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Abstract: The 800 MHz superconducting cavities with grooved beam pipes were suggested as
one of the harmonic cavities design options for High Luminosity LHC project. Cavity
simulations were carried out and scaled aluminium prototype having operational mode
frequency of 2400 MHz was manufactured for testing the results of simulations. The
experimental measurements of transverse shunt impedance with error estimation for higher
order modes TM,,, and TE;;, for S-band elliptical cavity were done. The experiments using
dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor
measurements for two-cell structure and array of two cells were carried out.

1. The influence of various factors on frequency and Q-factor measurement in the 2400
MHz prototype of superconducting harmonic cavity

Despite the high accuracy of modern electromagnetic field dispersion in cavities simulation software it
is still necessary and important to manufacture a prototype of the structure under development in order
to measure its electrodynamics characteristics (EDCs) of both operational and higher order modes [1-
4]. In order to provide precise frequency fj, Q-factor and shunt impedance measured values various
factors should be taken into account, namely the specific pressure at the junction points of the sections,
the surface roughness, the temperature and the immersion depth of the exciting and receiving RF
pickups. This paper consists of three parts: the first one is devoted to the experiments analysis of the
pressure, position and penetration of probes into the cavity influence. All measurements were made on
the scaled 2400 MHz harmonic cavity model built for testing the damping efficiency of the method
proposed for the High luminosity LHC project [5-8]. The second part presents the experimental and
calculated field dispersion analysis results obtained by bead pull measurements. Results of the Q-
factor measurements for the two cell cavity structure are presented in third section.

1.1. Pressure influence

Measurements were done with Vector network analyzer Agilent 8753ET. The modes of interest are
TMy10, TE;1; and TM,y (figure 1). Pickups used for modes excitation are shown on figure 2. The Q-
values were measured by common 3 dB bandwidth method (1), where f; is the frequency of the mode
and Af is the bandwidth corresponding to -3 dB drop in transmission:

QL= fo/Af M)
The accuracy of the frequency measurements with analyser is less than 1 kHz resulting in precision
of10™* %.

IOP Publishing
doi:10.1088/1742-6596/941/1/012089

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1


http://creativecommons.org/licenses/by/3.0

IIT International Conference on Laser and Plasma Researches and Technologies IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 941 (2017) 012089 doi:10.1088/1742-6596/941/1/012089

In order to ensure the good contact between different parts of the model it was tested in the test
bench equipped with hydraulic press. On figure 3 operational mode TMyy specific pressure on Q-
factor dependency is presented, on figure 4 frequency dependency is presented. Saturation region can
be found on the graph between the values of ¢ = 160 + 200 kg/cm’. All measurements were done at
the pressure close to 180 kg/cm’.
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Figure. 1. Field dispersion of TMy,,, TE;;; and TM;;y modes: Figure. 2. Cavity with the location
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1.2. Electric (probe) and magnetic (loop) pickups penetration depth influence
The influence of the probe penetration depth on f and Q; was determined, as well as the dependence
of the loaded Q-factor on the loop rotation angle with respect to its axis. Measurements were made for
a loop and a probe. TM,,y and TE;; modes are weakly excited by the probe. In the place where the
probe is located it is not possible to create the necessary configuration of the electric field lines (figure
2). Therefore the electric probe was used for fundamental mode study whereas the loop pickup was
used for dipole waves EDCs measurements. The loaded Q-factor measured using a loop features non-
linear variation. So the influence of the loop rotation angle relative to the axis, on the loaded Q-factor
was measured (figure 4).
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The dependence shown on figure 5 is close to linear one with the slope coefficient of the straight
line % =30 deglree. Figure 5 (a) illustrates the frequency f, dependence on the probe penetration
depth I for TMy49, TMy1o and TE,;; modes at different locations of the probe (0 and 2 mm penetration
depth). At Fig. 5b penetration depth dependence on Q; is presented. Rotation angle precision is
Ag = +5° resulting in 4Q, = +150 and the length depth Al = +0,05 mm. At figure 5 Af (1) and

Q. (1) graphs taking into the account precision of the probe position are shown.
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Figure. 5. Dependences: (a)Af (1), (b) Q. (D).

Small perturbation theorem states that the perfectly conducting body introduced into the cavity
could affect the frequency in two ways: first by disturbing the electric field and decreasing the cavity
frequency, and second by disturbing the magnetic field leading to frequency increase. As it could be
seen on Figure 5 the operational mode frequency increases with the introduction of a probe into the
cavity, and the dipole waves frequency decreases. As a consequence of the theorem on small
perturbations and from the dispersion of the electromagnetic field for the operational mode
consideration, the probe interacts with magnetic field and with the electric field for the dipole waves.
With decreasing of the coupling pickup penetration the external quality factor increases; in accordance

with the known expression Qi = Qi + Ql the measured loaded Q-factor will be closer to Q,, which
L 0 ext

we compare with the simulation results. Table. 1 shows the values of the loaded Q-factors @, and the
frequency of the modes under study with the minimal influence of the coupling elements.

