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ABSTRACT

Synchronizing a few-level quantum system is of fundamental importance to the understanding of synchronization in the deep quantum
regime. We investigate quantum phase synchronization of a two-level system (qubit) driven by a semiclassical laser field, in the presence of
a dissipative environment having finite bath correlation. The phase preference of the qubit is demonstrated through the Husimi Q-function,
and the existence of a limit cycle is also shown in our system. Synchronization of the qubit is quantified using the shifted phase distribution.
The signature of quantum phase synchronization viz. the Arnold tongue is obtained from the maximal value of the shifted phase distribution.
Two distinct types of qubit dynamics are considered depending on the reservoir correlation time being very short and a situation when
bath correlation time is finite. When the reservoir’s frequency spectrum is broad and the bath correlation time is short, the qubit’s phase
preference vanishes in the long-time limit. In contrast, a finite bath correlation time and narrow spectral density result in persistent long-time
phase localization. The synchronization regions are governed by system-environment parameters, with qubit phase synchronization being
enhanced when the reservoir exhibits a narrow frequency spectrum.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0242574
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I. INTRODUCTION

Synchronization is a natural phenomenon that occurs in a vari-
ety of physical, chemical, and biological systems and has been exten-
sively studied and observed in nature for many years."° For exam-
ple, if an autonomous oscillating system is coupled to another such
system or an external driving force, it can synchronize its frequency
and phase to the external system/driving.” A well-known example
of classical synchronization is the van der Pol oscillator model."
In recent past, the van der Pol oscillator model was reformulated
in terms of a quantum system,” " and it was shown that when the
system is far from the ground state, synchronization in quantum sys-
tems is analogous to classical synchronization under the influence of
noise.” When we are close to the ground state, this correspondence
is changed because the discreteness of the energy levels becomes
important. It is, therefore, interesting to study synchronization in
quantum systems with a small number of energy levels. Studying

synchronization of finite dimensional quantum systems have gained
momentum due to its potential application in the field of quantum
computation and quantum information. Recently, quantum syn-
chronization in low-dimensional systems has been investigated.'* '
Generally synchronization can be classified into forced synchroniza-
tion and spontaneous synchronization (or mutual synchronization).
In the case of spontaneous synchronization,"” the interested sys-
tem becomes synchronized in the transient evolution of dynamical
systems due to the interaction between the subsystems or an external
environment. In contrast to spontaneous synchronization, forced
synchronization or entrainment usually emerges with externally
driven forces.”'”'**° Here, we investigate the quantum phase syn-
chronization of a two-level system in the presence of an external
driving field. Synchronizing a few-level quantum system is of funda-
mental importance to the understanding of synchronization in the
deep quantum regime. Initially in Refs. 12, 19, 20, and 26, qubits
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were suggested to be the smallest possible system that can be syn-
chronized. Later, spin-1 systems were theoretically shown to be
synchronizable, ™' *** experimental demonstrations of which were
carried out subsequently.rzs However, in Ref. 13, it was claimed that
quantum synchronization is not applicable for a single qubit (spin-
1/2 system) due to the lack of limit cycle. Subsequently, it was shown
that the limit cycle of a single qubit can be obtained and synchro-
nization of a qubit to an external signal is possible.'”'® Following
that, synchronization of a single qubit to an external driving signal
is experimentally demonstrated using a trapped-ion system.”

