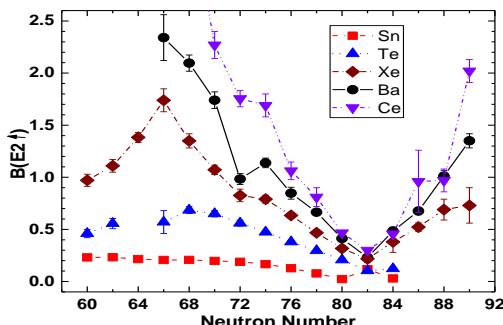
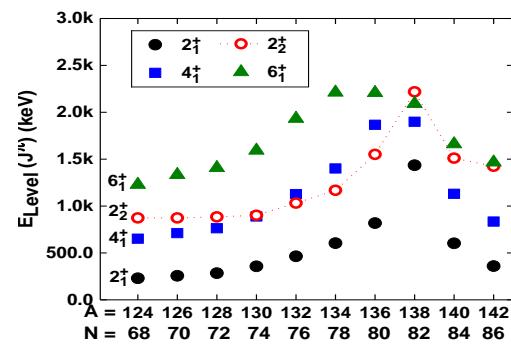


Probing the low-level nuclear structure of ^{132}Ba by Coulomb excitation measurements

S. Dutt^{1,*}, R. Kumar², P.J. Napiorkowski³, M. Saxena³, T. Abraham³,
 A. Agarwal⁴, J.M. Allmond⁵, A. Banerjee⁶, R.K. Bhowmik^{2,#}, C. Joshi⁷, J. Kaur⁸,
 A. Kumar⁹, A. Gawlik¹⁰, K. Hadyńska-Klęk¹¹, M. Hlebowicz¹², J. Iwanicki³,
 A. Jhingan², M. Kisielinski³, M. Komorowska^{3,13,14}, M. Kowalczyk³,
 T. Marchlewski^{3,13}, M. Matejska-Minda³, V. Mishra⁹, F. Oleszczuk¹², M. Palacz³,
 W. Piątek³, L. Próchniak³, I.A. Rizvi¹, J. Samorajczyk^{3,13}, J. Srebrny¹³,
 A. Stolarz³, A. Tucholski³, W. Wróblewski¹³, K. Wrzosek-Lipska³, and
 H.J. Wollersheim¹⁵


¹Department of Physics, Aligarh Muslim University, Aligarh - 202002, INDIA ²Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi - 110067, INDIA ³ Heavy Ion Laboratory, University of Warsaw, Warsaw, POLAND ⁴Department of Physics, Bareilly College, Bareilly - 243005, INDIA

⁵Oak Ridge National Laboratory, Oak Ridge, TN, USA ⁶Department of Physics & Astrophysics, University of Delhi, Delhi - 110007, INDIA ⁷Department of Physics, M.S. University of Baroda, Vadodara 390002, INDIA


⁸IFIN-HH, 30 Reactorului, 077125 Bucharest-Magurele, ROMANIA ⁹Department of Physics, Banaras Hindu University, Varanasi 221005, INDIA ¹⁰Faculty of Physics and Applied Computer Science, University of Łódź, Łódź, POLAND ¹¹INFN, Laboratori Nazionali di Legnaro, Legnaro, 35020 ITALY ¹²Warsaw University of Technology, Warsaw, POLAND ¹³Faculty of Physics, University of Warsaw, Warsaw, POLAND

¹⁴IRFU/SPhN, CEA Saclay, Gif-sur-Yvette, FRANCE ¹⁵GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, GERMANY * email: sunilduttamu@gmail.com; # retired

In the region around ^{132}Sn , the structure of even-even nuclei demonstrates diverse phenomenon including the transition between some typical quadrupole collective states. The doubly magic isotopic chain of Sn-isotopes seems to be the most interesting mass-region to be studied. Several theoretical and experimental studies have been focused in this mass region, recently [1]. The low-lying spectroscopy of these nuclei is one of the most powerful sources of information about nuclear shapes and shape transitions. Experimental/adopted $B(E2\uparrow)$ values for this mass-region are depicted in Fig. 1.

Fig. 1 Experimental/adopted $B(E2\uparrow)$ values of Sn (square), Te (up-triangle), Xe (diamond), Ba (circle), and Ce (down-triangle) isotopes [5].