Table 1. Results of the experiment and simulation

Mode TMy1o TM;1g TEi1;
Frequency, MHz (calculated) 23114 3457,0 4000,9
Frequency, MHz (measured) 2315,9 3455,7 4006,7
Q, (calculated) 13900 16500 16700
Q,; (measured) 10000 £ 200 11400 + 230 6000 + 120

2. Shunt impedance measurements in single cell 2400 MHz cavity
The transverse impedance 1, /Qo measurements could be done with two methods: direct integration of
transverse magnetic Hy,- and electric E,. field components (2) and Panofsky-Wenzel theorem (3):

Toni |i 1o fol H,,.(z) exp(ik,z) dz — fol E.(2) exp(ik,z) dz : @)
Q (w-W)-1 ,
Tshi _ fol a%z(Z) exp(ik;z) dz 3)
Qo (w-W)-1
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where c is the speed of light, u, is the magnetic constant, k, = 2m/A is the longitudinal wave factor,
w = 2-m- f isthe wave frequency, W is the stored energy, [ is the length of the structure.
The field distribution can be found using the perturbation theorem [9]:

Afes(2) Ef(2) Ef(2)
o ke Wk @
Afms(2) _ _kfnlEtzr(Z)_l_ k#llthr(Z) _kE EZZ(Z)+ et HZ (2) )

0 w w mll ml
Af.sand Af,,s — are the frequency perturbation by ceramic and metal beads, k — transverse or
longitudinal form factor for electric or magnetic field.

The electric field component can be easily measured by the ceramic bead because they do not
perturb magnetic field. The magnetic field can be obtained as a difference between measurement
results with metal and ceramic beads. The simulations were done for several perturbing beads in order
to define the optimal combination of bodies to establish the most precise values of rgy /Qg. Form
factor values for different beads are presented in Table 2.

Table 2. Formfactors of the perturbing beads

Formfactor ceramic sphere metal sphere metal ring
k% -1072° m?2s/Ohm 1,97+0,02 2,32+0,03 1.92
k(i - 1072%, m?s/Ohm 1,97+0,02 2,32+0,03 0.09
k- 10715 m? -s:Ohm NA 1,73+0,03 1.36
ki - 10715, m? -s-Ohm NA 1,73+0,03 0.01

While evaluating the measurement results the frequency, Q-factor and phase measurement error,
bead form factor uncertainty and bead off-axis misalignment were taken into account. The total
measurement uncertainty lies well below 8% of those bead off-axis misalignment introduces the most
contribution. The simulation and measurement results of Af/f; are presented in figure 6. The
comparison of measured and simulated field distribution of field components presented in figure 7.
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Figure 6. Af / f,for metal sphere and ceramic sphere for TMy;4 (a,b) and TE;y; (c,d). Straight line —
measurements, dotted — simulations.
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Figure 7. (a) Magnetic and (b) Electric field distributions for ring bead for TE; 1, and TM;,. Red —
simulation, black — measurements.
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Shunt impedance values obtained experimentally using two methods mentioned above (namely
Panofsky-Wenzel referred as P.-W. hereafter and direct integration one) are summarized in Table 3.
As one could see all these results agree well.

Table 3. r,./Q simulation and measurements results on TM;oand TE;;; modes

Mode TMy1o TEiu
MS+CS MR+CS
Simulation (direct integration) 985 43,4
Simulation (P.-W.) 985 42,9
Measurements (direct integration) 788 35,4 48,2
Measurements (P.-W.) 717 32,9 NA

3. Q-factor measurements for two-cell and array of cells structure

The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the
harmonic cavities design options [10] for HL-LHC project. Simulations showed that it is possible to
achieve Q-factor values in a structure with grooved beam pipe lower than 100 for the most dangerous
dipole modes and 1000 for modes with higher frequency. The results obtained in Multi-P program [11]
showed that this structure is free of multipacting discharge [12].

Q-factor measurements were made for a structure consisting of two cells connected by a narrow
drift tube and two corrugated tubes at the sides (figure 8). Q-factor measurements were also made for
two-cell cavity with corrugated drift tube (figure 9) which might be an interesting option for Future
circular collider . To reduce the Q-value of dangerous dipole HOMs, damping ferrite rings were added
at the ends of the drift tubes. Figure 10 presents the results of an experiment on loaded Q measurement
in a structure with ferrite rings and without rings.

The damped Q-factor for most of HOMs is less than 1000, except for a few modes indicated by the
numbers on the chart. However, those HOMs have low R/Q values and therefore could be treated as
inessential with respect to their influence on beam dynamics. All other HOMs were damped well
below the sensitivity of the analyzer. The fundamental mode loaded quality factor after damping
changed insignificantly.

Figure 8. Two separated cells structure with Figure 9. Two-cell cavity with corrugated beam
corrugated beam pipes. pipe.
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Figure 10. Q values for (a) two cells separated by beam pipe; (b) two-cell cavity with drift tubes
connected. Blue — Q-factor without damping ferrite rings in the drift tube, red - Q-factor with ferrite
rings. 1 — dipole mode trapped in beam pipe between cells; 2,3,4 — quadrupole HOMs; 5,6,7 —
sextupole HOMs.

Conclusion
The field dispersions obtained with bead pull measurements as well as measurements of transverse
shunt impedance for higher order modes TM;,y and TE;,1 for S-band elliptical cavity are in a good
convergence with simulation results. For the manufactured two-cell and array of two cells aluminium
prototypes results of loaded Q-factor measurements of higher order modes are also agree with a
simulation results.

This project is supported in part by the MEPhI 5/100 Program of the Russian Academic Excellence
Project.
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