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Abstract

In this dissertation, we examine the production and preservation of high brightness
electron beams for fourth generation light sources. The relentless push toward brighter
photon pulses from Free Electron Lasers (FELs) has been facilitated by an increase in
the brightness of the driving electron beam. One method of increasing this brightness
is to provide an electron beam which is pre-bunched at the FEL wavelength, thereby
providing a fully coherent seed for the lasing process. We explore the technique of
Echo-Enabled Harmonic Generation (EEHG) to seed the electron beam at a high
harmonic wavelength of a conventional, fully coherent laser pulse. We build on the
previous work at the Next Linear Collider Test Accelerator (NLCTA) to extend the
harmonic up-conversion via EEHG to the 75th harmonic. This level of up-conversion
provides a proof of principle for future FEL facilities to achieve in a single seeding
stage fully coherent radiation in the soft X-rays. We additionally demonstrate the
ability to create multi-color, tunable bunching spectra using a chirped electron beam
and the EEHG technique.

As the electron beam brightness is increased to match the demands of the FEL
facilities, however, collective effects work to destroy the meticulously prepared beam.
We examine the interplay between the microbunching instability and EEHG, and
show that the tunable laser and chicane parameters of EEHG offer the possibility of
selectively exciting or suppressing the effects of the instability.

Finally, we develop a theoretical model for a novel source of emittance degradation
due to a stochastic addition to the standard Coherent Synchrotron Radiation (CSR)
field. This addition is found to grow with both electron beam energy and density,

potentially limiting the ultimate brightness of some electron beams. Physically, the

v



effect is found to be due to the stochastic scattering of electrons off the narrow-angle
synchrotron radiation cones of other electrons as they traverse a bend magnet. The
effect is therefore similar to intra-beam scattering, which involves the scattering off
the Coulomb field rather than radiation field, and appropriate comparisons between

these effects are performed.
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Chapter 1

Introduction

Do not wait to strike till the
iron is hot, but make it hot by
striking.

— William Butler Yeats

Particle accelerators, originally conceived to probe the fundamental constituents of
matter, have become increasingly useful as light sources in their own right. This began
with the discovery of synchrotron radiation [I], which at the time was considered more
a parasitic energy loss mechanism than a useful tool. The potential of this new, high
energy light source was soon realized and there was an explosion of storage ring based
light sources, capable of operating in the X-ray region. The field was revolutionized,
however, with the introduction of high-gain Free Electron Lasers (FELs). These
accelerators allowed transversely coherent X-ray pulses to be obtained over a wide
wavelength range, and with peak spectral brightnesses up to a billion times higher
than pre-existing sources. There now exist several FELs operating in the X-ray
regime, which are the LCLS [2], FLASH [3], SACLA [4], FERMI [5], and the more
recent PAL [6] and XFEL [7]. These facilities have enabled fantastic advances in the
fields of Atomic, Molecular, and Optical (AMO) physics, structural biology, chemistry,
and nanoscale dynamics.

The basic principle behind a FEL involves the resonant interaction between a

relativistic electron beam and an alternating transverse magnetic field, provided by



CHAPTER 1. INTRODUCTION 2

350

Seeded 240 W

3001 SASE300 W

250
200
150

100 A

Relative photon energy (eV)

Spectrometer intensity (a.u.)

Figure 1.1: A typical SASE spectrum, shown in red, with many spikes and a relatively
large bandwidth. By contrast, the blue curve shows FEL output using the so-called
Hard X-Ray Self-Seeding scheme, which provides a temporally coherent seed. [§]

an undulator magnet. As the electrons radiate, the electromagnetic field acts back on
the electron bunch to push the electrons into microbunches on the scale of the FEL
wavelength. These microbunches can then radiate coherently, greatly amplifying the
radiation power and thus causing more bunching, which is the essential physics of
the FEL instability. This instability relies on the initial presence of either some small
amount of microbunching, or a electromagnetic field at the resonant FEL wavelength.

Historically, X-ray FELs have initially operated in the so-called Self-Amplified
Spontaneous Emission (SASE) mode, in which the seed for the instability is provided
by spontaneous undulator radiation [9] [I0]. While simple for operation, the fact that
the seed to the instability is due to spontaneous emission, driven by random noise on
the electron beam, means that the final output spectrum is not temporally coherent.
The result is a temporal pulse that is non-uniform and contains many separate spikes,
or in the frequency domain, a power spectrum which also contains these spikes, as
shown in figure[T.1] It is clearly desirable, if possible, to seed the process in a coherent

way and move towards a single-spike, Fourier-limited power spectrum.
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Figure 1.2: A diagram showing the wavelength range of commercially available con-
ventional laser systems. Image from [I1].

Such a seeding process is possible in the wavelength regimes accessible by con-
ventional laser systems, which is illustrated in figure We can readily observe a
dearth of lasers in the UV, limited to perhaps 200 nm.

There exist exotic harmonic generation methods, such as the High-Harmonic Gen-
eration (HHG) scheme [I2], which can assist in bridging the gap down to X-ray
wavelengths. The HHG technique uses the non-linear interaction of a high intensity
conventional laser pulse with a noble gas jet to produce very high wavelength har-
monics of the initial seed laser. In this way, the production of wavelengths as short
as several nanometers is possible, however the attainable pulse energy is rather low.
In order to effectively seed the FEL process with a laser, the input power must be
sufficient to overcome the noisy SASE startup process, and this is presently not pos-
sible for HHG sources below ~20 nm. Therefore, it is necessary to contrive alternate
means in order to coherently seed FELs in the Extreme Ultraviolet (EUV) and soft
X-ray regimes.

The alternative to introducing a direct electromagnetic seed is to prepare the

electron bunch to possess significant bunching on the radiation wavelength scale.
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The bunching at wavevector k for a grouping of N, electrons, indexed by ¢ with

longitudinal positions z;, is defined as,

Ne

b(k) = ek, (1.1)

1

Ne i=1
The bunching factor describes how piled up the electron distribution is at a particular
wavevector, and is also directly related to how much coherent (Power~ N?) radiation
the beam would produce at that wavelength. If one can produce bunching through
arrangement of the electrons at the resonant wavenumber £ of the FEL, the coherent
radiation would quickly generate a seed which overwhelms the SASE startup, and the
FEL would proceed fully seeded. In the context of FELs, this bunching at the FEL
wavelength scale is often referred to as ‘microbunching’.

This provides an essentially distinct, beam-based (as opposed to radiation-based),
seeding method for the FEL, and offers the ability to reach into the soft X-ray wave-
length regime. This microbunching can be produced from the interaction of a conven-
tional laser with the electron beam. Conventional laser pulses are readily available
down to A &~ 266 nm, so one must provide significant harmonic up-conversion in order
to seed in the soft X-rays. One particularly motivated wavelength range, known as
the water window, lays between the K absorption edges of carbon (4.37 nm) and
oxygen (2.33 nm). Radiation in this wavelength range allows for in-vitro imaging
and analysis of biological samples. To provide a seed in the water window therefore
requires a harmonic upconversion factor h from 266 nm of 60 ~ 115. We choose a
value somewhere in the middle, h = 75, as the target harmonic at which this type
of seeding becomes viable in the soft X-rays. This harmonic upconversion factor is
established through the Echo-Enabled Harmonic Generation technique in chapter
of this thesis.

Besides providing a seed from which the FEL amplification can take place, a
relativistic electron beam must also be prepared to act as the lasing medium. The

one dimensional theory of the FEL interaction furnishes a single parameter which
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influences most of the dynamics,

LK T?%e?n,
=0 — 1.2
P \/ 32v3k2m (1.2)

where K, J and k, are properties related to the undulator, while n, is the electron
beam volume density and + its relativistic energy. The parameter p controls, among
other things, the undulator length required for the amplification to saturate and
saturation power of the FEL process. It is therefore generally advantageous to make
it as large as possible. Since the electron beam energy and undulator parameters
combine to yield the resonance wavelength of the FEL (see equation , in general
the optimization of these parameters requires delicate trade-offs.

However, we can unambiguously state that increasing the electron beam density
leads to a more efficient FEL process. This dependence has led to a push towards
ever brighter (in the five-dimensional sense) electron beams, both in the transverse
dimensions (through the horizontal and vertical emittances) and the longitudinal
dimension through bunch compression. The creation of such high density beams,
however, is hampered by collective effects in the electron beam which in general work
to dilute it. There exist many separate effects which rise and fall in importance
as the beam energy and density is changed. It is imperative to understand these
collective effects if a high density electron beam is to be maintained so as to promote
the most efficient FEL process possible. One major goal of this thesis is to therefore
understand these deleterious effects and see how they might be avoided to facilitate
the generation of high brightness radiation pulses.

The essential ingredients for an FEL are therefore, 1) the relativistic electron
beam (and its associated self-destructive tendencies), 2) the resonant interaction,
and instability, inside the long undulator magnet, and 3) the electromagnetic or
microbunching seed.

The outline of the thesis is as follows. First, background material for each of
the three essential FEL ingredients is reviewed in chapter 2] This thesis will detail

novel contributions to both the understanding of limitations in relativistic electron
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beams and also the preparation of microbunching seeds for the FEL. The experimen-
tal portion of this thesis was conducted at the Next Linear Collider Test Accelerator
(NLCTA) at the SLAC National Accelerator Laboratory. An overview of the facility
and the previous experiments to generate microbunching structure using the Echo-
Enabled Harmonic Generation (EEHG) is given in chapter [3]and section [3.1.2] Then,
experimental upgrades made to the facility as enabling technologies to generate and
probe higher harmonics of microbunching are presented in section 3.2 and a char-
acterization of the NLCTA electron beam is given in section [3.3] The experimental
results from the EEHG experiments are then presented and discussed in chapter

I joined the echo program at NLCTA, which had been ongoing since 2009, in late
2014 as the experimental push towards the highest harmonics began. I was heavily
involved in three main aspects of the experiment from that point onwards: The
installation and commissioning of the new VISA undulator, the design, construction
and calibration of a new EUV spectrometer, and the day-to-day electron beam tuning
and operation of the NLCTA accelerator.

The results of numerical simulations of EEHG and other beam-based seeding
schemes are presented in chapter [ These simulations include benchmarking of new
FEL simulation codes , new simulations of EEHG interacting with effects such
as the microbunching instability , and start-to-end simulations of the NLCTA
%)

A theoretical model for a novel diffusive effect due to synchrotron radiation in
bend magnets is developed in chapter [} This theory is compared with full particle
simulations , and the possible implications of this effect on current and future
facilities is discussed .

Finally, chapter [7| provides a summary of this thesis and concluding remarks.



Chapter 2

Background Material

2.1 Electron Beam Dynamics

Free-electron lasers use relativistic electron beams as the gain medium for the ampli-
fication of radiation. Relativistic electron beams have been studied since the earliest
days of electrostatic particle accelerators. Since the introduction of the RF accelerat-
ing cavity, the structure of an electron beam is generally individual bunches separated
by subharmonics of the RF repetition rate. The modern formalism for the discus-
sion of such bunches, and accelerator physics in general, proceeds largely from the
pioneering work of Courant and Snyder in 1958 [13].

The coordinate system used in the study of accelerators generally considers par-
ticles moving on a curved trajectory, and defines the coordinate axes as shown in
figure 2.1l In addition to the three spatial coordinates, we also define the mo-
menta in the z and y direction as p, and p,. Finally, for the longitudinal dimen-
sion we define the fractional momentum offset with respect to the design particle
d = (p — po)/po, where py = mcm, m is the electron mass, ¢ the speed of
light, and 7 = (1 — v?/c?)71/2 is the reference particle relativistic Lorentz factor.
These six coordinates form the phase space in which the particles reside, and are
encapsulated in the vector X = (%, pzy Y, Dy, 2,0). Occasionally, it is simpler to use

the temporal coordinate ¢t = z/(f8c¢) where 8 = v/c is the normalized velocity. It is
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Design Orbit

Figure 2.1: The conventional system of coordinates used in accelerator physics. The
coordinate x points radially away from the local radius of curvature, z points along
the direction of motion, and the vertical coordinate y is perpendicular to these two
in order to form a right-handed system.

worth noting that all coordinates excepting z are defined with respect to the refer-
ence particle trajectory, such that a particle precisely on the design trajectory has
X =1(0,0,0,0, z,0).

In all situations we are concerned with, the electron beam has a bunched beam
structure. The electrons are photo-emitted from a cathode at the repetition rate of
a drive laser pulse, and the resulting bunch has temporal length roughly equivalent
to the duration of the laser pulse. This assumes that the length of the drive laser
is significantly shorter than the RF wavelength employed in the electron gun, which
is true for cases considered in this thesis but in general can be violated high repe-
tition rate accelerators. The individual laser pulse duration can range from tens of
femtoseconds (fs) to hundreds of picoseconds (ps), which leads to the bunched beam
structure. As they are emitted, the electrons are captured by a high-gradient elec-
tromagnetic field (~ 100 MV /m) and accelerated to relativistic velocities inside an
electron gun. For cases considered in this thesis, the EM field is typically provided by
an RF klystron in the S-band (frr =~ 2.85 GHz) frequency range, corresponding to
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macropulse (~us) micropulse (~ps)

HHER FER

I —

1 f'fm-

Figure 2.2: The relationship between the different timescales in a bunched beam.
Figure from [14].

an RF cycle duration 1/ fgr =~ 350ps. Furthermore, the RF power from the klystron
is also modulated and has typical duration of ~ us, with repetition rate of perhaps
100Hz for a normal conducting RF gun. The relationship between these different
timescales is shown schematically in figure 2.2

We are primarily concerned with the dynamics within an individual electron

bunch. Therefore, it is useful to define the intra-bunch coordinates,
s =z — fet, (2.1)

where 3 is the average electron velocity and ¢ is the time from some reference epoch.
The coordinate s therefore naturally on the scale of the electron bunch, and we will
frequently refer to it to describe the intra-bunch dynamics. Note that if we use s
instead of z as our longitudinal coordinate, the particle on the design trajectory has
precisely X = 0 as its coordinates. From this point forward, our canonical phase

space vector will be X = (%, D2, Y, Dy, S, 6).
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2.1.1 Multipole Magnetic Fields, Dipoles, and Quadrupoles

Modern accelerators must transport electrons over long distances, either in a ring
configuration for many turns, or in a long linear accelerator (linac) through mul-
tiple accelerating cavities. The trajectory of the electrons can be controlled using

electromagnetic fields, in which the electrons will respond via the Lorentz force,

—

er(ﬁ+17><§>, (2.2)

where e is the electric charge, E the electric field, B the magnetic field, and ¢ the
electron’s velocity. A relativistic electron moves at approximately the speed of light
¢, so |U] ~ ¢, and we can compare the force due to some typical magnetic and
electric fields. A typical magnetic field of 1 Tesla, easily achievable with permanent
or electromagnets, is matched in force by an electric field of 3 x 10® V/m. This
huge electric field far exceeds the electrostatic breakdown of air and most materials,
rendering it impractical in comparison to the magnetic field for the manipulation of
relativistic electrons.

Therefore, the dynamics of the electron beam is primarily controlled by the mag-
netic field, of which we can consider the first two multipole modes. A general magnetic
field in cartesian coordinates can be expanded in terms of cylindrical multipole modes
as [15],

B, = By f: (£>n (b, cosnb — a,, sinnb) , (2.3)
n=0

B, = By i (£>n (an cosnb + b, sinnd), (2.4)
n=0

where x = rcosf, y = rsinf, By is the on-axis (r = 0) magnetic field, a is a reference
radius, and the coefficients a,, and b, are called the multipole coefficients. While
a general magnetic field can have nonzero coefficients for all a,,b,, in the context
of accelerator physics magnets are typically designed to have only a single nonzero
coefficient. Furthermore, for a magnet, a,, and b, are a related by a simple rotation

about the direction of electron propagation (or equivalently, rotation in the coordinate
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system). The coefficients b,, are called normal multipoles, as they tend to bend the
electrons in the normally defined propagation direction, while the coefficients a,, are
skew multipoles. For our purposes, we consider only normal multipole magnets, for
which a,, = 0 for all n.

The first possible configuration is given by by = 1, and all other b,, = 0, in which

case the magnetic field is given only by,
B, = By, (2.5)

while B, = 0. This constant magnetic field is known as a dipole field, and via the
Lorentz force, will attempt to curve the electron’s trajectory along a circular path.
In practice, this often takes the form of a series of dipole magnets used to bend the
electron trajectories into a closed, circular arc, as in a synchrotron.

The next possible elementary magnetic configuration has only b; = 1. The field

for this configuration is given by,

r x
B, = By— 0 = By— 2.6
Y OaCOS 0a> ( )

B, = By~ sinf = By”. (2.7)
a a

A plot of the field vectors is shown in figure As can be seen by the emer-
gence/convergence of field lines, there are north magnetic poles in the top left and
bottom right, while there are south magnetic poles in the lower left and upper right.
Due to these four poles, this configuration is called a quadrupole magnet. There is no
field on-axis, as expected, but small displacements from the origin will result in linear
restoring (or diverging) forces, as can be easily understood from the Lorentz force
equation In the case of the field configuration shown, for an electron propagating
into the page, the quadrupole is restoring in the vertical direction and diverging in the
horizontal. A 90° rotation about the direction of electron propagation would produce
the opposite restoring/diverging directions. For a distribution of electrons, then, the

quadrupole magnet focuses the distribution in one direction, while defocusing it in
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Figure 2.3: The magnetic field plot of a pure-quadrupole magnet.

the other. A combination of quadrupoles, however, can have the combined effect of
focusing in both the horizontal and vertical planes, enabling the transport of electron
beams over large distance without significant divergence.

There exist, of course, an infinite family of potential magnets such as the by = 1
sextupoles, or b3 = 1 octupoles. These higher-order magnets are generally used
to reduce chromatic aberrations in the optical lattice which are introduced by pure
quadrupole fields. We will, however, not concern ourselves with these higher-order
magnetic field components, as the dipole and quadrupole are sufficient for all the

beam manipulations we will consider.

2.1.2 The Beam Transport Matrix

Consider a particle offset from the reference trajectory by vector X; where ¢ =
{1,---,6} describe the 6 phase space coordinates. Then, the effect of any forces

on the particle trajectory can be written in a power series expansion as,

X = Ry X + Tigp X Xp + Uy X; X Xy + - -+ (2:8)
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where Einstein summation convention has been used in which repeated indices indi-
cate summation: R;; X; =) y R;; X ;. Since the coordinate deviations X; are generally
small, the series can usually be truncated after the first term.

The term ‘generally small’ requires some explanation, as the phase space vector
X, in general has dimensions, and thus must be small compared to some reference
scales. The momenta p, and p, are small when compared to the total momentum
Po, usually referred to as the paraxial approximation, and is almost always a good
approximation. The transverse coordinates x and y can be considered small compared
to the aperture for typical magnetic components — for example, when compared to
the good-field region in a quadrupole magnet. The longitudinal coordinate s should
similarly be considered small compared to the longitudinal distance in the component
— typically in comparison to the radio-frequency wavelength A\gp.

In the case that the evolution of the electron beam phase space is linear, this is

called linear optics. We can rewrite equation [2.8]in the vector and matrix form,
Xfal —R. X, (2.9)

The matrix R is then known as the transport matrix, and describes the linear evo-
lution of the electron beam phase space through any given beamline element. The
components of R are found by considering how each individual coordinate is trans-
formed through the field of a given element in a straightforward procedure. All
components of R are not independent, however, as the matrix is required to be sym-
plectic [16]. In fact, for magnetic components with symmetry about y = 0 and no

substantial radiation, a common situation in accelerator physics, the general from for
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the transport matrix is,

Riy R 0 0 0 Ry
Ry Ry 0 0 0 Ry
R_| 0 O B R 0 0 (2.10)
0 0 Ry Ru 0 0
Rsi Rsy 0 0 1 Reg
o0 0 0 0 1

Furthermore, by virtue of the linear theory, once the transport matrix is known for
an individual beamline element, the total transport matrix can be constructed by

consecutive multiplication of matrices,
)Z*'ﬁnal = RjRj,1 e R1 . X) - RtOtal . )?, (211)

where the component 1 is the first encountered by the electron beam, all the way
up to component j, and their successive multiplication defines the total transport
matrix R™*% With this in mind, we can list components for some common beamline
elements and simply multiply matrices to construct any beamline composed of them.
The transport elements for some common magnets are given in table [17].

