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Faculty of Engineering, Final International University, North Cyprus via Mersin 10, Kyrenia 99320, Turkey;
sara.kanzi@final.edu.tr

Abstract: The present paper investigates the greybody radiation of a general metric includ-
ing the significant black hole parameters. The fraction of Hawking radiation (HR) that
succeeds in achieving infinity is known as “greybody radiation” or transmission probability.
In this study, the focus is on the black hole parameters by which greybody radiation could
be affected, such as electric and magnetic charges “e” and “g”, respectively, cosmologi-
cal constant “Λ”, and Taub-Nut “l”. In this regard, we use the nonrotating form of the
improved Griffiths–Podolsk (NRIGP) metric which contains the factors “Λ, l, e, g”, all in
a single metric. This study allows us to observe the behavior of the scalar perturbation
and greybody radiation of each indicated parameter in the presence of the other variables.
The spacetime around the black hole behaves as a barrier for particles, and the greybody
factor strongly depends on the black hole potential barrier. Therefore, we first studied the
scalar perturbation and evaluated the actions of the effective potential by the regarded
parameters. The depicted figures for variables such as magnetic charge “g” confirm the
consistency between the effective potential and the greybody factor. In this area of study,
symmetry plays an essential but hidden role. In the current study, we also consider that all
the particles around a black hole have the same symmetry.

Keywords: Hawking radiation; greybody factor; effective potential; Klein-Gordon equation

1. Introduction

Classically, a physical body that absorbs complete incident electromagnetic radiation is
known as the black body, a body that also emits maximized thermal radiation. A semi-black
body that does not perfectly absorb and emit radiation is called a greybody and is measured
between zero and one.

In the quantum gravity framework, black holes can also emit from their event hori-
zon, known as Hawking radiation, which was proposed by S.W. Hawking in 1974 [1,2].
Some pairs of particles near the horizon might be disjoint, as shown in Figure 1; thus,
one with negative energy falls into the black hole, and the other one with positive energy
escapes to create Hawking radiation. However, a fraction of the Hawking radiation an
observer receives at infinity is called the greybody factor, which differs from an initial black
hole spectrum. Therefore, the greybody factor of the black hole is a parameter that ex-
presses the deviation of Hawking radiation from pure blackbody radiation and depends on
the frequency.
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Figure 1. A simple schema of Hawking radiation when some pairs of particles around the horizon are
separated, some with negative energy fall into the black hole, and some escape as Hawking radiation.
The blue and red colors differentiate the particles of a pair.

Greybody radiation can also be used as a scale to estimate black hole evaporation.
The difference between the black hole’s black body and greybody is that the black body
factor is defined by the possibility of the particles being created in the area of a horizon,
and the greybody factor is the probability that the particles infiltrate the potential barrier
(nontrivial spacetime surrounding a black hole) and escape to infinity. Potential barriers on
the outer side of the horizon act as a filter that depends on the frequency; some radiations
reflect into the black hole, and some transmit to infinity. Black hole dissipation is expressed
via linearized wave equations, which, indeed, determine the symmetrical perturbation of
the particles in the black hole. Therefore, in black hole geometry, the equation representing
particle perturbations can be given as a one-dimensional Schrödinger-form wave equation.
There are several techniques and investigations for computing the greybody factor, taking
different choices of black hole solutions, such as the evaluation of the scalar field excitations
impact on the greybody factor of the Myers–Perry black hole [3], the greybody factor of 5− d

rotating black hole [4], higher-dimensional black holes with the different cosmological con-
stant in low-frequency regime [5], charged rotating black hole in the frame of quintessential
energy [6]; in this context is also [7], in the framework of the Bumblebee gravity model [8,9],
in dRGT massive gravity [10,11], in the brane-world black hole [12], and also [13].

The emitted spectrum near the horizon is identical and contains important information
about the black hole’s physical structure. Therefore, investigating this area could be a
promising way to obtain information from the black hole puzzle, and it is still at the center
of attention [14–23].

The impact of the significant parameters in the greybody factor is mostly evaluated
separately in the literature. Motivated by the above works, in this study, we aim to consider
the impression of all important arguments like magnetic and electric charges “g” and
“e”, cosmological constant “Λ”, and NUT parameters “l” in a single metric. For this aim,
we consider the nonrotating improved form of the Griffiths–Podolsk (NRIGP) metric
introduced by Podolsky and Veratny [24]. The improved form of the Griffiths–Podolsk
metric is a complete group of exact black hole spacetimes of algebraic type D, containing
any cosmological constant [25]. This class was founded by Debever in 1971 [26], expanded
by Plebanski and Demianski in 1976 [27], and then reformulated in a more convenient form
by Griffiths and Podolsky in 2005 [28].

