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Abstract: The Advanced X-ray Imaging Satellite (AXIS) promises revolutionary science in the X-ray
and multi-messenger time domain. AXIS will leverage excellent spatial resolution (<1.5 arcsec),
sensitivity (80× that of Swift), and a large collecting area (5–10× that of Chandra) across a 24-arcmin
diameter field of view at soft X-ray energies (0.3–10.0 keV) to discover and characterize a wide range
of X-ray transients from supernova-shock breakouts to tidal disruption events to highly variable
supermassive black holes. The observatory’s ability to localize and monitor faint X-ray sources
opens up new opportunities to hunt for counterparts to distant binary neutron star mergers, fast
radio bursts, and exotic phenomena like fast X-ray transients. AXIS will offer a response time of
<2 h to community alerts, enabling studies of gravitational wave sources, high-energy neutrino
emitters, X-ray binaries, magnetars, and other targets of opportunity. This white paper highlights
some of the discovery science that will be driven by AXIS in this burgeoning field of time domain
and multi-messenger astrophysics. This White Paper is part of a series commissioned for the AXIS
Probe Concept Mission; additional AXIS White Papers can be found at the AXIS website.

Keywords: time-domain astronomy; multi-messenger astronomy; gravitational waves; high-energy
neutrinos

1. Introduction

Time-domain and multi-messenger (TDAMM) astronomy are highlighted as one of the
three priority science areas in the coming decade by the 2020 Decadal Survey. In large part,
this is the result of the dramatically improved sensitivity of foundational facilities across
the electromagnetic spectrum (e.g., Vera Rubin Observatory [1], Nancy Grace Roman Space
Telescope [2], Square Kilometer Array [3]) and beyond (e.g., LIGO-Virgo-KAGRA (LVK) [4]
and IceCube [5]). To fully realize the potential of TDAMM in this new era, the community
needs electromagnetic observatories that can match these tremendous sensitivity gains.
With an order of magnitude increase in effective area over Chandra and excellent angular
resolution across a wide field of view, the Advanced X-ray Imaging Satellite (AXIS) [6] can
uniquely fill this void at X-ray wavelengths.

Building on the legacy of facilities such as Swift, Chandra, and XMM-Newton, AXIS
TDAMM studies will address some of the most pressing topics in astrophysics. This
includes investigations conducted by the science team and a robust target-of-opportunity
(ToO) program for Guest Investigator (GI) programs. AXIS (likely in its extended phase)
would be particularly powerful working in concert with the New Athena mission, where
the exquisite angular resolution and extremely rapid response offered by AXIS would
complement the exceptional effective area and spectral resolution of New Athena. In
this white paper, we briefly describe some of the diverse areas of TDAMM that will be
transformed by AXIS in the next decade.

2. Fast X-ray Transients

Fast X-ray transients (FXTs) are single bursts (i.e., not related to known persistent
X-ray sources) of X-ray photons that last from minutes to hours [7]. Historically, most
detected FXT candidates have occurred along the Galactic plane and are Galactic in origin
(e.g., [7–9]). However, a subset lies well outside the Galactic plane and thus is potentially
extragalactic (e.g., [10,11]). Extragalactic FXTs are particularly interesting because of their
potential energetics, rarity, and association with exotic phenomena.

Several dozen extragalactic FXTs have been identified, both serendipitously and
through careful searches (e.g., [12–27]). These observations suggest that extragalactic
FXTs may be associated with several novel classes of astronomical objects (e.g., [28–30]).
The most well-known case is FXT XRT 080109/SN 2008D, which was serendipitously
detected by Swift-XRT and subsequently associated with a multi-wavelength supernova
counterpart [12,31,32]. However, for the vast majority of cases, transients themselves have
only been identified long after the outburst through archival data mining (e.g., [19,26,27,33]),
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leaving contemporaneous follow-up observations largely unexplored. This has left the task
of identifying the physical origin(s) of FXTs quite challenging.

A variety of astronomical objects and physical mechanisms have been proposed for
the origin of extragalactic FXTs. These include strong sources of high- and low-frequency
gravitational waves (GWs) in the form of merging binary neutron stars (BNS; potential LVK
GW sources; e.g., [34,35]) or white dwarf (WD) disruptions by intermediate-mass black
holes (potential future LISA GW observatory sources; e.g., [28,36]), as well as core-collapse
supernova (CC-SNe) shock breakouts (SBOs; e.g., [19,37]). Thus, exploring their origin
has significant potential implications across several fields (see Sections 3.1, 4 and 5 for
more details).

Efforts have been made to identify, classify, and characterize FXTs inside Chandra
(e.g., [23,26,27]), XMM-Newton (e.g., [19,33]), and Swift-XRT [38] archives. Two decades
of archival Chandra data have revealed 22 FXTs [26,27]: 5 events were robustly associ-
ated with galaxies at ≲100 Mpc (the local sample) and 17 events appear to lie much
further away at ≳100 Mpc (the distant sample). The local sample has a peak luminosity
of LLocal

X,peak ≲ 1040 erg s−1, an event rate of RLocal = 53.7+22.6
−15.1 deg−2 yr−1 [26,27] and pro-

jected physical offsets between ≈0.7 and 9.4 kpc (with four being co-spatial with apparent
star-forming regions or young star clusters). These properties indicate a possible associa-
tion of the local sample of FXTs with ultra-luminous X-ray sources or X-ray binaries (e.g.,
Sections 8 and 9). On the other hand, the distant sample properties show a link with energetic
progenitors (LDistant

X,peak ≳ 1040 erg s−1) at higher distances (z ≈ 0.3–2.2) with an event rate of

RDistant = 36.9+9.7
−8.3 deg−2 yr−1. Their high luminosities suggest a variety of origins such

as BNS mergers (LBNS
X,peak ≈ 1044 − 1046 erg s−1; [39–42]), tidal disruption events involving

IMBH (LTDE
X,peak ≲ 1048 erg s−1; [28,43,44]), and CC-SNe SBOs (LSBO

X,peak ≈ 1042–1045 erg s−1;
[12,19,20,32,37]).

We expect FXT progenitors to form around some underlying stellar population—a
host galaxy—which provides a route to measuring the event’s distance and energetics. The
demographics and offsets of the hosts themselves can further inform progenitor models.
SBOs should arise from star-forming galaxies across a wide range of stellar masses, from
blue and compact dwarf galaxies to large spiral galaxies [45]. Similarly, long GRBs are
preferentially associated with irregular star-forming galaxies, along with a few spirals with
active star-formation [46]. Their host galaxies are relatively metal-poor compared to the
field population [46–48], favoring a collapsar progenitor model [49]. On the other hand,
IMBH TDEs involving WDs might occur in a more diverse range of environments such as
irregular dwarf galaxies, globular clusters, and hyper-compact stellar clusters (e.g., [50–52]),
resulting in substantial offsets from the center of their host galaxy. Recently, efforts have been
made to identify FXT host galaxies (e.g., XRT 000519, XRT 030511, and XRT 210423) using
optical and near-infrared 6-, 8- and 10-m telescopes [23–25], but the hosts are optically faint
(r ≳ 23 AB mag), and hence accurate X-ray positions are essential to make firm associations.

The angular resolution accuracy afforded by Chandra, XMM-Newton, and Swift-XRT
has permitted to pinpoint hosts and even allow for measurements of apparent offsets to
their potential host galaxies. The projected physical offset between the FXT position and
the host galaxy center gives some clues about their nature. For example, short GRBs have a
physical offset about ∼4–5 times greater than the median offset for long GRBs (≈1 kpc) [53]
and super-luminous supernovae (≈15 kpc) (SL-SNe [54]), and about ∼1.5 times larger
than the median offsets of CC- and Type Ia SNe (≈3–5 kpc) [55] and FRBs (≈3 kpc) [56].
Thus, the observed offset distribution of short GRBs agrees with the population synthesis
models for compact object mergers, especially for large offsets. The high accuracy angular
resolution of AXIS (≈1 arcsec) will permit associating the FXT position with its host galaxy
and measuring its angular offset.