A word about each beamline component is in order. The drift space is simply a
length L in the absence of any magnetic field. In this situation, transverse momenta
are converted into transverse position (nonzero Ri2,R34), and particles with different
momenta move longitudinally with respect to one another simply by virtue of their
differing velocities (nonzero Rsg). This difference in velocities, being a non-relativistic
effect, is proportional to =2, which usually implies it can be ignored for high energy
electron beams.

The sector dipole magnet bends the particle through an angle 8 = L/py where pg
is the bending radius and L the arc-length. The magnet is curved in the shape of the
arc, such that the particle enters and exits the magnetic field perpendicular to the
pole face. Note that this element too possesses non-zero Rsg, although generally of

opposite sign to the drift. Intuitively, this means that particles with higher momenta
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arrive at the end of the bend after those with lower momenta. This is due to the
curved trajectory, in which higher momentum particles are deflected less than those
with lower momenta, and thus travel on longer paths. For most relativistic machines,
this effect is much larger than the velocity difference of the L/~+2 term.

The rectangular dipole, by contrast, is a simple rectangle through which the parti-
cle is bent through an angle 6. At the entry and exit pole faces, there is an additional
contribution to the total transport. This pole face contribution can be calculated by
treating the pole face as a thin quadrupole with focal length py/ tan(6/2).

The quadrupole of length L is characterized by an inverse length scale k, which
describes the strength of the focusing. A thick quadrupole is defined to be one in
which the change in transverse position inside the quadrupole is appreciable, in which
case the full matrix should be used. Many times, however, the effect of the quadrupole
can be treated as an impulse and replaced by a thin lens optical element. This lens is
characterized by a focal length f, which is formally derived by taking the limit L — 0
as the product kL remains finite. It is clear to see that the quadrupole is focusing in

one plane while defocusing in the other.

2.1.3 The FODO Lattice and Magnetic Chicane

With these simple components, we will generate two common magnetic structures
that will be used throughout this work. The first is the four-dipole magnetic chicane,
while the second is the focusing-defocusing (FODO) alternating quadrupole lattice.
The simplest four-dipole chicane contains two sections of two sector dipoles, of
opposite bend angle, with a small drift section between them as shown in figure 2.4}
The full linear transport matrix can be found by multiplying the successive matrices
for the bends and drifts, and in general contains many terms even for this highly
symmetric case. As is often the case, however, we can take the angle 6 to be small,
and the Lorentz factor v to be large, and arrive at simple lowest order expressions for

the transverse and longitudinal dispersion components in the four-dipole chicane,

(L + Lar)(2L + Ly + ALyy)
L ’

Ry = —6° (2.12)
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Figure 2.4: A four-dipole symmetric chicane with bends of angle 6, opposite bend
magnet spacing L, inner drift distance Lo, and bend magnet length L,,.

4
Ry = 62 (2L + gLM) . (2.13)

This result, for a sector dipole chicane, reveals an asymmetry due to the presence of
a nonzero R component. By contrast, when the chicane is composed of rectangular
dipoles, Ry¢ is identically zero, while the same equation holds for Rss. For this reason,
rectangular dipole chicanes are often employed in linear accelerators to automatically
zero this often unwanted horizontal dispersion component (see section .

For large deviations from the design energy, however, one may be forced to consider
the effect of the non-linear transport through the four dipole chicane. In this case,
we must use the second-order transport tensor Tjj,, which is nonzero for the bend
magnets, to propagate the beam through the chicane. The relevant result is non-zero
Ties and Tse6 quadratic transverse and longitudinal dispersion components, again

given to lowest order in 6 by,

2(L+ La) (20 + Lo + 4L
Ties = 0° (L+ La) QL+ Ly +4Lw) _ —2Ry6, (2.14)
L
9 2

The second order transport components for the symmetric chicane, to lowest order

in A, are simply related to the first-order transport components. Note that again,
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Figure 2.5: A FODO quadrupole lattice with quadrupoles of focal length f and a
drift length Lp. The black rays indicate particle trajectories in one transverse plane,
showing the focusing and defocusing effect of the quadrupole lenses.

when rectangular dipoles instead of sector dipoles are used, the nonlinear horizon-
tal dispersion vanishes while the same relationship with Tsg¢ holds. Also of note is
the sign difference between Tsgs and Rjsg, indicating that the total dispersion as sec-
ond order effects begin to become relevant will be lower than the simple first-order
(Rs6)estimate.

The second relevant magnetic structure is the FODO quadrupole lattice. In this
configuration, quadrupoles of opposite sign (focusing first, then defocusing) are re-
peated with a drift length in between, shown schematically in Figure 2.5l The FODO
cell is traditionally analyzed in a symmetric fashion, beginning the transport in a half
focusing quad (f — 2f) and ending in the other half of the focusing quad. In this
case, the (two-dimensional) transport matrix, R, in one transverse plane in the thin

lens approximation is given by,

L? L
11— o, (1 + —D)
RO _ 2f? , (2.16)
FODO _Lp (1 _ L_D) 1_ o
2f2 2f 212

The fortunate result is that the combination of focusing and defocusing quadrupole
lenses results in a net focusing in both planes, assuming that f > Lp. A more
sophisticated analysis of the stability of such a lattice is commonly carried out in

introductory texts, with the result that such stable, net focusing motion occurs when
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f> LTD This stable, net focusing arrangement can be used to transport beams over

long distances, maintaining a relatively constant beam size.

2.1.4 Ensembles of Particles, Twiss Parameters, and Emit-

tance

The discussion of the motion of electrons in the presence of magnetic fields has thus
far concerned only a single electron. Of course, in most situations one has a rather
large number of electrons contained within a single bunch. For example, the LCLS
nominal operating charge per bunch is 250 pC [18], which is around 1.5 x 10 electrons
per bunch.

To begin with, we take a slightly more analytical tack towards the motion of a
particle in a periodic magnetic field lattice, following [I5]. The most general linear

differential equation for such a system is given by Hill’s equation,
u" + ky(2)u =0, (2.17)

where u is a stand-in for either x or y, and the restoring force k, is generally a function
of the distance along the trajectory z. In the case of a punctuated magnetic lattice,
for example, k,(z) = 0 in drift spaces and is nonzero inside quadrupole magnets which
exert a restoring (or diverging) force on the particle.

The most general solution is given by,
u(z) = Aw(z) cos ¥(z) + Bw(z) sin ¥(z), (2.18)

where the amplitude function w(z) is periodic, the constants A and B are determined
by initial conditions, and there is a phase advance in the trigonometric functions W(z)
with respect to an initial phase Wy. The (normalized) phase advance W(z) is related

to the amplitudes w(z) by,

I P
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The solution for u(z) and its derivative can then be rewritten as,

u(z) = V/WpB(2) cos(p(z) + o), (2.20)
: w :
u(z) =— 30 [a(z) cos(p(z) + o) + sin(u(2) + po)] (2.21)

where the phase advance has been replaced by the variable u(z) = U(z) — Uy, the
amplitude is encoded in 3(z) = w(z)?, and the function a(z) = —w(z)wl’(z) encodes
the correlation between the amplitude and derivative. The function 5(z) is called
the betatron function, pu(z) as the betatron phase, and «(z) is sometimes known as
the correlation function. We additionally define the related quantity vy = %
Together, the variables «, 3, and vy are known as the Twiss parameters. The quantity
W now encodes the initial (non-phase) conditions, and is found to be an invariant of

motion given in terms of the initial conditions by,
W = yroug + 2auouy + Bou - (2.22)

The quantity W is known as the Courant-Snyder invariant [I3]. The Courant-Snyder
invariant defines a skew-ellipse in v — u/ phase space along which the particle moves
as it traverses the periodic lattice. The phase space ellipse, as well as some points of
interest, are shown in figure 2.6

Now, in the case of linear optics, we can also define functions o and 3 which depend
only on the lattice elements in the system. These lattice functions are often taken to
be periodic, as within a repeating FODO lattice. When an electron with equivalent
a and [ to this lattice solution is injected, its trajectory will follow the evolution of
the lattice functions. In this case, the electron beam is said to be matched, and we
need only study the lattice functions o and [ rather than those Twiss parameters
which pertain to the actual electrons.

For a matched beam, each particle only has a different value for W, and starting
position (ug, ug), although its own phase space ellipse is aligned with the ellipse of

every other particle. Therefore, for an ensemble of particles, we can define a large
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Figure 2.6: The ellipse in phase space defined by the Courant-Snyder invariant. The

relevant points are given by ug = /W/vr, u1 = VWS, uy = W/, v} = VWr.

enough ellipse that contains some fraction of the total beam, defining the Courant-

Snyder invariant for this ellipse as,
2 / 2
€ = ypu® + 2auu’ + fu’”. (2.23)

This quantity € is known as the beam emittance, and is a property of the ensemble
of particles, not the individual particles. Note that for an unmatched beam, the
ellipses of the individual particles would generally be tilted with respect to one an-
other, leading to a larger definition of this emittance than in a matched beam. The
emittance, much like the Courant-Snyder invariant, is an invariant of motion as the
particle ensemble traverses the magnetic lattice. This fact is guaranteed by the Li-
ouville theorem, in which the emittance represents the phase space area occupied
by the distribution of particles. This phase space area is strictly conserved under
Hamiltonian systems, and therefore does not change as the beam propagates through
magnetic elements.

Different conventions exist to relate the emittance to beam quantities, but we
here define the emittance to be the RMS emittance, which defines the 1o particle

distribution, or in 2D space, contains about 39% of the particles. In this case, the
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emittance is related to the RMS quantities of the beam distribution by,

ol, = \/TE. (2.25)

Where 7 in equation refers to the Twiss gamma function function, not the
Lorentz gamma. It is important to note that this RMS beam emittance is not nec-
essarily the same as the geometric emittance (area of phase space) referred to in the
Liouville theorem. Therefore, although Liouville assures us that the true emittance
is invariant, the RMS emittance may grow in the presence of Hamiltonian forces that
are non-linear or a mismatch in input beam parameters when compared to the lattice
[T9]. The non-linear forces can be produced by magnetic imperfections, chromatic or
geometric aberrations, [20], space charge forces [21], wakefields due to nearby struc-
tures [22], or a variety of other sources. Regardless of the source, it is the RMS
emittance which is generally important to experimental procedures, and thus care
must be taken to avoid or mitigate any potential source of unwanted RMS emittance
growth.

The discussion so far has centered on a particle beam traversing only periodic
magnetic components, which do not alter the beam energy. It turns out that the
Courant-Synder invariant, or the emittance, is only invariant when the beam energy

is constant. However, the normalized quantity,

ey = €07, (2.26)

is conserved even through changes in the total particle energy (under the mild as-
sumption that changes in energy occur slowly compared to the betatron period), and
is called the normalized emittance. Note that this implies that the true emittance
e = en/f7y decreases with beam energy, a process called adiabatic damping. It is
important to note that the quantities  and ~ in equation [2.26| are the relativistic

quantities, not the Twiss parameters — an unfortunate overloading of variables which
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has confused many a student of accelerator physics. In situations where the particle
energy changes over the region of interest, then, it is more convenient to use the
quantity ep.

A final important remark regarding the emittance is that, due to the Liouville
theorem, one cannot decrease the emittance of a particle beam using simple mag-
netic components. This is especially true of the RMS emittance, which as has been
discussed, may actually grow through a number of means. One important exception
to this is the process of synchrotron radiation, which has the effect of damping (or
exciting) the emittance in the plane perpendicular to the bend and, for example, can
lead to extremely small vertical emittances in electron storage rings [23]. Especially
for linear machines, however, the ultimate limit to achievable emittance is set by
the emittance of the beam at its moment of conception, either at a thermionic or
photo-excited cathode. Once the particle distribution has been defined in this state,
for linear machines this remains the limit to achievable emittance, and is a major
driver in FEL performance. Therefore, there is just as much work on the origin of
the electrons used in a modern FEL, to ensure a low normalized emittance, as there
is in providing a careful beam transport to as best as possible preserve this emittance

down the beamline to the radiating sections.

2.2 Free Electron Laser Physics

The fundamental process in the free-electron laser involves a bunch of electrons
traversing a magnetic undulator. The core component of the magnetic undulator
is a series of alternating North-South magnetic poles which cause the electron bunch
to wiggle (undulate) back and forth in response to the fields. The magnetic poles can
either be arranged in a linear relationship, causing the undulating motion to occur
in a single plane, or in a fashion to cause a helical trajectory. We will begin with the

analysis of the motion of an electron in the planar configuration.
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Figure 2.7: A schematic illustration of a planar magnetic undulator with period length
M. A representative trajectory traversing the undulator is shown by the black curve.

2.2.1 Spontaneous Undulator Emission

We consider a planar magnetic undulator with period length \,, shown schematically
in figure[2.7 The magnetic field in the undulator is found by considering the magnetic

Poisson equation for the scalar magnetic potential ¢y,
Viou = 0. (2.27)

This is the magnetic field in the vacuum interior of the undulator, so no currents
are present. We make the ansatz that the magnetic field will be periodic in z, and
depend on the vertical coordinate y (leading to primarily horizontal wiggling in the =
direction). Under this assumption, we solve for the potential and find the magnetic

field in the y direction,
By(y, z) = By cosh(ky,y) cos(k,2), (2.28)
while the requirement that V - B = 0 demands the presence of an z field,

B.(y, z) = —Bysinh(k,y) sin(k,z). (2.29)
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Now, in typical cases, the displacement y is small compared to the undulator period,
and in addition the transverse velocity which couples to this longitudinal field is
much smaller than the longitudinal velocity. Therefore, in the following discussions,
the longitudinal field is ignored, or equivalently, we consider only the on-axis particle

with y = 0, and can use the idealized magnetic field, purely in the y direction,
B = By cos(ku2)i. (2.30)

The Lorentz force on a relativistic electron of mass m and Lorentz factor v produces

the two equations of motion,

myi(t) = —eBycos (kyuz(t)) 2(1), (2.31)

myZ(t) = eBgcos (kyz(t)) Z(t). (2.32)

The first of these can be immediately integrated, together with the initial condition
#(0) = 0, to yield the transverse velocity equation,
—GBQ 1

x(t) = oy sin (ky2) . (2.33)

Then, requiring that the electron velocity be (¢, the Pythagorean relation gives the

Z(t) = 50\/1 - < ¢Bo ) ! sin? (k,2(t)). (2.34)

z velocity,

mcky ) %2

The term under the square root represents the slower-than-£ motion due to the wig-
gling trajectory, and the undulator-dependent prefactor is recognized as the undulator

K parameter which characterizes the strength of the undulating motion:

BBO
mck,,

K= (2.35)

The physical meaning of the K parameter can be seen in taking the ratio of = to

z velocities, which coupled with the assumption that the x velocity is much smaller



CHAPTER 2. BACKGROUND MATERIAL 26

than that in z, or v > 1, yields the maximum deflection angle 1 of the electron in

the undulator,
1 K

=— —. 2.36
e o
Recalling that the natural opening angle of synchrotron radiation is 1/3vy [24], we
observe that the electron deflection angle is equal to the natural synchrotron opening
angle when K = 1. Magnetic devices with K < 1 therefore radiate into angles defined
by their energy, whereas those with K > 1 radiate into angles defined by the wiggling
motion. In the insertion device community, where the detailed spectral and angular
radiation profile is of interest, the distinction is often made to call those devices with
K < 1 undulators, while the more extreme motion in devices with K > 1 earns them
the name wigglers. For the free electron laser, which is primarily concerned with
on-axis, highly collimated emission, the distinction is not particularly relevant and
all such devices are referred to as undulators. Therefore, we will allow K to be large
compared to unity, but maintain the (almost always relevant) approximation that the
product K /B~ be small. Integrating again the equation for z yields the longitudinal

trajectory,
2

8%k
where the averaged electron velocity is defined by,

_ K?
p=p (1 - W) , (2.38)

2(t) = Bet + sin(2w,t), (2.37)

and the undulator angular frequency has been defined as w, = k,cf. Similarly, we

can integrate to obtain the transverse trajectory to lowest order,

2(t) =

K
cos(wyt), (2.39)
kufBy
where we note that the distinction between 8 and 3 here is immaterial, since the
correction term would be O(K/Bv)3. Before turning to the radiation produced by

this motion, we first note that 3 can be expanded to lowest order in 1/7, assuming
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a fairly relativistic electron. From this averaged motion, we deduce that, due to this
slower-than-light velocity and transverse motion, within one undulator period A, the

electron slips behind a co-propagating photon by a distance,

Au K?

This slippage length, as it turns out, is important to maintaining a phase-resonant
relationship with a co-propagating radiation pulse.

With the trajectory of the particle known, the spontaneous emission of radiation
can be computed from the produced electromagnetic fields, for example, from the
Liénard-Wiechert field [25]. This derivation is lengthy and not reproduced here, but
we will heuristically derive the wavelength of this radiation. The first thing to note is
that the averaged velocity 3 corresponds to an averaged v, modified from its nominal

value, of,
~

V=R

Now, in the rest frame of an electron traversing the undulator (primed frame), the

(2.41)

undulator period is Lorentz-contracted to a shortened length X, = X,/¥. In this
frame, the electron executes simple harmonic motion with this period, and thus,
emits radiation in the primed frame with wavelength A,. In the lab frame, this

(forward-traveling) radiation is blueshifted by a factor of 1/2%, yielding a lab-frame

A K2
Mg = 2 (142 ). 9.42
¢ 272(+2) (242)

radiation wavelength of,

This wavelength is identical to the slippage length from equation [2.40] Therefore,
electrons co-propagating with light of wavelength A..,q will be stationary in phase
with respect to the light wave, allowing a resonant transfer of energy between the
electrons and light. It is worth noting that this result was derived for on-axis forward
emission of radiation. When observed off-axis, the Lorentz contraction and blueshift

changes slightly, giving an angle-dependent wavelength for small angles # from the
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Figure 2.8: The undulator emission power spectrum for radiation of N, periods cen-
tered about frequency wi.

axis of propagation,

A K?
Aad(0) = =% [ 14+ — +~%0% ). 2.4
i(0) = 3% (1475 +%%) (243

Radiation off-axis is therefore redshifted compared to its on-axis counterpart, and
a detector with finite angular acceptance will register a larger bandwidth than the
theoretical on-axis calculation would predict.

Finally, we note that an electron traversing an undulator with N, periods will emit
N, cycles of radiation at wavelength A..q. Assuming an undulator which abruptly
begins and ends, then, the frequency content of the radiation can be obtained by

Fourier transforming this field,

2 TNy 2
> T i AN27? Ny (e, —
P(w) = [/ E(t)emdt] = [/ Eoel””e““tdt] = “;T sinc? {—w(w w)} :
—c0 _WN.U Wy Wy
(2.44)

A plot of the spectrum is shown in figure [2.8] with a central peak at frequency w,

and central bandwidth inversely proportional to the number of undulator periods N,.

This is the characteristic spontaneous undulator emission spectrum, and determines
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the frequency range over which the electron beam will effectively couple to radiation.

2.2.2 Coherent Emission

The above discussion of spontaneous emission is valid for a single electron, which

through radiation produces an electric field on-axis which has the form,
E(t) = Eye'rtt9), (2.45)

where Ej is a constant describing the magnitude of the radiation, and ¢ is an arbitrary
phase related to the precise time the electron enters the undulator. Generalizing now
to a situation in which N, electrons are present, we consider the effect of a spread
in longitudinal position. The total electric field will be the sum of each individual

contribution,

Ne
Epgral(t) = Y _ Ege @90, (2.46)
=1

where the ith electron has its own phase ¢;, and assuming the electron beam is
monoenergetic, all the resonant frequencies w, and amplitudes Ej are the same. The

total radiation power is proportional to the square of the electric field,

P(t) ~ | By (1) = E3 Y ellorttodeilonttos), (2.47)
2%
The double summation can be split into those terms with ¢ = j and those with ¢ # j,

and we will denote the single electron power P, ~ EZe!«rt+e)

P(t) ~ E? S e2ilorttd) 4 2 S eilwrt+ei) pi(wrt+d;)

. (2.48)
_ (Pi+dj;)\2
= N,P. +  Ne(N, — 1)P(e@t)2 .