The improved form of the metric enables us to investigate and evaluate various
properties of a large family of rotating (Kerr), charged (Reissner–Nordstrom), accelerating
black holes (Kinnersley–Walker), and cosmological constant (Kottler–Weyl–Trefftz).
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In this paper, we restrict ourselves only to the nonrotating and nonacceleration forms
of the improved Griffiths–Podolsk metric, which is abbreviated as “NRIGP”.

The construction of the paper is as follows; after a brief review of the general improved
form of the Griffiths–Podolsk and NRIGP metrics in Section 2, we study the scalar pertur-
bation to derive the effective potential via the 1 − d Schrödinger-form wave equation by
utilizing the massive and charged Klein-Gordon equation in Section 3. In Section 4, we aim
to evaluate the greybody radiation of the NRIGP metric via the semianalytic method by
taking advantage of the results in Section 3, and, finally, we provide the conclusion in
Section 5. Throughout this paper, the signature (−,+,+,+) and geometrized units
C = G = 1 are used.

2. The Improved Griffiths–Podolsk Metric

In this part, we plan to summarize the new metric representation of the complete
group of black holes held in the spacetime of the Plebanski–Demianski (they expressed a
combination of a large group of Einstein-Maxwell electro-vacuum (algebraic type D) solu-
tions [29], containing Taub-NUT spacetime, Kerr-Newman black hole, and (anti-)de Sitter
(AdS) metric) [27]. The Plebanski–Demianski model was boosted by Griffiths and Podolsky
as a set of accelerating and rotating charged black holes, including a NUT parameter [28].
In a new improved form in Ref. [25], authors demonstrated the Plebanski–Demianski
model in a more convenient form and introduced a modified set of the mass and charge
parameters of the Griffiths and Podolsky metric.

The exact black hole solutions such as Schwarzschild and Reissner-Nordström are
spherical/axially symmetric and affiliated to a general group of type D spacetime but still
do not belong to the Plebanski–Demianski class of solutions. The Plebanski–Demianski
solution contains the Kerr–Newman and Kerr–NUT, the Schwarzschild and the Reissner–
Nordström, and the acceleration black holes.

This paper also uses the new improved metric of Griffiths and Podolsky containing
the cosmological constant [25]. In order to have a more straightforward computation, we
consider the nonrotating and consequently nonacceleration cases of the improved form of
the Griffiths–Podolsk (NRIGP).

The new improved metric representation found by Griffiths and Podolsky [28,30,31] is
given by [25]

ds2 =
1

Ω2

(

− 1
ρ2 (Q − Pa2sin2θ)dt2 +

ρ2

Q
dr2 +

ρ2

P
dθ2 +

B

ρ2 dφ2 +
2C

ρ2 dtdφ

)

(1)

where

B = P sin2 θ(r2 + (a + l)2)2 − Q(a sin2 θ + 4lsin2 1
2

θ)2 ,

C = 4Ql sin2 1
2

θ + Qa sin2 θ − Pa sin2 θ(r2 + (a + l)2), (2)

with the following expressions:
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Ω = 1 − aα

a2 + l2 r(l + acosθ) ,

ρ2 = r2 + (l + acosθ)2 ,

P = 1 − 2(
aα

a2 + l2 m − Λ

3
l)(l + acosθ) + (

a2α2

(a2 + l2)2 (a2 − l2 + e2 + g2) +
Λ

3
)(l + acosθ) ,

Q =
[

r2 − 2mr + (a2 − l2 + e2 + g2)
]

(

1 + arα
a − l

a2 + l2

)(

1 − arα
a + l

a2 + l2

)

− Λ

3
r2 ×

(

r2 + 2alrα
a2 − l2

a2 + l2 + (a2 + 3l2)

)

, (3)

in which parameters m, l, g, e, a, α, and Λ represent the mass, NUT, magnetic charge, electric
charge, rotating, acceleration, and cosmological constant factors, respectively.

