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Abstract

Numerical simulation of quantum systems develop sign problems upon the introduc-
tion of a chemical potential. The sign problem thus makes many interesting physical
systems very difficult to study numerically. In this thesis, two related systems which
develop sign problems in this way are considered: a D-Theory representation of a
141 dimensional O(3) quantum field theory with a chemical potential, and antiferro-
magnetic Heisenberg quantum spin ladders in a magnetic field. In both cases, meron
cluster algorithms are used to completely solve the sign problem. Using these al-
gorithms, numerical results were generated in the two models for, respectively, the
particle number as a function of the chemical potential and magnetization as a func-
tion of the external field. These results are in agreement with corresponding analytic
predictions.
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Chapter 1

Introduction

1.1 Motivation from Strongly Coupled Systems

Many physical phenomena are described by strongly coupled systems. Nuclear and
quark matter are described by strongly coupled quarks and gluons in quantum chro-
modynamics. High 7T, superconductors are described by strongly coupled electrons.
Magnets are described by strongly coupled spins. All these systems can be stud-
ied numerically, but current numerical techniques encounter serious inefficiencies for

these models because of complex action problems.

1.1.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the part of the Standard Model which describes
the strong force. It describes hadrons and their interactions. It describes systems of
hadrons such as nuclei. It describes more exotic systems which form when hadronic
systems are subjected to extremes of temperature or density — such as the cores of
neutron stars, the very early universe, and colliding heavy nuclei.

QCD is a theory of fermions called quarks interacting via the exchange of bosons
called gluons which arise from an SU(3) gauge symmetry called color. It is an asymp-
totically free theory — at sufficiently large energy scales it is weakly coupled, and so

can be studied perturbatively. At smaller energies, however, the formerly weak inter-
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actions become very strong, and the particles become bound up in intricate structures.
The gluons are excluded from free space — like a magnetic field from a superconductor
— and so they form flux tubes connecting the color-charged quarks. The quarks, now
bound together by a force which does not decrease with their separation, form tightly
bound collectives with no net color charge: hadrons.

This rudimentary description suffices to motivate the theory, but it is incomplete
and oversimplified. The range of theorized phenomena which may occur in quark and
gluon physics is both broadly varied and deeply complex. It includes not only the
qualitative picture of confinement described above, but also more exotic phenomena.
A color-superconducting phase is theorized to exist at extreme densities, perhaps in
neutron stars [3, 44]. A quark-gluon plasma is theorized to exist at high temperature
and high density; such a plasma may be created in heavy ion collisions at RHIC,
for example [43]. In order to study the strongly coupled regime in sufficient detail
to understand these phenomena it is necessary to use quantitative, non-perturbative
techniques.

The most prominent such method is Monte Carlo lattice simulation. This tech-
nique is effective for studying QCD at finite temperatures but zero chemical potential,
and so exploring its phase transitions and attempting better to understand the phe-
nomenon of confinement. For finite density, however, when a chemical potential is
necessary, current Monte Carlo techniques are not effective. The introduction of
chemical potential causes Monte Carlo simulation to become very inefficient because
complex action problems develop. Thus the realm of the phase diagram away from
zero chemical potential is currently inaccessible to numerical study. At extremely
large chemical potential, the typical energy scale (determined by the Fermi energy)
becomes large enough that the coupling descends into the perturbative regime. Un-
fortunately, the density range which can be treated this way is impractically dense —

far denser than nuclear matter.
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1.1.2 High 7. Superconductors

Some layered cuprates, such as La,CuQy, exhibit high 7, superconductivity when ap-
propriately doped with barium. These materials can be modeled as two dimensional
lattices of strongly coupled electrons because the coupling between layers is rela-
tively weak. Before doping, these materials exhibit the symmetry breaking pattern of
the Heisenberg antiferromagnet: SO(3) — SO(2) producing two Goldstone modes:
magnons. After doping, when superconductivity appears, they instead exhibit a dif-
ferent pattern: the U(1) gauge group of electromagnetism breaking completely. The
mechanism by which superconductivity develops in these materials is not at present
understood; phonon exchange is not the phenomenon responsible for the formation
of Cooper pairs.

When undoped, these strongly coupled systems can be modeled effectively and
efficiently as a Heisenberg antiferromagnet [5], yet the qualitative changes induced by
doping the system necessitate the use of a different model. The Hubbard model is a
candidate to fill this role, but in order to represent the doped materials it is necessary
to introduce a chemical potential. For the Hubbard model as with QCD, the zero
chemical potential case can be effectively simulated, but when a chemical potential

is introduced a sign problem develops.

1.1.3 Antiferromagnets

A much simpler and better understood system, the quantum Heisenberg antiferro-
magnet, is also a strongly coupled system which can be studied numerically. It is
a lattice of quantum spins with a global O(3) symmetry interacting through an an-
tiferromagnetic nearest-neighbor coupling. In this case an external magnetic field,
with which the spins tend to align, plays the role of a chemical potential. As in the
other systems, when the field is switched on traditional Monte Carlo methods become
inefficient.

Interestingly, in this case it is not immediately apparent that a sign problem is

involved in the inefficiency which develops in simulation. With the simplest choice of
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quantization axis — along the magnetic field — the inefficiency appears in a different
form. Only when one makes a counterintuitive choice for the quantization axis —
transverse to the field — is the inefficiency forced to manifest itself as a sign problem.
This choice at first appears ill made precisely because it leads to a sign problem
(a known source of difficulty), and so it seems a poor way to simulate the magnet.
However, for the purpose of exploring the sign problem this choice is very favorable.
By subsequently solving the sign problem, one can circumvent the original inefficiency

and so the model can be effectively simulated.

1.2 D-Theory

Models for systems such as these are usually formulated in terms of path integrals. A
Boltzmann weight is formed from a classical Euclidean action in the case of Euclidean
field theory, or from a classical or quantum Hamiltonian in the case of statistical me-
chanics. This Boltzmann weight is in turn integrated over all physical configurations
to yield a partition function. The partition function generates all observables. D-
Theory is a new modified formulation of quantum field theory in which the usual

continuous fields arise from discrete variables that undergo dimensional reduction.

1.2.1 An Extra Quantization

The formal similarity between a classical Hamilton function and a classical Euclidean
action is commonly exploited to draw an analogy between classical statistical mechan-
ics and quantum field theory. By further exploiting that analogy, one can construct
a second possibility for quantum field theories: using a “quantum” Euclidean action.
Just as a quantum Hamiltonian can be formed from a classical one by promoting
variables to operators, so can a quantum Euclidean action be formed from a classical

one. These operators act in a new Hilbert space.

e Just as a traditionally formulated field theory uses a classical action analogous to

a classical Hamiltonian in classical statistical mechanics; so this new formulation
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Figure 1-1: The relationship of the D-Theory formulation to traditional field theory
and statistical mechanics.

of field theory uses an action which is an operator analogous to a quantum

Hamiltonian operator in quantum statistical mechanics.

e Just as a system in quantum statistical mechanics can have a classical limit
reproducing the corresponding system in classical statistical mechanics; so can
this new system with an action operator have a limit which reproduces the

original quantum field theory with the classical action.

The analogy between D-Theory and quantum statistical mechanics is useful, but
it is not perfect. In quantum statistical mechanics, one usually has the luxury of
being interested, finally, in the quantum system. In D-Theory, one is interested
not in the newly quantized system but in the original quantum field theory with a
classical action. Thus one must somehow recover some classical limit of the new
system. Moreover, just as the action of a quantum Hamiltonian may be interpreted
as generating translations through time, so may the action of this new D-Theory
quantum action be interpreted as generating translations through a new dimension. In

order to recover the original system, one must somehow dispose of this new dimension.

1.2.2 Dimensional Reduction

The original system can be recovered by exploiting the phenomenon of dimensional
reduction. When a D + 1 dimensional system is formulated at finite temperature,
and the correlation length can be made significantly larger than the extent of the
last dimension, then the system can be caused to behave effectively like a system

of one less dimension but of the same symmetry class. Under these circumstances,
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the thickness of the system in the (D + 1)st direction is reduced to be very small in
the physical units determined by the correlation length. Presuming the limit may
be taken in such a way that the other dimensions do not also disappear, the system
becomes effectively D dimensional and so is said to be dimensionally reduced.

The process of dimensional reduction does not affect the symmetry properties of
the system, and so the low energy effective theory which describes the system after
dimensional reduction will have the same symmetries as the quantized Euclidean ac-
tion. The quantized action, by construction, has the same symmetries as the original
classical action. Thus the effective theory after dimensional reduction should be in
the same universality class as the original action, and so to this extent the original
system can be recovered.

It may seem strange that one would decide to add an extra dimension to a system
to be simulated, as the computing time necessary is heavily dependent on the volume
of the system simulated. The benefits which can be derived from the use of the

discrete variables in a quantized system, however, are very significant.

1.2.3 A Useful Example: (1+1+1)D O(3)

Consider the aforementioned Heisenberg quantum antiferromagnet, in the case of
2+1 dimensions. At low temperature the system develops long range order, and the
global O(3) symmetry breaks down to O(2). The dynamics of the system with broken
symmetry are described by two Goldstone modes — perturbations around the broken
ground state in the coset space O(3)/O(2) = S?. In fact, the correlation length is
exponentially dependent on the extent of the third dimension. For an appropriate
temperature, the extent of the third dimension will become negligible and the resulting
system may then be interpreted as a (Euclidean) 1+1 dimensional system. Thus the
system reduces to a 1+1 dimensional quantum field theory of a unit vector field — i.e.
(14+1)D O(3). This is a well understood system, and has some properties which make
it a good toy model for QCD: it is asymptotically free and it has a mass gap.

15



1.2.4 Application to QCD

D-Theory formulations also exist for gauge theories. It is necessary that one find
operators with suitable commutation relations to serve as promotions of the classical
variables, and it is necessary that the correlation in the resulting system may be
made significantly larger than the extent of the extra dimensional. Through the use

of quantum link models, systems satisfying these constraints have been found for

U(1), SU(2) gauge theories, and for QCD, including quarks [13, 19].

1.3 The Sign Problem

Traditionally formulated numerical lattice studies [25] generally encounter significant
technical problems when a chemical potential is introduced. These methods are sta-
tistical, using Monte Carlo integration: they estimate physical quantities by averaging
contributions randomly selected from a vast space of possibilities. Once a chemical
potential is introduced, the individual contributions fluctuate much more dramati-
cally, varying not only in magnitude but in phase or sign: the method develops a
sign problem. These additional fluctuations introduce so much noise to the aver-
ages that in order to produce meaningful answers it would be necessary to generate
samples of a size exponential in the volume of the system. Samples of such a large
size are prohibitively expensive to generate, and so these traditional methods are not
practical.

Because of the sign problem, the useful tool of lattice study is unavailable for
systems with a chemical potential. As demonstrated above, the list of such systems
includes several which are of significant interest. A method to circumvent the sign
problem could allow lattice studies of all these systems, and so provide answers to
many questions about them.

A different, more intricate formulation for Monte Carlo integration, cluster al-
gorithms, may provide such a method. Cluster algorithms make greater use of the
structure of the model to which they are applied than traditional methods, and as

such they are more difficult to devise for any particular system. Once constructed,
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they provide a rich environment for further work because the algorithm is closely
tied to the physics of the system being simulated. Recently, cluster algorithms have
been used to solve sign problems in some fermion models [20, 17]. In these cases,
the sign problems arise not because a chemical potential is introduced, but because
of the anticommuting nature of the fermions. It shall be shown below that cluster
algorithm framework can be used also to solve the sign problems which arise due to
the introduction of a chemical potential.

Cluster algorithms are much easier to construct for systems whose local degrees
of freedom are discrete. In fact, there are extremely few known cases of any cluster
algorithm for which the local degrees of freedom are continuous. With this in mind,
one can see the advantage of the D-Theory representation. It may be possible to
implement cluster algorithms for a broader range of symmetry classes by formulating
them with D-Theory in terms of discrete local degrees of freedom. Unfortunately,
no effective cluster algorithm is yet known for gauge theories formulated in terms of
D-Theory. The lack of efficient cluster algorithms for gauge theories is a significant
hurdle remaining between the techniques presented here and their application to

QCD.
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Chapter 2

Background

2.1 Algorithms

In numerical simulations of field theories, the field theory is regularized on a space-
time lattice. Crystal structures like the magnet exist on a lattice a priori. In either
case, the core computational task in such a simulation is to evaluate integrals gener-
ated by the partition function over the enormous space of all field configurations on

the lattice.

2.1.1 Constructing the Path Integral
Time Slices

Given a Hamiltonian operator H, either from quantum statistical mechanics or from
an analogous D-Theory quantized action S, the partition function Z is given by
Z ="Tr (e‘ﬂH). In order to express the action of H over the extent 5 in a manageable
form, it is split into N slices of thickness e. Between each pair of slices an explicit
state of the system is inserted. Now
N
7=Tr(e ) =Te (e )" = [ 1DU]] (Westle o), 1)

t=1

where the integral is over all values of each .
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Trotterization

The action of the Hamiltonian, even in one slice, remains difficult to analyze because
everything across the whole system happens at once. Thus one introduces a Trotter
decomposition, taking advantage of the locality of the Hamiltonian. In terms of the
lattice, locality implies that sites interact only with nearby sites. For the purposes of
this thesis, it will be sufficient to consider only square lattices with nearest-neighbor
couplings. The ideas presented here are readily generalizable to more complex sce-
narios. The Hamiltonian can now be written as H = Zz’u H, ,, where p runs over
all directions — unit vectors aligned with the lattice — (+&q, +21,... , —%0, =21, ... ),
and z correspondingly runs for each p over half the sites on the lattice, so that the
pairs of sites (x,x + u) cover the whole lattice. Note that H,, and H,, will not
commute when the pairs of sites acted upon by each share a site, but H, , and H, ,
must commute. Now the locality of the Hamiltonian can be exploited by expanding

the exponential:

Ju Ju z

The Trotterization step does introduce errors at order €2, but for sufficiently small €
the approximation can be made acceptable.