The second term involves the correlation between the individual phases of emission

for each electron, averaged over the entire ensemble of electrons. We can equivalently
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think about the power in the frequency domain,
P(w) = NoPe(w) + Ne(Ne — 1) Po(w) (e EH))2 (2.49)

where the phases can be construed as relative to the frequency w in that ¢; = wt; for a
timing offset ¢, When the number of particles is large, the discrete averaging implied
by (---) can be computed as an integral over the normalized charge distribution p(t)

in time as,
o

F(w) = (e®tith)y, .~ / p(t)e™dt, (2.50)

0
where the frequency dependent function F'(w) is known as the form factor, which is
intimately related to the bunching factor of equation|1.1} Typically, the term bunching
factor is used when structure exists in the longitudinal phase space at scales shorter
than the beam length, while the form factor typically refers to the effects of a uniform,
but potentially short beam. We can immediately see that for frequencies where F'(w)
is nonzero, the radiated power will be proportional to N2, which, for N, > 1, can
often be a factor of 10° or greater. In this case, the emission is generally referred
to as coherent, whereas when the form factor is negligible, the emission is said to be
incoherent. For example, consider a Gaussian electron bunch with temporal density

distribution,

1 2 2
t) = ——e /%%, 2.51
p(t) o (2.51)

in which case the form factor is computed to be,

2,,2

F(w) = e 278, (2.52)

We see that for bunches with temporal duration significantly longer than the radiation
period (or equivalently, with bunch lengths longer than the radiation wavelength), the
form factor is exponentially small. Therefore, Gaussian bunches will radiate coher-
ently at wavelengths comparable to and larger than their lengths, and incoherently
at shorter wavelengths. A diagrammatic understanding of this principle is shown in
figure The fact that electron bunches are readily available on the mm scale led
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(b) A long electron bunch emitting inco-
herent radiation.

Figure 2.9: A schematic illustration of the difference between coherent and incoherent

emission

to the early production of coherent synchrotron radiation in the THz regime [26] [27],

coherent Smith-Purcell radiation in the mm region[28], and coherent transition radia-

tion in the far infrared [29]. State of the art bunch compression techniques are able to

produce electron bunches as short as several fs, reaching down into the optical wave-

length range [30]. Exotic proposals based on plasma accelerator concepts [31] [32] [33]

or laser acceleration [34] exist which may be able to push electron bunch lengths into

the attosecond regime. While advances on this front may push coherence with short

bunches down into the EUV, high quality electron beams with lengths approaching

the X-ray do not seem on the horizon. Therefore, at present special measures to

modulate the bunch density must be taken to obtain coherent synchrotron radiation

in the deep UV through to hard X-rays.

In addition to the intensity of coherent radiation scaling with the number of

electrons squared, the growth rate of this radiation within an undulator is also distinct

[35]. To see this, consider that the total energy U in the undulator radiation can be

written as an integral over the spectral energy density,

Uior = / AU ()N, (1+ (N, = DF(w)), (2.53)
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where Uj.(w) is the spectral energy density emitted by a single electron. In the case
of an un-bunched beam, F'(w) = 0, and U;.(w) is given by a form similar to the power
density of equation . In this case, Uj.(w) ~ N2, but the sinc function limits the
integration to a 1/N, bandwidth, so the resultant energy has the dependence,

Upreted ~ N, N, (2.54)

which is the expected and intuitive result. By contrast, for a strongly bunched beam,
the bunching from F'(w) can be much narrower than the natural 1/N,, spectral line
width from the undulator length. This situation commonly occurs if the electron
beam is relatively long, in terms of modulation periods, compared to the number of
undulator periods. By modulation period, we mean that there is a density modulation
on the electron beam with harmonic content at the undulator resonant frequency w;,
but which may be periodic with a smaller frequency w,/h. In this case, the limit of

frequency integration is determined by the electron bunch length, and we have,
Ut ~ NINZ. (2.55)

As previously derived we see the total energy is proportional to N?, but we now
also realize that the energy grows quadratically along the length of the undulator.
This unintuitive result is only correct until the number of undulator periods traversed
rivals the electron beam length (in modulation periods), or the radiation field becomes
strong enough to significantly affect the longitudinal phase space of the electron beam
(as in a high-gain FEL). Owing to the fast nature of the radiation growth, this is
referred to as the superradiant regime.

We note that the above discussion has been in reference to the degree of longi-
tudinal coherence, with which this work is chiefly concerned. However the radiation
may also possess coherence in the transverse plane. Transverse coherence is under-
stood as the degree of far-field interference of the radiation from electrons at different
transverse positions at the time of emission, shown in figure [2.10] From the classical

theory of synchrotron radiation, it is demonstrated that transverse coherence relies



CHAPTER 2. BACKGROUND MATERIAL 33

Screen

' 1 &
Source

1 F Coherent
%4 power
Incoherent power” |

Figure 2.10: A schematic illustration of transverse coherence. The degree of interfer-
ence in the far field is a measure of the transverse coherence of the produced light.
Figure taken from [36].

on the electron beam emittance satisfying,

A
< 2.56
< (2:56)

where the quantity 2—; is recognized as the emittance of a Gaussian radiation beam
at wavelength \,.. In practice, this criterion is typically fulfilled for single pass free
electron lasers, and even when it is not, optical mode guiding can still yield full trans-
verse coherence [37]. Therefore, in what follows we will use coherence to exclusively

refer to the longitudinal coherence of the radiation pulse.

2.2.3 Laser-Electron beam interaction

The principal dynamics in a free electron laser is the resonant interaction between
the relativistic electrons and electromagnetic wave. Before detailing this full case, we
describe the interaction between the relativistic electron beam and a co-propagating
laser beam. In this limited case, the laser beam power is assumed to remain constant
with propagation, and we study only its effects on the electron beam phase space.
The laser beam is assumed to be produced by a conventional laser system, oper-

ating at the lowest-order Gaussian mode of the laser at wavelength A\;, = 27 /kp in
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which the electric field can be written as [38],

wWo —iz —i (kszthrkLL*(i’(zH’d)O)
E<T7 t; Z) - EO ( )e w(z) (& 2R(2) ’ <257)
w\z

with amplitude Ey and w(z) is the evolving beam waist size,

2
w(z) = w1+ (i) , (2.58)
where wy is the beam size at the waist, and zp = mw2/\; is the Rayleigh range
(analogous to the Twiss § function). The wavefront curvature is given by R(z) =
z <1 + (373)2>, the Guoy phase ¢(z) = arctan <i>, and ¢g is an arbitrary phase.
This electric field can be considered in an arbitrary direction since polarization has
not be specified, but we will typically take the polarization to be perpendicular to
the direction of electron propagation.

While this is the general from of the Gaussian laser pulse, we consider the useful
case in which both the transverse and longitudinal dimensions of the laser pulse are

large compared to the electron beam, and equation [2.57] reduces to a plane wave,
E(t, z) = Ege~ilkz=wrt+do) (2.59)

We want to consider the effect of an electron co-propagating with this electric field
inside a magnetic undulator. The trajectory will be primarily determined by the
undulator field in the limit where the dimensionless laser parameter ag = eAg/mec K
1, where Ay is the vector potential of the laser field. This limit essentially corresponds
to the limit in which an electron at rest will not be significantly accelerated by the
passing laser field, and instead will simply execute harmonic motion. Further, in
the lab frame this harmonic motion component is small and rapid compared to the
undulator motion (since wy > w,), and will be neglected in what follows. The
electron trajectory is therefore simply given by equation [2.39] and is not influenced
by the laser field.

The energy v transferred to the electrons from the laser field up to a time ¢ is
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computed as,

dry e ~
o (5 E) . 2.60
dt  mc? ( ( )
We can swap the ¢ derivatives for z derivatives since Z—Z = Z—Z% R~ Z_Zﬁl? Further,
considering the real part of the electric field with dispersion relation w; = cky, we

have the energy modulation equation,

d’}/ . €KEO
dz  ymc?

sin(k, z) sin(kr(z — ct)). (2.61)

We want to consider this interaction in the co-moving frame with the averaged electron
velocity described by the intra-bunch coordinate s = z — Bct. Invoking equations
and [2.38, we can rewrite (z — ct) in terms of the intra-bunch coordinate to lowest

order in 772,

s oz K? K%
z—ct= 72 (1 + 7) + TS sin(2ky,z). (2.62)

We now specify to the case where the laser frequency is tuned to the undulator
resonance, defined by the slippage criterion [2.40, but allow the laser to be an integer
harmonic h of the fundamental undulator wavenumber,
2 2
ki = hku% (2.63)

K2

2

The nested sine functions implicit in equation are dealt with through the follow-

ing Bessel expansion,

sin (a — bsinz) = sina [2 Z Jon (D) Cos(2nx)] —cosa [2 Z Jon+1(b) sin(2nx)
= (2.64)

Finally, we are not concerned with the dynamics on a sub-period scale, so we choose

n=0

to average equation [2.61] over an undulator period. The result is that only those

modulations with odd harmonic average to a nonzero value. The first summation

h+1

selects out only the Bessel modes with n = |}

|, while the second picks out n =
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Figure 2.11: The undulator coupling factor J(h) for several values of K. For large
K such that £ ~ 1, the coupling decays only slowly with harmonic number.

[%J, with overall sign (—1)"*1/2 The period averaged result is then given by,

dy _ eKEJT(h) oS <@> , (2.65)

dz  2ymc? IG]

where we have defined the harmonic dependent J factor as,

J(h) = (—1)+D/2 {J(hgl) (h%) — J(ns) (hg)} : (2.66)

K* First, we note that since 3 is roughly constant for energy changes

where f = SrK2"

small compared to the energy in the electron beam, the electron beam energy modula-
tion will acquire the sinusoidal structure of the laser field. Second, through the factor
J, we see that it is possible in a planar undulator to couple only to odd harmonics of
the undulator harmonic frequency, and this coupling can be non-negligible for large
K. A plot of J(h) is shown in figure 2.11] We note that not only will a laser at a

harmonic of the undulator frequency couple to the electron beam, but the beam itself
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will also radiate at harmonics of the undulator frequency. This is a particular case
of the more general statement (known as the general acceleration theorem [39]) that
the possibility of a resonant interaction at a given frequency is intimately related to
the production of spontaneous radiation at that frequency.

There are several corrections to equation to account for the finite transverse
and longitudinal extent of the laser beam [40]. Tt is necessary to account for these
effects to optimize the modulation amplitude, however the fundamental fact of a
modulation which mirrors the sinusoidal structure of the laser pulse is preserved. By
contrast, if the modulation is strong enough, the longitudinal motion of electrons
within the modulating undulator (modulator) will be appreciable with respect to
the laser wavelength and this sinusoidal structure is altered. The modulator has a
longutidinal dispersion element Rss = 2N, A, where A\, = Ay /h for harmonic h. Then,
the requirement that the differential drift between the accelerated and decelerated
electrons be much less than a laser wavelength yields the condition [41],

A~y 1

5 S ava

(2.67)

We quantify this requirement by defining the parameter x = 4N,hA~/~, and
show how the modulation waveform depends on k in figure 2.12 However, most
schemes which seek to use laser modulations to generate coherent bunching also rely
on the FEL process, which is sensitive to the induced energy spread. Therefore, in
the methods that follow, % is kept small enough that a sinusoidal structure can be
assumed.

In the next section, we begin by discussing the one-dimensional FEL, in which
the transverse emittance of the electron beam as well as any diffraction effects are

negligible. The one-dimensional FEL model captures most of the physics of the FEL

amplification, and refinements will be discussed afterwards.

2.2.4 The FEL Mechanism

The FEL is fundamentally based on the interaction between a co-propagating electro-

magnetic wave and a beam of electrons inside an undulator. As we have just shown,
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Figure 2.12: The dependence of the modulation waveform on the parameter k. As
k approaches and exceeds unity, the waveform becomes increasingly non-sinusoidal.
This is associated with electrons which slip an appreciable distance in laser phase
during the modulation.

in the limit where the electrons do not radiate appreciably, a sinusoidal energy modu-
lation develops on the electron beam. We also demonstrated that this process begins
to break down as the induced energy modulation becomes “large”. We now generalize
to the case where the electrons contribute to the electromagnetic field, and, following
the excellent review of reference [37] and the text of [42], study the coupled system
that is the free-electron laser.

We begin by assuming that the motion of an electron in a planar undulator
is defined primarily through the the magnetic fields of the undulator, not the co-
propagating electromagnetic wave. In this case, the transverse electron velocity is
given by equation [2.33] We model the co-proopagating radiation of wavelength Ay,
as a plane wave described by E, = Eysin(kpz — wpt + 1), with amplitude Ey and
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phase 9. The energy change of this electron is then given by,

d —eFgK
mc2d—z = e, By = ——2" fcos [(ky — ku)z + o — wit] + cos [(kr + ku)z + o — wit]} .
(2.68)
We now introduce the phase of the electron relative to the EM wave,
0= (kL + ku) z — CL)LE, (269)

where t = f dz/v, is the electron arrival time averaged over the undulator period,

and v, is given by equation [2.38] The change in this phase is then simply found as,

de 1+ K?/2

— =ky —kp | ——" |, 2.70

dz L ( 272 (2:70)
which clearly implies that a stationary phase is obtained only when v = ~y =

2% (1 + KTQ), which we then call the resonant energy. Defining the relative en-

ergy deviation then to be n = (v — v)/70, to lowest order the change in phase is,
de

— = 2kyn. 2.71

7 U (2.71)

That is, the phase drift is linearly proportional to the fractional energy deviation.

Returning to equation [2.68], in terms of the variable n and keeping only slowly varying

terms, we have,

dn  eKJ
dz  273mc?

where J = J(h = 1) as defined by equation 2.66 Equations [2.71] and [2.72] are

collectively referred to as the pendulum equations due to their shared form with the

Eycos (0 + o) , (2.72)

equations of motion for a simple pendulum mass. The curves described by this motion
are shown in figure [2.13] There is a clearly defined bucket of stable, bound motion
centered on the points (27n,0), for integer n. These buckets are separated from the
unbound motion by separatrices. The influence of the electromagnetic wave is called
the ponderomotive potential, and thus these stable buckets in phase space are known

as ponderomotive buckets. We see that inside the buckets, an initial phase offset is
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Figure 2.13: Trajectories in (6,n) space described by the pendulum equations of FEL
motion.

transformed into an energy offset, which then converts back into a changing phase.
This is the essential phase-energy interplay of the FEL interaction. However, as can
be easily seen, the net energy loss of a long electron bunch (many wavelengths in 6)
will be zero. It is therefore desirable to microbunch the beam at the locations of 6
favorable for energy loss (energy transfer to the EM wave).

Turning now to the evolution of the radiation field, its amplitude will obey the

Maxwell equation,

19)\° N
(E%)‘(&) e

where V2 is the transverse Laplacian, n. is the electron volume density, and j, =

. 1[04 d(en,
E.(Z,t;2) = o {815 +c? <6x )] , (2.73)

evgn, is the transverse current. Examining the relative magnitude of the two terms
on the right hand side of equation we can translate the relationship between the
derivatives as,

29(ne€) 2 0

A priori we do not know if this inequality will be satisfied, so we employ our knowledge
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of how high-gain FELs operate to assist the analysis and only later justify these
assumptions. In particular, o, should be comparable to the radiation beam size, which
should itself be related to its Rayleigh length Lr and wavelength A. Furthermore,
we know the relationship between the FEL radiation wavelength A\ and beam energy

from equation [2.42}, so we can convert this condition to,
?
Lrp> A\, (2.75)

The leap in reasoning now occurs and we assume that the Rayleigh length Ly is
comparable to the gain length of the FEL. The gain length in an X-ray facility is of
order meters, while typical undulator periods are in the cm range. Qualitatively, we
may also find it difficult to believe that effective coupling between the electron beam
and radiation could take place if the radiation diverged significantly after only one
undulator period.

Having achieved this sleight of hand, we switch now to a one-dimensional picture
and consider this equation in the frequency domain for the Fourier conjugate to E,
such that F,(z,t) = E,(z)elkrz—wrt+vo)

dE,(2) + By (2) eilkrz—wrt+do) I OJa

o
ke dz dz? o’

(2.76)
where we now have the Fourier current component j,, and the dispersion relation for
light in vacuum has been used. Now, we assume that the function E,(z) changes
slowly on the length scale of a single undulator period, an assumption known as the
slowly varying envelope approzimation (SVEA). This allows us to drop the second

derivative term to arrive at,

dEﬂC(Z) _ ZMU aj$ 672(kLz th+1/JO)
dz 2]{ZL 875

(2.77)

From the electron equations of motion [2.3312.34 it follows that j, = L cos(kyz).

We describe this current fluctuation as a constant portion which acquires a z—dependent
contribution of the form of the phase (eq: 2.71)) 8: j, = jo + ji(2)eil(Frtka)z=wrll ~Qych
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a choice is motivated by the pendulum equations, although in effect we anticipate the
microbunching effect by choosing this basis to expand into. Ultimately, this yields
the field evolution equation,

dE:E //LOCKj”i

= — ) 2.78
dz 4y N ( )

The longitudinal space charge within the density modulated electron bunch also gives
rise to an associated variation in longitudinal electric field via Maxwell’s equations.
Under the SVEA, the complex amplitude for the longitudinal electric field can thus
be related to the current modulations as,

. i -

Biz) =~ (2.79)

With some of this knowledge of the dynamic nature of the field, we can rewrite our

pendulum equation for 1 to include not just the static field, but one which evolves in

dn —e KJE T~ , _
20 R T _ i[(kp+ku)z—wrt] 2.80
dz  mc?y, { ( 27, eok:Lj1> c ’ (2:80)

where SR {-- - } denotes the real part.

time as,

Up until this point we have discussed only a single electron, and we now move
into the discrete case in which a beam is composed of many electrons. To obtain the
longitudinal distribution coefficient j;, we assume that the bunch is much longer than
the radiation wavelength, and that it can be assumed periodic on this scale. Then,
the longitudinal distribution function S(#) can be written in terms of Fourier modes

S(0) = —+9%{Z i’ } (2.81)

with complex coefficients ¢;. We briefly note here that this description is inadequate
to treat the shot noise which is essential to the SASE startup process. Using the

Fourier trick, we can work out the first ¢; coefficient, ¢; = 1 Zn L€ ~n where N, is
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the number of electrons in the bunch. This leads to the solution for ji,
2 &
T A —i0,,
J1=Jo N ;6 ; (2.82)

where jo is the (real) current density, and we see j; is clearly proportional to the
bunching factor already discussed in equation [I.1} Thus, when considered as a system
for N, electrons, the equations 2.72, 2.80, 2.78, and form a closed system of

differential equations for the electron positions and field amplitude as a function of

distance along the undulator z. Of course, as the number of electrons is quite large,
such a system cannot be solved analytically and we must resort to smoothing the
distribution of electrons to obtain elementary analytical results.

We describe the smoothed distribution by the function F'(6, 1, z), such that dn, =
n.F(6,n, 2)d0dn. As before with the modulation j, we split this into an unmodulated

and modulated portion,
F(0,n,2) = Fo(n) + R { Fi(, 2)e"' | (2.83)

Assuming the range of 1 to be small, as is typical in a modern linear accelerator, we
assume the distribution in 7 ranges from —d to d, then j; = jo ff s F (n, z)dn, allowing
us to connect to the analytical description developed above.

The smoothed distribution function F', as it describes particles in a Hamiltonian

system, must obey the Vlasov equation,

dF _9Fdy OFd)

E“f‘a—ndz-f-%a—o. (2.84)

Combining this statement with equation and results in the (sufficient) re-
quirement on F' that,
OF,

z

ik, — & 4Fo {KJE

e I+E21 =0. (2.85)

Assuming zero modulation at the entrance to the undulator, this equation has a
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general solution in integral form. Combining this solution with the relation between
j1 and E, (eq. ) then yields the following integro-differential equation for the

evolution of the electric field along the undulator,

KJ - 4 D
jEerz‘ Ve dEy
27, wi,KJ dz

E~ K 2 z
dE, :ikuuo Jnee / dz'
0

5
dz 2mn? {/ (2 = )e 210 By ()

B (2.86)

This equation, in principle, completely specifies the evolution of the transverse field

E, along the undulator. In practice, however, we can simplify further to obtain
analytical solutions. An obvious simplification is to assume a monoenergetic beam at
17 = 1o, which collapses the second integral. By applying two consecutive derivatives,

one ultimately arrives at a pure differential equation for E,,

d3Ex . d2Ex 2 2.2 dEI T3 17

with the definitions,

2k, ponee?
ky = | utOTee (2.88)
YWy,

which is the plasma parameter, and is related to the relativistic plasma frequency,

K272k, n,
r— (/“0 ‘736 fe (2.89)
4ysm

and,

As a typical physicist, we attempt a solution by ansatz of the form Ex(z) = Ae?,

which, in the k, — 0 limit, results in the restriction on & of & = il

This cubic equation yields three general solutions: one with negative real part
which is exponentially damped, one pure imaginary which is oscillatory, and one with
positive real part which grows exponentially. It is this third, exponentially growing
mode which is the mode responsible for the remarkable amplification power of the
FEL, and is given by R = (z + \/§) I'/2. This exponential growth implies a gain
length, which we define as the power gain length (as opposed to the field gain length),
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1 1
Ly = = ,
P VBD T 2Bk
where we have finally defined the quantity p = I'/2k,. This p (introduced in equation
is known as the Pierce parameter [10], or FEL parameter, and is the main

(2.90)

quantity which defines the performance of the one-dimensional, high-gain FEL. As
we have seen, it is clearly related to the exponential gain-length of the FEL. Were
the parameter p to appear only in this place it would perhaps not receive a special
name, however it controls various other parameters of the FEL performance as well.