Based on extrapolation of the current FXT statistics (Figure 1), we anticipate that
AXIS will serendipitously discover ≈50 FXTs yr−1, representing a ≳30-fold increase over
current samples, as well as provide crucial windows for follow-up of bright FXT triggers
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from all-sky monitors [27]. The novel grasp (FOV × sensitivity) and spatial resolution of
AXIS will provide better photon statistics with which to characterize each FXT, spectrally
and temporally, and precise locations to pin down host galaxy identifications and FXT
locations/offsets. Figure 2 shows representative light curves and hardness ratios at bright,
moderate, and faint flux thresholds; for the brightest 5–10 FXTs detectable per year, AXIS
will provide time-resolved spectral properties and accumulate powerful statistics for each
proposed progenitor class.

AXIS will utilize a novel algorithm to detect FXT outbursts on-board in real-time
(e.g., [57]). This capability will enable rapid multi-wavelength follow-up from other fa-
cilities (e.g., ground-based optical, radio) to fully characterize these events. While novel,
recent results from the Einstein Probe mission (e.g., [58,59]) provide confidence both in the
technical feasibility and the scientific potential of this space.
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Figure 1. Expected logN –logS distributions of FXTs, all-sky (left vertical axis) and with AXIS (right
vertical axis), based on combined constraints from several past missions [9] and 22 years of Chandra
data [27], which constrains the break at a fluence of ≈5 × 10−9 erg cm−2. AXIS will probe the FXT
number density 2.5 dex deeper than existing data, down to an approximate single-orbit AXIS flux
sensitivity (dashed vertical line), greatly increasing our understanding of the FXT population.
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Figure 2. Simulated AXIS light curves (upper panels) and hardness ratios (lower panels) of FXTs
with 5 ks 0.5–8 keV peak fluxes of 1 × 10−11, 1 × 10−12, 1 × 10−13, and 1 × 10−14 erg s−1 cm−2,
assuming the light-curve properties of CDF-S XT2 (Chandra light curve shown as black points; [18]).
We adopt a hardness ratio given by H-S/H+S, where S = 0.5–2 keV and H = 2–8 keV. The colored
light curves denote 100 AXIS realizations to demonstrate the error distribution. The inset histogram
shows the number of counts for the simulated AXIS light curves; the real AXIS light curve will also
incur some gaps due to the low-Earth orbit. AXIS will be capable of probing subtle spectral variations
and temporal structure for many dozens of bright FXTs, and will broadly characterize the flux and
spectral evolution for hundreds of faint FXTs.
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3. Gravitational-Wave Counterparts

3.1. Stellar-Mass Compact Binary Mergers

Colliding neutron stars emit bursts of electromagnetic and gravitational radiation,
each providing unique insights into the physics of the merger and its ability to drive
relativistic outflows. GW detections yield distances, progenitor masses, and spins, while
relativistic jets and afterglows detected via X-ray and other multi-wavelength observations
reveal the off-axis viewing angle and the conditions of the surrounding interstellar medium
(e.g., [60–62]). Potential precursors to gravitational wave events could also shed light on the
pre-destruction properties of the neutron star, such as its magnetic field strength [63]. Un-
derstanding the inclination is key for using binary neutron stars as cosmological standard
candles, as the greatest uncertainty in the gravitational wave distance is its degeneracy with
inclination (e.g., [64,65]). Moreover, X-ray observations powerfully discern the structure of
the relativistic jet and the merger remnant (Figure 3), and offer a closer look at kilonova
afterglows, outflows that trace the energetics of the central explosion and constrain the
synthesis of heavy elements. AXIS will obtain light curves and spectra for more than
50 BNS mergers, creating the first X-ray population study of multi-messenger sources.

GW experiments have rapidly made new discoveries [66], including the first definitive
detection of a neutron star merger, GW170817 (e.g., [67]). These explosions reveal our
cosmic chemistry by pinpointing the synthesis and abundance of the heaviest elements
of the periodic table: rapid neutron capture (r-process) elements. They also offer some of
our best constraints on the conditions at the core of a neutron star (e.g., [68]). Yet to date
we have only one example of a GW+EM detection of one of these mergers, GW170817. In
the LVK A+ era (observing run 5 [O5] and beyond), the detection range for BNS mergers
will be ∼325 Mpc [4], yielding counterparts that can only be detected by the most sensi-
tive X-ray and radio instruments1. Detailed studies of the GW170817 structured jet and
afterglow (e.g., [69]) suggest that an X-ray instrument with the sensitivity of AXIS could
detect ≥10 GW170817-like afterglows per year (>20% of events even beyond 1 Gpc) for the
GW network performance outlined in [70]. X-rays would thus offer a census of jets and
afterglows from GW sources.

Figure 3. Top-hat jet models (15 deg opening angle, Γ = 2.2) for a variety of BNS merger observing
angles (0, 10, 20 and 30 degrees), compared to two alternative structured jets with a Powerlaw (PL)
or Gaussian core, each at a 10 degree observing angle. The black dot-dashed line indicates the
AXIS sensitivity reached in 6 ks. All models assume a luminosity distance dL = 330 Mpc, isotropic-
equivalent energy E0 = 1053 erg, and circumburst density 10−3 cm−3. The strength of the X-ray
signal at peak depends strongly on observing angle, while the shape of the lightcurve reveals the
relativistic structure of the outflow. Models created using the open source tool ⁀afterglowpy [61].

The exquisite spatial resolution offered by AXIS is also key to distinguishing BNS
mergers from variable nuclear X-ray sources in the host galaxy. At ∼40 Mpc GW170817 was
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separated by only 10 arcsec from the low-luminosity AGN in NGC 4993. AXIS’s PSF will be
required to resolve similar systems out to ∼300–400 Mpc, where most future gravitational
wave discoveries will be made in the LVK A+ era. GW170817-based models indicate that
only 16 additional binary neutron star mergers with high-quality jet angle determinations
would constrain H0 to better than 2%, vs. the 50 to 100 sources that would be needed
without afterglow measurements (e.g., [71]). The high sensitivity and spatial resolution
offered by AXIS, particularly at distances beyond 200 Mpc, are thus essential to realizing
the promise of multi-messenger constraints in cosmology.

During its primary mission, AXIS observations of more than 50 BNS mergers will
be triggered by a GW detection from LIGO-Virgo-KAGRA and a rapidly localized elec-
tromagnetic counterpart from one of several next-generation surveys, e.g., Vera Rubin
Observatory’s LSST, BlackGEM, DECam, Roman Space Telescope, and many others. These
exceptional new facilities are optimized for efficient tiling of the gravitational wave local-
ization region (typically 10–100 deg2 or larger) and will offer rapid public alerts. AXIS
observations will support detailed modeling of the relativistic jet, yielding constraints on
the jet geometry and propagation, the nature of the merger remnant (either a BH or a
massive NS), and the associated rates for sGRBs and NS mergers (including both NS-NS
and NS-BH).

3.2. Solitary and Non-Merging Neutron Stars

Another important type of GW source for which AXIS observations could prove crucial
is isolated neutron stars and neutron stars in non-merging systems. These neutron stars
can produce detectable persistent GWs if they have, e.g., large mountains, magnetic fields,
or fluid oscillations (see, e.g., [72,73], for reviews). Many of the best candidates for such
GW emission are young neutron stars that are bright in X-rays but not necessarily bright
in radio, and many of these are surrounded by diffuse X-ray emission from supernova
remnants and pulsar wind nebulae and/or in crowded fields. AXIS could identify potential
new candidates as well as provide observations that enable the most sensitive GW searches.
Finally, the ∼arcsecond spatial resolution of AXIS would be vital to confirm sources detected
first by GWs and thus enable follow-up observations at other electromagnetic wavelengths.