In the present work, we investigate quantum phase synchro-
nization for a two-level system (qubit) driven by a semiclassical laser
field and simultaneously coupled to a dissipative environment; exis-
tence of the limit cycle is shown in our system. We analyze the phase
synchronization of a driven qubit under two distinct scenarios: (i)
a reservoir with a broad frequency spectrum and negligible mem-
ory, and (ii) a reservoir with a narrow spectral density and finite
bath correlation time. In our analysis, we have considered an Ohmic
spectral density that simulates the two-level open quantum system.
However, our synchronization analysis for the two-level system is
applicable to any other structured reservoir as well. For example,
one can also consider sub-Ohmic, super-Ohmic, or a more gen-
eral spectral density. Recently, non-Markovian environments have
drawn particular attention in quantum science and technology when
environment’s correlation time is not too small compared to the
system’s relaxation time in many physical systems.”’" Tt is interest-
ing to investigate the relationship between non-Markovianity and
quantum synchronization.'*’* ** Here, we show that the reservoir
memory has a significantly positive impact on the emergence of
quantum phase synchronization. The rest of the paper is organized
as follows: in Sec. II, we consider a widely studied two-level system
(qubit) simultaneously interacting with a dissipative environment
while being driven by an external field. The time evolution of the
reduced density matrix of the qubit is considered to be two distinct
types of dynamics, depending on (1) the reservoir correlation time is
very small compared to the qubit’s relaxation time and the dynamics
is defined as Markovian dynamics and (2) the reservoir correlation
time is of the same order as the system relaxation time and connected
with non-Markovian memory effects.”” **

In Sec. III, we demonstrate the transient dynamics of the
Husimi Q-representation in order to visualize and characterize
phase synchronization behavior in both the Markov and non-
Markov regimes. In Sec. IV, we consider a measure of synchro-
nization, called shifted phase distribution, and show its dynamics
as a function of phase and detuning in the Markovian and non-
Markovian regimes. We also plot the maximum value of the shifted
phase distribution in two different ways: (a) by varying the detun-
ing and laser drive strength and (b) by varying the system-bath
coupling and laser drive strength. Signature of quantum phase syn-
chronization viz. the Arnold tongue is demonstrated through the
maximal value of the shifted phase distribution. Finally, we present
our conclusions in Sec. V.

Il. MODEL OF LASER-DRIVEN QUBIT AND TIME
EVOLUTION

A single two-level system (TLS) driven by a semiclassical laser
field is coupled to a dissipative environment. In this study, we work

ARTICLE pubs.aip.org/aip/apq

with the rotating wave approximation (RWA) and the total Hamil-
tonian of the system plus environment and the external driving is
given by

h
H-= HS + HR + HSR + Hd = Ea)oo—z + z hwkb;bk
k
* gt 2 €0 iwpt —iwpt
+> h(gk0+bk +g o_bk)+zh1(e o-+e o), (1)
k

where the ground state to excited state transition frequency is wp.
The strength of the semi-classical laser field is e and its driving
frequency is wr. The system Hamiltonian Hs can be written in
terms of the spin-raising and spin-lowering operators o, = [1)(0]
and o_ = |0)(1]. The Hamiltonian of the dissipative environment
Hp is described by a collection of infinite bosonic modes with the
bosonic creation and annihilation operators denoted by b;: and by,
respectively. The factor g, is the coupling strength between the sys-
tem and the kth mode of the environment with frequency wy. Using
the unitary transformation, U(t) = e2%“", we transform the Hamil-
tonian to a frame rotating at the laser driving frequency. The total
Hamiltonian after this transformation reads

h h
H= HTLS + HSR + HR = EAO'Z + Ee‘dx

+ Zk: h(gkmbkeiw” +g;f07b;£efiw”) + Zk: hwkb;:bk, )

where A = wy — wp represents the detuning with the laser driving.
The two-level system Hamiltonian can precisely be diagonalized as

h h ho.
Hys = EAO'Z + 5 €0x = 5502, (3)
where we use the basis transformation |1) = cos§|1) +sing|0)
and |0) = —sin g\l) + cos 2\0), and we choose tan 6= ¢ and

8=\ A*+¢€% In the new basis, the spin operators are defined
as 04 = |i)((_) , 0 = |())(i , and G, = |i>(i| - |O)(O| The system-
reservoir interaction Hamiltonian in the interaction picture reads