The saturation power of the FEL is given approximately by [37],
Pyt = 1.6pPyeam, (2.91)
while the undulator distance to this saturation is given by,
Zsat & Au/ P, (2.92)

where Pyom = N.ymc? is the total electron beam power. The fractional bandwidth
of the radiation at saturation is also proportional to p. These are but some of the
places in which the parameter p appears, and suffice it to say that in most cases it is
advantageous to increase it (shorter gain length, more power).

The situation in which the FEL process is not seeded by monochromatic radia-
tion, but instead by electron beam shot noise (SASE) is of particular interest. The
assumptions that led to equation are clearly incompatible with this, but without
derivation we state some results from this noisy start-up process. The rms SASE

bandwidth under some assumptions is found to be [43] [44],

3V/3p
Oy =
kuz

wr, (293)

and since at saturation zg,,; ~ 1/p, the saturated FEL bandwidth o, ~ p. This
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Figure 2.14: The FEL detuning curve as a function of off-resonance energy 7. The
real part of the root vanishes for n > 1.88p.

bandwidth equivalently describes a coherence time,

~ YT (2.94)

In general, however, the electron beam length 7" will be much longer than this co-
herence time for X-ray FELs, and therefore the resulting radiation pulse will consist
of many such uncorrelated pulses. The resulting spectrum, as shown originally in
figure , is a chaotic spectrum made up = T'/t. distinct modes, each with band-
width ~ 1/T', all within an overall spectral envelope defined by p. It is this broad
SASE spectrum that beam based seeding methods, such as Echo-Enabled Harmonic
Generation demonstrated in chapter [d] are designed to improve on.

One final bit of FEL theory which will become relevant is the effect of off-resonance
particles. In the 1D picture, the effect of particles with n # 7y can easily be handled
and affects the roots of the cubic polynomial which define the growing, damped, and
oscillatory FEL modes. The root with positive real part which leads to exponential

growth becomes a function of the detuning off-resonance parameter 7 as,

O ) e
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where the function u(z) is given by,

u(z) = \3/10&‘ — 8ia3 4 12/122° — 81. (2.96)

A plot of the real part of this root K as a function of 7 is shown in figure [2.14]
We observe that the so-called detuning curve is asymmetric — the FEL gain drops
precipitously for n > 0, while it falls off slowly for n < 0. The implication is that
higher energy particles (which emit in the blue) will not radiate strongly, while there
may be a long tail of lower energy particles (which emit in the red) which remain. In
this sense, the FEL can be said to act as a low-pass filter, an observation which will
become important with regards to the FEL response to the microbunching instability
(see section [5.2)).

Finally, we note that the derivation provided above has been the simplest possible
with the goal of arriving at the quantity p. A great many other physical effects need
be included to accurately model existing FELs. Many of these can be analytically
treated to some extent, but we note here that an impressive number can be accurately
modeled by the fitting formulas of Ming Xie [45]. In these formulas, 1D parameters

such as the gain length become altered as,
Lg,3D ~ LgO (1 —+ A) R (297)

where A is a polynomial function which incorporates the transverse size of the beam,
its angular spread (and emittance), and non-zero energy deviation. Due to the success
of this fitting formula, the 1D theory discussed above remains relevant even in the
presence of 3D effects, with only minor modifications.

Returning to the 1D theory, the value of p depends on various aspects of the
electron beam and undulator system. It is proportional to the peak current of the
electron beam and electron beam size (through the factor n.), and also the coupling
to the undulator through the factor K7 .

Much of the optimization in the construction of an FEL involves optimizing the
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parameter p. Since the resonance wavelength is determined by both the undu-
lator parameters and beam energy, there is immediately a trade-off between these
parameters for a given target radiation wavelength. Besides this tradeoff, it is ad-
vantageous to obtain the highest density beam possible in order to maximize p. This
push towards high density electron beams causes the appearance of otherwise unim-
portant physical effects, the understanding and mitigation of which is a major topic

of this work.

2.3 FEL Limiting Effects

The essential physics of the X-ray FEL just discussed can be thought of as embodied in
the parameter p and its maximization. Through both the peak current and transverse
beam size, p is clearly proportional to the brightness of the of the electron bunch,
and thus it is advantageous to create as bright a beam as possible. However, there
are several physical effects which become important when such bright beams are
considered. These effects must be considered when designing various parts of the X-
ray FEL facility, and if ignored can ruin an otherwise well-prepared, bright electron

beam.

2.3.1 Coherent Synchrotron Radiation

The question of how tightly electrons could be bunched in a ring has been around
almost as long as electromagnetism. This question chiefly concerns the synchrotron
radiation produced by the electrons in the bending sections interacting with other
electrons to heat the beam. In the classical regime, this process can be described
as a wakefield effect and is known as Coherent Synchrotron Radiation (CSR). In the
quantum regime, by contrast, the response of individual electrons to the quantum kick
hw is known as Incoherent Synchrotron Radiation (ISR) — a qualitatively different
effect (see equation [4.1). We are concerned here with the classical CSR effect. Many
of the main, one dimensional results were derived already in the early 20th century by

Schott [46], refined by Schwinger in the middle of the century [47], and only revisited
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Figure 2.15: The 1D CSR Coordinate system. Radiation emitted the retarded posi-
tion 7(7) at retarded time 7 is observed at the point Z(t) at later time t. Note that
7 is ahead of the emission point. Figure from [4§].

much later when their importance to the construction of high brightness electron
machines finally became relevant [48] [49].

In the standard one-dimensional picture, we have a zero-emittance, monochro-
matic electron beam at speed S moving on an arc of radius p. The associated coordi-
nate system is shown in figure [2.15] In this coordinate system, radiation emitted at
the retarded position 7(7) at retarded time 7 is received at a later time and position
Z(t). In this picture, Z(t) is ahead of the emitting particle.

The physical picture is that electrons in the tail of the bunch produce forward-

beamed radiation which catches up with the head electrons and interacts with them.
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This is possible because while the electrons are confined to their circular arc trajectory,
the radiation travels in a straight line between the emission and observation points.
Of course, this implicitly assumes such a straight-line path is always available, which
may not be true when a finite-size beam pipe is considered although we ignore this
complication. We further assume that the electrons have been on this trajectory for
long enough that, during the time it takes for this catch-up, both particles remain
on the circular trajectories. This is known as the ‘steady-state’ approximation, and
neglects the field variations at the beginning and ends of the bend magnet.

Given this geometry, we can compute the electromagnetic field from the Liénard-
Wiechert (L-W) expressions. The complication comes in treating the retarded time
condition, which can be expressed in terms of the angular variables from figure [2.15
as,

Y =X+ fsiny. (2.98)

Due to the circular geometry, this provides a transcendental relationship between the
various coordinates which cannot be solved in general. Nevertheless, we can treat
some angles as small and introduce the auxillary variables £ = 7 —1¢, a = 7 — x. For
short-ranged interactions, the angles ¢ and « are small, and thus the sine function
in equation [2.98| can be expanded. Furthermore, in this same approximation, we
typically assume a relativistic electron beam and trade § for v > 1, which produces

the approximate retarded equality,
3 3
a’ + —7204 —6£ = 0. (2.99)

This expanded equation produces analytic solutions in the parameter u = 3v3¢ =

3v3s/(2p) for an arclength separation s as,

a= % Q3 —qQ71/3), (2.100)

with,

Q=p+/p2+1. (2.101)
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Figure 2.16: The 1D CSR wake function w as a function of the scaled arc distance pu.

Higher order expansions are possible to capture longer-range effects, but the standard
near-field result is well captured by the third order equation. When inserting this
result into the L-W equations, care must be taken with the singular Coulomb part of
this expression. Fortunately, this can be clearly separated from the non-singular term
due to synchrotron radiation. The tangential electric field (along the trajectory) can

then be expressed in the form of a wakefield as,

4 eyt dv(p)
Ey=—-— 2.102
Y R TR ( )
where,
9 | -2 1 2

v(p) = — | — + ———— (DB Q73§ ——— (- Q73| . (2.103)

6| . u2+1( ) /—u2+1( )
The function w(p) = le—Ef) is therefore called the free-space CSR wake function

and is plotted in figure [2.16] Note that the 1D CSR wake is a factor of 1/4* smaller
for the region p < 0 than for the p > 0 region, and is therefore identically zero to the
order we have computed equation [2.99] This means that in the 1D ultrarelativistic

theory, the wakefield extends only in front of the emitting particle. By expanding the
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complicated solution of equation [2.103] we can explore simple limiting cases,

-4 2k
w(p) = o i (2.104)

~Tgman H > 1

The wakefield therefore has a long tail for large 1 which slowly regresses to zero. Note
that we can immediately state that since w is a total derivative and vanishes at both

extremes,

/00 w(p)dp = 0. (2.105)

This is actually not quite correct, as the function w(p) is discontinuous at p = 0,
where w(pu = 07) = 1 while w(u = 07) = 0. The reasonable definition of w(0) = 1/2
then gives the total energy loss of the bunch in agreement with the total power
radiated which can be computed by e.g. the Larmor formula.

Up until this point, the discussion concerns only a single electron emitting ra-
diation, and therefore despite equation being referred to as the coherent syn-
chrotron radiation wake, it it is really a single particle effect. The coherence comes
from the fact that the wakefield shape is a well-defined function of distance along
the bunch, as opposed to a random radiation process such as ISR. Note that if the
electron bunch has a length which is short when compared to the scale length p,
indeed there will be significant coherent radiation. In the more likely case, however,
that the bunch is long compared to p, it will be the long portion with w ~ p=%/3
which produces the bulk of the interaction.

The result for a Gaussian bunch with rms length o can be found by simply inte-
grating this profile with the wakefunction. The result is the wakefield shown in figure
2.17. This is the standard 1D wakefield from CSR theory, and is in most cases an
excellent approximation to the true contribution due to radiation in bend magnets.
Even within the context of this 1D picture, however, there is room for significant
improvements over the results quoted here. These improvements generally treat the
retarded condition in a more sensible way, and can be focused on forms more efficient
for computation [50] or including other physical effects such as radiation shielding

and bunch compression in the magnet [51]. Novel corrections to this simplistic 1D
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Figure 2.17: The Gaussian bunch wakefield ¢ as a function of z = s/o. Figure from
[48].

picture will also be explored in chapter [6]

Having described the mechanism of CSR energy spread generation, the next ques-
tion is how it can degrade electron beam parameters. As the electron bunch traverses a
4-bend chicane and loses energy due to CSR, this energy loss couples to the transverse
dispersion functions through terms like R6. Since this occurs inside the chicane, it is
not enough to simply ensure that the chicane as a whole has zero Ri5. Furthermore,
since in the case of a bunch compressing chicane the bunch length changes inside the
chicane, in general the CSR contribution from each individual magnet will not be
identical. Therefore, CSR-based emittance growth strongly constrains the design of
bunch compressing chicanes [52] [53] [54] [55].

The emittance growth contribution due to this energy spread growth in a chicane
can be computed in a simple manner if we assume it is small compared to the initial

emittance as,

Ae ~ % (%E)Q (H), (2.106)
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where the (imaginatively called) curly-H function H is defined in terms of the Twiss
parameters as,
H = yn* + 2am’ + By, (2.107)

This formula, while only a small-growth approximation, provides a useful guideline to
designing bend systems when appreciable energy growth is expected. The magnitude
of emittance growth is proportional to ‘H averaged over the dispersive section and
proportional to the square of the induced energy spread.

Note however, that however bad these mismatches and dispersion related emit-
tance growths may be, they are always in principle reversible. Since the wakefunction
is a well defined function of the longitudinal position within the bunch, as in figure
2.16, no ‘information’ is ultimately lost in this process and a careful phase space ma-
nipulation should enable a full recovery of the initial emittance. This stands in stark
contrast to the quantum ISR effect, or the particle granularity correction we discuss

in chapter [6] which are stochastic in nature and cannot be removed.

2.3.2 Microbunching Instability

The so-called microbunching instability (UBI) was first discovered during the develop-
ment of the LCLS in the early 2000s [56] [57] [58] [59]. At its core, the microbunching
instability is a self-reinforcing energy and density modulation on the electron beam.
Initially a small density modulation is present on the electron beam, which is typically
assumed to be due to simple shot noise. This density modulation, through the beam’s
own self-fields, lead to a beam energy modulation. As this energy modulation passes
through a dispersive region with nonzero Rsg, the energy modulation is (partially)
converted into a density modulation, which reinforces the instability. The dispersive
section of Rsg is often the large bunch compressors employed to increase the peak
current of the bunch, but can also be a long drift section. The overall amplification
in this cycle is referred to as the gain of the instability.

The mechanism of the UBI is fundamentally quite similar to the HGHG (or
klystron) mechanism discussed in section . However, rather than generating

a well-defined bunching factor at a desirable wavelength, the UBI generally creates
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Figure 2.18: The microbunching instability directly imaged at LCLS. The LH values
correspond to the mean heating from the laser heater, which is seen to suppress the
UBI. Figure from [60].

a broad-band modulation which effectively destroys the slice properties of the beam.
The effect of the UBI on the electron beam at LCLS (and its partial control) is shown
in figure 2.18 Therefore, understanding the origins of this instability and how to
mitigate it is essential to obtaining a high quality FEL beam.

The self-fields responsible for the amplification of the UBI can come in several
forms. One possibility is that the CSR fields in the bunch compressors themselves
can provide the necessary gain to amplify the instability. Another important effect is
the wakefields present in the linac structures. Since FEL facilities typically consist of
many accelerating structures periodically separated by bunch compression chicanes,
the wakefields in the structures can provide sufficient impedence to generate the
instability. Finally, the simple free-space longitudinal space charge provides another

impedence source [61]. Ideally, all three should be considered when taking the UBI
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Figure 2.19: The microbunching gain (bunching) as a function of wavelength at LCLS
for a variety of laser heater settings. Figure from [60].

into account.

A single stage of the microbunching instability produces a gain (defined as the
ratio of final to initial bunching) as a function of wavenumber with the approximate
form [62],

Ik
Cvyla

l
G(k) =~ R56/ dsw exp
0

Zo

122 52
(%565) (2.108)

where 14 &~ 17 kA is the Alfvén current, C' is the compression factor of the stage, [
its length, o the slice energy spread, Z is the impedance of the stage, and Zy ~ 3770
is the free space impedance. For low frequencies, the impedance can be written

approximately as,
12k

where we have dropped a term logarithmic in 1/k. The general form of the gain

function is therefore G(k) ~ k2e™* where the gain grows quadratically for small k
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Figure 2.20: A diagramatic representation of the LCLS laser heater. Figure from [62].

until k. ~ 1/(Rs¢d), after which the gain is exponentially suppressed. This approx-
imate form has been experimentally measured, and is shown in figure 2.19) When
considering the response of seeding systems (e.g. section to the UBI, we will use
this general form to model its modulations.

The approximate expression [2.108| also provides a hint for how to mitigate the
UBI: Increase the uncorrelated energy spread 0. This is precisely what is done in
order to suppress the UBI, and it is accomplished by means of a laser heater (LH)
[62]. A small modulator is placed in the center of a 4-dipole magnetic chicane, and a
resonant laser beam is allowed to modulate the electron beam in this high dispersion
region. As the electron beam then enters the latter half of the chicane, this energy
modulation is smeared out, effectively increasing the slice energy spread. A diagram
of this laser heater is shown in figure

The effectiveness of this procedure is shown in figures and [2.19] wherein it is
seen that larger energy modulations in the laser heater suppress the UBI. In practice,
it is a balancing act between setting the LH high enough to suppress the UBI to the
level required for a given experiment, but also setting it low enough such that the
induced energy spread does not make the FEL gain too small. This is only one of the

myriad of tradeoffs necessary in designing an entire FEL facility.
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Figure 2.21: A diagramatic illustration of the HGHG setup. The electrons first enter
a modulating undulator (M1), followed by a four dipole chicane (C1).

2.4 Beam-Based FEL Seeding Techniques

There are at present a large number of beam-based seeding techniques [40], but this

work is concerned with only two of the most basic: High-Gain Harmonic Generation
(HGHG) and Echo-Enabled Harmonic Generation (EEHG).

2.4.1 High-Gain Harmonic Generation

HGHG is perhaps the simplest beam-based seeding technique, and also has the longest
history. The fundamental dynamics of the system were first understood as the optical
klystron in the 1980s [63] [64]. In such a scheme, the beam is used merely for the
generation of coherent radiation, not as a seed for an FEL. In this guise, it is often
referred to as Coherent Harmonic Generation (CHG). However, it was soon realized
that an identical setup could be used to seed the FEL process [65] [66]. Since the
fundamental physics and setup is identical in either case, we will consistently refer to
this setup as “HGHG”, even if there is no significant gain in the system. This system
relies on the two bread-and-butter building blocks that we have previously introduced:
the modulating undulator (modulator) and the 4-dipole chicane and is shown in
figure [2.21] The electrons first traverse a modulating undulator, copropagating with
a resonant laser beam, and is then dispersed by a four dipole chicane. Note, it is not

strictly necessary to have a chicane, as any Rsg will do.
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Figure 2.22: The electron phase space during HGHG. This simulation has A = 7 and
B optimized for bunching at n = 7.

To analyze this system, consider an electron beam of total energy Fy and a slice
energy spread of og. Then, define the energy deviation p = (E — Ey)/op. We
assume that the modulation AFE attained from the modulator is perfectly sinusoidal,
and uniform for all electrons. In practice, this corresponds to a modulating laser
pulse which is both transversely and longitudinally much larger than the electron
beam. We can therefore define the phase relative to the laser of wavenumber k; as
¢ = krs = kp(z — Bct). Therefore, after M1, we have,

p1 = po + Asin((), (2.110)

where A = AFE/op and the modulation amplitude AE could be found for a given
undulator from e.g. eq. [2.65| In the chicane, no changes to p occur (assuming no
radiation), but the particles are dispersed according to their momenta, changing (.

In this coordinate, we have,
G = Co + Bpu, (2.111)

where B = Rsskrog/Ep is the scaled dispersive strength of the chicane. The HGHG
setup is therefore characterized by only two dimensionless parameters: A and B.
The phase space dynamics from these two equations are illustrated in figure
for the individual electrons in a bunch. The fundamental dynamics are clear: The
modulator M1 creates a sinusoidal modulation in energy which is turned into a density
modulation by means of the chicane C1. Half of the beam is decompressed, and half of
it is compressed into density spikes. Since the bunching factor is a fourier transform,

it is the sharpness of the density peaks after C1 which determine the high harmonic
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content for the HGHG scheme. The sinusoid does not fold over perfectly under
dispersion, and it is natural to ask how one might perform better. The essential task
then is to create as linear as possible a chirped beam section, which will optimize
compression. This can be accomplished through cascaded modulator chicane sections
with normal laser pulses [67], or through direct use of sawtooth laser forms [6§].
Nevertheless, we do not pursue these options and continue with the analysis of the
vanilla HGHG configuration.