3.3. (Super)massive Black Hole Binaries and Mergers

Supermassive black hole binaries (SMBHBs) are thought to be the natural outcomes
of the standard framework of hierarchical structure formation (e.g., [74]): the merger of
galaxies brings their central SMBHs to the nucleus of the newly merged system, initially
forming a dual SMBH (or dual AGN if both BHs are active) and later becoming a gravi-
tationally bound binary at a separation where the mass enclosed within the orbit is less
than the BH mass. Modern numerical simulations show that a gaseous circumbinary disk
can form around a close-separation SMBHB (e.g., [75–78]) and efficiently deliver gas to the
BHs through a pair of narrow streams that feed their individual accretion disks (so-called
“minidisks”; e.g., [79–82]). This process could sufficiently power an SMBHB to radiate as a
binary AGN observable across the electromagnetic spectrum.

The science of SMBHBs is multifaceted. It holds the key to our understanding of
the role of mergers in SMBH growth and the evolution of SMBHs in the context of their
host galaxies. As binary AGN, SMBHBs are laboratories for understanding gas dynamics
and accretion physics in time-evolving spacetimes. The distinctive binary disk structure
predicted in numerical simulations may be tested through the observations of peculiar
AGN spectral features: for instance, the source may show X-ray spectral hardening as
the result of streams striking the minidisks [83,84], or a double Fe Kα line originating
from the minidisks (e.g., [85]). As the binary’s orbital motion can often be imprinted on
the AGN flux as a periodic variation, either as the result of binary-modulated accretion
(e.g., [75–79,86]), relativistic Doppler boosting [87], gravitational lensing [88,89], or other
mechanisms (e.g., [90–93]), binary AGN are also interesting sources to study for time-
domain astronomy. The predicted EM and time-domain signatures of these sources, and
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future prospects with AXIS, are discussed in detail in the associated AXIS white paper
“Tracking SMBH Mergers from kpc to Sub-pc Scales with AXIS”.

Observations of SMBHBs are also highly synergistic with low-frequency GW detectors,
including pulsar timing arrays (PTAs) and the Laser Interferometer Space Antenna (LISA),
and will together enable a new area of multi-messenger astrophysics. A global consor-
tium of PTA experiments, including the US-led North American Nanohertz Observatory
for Gravitational Waves (NANOGrav), has recently revealed evidence for a nanohertz
frequency GW background [94–97] whose amplitude and spectral shape are consistent
with a population of SMBHBs [98,99]. If this background indeed arises from SMBHBs,
the loudest among them could be detected as single sources as early as ∼2030 [100,101],
thanks to powerful new workhorse radio facilities such as the Deep Synoptic Array-2000
(DSA-2000; [102]) and the SKA [103] (see, e.g., [104]).

Once the SMBHB is detected in GWs and localized within a sky area, telescopes
can then be deployed to identify its EM counterpart, for instance, by searching for AGN
periodicity indicative of an SMBHB, X-ray spectral hardening or excess, or an oscillating
double broad Fe line. Conversely, the sky location and binary parameters of an EM-detected
SMBHB can be used as priors in the search in PTA data for a “GW counterpart”. These
types of joint multi-messenger observations yield higher signal-to-noise ratios and tighter
parameter constraints [105], and therefore they can distinguish marginal sources that
would otherwise be missed in unguided, GW-only searches. The more precise parameter
measurements can further break model degeneracies (such as the mass-ratio dependence
of binary periodicities) and enable stringent tests of the theory of binary accretion.

Starting in the mid-2030s, the space-based LISA mission [106] will operate in the
mHz frequency range and detect, among many other types of sources, the mergers of
massive black holes (MBHs) in the ∼105–107 M⊙ range. During its nominal 4-year science
operations, LISA is expected to detect a few dozen to a few hundred MBHBs (e.g., [107,108])
and can localize these sources and constrain their parameters ∼hours to weeks before the
merger (e.g., [109]), providing advance warning for EM follow-up.

A sensitive X-ray telescope such as AXIS will be particularly powerful for probing
MBHBs at this stage, since X-rays trace gas in the immediate vicinity of the binary (i.e.,
minidisks), whereas the source may be indistinguishable from a single AGN in the optical
band (which is dominated by gas further out). In these systems, the binary separations are
small enough for general relativistic effects to be significant (e.g., [90,110]); observations
of these LISA systems would therefore offer opportunities to probe binary accretion in
a (relativistic) regime that is not accessible with PTA counterparts. An agile telescope
like AXIS will be able to respond quickly to a LISA trigger, offering the best chance to
catch the merger in the act. The sky localization area of a LISA source depends on its
parameters (e.g., mass) and redshift but is likely large (∼10–102 deg2), with a strong trade-
off between localization uncertainty and time until merger (e.g., [109]). Although the FOVs
of X-ray telescopes are small compared to optical (e.g., Rubin) and radio (e.g., SKA) facilities,
follow-up in X-rays will still be crucial because the optical band is more susceptible to
obscuration, and radio emission could be collimated. Furthermore, targeting X-ray-selected
AGN reduces the number of potential hosts within the LISA localization area by orders of
magnitude [111], increasing the likelihood of identifying the counterpart before the merger.

At the time of the merger, the LISA localization error box may be ∼0.1 deg2 [112],
which would fit comfortably inside the AXIS FOV; this provides opportunities to observe
the post-merger prompt or delayed emission and to witness the birth of a new (single)
AGN. Yuan et al. [113] predict that the jet launched after the merger of an MBHB pushes
through the disk wind material originating from the (former) circumbinary disk and
minidisks, and the resulting broadband emission is observable ∼days–months after the
merger. Additionally, gravitational recoil at merger imparts a kick velocity of ∼a few
hundred km s−1 on the disk, which may produce a transient flare over timescales of
∼years [114]. Many of these mergers could be associated with lower mass systems at
higher redshifts, and detecting their post-merger emission would therefore require deep
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imaging. A 105M⊙ system at z = 2 accreting at the Eddington limit corresponds to a
0.5–2 keV flux of ∼10−17 erg s−1 cm−2; however, an instrument like Athena reaches the
confusion limit at a few ×10−17 erg s−1 cm−2 [112] due to its larger PSF (5′′ on-axis, and
larger off-axis) which would fundamentally limit its ability to distinguish the counterpart.
AXIS, on the other hand, has a much lower confusion limit due to its high angular resolution
across the FOV, allowing the detection of faint post-merger emission.

Even if LISA is not operational at the same time as AXIS, AXIS will still contribute
to LISA science in several important ways. First, the EM searches for the progenitors of
MBH mergers (i.e., MBHBs with longer orbital periods) prior to LISA’s launch could yield
the massive and extragalactic analogs of “verification binaries” (which are known Galactic
compact binary systems whose loud GW signals guarantee that LISA would detect them;
e.g., [115]) and assist the crucial tests of the instrument in the early phase of the mission.
Furthermore, the AXIS survey fields and serendipitous observations of AGN from Guest
Observer programs could provide a deep reference catalog (∼2 orders of magnitude deeper
than the all-sky eROSITA) for future X-ray follow-up: Lops et al. [111] showed that using
an X-ray reference catalog would exclude a fraction of AGN as hosts within the LISA
localization error box, thereby reducing the follow-up effort. Finally, X-ray observations of
any MBHBs (and their mergers) with AXIS would help constrain expected detection rates,
provide important test beds for studying their EM emission, and offer valuable lessons for
devising follow-up strategies for LISA detections.

In addition to being astrophysically rich systems in their own right, multi-messenger
observations of MBHBs also have significant implications for fundamental physics and
cosmology. For instance, MBHBs can be used as standard sirens to probe the expansion of
the universe out to high redshifts (z ∼ 10) through the luminosity distance-redshift relation
(e.g., [116]). In binary periodicity models where the EM emission is phase-linked to GWs (i.e.,
Doppler boosting and self-lensing), simultaneous observations of the EM and GW signals of
the same MBHB source could even place constraints on the graviton mass and alternative
theories of gravity, by comparing the propagation speed of GWs versus light [89,117].