Hs(t) = > hgi[ad. + noy +po—]bi S L He,  (4)
k

where a = 35, 17 = %S, and y = %6. The interaction Hamiltonian
can finally be expressed as
Hsr(t) = S(¢)B(t) + Hec, (5)

where the reservoir operator B(t) and the factor S(¢) are defined as
B(t)=> Gebre ™5 (1) = (oc&z + ;16+ei6t +y6,e7i&)eiw“. (6)
3

The constant « denotes the elastic tunneling through the bath,
whereas the 7 and p denotes the inelastic excitation and relaxation
through the bath, respectively. For simplicity, we consider the factor-
ized initial system-environment state py(0) = p(0) ® pr(0), where
p(0) is the initial state of the system and the reservoir is initially in a
thermal equilibrium state p,(0), given by

pe(0) = exp (=pHr)/Tr[exp (-BHr)]. @)
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Here, = 1/kgT with kg is the Boltzmann constant and T is the
temperature. We have adopted a general framework to derive a per-
turbative quantum master equation, and for simplicity, we consider
a zero-temperature reservoir here. The second-order perturbative
master equation in the Schrédinger picture for the two-level system
is then given by

dp  i6

=5 o]+ ()] (0:p0: ~ 0z0cp)

+ an(ozpos — 010zp) + ap(ozpo- — o_0.p) }

+ Do (t){pa(o+po; — 0204 p) + un(ospos — 0104p)

+ @ (04po- — 0-04p) } + T3(t){na(o-po. - 0:0-p)

+ n°(0-pos — a40-p) + nu(o-po- — o0p)}+Hc], (8)

where we have omitted the bars from the spin operators and it is
implicit that the Pauli spin operators are now in the new basis. The
time dependent coefficients in the master equation are denoted by

rl(t) _ fth/wdw](w)efi(w—wL)(th)’ (9)
0 0

rz(t) _ /thfmdw](w)e—i(w—wL+8)(t—‘r)’ (10)
0 0

t oo .
Ts(t) = fo dr fo dwf (w)e @0 (11

The master equation (8) is a convolution-less time-local differential
equation. The time-dependent coefficients I';1(t), I2(t), and T3(¢)
account for the memory effect of the non-Markovian environment.
To characterize the environment and calculate these time-dependent
coefficients in Egs. (9)-(11), we must consider a spectral density to
characterize the structured environment. The time-dependent cor-
relation functions fully characterize the non-Markovian memory
effect given the spectral density J(w). Here, we consider an Ohmic
spectral density,”*"**"** which is a common class of spectral density
that simulates the dynamics of a two-level open quantum system,

J(w) = yw exp (—w/A). (12)

Our formalism is applicable to any spectral distribution, mak-
ing the phase synchronization analysis for the two-level system
suitable for more general structured reservoirs. The time-dependent
coefficients (9)-(11) appearing in the master equation contain the
non-Markovian characteristics of the open quantum system. Here, y
is the coupling strength between the system and dissipative bath and
is measured in units of y,, which is a fixed frequency, closely related
to the relaxation time of the qubit. The constant y, is the relaxation
rate related to the T relaxation time of the qubit under spontaneous
decay. Considering a typical experimental value of the relaxation
time of a superconducting qubit," "’ we find the relaxation rate y,
to be of the order of MHz. In this work, we have taken y = 0.1y,
for all results where coupling strength y is fixed. The parameter 1 is
the cutoff frequency of the bath spectrum. We see two distinct types
of qubit dynamics based on the value of the system-environment
parameters. For A > 2y, the reservoir correlation time is very short
compared to the relaxation time of the qubit and, consequently, the
dynamics is Markovian. When A < 2y, the reservoir correlation time

pubs.aip.org/aip/apq

is comparable with the relaxation time of the qubit, and hence, we
observe non-Markovian memory effects. For the Markov regime,
we consider a value of A = 5 and in the non-Markov regime,
A =0.01y,. We investigate the phase synchronization of the driven
qubit with a finite detuning A = y,.