The electromagnetic field is expressed by Maxwell tensor as Fab, creating a differential
electromagnetic four potential 1-form F = dA, in which 2-form is F = 1

2 Fµνdxµ ∧ dxν, and
A = Aµdxν, given by

A = − er + g(l + a cos θ)

r2 + (l + a cos θ)2 dt +
(er + gl)(a sin2 θ + 4lsin2 1

2 θ) + g(r2 + (a + l)2) cos θ

r2 + (l + a cos θ)2 dφ. (4)

Thus, the nonzero components are

Frt = ρ−4
(

e(r2 − (l + a cos θ)2) + 2gr(l + a cos θ)
)

,

Fφθ = ρ−4
(

g(r2 − (l + a cos θ)2)− 2er(l + a cos θ)
)

(r2 + (a + l)2) sin θ ,

Fφr = (a sin2 θ + 4l sin2 1
2

θ)Frt ,

Fθt =
a

r2 + (a + l)2 Fφθ . (5)

The line element described in Equation (1), is the most general exact Einstein–Maxwell
solution of algebraic type D, which includes important physical factors. On the other
hand, by considering the noncorresponding parameters to zero, the main subclasses such
as Kerr–Newman and other regarded types are recovered; for instance, by assuming
α = a = Λ = g = e = 0 in Equation (1), the Schwarzschild metric is recovered. Considering
all the factors in one metric provides us with a great opportunity to evaluate the impacts
of each separately alongside other parameters, but also is difficult to compute. Therefore,
the evaluation for more convenience should be in different subclasses. In this paper, our
concern is for the nonacceleration and nonrotation subclass, namely, the NRIGP metric.
To this aim, we consider the Kerr (rotating) parameter “a” as zero, and explicitly the
acceleration α dependent terms will disappear from Equations (1)–(3). Thus the NRIGP
metric is written

ds2 = − Q

ρ2 (dt − 4lsin2 1
2

θdφ)2 +
ρ2

Q
dr2 +

ρ2

P
dθ2 +

P

ρ2 sin2θ(r2 + l2)2dφ2, (6)

where the regarded parameters are given by

ρ2 = r2 + l2 ,

P(θ) = 1 + Λl2 ,

Q(r) =
[

r2 − 2mr + e2 + g2 − l2
]

− Λ

3
r4 − Λr2l2. (7)
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The location of the horizon of the metric equation (1) is derived by solving
Q(r) = 0, a fourth-order root polynomial. Therefore, the four horizons are designated as the
following. (1) The outer and inner black hole horizons at r+h and r−h . (2) The cosmological
and acceleration (cosmo-acceleration) horizons due to the acceleration α and cosmological
constant Λ located at r±c , where + and − indicate the outer and inner cosmo-acceleration
horizons. To define the roots of the metric function of Equation (1), let us generate Q(r) as

Q(r) = I1r4 + I2r3 + I3r2 + I4r + I5 (8)

where

I1 = −α2a2 a2 − l2

(a2 + l2)2 − Λ

3
,

I2 = 2αa

(

αam
a2 − l2

(a2 + l2)2 − l

a2 − l2 − l
a2 − l2

a2 + l2
Λ

3

)

,

I3 = 1 +
4αaml

a2 + l2 − α2a2 a2 − l2

(a2 + l2)2 (a2 − l2 + e2 + g2)− (a2 + 3l2)
Λ

3
,

I4 = −2m − 2αal

a2 + l2 (a2 − l2 + e2 + g2) ,

I5 = a2 − l2 + e2 + g2. (9)

The roots of the quadratic equation, represented in (8), could be arranged in a range of
“maximally four horizons” to “maximally one horizon”, for various sub-cases. Considering
the most general case (maximally four horizons, I1 ̸= 0), including all parameters, provides
quite complicated expressions. To this aim, let us express Equation (8) by factoring I4 as

Q(r) = −N(r − r+h )(r − r−h )(r − r+c )(r − r−c ), (10)

where N = −I4, and the outer/inner and cosmo–acceleration horizons are as follows:

r±h =
1
2
(
√

D +
K

N
±

√

E − 2F√
D
) ,

r±c =
1
2
(−

√
D +

K

N
±

√

E +
2F√

D
), (11)

where

D =
K2

N2 +
1

3N

[

2X − (Z + i
√

Y3 − Z2)1/3 − (Z − i
√

Y3 − Z2)1/3
]

,

E = 3
K2

N2 +
2X

N
− D ,

F = − K3

N3 +
2R

N
− KX

N2 , (12)
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N is indicated as −I4 and the rest of the parameters are given as