4. Supernovae

4.1. Shock Breakout Emission

The most straightforward means of progenitor identification of core-collapse (CC) SNe
(i.e., those with massive star progenitors) is via direct detection in pre-explosion imaging.
Relying largely on Hubble, this technique has firmly established red supergiants (RSGs) as
the progenitors of Type IIP SNe (H-rich spectra with long-lived light curve plateaus; [118]).
For other subtypes of SN, direct progenitor associations are extremely rare: the handful of
examples to date include a single blue supergiant (BSG) for SN 1987A [119,120], several
yellow supergiants (YSG; [121–123]), and one stripped-envelope SN of uncertain progenitor
type [124]. But because SNe are so bright, inevitably most are simply too distant for their
pre-explosion progenitors to be directly studied. Another technique is desperately needed
for the majority of SNe at distances beyond which HST can detect progenitors (d > 30 Mpc).

AXIS will transform our view of the end states of massive stars through the serendipi-
tous discovery of shock breakout (SBO) emission—the moment when the first electromag-
netic radiation escapes from the exploding star. The duration and spectrum of the SBO
signal provide a direct measure of the radius of the progenitor (Figure 4)—for example,
compact progenitors such as Wolf-Rayet stars are expected to result in SBO signals of
duration ∼minutes with SEDs that are predicted to peak in the soft X-rays, while more
extended objects such as red supergiants will have correspondingly longer and cooler
prompt SBO signals [37,125]. Thus unlike wide-field UV and optical surveys, X-ray SBO
discoveries can uniquely probe the progenitors of the stripped-envelope core-collapse
supernovae (e.g., Type Ib/c), precisely the sources that are most poorly constrained from
pre-explosion imaging.
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Figure 4. AXIS will serendipitously discover shock breakout (SBO) emission from core-collapse SNe
out to z ≈ 1, uniquely revealing fundamental properties of the progenitor star. Left: The duration
(and spectrum) of the shock breakout signal is a strong function of the progenitor radius. With the
large span of radii observed in massive stars, X-ray SBO discoveries can identify progenitor stars at
distances far beyond direct progenitor imaging. Right: Unlike shallow/wide X-ray facilities such as
Einstein Probe, AXIS will detect SBO near the peak of cosmic star formation, uniquely probing its
evolution over cosmic time.

Currently only a single well-established example of a real-time X-ray SBO detection is
known: SN2008D, a type Ib (He-poor) supernova in the nearby (d = 27 Mpc) NGC2770.
While upcoming wide-field X-ray observatories such as the Einstein Probe will likely
uncover more such nearby examples, the unprecedented sensitivity of AXIS will enable the
detection of SN2008D-like events out to z ∼ 1, near the peak of cosmic star formation [126].
As a result, AXIS will measure the evolution of progenitor properties, as well as the
stripped-envelope core-collapse supernova rate, in an entirely unique manner. These
discoveries are entirely serendipitous and do not require dedicated observational time.
And with its on-board transient detection algorithm, AXIS SBO discoveries will be rapidly
downlinked and disseminated to the broader astronomical community, enabling prompt
multi-wavelength follow-up to characterize the subsequent shock-cooling emission, as well
as the radioactively powered phase (See Section 2 for further details on the transient event
alert algorithm).

4.2. Circumtellar Medium Diagnostics

The formation of SNe is closely related to the end-of-life evolution of massive stars,
which is a phase of stellar evolution that remains poorly constrained [127]. When a star
explodes as a SN, a shock wave driven by the explosion propagates into the circumstellar
medium (CSM) shaped by prior mass loss of the progenitor. The particles behind the
shock wave are accelerated to relativistic speeds, producing inverse Compton emission at
early times (≲30 days) and thermal bremsstrahlung with line emission afterwards (see, e.g.,
Chevalier and Fransson [128], Chandra [129] for reviews). Since the shock velocities are
much faster than the speed of the progenitor’s mass ejection, the X-ray and radio emission
produced by shock interactions during the first few years carries imprints of the mass loss
history up to thousands of years prior to their stellar death.

Among the handful of CCSNe with well-sampled X-ray light curves, the few SNe
with narrow emission lines from dense CSM (type IIn) are the most well-studied [130–134].
The X-ray luminosity from some of them typically reaches a peak of 1040–1041 erg s−1 at a
few years after explosion (see Figure 5), suggesting a CSM environment of 1–10 M⊙ out
to 1016–1017 cm from the progenitor, ejected 10–100 years before the explosion [135,136].
Such elevated mass loss rates of ∼0.1 M⊙ yr−1 are indicative of a very massive luminous
blue variable (LBV) or a LBV-like star. A few other SNe IIn appear to exhibit rather steep
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X-ray luminosity declines [137,138], pointing to RSGs with enhanced mass loss rates of
∼10−4 M⊙ yr−1, likely due to nuclear burning instabilities or interaction within a binary
system. In particular, the population of hydrogen-poor interacting SNe has been proposed
to originate from compact Wolf-Rayet (WR) stars [139–141]. However, existing X-ray
observations are limited, encompassing merely two SNe Ibn ([142,143]; see Figure 5) and
zero SNe Icn. By sampling the shock interaction emission of a representative sample of
SNe Ibn and Icn, AXIS holds the promise for greatly advancing our understanding of the
mass-loss history of WRs and LBVs during their transition to a WR-like state.

Figure 5. AXIS offers a unique opportunity to study all types of core collapse SNe (CCSNe), spanning
a wide range of X-ray luminosity. Here we show massive star explosions with well-measured X-ray
light curves (see [130,144] and references therein). The y-axis on the right side shows the AXIS
horizon redshift.

For the majority of type II SNe, progenitor stars have much lower mass loss rates of
10−6–10−5 M⊙ yr−1, and therefore have relatively under-luminous (≲1039 erg s−1) X-ray
emission [137,145–147]. AXIS monitoring of nearby SNe II will provide critical insights into
the mass loss from RSGs (and BSGs) both as a function of progenitor mass and lookback
time before the explosion. Finally, the spatial resolution of AXIS offers a unique opportunity
to study CSM structures in any extremely nearby SN, the probability of which is small but
not negligible over the next 20 years [Astro 2020 Decadal Survey, B-DA6]. For example,
Chandra observations of SN 1987A over 16 years revealed an equatorial ring structure [148].
Detailed studies of non-spherical CSM structures conducted by AXIS could unravel the
CSM geometries encompassing CCSNe within galaxies of the Local Group or our own
Milky Way.

4.3. Compact Object Formation

A long-standing observational challenge in SNe studies is the identification of the
newly formed compact object (i.e., a neutron star or a black hole). In the majority of
stellar explosions, the compact object stays either inactive or deeply embedded in the SN
ejecta. The opportunity to investigate compact object formation arises primarily in a small
fraction of “engine-driven” SNe, where the compact object consumes stellar materials,
generates heat, and ejects outflows. For a collimated relativistic outflow pointing towards
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the observer, internal energy dissipation with the jet gives rise to a long-duration gamma-
ray burst (LGRB; see Zhang [149] for a recent review), and the subsequent afterglow
smoothly decays as LX ∝ t−1 in the X-ray band. The population of low-luminosity long
GRBs (llGRBs) are found to be associated with type Ic broad line SNe [49].