Next, we investigate the features of synchronization of a driven
two-level system using the Husimi Q-function. The Husimi Q-
function is one of the simplest distributions of quasiprobability in
phase space.”” We show a robust, long-time synchronous dynam-
ics of the qubit under a non-Markovian structured environment.
The phase preference or dynamical phase localization of the qubit
is observed and quantified through an investigation of the Husimi
Q-function.””">** The phase distribution function and the shifted
phase distribution (see Secs. IV A and IV B) obtained from the
Husimi Q-function indicate the presence of a dynamical phase local-
ization. This dynamical phase localization can also be quantified by
the maximum value of the shifted phase distribution. From the char-
acterization of the maximum value of the shifted phase distribution,
we observe the formation of a triangular region which demarcates
the space into regions where phases are either localized or delocal-
ized. This feature is well-known in the theory of synchronization as
Arnold tongue.

lll. HUSIMI Q-FUNCTION

The phase synchronization of the driven TLS can be character-
ized using the Husimi Q-function,”””" which is a quasi-probability
distribution capable of capturing the phase space dynamics. In
our work ,we use the spin-coherent states and the corresponding
expression reads

Q6.9.1) = 5_(6.9lp(1[6.9). (13)

where p(t) is the time-evolved density matrix. For the two-level sys-
tem, |6, ¢) are the spin-coherent states, which are eigenstates of the
spin operator g, = fi- ¢ along the unit vector fi with polar coor-
dinates @ and ¢. This state |6,¢) = cos(6/2)[1) +sin (8/2)e|0)
represents a point on the surface of a Bloch sphere, where |0) and
|1) are the eigenstates of the spin operator g;. Once the temporal
evolution of reduced density matrix is determined from Eq. (8), it is
easy to obtain the time dynamics of Q-distribution as a function 6,
¢, and ¢t as follows:

Q6.6.1) = 5 Tr([6.9)(0.9lp(1)) = 5 _Tr

. [( cos’(6/2) ~ sin (0/2) cos(9/2)ei¢)
sin (6/2) cos (6/2)e" sin®(6/2)

« (Pll(t) Plo(t))]
por(t)  poo(t))]
= i[cosz(e/z)f)n(t) +sin (6/2) cos (6/2)e o (1)

+sin (8/2) cos (6/2)epro(t) + sin2(6/2)poo(t)].
(14)

From Eq. (14), we can see that the Q-function can be expressed
as a weighted sum of the individual density matrix elements. An
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analysis of the time-evolved Q-function for the Markovian and
non-Markovian evolution is shown in Fig. | for an initial state of
[+) = (|0) + [1))/+/2. In Fig. 1(a), the Husimi Q-function for the
Markov dynamics is shown in the long-time limit of pt = 500. At
time t = 0, we observed that the Q-function is nonuniformly dis-
tributed and it is peaked at ¢ = 0. As the system evolves in time,
the phase distribution becomes more and more uniform, and in the
long-time limit, the phase preference is diminished under Markov
evolution when the reservoir’s frequency spectrum is broad and
the bath correlation time is short. We have taken A = 5y,, A =y,
and € =y, for this Markov evolution. In Fig. 1(b), we show the
Q-function of the driven qubit in the non-Markovian regime (A
= 0.01y,). The detuning is fixed at A = y,, driving amplitude € = y,,
and the evolution time is taken as yt = 500. In contrast to the Markov
case, we find here that the phase delocalization process is signif-
icantly slowed down under non-Markov dynamics when the bath
correlation time is extended for a narrow spectral density of the
reservoir. This leads to a non-uniform phase distribution, indicat-
ing the presence of phase preference in the system, where the phase
remains localized rather than spread out. Under this non-Markovian
evolution, only the relative position of the Q-function peak shifts
at around ¢ = 71/2. The system-environment coupling strength is
taken as y = 0.1y, for all the plots shown in Fig. 1. Hence, we
can conclude that the phase localization is enhanced under non-
Markovian evolution if we compare the dynamics to its Markovian
counterpart.