In principle, it is not necessary to use the Trotter decomposition or even to dis-
cretize the time direction at all. For some cluster algorithms, it is possible to work
directly in continuous Euclidean time [8]. Such algorithms are significantly more dif-
ficult to implement, and the improvement they offer is chiefly in speed rather than

insight. Since the latter was the purpose of this thesis, the Trotter scheme was chosen.

19



An Easily Representable Lattice

With the action of the Hamiltonian thus broken down, the partition function can now

be written as

Z = / (D] H wtm(HH GHM)M (2:3)

N / [Dw] H <¢t’,u’a$|<¢t’,u’,x+u‘6_6HZ’“ |¢t,u,x>wt,u,m+u>- (2-4)
t

sHsT

Given t and p, t' and 4’ specify the next slice. Except when g is the last direction,
t' =t and y/' is the direction after y. When there is no next p, p' reverts to the first
direction and ¢' = ¢ 4+ 1. The operator

Ty = e~ T (2.5)

is called the transfer matriz. The corresponding element of this matrix in a particular

configuration v is written

Tt,[,b,.’.l? = <77Z)tls/~t’7m | <77Z)tlsulax+.u/ ‘Tts.u/:x |77bt,u,x> ‘¢t,u,$+u> : (26)

T is a local quantity of manageable size, and so the partition can finally be written

as

= / [DY] [ [ T (2.7)

t,u,z

where the integral runs simply over all states of each site in the Trotterized lattice.

The Structure of the Transfer Matrix

The transfer matrix T on any given plaquette is a actually a four index tensor T; ;.1 ;.
There are two ways in which two objects like the transfer matrix can me multi-

plied, corresponding to the two directions defining its plaquette. Given another such
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m n
t 2 ;i T U
- 1 Jlj m)
i J

Figure 2-1: The two multiplications for transfer matrices. The time-like and space-like
multiplications correspond to time-like and space-like concatenation of plaquettes.

object U, the two may be multiplied in time-like order, as

(UT) miii = Umnitet Tt g (2-8)

or in space-like order, as

(U*T)k,n;i,m = Ul,n;j,mTk,l;i,j- (29)

If a transfer matrix is written out as a matrix — so that its indices are paired up to
produce a two index object — there are two valid pairings, one for each multiplication.

Usually, but not always, the pairing for time-like multiplication shall be used.

Making Measurements

The partition function is a generating function for physical observables. Generally,
one extracts actual physical quantities from the partition function by differentiating
In Z and hence bringing some quantity of interest down into the integral out of the

Hamiltonian. In the end, one is interested in calculating

©) = [ 101001 T] T (2.10)

t,p,x
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for some observable . Both the integral for these measurements and 7 itself are

thus all of the form

/ (DY) O] [ T (2.11)

L,z

with O =1 for 7.

2.1.2 Importance Sampling

Because the domain of these integrals is huge, it is impractical to use most simple
numerical integration techniques. Instead, one takes advantage of the sharply peaked
nature of the integrand arising from its exponential form. This property renders
the integral susceptible to approximation by importance sampling techniques: one
generates an ensemble of representative configurations from the integration domain,
chosen to be distributed according to their significance in contributing to the integral.
Because of the relation between the distribution of configurations and their relative
significance, a sample of a reasonable size from the ensemble is sufficient to make
a decent approximation of the integral even though such a sample covers only a
miniscule fraction of the whole integration domain.

Once a distribution is determined, it is necessary to generate from it some finite
ensemble. The usual method for generating the ensemble is to use a Markov process.
The distribution assigns a Boltzmann weight to every configuration. One takes a
random walk through the configuration space, choosing each step according to the
weights. As a particle walking randomly in a potential spends most time at the
bottom, so such a walk spends most of its time in configurations with the greatest
Boltzmann weight. When taken as an orderless collection, the set of states visited is
the ensemble.

To use a Markov process, it is necessary only to find some method of taking steps
which satisfies both ergodicity and detailed balance. These two requirements guaran-
tee first that a walk may in principle reach any configuration, and second that a step

between any two states respects the relative weights of two. Taken together, the two
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requirements guarantee that a walk will eventually generate the desired distribution.

2.1.3 Metropolis

The most common method for taking Markov steps is a local Metropolis algorithm.
The local Metropolis algorithm has the advantages both of being relatively simple
and of being widely applicable. It has the disadvantage of long autocorrelation time
— it makes only small changes to the lattice in each step, and it may make no change
at all. Because the steps taken through a very large configuration space are very
small, the Metropolis algorithm necessarily takes many steps to walk between any
two given configurations.

Given a starting configuration for a step, one picks a point on the lattice, generates
a random new state for that point, and proposes the new configuration as the next
step. By comparing the new and old Boltzmann weights, one determines a probability
with which the new configuration should be accepted. One then chooses according to
that probability either to accept or to reject the proposal. If the proposal is accepted,
the configuration added to the walk is the one with the changed state. If the proposal

is rejected, the configuration added is the same as the previous one.

2.1.4 Clusters

In contrast, a more advanced method of taking Markov steps is to use a cluster
algorithm. Cluster algorithms have the advantage of having short autocorrelation
times. Because each step makes broad changes affecting large regions of the lattice
these algorithms can move between any two states in configuration space in relatively
few steps. Cluster algorithms have the disadvantages of being complicated and, more
importantly, of being difficult to devise. Constructing a cluster algorithm for a given
physical system remains something of a black art.

Given a starting configuration, one breaks up the volume into regions called clus-
ters according to cluster rules which bond together sites on the lattice. Then one

performs some cluster flip on each cluster. A cluster flip is some change of each state
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in the cluster, coordinated across the entire cluster. In a two state model it might be
flipping every spin in a cluster or it might be doing nothing; in a classical spin model
with continuous spins it might be reflecting all spins in a cluster across a given plane.
The cluster rules determine which elements of the lattice may be bound together into
the same cluster. Moreover, it is required of the rules that, once the clusters are
chosen, a randomly chosen flip will necessarily be acceptable.

For a partition function of the general form Z = [[Dy|W[¢], the integral of

interest for an observable O is

[ipviowwi (2.12)

A cluster algorithm can be viewed as an expansion of the configuration space of
a system. To the physical degrees of freedom, new local variables are added called
breakups which describe the cluster connections. Breakups exist on the same elements
of the lattice as the transfer matrix — in the cases here, on plaquettes. They can be
envisioned as patterns of bonds between sites in a plaquette — choices of how to
connect nearby lattice elements and so to break up the lattice into clusters. Cluster
algorithms thus differentiate in' new breakup degrees of freedom b on each plaquette,

so that
[ el oI, b (2.13)
Wi, b] is restricted to take the form
W, 8] = ol B[ @2.14)
where 8[¢), b] € {0, 1}, which implies that

/[Db]W[w,b] = Wy]. (2.15)

lthe opposite of integrating out
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The remaining details of the breakups are left to be determined by the physics of
the system: precisely what constraint between sites a bond implies, what patterns of
bonds are allowed, and with what frequency each pattern appears. The clusters are
the percolated sets of bonds and sites into which the bonds break up the lattice.
The details of § encode a sense of satisfiability — a given physical configura-
tion either does or does not satisfy a given cluster configuration. ¢ can be further
broken down, as it may enforce constraints only upon sites which are bonded to-
gether. Thus when a given configuration of breakups b results in a set of N, clusters

Cy=ci,c9,...,Cn,, 0 can be written

5[ep, b] = H 5o, (2.16)

where §,, = 1 if all the bonds in cluster ¢, are satisfied, and d., = 0 otherwise. Of
course, any term in the path integral for which any ., is zero will drop out, and the
terms which remain can be described by independently varying each cluster over a
set of states for its sites which satisfy its bonds.

The integral can be reinterpreted in this light, putting the cluster structure fore-

most:

[ uwie) [ (puise.yol (2.17)
:/uﬁwm/wmﬁ@pw1 (2.18)

=/wwwm/<ﬁmm)mw. 2.19)

Here 1), represents the state of the cluster c,. Finally, the original integral over all
states of the lattice has been rewritten as an integral over all clusters on the lattice

and all states of those clusters.
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2.2 The Sign Problem Revisited

Metropolis algorithms for numerical study of lattice theories encounter significant
problems when a chemical potential is introduced. In particular, the introduction
of the chemical potential generally causes a complex action problem or sign problem.
Despite differences between the details in the formulations of different theories, a
general pattern still exists: while the chemical potential is zero, the phase of the
integrand in the partition function is constant over the integration domain; once the
chemical potential introduces a non-zero charge, the phase is no longer constant. The
details of the mechanism by which the varying phase is introduced can differ greatly
between models, but the result is the same: if the importance sampling technique is
used unmodified, the varying phase of the integrand leads to a very serious signal-to-

noise problem.

2.2.1 What Goes Wrong

When the chemical potential is zero, the Euclidean action of a field theory is real.
The integrand in eq. (2.7) is correspondingly both real and positive, and so, for a well
behaved observable, the phase of the integrand in eq. (2.10) can be factored out of
the integration. The remaining integration is then one of positive real quantities, and
it can proceed with no cancellations.

When the chemical potential introduces a non-zero charge, however, the action of a
field theory will, in general, become complex. Correspondingly, after the construction
of the path integral and Trotterization, the elements of the transfer matrix will pick
up signs or phases. The phase of the integrand — now changing from configuration to
configuration within the integration domain — must be included in the observable to
be averaged over the integration domain. Of course, a less well behaved observable
which is not always real and positive could also introduce a sign problem.

In order to continue to make use of importance sampling in the presence of these

varying phases, the integrals can be rewritten in terms of a strictly positive real
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weight:
/ D] O] [ Ths = / DY) O Jsign ]IV 1] (2.20)

where

Wly] =

H Tt,u,z

Ly,

and sign[1)] = (H Tt,w) Wyl (2.21)
t,u,T

This new Boltzmann weight W can be thought of as arising from the action of a

modified system in which the transfer matrix elements are forced to be real and

positive. Denoting by (O) = the expectation value of an observable in this modified

ensemble, an expectation value in the original ensemble can now be calculated as

©) = [ 106100 ] Tu 2:22)
[ Dvl Olsignl VT
= DVl sign W] (2:23)
_ (Olulsignl),,
= gnlol, (2:24)

The average of the sign in the modified ensemble is a ratio of the two partition

functions:

sigalol),, = [ IDVlsigaldl V) = 2= = L (22)

Z
Zm
Thus, since Z,,, > Z, (sign[¢]), is exponentially small in both 5 and V. The individ-
ual contributions from single configurations, however, do not diminish so dramatically
with the volume. The small magnitude of the average is a result of the averaging pro-
cess itself — the result is small because of cancellations between terms which are not
so small.

If Monte Carlo methods are applied directly to calculate the integrals in eq. (2.23),
simply using W to determine an importance sampling ensemble, then these cancel-

lations lead to unacceptable errors. Since individual contributions to the integral
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are chosen probabilistically according to their magnitude without consideration of
the cancellation process, particular cancellations do not necessarily occur. A term
may be present in the estimating sum while a canceling partner to that term is not
present. Because individual terms are dramatically larger than the final average,
the error contributed to the estimate by a single uncancelled term overwhelms any

meaningful result from a simulation. The relative error in (sign), . is

Asign \/<sign2>m — (sign)?, oBVAS
(sign),, V/N (sign), . T UN

(2.26)

Thus (O), while itself of order 1, has wound up being calculated as a ratio of two
quantities which are exponentially small relative to their respective errors. While
extremely large statistical samples (exponentially large as a function of the volume)
could in principle overcome this signal-to-noise problem, such exponentially large

samples are prohibitively expensive and so not practical.

2.2.2 A Scheme to Build a Solution

Fortunately, the signal-to-noise problems which occur in this simplest application
of Monte Carlo methods are not endemic to the physics or even to the importance
sampling technique — other formulations may succeed where the simplest has failed.
The method presented in this thesis uses such a new formulation. It uses cluster
techniques and the notion of improved estimators to generate a more intelligently
chosen ensemble, in which the cancellation problems do not occur.

The direct method fails because the importance sampling ensemble has become
corrupted. Configurations which generate contributions of large magnitude to the
integrand are all considered important, yet in most cases their contribution eventually
will be canceled out.

If some greater organization can be imposed upon the domain of integration,
classifying configurations into small groups most of which will cancel out internally,

then a more useful ensemble may be generated. Given such a classification scheme,
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the importance of configurations which will cancel out in the end can be understood
to be much less than their absolute magnitude would imply. By suppressing the
occurrence of such configurations in the distribution which determines the estimating
ensemble, one can drastically reduce the variance of the estimate of the integral.

Once one has a classification scheme, one can construct an improved estimator.
An improved estimator for an observable averaged over an ensemble is a different
observable with the same ideal average but which varies less widely between indi-
vidual elements of the ensemble. In the idealized limit of a very large ensemble, an
improved estimator will, by definition, average out to the same result as would the
original observable; in a more realistic representative but finite ensemble, averaging
the improved estimator will yield a better estimate of the ideal average — one with a
lesser variance.

Given an appropriate classification scheme, an improved estimator can be con-
structed using a simple procedure. The domain of the average is broken down into
many small subdomains by the classification scheme. Over each such subdomain, one
must be able to calculate the average explicitly. The value of the improved estimator
for any state shall be the average over the sub-domain in which the state sits. If
the scheme is constructed as described above — so that usually the phases within a
group cancel — then the value of the improved estimator will be zero on most of the
configuration space. That these zeroes can be uncovered is a reflection of the nature
of the sign problem — what was previously a jumble of large contributions canceling
out to a small result is now a set of pre-averaged pieces, most of which contribute
nothing. Once the improved estimator has uncovered the cancellation, the impor-
tance sampling distribution can be modified to reflect the true significance of each
configuration.