The bunching spectrum generated by this configuration is found by computing
69,

b(h) = ’ / F(po, Go)e™ ") dcydpy| (2.112)

where h = k/ky, is the harmonic number, and f(p, {) is the original distribution prior
to the modulator. Typically, the initial distribution is Gaussian in energy and (, so

that we have f(p,() = ﬁe*pz/ze%?/@”g),

For the HGHG scheme, we have,

C1(Cospo) = Co + Bpr = (o + B (po + Asin(()) . (2.113)

In order to facilitate the computation of equation [2.112] the exponentiated sine can
be expanded into Bessel functions (similar to [2.64)),

et = " e, (a), (2.114)

n=—oo

We can now compute for the HGHG setup,

b(h) = | S e s (B ) 5 (AR (2.115)
We see from this formula that we have peaks in the bunching spectrum centered
around the integer values h = n, with width determined by the bunch length o.
Compared to the laser wavelength o, is typically quite large, and in this limit the

exponential collapses to 6(h —n), and we have the bunching only at integer values n,
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Figure 2.23: The optimized bunching factor for various HGHG harmonics at fixed

A = n. The optimal B chosen is either found numerically, through the asymptotic
expression [2.117], or from the heuristic B = 1/A.

by = |e2(B) I (—nAB)| . (2.116)

We immediately notice the exponential suppression in front, which requires + > n to
generate significant bunching. However, the Bessel function also has its peak when its
argument is approximately equal to its order, suggesting B ~ 1/A. This provides a
heuristic optimization to generate harmonics at the harmonic n: A should be around
n, and B ~ 1/A. The exact optimization is transcendental due to the Bessel function.
We will fix A = n, for the purpose of optimization at a given harmonic n. Then, we

can analyze in the limit that A = n > 1, that the optimal B is,

n

1 4
Bopt,asmptotic = 5 (1 - 1-— _) . (2117)

A comparison between these optimization procedures and the true numerical opti-
mum is shown in figure [2.23] We see that the asymptotic optimum agrees quite well

above n & 8, while the heuristic guess B = 1/A consistently underperforms.
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Figure 2.24: The HGHG bunching factor as across many harmonics for three separate
configurations. The settings with higher A have uniformally higher bunching, and the
bunching factor drops off rapidly at high harmonics.
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Figure 2.25: The HGHG bunching factor at n = 7 as a function of A B.
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Exploring the full A, B parameter space produces contours of bunching, shown in
figure for n = 7. We see that indeed it is optimal to push A as high as possible to
obtain the greatest harmonic bunching. Furthermore we can see, for a given A, there
are auxillary local maxima at higher values of B due to the Bessel function behavior.
These outer islands are suppressed by the exponential factor, but nevertheless these
provide an important clue for things to come with the EEHG scheme. It is also of
note that one is able to slightly compensate for a lower value of A by increasing B
slightly, indicated by the slope of the bunching region. This is of course the statement
that in order to ‘stand up’ the density spikes in phase space at lower A, one must use
a stronger chicane.

Moving away from the optimal bunching at a single target harmonic, we ask
what is the bunching across many harmonics for a single HGHG setting? A plot for
three different configurations is shown in figure [2.24] Of note is the fact that the
configuration with higher A has uniformally higher bunching than that with lower
A. Furthermore, the bunching decays rapidly at high harmonic number. This is the
essential scaling of the HGHG upconversion process: In order to reach high harmonics,
one must provide correspondingly large energy modulation relative to og. As we have
seen, the energy spread is a critical factor for FEL performance, so in practice the
harmonic upconversion is typically limited to n < 10 [40]. This limitation may be
extended through the use of cold electron beams, but the longitudinal compression
required to achieve high peak currents, and thus an appreciable p, necessarily drives
the slice energy spread to larger values.

Before moving on to EEHG, it is perhaps important to note that the HGHG
seeding scheme has been in successful use for some time at the FERMI facility. This
HGHG setup is able to reach down to the 15th harmonic in a single stage [70], or the
60th harmonic in two stages [71] from a 266nm laser pulse. Therefore, as HGHG is a
proven technique for beam based seeding down into the soft-X ray, the challenge of
a new seeding mode such as EEHG is to either extend down to lower harmonics or

improve performance over the same spectral range.



CHAPTER 2. BACKGROUND MATERIAL 64

Figure 2.26: A diagrammatic illustration of the EEHG setup. The electrons first
enter a modulating undulator (M1) with resonant wavenumber k1, followed by a four

dipole chicane (C1), then another modulator (M2) with resonant wavenumber ks, and
a final chicane (C2).

2.4.2 FEcho-Enabled Harmonic Generation

The Echo-Enabled Harmonic Generation scheme was only relatively recently discov-
ered [72] [69], although the more general echo effect has been known in many physical
contexts for a long time [73] [74] [75]. The general principle involves a system which is
perturbed, and then non-dissipatively damped or mixed up. After some time, a sec-
ond perturbation is incident on the system and the same non-dissipative mechanism
is again engaged. Then, at some future time the initial perturbation signal appears,
seemingly out of nowhere, as an ‘echo’ of the past. The essential theme of the echo
effect is that the non-dissipative mixing of the system preserves phase information,
which is allowed to re-cohere at a later time as an echo.

Regarding EEHG, this effect is obtained by using a two modulator and two chicane
system, as shown in figure [2.20] At first glance, it looks similar to back-to-back
HGHG setups. However, the first chicane is significantly larger (in terms of dispersive
strength Rsg) than the second chicane. Furthermore, the two modulators M1 and
M2 may be resonant at different wavenumbers k; and ky, potentially necessitating
different input lasers. As with the HGHG case, we analyze the electron bunch in the
scaled coordinates p and (, where ( = ks, since k; # ko in general, and define the

ratio kK = ko/k;. The series of transformations in terms of normalized modulation
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Figure 2.27: The electron phase space during EEHG. This simulation has A; = Ay = 3
and B; = 8.94, B, = 0.37, optimized for bunching at n = —1,m = 26. Electrons
initially from —( are colored red, while those from +( are colored blue.

amplitudes A; o = AE) /0 is then,

p1 = po + Ay sin((o), (2.118)
C1 = Co + Bipy, (2.119)
p2 = p1 + Agsin(k(y), (2.120)
G2 = 1+ Baps. (2.121)

One subtlety is that the definition of the B factors have changed slightly, and
now By = Rsgi1kiop/Ey and By = Rseoki10p/Ey. Formally, the B quantities could

be positive, negative, or have differing signs according to their dispersive strengths.
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However, as we are interested in a practical setup realized with two chicanes, they
will have the same (positive) sign in all that follows.

The phase space evolution of individual electrons through these transformations
is shown in figure [2.27} The effect of the large first chicane is to striate the modulated
beam into a series of very thin (in terms of slice energy spread) beamlets. We see
that during this process the electrons migrate over many laser periods of modulation,
indicated by the initially far separated blue and red electrons ending up at the same (
position after the first dispersion. Once these beamlets are set up, the second stage is
essentially HGHG in which an energy modulation is again added and then converted
into a density modulation. In contrast to HGHG however, with the multitude of
beamlets the possibility for harmonic content is much greater. One can view this
heuristically as due to the beamlets having a smaller slice energy spread than the
total beam.

To compute the bunching from such a configuration, we proceed as before, by

equation [2.112] except now we must compute (2(¢o, po),

Co = Co+ B [po + A1 sin((o)|+Ba [po + A1 sin(Co) + Az sin {r{o + By [po + Ay sin(Co)]}] -
(2.122)
As before, while computing the bunching factor we employ the Bessel identity, how-

ever twice this time. We assume the same initial Gaussian beam, and find,

ST erHme B0 e (RSB AL + By Ay S (—h A By)

n=—oo Mm—=—0o0

b(h) =

Y

(2.123)
where B = B+ B, and n and m are integers. We see the spectrum is characteristically
broadened due to the finite bunch length o,. As we let 0, — oo, the bunching

spectrum collapses around those points with h = n + mk,

bn,m =

ST N et Bl B 0Byt (n+ k1m) By) Jy (— (0 + m/i)AzBQ)‘ :

(2.124)

Therefore, the EEHG process produces bunching harmonics at the wavenumbers
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k = nk; + mky. Prelimintary analyses of the EEHG phenomenon revealed that
the maximum bunching factor is obtained from the n = —1 mode. Furthermore,
recent analysis also suggests that the sensitivity of the system is proportional to |n|,
providing more motivation for using the n = —1 configuration [76].

As the parameter space is four-dimensional, and the function extremely compli-
cated, analytical optimization is not possible and numerical optimization must be
performed. However, there are some rules of thumb for the optimization of an echo
setup.

To begin with, as the final chicane is used merely to stand up the modulation
of M2 in a manner similar to HGHG, we can borrow from that theory the (rough)

relationship,

Furthermore, it is well known that the ratio of the dispersions is approximately the

harmonic number,
n31

h~|——
KBQ

, (2.126)

These relations, with a fixed set of A parameters, allow one a reasonable starting
point for the echo optimization. The actual procedure is however done numerically,
and one such optimization contour is shown in figure [2.28, The EEHG optimiza-
tion space is markedly different from that of HGHG. The first notable thing is that
for each optimal bunching, there is actually a twin optimum point with identical
bunching and By, but different value of B;. This comes about from the degeneracy
in the (nB; + (n + km)Bsy) terms in the bunching formula. Although the bunching
generated at precisely the n, m harmonic is identical, the performance of these two
configurations in other respects is not. A second feature of note is that there are many
isolated island pairs of bunching across the Bj, By space. Indeed, one can identify
several places where merely increasing By would take the configuration between three
or four of these islands.

For a given echo configuration, however, multiple harmonics besides the desired
one may be excited. We show a plot of this effect in figure We see that not only

is bunching excited in a small island around the target harmonic of 25, but that there
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Figure 2.28: The EEHG bunching optimization space in terms of By,B,. This setup
has A1 = Ay =3, k =1 and is for n = —1 m = 26.
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Figure 2.29: The bunching generated by several EEHG configurations. k=1 for all
these simulations, and the target harmonic for optimization was 25.
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is also a small region of bunching at approximately twice this value, near a harmonic
number of 50.

We investigate how these auxillary bunching regions change for various changes in
the EEHG configuration. First, we switch to the n = —2 configuration and optimize
for the same target harmonic. As a result, we see more islands of bunching outside
the optimized location, but all generally of lower amplitude. This provides a strong
motivation to operate at the n = —1 configuration whenever possible. In practice,
this turns out to be a requirement on the dispersive strength of the first chicane, since
we have the relation h & |n|B;/Bsy. If one cannot make Bj large enough to reach
the target harmonic h, one is forced to increase |n| and decrease the bunching and
performance of the EEHG configuration.

For the second set, we compared the By high and B; low optimal configurations
seen in figure 2.28] Both configurations have identical bunching at the target har-
monic, however the B; low configuration excites harmonics below the target, while
the B; high excites higher harmonics. Therefore, if one is concerned with exciting
nearby harmonics around the target, the distinction between these configurations may
become important.

To further investigate how EEHG treats nearby harmonics and side frequencies,

define the following scaling parameter,

E(k) = kﬁl% — mKBy, (2.127)

where this parameter is defined not only for the echo harmonics k = nk; + mksy, but
for all wavenumbers for a given set of n,m values. With this definition, we can rewrite

the bunching factor at a general wavenumber k as,

2 k
1

This expression reduces to the bunching factor at the echo harmonics as in equa-
tion [2.124] for k = kr = nki + mky. Since the expression [2.12§] is valid for all k,
for a given EEHG configuration it is referred to as the ezcitation bandwidth (EB).
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Figure 2.30: The excitation bandwidth for EEHG configurations with ¢ < 0 and
¢ > 0. The bunching is optimized for the 75th harmonic of the seed laser with
Ay = Ay =3 in the n = —1, m = 76 mode with x = 1.

It defines how frequency components at wavenumber k are amplified or suppressed
by the EEHG manipulation process, i.e. if it is capable of exciting those frequencies.
Note the configurations referred to above as B; Hi or B; Lo are understood in this
notation as either & < 0 or £ > 0.

These positive or negative ¢ configurations are equivalent in the bunching pro-
duced at the target harmonic, but have different EBs, as is shown in figure [2.30]
While the bunching at the target harmonic (the 75th) is identical, we see that the
¢ > 0 configuration preferentially excites nearby low frequency content while the £ < 0
excites high frequency content. Furthermore, we note that the excitation side-bands
are significant only quite close to the target harmonic. These sidebands therefore pro-
vide a means of controlling sub-harmonically spaced frequency content in the EEHG
setup. This is further explored in the context of the microbunching instability in
sections 5.1.2] and 5.2

Perhaps the most substantial value in EEHG, as visible in the examples of and
2.29] is the ability to attain high harmonics with relatively small energy modulations.
It can be shown by analysis of equation that for the n = —1 and m positive

choice, the maximal bunching factor scales as,

0.39
bflvm ~ m (2129)
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13 is in stark contrast to the exponential scaling of the HGHG

This scaling with m™
bunching factor. Further, the analysis leading to [2.129] is valid for A; ~ 3, which
suggests that with this relatively low modulation amplitude, it should be possible to
reach bunching values of several percent with harmonics over 100. For example, the
optimized bunching factor with A; = Ay =3 at n = —1,m = 101 has b_1 101 = 7%.
This favorable scaling is what allows EEHG the promise to reach into the soft x-ray
regime with a single stage of seeding.

However, in contrast to HGHG, EEHG has not yet been put in place at a major
operational user facility. EEHG was demonstrated to be a suitable seed for lasing in

the UV [77], and various proof of principle experiments have been performed which

will be discussed in [subsection 3.1.2l There are two key components to elevating

EEHG to the status of a user facility ready technique.

The first is a demonstration of reliability and tunability sufficient to meet the
demanding needs of users. Some of this experience has been gained with the similar
HGHG setups at FERMI [70] [71], and also at the higher wavelength lasing demon-
stration [77]. The second component is the demonstration of harmonic up-conversion
interesting enough to be competitive with other techniques. Given the success of
HGHG providing seeds at FERMI well into the EUV, in practice this means the
ability to reach the soft X-ray.

While it would have greatly pleased the author to have achieved both these crite-
rion and demonstrated a fully operational, user-ready EEHG seeded beam, this was
not possible. Rather, by demonstrating a harmonic up-conversion factor of 75 in the
scaled experiments at NLCTA, the second key to the puzzle appears to be well in
hand. What remains, therefore, is to combine the knowledge and experience in pro-
ducing high harmonics acquired at NLCTA with the operational experience of other

seeded FEL facilities. This merger would provide an excellent shot at producing a
user ready EEHG-seeded FEL beam in the soft X-ray.



Chapter 3

Characterization and Upgrades of
the NLCTA

If T have not seen as far as
others, it is because there were

giants standing on my shoulders.

— Hal Abelson

In this chapter, I will outline the Next Linear Collider Test Acclerator (NLCTA)
facility wherein the experimental work of this thesis was performed. 1 will first review
the history of the NLCTA in section [3.1], including the previous experiments related
to Echo-Enabled Harmonic Generation performed prior to my arrival. After this re-
view, I will discuss in section the upgrades to the facility I performed with the
intention of enabling the production of higher harmonics. These upgrades include
an EUV spectrometer which I designed, constructed, and calibrated to facilitate the
measurement of high harmonic EUV light produced through the Echo process. Fi-
nally, I will describe the characterization of the whole NLCTA facility 1 performed

through simulations and electron beam measurements in section [3.3]

72
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Figure 3.1: The NLCTA main beamline as of Fall 2014. Figure from [83]. An updated
version, which includes the large first chicane and E163 dogleg is given in figure W

3.1 NLCTA Overview

3.1.1 The NLCTA Facility (2009-2014)

The Next Linear Collider Test Accelerator (NLCTA) was originally conceived as a
testbed for the ill-fated Next Linear Collider (NLC) of the 1990s [78]. In particu-
lar; high gradient X-band accelerating structures were needed for the NLC and it was
necessary to test them and demonstrate the compensation for the beam loading effect
[79]. Therefore, the primary goal of the NLCTA was to study the generation of high
powered X-band RF| its transport into high gradient structures, and the dynamics
of the electron beam in this environment. After this initial period, the NLCTA was
rebranded as a user-oriented facility named ORION [80] where the focused shifted
away from RF to advanced accelerator concepts. In particular, the E163 experiment
utilized the electron beam and constructed many laser subsystems to test laser ac-
celeration both in vacuo [81] and inside a dielectric structure [82]. Concurrent with
these laser acceleration experiments was a secondary focus towards phase space ma-
nipulation of the electron beam using beam-laser interactions.

The status of the facility as of Fall 2014 is shown in figure 3.1 The overall facility
layout has not changed significantly between 2014 and this work, so we will first
describe the beamline before later detailing the modifications that were made as part
of this work.

The electron beam for the NLCTA facility is generated from a copper photocath-
ode embedded in a 1.6 cell S-band copper photoinjector of the BNL/ANL/UCLA /SLAC

type [84]. Emittance compensation in this low energy injector section is provided by a
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solenoid magnet located approximately 18cm from the cathode in a manner described
in reference [85]. The beam has a nominal energy of 5 MeV as it enters the 180cm
long X-band accelerating cavity X1, after which its energy is nominally 60 MeV. At
this point, there exists a large four-dipole chicane which occupies 6.5m of floor space
(shown in figure . This chicane is not commonly in use, however, and a by-
pass line instead takes the beam straight for this drift distance. An 11-cell X-band
transverse deflecting cavity was then present, but was removed prior to this work.
Finally, the beam reaches the second X-band accelerating structure which increases
the energy to a nominal 120 MeV.

This point is the beginning of the nominal ECHO beamline, and begins with a
chicane (CO0) used to generate an orbital bump for the injection of an 800nm laser.
The beam then traverses the first undulator (U1, 10 periods, A, = 3.3cm , K = 1.82)
before arriving at a second chicane (C1). This second chicane again provides an
orbital bump for the injection of the second echo laser, while also providing the
dispersive Rsg strength needed for the echo effect. The second echo undulator (U2,
10 periods, A\, = 5.5cm, K = 2.76) is then encountered before a third and final
chicane (C2) completes the echo process. The beam then enters a final radiating
undulator (U3) for the generation of radiation and diagnosis of the echo-induced
bunching. In the studies of 2014, and shown in figure this final undulator was
an electromagnetic RF undulator with period 1.39cm and adjustable K (0.2 < K <
0.7) [86]. Photon diagnostics were performed using a commercial McPherson model
234/302 scanning monochromator [87], equipped with a 2400G/mm or 1200G/mm
corrected concave grating. The detection of photons was ultimately performed by an
Andor CCD camera. Finally, the electron beam enters a dipole magnet spectrometer
to allow for electron energy and longitudinal phase space diagnostics.

The chicanes used for the echo manipulations are composed of four edge dipole
magnets to automatically eliminate horizontal dispersion components. However, they
also contain two quadrupole magnets between the first and second and third and
fourth dipole magnets. These quadrupoles are referred to as trim quadrupoles. A
drawing of the second echo chicane (C2) is shown in figure showing the location of

the trim quadrupoles. The quadrupoles are not only allowed to freely vary in strength
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Figure 3.2: A computer drawing of the second echo chicane. The magnetic center
line of the chicane is shown as the dashed line. The objects between the first and
second and third and fourth dipoles are the trim quadrupoles. In the center is a pop-
in screen, which ejects laser 2 for this chicane, but is otherwise used as an insertion
point for the echo lasers in the other two chicanes.

(positive and negative field values), but are also mounted on linear motion stages
which allows them to be moved to center on the true magnetic and orbital center
line. These quadrupoles are used to remove any remnant linear horizontal dispersion
Ry6 in the chicane, which can arise from imperfect magnetic fields and fringe fields.
Since even small dispersions can lead to large subsequent deviations compared to
the radiation harmonic, it is imperative to remove this dispersion. A solution to
lowest order can be found analytically for the two trim quadrupoles assuming ideal
chicane optics. In practice however, the quadrupoles must be fine tuned to account for
magnetic imperfections and misalignments, which accounts for a significant portion
of the echo tuning for high harmonics.

These chicanes have a minimum usable R5g component of =~ 500 nm to avoid scrap-
ing of the electron beam against the inserted mirror. Magnetic hysteresis and other

imperfections lead to a known &~ 100 pm uncertainty in the dispersion at such small
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values. The maximum Rjg attainable also limits the utility of the Echo technique,
and for the large first chicane is limited to a maximum of about 13 mm.

Throughout the beamline, and at the final dipole spectrometer diagnostic, Optical
Transition Radiation (OTR) screens are employed for direct imaging of the electron
beam.

The NLCTA is equipped with an array of lasers, both for the generation of the
electron beam and the scientific programs. The laser begins in a mode locked Ti:Sa
oscillator at 800 nm, which is then split into two separate pulses. One traverses a
regenerative amplifier before transport to the electron gun, where a nonlinear BBO
tripling crystal transforms it into the UV at 266 nm, after which it is used to photoemit
electrons from the copper cathode. The other branch traverses a separate regenerative
amplifier before being split again in paths to either the first or second undulator
(injection at either C1 or C2 in figure . The injection point at C2 is further
equipped with an optical parametric amplifier (OPA), which allows the wavelength
to be tuned, notably, between 1600 ~ 2400 nm. By the time these pulses reach the

undulator sections for interaction, they have approximate duration of 1 ps.