The relative phase in a quantum system is encoded in the
off-diagonal elements. Hence, any phase localization will imply
that the off-diagonal elements survive in the long time limit. In
Fig. 2, we show the evolution of |p,,(t)| for both Markovian and
non-Markovian dynamics, with varying driving amplitude e. For
Markovian evolution (A = 5y,), the value of |p,,(¢)| decays very fast
when the driving amplitude € is very small. In this case, we do not
see quantum phase localization in the long time. The magnitude of
|p,o(t)] saturates to a finite value in the long time limit as we increase
the driving amplitude e. Under Markov dynamics (A = 5y,), the
phase localization is not completely wiped out in the presence of the
driving field. This is what we see from the plot of Husimi Q-function
in Fig. 1(a). The long-time saturation value of |p, ()| crucially
depends on the value of €. In the case of non-Markovian evolution,

(2) A=57,

s 0.15
0.1
< 7/2
0.05
0 0

0 /2 T
¢

- -7/2
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041 --=-e=0.17,
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o ®!

0.2
0 , , ; . ,
0 50 100 150 200 250 300
yt I
0.6 ! -—-€= 10'4'}/0
——-€=0.1y
= 04 ‘ 0
< (b) A=0.01v, - - e=057,
< L -
= 02 €=7,
0 , , , , ,
0 50 100 150 200 250 300
vyt

FIG. 2. Plot of the magnitude of off-diagonal element |p1o(t)| as a function of
time is given for (a) Markov dynamics when the bath correlation time is short and
(b) non-Markovian evolution when the bath correlation time is extended for a nar-
row spectral density of the reservoir. The system—environment coupling strength
is taken as y = 0.1y,.

the value of the off-diagonal element |p,,(¢)| remains almost con-
stant throughout the evolution and is the same for different values of
the driving amplitude e. In the presence of non-Markovian memory
effect, the driven qubit exhibits quantum phase localization when the
structured reservoir has a narrow spectral density and a finite bath
correlation time.

It is well-known that the off-diagonal elements signal the pres-
ence of quantum coherence in the system. Hence, we conclude that
the quantum phase localization and, consequently, the quantum
phase synchronization is due to long lasting quantum coherence in
the system. This relationship between quantum phase synchroniza-
tion and quantum coherence has been examined in detail in Ref. 43.
The synchronization in our work is quite different from the ones
discussed in Refs. 24 and 33. In these references, there are two cou-
pled quantum systems of which one is connected to an external bath
and they study the synchronization of the systems in the absence of
the driving field and this type of synchronization is referred to as
spontaneous mutual synchronization.

(b) A=0.017,

0.15

0.05

- -7/2 0 /2 T
®

FIG. 1. Husimi Q-function of a single qubit coupled to a dissipative bath in the presence of an external driving is shown under (a) Markovian dynamics when the reservoir
memory is negligible and (b) non-Markovian dynamics with narrow spectral density. We have taken the spectral width A = 5y, for Markovian evolution and A = 0.01y, for
non-Markovian evolution. The values of the other parameters are taken as A = y, € = y,, y = 0.1y,, and yt = 500.
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IV. SYNCHRONIZATION MEASURE
AND ARNOLD’S TONGUE

A. Shifted phase distribution

The Husimi Q-function can be used to identify the phase
preference in the two-level quantum system. To find the strength
of the phase preference, we adopt the measure proposed in Refs.
13-15. This function is obtained by integrating the Q-function
over the angular variable “6” to get the phase distribution P(¢,p)
= [Q(6,¢,t) sin 6d0 for a given state p. A quantum state with uni-
form phase distribution has P(¢,p,) = 1/27. So, the non-uniformity
in the phase distribution or rather the phase preference can be mea-
sured using a function called the shifted phase distribution given in
the following:

T ) 1

S(¢.1) = P(¢,p) - P(¢, po) = fo Q0.¢.)sin 040~ . (15)
This function is zero if there is no phase localization, which implies
there will not be any phase synchronization. We substitute Q(6, ¢, t)

from Eq. (14) in Eq. (15) to evaluate the integral over the angular
variable 0 as follows:

S(¢t) = —i " i[pn(t) fo " cos’(6/2) sin 6d6
+ poo(t)/oﬂ sin®(0/2) sin 6d6
+ p1o(t) ei‘l’/o-” sin (6/2) cos (6/2) sin 646

+ por(t) e_i¢/0” sin (0/2) cos (0/2) sin Gde]. (16)

B )7
10

0.15

0.1

0.05

-0.05

-0.1

- -7/2 0 /2 T

(b)t=10

0.15

0.1
0.05

-0.05

-0.1

-0.15
- -T/2 0 /2 T

¢
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Evaluating the integral over the angular variable 0 in Eq. (16)
and using the condition of trace invariance i.e., py, (t) + p;,(t) = 1,
we get

S(8.1) = g [p(* + pu ()] (17)

We plot the shifted phase distribution S(¢,t) as a function of A
and ¢ at different instants of time in both the Markovian and
non-Markovian regime. In Fig. 3(a), we plot S(¢, ) under Marko-
vian dynamics with a wide spectrum (A = 5y,) in which subplots
Figs. 3(al) and 3(a2) describe the variation of S(¢,t) with A and ¢
for y,t = 10 and y,t = 500, respectively. From Fig. 3(al), we find that
there are V-shaped yellow regions of phase localization in the short-
time y,t = 10. With the increase in y,t, we observe that the regions
with §(¢,t) = 0 increases and for y,t = 500, the shifted phase dis-
tribution becomes almost uniform over ¢, as shown in Fig. 3(a2).
The non-Markovian dynamics with narrow spectrum (A = 0.01y,)
of the shifted phase distribution S(¢, t) is shown in Fig. 3(b). Sub-
plots Figs. 3(b1) and 3(b2) demonstrate S(¢,t) as a function of A
and ¢ for evolution time y,t = 10 and y,t = 500, respectively. Here,
we again show phase localization regions in Fig. 3(b1) for y,t = 10.
While the characteristics of this region change with time, the shifted
phase distribution never becomes zero uniformly for all values of
A and ¢ even when y,t = 500, as shown in Fig. 3(b2). There are
periodic finite values of A where the phase synchronization occurs.
Hence, our results show that the phase localization disappears in
the long-time limit for Markovian dynamics with negligible reser-
voir memory. In the case of non-Markovian dynamics, the phase

(a)) 7t =500

-0.05

-0.1

-0.15
-T -7/2 0 /2 T

(b,) 7t =500

-0.05

-0.1

- -0.15
-T -7/2 0 /2 T

)

FIG. 3. Contour plot of the phase shift distribution S(¢, t) as a function of A and ¢ for different evolution times y,t is shown with (a) e = 1 in Markov case with broad reservoir
spectrum (A = 5y, ) and (b) e = 1 in non-Markovian case with narrow spectral density (A = 0.01y,). The system—environment coupling strength is taken as y = 0.1y,.
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localization is present even in the long-time limit for a structured
reservoir with a narrow frequency spectrum.

B. Arnold tongue

Another measure that is widely used to characterize quantum
synchronization is the maximum of the shifted phase distribution.
This value can be found by computing S(¢,t) over the entire range
of ¢ and finding the maximal value. For the single qubit system that
we are investigating, the expression for the maximal shifted phase
distribution S, (t) reads

max S(9.1) =5n(6) = ol = {Cu(p) (18)

where Cy, (p) is the £;-norm measure of quantum coherence.
This connection between quantum phase localization and quantum
coherence was discussed in detail in Ref. 43. This is deemed to be a
natural connection because the relative phases which are being local-
ized are the same ones that describe the quantum coherence in the
system.