This frontier of massive star deaths, thanks to optical time-domain surveys, continues
to be vigorous. A recent observational breakthrough is the recognition of an emerging
new class of engine-driven stellar explosions with sub-relativistic outflows, suppressed
γ-ray prompt emission, and long-lived engine activities in the X-ray band [144,150–157].
Existing research highlights six known events of this phenomenon, collectively referred to
as luminous fast blue optical transients (LFBOTs) or AT2018cow-like events. The optical
characteristics of these events are shaped by their remarkable energy release, low ejecta
masses, and high temperatures. Five LFBOTs have existing X-ray observations (see the black
circles in Figure 5), where the extremely luminous and rapidly variable X-ray emission from
the prototype AT2018cow [151], AT2020mrf [144], and AT2022tsd [158] show compelling
evidence for the presence of a central engine.

With a sample of six events, the nature of LFBOTs remains a subject of active de-
bate [159–161]. An expanded sample size, coupled with multi-wavelength observations
spanning various evolutionary stages, holds the key to unraveling the connections between
LFBOTs, llGRBs, and other SN types. Next-generation time domain surveys such as the
Vera Rubin Observatory [1] will extend the detection of such events from z ∼ 0.2 to z ∼ 1.
The sensitivity and rapid response of AXIS will be crucial to provide early-time X-ray ob-
servations to differentiate them from ordinary FBOTs (which are normal stripped-envelope
SNe in dense CSM), and trigger rapid follow-up spectroscopy of the UV/optical/IR thermal
emission (which only lasts for one month).

Another fundamental open question in LFBOTs is the nature of their central engine.
The key diagnostic is the decay rate of the X-ray light curve at t ≳ 20 days, at which
point the energy released from the central region transitions from being partially obscured
to becoming mostly exposed [151]. If the engine is a rapidly spinning magnetar, it will
deposit energy into the ejecta at a rate of Lengine ∝ t−2.4 [42], whereas fall-back accretion
onto an accreting black hole gives Lengine ∝ t−5/3 [162,163]. A late-time plateau phase
or shallower decay will indicate the formation of an accretion disk. We note that the
volumetric rate of LFBOTs is extremely small—only 0.1–0.01% of the CCSNe rate [164], or
10–100 Gpc−3 yr−1 [165]. Therefore, to construct a decent sample of LFBOTs with late-time
X-ray measurements down to ≈ 1040 erg s−1 (as shown in AT2018cow and CSS161010,
see Figure 5), a horizon distance of a few hundred Mpc is needed, which speaks for the
requirement of a sensitive X-ray instrument like AXIS.

5. Tidal Disruption Events

A star coming too close to a massive black hole (MBH) gets disrupted by the tidal forces
of the MBH around the tidal radius RT. Following this encounter, the debris evolves into an
elongated stream, half of which comes back to form an accretion disk, producing thermal
radiation that peaks in the EUV and soft X-ray [166]. This emission can be reprocessed
into the optical/IR bands by TDE debris, dusty torii, and cold gas. Assuming a flat
distribution of the specific orbital energy, the debris fall-back rate (Ṁfb) initially rises for
about one month, and then declines as t−5/3 [162,163]. Over the past three decades, tidal
disruption events (TDEs) have gone from theoretical curiosities to established transient
phenomena [167]. As of 2023, ∼150 TDEs have been reported. Among them, four objects
are associated with on-axis collimated relativistic jets (known as “jetted TDEs”), manifested
by their extremely bright X-ray and radio emission (see De Colle and Lu [168] for a review).

Since the peak TDE mass fall-back rate is above the Eddington limit (Ṁfb,peak∼

102(MBH/106 M⊙)−3/2ṀEdd), TDEs provide unique laboratories to study super-Eddington
accretion, the physics of which is highly uncertain. For example, fast outflows are often
produced in numerical simulations as a result of the high radiation pressure [169–172].
However, observationally such ultra-fast outflows (UFOs) are poorly characterized. In the
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X-ray, UFOs manifest themselves as blue-shifted absorption lines on top of the continuum
emission. Among the known TDEs, such features have been suggested in a handful of
TDEs, e.g., ASASSN-14li (Figure 6; [173]). AXIS spectroscopic monitoring campaigns of
nearby TDEs will enable us to systematically study the evolution of the outflow velocities
and energetics.

Figure 6. Ultra-fast outflows (UFOs) from the tidal disruption event ASASSN-14li will allow AXIS
to probe super-Eddington accretion onto distant massive black holes. The ratio of the early-time
XMM-Newton spectra of ASASSN-14li to a single diskbb model. The P Cygni-like absorption feature
around 0.7 keV is seen in both CCD and grating spectra. Adapted from Figure 3 of Kara, E., Dai,
L., Reynolds, C. S., & Kallman, T. Ultrafast outflow in tidal disruption event ASASSN-14li. 2018,
MNRAS, 474, 3593 [173].

TDEs provide an ideal testbed for studying the physics of accretion through all regimes.
As the mass fallback rate decreases, a natural prediction is that the disk may undergo a
thermal-viscous instability caused by the change in advective heat transport and radiation
pressure, triggering a state transition from a radiation pressure dominated thick disk to
a gas pressure dominated thin state [174–177]. The latter geometrically thin disk lacks
the capacity to confine the horizon-threading magnetic fields, which results in striking
variations in inflow and outflow dynamics, such as the shutoff of relativistic jets and the
destruction of a magnetically dominated corona. For example, by capturing the sudden
reduction in X-ray luminosity and variations in the X-ray spectral shape, state transitions
have been identified in two jetted TDEs (Swift J1644+57 [178] and Swift J2058+05 [179]) and
two non-jetted TDEs (AT2018fyk [180] and AT2021ehb [181]). However, X-ray monitoring
of ASASSN-14li for 500 days shows no evidence for a sudden change in luminosity, which
could indicate a disk instability or state transition [182]. Since the luminosity of the
thin disk state (∼1041 erg s−1) is generally much fainter than that of the thick disk state
(∼1043 erg s−1), a complete characterization of TDE state transitions requires sufficient
X-ray sensitivity. Future long-term AXIS monitoring of nearby TDEs (selected by optical or
X-ray surveys) is needed to reveal the prevalence, timescale, and physical conditions of
thermal-viscous instability in accreting MBHs.

X-ray quasi-periodic oscillations (QPOs) have been detected from Swift J1644+57
and ASASSN-14li [183,184]. The short timescales (mHz) are consistent with an origin
in the innermost accretion flow. These QPOs provide a means to study the relativistic
spacetime and constrain the black hole spin in this population of hitherto dormant black
holes. Current searches with Chandra and XMM-Newton are limited to the most luminous
TDEs. The occurrence rate of this quasi-periodic variability, and its relation to the evolution
of the broader TDE accretion flow, is uncertain. AXIS will facilitate detection of these
signals in a larger sample of less luminous TDEs.
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6. Changing Look/State AGN

This subclass of unbeamed AGN splits into two relatively well-defined groups, both
of which exhibit dramatic variations in their X-ray, UV, optical continua and/or broad
emission lines on timescales of days to years (see Ricci and Trakhtenbrot [185] for a recent
review). One subset, known as Changing-Look (CLAGN; term coined in Matt et al. [186]) or
Changing-Obscuration AGN (COAGN), show strong line-of-sight column density changes
(most dramatically from Compton thin to thick or vice versa), mostly associated with
clouds or outflows eclipsing the central engine of the AGN. The other subset, known as
Changing-State (CSAGN) or rather confusingly (“optical”) CLAGN, shows continuum and
broad emission lines which appear or disappear, typically triggered by strong changes in
the accretion rate of the SMBHs.

Over the past few decades, our understanding of CLAGN/COAGN has improved
substantially, thanks to the monitoring campaigns of many local AGN. For example, NGC
1365 shows strong X-ray obscuration transitions (NH∼1022–1024 cm−2) on time-scales
of weeks [187], days [188], and even ∼10 h [189], implying cloud densities as high as
∼1011 cm−3 and distances of 3000–10,000 rg, with densities consistent with those expected
in the Broad Line Region (BLR). In rare cases with exceptional statistics, the complex
geometry of the clouds has been probed, suggesting comet-like structure [190]. Ensemble
studies of several dozen other local AGN find transient obscuring clouds at similar radii,
which implies that the clouds are generally just inside or near the dust sublimation radii
for these AGN [191]. Finally, even Compton-thick AGN like NGC 1068 exhibit such
eclipses [192], highlighting that clumpy variable obscuration from the BLR or the torus is a
very common property among all types of AGN.