In order to apply this method, one must find an appropriate classification of
the configuration space into subdomains over which one can perform the average
explicitly. This thesis shall demonstrate that the use of cluster techniques can provide
a framework in which the physical symmetries of the system can be exploited to find

a natural and effective choice of subdomains.
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2.2.3 Improved Estimators from Cluster Algorithms

Cluster algorithms provide an excellent foundation upon which to construct improved
estimators as described above. Once the configuration space has been expanded to
include not only the physical degrees of freedom but also the breakups, a classifi-
cation scheme for constructing improved estimators is readily apparent: All joint
configurations with the same cluster configuration shall be grouped together into a
subdomain. Improved estimators can then be constructed as the average over all
cluster orientations for a given cluster configuration.

Eq. (2.19) has the form necessary for an improved estimator for the integral in
eq. (2.12). If the inner integral — the integral over the states of each cluster in a given
cluster configuration — can be performed explicitly, then an improved estimator will
be available. Given a cluster configuration b, it is necessary that it be possible to

calculate

ol = | (f[ dwcn> o) .27

If the number of clusters in any given configuration becomes large, integrals such
as this one will not necessarily be easy — there will still be too many variables to

integrate at once. However, if the observable O can be factored so that

O] = ]_b[ 0., (Ye,) (2.28)

then the integral in eq. (2.27) will also factor

o= [ (ﬁ dwcn) Ol] =f[1 ( / dwcnocn(w%)) (2.29)

and each integral can be performed separately. To reiterate: to construct an improved
estimator of practical value using cluster algorithms, it is necessary that the observable

to be averaged can be factored into independent contributions from each cluster.
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2.2.4 Solving the Sign Problem

In order to solve the sign problem using a cluster algorithm, two requirements must be
satisfied. Firstly, the sign must obey the factoring constraint eq. (2.28). Secondly, the
improved estimator must be a sufficient improvement, in that it must uncover enough
cancellation in the sense of section 2.2.2. In order to satisfy these requirements, it
helps for a model to have a reference configuration. A reference configuration is
a physical configuration v,s which satisfies all cluster configurations and for which
sign[¢res] = 1.
Using a cluster algorithm to calculate the integral in eq. (2.25),

[ Dtsigatolwiel = [ ouwi [ (H dwcn) sl (230)

The first requirement imposes the restriction that for any cluster configuration b

signf¢] = [ [ sign,., (¢,). (2.31)

This requirement will be satisfied if a sign can be assigned to each state of each
cluster. For the models treated in this thesis, sites and clusters have just two states.
If flipping a cluster changes its sign, that cluster shall be called a meron?. Thus if

there are any merons at all, the value of the improved estimator for the sign

Ny

siealt] = [T ([ ave.sin, (0., (232

n=1

will be zero.

The simplest way to guarantee that the second requirement will be met is to im-
pose the stronger requirement that all cancellation be uncovered — i.e. the value of
the improved estimator for the sign should never be negative. Given a reference con-

figuration, this stronger requirement can be satisfied. In the reference configuration,

2The term meron originally denoted a half instanton. In an earlier algorithm, the clusters which
could change the sign were associated with half instantons.[11]
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for any cluster configuration,

Np
sign[wref] = H sign, (Yeref) = 1. (2.33)
n=1

Here 1), rer is that state of the nth cluster which coincides with the global reference
configuration. In this state, all the cluster signs may be set to 1. Any other state of
these clusters can be reached by flipping some of the clusters; if the sign for such a
configuration is negative, then some of the clusters flipped must be merons.

Given an improved estimator with this structure, the sign problem can be solved
by incorporating the value of the improved estimator in the integration into the
weight factor. Using this modified weight, a Markov walk will avoid not only those
configurations for which the magnitude of the observable is small, but also those for
which the contribution will eventually cancel out.

Exactly how the value of the improved estimator is incorporated into the Boltz-
mann weight is not completely determined. If it is used directly, so that the Boltz-
mann weight of a configuration is set to zero if there are any merons, then a large
segment of configuration space is completely avoided. Although the space avoided
does not contribute to the integral, in practice it can be detrimental to avoid it com-
pletely. Complete avoidance can lead to problems with the ergodicity of a Markov
process used in simulation. Because the sectors of configuration space which have
merons may obstruct the walk, it may have difficulty moving between configurations
which do contribute. For this reason it can be better to reweight configurations so
that it is not impossible but merely unlikely that the walk take a step which in-
creases the number of merons. By biasing the walk against the higher meron sectors
in this way, one can gain the benefit of the improved importance sampling while still

maintaining ergodicity.

Making Measurements

Once the expectation value of the sign can be computed, it is necessary to move on to

computing physical quantities. Because the sign dependence appears not only in the
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denominator but also in the numerator of eq. (2.23), the integral in the numerator

should also be estimated using an improved estimator. Thus one finally computes

(O) as

0y _ {Ollsiznly),

(sienlo),, (2:34)
[onw [ (H dwcn) Ollsignly]
= "Zle (2.35)
/ DY W / (H dwcn> sign[y]
/ DK W[t] (O - sign) [1]
- . (2.36)

/ [DB] W [blsign(b]

Here, the inner integrations in eq. (2.35) may be computed explicitly, as they range
only over all orientations of given clusters. If the cluster algorithm is sufficiently well
constructed, these explicit integrations will average out the dramatic fluctuations
of their integrand, and the remaining integrals can be efficiently estimated using

importance sampling.
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Chapter 3

D-Theory for (1+1+1)D O(3)

The 1+ 1 dimensional O(3) model shares some properties with QCD such as a mass
gap, asymptotic freedom, instantons and theta-vacua. It is also relatively simple and
well understood. In fact, the mass gap and the the particle number density as a
function of chemical potential can be calculated to very high precision in the infinite
volume, zero temperature limit [32, 33]. This model has a D-Theory formulation,
in which numerical simulations may easily be performed using cluster algorithms.
Like more complex systems, such simulations encounter efficiency problems when a
chemical potential is introduced. All these qualities make it a good candidate for

experimenting with a solution for the sign problem.

3.1 Defining the System

3.1.1 The Classical Action

The Euclidean action for this system takes the form

1
Sle] = 2—92/&3“@ . Be, (3.1)

which readily exhibits the global O(3) symmetry of the system as it is invariant under

é(x) — Ré(x) for any rotation R. Regularizing this action on a lattice by replacing
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the derivatives by finite differences with lattice spacing a, S becomes

~ 1 (éz+ - éz) (éx+ - éz) 1 ~ ~
S[e] == 2—922&22 #a : ua = ?Z(l — €, '61+u)- (32)
z K TyH

Dropping the irrelevant leading constant, this is simply
. 1 U
Sle] = - > by o (3.3)
0

3.1.2 Constructing a Quantized Action

A D-Theory quantized Euclidean action S may be constructed from S by replacing the
components of é, with appropriately chosen operators e€,. These operators must be
chosen so as to represent the components of unit vectors —i.e. the vector of operators
must transform in the adjoint representation of the rotation group, and operators
at different sites must commute. For rotation generators ]I_.:, the operators e, must
satisfy

[L',el] = ie'*el and [e;,ei] X Ogy- (3.4)

These requirements can, of course, be satisfied with a Pauli spin % operator G, on
each site, €, = 17, and L= S L, = >, 505 Thus the quantized action takes the

form
SE Y-y (3.5)
T,u

Here, one of the imperfections in the analogy depicted in fig. 1-1 comes to the fore.
The value of J is not determined by the corresponding factor in eq. (3.3). In the
classical lattice model, a change in the overall sign can be absorbed in a redefinition
on half the sites on the lattice, ¢, — —é, for every other x. For the quantized case,
this redefinition is no longer acceptable, because the operators —e’ do not satisfy the

same commutation relations as the operators e’.
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The quantization prescription suffices, however, as a guide for constructing can-
didate quantized systems. By utilizing the formal analogy with quantum statistical
mechanics, this candidate can be recognized as a quantum Heisenberg magnet with

Hamiltonian operator H in terms of spins gm:

H=JY S; Sosu (3.6)
@,
For J < 0 this is a ferromagnet, for J > 0 an antiferromagnet.

Even in a finite volume, the ferromagnet has a highly degenerate ground state,
and its order parameter is conserved — the (unstaggered) magnetization commutes
with the Hamiltonian. Also, the Goldstone bosons have a non-relativistic dispersion
relation. For these reasons, although dimensional reduction can occur for this system,
the ferromagnetic case is more complicated than necessary.

In contrast, the antiferromagnetic choice is relatively simple. At low temperature,
the system exhibits long range Néel order — the order parameter in this case is the
staggered magnetization, which does not commute with H. This ordered state breaks
the global O(3) symmetry to O(2), and so produces two Goldstone modes — spin-waves
or magnons. As long range perturbations around the ground state in the coset space
0(3)/0O(2) = S?, these magnons are described by a continuum effective Lagrangian

for a classical unit vector. This effective action can be shown to be

B
Sle] = / dt/d2m % (aué'- 0,€ + Cl—gatg' atg> (3.7)
0

to lowest order [14, 15]. Here p; is the spin stiffness and ¢ is the magnon velocity.
This effective system may be considered as a three dimensional classical statistical
mechanics problem with finite extent in the third direction. The Goldstone bosons
in this theory, being massless in the § — oo limit, will correspond to very long
correlation length excitations at finite 5. Thus at least as far as those excitations
are concerned, the finite extent of the third direction will be infinitesimal, and so

dimensional reduction down to two dimensions will occur in the large 5 limit. As the
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Figure 3-1: Dimensional reduction of a (241) D Heisenberg antiferromagnet to produce
a (141)D O(3) quantum field theory.

correlation length becomes greater than [Se, € must become essentially independent

of t. Thus t can be integrated out of the action:

B
SE :/U dt/d% % (aue*- B+ —a,é- ag) (3.8)

C2
B
~ (/0 dt) /d% %aue*-aué (3.9)
= %/d% 0,E - 9,¢ (3.10)

The resulting approximate two dimensional action has precisely the form of eq. (3.1)
with g% = psfB. Moreover, the approximation gets better as § — oo and the t
dependence of € becomes smaller.

Unlike in the three dimensional system, in the two dimensional system the Gold-
stone bosons cannot be massless. The Mermin-Wagner-Coleman theorem asserts that
massless, non-interacting excitations do not occur in two or fewer dimensions. Essen-
tially, there is not sufficient connectivity between points in a two dimensional space
for information to propagate well enough to form infinite correlation length structure.
Indeed, the resulting (1+1)D O(3) model is known to have a non-perturbatively gen-
erated mass gap.

Using chiral perturbation theory, one can express the coupling constant g of the
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resulting 141 dimensional theory in terms of the parameters in the 3 dimensional

action [33]:
1 3 1
L B —o o —), 3.11
? =P Tompp, b (ﬁ%) 1)
and can show the mass gap to be [33, 15]
167mps 97, 1 1
= ——¢ PP 1] (@] . 3.12
T T T amBp, O\ B2 (3.12)

Thus during the crossover into the dimensionally reduced system as [ — oo, the
correlation length & = % grows exponentially with 8. This exponential dependence
makes it relatively easy to choose a practical 5 — one not too large for simulation but

large enough that & > fc and dimensional reduction occurs.

3.2 Adding Chemical Potential

3.2.1 The Original Continuum

Given an action with a global symmetry, a chemical potential can be introduced as
would a constant, imaginary, time-like gauge field. Note that in this one aspect this
model is more complicated than QCD: the global symmetry here is O(3) — which is
non-Abelian — while in QCD the symmetry of interest is the U(1) of baryon number
— which is Abelian. Thus here the chemical potential is a three component vector h.

A normal gauge field would modify the derivative in equation (3.1) as
Oué(x) = (9, — iAL(x)Ly,) é(x), (3.13)

where Aﬁ(x) is real and the Ly are a hermitian generators of rotations for €. Since é

is in the fundamental representation of O(3), this amounts to

oué(z) — 0,é(z) — Au(x) x é(z), (3.14)
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in which all factors are real. According to the prescription above, in order to introduce
a chemical potential, an imaginary term should be introduced into eq. (3.1) as A% (z) =

i6,.1h*, so that
0u€' (1) — Dpet () + 0, hFLY e (). (3.15)

Thus, the effect of the chemical potential is to rotate spins transported along the first
direction (the time-like direction in the 1 + 1 dimensional model) by an imaginary

angle. In particular,
9,6(x) = 0,6(x) — i6,1h x é(x) (3.16)

which is not real, and so the two dimensional action becomes

Sle] = 2%12 @ (0,6 — ibfi x ) - (0,6 — ibyaf x ¢) (3.17)
1 9 . . N . - 2
=3 d*x [@Le 06 — 2i (h X e(x)) - 016 — (h X e(x)) ] : (3.18)

This action is explicitly complex, and so direct simulation of the 1 + 1 dimensional

O(3) model encounters a complex action problem.

3.2.2 On the D-Theory Lattice

In order to add the chemical potential in the D-Theory formulation, it must be in-
troduced into the lattice action eq. (3.3). The version of eq. (3.15) for the lattice, in

terms of finite differences, is

(éx+u — éx) N (R(_iéﬂ,lahk)éxﬂt - éx) )

- - (3.19)

where R(7) is a rotation operator about axis n by angle |n|. Since the operators

€ transform in the adjoint representation, the quantized action in equation (3.5)
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becomes
S=TY & [R(—id,1ah")es, R (=i, ah®)] (3.20)
o
— Jzéfc . [(6_6“’1ahkﬂ‘§+u> éx-l—u (65#,1ahkL’;+u>:| . (321)
,p

Equivalently, in the language of the quantum magnet,
H= 7Y 8, [(etniooh) §,, (etraehShen) ] (3.22)
M

This modification of the Hamiltonian in eq.(3.6) should result in a corresponding

modification to the low energy effective action in eq. (3.7):

g 2 Ps ~ . A ~ . A 1 - —
Sle] = i dt [ d Y (8#6 - 25#,1h><e> : (8#6 - 25#,1h><e> + gate 08| . (3.23)

In turn, this 2 + 1 dimensional effective action should dimensionally reduce as the

correlation length becomes larger than [, finally producing
S[é] :/ dt/d% 2 [(aﬂé —iduuhixe) - (9,6 = iduihixe) + 0,8 ate*} (3.24)
0

~ </Uﬂ dt) /d% % <6ué - i&u,lﬁxé) : <6ué - i&u,lﬁxé) (3.25)

_ % / P2 (aﬂé —iaﬂ,lﬁxé) - (aﬂé —iaﬂ,lﬁxé) (3.26)

%

2L92/d2x (8”é—i5#,lﬁxé> : (a#é—iéﬂ,lﬁxé). (3.27)

Thus numerical study of the system described by eq. (3.22) can produce results for
the target theory described in eq. (3.17).