A contour plot of S, (t) as a function of the detuning parameter
A and laser driving strength € is shown in Fig. 4 for the reser-
voir in the Markovian regime, characterized by a broad frequency
spectrum and negligible memory, as well as for the non-Markovian
regime, where the reservoir is structured with a narrow frequency
spectrum. The Markovian regime with a wide spectrum (A = 5y,) is
shown through the plots in Fig. 4(a) where S,, () is given for yt = 10
in Fig. 4(al) and for yt = 500 in Fig. 4(a2), respectively. From the

(@) 1t=10
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T 05¢
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plots, we observe certain regions near A ~ 0 where Sy, (t) is posi-
tive, indicating that there is a region where the phases are localized.
The evolution of S, (t) corresponding to the non-Markovian regime
(A =0.01y,) is shown through the set of plots in Fig. 4(b), where
Fig. 4(bl) provide the features for yt = 10 and Fig. 4(b2) shows the
result for yt = 500, respectively. In Fig. 4(b1), we observe phase local-
ization for a wider range of parameters in the short-time interval of
yt = 10. However, in the long-time (yt = 500) shown in Fig. 4(b2),
phase localization occurs only in a narrow range of the detuning A.
We observe a triangular region where the phase is locked, a feature
that is generally referred to as Arnold tongue and is considered as a
signature of quantum phase synchronization.

C. Limit cycle analysis

The discussions we had so far show that the phase is localized
in the driven two-level system, which we are currently investigat-
ing. In our earlier work in Ref. 43, we have shown that while phases
can be localized, it does not always lead to phase synchronization. In
fact, we show that the presence of Arnold tongue does not imply
that there is a phase synchronization in the system. This necessi-
tates us to find a new way to observe and analyze quantum phase
synchronization. An alternative method to confirm the presence of
quantum phase synchronization is through the existence of a limit
cycle. In the long-time limit, if the trajectory of the driven TLS sys-
tem becomes a closed trajectory, then the system is said to have a
limit cycle. In our work, we have considered a single qubit and inves-
tigated it in the spin coherent basis. Here, the trajectory of the qubit

(a,) 7t =500
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FIG. 4. Contour plot of the maximal value of the shifted phase distribution Sy (¢) as a function of A and ¢ in the Markovian regime with a wide frequency spectrum of the
reservoir (A = 5y, ) for two different times (as) yt = 10 and (a2) yt = 500. On the other hand, Sy (t) as a function of A and e is shown in the non-Markovian regime with a
narrow spectrum (A = 0.01y,) at two different times (b1) yt = 10 and (b) yt = 500. The system—environment coupling strength is taken as y = 0.1y,.

APL Quantum 2, 016109 (2025); doi: 10.1063/5.0242574
© Author(s) 2025

2,016109-6


https://pubs.aip.org/aip/apq

APL Quantum

!
777,!’

in the Bloch sphere can capture its dynamics in the phase space. In
the following, we present a study of the dynamics of the TLS on a
three-dimensional sphere and discuss our results.

To plot the qubit trajectories on the Bloch sphere, we need to
consider the system in the nonrotating frame of reference. For this,
we transform the qubit density matrix with the unitary transforma-
tion U = e2%“t' and perform the transformation p’ = U'pU, where
p' is the density matrix in the nonrotating frame of reference. The
Bloch vector components (5, my, m.) in the nonrotating frame can
be expressed as follows:

my = my cos (wrt) = my sin (wrt), (19a)
m}', = my sin (wrt) + m, cos (wrt), (19b)
mz”, = Mg, (19C)