However, many open questions regarding CLAGN/COAGN that can provide insight
into the torus and BLR structure remain. For example, how does the rate and distribution
of obscuration events (and perhaps even the individual cloud properties) relate to the
line-of-sight orientation, optical AGN type, state of the torus and BL region clouds, and
host galaxy properties? What fraction of AGN show changes in obscuration and why?
To answer such questions, we need to greatly increase the number of objects and the
fidelity of the constraints on the NH variations with time. AXIS will do just this, greatly
expanding the statistics to many thousands of relatively bright AGN, allowing studies
along across nearly every potential vector, pinning down the cloud properties across much
larger ranges of black hole mass, accretion rate, and obscuration/AGN type parameter
spaces, to understand cloud occurrence rates, sizes and shapes, and ensemble distributions.

The vast majority of CSAGNs discovered to date were found using archival data,
leaving a full account of their behavior largely unexplored. One of the first CSAGN to
be extensively tracked was 1ES 1927+654 [193–195], which exhibited X-ray/UV/optical
luminosity variations by a factor of >50 on few-month timescales. This CSAGN highlights
the potential for variations in both the optical and X-ray regimes, and was extensively
monitored at X-rays and optical through its transition state, allowing strong constraints on
the physics of the system. Its origin was argued to be a TDE, which provoked an increase
in the accretion rate at the innermost regions of the accretion disk, which then emptied the
inner disk and led to the destruction of the X-ray corona.

More generally, such objects can provide valuable insights into the dynamic processes
occurring in the immediate vicinity of supermassive black holes, how matter behaves under
extreme gravitational forces, and how AGN evolve over time and affect their host galaxies.
However, the origin of the anomalous accretion disk variability is not yet well understood.
The overall demography of CSAGN is also poorly known, due to the lack of dedicated
multi-wavelength time-domain surveys and/or their relative sensitivities. For example,
Temple et al. [196] derive a CSAGN rate of 0.7–6.2% on 10–25 yr time-scales among local
Swift-BAT selected AGN objects (i.e., 21 of 412), with many transitions occurring within at
most a few years and nearly all having < 0.1L/LEdd.

There are also many open questions here. From an X-ray standpoint, how common
are Changing-State transitions among AGN as a function of their fundamental properties



Universe 2024, 10, 316 14 of 31

(MSMBH, accretion rate, spin, radio-loudness), what are the typical changes in the X-ray
emission during the transition, what are their typical transition timescales, and whether
they (and how often) they repeat. Large samples of CSAGN, together with high-cadence
monitoring, are required to understand their occurrence rates and typical timescales. AXIS
can revolutionize our understanding of CSAGN. Its enhanced sensitivity will allow the
detection of fainter and more distant sources, expanding the sample size and improving our
understanding of their demographics, providing better photon statistics to probe spectral
changes, yielding insights on accretion physics and the dynamics of circumnuclear regions.

7. Quasi-Periodic Eruptions

X-ray quasi-periodic eruptions (QPEs) are a new phenomenon that was recently discov-
ered from a handful of low-mass galaxies (with stellar masses ≈ 109−9.5M⊙) in the nearby
(within z ∼ 0.05) Universe [197–199]. They are sharp soft X-ray bursts that last from less than
an hour to a few hours and repeat in a quasi-periodic fashion every several hours to almost
a day, although some sources show a large scatter in the recurrence [198–200]. Their origin
is consistent with the nuclei of their host galaxies and most of the sources are detected in
X-rays between the QPEs, with a spectral shape consistent with the exponential decay of
a thermal spectrum (with peak temperature kT ∼ 40–80 eV, [197–199]). In similarity with
TDEs, this quiescence spectrum is interpreted as emission from the innermost region of the
accretion flow, indicative of a black hole with a rather small mass. Estimates from scaling re-
lations confirm that QPEs originate around massive black holes of MBH ∼ 105−6.7M⊙ [201].
When in eruption, the increase in the soft X-ray count rate is usually a factor of 10–100, and
the spectrum remains soft, following a characteristic spectral evolution showing a harder
rise than decay at the same count rate [200,202].

At the time of writing, only four publicly known extragalactic repeating soft X-ray
erupters show this characteristic behavior and are, therefore, considered secure QPE
sources [197–199]. Two further candidates show a similar energy dependence during
the bursts, but the observations were not long enough to constrain the possible repeti-
tion [203,204]. So far, no simultaneous variability has been observed in other bands (e.g.,
optical, UV, IR or radio), although this might be due to the angular resolution of current
observations, which are most likely dominated by the galaxy’s stellar population.

The origin of QPEs is still debated. Since their discovery in 2019, several models have
been proposed, including accretion disk instabilities (e.g., [205–208]) or scenarios involving
a two-body system consisting of a massive black hole and a much smaller companion
(e.g., [209–221]). The most recent models within the latter scenario seem to reproduce the
observational properties at least qualitatively [217,218,220,221] and propose QPEs to be
triggered as a star or black hole brought into the nucleus via extreme mass ratio inspirals
(EMRIs) passes through the accretion disk around the massive black hole. This accretion
flow may be provided by a previous TDE, which would be supported by the growing
connection between QPEs and the signature of potential previous TDEs [202–204,222]. This
scenario, if confirmed, would make QPEs the first electromagnetic counterpart of EMRIs,
opening a new window to the future of multi-messenger astronomy.

AXIS will perform follow-up of QPEs discovered by either AXIS itself or other X-ray
surveys, with the aim of characterizing their short- and long-term variability and their
spectral evolution. Long and continuous observations with a sensitive soft X-ray imager
(most of the signal from QPEs is below 1.5–2 keV) are needed, and AXIS will play a central
role on the study of QPEs. Furthermore, since in quiescence these sources are often detected
with a soft thermal component, similar to that of TDEs, indicative of an accretion disk,
AXIS spectra will be used to put constraints on the mass and spin of the massive black hole.

8. Magnetars

Magnetars are highly magnetized, rotating young neutron stars that display a wide
range of radiative activity (see, e.g., [223] for a review). The most energetic bursting phe-
nomena are called magnetar giant flares (MGF), with a peak luminosity of 1041–1047 erg s−1.
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Such flares are associated with non-disrupting powerful explosions breaking through the
neutron star surface and ejecting a relativistic and collimated outflow. Only a handful of
such events have been observed so far from both Galactic and extragalactic magnetars.
They were characterized by a very short (≲100 ms), energetic (1044–1046 erg), hard spike
immediately followed by a minutes-long decaying tail modulated by the spin period of the
magnetar (usually on the order of seconds). Both signatures are observed for all nearby
events (≲0.5 Mpc), but in more distant events, only the prompt spike has been detected
with current instruments (e.g., [224]). The characteristic periodic tail is the smoking gun sig-
nature for the association of such short transients to MGF. Generally, the phase-integrated
spectrum of the tail is well described by a thermal blackbody component peaking around
5 keV plus a non-thermal power-law component that emerges above tens of keV. The
spectrum of MGF tails evolves in time, with a thermal component temperature moving
from ∼10 keV to ∼3 keV, and the study of the temporal evolution revealed the presence
of quasi-periodic oscillations (QPOs) with typical range of frequencies between 10 and
1000 Hz [225–227]. QPOs are associated to oscillations of the stellar crust or inner layers of
the star. They can inform us about the structure and properties of the dense matter that
constitutes neutron stars, e.g., its equation of state, and give us insights on the crust-core
interface, thought to be a crucial link to the physical origin of the flares [228,229].