3.1.2 The Echo Programme (2009-2014)

The first foray into EEHG was achieved at NLCTA in 2010, when the 3rd and 4th
harmonic of the second seed laser were generated [88]. This established the underly-
ing physics of the EEHG phase space manipulation, and importantly, distinguished
this effect from the already-known HGHG signals. The relative insensitivity of the
central echo wavelength to electron beam chirp was also demonstrated in this early
experiment.

Focus then turned towards higher harmonics, as well as the ability of EEHG to
generate high harmonics with only modest energy spread increases. Next, the 7th
harmonic of the 2nd seed laser was reached, and clear evidence of bunching was
observed when the energy modulation was only 2-3 times the slice energy spread.
This demonstration established the key result that holds the promise for EEHG to
reach high harmonics for beam based FEL seeding in a single stage [89).
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Figure 3.3: The Halbach mangetic array setup of the VISA undulator.

Finally, in 2014 the harmonic number was pushed well into the VUV with the
15th harmonic being generated [83]. Importantly, at this stage of the experimental
programme, the 2nd seed laser was altered to the 2400nm wavelength. This change
allowed higher harmonics to be accessed without decreasing the target wavelength,
which necessitates more difficult diagnostics. During this study, several other fun-
damental properties of the echo signal were established, such as the insensitivity
to electron beam energy curvature, and the robust central wavelength with respect
to electron beam energy chirp. At this point, analysis suggested that considerable
bunching ought to have been in place on the electron bunch up to harmonics 30 ~ 45.
However, due to the relatively low (120 MeV) electron beam energy, the properties
of the radiating undulator (at this time, the RF undulator [86]), and the photon
diagnostics in place, it was not possible to generate or measure enough signal to con-
firm the echo effect up to these harmonics. Bearing in mind that at a full scale FEL
facility, a target wavelength in the region 3 ~ 5nm meant upconversion of a 266nm
seed laser to the 50 ~ 75th harmonics, the next experimental push was devoted to

demonstrating the highest harmonic upconversion.
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3.2 Experimental Upgrades towards Higher Har-

monics

The first upgrade to enable the investigation of higher harmonics was the installation
of the Visible to Infrared SASE Amplifier (VISA) undulator. The need for a strong
radiation signal in order to perform diagnostics on the high harmonic bunching ne-
cessitated the push towards a longer, more efficient radiator than the pre-existing
RF undulator. The VISA undulator was originally designed as a high efficiency un-
dulator to investigate the properties of SASE radiation in anticipation of the LCLS
experiment [90]. While the original VISA undulator is a full 4m in length, for the
experiments at NLCTA only a 2m section was used. The magnetic array is of a Hal-
bach design [91] with permanent NdFeB magnets in the configuration illustrated in
figure [3.3] The magnetic gap is fixed at 6mm, with period 1.8cm, and a peak on-axis
B-field of 1.25T. The VISA undulator thus has strength K = 1.26.

Furthermore, the VISA is equipped with a distributed focusing array which yields
a FODO cell length of 24.75 cm, with a focusing gradient of 33.3 T/m and an effective
quadrupole length of 6cm. For the operating points of £ = {120, 160, 192} MeV, this
yields an average matched beta function of (3) = {42,55,65} cm. This small beam
size presents the tantalizing possibility of high gain performance in the EUV that
was unfortunately unable to be realized due to other limitations in the electron beam
parameters.

The alignment of the VISA undulator was originally carried out using a pulse-wire
setup, which provided an accuracy of 50 um for the magnetic axis [02]. Once installed
on the NLCTA beamline, the straight line trajectory through the undulator was
established via a small guide laser injected into the beamline immediately upstream
of the undulator. This ballistic trajectory was used as the guide for the electron beam
trajectory through the undulator as measured by the intra-undulator OTR screens.

The VISA undulator is additionally equipped with four picture-frame dipole cor-
rector magnets to allow beam steering within the undulator. These dipole magnets
are capable of independently providing a maximum of 2 mrad kick in the x or y direc-

tion. For intra-undulator diagnostics, the undulator is also equipped with four evenly
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Figure 3.4: The VISA undulator as installed on the NLCTA beamline. The electron
beam enters from the left. Visible are the four dipole corrector magnets, as well as
the four OTR imaging cameras.

spaced OTR screens mounted on pneumatic actuators. The transition radiation can
be imaged on cameras, which allow a positioning of the beam and intra-undulator
monitoring of visible spectrum radiation. The VISA undulator as installed on the
NLCTA beamline is shown in figure

The push towards higher harmonics, and naturally shorter wavelengths, created a
strong drive towards higher electron beam energies. At the nominal operation energy
(in 2014) of 120 MeV, the VISA undulator is resonant at A, ~ 290 nm. To diagnose
EEHG bunching at the 75th harmonic of the 2400 nm seed laser would therefore
require radiation on the 9th undulator harmonic. For the modest K = 1.26 of the
VISA, it is clear to see from figure 2.11] that the radiation coupling is quite low at this
high harmonic. In fact, the coupling to the radiation at the 9th harmonic is only ~ 3%
of the coupling to the fundamental. Therefore, in order for the radiator to provide an
efficient diagnostic of the electron bunching it was necessary to significantly increase
the electron beam energy.

To this end a third, one meter long, X-band accelerating structure (X3) was
installed following the final EEHG chicane C2. As the EEHG modulator and laser
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Figure 3.5: The theoretical efficiency of the commercial VUV spectrometer as a func-
tion of wavelength for each of the available gratings.

system were designed for resonance at 120 MeV, it was not possible to place the final
accelerating structure earlier in the beamline. Initially driven by a normal X-band
klystron, this structure provided a maximum of &~ 45 MeV energy boost, bringing the
total beam energy to ~ 165 MeV. Some time after the initial installation, the X-band
klystron was modified to include a SLED cavity [93], which extended the range of
the electron beam energy to a maximum of 196 MeV, although the more stable 192
MeV became the highest used operational point. At this 192 MeV working point, the
VISA is resonant at 114 nm, allowing the 75th harmonic to be radiated near the 3rd
or 4th undulator harmonic.

Because X3 was installed downstream of the EEHG manipulation section, the
delicate EEHG phase space needed to be transported through the structure. Experi-
mentally, the bunching was observed to survive the acceleration section, although it
is not clear how much degradation (if any) was caused by either the acceleration or
wakefields due to the structure. Regardless, the configuration suggests the possibil-
ity that future EEHG setups could perform beam manipulations at a relatively low
energy and only later boost to the final energy for the radiation stage. Such a setup
would allow a significantly smaller (in terms of both laser power and chicane design)

EEHG section, and therefore may be an attractive economical possibility.
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Finally, the need to diagnose high harmonics with radiation wavelengths that ex-
tended well into the EUV necessitated the construction of new photon diagnostics.
The previously installed McPherson monochromator [87] used a 45° angle of inci-
dence (AOI) UV enhanced aluminum mirror to deflect light into the spectrometer
placed 90° to the beamline. The light then scatters off a grating (either 1200 or 2400
grooves/mm) at a relatively high (32°) AOIL. The photon detection was performed by
an Andor CCD with typical QE of ~ 30% over the spectral range of interest. The
theoretical efficiency of the setup up to the Andor CCD is plotted in figure |3.5 The
efficiency of the gratings is taken directly from the manufacturer, while reflectance
data is not provided for the ejection mirror below ~ 200 nm. Data in this range is
therefore interpolated between the high wavelength data and known low-wavelength
data in the X-ray regime for Al from a wavelength of 41 nm [94]. The overall low
transmission efficiency is due to the low efficiency of the gratings (O(0.1)%), while
the dropoff in efficiency near 150 nm is due to the poor performance of the ejection
mirror at the relatively high AOL.

Due to the long lead time required for the construction of the new EUV spec-
trometer, an intermediate solution was required to allow the program to progress.
As the geometry and efficiency shown in figure were essentially fixed, the only
option to extend the range of the setup was to increase the gain of the photodetec-
tor. To this end, the CCD camera was replaced with an 18 mm microchannel plate
(MCP) (BOS-18, Beam Imaging Solutions) to provide a large gain and extend the
range of the device. The MCP detector consisted of two back-to-back MCP devices,
with the first plate coated in Csl to enhance the detection of EUV photons. A P-43
phosphor screen was placed behind the MCP to convert the MCP electrons back into
photons for detection on an imaging camera focused to the plane of the phosphor.
The MCP is powered by a 2 kV high voltage power supply, while the phosphor is
biased by a 5 kV power supply. The gain of this setup depends exponentially on the
MCP supplied voltage, but can conservatively be estimated to be 10%. The spatial
resolution is determined by the pitch size of the MCP (12 um), the gain of the device,
and the phosphor screen. For large gains in double MCP configurations, the cascade

electrons spread to multiple channels and degrade the resolution. The resolution was
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Figure 3.6: The geometry of the Hitachi EUV diffraction gratings. The wavelengths of
the spectral plane A;,\y depend on the groove density of the grating. Figure adapted
from [95].

optimistically estimated, based on similar devices, to be 50 pm, although it appeared
to be significantly higher in the case of our devices. Regardless, the installation of
the MCP effectively increased the functional range of the VUV spectrometer down
to &~ 45 nm, although detection efficiency was lost above ~ 150 nm due to the CsI

coating.

3.2.1 Constructing the EUV Spectrometer

There were several important criterion for a new EUV spectrometer to enable the
EEHG experiment to reach its goal. The first, and most obvious, was a useful wave-
length range which extended at least to the lowest wavelengths expected: in our case,
we aimed for the 75th harmonic of the 2400 nm seed laser, i.e. 32 nm. However,
the process of tuning and diagnosing EEHG harmonics generally starts with lower
harmonics which are bright and stable, and allow for a relatively easy tuning of the
seed lasers and electron orbit. After efficient bunching is established at these low
harmonics, the harmonic number can be gradually raised by adjusting the seed laser
powers and chicane settings. Therefore, an ideal spectrometer will also have a large

wavelength range within a single grating to allow for a large range of tuning without
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the need to physically modify the spectrometer setup. The existing VUV spectrom-
eter, after the upgrade with the MCP, allowed diagnostics at low efficiency in the
45 ~ 150 nm range, so the upper desired wavelength range for the EUV spectrometer
was chosen to be around 100 nm for substantial overlap. It is important to note
here that EEHG machine parameters had already been demonstrated at 160 nm in
the previous experiment [83], so this became the approximate starting point for the
upgraded experimental setup.

The second requirement for the spectrometer was that it be relatively high effi-
ciency. Although the increase in beam energy significantly enhanced the coupling of
the high echo harmonics to the VISA undulator, the radiation for 32 nm light still
took place between the 3rd and 4th undulator harmonic. This fact, coupled with
other deleterious effects which will be discussed later, necessitated a high efficiency
spectrometer that could capture as much of the light as possible. In the EUV, this
translates to a spectrometer constructed with grazing incidence optics in order to
maximize the reflectance over the wavelengths of interest.

The need for a grazing incidence instrument conflicted with the more practical
requirement of space constraints in the accelerator housing downstream of the VISA
undulator. The X-band Test Area (XTA) is a small, independent accelerator within
the same housing as the main NLCTA beamline which happened to reside directly
adjacent to the terminus of the VISA undulator. The need for seamless transition
between the operation of either the XTA or NLCTA beamlines required that a) the
XTA setup could not be disturbed, and b) there needed to be sufficient clearance
between the two to allow for routine work and access to the final segment of either
beamline. Therefore, the overall design of the EUV spectrometer also needed to be
compact enough to fit these space requirements.

Finally, it was necessary to have an entrance slit to provide the highest achievable
resolution and limit the impact of any stray reflections. Due to the relatively long
electron bunch, the bandwidth of any individual EEHG harmonic is quite narrow
(O(0.01) nm). With the envisioned MCP setup, it was not considered achievable to
attain such a high resolution due to the need for a high gain. The theoretical resolution

of the spectrometer setup was limited only by the smallest attainable slit gap, the
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pore size and pitch of the MCP, and the phosphor grain, and was actually quite small
(O(0.01 nm). However, experience with similar setups which required considerable
gain from the MCP showed that such a high resolution was not attainable in practice
[96] [97], and a more reasonable estimate for the resolution was ~ 0.1 nm. The
requirements on the smallest attainable slit gap were therefore relaxed compared to
an ideal spectrometer.

The heart of the new EUV spectrometer was a pair of Hitachi aberration-corrected
concave gratings (models 001-0639, 001-0640) with 600 and 1200 G/mm respectively.
These gratings have an angle of incidence (with respect to the tangent) of 4.7°, a
blaze angle of 3.7°, and focus to a flat field 469 mm along their tangent away from
the center. The blaze angle is a slight sawtooth tilt at the level of the grating line
spacing designed to optimize diffraction at a certain wavelength and diffraction order
(usually the first). In this case, the blaze for gratings 001-0639 and 001-0640 are
optimized for 31 and 16 nm respectively. The flat field, aberration-correction, and
blaze angle create an effective wavelength range of 22 ~ 124 (11 ~ 62) nm over a
110 mm flat focal plane. The existence of a flat focal plane allowed the simultaneous
observation of a large wavelength range without the need for spectrometer adjustment.
In practice, the simultaneously observable wavelength range was limited not by the
grating but by the size of the detector at the focal plane. The overall geometry of the
gratings is illustrated in figure 3.6 The light was ejected from the electron beamline
by a gold-coated mirror at 15° angle of incidence into the spectrometer arm. The
15° AOI offered a total 30° angular kick out of the beam path, which was critical to
satisfying the geometrical requirements of figure As the light coming from the
undulator was primarily horizontally polarized, the reflectivity of the gold mirror over
the wavelengths of interest is generally ~ 40% [94].

The net efficiency of the combined mirror-grating system is shown in figure [3.7]
Compared with the VUV spectrometer (shown in figure , efficiency was increased
by almost two orders of magnitude. This is primarily due to the grazing incidence
angle of the setup, both in the diffraction grating and gold-coated ejection mirror.
Further, due to the blazing process on the diffraction gratings, the efficiency was more

peaked than the VUV spectrometer around this blaze wavelength. The upper and
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Figure 3.7: The theoretical efficiency of the constructed EUV spectrometer (Au ejec-
tion mirror + grating) for each grating. The reflectance of the gold ejection mirror is
assumed constant in the wavelength range 41 ~ 120 nm.

lower wavelength limits of each grating are due to the lack of achievable focus and
aberration correction in the focal plane for wavelengths outside the design region.

Before reaching the grating, the light was baffled by a custom slit assembly. Dur-
ing the design of the spectrometer, several commercial designs were considered and
ultimately rejected due to the space constraints discussed, the need for high vacuum,
and the desire for a wide and controllable aperture range. A custom assembly was
therefore constructed based upon two 2 3/4” vacuum cubes mounted vertically atop
one another. Into each was inserted a linear actuator with a stepper motor attached
to a straight (or cantilevered) slit blade. The stepper motors allowed each side of the
slit to be moved independently to center the slit on off-axis or misaligned radiation
while maintaining a constant aperture. The vertical orientation of the vacuum cubes
and associated linear actuators required only a minimal footprint on the spectrom-
eter beamline, which fit within the space constraints described. A computer aided
drawing of the designed slit assembly is shown in figure [3.8

The grating itself was mounted in a cylindrical vacuum chamber on a fixed mount.
The linear motion stage at the focal plane eliminated the need for a rotation mount
to view the entire spectral range, as was required in the VUV spectrometer setup.

Furthermore, the fixed mount allowed greater confidence in the fixed geometry of
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Figure 3.8: A computer drawing of the custom slit assembly showing the independent
linear actuators and physical slit blades.

the setup, which was critical to the calibration of the spectrometer. A large turbo-
molecular pump was mounted atop this grating chamber to create a high vacuum
environment necessary for the MCP high voltage operation, grating cleanliness, and
EUV propagation.

After being diffracted off the grating and leaving the holding chamber, the light
traversed a 6”7 diameter, approximately 14” long corrugated high vacuum bellows.
The large diameter of this bellows was chosen so as to allow light (including the ze-
roth order reflection) to travel all the way to the focal plane of the grating without
secondary reflections. Furthermore, the end of the bellows was attached to a linear
translation stage which allowed it to traverse approximately 120 mm parallel to the
focal plane of the grating. This 120 mm displacement over the length of the 14”
bellows created a strong shear which was handled by the corrugated structure. Ulti-
mately, however, the buckling of the corrugation structures at extreme shears limited
the translation to this 120 mm range of motion. Since the bellows also needed to
traverse to the zeroth order radiation, the motion did not quite cover the entire 110

mm focal plane of the grating.
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Figure 3.9: The EUV spectrometer as installed on the NLCTA beamline.

The light finally reached a 40 mm MCP (BOS-40, Beam Imaging Solutions)
mounted to the end of the bellows section. This MCP was in a dual chevron configu-
ration, had a Csl coating, and 5 pm pore size. The MCP was operated off the same 5
kV power supply as the smaller MCP which was installed on the VUV spectrometer.
Behind this 40 mm MCP was another P-43 phosphor screen which was then directly
imaged with a camera to observe the spectrum.

The full EUV spectrometer as installed on the beamline is shown in figure [3.9
The light was ejected by the gold mirror in the large vacuum chamber to the left
of the image (electrons continue on towards the top-right in the main beamline).
The two-cube slit assembly is visible, while the grating chamber (center) is partially

obscured due to its support. To the right, the sheared bellows is seen near its position
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Figure 3.10: The final (2015) NLCTA beamline layout showing the accelerating struc-
tures, modulators and chicanes, the VISA undulator (U3), and photon and electron
beam diagnostics. The first large, by passed chicane and E163 dogleg are also shown
in this updated diagram. Shown is the energy of 160 MeV, but with the SLED
upgrade this could be increase to 192 MeV.

of maximal shear, representing the limit of travel for the stage. Finally, the circular
device attached to the end of the bellows is the 40 mm MCP, the phosphor screen of
which was imaged by a camera off image right. As the light was ejected by the gold
mirror, the electron beam also strikes the mirror and generates secondary particles
which create a noisy image on the high-gain MCP. Therefore, an effort was made to
shield the MCP from these particles by employing lead bricks placed roughly between
the mirror and the MCP position. Furthermore, the large torque generated by the
high vacuum on the grating chamber and bellows necessitated the construction of
a strong back support to avoid inadvertent motion during either pumpdown of the
vacuum line or the experiment.

The final layout for the main NLCTA beamline during the echo experiments is
shown in figure [3.10]

3.2.2 Calibrating the EUV Spectrometer

Ideally, in order to make a calibration of both the wavelength scale and intensity of the
spectrometer, a standardized source would be used and measured. Typically, a plasma
discharge lamp of some kind is used to provide spectral lines across the EUV which can
be used for the wavelength and relative sensitivity calibration [98] [99]. These EUV
sources are often themselves calibrated against a synchrotron storage ring, which can
provide an absolute sensitivity calibration. Unfortunately, calibration against such
an external source was not possible for the EUV spectrometer at NLCTA. This was

due primarily to the fact that the EUV spectrometer was constructed in-place on
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Figure 3.11: Theoretical wavelength calibration for the EUV spectrometer along the
h axis from equation @

the beamline, and it was not possible to quickly manipulate beamline components
in order to insert or remove a calibration source. The secondary reason for lack of
absolute calibration, as with several aspects of the spectrometer construction, was
the time constraints. Therefore, a calibration was made based on diffraction grating
theory and the known properties of the radiation.

The theoretical foundation for the spectrometer is the underlying grating equation,
which states that constructive interference is obtained only when the grating geometry
satisfies [100],

mA =d (sina +sinf), (3.1)

where m is the integer diffraction order, A is the incident wavelength, d is the linear
groove density, and « and J are the incidence and exit angles (with respect to normal).
From the diffraction grating geometry [3.6, we aim to find the linear position along the
focal plane as a function of incidence wavelength at the first order diffraction m = 1.