3.2.3 Known Exact Results

The response of the particle number density to a chemical potential in the (1+1)D

O(3) model is known exactly in the limit of zero temperature and infinite volume from
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Bethe ansatz techniques [32, 33]. Specifically, when the magnitude of the chemical
potential h is larger than the mass gap m, the free energy density f is given by

£(h) = £(0) = —% /_ d0e(0) m cosh 6, (3.28)

o

where the function €(f) satisfies the integral equation

€(9) — /QEG'L = h — mcosh 0 (3.29)

_g, (0" —0)%2 + 72 ’
and 6, is defined by the boundary condition e(4+6,) = 0. For any fixed 6, this
equation is an inhomogeneous Fredholm integral equation of the second kind and can
be solved for €(f) with standard numerical techniques [39]. The boundary condition
on fy can then be enforced simply by searching in 6, for the root of €(fy). For h < m,
no particles are formed, and so at zero temperature, f(h) = f(0). Once f(h) is
known, the particle number density is given by %. This result provides a known
point of comparison for a numerical study of the particle number density at finite
temperature.

When the chemical potential is below the threshold of the mass gap, the solution
above predicts no particle density at all, as it is valid only at zero temperature and
infinite volume. When the temperature is non-zero and the size of the system is finite,
particles will occasionally be created even when the chemical potential is below the
mass gap because of thermal fluctuations. At sufficiently low temperatures, the result
will be a dilute gas of particles. Although the particles are interacting bosons, in
this one dimensional system the behaviors of hard-core bosons and non-interacting
fermions are sufficiently similar that the particle number density in the threshold

region may be modeled as a simple dilute gas of non-interacting fermions in a box.

Without antiparticles, such a model yields the prediction

-1

|:1 + 65(\/m2+4sin2"L—7'7h) . (330)

Antiparticles behave exactly the same way except their response to h is opposite —i.e.

41



Particle Number Response at § = 2.5 = m = 0.160(5)

<
—_

0.01 T

T T oo
\
L1l

|
\

0.001 7

Particle Number Density N

T T L TTIr17
\
\
L1l

00001 P—’I”I | 1 1 1 1 1 M | 1 1 1
0.01 0.1

Chemical Potential h

—— Zero Temperature, Infinite Volume limit
---- Fermion Approximation for L = L' = 20
----- Fermion Approximation for L = L' = 30

Figure 3-2: Exact results for the particle number density in 141 dimensional O(3) at
m = 0.160(5). The solid line is the Bethe ansatz result for the L = L' = oo limit.
The upper and lower dashed lines are the dilute fermion gas estimates from eq. (3.31)
for L =L"=20 and L = L' = 30 respectively.

N,y(h) = N,(—h). Since the fermions are non-interacting, the total particle number

density is then
N(h) = N,(h) — Nu(h). (3.31)

Both the Bethe ansatz solution and some examples of the fermion gas approxima-

tion are shown in fig. 3-2.
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Chapter 4

Constructing a Cluster Algorithm
for (1+14+1)D O(3)

Several steps must be taken to build a cluster algorithm in order to explore the D-
Theory representation of the (1+1)D O(3) model. First, the transfer matrix must
be calculated from the D-Theory Hamiltonian. Second, the transfer matrix must be
analyzed and separated into breakups so as to satisfy eq. (2.14). Third, if any elements
of the transfer matrix are negative, the applicability of eq. (2.31) must be verified, and
rules must be found to determine the signs of the clusters. Fourth and finally, having
constructed an algorithm to estimate the partition function, an improved estimator
must be constructed for any observable which is to be measured. The observable of
interest here is the particle number density.

Because the chemical potential in this model is coupled to a charge of a non-
Abelian symmetry — the global O(3) symmetry — the introduction of the chemical
potential breaks the symmetry. It is necessary to choose an axis around which h
prefers to rotate the spins. Having thus chosen an axis, there is further a choice: the
angle between the quantization axis and the chemical potential. Although this angle
has no physical significance, it can dramatically affect the structure of a cluster algo-
rithm constructed from the transfer matrix. When the quantization axis is parallel to
the chemical potential, no signs are introduced. Nevertheless, the cluster algorithm

becomes inefficient. When the quantization axis is transverse to the chemical poten-
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tial, a sign problem develops. The algorithm becomes inefficient, but this inefficiency

can now be repaired using merons.

4.1 Without Chemical Potential

The introduction of a chemical potential modifies the Hamiltonian of the system, and
in turn modifies the transfer matrix and the structure of the cluster algorithm. As
a point of reference, consider first the system without chemical potential. For the
sake of consistency, the language of statistical mechanics shall be used henceforth,

describing the system in terms of a Hamiltonian H.

4.1.1 The Transfer Matrix

The Hamiltonian for the antiferromagnet is shown in eq. (3.6) as

H=17> S, Soip (4.1)

T,

where J > 0. From eq. (2.5), the transfer matrix is then
T = ¢ /SeSetn, (4.2)

Writing the vector product in index notation, suppressing the spatial indices, and
using the order across the tensor product ® to keep track of the difference between

x and x + p, this is
T = e=¢/5®5i, (4.3)

This object has four indices, one for the spin at each corner of a plaquette, each
of which takes on two values, T and |. By convention, 1 shall always come before
4. In order to write this matrix out, it is necessary to pair up its indices in order

to bring the number of indices down enough to fit onto a two dimensional sheet of
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paper. Again by convention, whenever two indices are paired, the latter index shall
vary fastest — the order shall be 11, 1l, |71, l]. For the moment, the indices shall be
paired for time-like multiplication, as in eq. (2.8).

In this basis, the transfer matrix is

0001 0 00 -1 10 00
|00 rol b 001 0] [0 -1 00
4 0100 010 O 0 0 -1 0
— ¢ 1000 -1 0 0 O 0 0 01
0 0 00
a0 2 20 (4.4)
4 0 2 -2 0
. 0 0 00
J 0 0 00
el _eJ . € 0 1 -1 0
=et |Ie 2+smh7 0 —1 0
0 0 0

The overall multiplicative factor can be absorbed in the normalization of the partition

function, and so will be discarded. Expanding to first order in ¢, the transfer matrix

becomes
oo oo oo
€ o1o00| e |lo 1 -10
N<1_7> o010l T3 [0 -1 10 (4.5)
0001 0 0 00
1-< 0 0 0
I R S R S
= o -—¢£ 1 o (4.6)
o 0 0 1-¢

The negative signs in this matrix may at first seem disturbing, as there should
not be a sign problem in this case with no chemical potential — no terms in the
partition function integral should be negative. These signs will cancel out. They are
off diagonal in T, and hence they are associated with transitions'. It is not possible

to have a configuration on the lattice with an odd number of transitions on a periodic

linstances where a spin changes state between time slices
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lattice with even spatial extents.

4.1.2 Breakups

Equation (4.5) is of the form

ny
T=> wb, (4.7)
b=1

where in this case n, = 2. The two matrices B; and B, have entries which are all of
magnitude either one or zero. They can be interpreted as constraints upon the spins
at the four corners of the plaquette on which T is acting — i.e. breakups. To each
breakup B, is assigned a corresponding weight wy.

The first matrix, By, is the identity. It represents the constraint “no spin shall
change as it propagates in the third direction”. It is non-zero only for four con-
figurations. It corresponds to a pattern of bonds — two bonds connecting the spins
constrained to be the same — those paired vertically, and so shall be called the vertical
breakup.

The second matrix, By, represents the constraint “each spin shall be the opposite
of its sideways partner”. It also is non-zero only for four configurations. It corresponds
to a pattern of bonds connecting the spins constrained to be different — this time they
are paired horizontally, and so By shall be called the horizontal breakup.

Note that the spin configurations allowed for these two breakups are the only con-
figurations for which the Boltzmann weight is not zero. These two breakups and their
respective allowed spins are depicted in table 4.1. If the spins on a given plaquette
satisfy the vertical breakup, the state of that plaquette is called a continuation. If
they do not, so that only the horizontal breakup applies, the state a transition.

Expanding an entire integral of the form of eq. (2.12) using this decomposition of

T, and using the global cancellation of the signs to justify ignoring them,

H Tt,u,x

tp,x

/ D] O] T Trr = / DY) O[] (48)

sHsT
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— [1Du1 0wl [] Tins (49)

ius

/[sz Y] Z Wny oo B, | (4.10)

Ly, \be =1

Because there are no cancellations in eq. (4.7), it is

np

= [ oW T] | Y .| Bu.. (4.11)
iy, | by ye=1
Rewriting the many small sums as one big path integral, the integral is

/[Dd} / Hwbtuz Bbt,uz (4]‘2)

9!”’9
/[sz ] [Db] O (H wbw> (H By,,. ) (4.13)

t,u,T t,u,T

= [ (pv) Dy OBl (4.14)

= [y | (f[ dwcn) o, (4.15

which, finally, reproduces the structure promised in section 2.1.4 and in eq. (2.19).
To put this representation into use, a Markov walk is used to generate an ensemble
for the joint distribution of breakups and spins determined by Wi, b] = W [b]6[v), b].
For any spin configuration there is a fixed set of breakups with non-zero weight. Given
a spin configuration on the lattice, breakups are chosen for each plaquette randomly,
according to their relative weight among the acceptable possibilities. The relevant
information is summarized in table 4.2. For example, given the spin configuration on
the second row of the table, the vertical breakup would be chosen with probability
(1 — ¢/)/1, while the horizontal breakup would be chosen with probability (£)/1.
Given the configuration on the third row, the horizontal breakup would be chosen
with probability (£)/(%) = 1. A typical joint configuration for a 141 dimensional

2

system is shown in fig. 4-1.
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Matrix Diagram Allowed configurations
nr

SREERE 1 N I I A
0001
Ly

IEB2_()1_10] I] [I
0 0 00

Table 4.1: The vertical and horizontal breakups for (141+1)D O(3) and the spin
configurations which satisfy them. The horizontal bonds are cross-hatched (e==m) to
indicate that the sign contributed by the plaquette changes when the spins on the bond

are flipped.

Typical Total I
Spins Weight

i nn

Table 4.2: The assignment of weights to the breakups for (14+1+1)D O(3) with no
chemical potential. In each row, the weights of the breakups selected, multiplied by
the indicated signs, add up to the total weight for the row. In each column, only
spin configurations allowed for the breakup are selected, and the sign corresponds to

whether the bonds flipped relative to the staggered reference configuration is cross-
hatched (= ).
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Figure 4-1: A typical joint configuration of spins and clusters for a 14+1 dimensional
Heisenberg antiferromagnet cluster algorithm. The grey squares are those on which
the transfer matriz acts, while white squares are empty space imposed by the Trotter
decomposition. Thus this lattice is only 2e high. Only the small square loop in the
maddle 1s oriented against the reference configuration.

4.1.3 The Canceling of the Minus Signs

A minus sign must be included for every transition plaquette. In fact, although
there will be no configurations with minus signs in the end, proving as much is an
excellent task for a first application of the meron concept. To attribute these signs to
clusters, it will help to find a reference configuration. This system has two potential
reference configurations — those in which the spins are completely staggered in the
spatial directions, but aligned with their neighbors in the third direction.

Consider choosing one of the two possibilities as reference configuration. Transi-
tions always occur along with horizontal breakups. Moreover, the two bonds in the
horizontal breakup must be aligned differently for there to be a transition. Thus if
Np.q is the number of horizontal bonds which are oriented against the reference con-

Nna. By collecting all the signs from horizontal bonds in

figuration, the sign is (—1)
a given cluster, each cluster can be assigned a sign. If a cluster is oriented against
the reference configuration and it has an odd number of horizontal bonds, then it will
produce a minus sign. The global sign is then the product of the cluster signs, in

accordance with eq. (2.31).
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A cluster is hence a meron precisely when it has an odd number of horizontal
segments. However, careful inspection of the possible cluster shapes will reveal — for
this simple case with no chemical potential — that clusters must have an even number
of horizontal segments. The clusters are loops, and they step horizontally at the same
times that they turn around in the third direction. In order to close, a loop must
turn around an even number of times, hence it must step horizontally an even number
of times. Thus one can see that the signs which appear on individual plaquettes as

recorded in eq. (4.6) cancel out once the whole lattice is taken into account.

4.1.4 The Operation of the Cluster Algorithm

Starting from a physical configuration, the cluster algorithm generates a Markov
step by tiling the lattice with randomly chosen breakups as described above, and
then choosing at random a new orientation for each cluster. The orientations for
the clusters are easy to choose because — by construction — the Boltzmann factor
contributed by each plaquette for a fixed breakup is independent of the physical
state, in accordance with eq. (2.19). In other words, once the cluster configuration is
chosen, any one set of cluster orientations has precisely the same Boltzmann weight
as any other.