A recent population study inferred a volumetric rate of MGFs oriented towards Earth
of RVol

MGF = 3.8+4.0
−3.1 × 105 Gpc−3 yr−1 [224]. Such a high volumetric rate, together with

the small sample of observed events to date, highlights the need of a sensitive soft X-
ray telescope that could detect and resolve the smoking-gun signature of the periodic
tails of MGFs. Observations can be triggered by hard X-ray monitors, which would also
provide localization. A fast response to such a trigger is essential. Once on target, the
flux sensitivity will be key to detect the fading tail and reveal the presence of periodic
emission. Unambiguously identifying extragalactic MGFs is imperative to learn more about
magnetars as a population and, in general, to provide more information for population
synthesis models.

Some Galactic magnetars show longer-lived X-ray flux enhancements (factor of
10–1000), lasting for weeks to months. When this happens, it is said that the magne-
tar is in “outburst”. Anomalies such as spectral hardening, glitches, changes in the pulse
profile, and repeated shorter bursts can occur during these time periods [223]. The number
of outbursts per magnetars can vary from none to several in a decade (see, e.g., [230–232]).
A strategic monitoring of outbursting magnetars by a sensitive X-ray telescope is crucial
to uncover the mechanisms in place, ultimately giving clues on the physics and internal
structure of these neutron stars. For example, in one instance (SGR 1935+2154) SGR flares
were associated with a (sub-luminous) fast radio burst (FRB [233,234]; see Section 10).

When short bursts and flares are produced by Galactic magnetars, the emitted soft X-
rays interact with surrounding dust in the Milky Way. Such dust is often structured in dense
clouds along the line-of-sight and creates dust-scattering haloes or rings (one for each dust
cloud). This phenomenon has been observed several times (see, e.g., [235]), highlighting the
crucial aspects of the sensitivity and angular resolution of the X-ray observations. Having
a point spread function narrower than the rings’ radial profiles enables the study of the
dust clouds’ thicknesses and composition, providing a unique observable to trace and
characterize the dust in our Galaxy.

On top of their bursting activity, magnetars are fascinating X-ray persistent emitters
(additional discussion about the potential of AXIS on this topic can be found in the ac-
companying AXIS White Paper “Prospects for Compact Objects and Supernova Remnants
Studies with AXIS”). Furthermore, a wind nebula has been observed surrounding the
magnetar Swift 1834.9-0846 [236]. A more sensitive X-ray observatory could lead to the
discovery of fainter magnetar wind nebulae, unveiling the connection between pulsars
and magnetars, and providing more clues to the progenitors of such highly magnetized
neutron stars.
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9. X-ray Binaries

Observations of X-ray binaries (XRBs) probe black holes (with relevance to under-
standing super-massive black hole evolution via the scale-invariant nature of accretion),
neutron stars (dense matter equation of state, high B-fields), and white dwarfs (stellar
populations, LISA sources) with studies of all of these sources providing opportunities to
constrain the theory of General Relativity. The integrated luminosity of high-mass X-ray
binaries (HMXBs) is known to be correlated with the SFR in galaxies [237,238], while the
integrated luminosity of low-mass X-ray binaries (LMXBs) is observed to correlate with
the galaxy stellar mass [239], and thus their study is required to inform models for galaxy
formation and evolution. Additionally, XRBs may play a key role in the re-ionization of the
Universe at early times (e.g., [240–242]).

HMXBs are highly variable and their study in the MW/LMC/SMC has revealed evidence
of variations at the population level in response to metallicity and age (e.g., [243,244]). Studies
of these systems with AXIS will provide insight into massive star formation in conditions
akin to those more typical in higher-z galaxies [245,246]. In an HMXB, the X-rays from
the compact object probe the wind of the massive star, providing detailed constraints on
mass loss from massive stars, a key input to understanding their impact on star and galaxy
formation [245,247].

Observations of the ULX population at larger distances will enable a detailed spectral
characterization of the large and highly variable ULX population discovered by XMM-
Newton and Chandra and inform our understanding of accretion at Eddington and super-
Eddington rates [248–251]. AXIS spatial resolution is required to further the study of
ULX environments (e.g., globular clusters [252,253]), complementing the Rubin Observa-
tory [253]. The study of ULXs can provide direct constraints on massive star evolution and
LIGO binary merger progenitor channels [254,255].

Another possibility will be the search for cyclotron lines from the spectrum of ULXs.
Recently, there has been at least one detection of a cyclotron line at 4.5 keV [256]. This
absorption can be tied to either electron or proton transitions, both of which result in
different magnetic field strength estimates. Electrons imply B = 4(1 + z)× 1011 G for a
4.5 keV line, while protons suggest 7(1+ z)× 1014 G. The observed line’s unique broadening
ratio of 0.02 aligns with a proton cyclotron resonant scattering feature (electrons yield
broader lines), akin to theoretical predictions. We show in Figure 7, the power of the large
effective area of AXIS to make such detections in exposures as short as 5 ks.

Figure 7. Cont.
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Figure 7. (Top): Simulated AXIS 500 s spectrum of Vela X-1. (Bottom): Simulated AXIS 5 ks spectrum
of ULX-8 in M51, depicting the reported absorption feature, likely a cyclotron line [256]. The capability
of AXIS to constrain the spectral parameters of XRBs in such short exposures will permit the study of
fast time variability in exquisite detail.

AXIS will discover many XRBs in the local group (MW/LMC/SMC/M31/M33) and
beyond. The flexibility of scheduling and the high time resolution of AXIS will enable the
study of transient and variable XRBs, which provide access to accretion flows that span
10−9 LEdd − LEdd in a single system on timescales of weeks to months, with dramatic changes
to the physical properties of the accretion flow occurring on timescales as short as the dynami-
cal timescale at the innermost regions of the accretion flow (tdym ∼ kHz; [257,258]). Tracking
the spectral and temporal characteristics as functions of luminosity is essential to under-
standing modes of accretion, the structure of the accretion flow, and the compact object. The
flexible AXIS detectors will facilitate a study of the relativistic spacetime near black holes
and neutron stars through observations of QPOs, X-ray reverberation and the spectral-timing
behavior of accretion flows. AXIS will provide new insight into accretion flow structure
via studying low luminosity accretion flows (Lx ≲ 10−3 LEdd). It will obtain high-quality
observational constraints on radiatively inefficient accretion flow/jet physics (ADAFs, RIAFs)
and constrain how accretion flows evolve towards/away from the high-luminosity thin-disk
regime [259–261]. These constraints can be directly compared to the latest generation of
MAD/SANE numerical accretion flow models [262,263].

AXIS will constrain uncertain X-ray source populations, such as low luminosity X-ray
transients discovered in Chandra observations along the Galactic plane [264,265]. Multi-
epoch observations by AXIS will probe the nature of uncharacterized X-ray sources by
constraining their spectral and flux variability, e.g., the nuclear cluster of stellar-mass black
hole candidates [266]. At the shortest orbital periods, a subset of these systems will provide
“bright” GW sources for LISA, requiring detailed electromagnetic characterization [267].

AXIS will detect and monitor the motion/decay of relativistic X-ray ejections from
stellar mass black holes in unprecedented detail, extending the baseline over which they can
be studied and providing insight into how the energy from the relativistic jet is dissipated
through interaction with the ISM [268–270]. X-ray light echoes generated by bright transient
objects such as XRBs and GRBs, when observed behind or in the Galactic plane, offer an
opportunity to study ISM [271] (see also Section 8). The AXIS large field of view and stable
PSF will enable detailed characterization of the morphology and intensity evolution of
these light echoes, providing unique X-ray constraints on the content of the ISM as the
scattering is proportional to the physical properties of the dust (e.g., composition, grain
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size distribution). Light echoes also provide a unique means to measure the distance to an
X-ray transient, at a typical accuracy of ≲10% [272–274].