K =
aα

a2 + l2

[(

aα

a2 + l2 m − Λ

3
l

)

(a2 − l2)− l

]

,

R = m +
aαl

a2 + l2 (a2 − l2 + e2 + g2) ,

X = 1 +
4lamα

a2 + l2 − a2α2(a2 − l2)

(a2 + l2)2 (a2 − l2 + e2 + g2)− (a2 + 3l2)
Λ

3
,

Y = X2 + 12KR − 12(a2 − l2 + e2 + g2)N ,

Z = X3 + 18KRX − 54R2N + 18(a2 − l2 + e2 + g2)(3K2 + 2NX). (13)

In the case of the NRIGP black hole, the metric function Q(r) (Equation (7)) is much
simpler than in Equation (3), but is still a fourth-order polynomial with two outer and
inner black hole horizons r̃±h and two outer and inner cosmological horizons r̃±c , in which
the symbol of tilde differentiates the corresponding parameters in the NRIGP metric. The
metric function for the NRIGP is given by

Q̃(r) = Ĩ1r4 + Ĩ3r2 + Ĩ4r + Ĩ5, (14)

where Ĩ1 = −Λ

3 , Ĩ2 = 0, Ĩ3 = 1 − Λl2, Ĩ4 = −2m, and Ĩ5 = e2 + g2 − l2. The inner and outer
horizons of the NRIGP metric are derived as

r̃h
± =

1
2

[

−2 Ĩ3

3 Ĩ1
+

H

6 Ĩ1
+

2
3

12 Ĩ1 Ĩ5 + Ĩ2
3

Ĩ1H

]1/2

±
[

−4 Ĩ3

3 Ĩ1
− H

6 Ĩ1
− 2

3
12 Ĩ1 Ĩ5 + Ĩ2

3

Ĩ1H

]1/2

, (15)

and the cosmological horizons

r̃c
± = −1

2

[

−2 Ĩ3

3 Ĩ1
+

H

6 Ĩ1
+

2
3

12 Ĩ1 Ĩ5 + Ĩ2
3

Ĩ1H

]1/2

±
[

−4 Ĩ3

3 Ĩ1
− H

6 Ĩ1
− 2

3
12 Ĩ1 Ĩ5 + Ĩ2

3

Ĩ1H

]1/2

, (16)

which

H =
[

−288 Ĩ5 Ĩ3 Ĩ1 + 108 Ĩ2
4 Ĩ1 + 8 Ĩ3

3 + 12 Ĩ1×
√

−3
I1

(

256 Ĩ2
1 Ĩ3

5 − 128 Ĩ1 Ĩ2
3 Ĩ2

5 + 144 Ĩ1 Ĩ3 Ĩ2
4 Ĩ5 − 27 Ĩ1 Ĩ4

4 + 16 Ĩ4
3 Ĩ5 − 4 Ĩ3

3 Ĩ2
4

)

]1/3

. (17)

The acceleration parameter a in the main metric Equation (1) contains the ergoregion
with the boundary of gtt = 0 and written by Q(re) = P(θ)a2sin2θ. In the NRIGP case, there
is no acceleration parameter a ̸= 0; thus, there is no ergoregion.

3. Scalar Perturbation

In this section, we focus on the scalar perturbation of the NRIGP black hole. To this aim,
the massive Klein–Gordon equation is applied, which describes the dynamics of the particle
in quantum field theory [32,33]. The Klein–Gordon equation describes the relativistic wave
equation of the Schrödinger equation for zero-spin particles (scalar particles). The massive
Klein–Gordon equation is given by

1√−g
Dµ

[√

−ggµνDν

]

Ψ = µ0, (18)
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where µ0 and g are the mass of the particles and metric tensor determinant of the NRIGP
line element (in Equation (6)), respectively; thus,

√−g = (r2 + l2) sin θ. Also,

Dµ = ∂µ − iqAµ (19)

Here, q is the charge of the scalar particles and Aµ indicates the vector potential of the
NRIGP black hole which has two components At and Aφ, defined as

A = − er + gl

r2 + l2 dt +
(er + gl)4lsin2 1

2 θ + g(r2 + l2)cosθ

r2 + l2 dφ. (20)