where m, = Tr(oxp), my = Tr(o,p), and m; = Tr(o.p) are the Bloch
vector components in the rotated frame. To visualize the trajec-
tory, we observe the dynamics of the two-level system, and for
this, we plot the Bloch vector components (19a)-(19¢) of the time
evolved reduced density matrix of the qubit up to y,t = 300 for both
Markovian and non-Markovian evolution in Fig. 5. The Markovian
dynamics is shown in Fig. 5(a) for A = 5y,. We observe that the ini-
tial state |+) = (|0) + |1))/+/2 evolves to a |0) state. The trajectory is
not closed and the final steady state is a point on the sphere. On the
contrary, the trajectory of the non-Markovian dynamics is shown in
Fig. 5(b) for A = 0.01y,, which shows that the dynamics evolves such
that the trajectory is a closed curve. This feature indicates that the
quantum phase of the two level system is synchronized. Thus, the
limit cycle is established for the two-level system under driving and
in the long-time limit the system precesses around the z axis.

V. CONCLUSION

In this work, we investigate quantum phase synchronization
for a two-level system (qubit) driven by a semiclassical laser field.
Two distinct types of qubit dynamics are considered depending
on the reservoir correlation time being very short and a situation

ARTICLE pubs.aip.org/aip/apq

(b) A=0.01,

FIG. 5. Qubit trajectories on the Bloch
sphere is shown for Markovian dynam-
ics with a wide frequency spectrum of
the reservoir in panel (a) with A = 5y,
and for non-Markovian dynamics with
a narrow spectrum in panel (b) with
A =0.01y,. Values of the other para-
meters are taken as y = 0.1y;, € = y,,
and A = y,.

when bath correlation time is finite. In the Markovian regime, where
the environment exhibits a broad frequency spectrum and negligi-
ble memory, the qubit’s phase preference vanishes in the long-time
limit. In the non-Markovian regime, characterized by a structured
reservoir with narrow spectral density and finite bath correlation
time, long-time phase localization persists. We used the Husimi
Q-function to show that quantum phase synchronization is sig-
nificantly enhanced in the non-Markovian regime. In the Markov
regime with finite A, as the system evolves in time, the phase
distribution becomes more and more uniform, and in the long-
time limit, the phase preference is completely wiped out. For finite
detuning, we find that the phase preference survives over a longer
period in the non-Markovian dynamics in the presence of reser-
voir memory. To quantify the phase synchronization, we plot the
shifted phase distribution and its maximum value for a wide range
of system-environment parameters. The maximum of the shifted
phase distribution exhibits an Arnold tongue like feature, demarcat-
ing the phase localized and phase delocalized regions in the system
environment parameter space. We demonstrate a mathematical con-
nection between the maximum of the shifted phase distribution and
quantum coherence given by Eq. (18). The trajectory of the qubit
in the Bloch sphere captures its dynamics in the phase space. In
the long-time limit, the trajectory of the driven system becomes a
closed trajectory, hence the system is said to have a limit cycle. We
confirm the presence of quantum synchronization through the exis-
tence of a limit cycle. Using a shifted phase distribution S(¢, t), we
show that quantum phase synchronization is significantly enhanced
in the presence of reservoir memory when the spectrum is structured
within a narrow frequency range. To quantify the phase synchro-
nization, we plot the shifted phase distribution and its maximum
value for a wide range of system-environment parameters. We plot
the maximum of the shifted phase distribution as a function of
the detuning parameter (A) and laser driving strength (€). We
systematically discussed how the synchronization regions are deter-
mined by various system-environment parameters and observed
the typical Arnold tongue features of a phase synchronized qubit.
Various system-environment parameters determine the synchro-
nization regions, and the qubit phase synchronization is shown to
be enhanced in the non-Markov regime. The driven qubit is syn-
chronized inside the tongue region and desynchronized outside the
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Arnold tongue. In the future, it will be interesting to investigate
quantum phase synchronization under the influence of various other

. . 35-41
non-Markovian noise sources.””
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