When implementing this algorithm, it is not actually necessary to record the
spins on the lattice at all. They can always be inferred from the cluster configuration
and orientations. Instead of wiping the lattice clean of cluster configurations and
starting fresh, it is sufficient to break up such a large update into many smaller
(and proportionally faster) updates. One can pick a plaquette at random, choose
at random an orientation for all clusters touching that plaquette to determine its
spins, and given the spins choose a new breakup. Thus the joint configuration can
be updated without actually keeping any permanent record of the spins across the

lattice at all.
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4.2 Adding the Chemical Potential

Having constructed a cluster algorithm for the simple case with no chemical potential,
one can now proceed to introduce the chemical potential and see what changes are

necessary. The Hamiltonian now takes the form given in eq. (3.22):
H = JZ S’I . [(eidu‘lahkSI;H’t) §x+u <e5u,1ahkS§+u>:| . (416)
@,

Because the rotation operators at x commute with the spin operators at y # =z,

they can be taken down out of the exponent defining the transfer matrix, and eq. (4.4)

becomes
’]I‘ — (65#,1E'gz+u> e—fjgz'gﬂwru (6_5u,lﬁ'§r+u> (417)
_ 66u,1hi-(ﬂ®%l)67%0i®0ie*5us1hi'(ﬂ®%ﬁ) (418)
o o0 00 _
x e~% + sinh % eé“’lhz'(m%) 8 _1 _} 8 ef‘s“’lhl'(m%) . (4.19)
0 0 00

The rotation operators can be expanded
Si(%) _ g [11 cosh <5u,1§> + (8u1h- 7) sinh <5#,1§)} (4.20)
=I® [CM]I + s, (5u,1il : c_f)] (4.21)

where ¢, and s, have been defined as

h h
¢, = cosh (5u,1 5) s, = sinh (5u,1 5) : (4.22)
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The term in parentheses in eq. (4.19) is then
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Rather than proceeding in generality from here, it will be simpler now to choose
the relative orientation between h and the quantization axis. Two simple choices

present themselves: quantize either parallel to or perpendicular to h.

4.3 Quantize Parallel to the Chemical Potential

4.3.1 The Basic Construction

Choosing / - @ to be hos, the exponential in eq. (4.21) is?

]I®<cﬂ]l+sﬂ[é —O1D:H®[ao" bou] (4.24)

%1% and b, = e=01% . Now (4.23) becomes

where a, = e

i [88] - [Ri]eio] -] e 35+ [30] e i)

0 0 0 0 (4.25)
o 1 - o
“ |10 -a2 1 0

0O 0 0 0

and, again discarding the irrelevant multiplicative constant, the full transfer matrix

for a plaquette along the direction p is now

0 O 0 0
_ed . eJ 0 1 - 0

T, < Ie™ + sinh 5 0 —a 0 (4.26)
0 0 0 0

2W.l.o.g., h can be taken to be positive. Negative h amounts to the same thing as reflecting the
lattice.

52



Expanding T, to first order in €, the matrix analogous to eq. (4.6) is

oo oo oo
€ 0o1o00| ,e/|o 1 -8 0
Tﬂ”<1_7> 0010|753 [0 -2 10 (4.27)
0001 0 0 00
1-< 0 0 0
1o 1 - 0
=10 —ga 1 0 (4.28)
0 0 0 1-¢

T, is, predictably, unchanged when ;o # 1. However, when ;1 = 1 the matrix
which corresponds to the horizontal breakup has been modified by the introduction
of the chemical potential. Now, its elements are no longer all of magnitude 1, which

means it is not compatible with the §-function structure of eq. (2.14).

4.3.2 Adding a Metropolis Step

In order to continue, it is necessary to sacrifice some of the purity of the cluster
algorithm — the a? and b® factors must be included in the inner integral of eq. (2.19).

That equation becomes

[iouw | (f[ dwcnww) ol (4.29)

where W{¢.,] will encode the a® and b? factors. Thus some importance sampling
work will remain after the implementation of the cluster algorithm — some cluster
orientations will be more important than others. In order to implement this part of
the importance sampling, it will be necessary to add a Metropolis step, accepting or
rejecting flips of clusters. The need for this accept/reject step bodes ill for the success
of this implementation.

Presuming that the a? and b? factors will thus not be handled by the breakups
but elsewhere instead, the breakups for this algorithm are the same as for the case
with no chemical potential. As the clusters are still closed loops and the minus signs

occur in the same places in the transfer matrix, the argument that the signs cancel
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Plaquette
State

Metropolis
Weight

Table 4.3: Metropolis weights for states of the horizontal breakup in (1+1+1)D O(3)
with quantization axis along the chemical potential

out which worked in the A = 0 case still holds. There is no sign problem.

In order to understand how the a* and b? factors must enter Wi, | the algorithm,
consider the plaquette states which they affect: the transitions, which are listed in
table 4.3. The weights can be attributed to factors from each bond: on the top bond,
a factor of e~% for T, and a factor of es for JT; on the bottom bond, the reverse.
A simplified picture, in 1+1 dimensions, is given in fig. 4-2. These rules conspire to
measure a winding number of clusters. Any cluster which does not wind around the
first direction contributes a cumulative factor of 1. Clusters which do wind contribute
according to their winding by factors of e”%, where L is the size of the lattice in the
first direction.

In order to update a configuration with this new algorithm, the lattice is tiled
with breakups as before, but when clusters are to be flipped, the effect of the cluster
winding must be considered. If, for instance, a given cluster winds once around the
lattice, then one of its states is more weighty than the other by a factor of ", and

its should only be flipped accordingly.

4.3.3 Measuring the Particle Number Density

Now that an algorithm to estimate the partition function has been built, it is necessary
to construct an improved estimator for the particle number. It is not immediately

apparent what property of the Heisenberg antiferromagnet corresponds to the particle
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Figure 4-2: Signs indicating the contribution to the Metropolis weight from each hor-
izontal segment of each cluster. The signs for clusters which do not wind cancel out,

whereas for clusters which wind, they add up.

number of the (1+1)D model. Before an improved estimator can be constructed, the

quantity to measure must be identified, and it must be expressed in the language of

eq. (2.10). Once that is accomplished, an improved estimator may be constructed by

integrating over cluster orientations as in eq. (4.29).

Finding What to Measure

Formally, the particle number density is given by

10 1 0

]l

(N)

Expanding in terms of eqs. (2.7) and (4.9),

1 0

(N) = 790 [D1)] tl;[x T iz
1 0
=77 (D] ah tl;[x Ty

1

L, \U,p' @' #t,x,u

)

0
= ﬁ [Dw] [Z < H Tt’,u’,z’|> %|Tt,u,m|

(4.30)

(4.31)

(4.32)

(4.33)



The ensemble generated to estimate 7 is determined by the weight

Wyl = 1] 1Tuel- (4.34)

T

In order to continue to use the same ensemble it is desirable to write eq. (4.33) in

terms of the same weight. Thus consider?

<N> = ;—Z/[Dw] (H Tt,u,z|> < Z Tt’,u’,z’|l%Tt’,u',z’|> : (435)

tausx tl,[J’,.’El

Calculating the derivative in the non-trivial case (when p = 1),

o ['5F 0w 0 b b e

2 5e - A 4.36

oh 0 et 1 0 0 <Leh 0 0 (4.36)
0 0 0o 1-¢ 0 0 0 0

Thus, performing the element-by-element division of eq. (4.35), the quantity to be

evaluated on each plaquette is

00 0 0
00 —-10
01 0 0 (4.37)
00 0 0

For each transition where |1 becomes 1| the observable measures a —1, while for
every transition of the opposite type it measures a 1.

This result may be derived by another more complicated method which will be
useful later as a point of comparison. The product in eq.(4.33) lacks a single factor
of T'. Previously, the missing factor was replaced separately for each physical state
1, which resulted in the element-by-element division above. Consider instead fixing
the product for all states of the plaquette at ¢, u, x at once.

Recall that the factors of T in the path integral arise from plaquette operators

T. The result of the differentiation is to replace one operator T with a different

3remember T is a matrix, but 7' is an element thereof — just a number
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Figure 4-3: An extra operator M, inserted into a (1+1)D lattice, to reproduce the
effect of changing one transfer matriz. Note that two extra spins are required.

d .
operator - T:

0 0
%Tt,u,z - <wt’,u’,z | <wt’,u’,z+u ‘ %Tt,u,x

wt,#,z>‘wt,u,x+u>- (438)

If the same result could be obtained not by replacing an operator, but by inserting
one, then — at least for some inserted operators, the product could again be repaired.
Remember now that the chemical potential is acting in a direction transverse to that
in which the Hamiltonian acts. Thus it would be natural to insert an operator not
above or below T but beside it. A typical such replacement is depicted in fig. 4-3.
Plaquette operators acting successively left to right must be multiplied differently
than operators acting bottom to top — their components must be arranged with
respect to a different sense of “later”, using the space-like multiplication x. Such an

insertion requires summing over two additional spins —i.e. if Ml is the operator which
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shall be inserted, it must satisfy*

0
ETR T

oh

! ! ! ! ! !
/ dwt’,u’,x+udwt’,u’+uMﬁ%l‘ wt',w,x+u> ‘wt,u,m+u> <wt’,u’,m+u ‘ <¢t,u,x+u ‘ Ttylt@

=M 2 *Tipe (4.39)
If M, when written for the x multiplication, happens to be diagonal then the

two spins inserted will be redundant. It would be possible to evaluate the result of

inserting M using the configurations already generated, because then it would happen

that

/ / / /
Mt’#’x ‘wtl ,[1/,.’.17+[J> ‘wtsuax+u> <wt’,‘u/,$+‘u/‘ <wt,ﬂ,$+u ‘

- Wllt’,u’,:c+u> ‘¢£,u,m+u>Mtsﬂsf’3<w£’,u’,x+u‘ <¢£,u,m+u‘ (4‘40)
in which case

0
%Tt,u,x = <wt’,u’,x

0
<¢t’,u’,x+u | %Tt,u,m |¢t,u,x> Wt,u,m+u> (4-41)

= MtaM@Tt,M@' (442)

This situation with diagonal M is depicted in fig. 4-4.

In order to find M, it is necessary to express T as a four by four matrix with its

elements ordered not for the normal time-like multiplication, but for x, the space-like

4The order of T and M here is a matter of convention — it corresponds to whether one chooses
M to be inserted on the left or on the right of T.
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Figure 4-4: Computing an observable with diagonal M. Because M s diagonal, the
middle two spins in the diagram on the left drop out, producing the diagram on the
right. A factor remains, determined by the state of the rightmost two spins. Here the
state of the T plaquette is a transition, and the M produces a 1.

multiplication. This amounts simply to rearranging the components thus:

a b e f

c d g h

— i i m n (4.43)

IEEDE
NREEYEN

m n o p k l o p
ERER=RE oo e e

Under this rearrangement, the transfer matrix Ty from eq. (4.28) changes as follows:

1-< 0 0 0

_ 0 1 —<p? 0

Ti=| o _ae 1 0 (4.44)
|0 0 0 1-¢
(100 0] 10 0o 0]
0100 eJ 1o o0 e’ o

10010 9 |0 o 0 (4.45)
0001 00 0 1]
(100 1] ]"10 0 0]
0000 € 00 eh o

““looo00| " 95 |0oe 0 0 (4.46)
1001 00 0 1
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and so

p 7 0 O 0 0
€ 0 0 —e"™ o0

ST==2 0 0 75 (4.47)
0 0 0 0

Given these expressions for T; and (%']I‘l written for space-like multiplication, one can

easily verify that the choice

0 0 00
0 -1 0 0

M=o o010 (4.48)
0 0 0 O

satisfies eq. (4.39). This M is in fact diagonal, and so it is not necessary to integrate
over any extra spins. All that remains are the factors M determined by the two
remaining spins. M will be non-zero only when T is a transition, and in fact, the
resulting contribution is exactly that given by eq. (4.37).

The integral to calculate the particle number density thus becomes
1
=55 [0 (Sonee) (T ). o
tu,x t'u' !

When the dust settles, the integral simply measures the difference between the number

of instances of the two kinds of transitions on the lattice.

Interpreting M

Physical configurations on the 241 dimensional lattice can be interpreted in terms of
world lines for the spins, because the Hamiltonian commutes with the magnetization

along the quantization axis:

H, Z gi] _ ljzgx {(e—éu,lahsgﬂ) Suin (65u,1ah82+u>} ,ZSEI (4.50)
2 o

z

—J Z [Si {(e*‘su,lahsiﬂ) S;_l_u (eéuqlahsiw)] ,Sg] (4.51)

T,H,2
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Figure 4-5: The world lines of of up and down spins on a (1+1)D lattice, in grey
(==m) and black (wmm) respectively. In this configuration, no world lines wind around
the spatial direction.

j —6,,1ahS3 j 8, 1ahS3
82,89 (e en) 82, (e )
=] 4.52
k —68,,1ahS3 k 3 Su,1ahS3 ( )
ez | S5 (€ tu [Sxﬂv SZ] e atu
[ ieist (675u,1ah82+”> Siﬂt <€5u,1ah82+”> '|
=J (4.53)
fcz,u: \‘ +S§, (ef‘sﬂvlahsgw) iek3mSZl_|_u <€5u,1ahS§+”> J

=Y [ (et 1, (0| (0 i) (459)

=0 (4.55)

Every plaquette on the lattice is either a continuation or a transition. On a contin-
uation, the spins are understood to stay put spatially during that time slice. On a
transition, the two spins at the bottom of the plaquette swap places on their way to
the top. A typical spin configuration along with the world lines for a (1+1)D lattice is
depicted in fig. 4-5. On one kind of transition, in their progress toward the top of the
lattice, up spins hop right while down spins hop left. On the other kind of transition
the opposite happens. Thus the difference between the numbers of the two kinds of
transitions in the 1st direction is the winding of the up spins minus the winding of

the down spins around the 1st direction.
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Figure 4-6: A cluster changing the winding of the world lines. The world lines of up
spins are shown in grey (==m). A cluster is shown in cross-hatching (emm). Down spins
and theiwr world lines are not shown. Flipping the cluster, which winds, changes the
winding of the world lines.

With this understanding of the particle number, one can better to understand
the Metropolis weight for flipping the clusters. A cluster which itself winds is a
cluster which when flipped will change the winding of the world lines, and hence the
particle number. It is possible to simplify measuring the particle number, because
the winding of the world lines can be measured by considering any one vertical plane
through which the world lines must pass. The winding can be calculated by counting

transitions in one spatial slice alone.

4.3.4 The Failure of this Method

This algorithm proves to be inefficient. The reasons for its failure are subtle, but
the result is drastic. Although the Metropolis step is properly biased toward one
orientation of each cluster which winds, the cluster rules are not biased to create such
clusters. As a result, this algorithm does not effectively update the winding number.
It is ergodic, so eventually it will explore different winding sectors. The construction of
clusters which wind around the lattice is a rare event, however, and so the Metropolis
step only very rarely gets a chance to impose its bias. In this formulation, the chemical

potential has been somewhat crudely grafted onto the cluster algorithm. The result
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is that the cluster growth is only indirectly and occasionally affected by the chemical

potential and so the method is ineffective.