Furthermore, the metric tensor of Equation (6) is derived as

gµν =















− Q
ρ2 0 0 4l Q

ρ2 sin2 1
2 θ

0 ρ2

Q 0 0

0 0 ρ2

P 0
4l Q

ρ2 sin2 1
2 θ 0 0 − b

ρ2















, (21)

where b = 16Ql2sin4 1
2 θ − P sin2 θ(r2 + l2)2. In addition, the inverse of the metric tensor is

gµν =

















b
QPρ2sin2θ

0 0
4lsin2 1

2 θ

Pρ2sin2θ

0 Q
ρ2 0 0

0 0 P
ρ2 0

4lsin2 1
2 θ

Pρ2sin2θ
0 0 1

Pρ2sin2θ

















. (22)

We substitute Equations (19)–(22) into the Klein–Gordon equation, also introducing
an ansatz as

Ψ(r, t) = R(r)S(θ)eim̄φe−iωt, (23)

where m̄ denotes the azimuthal number and ω is the frequency of the spinor fields, to reach

2rQ

ρ2R(r)
∂rR(r) + ρ2∂r(

Q

ρ2 )
∂rR(r)

R(r)
+

Q

R(r)
∂2

r R(r) + P cot θ
∂θS(θ)

S(θ)
+ P

∂2
θS(θ)

S(θ)
− 1

Psin2θ
×

[

m̄ − qgcosθ − 4lsin2 1
2

θω

]2

+
ρ4

Q
(ω + qAt)

2 = µ0ρ2. (24)

We separate the radial and angular parts in Equation (24) and apply a new transfor-
mation R(r) = U(r)√

r2+l2 , to find the following radial expression:

ρ2∂r(
Q

ρ2 ∂rU(r)) +

(

3r2Q

(r2 + l2)2 − Q + rQ′

(r2 + l2)
+

ρ4

Q
(ω + qAt)

2 − µ0ρ2 − λ

)

U(r) = 0, (25)

where λ represents the angular part, also, ′ indicates d
dr .

In this step, a new set of coordinates is required, known as the tortoise coordinate
r∗ or the Regge–Wheeler radial coordinate, which is required to cover the spacetime on
the farther side of the horizon rh and holds everywhere [34,35]. The tortoise coordinate
is defined as dr∗ = dr

f (r)
, in which f (r) is a metric function, and for the NRIGP metric it is

dr∗ = − ρ2

Q dr. In this way, the region rh < r < ∞ is mapping to a greater region (out of the
black hole geometry) as −∞ < r∗ < +∞ in the tortoise coordinate.
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Thus, by applying the tortoise coordinate, the 1 − d Schrödinger form equation ap-
pears as

d2U(r)

dr∗
+

(

ω2 − Ve f f

)

U(r) = 0, (26)

where Ve f f represents the effective potential (the radial potential of a 1 − d separable
differential equation):

Ve f f =
Q2 + rQ′Q

ρ6 − 3r2Q2

ρ8 + µ0
Q

ρ2 +
λQ

ρ4 − (qAt)
2 − 2ωqAt. (27)

The effective potential in the black hole framework of the study is a remarkable
concept. For a nonrotating black hole, the effective potential Ve f f comprises two essential
gravitational and centrifugal forces. Thus, instead of evaluating each force individually, we
can predict the black hole behavior by considering the effective potential, which includes
both forces.

However, it has been shown that certain perturbations on the horizon of black holes
would affect the instability of the geometry, even at the classical level. Since the potential is
characterized by asymptotically flat spacetimes, the expected form of the effective potential
is Gaussian-like shapes. The deviation from this normal shape could be interpreted as a
significant effect on spacetime geometry. On the other hand, its relation with greybody
radiation could reveal the probability of particles tunneling in addition to the hopping
over of the particles from the potential peak. The depicted figures show the behavior of
the effective potential under the influence of different parameters, allowing for a better
perspective. Figures are illustrated for both Λ > 0 (solid lines) and Λ < 0 (dotted lines). The
graphs in Figure 2 show the behavior of the effective potential by changing the magnetic
charge g (left) and the electric charge e (right).

Figure 2. Effective potentials of the NRIGP black hole for various magnetic charge parameters g (left)
and electric charge e (right). The solid lines indicate the changes for Λ > 0 and dotted lines for Λ < 0.
The following parameters are considered as: q = 0, ω = 10, l = 2, λ = 2, and Λ = ±0.3.