10. Fast Radio Bursts

FRBs are the newest class of ms-duration, extremely bright (1037–1046 erg s−1) ra-
dio transients that are typically seen from sources outside of our Galaxy [275]. Various
sub-classes of FRBs have been identified and even localized to their host galaxies; yet
their emission mechanism(s) and the progenitor engine(s) remain unknown [276]. Except
for the one instance of an FRB detection from a magnetar (SGR 1935+2154) in our own
Galaxy (FRB 20200428, which was seen with an X-ray counterpart; [234,277]), searches
for high-energy/multi-wavelength counterparts to all the other FRBs have only yielded
non-detections [278–280].

AXIS is poised to change this scenario. Subsecond incoherent synchrotron X-ray
“afterglow” emissions are predicted from almost all FRB models and are corroborated by
the FRB 20200428 event [281–284]. The detection of this X-ray afterglow emission and its
properties, such as the peak energy of the X-ray emission, its flux, and the X-ray-to-radio
flux ratio, can inform us about the local plasma conditions such as magnetization, and
composition. Characterizing these properties is paramount to confirm/refute models of
the emission mechanism of extra-galactic FRBs. Furthermore, deep X-ray observations
of repeating FRB sources can also potentially identify the progenitor of these bursts (the
currently prevailing theoretical models of repeating FRBs involve either a flaring magnetar
(see Section 8) or a jetted accreting compact object [63]); the latter will also yield a persis-
tent soft quasi-thermal X-ray counterpart due to the accretion disk and the surrounding
“hypernebula” [285]. X-ray studies of the host galaxies of FRBs (e.g., AGN fraction in FRB
hosting galaxies) can also reveal a plethora of information about the formation channel
of the compact objects emitting them, and assist in identifying newer sub-populations of
FRBs [286].

The cosmological distances of FRBs have simply been too large for high-energy coun-
terparts to be detected by the current generation of X-ray telescopes. The revolutionary
capabilities of AXIS will enable observations of the repeating class of FRBs to constrain their
properties and those of their host galaxies. Furthermore, ToO observations can be triggered
on repeating FRBs that are quasi-periodic in nature, based on the onset of their active
phase [287,288]. For example, the current upper limit with Chandra on the ms-duration
soft X-ray emission coincident with an FRB event is <1047 erg s−1 (for FRB 20121102; [280]).
Given the distance to FRB 20121102 of 972 Gpc, any observation with AXIS longer than
1 ks can start constraining the X-ray-to-radio flux and, therefore, the efficiency of various
models of emission mechanisms.

11. Sources of High-Energy Neutrinos

The IceCube Neutrino Observatory, located at the South Pole, made a groundbreaking
discovery with the detection of astrophysical neutrinos. In 2013, the facility observed
high-energy neutrino flux in excess to the expected atmospheric background [289]. The
observation marked the beginning of a new era of multi-messenger astronomy, where
neutrinos serve as messengers of distant cosmic phenomena and sparked intense interest
in identifying their sources. A couple of additional observations, a neutrino flare coin-
cident with a gamma-ray flare of TXS 0506+056 [290] and the discovery of a neutrino
source compatible with NGC 1068 [291], focused the community’s attention to variable
blazars and active galactic nuclei as possible candidates of high-energy neutrinos. Al-
ternative possibilities, including accretion-powered “hypernebulae” in XRBs [292] and
supernovae [293], are also being pursued. Here, we discuss the role AXIS can play in
multiple counterpart scenarios.
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11.1. Blazars

The neutrino flare emitted from the direction of TXS 0506+056 marked a significant
milestone in astrophysics, as it was the first time a high-energy neutrino was linked
to a known astrophysical source. Intriguingly, the neutrino flare occurred in temporal
coincidence of a gamma-ray flare [290]. In fact, blazars are highly variable sources, whose
study is of interest in its own right, for example, for the search for quasi-periodicities from
an SMBHB (in fact, it has been suggested that TXS 0506+056 could be hosting an SMBHB
which would merge in the LISA band within its mission lifetime [294,295], making it a
source of three messengers). However, the connection of such variability to high-energy
neutrino emission is an open issue. Multiwavelegth variability and polarization studies
play a crucial role in mapping the emitting regions along blazar jets, as well as revealing
their leptonic or hadronic nature. In this context, guaranteeing the soft-X-ray coverage in
long-term monitoring of the fainter blazars will be crucial to uncovering a possible link
between high-energy neutrinos and relativistic jets.

11.2. Active Galaxies

NGC 1068 (or Messier 77), is the prototypical Seyfert II galaxy, a type of active galactic
nucleus (AGN) showing starburst activity, and is one of the brightest and closest to Earth.
Its activity is powered by a supermassive black hole at the center, which is highly obscured
along the line-of-sight by thick gas and dust. Such a dense and hot environment obscures the
view of the nucleus in visible light and suppresses gamma-ray emission above hundreds
of MeV. Hence, monitoring the innermost part of the source is only possible in other
wavelengths, such as infrared and X-rays. However, infrared emission can be contaminated
by emissions from star formation in the host galaxy. Soft X-rays can help distinguish
between the two sources, as AGN emit X-rays, while star-forming regions typically do not.
High energy neutrino production may result from the acceleration of ions, via magnetic
reconnection and/or turbulence, up to relativistic regimes that would interact with disk
photons producing neutrinos via the photo-meson production process [296].

11.3. Accretion-Powered Hypernebulae

Hypernebulae are inflated by accretion-powered winds accompanying hyper-Eddington
mass transfer from an evolved post-main sequence star onto a stellar-mass black hole or
neutron star companion [285,292]. The conditions required to inflate these compact energetic
hypernebulae are typically attained prior to common-envelope events, making these sources
decades-millennia-long transients. The ions accelerated at the jet termination shock of a
hypernebula can generate high-energy neutrinos via photohadronic (pγ) interactions with
the softer quasi-thermal disk photons. Note that a sub-population of FRBs may be powered
by such short-lived jetted hyper-accreting engines [63], and the radio-synchrotron-bright
hypernebulae surrounding them could power the spatially-coincident ‘persistent radio source’,
and impart large rotation and dispersion measures onto the FRB [285].

If the hypernebula birth rate follows that of steller-merger transients and common
envelope events, their volume-integrated neutrino emission could explain ∼25% of the
high-energy diffuse neutrino flux observed by the IceCube Observatory and the Baikal-GVD
Telescope. The large optical depth through the nebula to Breit-Wheeler (γγ) interaction
attenuates the escape of GeV-PeV gamma-rays co-produced with the neutrinos, thus
rendering hypernebulae gamma-ray-faint neutrino sources, consistent with the Fermi
observations of the isotropic gamma-ray background. Given the large accretion rates of
hypernebulae, the disk X-ray photons do not emerge directly from the disk surface; instead,
they emerge from the fast wind/jet photosphere at much larger radii. This reduces the
effective temperature of the disk emission to 10∼100 eV thus enabling hypernebulae to be
candidates for ultraluminous supersoft X-ray sources [297,298]. AXIS, with its large soft-X-
ray effective area, would play a crucial role in discovering and characterizing the supersoft
X-ray emitting hypernebulae, which might also be one of the significant contributors to the
extragalactic background high-energy neutrino flux.
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12. Conclusions

Building off the legacy of facilities such as Chandra, XMM-Newton, and Swift, AXIS
will be a transformative facility for the study of the time-domain and multi-messenger
universe. The combination of tremendous sensitivity, excellent field-averaged angular
resolution, and rapid response capabilities makes AXIS the ideal X-ray telescope to comple-
ment the TDAMM landscape anticipated in the next decade. In this White Paper, we have
described a broad range of such studies that can be conducted during the five year prime
phase duration, many of which will be undertaken by the community via the robust Guest
Investigator program. Perhaps most exciting, however, are the new discoveries that we
cannot anticipate currently; in many areas, TDAMM studies are just in their nascent stages,
and unexpected results will surely arise. With AXIS, the future of TDAMM is (X-ray) bright!
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