4.4 Quantize Transverse to the Chemical Potential

In contrast to the choice above, one can instead choose the quantization axis to be
transverse to the chemical potential. This choice will lead to a sign problem, and so
the inefficiency described above will not immediately vanish. By attacking this sign

problem head on instead of avoiding it, however, one may fix the inefficiency.

4.4.1 The Basic Construction

Choosing - @ to be hoy, the exponential in eq. (4.21) is this time?

]I®<CM]I+5#[EJH>:]I®[ZZ iz}. (4.56)

For pn # 1, T, will of course reduce to the h = 0 case. Considering the u = 1 case

and suppressing the unnecessary index, now eq. (4.23) becomes

—s sc —sc S (4.57)
2 2
| —se =2 sc
B sc -2 & —sc
2 —sc  sc¢ —g2

Discarding a multiplicative constant and expanding to first order in € as before, for

this choice of quantization axis,

1-cY s —scY s
T ~ —sc% 1+ 32% —02% sc% (4.58)
o sc% c? 62‘] 1+ 82% sc% . .
] 52 —sc<d sc  1-c2Y |

5 Again, h is taken to be positive w.l.o.g.
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4.4.2 Breakups

Unlike the previous case, the transfer matrix has much more structure when h # 0
than when h = 0. Not only does it have some more negative entries, but it has none
of the zeroes present in eq. (4.6). Moreover, there are lattice configurations for which
the signs in this new transfer matrix do not cancel out — there is a sign problem.
The decomposition in terms of breakups used for the case of non-zero chemical
potential will not be sufficient for this transfer matrix. Instead, it is necessary to
go back to the transfer matrix and find a new set of breakups. To ensure that the
reference configuration still be valid, all the bonds used in these new breakups should
still be satisfied on the same staggered lattice which was the reference configuration

with no h. The expansion of the new transfer matrix analogous to eq. (4.7) is:

J 1000 7 0 0 00
oy 2\ |0 100 PR A N R
T1—<1 02> 001 0| Tcle—2s) 0 -1 10
0001 0 0 00

7 0001 7 0 0 0 O J 0 1 -10

9€ 0100 € -1 1 -1 1 € 0 1 -10

ts o010 Ty | 121 1 o1 | TS5 o 21 1o (4.59)
1000 0O 0 0 O 0 -1 10

The first two of these matrices appeared in the h = 0 case. The other three correspond
to three new breakups depicted in table 4.4. The decomposition is summarized in
table 4.5. The most notable feature of this new set of breakups is the appearance
of unbonded sites. Each of the last two matrices above corresponds to a breakup
with only a single bond. Thus the clusters in the new algorithm will not necessarily
be closed loops — they may also be open chains. Note that unbonded sites come in
pairs, as if some horizontal bonds had broken. Note also that horizontal bonds carry
a sign, and so also does one piece of each unbonded pair. The remaining breakup
corresponds to a pair of crossed bonds. Thus the shapes of clusters are much more

complicated in this case than they were previously, as depicted in fig. 4-7.

64



Matrix Diagram Allowed configurations

TR G A O o
I = =

e
D
SR

Table 4.4: Three new breakups for (14+1+1)D O(3) introduced by quantizing transverse
to the chemical potential, and the spin configurations which satisfy them. As before,
bonds are cross-hatched (em=m) to indicate that the sign changes when they are flipped.
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Table 4.5: The assignment of weights to the breakups when the quantization axis 1
transverse to the chemical potential. The structure is the same as in table 4.2.




Figure 4-7: A typical joint configuration of spins and clusters in a (14+1)D Heisenberg

antiferromagnet when the quantization axis is transverse to h. The breakups used to
build the cluster configuration are shown on the right. There are two open chains
and one closed loop in this example. Only the longer chain is oriented against the
reference configuration. The single minus sign marks the one plaquette on this lattice
which has a spin configuration for which the sign is negative.

4.4.3 Handling the Signs

In the h = 0 case, although there were signs associated with horizontal segments,
clusters always had an even number of horizontal segments. Because they had to be
closed loops, the signs always canceled. Now clusters can break open, and there is no
such guarantee.

The sign[t)] does factor as required in eq. (2.31) because the global sign — a product
over signs from plaquettes — has been written as a product over signs from bonds. By
decomposing each plaquette sign into a product of signs from each bond, the sign has
been split up into factors which can be grouped together by cluster. In the reference
configuration, the sign is still positive, but now if a cluster has an odd number of
segments with signs — those shown with cross-hatching (e==) — flipping that cluster
will change the global sign. Such a cluster is called a meron.

Note that closed loop clusters are still never merons. Moreover, the only cluster
segments with signs are either horizontal bonds or half of broken horizontal bonds.

By imagining repairing the broken bonds, one should be able to see that the total
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number of segments carrying signs must be even. Thus, if there are any merons, they
must come in pairs.

Consider the (1+1)D example given in fig. 4-7, which has two merons. The short
chain has one segment with a minus sign, and the long chain has three. The loop,
being closed, must have an even number of horizontal segments and so is not a meron.
Since exactly one of the two merons (the long chain) is oriented against the reference
configuration, the configuration’s global sign would be negative. One can check this by
multiplying together the sign for each active plaquette. As indicated in the diagram,
only one plaquette carries a minus sign, and so this calculation yields the same answer
as predicted by the merons.

Having first determined that there are non-trivial signs, and then having con-
structed a cluster system with merons, one can now put into practice the general
method described in section 2.2.4 and hence solve the sign problem. An improved
estimator for the sign as in eq. (2.30) is simple to construct once merons have been
identified.

The construction proceeds in precise analogy with eqs. (4.8)-(4.15), where in this
case ny = 5 and O[] = sign[¢)]. As described in section 2.2.4, if there are any merons
then in averaging over all cluster orientations one half will have the opposite sign
from the other, and the average will be zero. If there are no merons the sign will
never change; since the sign is known to be positive in the reference configuration,
the average of the sign in a case with no merons must be one.

Thus an importance sampling ensemble can be constructed with a proper sense of
importance. Configurations which have merons, regardless of the weight determined
by the magnitude of the transfer matrix elements, are not important — they contribute
zero to the average of the sign. Hence the ensemble should be reweighted to reflect a
bias against merons.

Thus the solution to this sign problem proceeds in two steps. The meron concept
is used to construct an improved estimator for the sign, which for every cluster con-
figuration produces either 0 or 1. Although there are no more negative contributions

and hence no more cancellation, this step alone does not solve the sign problem. Since
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the result of the average is known to be exponentially small in the volume, there must
be very few 1s amid a sea of 0s. By subsequently reweighting the ensemble, biasing
it toward configurations which are truly significant, the sea of 0s can be avoided, and

the algorithm thus made to be efficient.

4.4.4 Measuring The Particle Number Density

Because there is a sign problem to be solved, observables must now be estimated using
eq. (2.35). The method of direct element-by-element differentiation used first for the
previous choice of quantization axis is very messy in this case. Every element of T
has some h dependence, and so the result of the differentiation is very complicated.
The second method — finding an operator to insert — is easier.

Returning to the new transfer matrix and applying the rearrangement described

by eq. (4.43), the transfer matrix Ty from eq. (4.58) changes as follows:

2¢e] eJ eJ 2¢e]
1—c¢ & scs —scs s°%
—sced 14+ s2¢ 2 sced
Tl = J2 J2 2 J 2] (460)
€ 2€ 2€ €
s - 1485 —scg
2¢ed eJ eJ 2¢e]
R —scs sc- 1—07_
(100 0] [ 2 s¢ —sc s ]
0100 eJ —sc s =2  sc
~“lo0o010 +7 sc —c* §2  —sc (4'61)
0001 2 —sc¢ s¢ —c2
(100 1] [ 2 s¢ —se s ]
0000 eJ —sc s =2  sc
000O +7 sc  —c® s —sc (4.62)
1001 s> —sc¢ s¢ -
and so
—2sc 24+ —s2-¢ 2sc
0 eJ —s2 = 2sc —2sc s? + ¢
a7 41— —— 2 2 2 2 (4-63)
oh 4 s +c —2sc 2sc —s° —c
2sc —s2—c2 242 —2sc
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0 1 -1
1 1 0 0 -1

=511 o o 1|*T (4.64)
0 -1 1 0

(4.65)

This matrix is not diagonal, so its operation in the context of the path integral is
more complicated than was that of the equivalent matrix with the other quantization

axis. In order better to understand the action of M, define

. 00 10 | 01 00
_ 0 0 01 _ 1 0 0 O
0100 0 010

so that M = M, — M. This decomposition separates M into two parts each of which
is block anti-diagonal. If not diagonal, these are at least deterministic in that if they
act on a single state in the path integral the result will not be a superposition of
states. Instead, the result will be another element of the basis in which the path
integral is being calculated. In fact, the insertion of either of these operators flips a
single spin in its passage sideways. M flips the lower one and M, flips the upper one,
as shown in fig. 4-8.

Because these matrices change spins, the physical configurations generated for
evaluating the expectation value of the sign — the denominator in eq. (2.23) — are not
directly usable for evaluating the integral in the numerator. For any insertion of an
M, those physical configurations lack the extra spins inserted between the transfer
matrix and the M.

However, although the spin configuration is not usable, the cluster configuration is
usable[12]. For the deterministic M, and Mj, a given cluster configuration — formerly
meaning a constraint on the lattice without any M — can be reinterpreted to mean

also a different constraint on the lattice with one inserted M.
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Figure 4-8: The effect of inserting the non-diagonal M, and M,;. These two matrices
respectively flip the upper and lower spin on a plaquette as it proceeds sideways after
the action of T.

The insertion of M, or M; at one plaquette on the lattice has the effect of flipping
one spin as it proceeds sideways. As a cluster crosses the site where an M is affecting
a spin, the orientation of the cluster changes. If it is aligned with the reference
configuration on one side of the insertion, then it is aligned against it on the other.
An example is shown in fig. 4-9.

Because only one M is inserted into the lattice at a time, there will be exactly
one such extra flip imposed on the lattice at a time. Closed clusters will therefore
produce no contribution, as the two parts of the cluster forced at the insertion to
be differently oriented will be connected elsewhere. When an open cluster passes
through the insertion the M will produce a contribution of % or —%, depending on
whether the insertion is at an upper or a lower spin. This contribution will, in turn,
be multiplied by the global sign.

Since merons come in pairs, the value of the improved estimator must be zero if
there are any merons. Although the insertion of an M may affect one meron, there
will always be another to flip and cancel out any contribution. Suppose, however,
that an insertion should happen to land in an open chain which has an even number
of signed segments. Suppose further that it should split the cluster into two halves
each of which has an odd number of signed segments. In such a case, no matter how
the cluster is flipped, half of it will be against the reference configuration and that

half will carry a sign. Hence there will be an extra sign.
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Figure 4-9: Computing an observable with the non-diagonal M,,. The insertion of
M, has changed the interpretation of the longer open chain. The chain still has just
two orientations, but where it crosses the insertion (==), the orientation changes.
Compare this to fig. 4-7, which has the same cluster configuration with no insertion.

Interpreting M

As with the previous choice of quantization axis, further geometrical interpretation
of the insertion of M can provide insight into the nature of the improved estimator.
Whenever cluster segments step horizontally in the direction of the chemical poten-
tial, the contributions accumulate. Whenever cluster segments step vertically, the
contributions cancel out. The contributions from M add up to measure a winding
number — this time of the loops which would result from reconnecting the open clus-
ters. An example in (14+1)D is given in fig. 4-10. The (241)D case is of course more
complicated, but the result is the same.

When the spins were quantized parallel to fz, the cluster algorithm is inefficient
because it is necessary for the clusters themselves to wind around the lattice in order
to change a winding number. At any finite correlation length, that is a rare event on
a large enough lattice, and so the update becomes less and less effective as the lattice
gets bigger. Now, with the spins quantized transverse to ﬁ, updating the relevant
winding number no longer requires a cluster which itself winds. Instead, many small

clusters may conspire to wind as a whole. Thus the original inefficiency is not present.
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Figure 4-10: Calculating the particle number when the quantization azxis is transverse
to the chemical potential, in (141)D. The signs on the grey transfer matrices indicate
the sign contributed by M, or M,. The signs in white circle indicate the final contribu-
tions from the improved estimator. On the closed cluster, there are no contributions.
On the open clusters, the sign contributed by M is multiplied by a sign from how the
cluster is split: if the site splits the cluster into pieces with an odd number of signed
segments, there is an extra sign. The contributions add up to measure the winding
number of the reconnected open clusters.

4.4.5 The Sign Problem is Solved

Quantizing the spins transverse to the chemical potential results in a sign problem.
By expressing the path integral in terms of a cluster algorithm, it is possible to bring
that sign problem under control. The structure of the cluster algorithm — breaking
down the transfer matrix in terms of breakups and bonds — provides a rich structure in
which to seek a solution. By expressing the global sign in terms of factors attributable
to each cluster and its respective orientation, an improved estimator for the sign can
be constructed. With that powerful tool in hand, the importance sampling ensemble
can be reweighted to use a more accurate notion of importance, and so an ensemble

useful for making measurements can be generated practically.
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Chapter 5

Numerical Results for (1+1+1)D
O(3)

The meron algorithm including the improved estimator for the particle number den-
sity described in section 4.4 was applied on successively larger lattices, and so numer-
ical estimates were generated for (V) as a function of h.

In this chapter, the physical extent of the spatial dimension of the 141 dimensional
O(3) theory shall be called L, the inverse temperature of the 141 dimensional system
shall be called L', and the extent of the third dimension — the inverse temperature of
the Heisenberg magnet — shall be called 3. The factor ¢ determining the quality of
the Trotter approximation is thus g where n is the number of time slices introduced
in the path integral.