As shown in Figure 2, the effective potential has almost the same behaviors under
changes of g and e, decreasing the peaks and immediately through damping (solid)/rising
(dotted) for region r > 0 by increasing the indicated parameters. In the r < 0 region, by
increasing the magnetic charge g, the effective potential also decreases the same as in the
r > 0 region, but the increase in the electric charge e in the r < 0 region causes growth of
the picks and shows an inverse behavior.
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The graphs in Figure 3 illustrate the effective potential for different NUT parameters l

(left) and the cosmological constant Λ (right). When l = 0, there is a disconnect between
the r > 0 and r < 0 regions for both ±Λ, and the peaks disappear smoothly by increasing
the NUT parameter. Moreover, the Λ = 0 case (dashed line) shows a different form of the
effective potential (tends to zero at ±∞); then, by a small increase in Λ, a sharp damping,
and increase appear for Λ > 0 and Λ < 0, respectively.

Figure 3. Effective potential of the NRIGP black hole for various NUT parameters l (left) and
cosmological constant Λ (right). The solid lines indicate Λ > 0 and the dotted ones Λ < 0. The
constant arguments are considered as; e = q = 2, g = 1, ω = 10, and λ = 2.

4. Scalar Greybody Factor of NRIGP Black Hole

Greybody factor/transmission probability, also known as absorption cross-section, is
a frequency-dependent parameter σ(ω), representing the possibility of reaching Hawking
radiation to infinity. The journey for the escaped particles from the event horizon is
challenging because the spacetime around the black hole behaves as a potential barrier
for them.

From the observer at infinity, the escaping radiation spectrum is thermal, with a
temperature of TH = h̄

KB8πM [1]. The total number of the particles is emitted in the mode n

with frequency ω given by [36]

Nn(ω) =
|Tn(ω)|2

(

e
h̄ω

KBTH ∓ 1
) , (28)

where the “−” sign represents bosons (spinless particles) and the “+” sign represents
fermions (spin half particles), and Tn(ω) represents the transmission probability.

In this study, we apply a semianalytic method that provides a general rigorous bound
in the transmission probability for the one-dimensional potential scattering [37–39]. The
general bound equation for the greybody factor is given by

σ(ω) ≥ sec h2
(

∫ +∞

−∞

℘dr∗

)

, (29)

where ℘ is defined as

℘ =

√

(F′)2 + (ω2 − Ve f f − F2)2

2F
. (30)

Here, F is a positive function with two conditions: (1) F(r∗) > 0 and (2) F(+∞) =

F(−∞) = ω. Direct substitution of the effective potential derived in Section 3 in
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Equation (27) gives an undefined result for the greybody factor. In this regard, with-
out losing generality, we can set F2 = ω2 − V2

e f f in Equation (30). Thus, Equation (29) is
written by

σ(ω) ≥ sec F2
(

1
2

∫ +∞

−∞

| F′

F
|dr∗

)

. (31)

The result in parentheses after integration is ln (
Fpeak

F ); thus, Equation (31) changes to

σ(ω) ≥
4ω2(ω2 − Vpeak)

(2ω2 − Vpeak)2 . (32)

In order to derive Vpeak in Equation (32), we first determine the rpeak by taking the
derivative from the effective potential of Equation (27). The direct results of Equation (32)
are illustrated in Figures 4 and 5. The greybody factor graphs are depicted for negative
cosmological constant Λ < 0 (dotted lines) and positive Λ > 0 (solid lines) for various
parameters such as “e, g, l, and Λ”. Depicted in Figure 4 are the behavior of the greybody
factor of the NRIGP black hole under the varying of the electric charge “e” (left figure) and
magnetic charge “g” (right figure) parameters. The greybody factor is between zero and
one, and the closest graph to one means the highest probability of reaching infinity; thus,
the case of e = 0 in Λ < 0 has the highest transmission probability. By raising both electric
and magnetic charges e and g, respectively, the NRIGP greybody factor starts to decrease
in Λ < 0, but by increasing the magnetic charge "g" the greybody radiation also increases
very smoothly.

Figure 4. The NRIGP greybody factor under the impression of the electric charge e (left) and magnetic
charge g (right). The solid lines are depicted for Λ > 0, and dotted ones are shown for Λ < 0. The
constant parameters are considered as follows: l = 0.1, Λ = ±0.3, l = 0.1, q = 1.5, and λ = 2.

The graphs in Figure 5 show the NRIGP greybody factor under the influence of the
NUT parameter l (left) and the cosmological constant Λ (right). The consistency between
the effective potential and the greybody factor could explain the behavior of the greybody
factor under the variation of the NUT parameter for the Λ < 0 case. The high potential
barriers for different cosmological constants, shown in Figure 3, could be the reason for the
disorganized (for Λ > 0) and very low transmission probability for variation in positive
and negative Λ.