The simple trigonometry furnishes the condition,

) \/1—(d)\—sina)2 )
= Tfocal d\ — sina ’ (3 )

where rgcq is the distance along the Y axis to the focal plane and h is the linear
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Figure 3.12: The calculated dispersion of the Hitachi gratings as a function of distance
along the focal plane h.

distance along the focal plane in the X direction (see . This relationship provides
a theoretical calibration for the EUV spectrometer, assuming perfect alignment and
transport, and that all quantities are known to sufficient precision. A plot of this
theoretical calibration is shown in figure [3.11} Furthermore, this relationship can be

inverted to find the dispersion dA/dh as,

dA hL

e 3.3
dh (h2 —|—L2)3/2d ( )

Note that due to the flat field criterion, the dispersion along this plane is not linear,
and this relationship is plotted in figure [3.12] There is significantly higher spectral
resolution in the low wavelength region (low h) than the high wavelength region. In
the operation of the EUV spectrometer, the location of the zeroth order diffraction
was marked on the MCP screen as a reference zero pixel. Then, using the theoretical
relationship the linear stage was moved a corresponding distance to the desired
central wavelength. The linear stage can be controlled to a fraction of a mm, leading to
a pessimistic pointing accuracy of < 0.1 nm. Based on the central pointing wavelength
and the known position of the zeroth order, a seamless correspondence between pixel
position and wavelength position was established over the entire spectral range.

The actual source for the wavelength calibration was the harmonics produced
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Figure 3.13: Wavelength calibration of the EUV spectrometer using HGHG light
produced with either an 800 nm (top) or 2400 nm (bottom) laser. The vertical
axis is the physical vertical extent of the radiation. Individual harmonics are easily
distinguishable well through the wavelength band of interest. The spectra have a
slight tilt owing to a slight misalignment of an optical component in the spectrometer.

by the seeding process itself. As the process requires only bright, stable spectral
lines, the beamline was operated for HGHG in which the first laser is turned off.
The second EEHG laser and chicane combination were then tuned to provide HGHG
radiation in the wavelength region of interest. In practice, because of the HGHG
optimization curves shown in figure [2.24] this involved setting the laser power and
corresponding chicane strength as high as possible in order to generate the brightest
harmonics. As the seed laser wavelength was known with precision, the radiation was
at well-known harmonics A\/h which defined wavelength posts throughout the entire
range of interest. While performing the calibration measurements, it was essential to
monitor closely the electron beam chirp, as a chirped beam will produce bunching

at slightly off-center laser harmonics [101]. While a single set of harmonics from
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one seed laser is sufficient for a wavelength calibration, this choice can be checked
against an alternate set of harmonics. The second EEHG laser was normally passed
through an OPA and downconverted from 800 nm to 2400 nm, but this stage was
bypassed to directly interact with 800 nm radiation in the second modulator. This
provided a second set of harmonics with which to compare, and spectrometer images
as well as the resultant wavelength calibration are shown in figure [3.13] In these
images, individual harmonics are easily identifiable and can be correlated to yield
an accurate wavelength calibration. Also of note in these images is the presence of
multiple undulator harmonics, centered at ~ 39 nm and =~ 32 nm as the 4th and
5th undulator harmonics of the electron beam at E ~ 162 MeV. The characteristic
boomerang shape is due to the off-axis emission at longer wavelengths from equation
2.43

In practice, when the first calibrations were being performed, it was quickly real-
ized that small misalignments and uncertainties in the grating geometry (distance to
focal plane, angle, etc.) conspired to give an uncertainty via equation of ~ 1 nm.
Given only the set of harmonics from the 2400 nm laser at the bottom of figure [3.13],
there was considerable ambiguity between harmonics h and h 4+ 1. To take a step
beyond this calibration, then, we admitted that the alignment of the spectrometer
and grating assembly was not perfect. The previously fixed parameters of equation
then become parameters to be fit, although they were banded by narrow margins
around the measured values.

The parameters L, «, and the angle of MCP with respect to the focal plane were
allowed to vary in their narrow ranges. Furthermore, given a set of k£ harmonic lines,
there would be several possible orderings based on the central pointing wavelength,
[hy--- h+ k], [h+1,--- b+ k + 1], etc. The known pointing resolution of ~ 1
nm limited this list to at most four different orderings for the harmonics, and the
dispersion in terms of pixels/mm could be computed to sufficient accuracy. This set
of parameters was scanned until a best fit solution to the entire range of harmonics
was found. The results of this procedure were usually only small deviations from the
design parameters of the spectrometer, as well as an unambiguous determination of

all the harmonic numbers in the image. After performing the procedure on several
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datasets, a set of consistent nominal offsets was converged on, and with these modified

values, equation was used for all future determination of wavelength axes.

3.3 Characterization of the Electron Beam

In order to successfully attain high harmonics using the EEHG technique, it was nec-
essary to characterize and optimize the properties of the electron beam. In particular,
the experiment required many of the same electron beam optimizations which occur
in a full-scale lasing FEL beamline. It is important to note however that the setup at
NLCTA lacks the high electron beam current and long radiating undulator to have
appreciable gain. Nevertheless, a slightly compressed electron beam is desirable to
increase the uniformity of the EEHG modulation across the beam, thus minimizing
effects of seed laser chirp well as the quadratic energy curvature which arises from
the relatively short wavelength X-band accelerating cavities. Additionally, due to the
short radiating length and difficulty in detecting EUV photons, a high beam charge
is desirable for purely diagnostic reasons. Finally, a low electron beam emittance
is desirable to reduce longitudinal smearing of the EEHG bunching and allow tight
focusing of the beam into both the modulating and radiating undulators.

The electron beam is born at the copper cathode inside the BNL/SLAC/UCLA
1.6 cell S-band gun after it is illuminated by the 266nm tripled Ti:Sa laser pulse.
The structure of the S-band gun is shown in figure Unfortunately, due to
limited diagnostics, a complete characterization of the beam from the NLCTA was
not available. Simulations, matched to measured data where possible, provided some
insight into the realistic electron beam quality. The simulations of the electron gun
were performed with the space charge tracking code ASTRA [103].

In our setup, the frequency tripled laser pulse had an FWHM duration of ~
1ps. The maximum RF voltage in the gun produces a beam energy, measured by
the immediate downstream bend magnet, of ~ 5 MeV, which yielded a maximum
accelerating voltage on the cathode of ~ 110 MV /m. In order to provide an accurate
simulation, the Schottky effect needed to be accurately accounted for. The well-known

Schottky effect states that the work function of a metal is lowered in the presence of
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Figure 3.14: A schematic representation of the electron gun in place at NLCTA.
Orientation b) shows the off-axis laser injection ports. Diagram from the LCLS
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Figure 3.15: Schottky scan data from the NLCTA electron gun. The RF phase is
relative, and the best fit is performed using a linear and square root model employed
by ASTRA.
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a strong electric field. Therefore, as the phase of the RF is changed relative to the
timing of the laser pulse, the amount of charge released changes as well. In ASTRA,
this effect is modeled as an enhancement in the released charge which varies linearly

or with the square root of electric field at the cathode,

Q = Q1E(9) + Q2 E(9), (3.4)

where F(¢) is the electric field at the cathode, and ¢ the relative phase of the RF
field. This is an entirely empirical description of the Schottky effect, as ASTRA does
not model the actual photoemission process. By scanning the RF phase and measur-
ing the charge, the effective Schottky coefficients )1, Q12 were measured as shown in
figure 3.15. The RF phase was relative to simulation of maximum energy at 60°. The
charge was measured with an insertable metallic Faraday cup directly downstream of
the S-band gun. With a maximum field of 110 MV /m, the resultant Schottky coef-
ficients were Q; = 0.69pC/ (MV/m), and Q,/, = 0.95pC/+/MV/m, which provided
a reasonable fit over the limited RF phase in discussion. These Schottky parameters
were used for all subsequent ASTRA simulations.

In order to both theoretically optimize and understand the limitations of the injec-
tor system, a genetic optimization was performed using the multi-variate optimization
routine NSGA-II [104]. The genetic algorithm creates a ‘population’ of individual
electron injectors, each described by various parameters: the RF phase, accelerating
voltage, first solenoid strength, accelerating structure voltage, and so forth. Upon
running ASTRA to simulate each individual configuration in the population, one
defines various merit criteria in order to compare how each injector performs.

For this study, the merit criteria were, as discussed above, peak current and emit-
tance. Since in general increasing peak current comes with an increase in emittance,
this is a multi-variate optimization problem which in general has no unique ‘best’
solution. The NSGA-II algorithm, therefore, selects only those individuals which are
undominated: Those solutions which do not perform strictly worse than any other
individual in all merit criterion. These solutions are then ‘bred’ together, merging

their parameters and including random variation ‘mutations’ in order to avoid the
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Figure 3.16: The simulated Pareto front for the NLCTA injector in terms of current
and emittance.

population being stuck in a local minima of performance. After many generations,
one arrives at a stable set of solutions which are no worse than any other, which
is known as the Pareto front. Given this front, a human must then decide which
tradeoffs are acceptable in order to find the preferred working point.

This procedure was performed for the NLCTA injector setup through the first
accelerating structure. After the first structure, the beam had energy ~ 60 MeV,
and the detailed space charge simulation of ASTRA was no longer necessary. For
this simulation, the following parameters were allowed to vary: S-band gun voltage
and phase, X-band structure voltage and phase, solenoid B-field, and the total bunch
charge. As previously mentioned, ASTRA does not simulate the actual photoemission
process, so altering the charge parameter was a proxy for changing the laser power.
For the electrons coming off the cathode, the spot size was held constant at 1 mm, the
laser had 1 ps FWHM length, and the transverse momenta off the cathode were drawn
from a Fermi-Dirac distribution. Of note is the fact that these transverse momenta
were not scaled to account for the Schottky effect, although this played only a minor

role in the total emittance.
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Figure 3.17: An image at the downstream energy spectrometer, where energy is
projected onto the horizontal axis. Due to the induced energy chirp in X3, this axis
is also longitudinal position within the bunch. The bright density structures are the
HGHG-induced density bunches separated at the laser wavelength of 2400 nm.

The results of this genetic optimization procedure are shown in figure [3.16, The
peak current was derived from the rms current: I.,s = Qtota1/0¢, Which for a Gaussian
bunch this differs from the peak current by a factor of 1/1/27. In the presence of a non-
Gaussian temporal profile, this conversion is off, but nevertheless gives a meaningful
metric for the optimization. We observe that for the simulated configuration, it is
difficult to push the peak current much higher than ~ 65 A. In all these optimal
configurations, the extracted charge was ~ 150 pC. From these optimal ASTRA
simulations, one can additionally extract the difficult to measure slice energy spread.
In most optimal configurations the slice energy spread was calculated to be 1 ~ 2
keV over the core of the electron beam.

The electron beam emittance in the low-energy (60 MeV) section of the beam-
line was also measured using the quadrupole scan technique. In this technique, the
strength of an upstream quadrupole was varied and the transverse distribution of the
electron beam monitored on a downstream OTR screen. The projected distribution
at the screen along either x or y is quadratic as a function of the quadrupole focusing
strength. By scanning the quadrupole strength and fitting the measured spot sizes
to a parabola, the emittance was computed analytically [105]. This measurement
was performed, and optimal configurations were found to yield an emittance of ~ 2
pm, although the measured value depended on the extracted charge and emittance

compensation solenoid settings which were varied across the separate EEHG-related
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’ Quantity ‘ Value ‘ Units ‘ Measured / Simulated ‘
Maximum Energy 162 ~ 192 | MeV Measured
Total Charge 10 ~ 150 pC Measured
FWHM Bunch Length ~ 1 ps Measured
Transverse Emittance (Normalized, Projected) ~ 2 pm Measured
Slice Energy Spread 1~2 keV Simulated

Table 3.1: A summary of the relevant electron beam parameters at NLCTA.

experiments.

The electron bunch length was approximately measured at the end of the beamline
using the cavity X3 as an RF streaker. In this mode, X3 was operated far off crest
to impart a linear chirp to the electron beam energy, which was then converted into
a horizontal position offset via the downstream energy spectrometer dipole magnet.
By utilizing the echo setup to generate strong HGHG type bunching in the chicane
C2, we imprinted a known longitudinal scale onto the electron bunch to use as a
ruler. An image of the electron beam at the energy spectrometer is shown in figure
3.17, where we clearly identify the bunching peaks. This image was taken with gun
settings optimized for a 50 pC bunch charge — a common working point for the echo
experiment due to the tradeoff between emittance and total radiation generated.

Using the separation between density peaks as a known bunch coordinate distance
of 2400 nm, the full electron bunch length in this image computes to approximately
1.940.2 ps. It is clear from figure that an accounting of the tails of the electron
beam distribution is limited, so care must be taken to define a FWHM bunch length.
To this end, the left-most portion of the image can constitute one side of the Gaussian
distribution. After integrating over the vertical dimension, we found that the FWHM
of the intensity distribution was 14 0.2 ps. This is in reasonable agreement with the
full bunch length if we consider the bunch visible out to ~ 2 FWHM before dropping
below visible intensity. These estimates are in good agreement with the predicted
FWHM bunch length of ~ 1 ps.

A summary of the relevant electron beam parameters, both measured and simu-

lated, is tabulated in table
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These beam parameters are intended as a theoretical basis upon which to base
the EEHG optimization which will be discussed in chapter [l They also inform which
experiments are possible with the NLCTA electron beam.

For example, given this estimate of the optimal electron beam, we can imagine
an experiment to measure the FEL gain of an EEHG-seeded setup at NLCTA. To
do this, we consider the most favorable parameters from table |3.1, coupled with the
EEHG settings which provide the greatest possibility of lasing. We consider lasing at
the relatively long wavelength of 160 nm, obtained at the n = —1, m = 18 point of
the 800nm and 2400nm seed lasers. For a total electron beam energy of ~ 162MeV,
ey &2 pm, og/FE ~ 5 x 107, and the rms beta function in the VISA undulator is
B ~ 60cm, and we obtain a 1D gain length Lgo ~ 40cm. With such a gain length,
it is marginally feasible to measure gain, as the VISA undulator represents almost 5
gain lengths. However, due to the tight electron beam focusing, the M. Xie correction
[45] brings this gain length to Lg ~ 90cm, a value far too high to see significant gain
in the only 2 meters of VISA undulator. Without an external source of compression,
then, the peak current and focusing rules out the possibility of significant gain in our
configuration.

The measured and simulated parameters of table therefore established the
ground rules for EEHG experiments at NLCTA. The slice energy spread, for example,
was used to estimate the laser modulations necessary to achieve the desired scaled
EEHG parameters A; 5. The measured values for the bunch length provided guidance
for selecting optimal EEHG parameters in the presence of significant parabolic energy
structure on the electron beam. The transverse emittance measurement established a
pessimistic estimate for the emittance-smearing effect discussed in section [4.1.1] The
characterization was therefore essential in illuminating the path towards obtaining
high harmonics with the NLCTA EEHG setup as discussed in chapter [4

These baseline measured parameters will also be fed into the start-to-end NLCTA
simulations presented in section [5.3] While the simulations of this section considered
optimal configurations, the start-to-end simulations will simulate, as accurately as
possible, an electron beam similar to the one which ultimately generated the radiation

profiles shown in figure [4.5]



Chapter 4

EEHG Experiments at NLCTA

An expert is a person who has
found out by his own painful
experience all the mistakes that

one can make in a very narrow

field.

Niels Bohr

The primary goal of the echo program at NLCTA from 2014-2015 was to generate
and measure bunching at the 75th harmonic of the (second) seed laser. In principle,
this harmonic upconversion roughly marks the point at which EEHG becomes a viable
single-stage seeding technique for a full-blown soft x-ray FEL facility. The goal of the
75th harmonic was ultimately achieved, although along the way several interesting and
novel studies in the lower harmonic range were also performed. The 75th harmonic
represents an important milestone, because it implies a radiation wavelength, when
seeding with 266 nm lasers, of 3.5 nm, which is in the middle of the so-called water
window for soft X-rays. This water window is the wavelength range between the
K absorption edges of carbon (4.37 nm) and oxygen (2.33 nm) which would allow
for in-vitro imaging and analysis of biological samples. The ability to generate fully
coherent X-ray pulses in this important wavelength range from a single seeding stage

would therefore greatly enhance many of these studies.

100
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Figure 4.1: Bunching contours for Echo-60 for varying A;, A and optimal values for
By, Bs.

4.1 Highest Harmonics: Echo-60 and Echo-75

While gradually increasing the harmonic number and electron beam energy, the radi-
ation wavelength around 40 nm became one of particular interest for studying EEHG.
For one, 40 nm is close to both the 4th VISA harmonic with a beam energy of 162
MeV, and also the 3rd VISA harmonic at 192 MeV, which allows for efficient radi-
ation. Second, the efficiency of the EUV spectrometer is quite good in the regime
when using the low density grating (see fig . Finally, and perhaps most critically
to its utility in studying EEHG, the 40 nm bunching point was at a long enough
wavelength that deleterious effects did not swamp the echo effect. Nevertheless, the
40 nm bunching point at the 60th harmonic of the 2400 nm seed laser is a high enough
harmonic to be novel and somewhat interesting when transferred to a full soft X-ray
seeding facility.

To begin with, it is useful to have an idea of what kind of laser and chicane
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parameters are necessary to generate bunching at a given harmonic. Seeking harmonic
content at the 60th harmonic of the 2400 nm laser, we look to the approximate relation
eq. which yields h ~ nRgG) / /iRé?. In almost all cases, one desires to use the
largest first chicane possible in order to minimize the amount of laser power required
to generate the desired harmonics. From this condition, we can set RL%) = 10.0 mm,
a relatively large but not maximal value, yielding a By ~ 0.65 for op/FE ~ 8 x 1075.
As k = 1/3 for the combination of \; = 800 nm , Ay = 2400 nm, this means
By ~ 0.65/20 ~ 0.032, with the stipulation that the minimum attainable By due
to scraping with the laser ejection mirror has Ré?’mm ~ 500 pm, or BM® ~ (.03.
Under these approximate restrictions, we can use the analytical theory (eq. [2.124)
to optimize the laser amplitudes A;, Ay for bunching at the 60th harmonic, which is
shown in figure [4.1]

It is clear that due to the (relatively) underpowered first chicane, the laser ampli-
tudes must be increased substantially (compared to the slice energy spread) in order
to generate significant bunching. In particular, a relative energy modulation in the
second laser of Ay &~ 70 is required to generate any significant bunching at these high
harmonics. Although large in relative terms, since the slice energy spread is only 1
keV this represents a total energy deviation of only AE/E = 3 x 10~*. This is ap-
proximately the same range (in terms of AE/FE) in which a full EEHG-seeded XFEL
facility would operate, making the experiments at NLCTA a scaled testbed.

Furthermore, we recall from section the relative insensitivity of the echo
process to the first laser modulation A; after a certain point (A; =~ 35 here). The
first laser modulation amplitude was generally not tuned very far beyond this point.
Based on this information, the chicane values were set to their optimal values and the
laser power adjusted around the neighborhood defined by (A1, A3) ~ (40, 80). Due to
the relatively large first chicane strength of R%) = 10.0 mm, changes to Rél(;) generate
significant electron orbit changes which influence the rest of the echo line. For this
reason, the first chicane is set at the beginning of the experiment and not changed
during the tuning procedure. By contrast, since the value of Ré%) is smaller, and it
sits closer to the radiating undulator, the second chicane was tuned to optimize the

bunching.
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(a) The captured image of the MCP showing the Echo-60 signal in the vicinity of 40 nm.
The vertical dimension shows the parabolic off-axis emission spectrum from the undulator.
The two 4th and 5th undulator spontaneous emission spectra are clearly visible near 40 nm
and 32 nm. This image is the sum of 200 consecutive shots, taken over a 20 second interval
taken on 05-20-2015.
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(b) The projected Echo signal with the averaged spontaneous radiation subtracted, and
harmonic lines shown. Echo signals are visible out to approximately the 70th harmonic,
although at low intensity.

Figure 4.2: The EEHG signal optimized for A &~ 40nm in the vicinity of the 60th
harmonic. Plot (a) shows the raw data from the MCP, while plot (b) shows the
projected signal and correspondence with harmonics of the 2400 nm seed laser.
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For this study (prior to the installation of the SLED cavity), the electron beam
energy was set to 162.5 MeV, such that the 4th resonance of the VISA undulator
sits at approximately 40 nm to efficiently radiate the 60th harmonic. The electron
bunch charge was set to the relatively high value of 200 pC, which was possible due
to the loosened emittance requirements relative to the 75th harmonic. The final
optimal value for the second chicane was Ré? = 0.55 mm, while Rég = 10 mm.
The resultant spectrum captured on the EUV spectrometer is shown in figure [4.2]
The images clearly show the individually resolved echo harmonics sitting atop the
undulator spontaneous radiation pattern. The individual echo harmonics are clearly
distinguished from 52 down to perhaps 70.