For all the calculations in this chapter, the coupling constant of the magnet J —
redundant except for its sign — was taken to be 1. The mass gap m is determined by
as described in eq. (3.12). The actual value of m as thus determined was taken from
a numerical study of the correlation length £ = % in the Heisenberg antiferromagnet
[5], as was the value of the magnon velocity ¢ = 0.1657(2).

Except where stated otherwise, the value 5 = 2.5 was used. This corresponds to
¢ =6.23(1) and m = 0.160(5). This is a relatively modest choice for 3. Dimensional
reduction occurs in the limit in which £ > fe¢, but with this choice ¢ = 4.143, which

is only somewhat smaller than &.
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5.1 The Severity of the Sign Problem

In order better to understand the severity of the sign problem, the algorithm was
run without any reweighting, allowing merons to develop unhindered. The resulting
distributions of meron counts, plotted in fig. 5-1, make clearer the nature of the
problem. At very small lattice sizes, only a few merons will fit on the lattice, but,
once the lattice reaches reasonable sizes, the vast majority of the configuration space
is occupied by the higher meron count sectors. All configurations which make non-
zero contributions to the expectation value of the sign lie in the zero meron sector,
which comprises only a tiny fraction of the configuration space at a far end of one

tail of the distribution of meron counts.

L=IL=4 L=L =10
500 500
250 250 H
0 ”n T T T T T T T T 0 l‘”[l T T T T T T
0 40 80 0 40 80
L=L =20
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250
0 T T T rmm]n”]n-rh?’“ T
0 40 80

Figure 5-1: Meron distribution as a function of system size. The algorithm was run
for 1000 sweeps after 100 sweeps for thermalization at h = 0.15, for three (L,L')
PaITs.

To see the effect of the reweighting, the algorithm was run at progressively larger
values of the reweighting. The effect of the reweight is shown in fig. 5-2. For a reweight
factor of r, the weight in the distribution of a configuration with n,, merons was thus
artificially suppressed by a factor of r"™. Any contribution from a configuration with

merons would in principle need to be inflated by a corresponding factor. However,
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for both the quantities measured, all contributions in the non-zero meron sectors are
identically zero. Thus the reweight serves only to amplify the measured signal relative

to the statistical noise in the ensemble.

reweight 1 reweight 16
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Figure 5-2: The effect of reweighting on meron distribution in (14+1+1)D O(3) when
the quantization axis is transverse to the chemical potential. The algorithm was run
for 1000 sweeps after 100 sweeps for thermalization, at L = 10, L' = 10 and h = 0.15,
for three reweights, 1, 16, and 256.

5.2 Particle Number Density

The algorithm was finally run with full reweighting at several lattice sizes, and the
particle number density was measured as a function of chemical potential. A small
Markov step was used, in which a single plaquette was updated. A large composite
Markov step or sweep was made by sequentially choosing N, plaquettes at random
and updating them, where N, is the number of plaquettes on the lattice. The value
of the improved estimators for the particle number and sign were measured after each
sweep.

For each value of h on each lattice size, several runs were made in parallel. Each

run began with Ny, sweeps of the lattice without measurements in order to let
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the lattice thermalize. After this thermalization, Ngyee, Sweeps were made in total
across all parallel runs. These Ngyee, measurements were grouped into blocks of
Nest and an estimate was calculated from each block according to eq. (2.24). These

Newee agtimates were then averaged to yield a final data point, and their deviation

Nest
calculated to yield an error estimate. The block size of Ne was chosen to insure that

any autocorrelation would not cause the errors to be underestimated.

5.2.1 L=L =20

For the L = L' = 20 lattice, § = 2.5, and n = 50 were used, resulting in € = 0.05.
The data were generated using Niperm = 500, with Ngyeep = 8000 grouped by blocks
of Ney = 1600. The data calculated are listed in table 5.1, and plotted in fig. 5-3.
The meron algorithm successfully solves the sign problem; statistical errors are well
under control.

The validity of the Trotter expansion was verified by comparing — for a single value
of h — the result for e = 0.05 with a second calculation at €’ = £.

was 0.13, and at the stated ¢ = 0.025 the value calculated was (N) = 0.018 4 0.0005,

The value of h chosen

in which is indeed compatible with the value from the table of (N) = 0.019 £ 0.0010.

In order to check that the spatial discretization was sufficient, a data point was
generated at a longer correlation length on a correspondingly larger lattice. Referring
again to previously calculated values of the correlation length [5], § was chosen to
be 3.0 so as roughly to double &: at this value of = 3.0 the correlation length
is & = 11.60. At the same time, the number of sites in each spatial direction on
the lattice was doubled, yielding I = L' = 40. The same Trotter discretization of
e = 0.05 was used. A single data point was generated for at h = 0.055, yielding
(N) = 0.0065 £ 0.00045. This datum may be reinterpreted as a measurement for
L = L' = 20 with the lattice spacing a halved. In this interpretation, A would be
2 x 0.005 = 0.11, the correlation length would be % x 11.60 = 5.8, and the mass gap
would be m = 0.172(4). Correspondingly (N) would be 0.013 £ 0.00090. Thus the

lattice discretization has effectively been refined by a factor of two. The corresponding

estimate from the fermion gas model is (V) = 0.012.
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L=L=20 L=1"=30
(V)  [ANM) (V) [ADY)
0.01 0.00093 | 0.000068 || 0.00014 | 0.000047
0.03 0.0024 | 0.00022 || 0.00079 | 0.000066
0.05 0.0040 | 0.00023 || 0.0014 | 0.00012
0.07 0.0066 | 0.00035 || 0.0027 | 0.00014
0.09 0.0089 | 0.00044 || 0.0048 | 0.00032
0.11 0.014 0.0012 0.0082 | 0.00053
0.13 0.019 0.0010 0.0135 | 0.00048
0.15 0.028 0.0019 0.0236 | 0.00097
0.17 0.037 0.0014 0.0316 | 0.00094
0.19 0.047 0.0021 0.049 0.0015
0.21 0.054 0.0042 0.060 0.0018
0.23 0.073 0.0054 0.073 0.0023
0.25 0.085 0.0050 0.085 0.0023
0.27 0.100 0.0024 0.107 0.0012
0.29 0.11 0.011 0.119 0.0022

h

Table 5.1: Numerical results for the particle number density in (1+1+1)D O(3)

5.2.2 L=L =30

For the L = L' = 30 lattice § = 2.5 and n = 25 was used, resulting in ¢ = 0.1.
The data were generated using Niperm = 1000, with Ngyeep = 8000 grouped by blocks
of Ney = 1000. The data calculated are listed in table 5.1, and plotted in fig. 5-3.
Again, statistical errors are well under control. The validity of the Trotter expansion
was again verified this time with a second calculation at ¢ = § = 0.05. The value of
h chosen was 0.07, and at € = 0.05 the value calculated was (N) = 0.0027 £ 0.00022.
Again, this is compatible with the value in the table calculated at the larger value of

e = 0.1, (N) = 0.0027 £ 0.00014.
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Particle Number Response at f = 2.5 = m = 0.160(5)
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Figure 5-3: Numerical results for the particle number density at L = L' = 20 and
L = L' = 30. The solid line is the Bethe ansatz result for the L = L' = oo limit.
The upper and lower dashed lines are the dilute fermion gas estimates from eq. (3.31)
respectively for L = L' = 20 and L = L' = 30. Especially given that for this 3 the
system is not very far into the dimensionally reduced limit, the agreement with the
fermion and Bethe ansatz models is quite good.
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Chapter 6

Antiferromagnetic Spin Ladders in

a Magnetic Field

The 2 4+ 1 dimensional Heisenberg antiferromagnet has thus far been used because it
is a D-Theory formulation of 141D O(3) field theory, but it is an interesting system
in its own right.

The introduction of the chemical potential in the previous chapters was, there,
the cause of an inefficiency which could manifest itself as sign problem. However, the
modification made to the antiferromagnet’s Hamiltonian in order to add a chemical
potential to the dimensionally reduced theory had no direct interpretation for the
physical magnet. In fact, simply introducing a chemical potential directly to the
2+1 dimensional antiferromagnet causes a very similar inefficiency. Such a chemical
potential is physically realized as an external magnetic field.

When one of the two spatial dimensions of a two dimensional magnet is very small,
such a system is called a spin ladder. Such ladders in magnetic fields are yet another
strongly coupled system which encounters a sign problem when a chemical potential
is introduced. Thus this system is another good candidate for solving a sign problem

using meron techniques [18].
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6.1 The Physical System

A general antiferromagnetic Heisenberg spin ladder (with isotropic couplings) in a

magnetic field B is described by the Hamiltonian operator

with .J > 0, where L' < L.

Such spin ladders interpolate between one and two dimensional spin systems.
Wider ladders approach being fully two dimensional systems. Narrower ladders are
like one dimensional chains of spins — the spins on each rung of the ladder couple
together to form a larger effective spin.

The full 2+1 dimensional magnet — the case when both L and L' are large —
has been discussed in chapter 3. Its low energy dynamics are described by the three

dimensional effective action given in eq. (3.7):

B
Sle] =/ dt/d% % (@é -0 + Cl—gaté-até> (6.2)
0

For the other limit, the one dimensional case when L' = 1, Haldane conjectured
[30] that a one dimensional length L chain of spin-S spins at temperature 3 is de-
scribed by a similar continuum field theory, this time in 141 dimensions, with action

I L L I U SNURE AU N U
Sle] = ! cdt i dx 32 &Ce-axe—i-c—Qate-Ote +Ee-(8me><6te) . (6.3)

Here the coupling constant g is given by % = g for large S, and the vacuum angle
0 is given by 27S. For half integer spin and hence f = 7, this system has no mass
gap. However, § = 0 when the spin is an integer. In that case, after scaling out c,

this system is another version of the (14+1)D continuum theory described in chapter

_ 27

3, and it has a mass gap m x e 9.
As reviewed in [26], Haldane’s result has been extended to spin ladders: ladders

consisting of an odd number of transversely coupled spin 1/2 chains are gapless, while
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ladders consisting of an even number of chains have a gap [36, 49, 46]. If the number

of chains is kept even, these intermediate systems are described by the action

LI
/dt/ da:/ dy 2Dy - Opé + Oyé - 8e+ 8te 04€]. (6.4)

As L' — the width of the ladder — is increased (keeping the number of spins even),

the effective spin S of a step on the ladder increases and the gap m e = e

decreases exponentially. Thus the ladder behaves very much like a rotated version of
the system considered in the previous chapters — the ladder can be made to undergo
dimensional reduction. Previously, the extent of the third dimension was made small
in the physical units of the correlation length by increasing 5. Now, the extent of the
second direction — the width of the ladder — can be made small by increasing L'.
Introducing an external magnetic field has an analogous effect to the introduction
of the chemical potential to the 1+1 dimensional O(3) field theory in section 3.2.1.
The magnetic field is coupled to the magnetization — the conserved charge of the
global O(3) symmetry — hence it is a chemical potential. It is therefore introduced
into the continuum action (6.4) as a constant, imaginary, time-like gauge field. Section
3.2.1 introduced a chemical potential to a (14+1)D theory, so there “time-like” meant
the one of two directions — in that case the first. Here, the magnetic field B will be
introduced to a (2 4+ 1)D system, and so “time-like” will mean the third direction.

Thus the derivative 0;é will become 8té+i]§><é, and the continuum action will become

—

Sle] = /dt/dm/ [66 Og€ + 0yé - 864—%(6 +iBxeé)- (06 +iBxe)

(6.5)

As described above, for sufficiently large L' (meaning L' > £+) this system will
undergo dimensional reduction, and the correlation length will become large compared

to L'. At that point, y may be integrated out of eq. (6.5). The result is an effective
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action for a 1+1 dimensional O(3) field theory:

bt p L 1 " o
S[é]:/dt/dx 3 {8zé-axé+g(6té+i3xé)-(6té+z'B><é) . (6.6)
0 0

Comparing this action to eq. (3.17), one can see that the original (1+1)D theory with
chemical potential will be recovered if g% = ”STU and h = % With this identification
in mind, the exact results listed in section 3.2.3 can be used for comparison with
numerical results for the dimensionally reduced limit of the spin ladder, just as they

were for the previous algorithm.

6.2 Constructing a Cluster Algorithm

In the absence of a magnetic field, antiferromagnetic spin systems can be simulated
with the loop cluster algorithm described in section 4.1. As in chapter 4, there is a
choice of axis for quantizing the spins. Quantizing along the magnetic field changes the
weights of clusters which wind; quantizing transverse to the field causes the cluster
loops to break open. The details from which these properties arise, however, are
different because the magnetic field acts in the same direction as the Hamiltonian.
Thus the construction of cluster algorithms for the antiferromagnet in a magnetic field

is another instructive example of the application of merons to solving sign problems.

6.2.1 Introducing the Field

As shown in eq. (6.1), the introduction of the magnetic field adds a term to the
Hamiltonian. Because of this simple additive structure, the only change which needs
to be made to the path integral is the introduction of an additional slice in the Trotter

decomposition. The decomposition given in eq. (2.2) is modified to become

e B — o= To [T, ot ] o [H <H eem’“)] HeiEH””. (6.7)
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Figure 6-1: A (141)D lattice with a extra slices inserted for the action of B. The
operators T act on plaquettes, but the operators M act just on time-like links.

Here z represents all spatial coordinates. H has been decomposed into a bond in-
teraction term H, , for the bond between z and z + p, and a local term H,. The
result of adding the magnetic field is thus to add an extra slice to the lattice after
each set of slices for a given value of . The form of the partition function used for

these simulations will thus be

o~ [l

(H Tt,w> I Mm] . (6.8)

st

Here M sits in the new time slice — i.e.

Mt,m - <wt+1,+i,x‘Mt,m|wt,fg),m>- (69)

The structure of this modified lattice is shown in fig. 6-1.
The transfer matrix T is not modified by the introduction of the field — it is still

given by eq. (4.6), and it will still be decomposed into breakups according to eq. (4.5).
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The operator M, arises directly from the new —B-S term:
M = B, (6.10)

Quantizing Parallel to the Field

When the quantization axis is chosen to be parallel to the field, M is given by
M = B8 = o773 = . (6.11)

Because this M is diagonal, it does not change the shapes of the clusters. There
is only one breakup for the M links, and it bonds the bottom site to the top site.
Instead the weights of the different orientations for clusters which wind around the
time direction must change.

