated these simple systems at non-zero
hemi
al potential, one would like next to apply the te
hniques developed here to moreimmediately relevant examples su
h as QCD and the Hubbard model. At present,the tools presented in this thesis and the asso
iated 
luster te
hnology is not yet wellenough developed to solve the 
omplex a
tion problems in those systems.QCD as yet la
ks an eÆ
ient 
luster algorithm, and so the framework for applyingmeron methods is in
omplete. There are D-Theory formulations for QCD in parti
ularand for gauge theories in general [13, 19℄, but so far attempts to 
onstru
t an eÆ
ient
luster algorithm for the simplest 
ase { U(1) gauge theory { have not met withsu

ess. That obsta
le is the next 
hallenge along the route to applying the methodspresented here dire
tly to simulate dense quark matter. Even with that obsta
leremaining, the lessons learned in this study should provide a useful vantage pointfrom whi
h to understand the 
omplex a
tion problem in QCD. The fundamentalnotion of eliminating the false measure of importan
e in a Markov pro
ess by usingimproved estimators is more general than the meron 
luster te
hniques whi
h havebeen used in this thesis to implement that notion. Thus even if it should turn out thatthese te
hniques are not appli
able in whole then they may well still be appli
able inpart.The Hubbard model in the presen
e of a 
hemi
al potential, whi
h may be usableto model high T
 super
ondu
tors, also su�ers from a sign problem. For the 
ase95



of interest for super
ondu
tors { when the fermions in the model are repulsive { itis possible to 
onstru
t a 
luster algorithm and attribute sign 
hanges to merons,but in the 
onstru
tions 
urrently known the resulting 
lusters do not 
onform toa referen
e 
on�guration. Without a referen
e 
on�guration, an absen
e of meronsdoes not ne
essarily imply the global sign is positive. Thus merons 
an not be usedto solve this sign problem until either the present understanding of the ne
essity of areferen
e 
on�guration is extended, or a di�erent 
luster algorithm for the model isfound.The realm of possible algorithms based on the 
luster 
on
ept is large and asyet only a small fra
tion of it has been explored. There is a good deal of 
exibilityin the 
onstru
tion of 
luster algorithms, and there are many potential avenues toinvestigate. The notion of a referen
e 
on�guration, for instan
e, is quite narrow asused here. In frustrated systems { su
h as the triangular latti
e antiferromagnet {there is no referen
e 
on�guration as they are 
urrently understood. There may wellbe some more general idea whi
h 
an be used in more 
ases. Similarly, the bonds usedin the 
luster models in this thesis were very restri
tive { given two bonded spins anda state for one of the spins, the state of the other is 
ompletely determined. Looseningrestri
tion may well allow the 
onstru
tion of 
luster algorithms for a broader 
lass ofsystems. The more the appli
ability of 
luster methods 
an be broadened, the greaterthe range of models in whi
h the meron 
on
ept 
an be used will grow.
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