Symmetry 2025, 17, 42 11 of 14

Figure 5. The NRIGP greybody factor under the impression of the NUT parameter l (left) and
cosmological constant Λ (right). The solid lines are depicted for Λ > 0, and dotted ones are shown
for Λ < 0. The arrow in the dotted graph (right) means increasing and the arrows in the solid ones
indicate the greybody factor increase by increasing Λ then after Λ = 1.5 it starts to decrease. The
constant parameters are as follows: g = e = 3, q = 1.5, and λ = 2.

In order to have a clear perspective, we can also refer to the same investigations of
the exact black hole solutions as Schwarzschild and Reissner-Nordström [40–42] (i.e., in
Ref. [40] the greybody factors of the Schwarzschild black hole for different models are
shown. Also, refer to [41] for the effective potentials, and the behavior of the greybody
factor in the Reissner–Nordström–de Sitter black hole).

5. Conclusions

In this paper, we studied the greybody factor from a more general perspective for a
metric that includes the most important factors of a black hole altogether. To this aim, we
applied the nonrotating of the improved Griffiths–Podolsk metric and called it the “NRIGP”
metric. As is mentioned in Equation (1), the original form of the improved Griffiths–Podolsk
metric contains the electric and magnetic charges “e” and “g”, respectively, NUT “l”, Kerr
“a”, and acceleration “α” parameters, and also the cosmological constant “Λ”. In this study,
we consider the nonrotating (a = 0) and, consequently, the nonacceleration (α = 0) form
of the metric, as represented in Equation (6).

Since Hawking claimed that black holes can emit as well as absorb particles, many
promising investigations have improved in this area [43–47]. The mentioned parameters
are all evaluated for different black hole thermodynamical aspects and greybody radiation
in separate studies [7,16,48,49]; thus, the evaluation of the combination in one structure
is missing in the literature and might be functional in different physical aspects of the
black hole.

The scalar perturbation is evaluated in Section 3 by utilizing the massive and charged
Klein–Gordon Equation (18) to derive the effective potential Equation (27) from the one-
dimensional Schrödinger like Equation (26). The potential around a black hole, which is
identical to the regarded spacetime, makes an essential impact on the greybody radiation as
it behaves as a barrier for the particles that had a chance to escape; if those particles are not
bound back to the black hole, they can be considered greybody radiation. Figures 2 and 3
show the action of the effective potential by varying the electric and magnetic charges “e”
and “g”, respectively, the NUT parameter “l”, and the cosmological constant Λ.

In the current study, greybody factors are affected by the maximum value of effec-
tive potentials within a given specific field. It is expected that for the smaller peaks of



Symmetry 2025, 17, 42 12 of 14

the effective potential, a fixed-energy particle includes a higher transmission probability,
which means that the greybody factor increases. Thus, the comparison between the figures
indicated that the most normal actions belong to an increase in negative Λ and “g”. As illus-
trated in Figure 3 (right), in comparison to other parameters, there is a significant difference
between Λ = 0 and Λ ̸= 0, and this bizarre behavior also affects the greybody factor.

The semianalytic method for defining the greybody factor/transmission probability
represented in Equations (29) and (30) involved undefined terms to make the process
fail. In order to solve the problem, instead of considering F = ω in Equation (30), we
plugged in F2 = ω2 − V2

e f f ; in this way, the integral limitations are not contemplated,
and undefined terms are vanishing. We derived the greybody factor of the NRIGP metric
from Equation (32). First, the vpeak should be set by deriving the rpeak, which is a long
computation. Therefore, the direct result of Equation (32) for parameters “e, g, l, Λ” are
depicted in Figures 4 and 5.

We can conclude that, in the NRIGP spacetime, the approach of the effective potential
to infinity is very slow because there are nonzero effective parameters such as Λ, e, g, and l

in the evaluation of each case. Moreover, the results of this study reveal that the indicated
parameters gathering in one black hole may strongly affect the black hole spacetime
geometry, while in the individual investigation, the effect would be unconvincing. It is
shown that by increasing parameters like the magnetic charge “g”, the effective potential
becomes less intense, allowing the particles to escape more easily from the event horizon
than when the electric charge e and NUT parameter l increase.
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