The magnetization induced by the magnetic field is proportional to the difference
between the total number of up spins and down spins. The world line interpretation
discussed in section 4.3.3 is again valid for this choice of quantization, because the

Hamiltonian again commutes with the magnetization along the quantization axis:

H,Zggl = [(JZS,E@W—BZS;’;) ,ZS’;’] (6.12)

=7 [sis],,. S} -0 (6.13)
T,H,2

=J Z HSZM Si} otp T Sa [S]:f:wgﬂ] (6.14)
Zogirt

—J Z i€*'SLST, , + Skiet s, | (6.15)

= JZ SmSiﬂt | (i€?® + i) (6.16)

= 0. (6.17)

In terms of the world lines, the magnetization is proportional to the difference between

the number of spin up world lines and spin down world lines. Just as in the analogous

85



situation in chapter 4, the weights appearing for winding clusters arise because it is
these clusters which change the magnetization.

Using this choice of quantization axis leads to the same sort of problem as oc-
curred in section 4.3. As the lattice becomes larger in the time direction, it becomes
increasingly rare that such winding clusters exists. The algorithm is not efficient at

updating this winding number, despite its physical significance.

Quantizing Transverse to the Field

When the quantization axis is chosen to be transverse to the field, M can be given

by!

. cosh (£2) sinh (£
M = 6<—:BSl 6730'1 — ( 2 ) ( 2 ) (618)
sinh (%) cosh (%)
_e3 10 . eB 11
=€ 2 |:0 1]+Slnh<7>[1 1:|, (619)
or expanding to first order in e,
[ 1 £ -‘ eBY[1 0 eB[1 1
~Y 2 P — _— [
o T R N R

The appearance of non-zero off-diagonal elements in this matrix signals the breaking
of the clusters. Now there are two breakups for the M links; the sites may be bonded or
not, as shown in table 6.1. The simple structure of this decomposition is summarized
in table 6.2.

Because the clusters can now break open, the argument for the cancellations used
when the clusters were closed loops fails again. A typical configuration for a 1+1
dimensional version of this system is shown in fig. 6-2. The horizontal breakup still
has its signs, and so the horizontal bonds still change the global sign when they are

flipped. Thus, with open clusters in which there can be any number of horizontal

'As with h in chapter 4, B shall be taken to be positive w.l.o.g.
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Matrix Diagram Allowed configurations

I
N

Table 6.1: The bonded and unbonded breakups for the extra slice in the Heisenberg
antiferromagnet in a magnetic field. None of these breakup segments have signs as-
sociated with them.

o
[ I
]

—

| — |
—

Typical Total I i
Spins Weight

eB eB

=5 7

<—>
o3
_I_

Table 6.2: The assignment of weights to the breakups for the extra slice in the anti-
ferromagnetic Heisenberg model. The structure is the same as in table 4. 2.
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Figure 6-2: A typical cluster configuration for the antiferromagnetic Heisenberg model
with magnetic field B when the spins are quantized along an axis transverse to B. This
configuration has two merons, one of which is oriented against the reference configu-
ration, hence its global sign should be negative. Flipping the cluster has flipped three
horizontal segments carrying minus signs. This in turn has resulted in three pla-
quettes changing from the reference configuration to configurations which have signs.
All other plaquettes contribute positive signs. The product of these signs is indeed
negative, hence the meron calculation is correct.

bonds, there may be merons. However, because the global sign can still be written in
terms of merons, the meron cluster algorithm again suffices to solve the sign problem.

This situation is very much analogous to that described in section 4.4.3.

6.3 Numerical Results

The meron algorithm for the spin ladders thus designed was implemented by S. Chan-
drasekharan and applied on several lattices, and numerical estimates were thus gen-
erated for the magnetization [18]. In order to demonstrate the inefficiency of the loop
cluster algorithm which results from quantizing the spins on an axis parallel to the

field, that algorithm and the meron algorithm were compared on a relatively small
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lattice. The meron algorithm was then run on two larger lattices and used to generate
estimates of the magnetization which can be compared with the known results from

(1+41)D O(3).

6.3.1 The Inefficiency of the Loop Algorithm

Both the loop algorithm and the meron algorithm were run on lattices with L =
L' = 8, and 3J = 10. The lattice was initially configured so as to have a large
magnetization while the field was kept relatively weak. The moderate field was chosen
so as to instigate an inefficiency, but not to support the very strong magnetization
of the initial configuration. As each algorithm runs, the configuration of the lattice
progresses toward thermal equilibrium and so the initial magnetization fades. The
inefficiency of the loop algorithm is clear in that the number of sweeps required
for the initial extreme magnetization to fade away is very large. In comparison,
the magnetization equilibrates almost immediately using the meron algorithm. The
magnetization is plotted as a function of the number of sweeps for the two algorithms
and for two different values of the field in fig. 6-3. For the latter of the two cases,
when B = J, the loop algorithm takes more than 100000 sweeps to reach equilibrium
while the meron cluster algorithm has no thermalization problem.

By comparing the graphs one can see that the inefficiency of the loop algorithm
becomes worse as the strength of the field grows. It is true that the loop algorithm can
work tolerably when the magnetic field is very weak. However, as the field becomes
stronger the loop algorithm becomes grossly impractical and in order to proceed it is

necessary to use another method, such as the meron algorithm.

6.3.2 Comparison with (1+1)D O(3)

The meron algorithm was run to evaluate the response of the magnetization of the
spin ladder to the magnetic field for two different lattice sizes. Values of € were
chosen small enough that the results generated are indistinguishable from the time

continuum limit within statistical errors.
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Figure 6-3: A comparison of thermalization between the two choices of quantization
axis for the Heisenberg quantum antiferromagnet in a magnetic field. The magneti-
zation is shown with solid lines for the meron algorithm used when the quantization
axis is transverse to the field, and with dashed lines for the loop cluster algorithm used
when the quantization axis is parallel to the field. The first graph is for a magnetic
field B = 0.75J and the second graph is for B = J.
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20 | 15 | 0.075 | 0.10 | 0.0048(4)
20 | 15 | 0.075 | 0.20 | 0.0184(4)
20 | 15 | 0.075 | 0.30 | 0.0452(8
20 | 15 | 0.075 | 0.40 | 0.086(2)
)
)

20 | 15 | 0.075 | 0.50 | 0.120(4
20 | 15 | 0.075 | 1.00 | 0.324(4
20 | 15 | 0.075 | 2.00 | 0.76(2)
20 | 15 | 0.075 | 3.00 | 1.280(8)
20 | 15 | 0.075 | 4.00 | 1.93(3)
20 | 15 | 0.075 | 4.20 | 2.000(8)
20 | 15 | 0.075 | 4.40 | 2.000(8)
40 |24 | 0.08 | 0.10 | 0.00104(8)
40 | 24 | 0.08 | 0.20 | 0.0096(6)
40 |24 | 0.08 | 0.30 | 0.042(2)
40 |24 | 0.08 | 0.40 | 0.085(3)
40 |24 | 0.08 | 0.50 | 0.117(7)
(4)

40 | 24 | 0.08 | 1.00 | 0.332(4

(a)

Table 6.3: Numerical results for the magnetization density ~—+ for two lattice sizes
(L =20, BJ=15) and (L =40, 8J = 24). In both cases L' = 4.

Using the inverse correlation length m = 0.141(2) from [48] and the magnon
velocity ¢ = 1.657(2) from [5], the results calculated with the meron algorithm can be
compared to the known exact results both for the infinite volume zero temperature
limit and for finite size and temperature. The data generated is summarized in table
6.3, and shown in fig. 6-4. Considering that the data were generated on lattices with
L' = 4 while the analytic expressions were derived in the large L' limit, the agreement

of the numerical data with the theoretical results is quite remarkable.
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Figure 6-4: Magnetization density (M')/L of quantum spin ladders consisting of
L' = 4 coupled chains as a function of the magnetic field B. The numerical data are
for two systems: one of size L = 20 at inverse temperature 3J = 15 (circles) and the
other for L =40 at BJ = 24 (diamonds). The solid curve is the infinite volume, zero
temperature analytic result, while the two dashed curves are finite volume, non-zero
temperature analytic results for the two simulated systems in the small B region. The
dotted curve represents saturation of the magnetization per spin at 1/2.
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Chapter 7

Conclusions

7.1 Summary and Interpretation

Monte Carlo integration is the most effective tool currently available for studying
strongly coupled systems, but the introduction of a chemical potential to these sys-
tems renders the traditional formulation of this tool ineffective because of complex
action problems. The class of physical systems for which numerical study is thus
unavailable includes both systems which are ubiquitous — such as finite density nu-
clear matter — and systems which are potentially of great utility — such as high T,
superconductors. The lack of effective tools for studying strongly coupled systems in
the presence of chemical potentials is thus a significant hindrance because it obstructs
the understanding of important physical systems.

In an effort to understand this hindrance and learn how to circumvent it, two
similar models which exhibit sign problems — but are otherwise well understood —
were chosen for study: the D-Theory representation of 1+1 dimensional O(3) field
theory with chemical potential and the Heisenberg quantum antiferromagnet in a
magnetic field. These models provided an arena in which the sign problem could be
attacked without the distractions inherent in more complex systems. With the sign
problem thus separated from other difficulties in a limited environment in which the
arsenal of cluster techniques could be brought to bear, it was possible to eliminate

the problem completely.
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Both of the models considered can manifest their inefficiency in different ways
depending on the choice of the quantization axis.

An axis parallel to the chemical potential appears at first to be the most natural
choice; the particle number is then measured with a diagonal operator and the relation
between the spins on the lattice and the charge coupled to the chemical potential
is readily apparent in terms of spin world lines. This choice, however, does not
sufficiently involve the chemical potential with the cluster algorithm. Unless a cluster
happens to be constructed which winds around the lattice, the chemical potential does
not enter a simulation at all. Thus the algorithms which result from this choice of
quantization axis are not efficient — they encounter severe autocorrelation problems.

If, instead, the spins are quantized along an axis transverse to the field, the world
line interpretation fails and a sign problem is introduced. Without meron cluster
techniques, this sign problem renders this choice of quantization axis as inefficient as
the previous one. However, by decomposing the global sign in each configuration in
terms of factors attributable to individual clusters, the sign problem can be brought
under control. All cancellation can be forced to occur explicitly, and thus the cor-
ruption of the importance sampling ensemble introduced with the sign problem can
be eliminated. With an accurate weight thus assigned to each configuration — one
reflecting the configuration’s final significance — importance sampling can proceed
unimpeded. Thus is the sign problem solved.

The meron technique has proven to be very effective. The data generated mea-
suring the particle number and magnetization using the meron algorithms match the
corresponding theoretical predictions quite well, and statistical errors are well under
control.

This investigation of the nature of sign problems has proven to be very fruitful.
For the first time, a severe sign problem which appears because of a chemical potential
has been completely solved. The considerable precision and accuracy of the numerical
data generated by the meron algorithm attests to the effectiveness of the meron
technique.

This success can be taken as evidence not only that sign problems can be solved
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using meron clusters, but more broadly both of the power of cluster techniques in
general and of the validity of D-Theory. The algorithmic flexibility to be gained by
using cluster techniques to represent physical systems is not to be underestimated.
Moreover, the D-Theory construction used to apply the cluster techniques to the
(1+1)D O(3) model — despite its apparent complexity — has been demonstrated to
work as intended, finally producing numerical results in accordance with the original

continuum theory.

7.2 Future Directions

Having solved a sign problem and thus simulated these simple systems at non-zero
chemical potential, one would like next to apply the techniques developed here to more
immediately relevant examples such as QCD and the Hubbard model. At present,
the tools presented in this thesis and the associated cluster technology is not yet well
enough developed to solve the complex action problems in those systems.

QCD as yet lacks an efficient cluster algorithm, and so the framework for applying
meron methods is incomplete. There are D-Theory formulations for QCD in particular
and for gauge theories in general [13, 19], but so far attempts to construct an efficient
cluster algorithm for the simplest case — U(1) gauge theory — have not met with
success. That obstacle is the next challenge along the route to applying the methods
presented here directly to simulate dense quark matter. Even with that obstacle
remaining, the lessons learned in this study should provide a useful vantage point
from which to understand the complex action problem in QCD. The fundamental
notion of eliminating the false measure of importance in a Markov process by using
improved estimators is more general than the meron cluster techniques which have
been used in this thesis to implement that notion. Thus even if it should turn out that
these techniques are not applicable in whole then they may well still be applicable in
part.

The Hubbard model in the presence of a chemical potential, which may be usable

to model high T, superconductors, also suffers from a sign problem. For the case

95



of interest for superconductors — when the fermions in the model are repulsive — it
is possible to construct a cluster algorithm and attribute sign changes to merons,
but in the constructions currently known the resulting clusters do not conform to
a reference configuration. Without a reference configuration, an absence of merons
does not necessarily imply the global sign is positive. Thus merons can not be used
to solve this sign problem until either the present understanding of the necessity of a
reference configuration is extended, or a different cluster algorithm for the model is
found.

The realm of possible algorithms based on the cluster concept is large and as
yet only a small fraction of it has been explored. There is a good deal of flexibility
in the construction of cluster algorithms, and there are many potential avenues to
investigate. The notion of a reference configuration, for instance, is quite narrow as
used here. In frustrated systems — such as the triangular lattice antiferromagnet —
there is no reference configuration as they are currently understood. There may well
be some more general idea which can be used in more cases. Similarly, the bonds used
in the cluster models in this thesis were very restrictive — given two bonded spins and
a state for one of the spins, the state of the other is completely determined. Loosening
restriction may well allow the construction of cluster algorithms for a broader class of
systems. The more the applicability of cluster methods can be broadened, the greater

the range of models in which the meron concept can be used will grow.
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