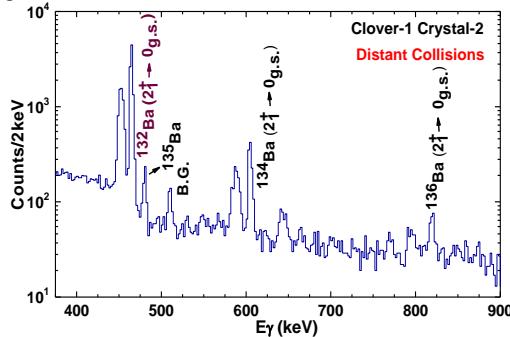
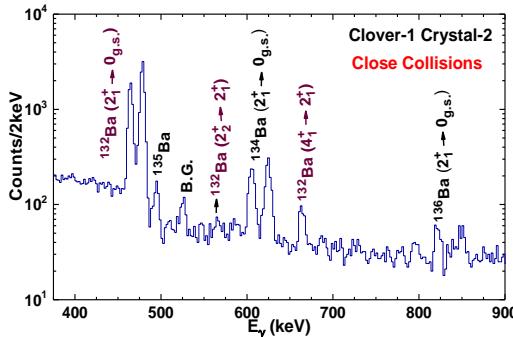


Fig. 2 Variation of low energy levels in Ba-isotopes [5].


Ba-isotopes which show signatures of $E(5)$ symmetry, corresponds to the transitional region from spherical vibrational $U(5)$ to deformed γ -unstable $O(6)$ limits. Low energy level scheme for Ba-isotopes, as given in Fig. 2, show gradual transition of different types of quadrupole collective states with increasing neutron number. Several microscopic, algebraic, and statistical studies viz. Monte Carlo Shell Model [2], Interacting Boson Model with pairing interactions (IBM-2) [3], and General Bohr Hamiltonian calculations [4] etc. have been conferred for these nuclei, in recent years. Most of the stable Ba-isotopes have been studied

experimentally, but still there is no sufficient data available for ^{132}Ba .

Therefore, to probe the low level nuclear structure of ^{132}Ba , two complementary experiments were carried out at Inter University Accelerator Centre (IUAC), New Delhi and Heavy Ion Laboratory (HIL), University of Warsaw, Poland. At IUAC, the particle detector (PPAC) [6, 7] was placed at forward scattering angles, where the excitation probability of first 2^+ state is most dominant, while at HIL, Warsaw the particle detectors (PIN diodes) [8, 9] were placed at backward scattering angles where excitation of other higher states is more probable, to cover a wide scattering range for collecting data during the measurements. A detailed description of the experimental setups is given elsewhere [6-9].

Fig. 3 Doppler shift corrected spectrum for $^{58}\text{Ni} + ^{132}\text{Ba}$ system for distant collisions.

Fig. 4 Doppler shift corrected spectrum for $^{58}\text{Ni} + ^{132}\text{Ba}$ system for close collisions.

Typical Doppler shift correction was performed for the de-excited gamma rays detected with CLOVER detectors, as discussed in our previous paper [7], and the Doppler corrected gamma-ray spectra are shown in Figs. 3 & 4, for the two cases of distant

collisions (^{58}Ni detected in PPAC) and close collisions (^{132}Ba detected in PPAC), respectively.

The excitation strength of the 2^+ state in ^{132}Ba was determined for distant collisions with respect to the first excited 2^+ state in ^{134}Ba , to normalize the systematic errors. This normalization was further corrected for the different CLOVER-crystal efficiency and target enrichments. The theoretical cross-sections were calculated for a set of E2 matrix elements with the Winther-de Boer Coulomb excitation code [10]. The data was also examined for the reorientation effects, but these effects were found to be negligible for the present nuclei. Matrix elements and $B(E2\uparrow)$ values for the first three excited states were determined and compared with the values from Davidov-Filipov model, but right now sign of the diagonal matrix element cannot be assigned, since the $2_2^+ \rightarrow 0_{g.s.}$ gamma-ray couldn't be populated at IUAC, Delhi.

However, this state was detected with HIL, Warsaw [9] set-up and analysis of the data is in progress. These two experiments will be combined by using the least-square search code GOSIA [11], and the results will be discussed during the conference.

- [1] T. Faestermann et al., *Prog. Part. Nucl. Phys.* **69**, 85-130 (2013).
- [2] N. Shimizu et al., *Phys. Rev. Lett.* **86**, 1171 (2001).
- [3] K. Nomura et al., *Phys. Rev. Lett.* **108**, 132501 (2012).
- [4] L. Próchniak et al., *Nucl. Phys. A*, **648**, 181-202 (1999).
- [5] <http://www.nndc.bnl.gov/>
- [6] A. Jhingan et al., *DAE Symp. on Nucl. Phys.* **61**, 966-967 (2016).
- [7] S. Dutt et al., *DAE Symp. on Nucl. Phys.* **61**, 92-93 (2016).
- [8] S. Dutt et al., *Acta Physica Polonica B*, **47**, 917-922 (2016).
- [9] S. Dutt et al., *HIL Annual Report C10*, 73-74 (2015).
- [10] A. Winther and J. de Boer, in *Coulomb Excitation*, edited by K. Alder and A. Winther, (Academic Press, New York/London, 1966).
- [11] T. Czosnyka, D. Cline, and C.Y. Wu, *Bull. American Phys. Soc.* **28**, 745 (1983). <http://slcj.uw.edu.pl/en/gosia-code/>.