The effect of averaging over many consecutive images broadens the bandwidth of
the individual echo harmonics. From the single images, the computed FWHM band-
width of the 59th harmonic is AAgxp ~ 0.15 nm, which is equal to the resolution of
the EUV spectrometer. Simulations show the true echo-induced bunching bandwidth
to be as low as AAry ~ 0.01 nm, which is limited by the effective electron bunch
length and quadratic electron energy curvature.

The next notable feature is the amplitude of the echo harmonics relative to the
spontaneous radiation. By comparing the brightest harmonics to the spontaneous
radiation, we see that the brightness is increased by perhaps a factor of three. In light
of the fact that the electromagnetic power relative to the spontaneous should scale
as P ~ bN,, the only conclusions are that either the induced bunching is incredibly
low or only a small number of particles are participating in the radiation process.
The inefficiencies of the radiation process which are consistently observed in these
experimental results at NLCTA will be discussed in section [4.1.1]

The laser modulation amplitudes were also measured at the downstream energy
spectrometer to make contact between the analytic theory and experimental results.
The calculation of the bunching factor based on equation using the consistent
modulation amplitudes A; = 40 and Ay = 80 is shown in figure [4.3] Note that
the bunching is quite low, but still observable at the 1% level. Furthermore, the
Bessel function modulation is consistent with the modulation in intensity from the

observed data in figure 4.2, when accounting additionally for the modulation due to
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Simulated Bunching
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Figure 4.3: The predicted bunching in the vicinity of Echo 60 with A; = 40, Ay = 80,
Ré16) = 10mm, Ré%) = 0.55mm , and n = —1. The bands represent fluctuation of 5%
in the value of A,, which is characteristic of the performance of the OPA.

the undulator harmonics.

This demonstration of Echo-60 is not ideal, however. The bunching is quite low,
and the variation in the second laser intensity implies that only select shots produce
a significant signal. To analyze the stability of the signal, we plot the individual shot
spectra alongside one another in figure While the amplitude varies due to the
fluctuations in intensity of the second laser modulation (on the order of 10%), the
central wavelength remains unchanged in light of laser and electron beam imperfec-
tions. Finally, we note that although this is a genuine echo signal, there also exists a
strong HGHG signal in this wavelength region due to the tuning of the 2nd chicane
and laser. This can be observed by simply blocking the first laser, thus converting
the setup into one of HGHG signal only.

In order to access the highest harmonics available to the NLCTA setup, the beam
energy was increased to near its maximum of 191 MeV. This beam energy was chosen
over the perhaps more practical choice of 182 MeV, where the 4th undulator harmonic
would be at 32 nm. In practice, it was found that the difficulty of tuning harmonics
in the 182 MeV configuration outweighed the benefits of radiating directly on an
undulator harmonic. As the earlier Echo-60 studies had shown, it was still possible
to get significant off-axis emission slightly above the undulator harmonic wavelength.

Therefore, the highest beam energy was used to maximize the radiation power and
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Figure 4.4: A stability plot of the Echo-60 signal over the course of 200 shots (~ 20
seconds).

minimize deleterious effects in the undulator (discussed in section [{.1.1]).

The EEHG configuration at this high harmonic suffers from an even worse form
of the tuning problem found in the Echo-60 configuration exemplified by figure [4.1]
It is necessary to have a large As in order to generate significant harmonic bunching.
Therefore, R%) was further increased to near its maximum of 12.5 mm, and Ré? set
to =~ 0.51 mm. The resulting high harmonic spectrum is shown in figure The
observed modulation amplitudes are A; = 50 and A, = 100, which are consistent
with the expected EEHG spectrum of figure Furthermore, when the first laser
is blocked to simulate the analogous HGHG configuration, no significant radiation
is observed below 34 nm, confirming that the signal reported in figure is indeed
solely due to the unique EEHG phase space manipulation.

The stability of the EEHG signal can also be analyzed in the same way as before,
and the stability plot over 224 shots is shown in figure The stability of the 75th
harmonic and beyond is similar in character to the stability of the highest harmonics
shown in figure [£.4] The amplitude fluctuations are due both to fluctuations in the
second laser, as well as charge fluctuations coming off the electron gun (which affect

all harmonics as well as the spontaneous background). The predicted bunching factor,
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Figure 4.5: The projected Echo-75 signal with the averaged spontaneous background
subtracted off. Individual echo harmonics down to the 77th are clearly distinguished
from background. This spectrum is averaged over 220 shots, and was taken on 10-

19-2015.
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Figure 4.6: Stability plot in the vicinity of the Echo-75 signal over the course of 224
shots (~ 22 seconds).
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Simulated Bunching
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Figure 4.7: Theoretical bunching factor in the vicinity of Echo-75 with A; = 50,
Ay = 102, R%) = 12.5mm, Ré%) = 0.49mm. The bands represent a fluctuation of
—5% in the 2nd laser modulation intensity from the maximum value of Ay = 102.

as well as the fluctuations due to the 2nd laser intensity (=~ 10%), are shown in figure
[4.7. Once again, the general shape of the Bessel function envelope and fluctuations
due to laser intensity are consistent with the observed spectra of figure 4.6

The observations of radiation up to the 75th harmonic confirm that the EEHG
scheme can be used to produce very high harmonic bunching of the initial seed laser.
The 75th harmonic, in particular, is an important milestone in that it suggests that
the EEHG technique may be straightforwardly applied to an XFEL in which a 266
nm seed laser is up-converted to bunching in the water window (2 ~ 4 nm range).
Furthermore, the establishment of this single-stage EEHG high harmonic upconver-
sion may suggest more ambitious, multi-stage EEHG setups which could extend the

technique all the way into the hard x-ray regime.

4.1.1 Limitations on High Harmonics

Although the goal of attaining high harmonics up to the 75th was ultimately achieved
by the programme at NLCTA, the resulting radiation spectra show only a coherent
enhancement factor over the background spontaneous radiation of 2-10x for harmonics
in the 60-75 range. This suggests that the net bunching factor, when the entire elec-

tron beam and radiation path is considered, is quite small, and has been deteriorated



CHAPTER 4. EEHG EXPERIMENTS AT NLCTA 109

by one or more various effects. We now examine these effects in turn.

One possibility is that the bunching is being degraded due to incoherent syn-
chrotron radiation (ISR) in the echo chicanes. The incoherent synchrotron radiation
effect will be discussed more in chapter 6], but briefly is due to the quantum nature of
photon emission as an electron traverses the bend magnet. Upon traversing a mag-

netic field of strength B and length L, the electron bunch will develop an rms energy

55 12 eB\?
ISR — 2 e _ 4 L 41
op mc \/—24\/§—QV (_mc) 5 (4.1)

where « is the fine structure constant and r. the classical electron radius. A straight-

variation of [17],

forward estimation for the first chicane, which has larger Rss and hence B, produces
an energy fluctuation op = O(1 eV). This energy fluctuation is far too small to
produce any meaningful bunching degradation, since the slice energy spread is ap-
proximately 1 keV.

A second, purely practical restriction on the harmonics reached relates to leaked
dispersion from the EEHG chicanes. Consider the matrix element Rs;, which relates
the transverse size of the beam to an associated longitudinal slippage. For chicane
constructed with four rectangular dipole magnets, R5; is identically zero. However,
small errors in the magnetic field, positioning of magnets, or angles on the pole faces
can contribute to a nonzero net Ry, value. Consider a variation in the angle produced
by the first bend magnet in the chicane (or equivalently, a total field error) of 66. The

induced Rj; is then,

00

R =~ 22—
o 1 4 cos(0)

(4.2)

Other sources of errors similarly give rise to nonzero matrix elements. We should
require that, in order to preserve bunching at wavelength )., that there is no rms

longitudinal motion As on a scale,

Ar
As < — (4.3)

~or

For an electron beam with o, ~ 200 pm, and a target radiation wavelength of 32

nm, we therefore require Rs; < 107°. In terms of equation , this implies a field
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variability of 60 < 1075, which is a relative variability of 66/6 < 107%. Already we
see that the practical requirement of closing the dispersion can be difficult to obtain.
This is one of the prime reasons for the installation of the quadrupole trim magnets in
each chicane, through which any excess dispersion in the chicanes can be tuned away.
Nevertheless, this tuning procedure can never be perfect, and we see the possibility
for a small amount of leaked dispersion to completely overwhelm the bunching at
high harmonics.

Another, far more insidious source of degradation is the smearing effect caused
by the emittance of the electron beam propagating through the focusing lattice [106].
Although the ensemble of particles is well described by an envelope with a given set
of Twiss parameters (see section [2.1.4)), each individual particle still moves on its own
ellipse in phase space. As a result of this finite size in phase space, each electron takes
a slightly different (transverse) trajectory in traveling from beamline position z; to zs.
This spread in trajectories can be characterized as either a differential longitudinal
velocity, or a differential path length.

In the longitudinal velocity description, those particles on larger betatron orbits
appear to slip backwards relative to the reference particle due to a decreased (rela-
tivistic) B (in the same sense as equation. This approach is taken in the standard
description of FEL theory including focusing [37]. The phase evolution equation m

gains an extra term to reflect this fact,

do k,

— =2k,n — - We +W,), 4.4
where W, , is the Courant-Snyder invariant for an individual particle (equation [2.22)
in either the x or y dimension, and here (f) is the averaged Twiss beta. When
considering the average across all particles, these Courant-Snyder invariants become
emittances, W, , — €,,, and we can compute an rms drift rate due to the betatron

motion. This approach leads to a longitudinal drift in real space (As) after a distance

L of,
N V2e, L

As v(B)

(4.5)
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where we have assumed equal horizontal and vertical emittances and used the nor-
malized emittance €,. This is the standard result and is approximately correct for
the types of FODO lattices employed in large-scale FEL facilities. In particular, the
derivation of equation 4.4 assumes that o = %1 in the lattice (see Ref. [37] for a full
derivation).

Another way to consider this effect, outside the embedded context of the FEL
equations implicit in equation |4.4], is to consider the path length difference for particles

on different orbits [I07]. The difference in path length from the reference orbit can

As:/OL \/(1+£)2+x’2+y’2—1 dz. (4.6)

We consider a bend-free region composed only of quadrupoles and drifts, such that

be computed as,

p — 00. The only contributions then are those due to the angle differences in equation
[4.6] Assuming that these angles are small, we can expand the square root and arrive
at separate, uncorrelated terms due to the x and y motion. For the y dimension, this

equation is,
L
ASZ/ —y?dz. (4.7)
0 2

In terms of the (single-particle) Twiss parameters, the angle can be written as,

() = [P sin(¢(z acos((z
y(z) =4 502) (sin(¢(2)) + (¥(2))) - (4.8)

Inserting into equation and averaging over the particles, we have,

as=w, [ E (25%) a2 = geLim (19)

Note that due to confusing notation, the (---) on the left hand side of this equation
represent an ensemble average over the particles, while on the right it is the averaged

~vr across the lattice of length L. Considering now both z and y, and switching to
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normalized emittance, we finally have,

B V2e,L
=5

As (vr)- (4.10)

From this point we observe that setting o = £1 collapses the result to the standard
FEL result of equation .5l However, in the more general case, this slippage is de-
pendent on the detailed construction of the lattice. The transport inside the VISA
undulator is dominated by the strong focusing lattice described in section |3.2, which
has a matched (5) &~ 60 cm, but a large o due to the short-period nature of the lattice.
The result is that (y7) ~ 5 m~! for this section of the lattice. For the parameters of
the 2 m VISA at 192 MeV, and taking €, = 1.7 pm, this gives a resultant slippage of
As =~ 32 nm.

This result indicates that the strong focusing in the VISA at 192 MeV will com-
pletely smear out any bunching at the high harmonics of interest by the end. This
represents the inherent difficulty of transporting a finely bunched beam through a
tight focusing lattice, and is thought to be the prime source of diminished bunching
observed in figures[4.2land [4.5] We note that mismatches into the undulator, although
they tend to increase (), do not decrease the effect. In fact, mismatched Twiss pa-
rameters into the undulator tend to increase the resultant (yr), thus providing even
more smearing.

There are some subtleties to equation [4.10| which are critical to understanding its
impact on the NLCTA results. The first of these is that the emittance € is taken over
the entire ensemble, and is therefore understood to be the projected emittance of the
beam. In reality, individual longitudinal slices of the beam with lower emittance will
experience less longitudinal smearing, and hence will have a higher preserved bunch-
ing. Simulations show (see section that this slice emittance can be significantly
lower than the projected emittance measured, and therefore certain sections of the
beam will perform better than others.

The second issue is that the result in equation [4.10] is cumulative, that is, it is
integrated out through the full distance L. In reality, the smearing is compounded

as the electron bunch travels through the focusing lattice. This will generally result
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in a strongly radiating bunch for the first section of the undulator, until As becomes
comparable to the radiation wavelength at which point the beam quickly ceases to
radiate coherently. What is measured by comparing, say, the coherent radiation
intensity to that of the spontaneous background, is then an effective bunching factor
accounting for this fact.

This smearing is believed to be ultimately responsible for the low signal in the high
harmonic regime observed at the NLCTA. Overcoming this barrier is difficult, and
would require either increasing the beam energy or improving the beam emittance —
the focusing lattice cannot be changed. However, with regards to a full FEL facility,
we note that equation can be considered from the start when designing a seeding
section. In particular, because of the cumulative nature of the effect, such a facility
would only need to protect the bunching through the first few gain lengths of the
undulator, after which point the gain process in the FEL will take over and reinforce
any lost bunching. In analytical form, the bunching criterion is very similar to the

emittance requirement in an FEL that,

)\7" </8>

€< ———
47TLG70’

(4.11)

where L is the one-dimensional gain length. Although similar in form, the FEL
criterion comes about due to the requirement that the resonant wavelength spread not
be larger than p [37]- a separate argument from the one which leads to equation m
Therefore, since this emittance requirement is typically satisfied in an FEL (with (/)
to maximize coupling to the radiation), the bunching preservation requirement will
also be satisfied. Furthermore, the general scaling of implies that it is a larger
nuisance for small scale facilities than for large ones, and the effect is not anticipated

to be a limiting factor for any full-scale EEHG FEL facility.

4.2 Dispersive Tuning of the Echo Signal

One attribute which separates the EEHG signal from, for example, that due to HGHG

is the ability to control the relative amplitudes of individual, nearby harmonics. As
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shown in section[2.4.1], the HGHG bunching amplitude is a strictly decreasing function
of harmonic number, no matter what the tuning parameters are. EEHG, however,
has the ability to excite small islands in the bunching space while suppressing other
harmonics (see Fig. [2.29)). By extension then, EEHG has the ability to tune the
relative amplitudes of nearby harmonics by adjusting the configuration slightly.

The EEHG signals observed at the 60th and 75th harmonic, and shown in fig-
ures and both demonstrate the harmonic envelope of the EEHG bunching
spectrum due to the Bessel function dependence. However, the relative amplitudes
are convolved with both the emission spectrum of the undulator and the efficiency
of transport, which is a function of wavelength. Therefore, while a clear envelope
structure was observed, it is difficult from this data alone to adequately match to the
underlying theory.

To demonstrate control over the harmonic envelope, the laser configuration was
changed to bypass the OPA with the second laser. This leaves a configuration with
two 800 nm lasers, in contrast to the 800/2400nm setup employed for the highest
harmonic studies. Because the nonlinear OPA generally amplifies any jitters in the
input laser beam, by bypassing it the overall stability of the EEHG modulations is
greatly improved for precision studies. For this study, the final beam energy was
decreased to 162 MeV, such that the 4th undulator harmonic sits at 40 nm, or the
20th harmonic in the 800/800nm EEHG configuration. The first and second laser
modulations were established with modulation amplitudes of AFE; = 29 keV and
AE,; = 27 keV, while the first chicane was set to Réé) = 10 mm. With these settings,
the optimal bunching at 40 nm is found with Ré? = 660 pm. From this configuration,
the value of Ré? was varied, and the spectrum in the vicinity of 40 nm measured.
The resulting spectrogram is shown in figure [4.8|

For each Rg? value, approximately 50 separate shots were averaged to give the
resulting spectrum. For these images, only a blank image with no electron beam
has been subtracted off, and thus the spontaneous radiation is still present. The
simulated bunching is created by numerically computing the electron coordinates
using equations [2.11842.121] rather than a full tracking simulation. This simulated

bunching, using the full electron beam length, reveals the small predicted bandwidth
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Figure 4.8: Tuning echo harmonics in the vicinity of 40 nm with the second dispersion.
a) Measured individual echo harmonics of the 800 nm lasers as the second dispersion
is changed. Subfigure b) shows a line-out for two specific dispersion values indicating
the near extinction of adjacent harmonics due only to a small shift in the second
dispersion. Plots ¢) and d) correspond to a) and b) but with simulated bunching
data using the true bunch length, thus revealing the theoretical bandwidth of each
harmonic. Figure from [108].

which is not resolved by the EUV spectrometer.

These results clearly show that the amplitude of even adjacent harmonics can be
controlled by varying the second dispersion in the EEHG setup. To appreciate the
magnitude of this control, we note that this effect manifests in the complete control
of spectral features 2 nm apart, controlled via a 40 pm change in Ré?, all deriving
from an 800 nm laser. Although this property of EEHG has been known since the
bunching spectrum of equation was first discovered, this is the first time it has
been both experimentally observed (Figs. , and also exploited and controlled.

In the context of an FEL, this result can imply a quickly tunable echo configuration
by changing only the second dispersion. As was observed in our experimental setup,
changes in the first, large chicane may have a significant effect on the downstream
electron orbit. Therefore, the ability to quickly re-tune to a nearby echo harmonic
via only small changes in the second chicane could provide a means to quickly change
the wavelength of an EEHG seeded FEL (via, for example, a variable K in the
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downstream undulators as well).

Since the difference in wavelength between adjacent harmonics at harmonic h
scales as, AN/\ ~ 1/h, while the FEL amplification bandwidth AX/X ~ 1/p, either
a large p or h is necessary for adjacent harmonics to be within the FEL amplification
bandwidth. Achieving echo harmonics higher than 100 ~ 200 seems difficult due to
many practical considerations [109], requiring an FEL parameter p = 1072. This
requirement could possibly be met in high efficiency EUV FEL configurations (in
contrast to the current generation of XFELs), and would enable the precision control

of multi-color pulses within the FEL bandwidth via EEHG dispersion tuning.

4.3 Multi-color Echo Effects

Having demonstrated the precise control of individual harmonics via Ré%) tuning, we
turn now to the generation of multi-color echo signals. By multi-color, we refer in
general to the splitting of a single EEHG harmonic into nearby, separate peaks. These
peaks, unlike the control demonstrated in section [£.2] may well exist within the FEL
bandwidth, thus allowing a true multi-color seeded FEL.

One method of generating an echo bunch with multicolor components involves
introducing a linear chirp to the electron beam. The linear energy chirp on the
electron beam can be characterized by the parameter h; = %%’
scaled momentum coordinate, k; is the first laser wavenumber, and s the longitudinal

co-moving coordinate (these are the same conventions as in equations [2.11812.121]).

It has been known for some time [I01] that a linear chirp has the effect of shifting

|s=0, where p is the

the echo harmonic a for a given echo configuration to the location,

’ n+m/<;(1+hlBl)
= . 4.12
¢ 1+ B (1.12)

For hy = 0, this simply reduces to the location of the various echo harmonics, while
hi # 0 will shift their locations. For the n = —1 tune, this has led to the conclusion
that EEHG is less sensitive in terms of wavelength shift than HGHG. In particular,
the shift in the n = —1 echo configuration is only half that of an HGHG beam with
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Figure 4.9: The splitting of the main echo peaks near 40 and 42 nm due to an increase
in linear chirp. Clearly visible are faint sidebands with wavelength both above and
below the the main peaks at 40 and 42 nm. The shot number is correlated with RF
phase increase such that the difference between shot 0 and 200 is approximately 15
degrees in RF phase (for the first RF structure).

identical linear curvature. However, equation [4.12] clearly shows a dependence on the
n mode of the echo configuration, and in fact, higher |n| modes exhibit larger shifts
for a fixed h;. In particular, by the time n = —3, the shift of an EEHG and HGHG
signal are comparable [76].

In an EEHG configuration with no energy structure on the electron beam, all var-
ious n-modes (with correspondingly different m values) are degenerate in wavelength.
Thus, even if multiple n-modes are excited with a given EEHG configuration, they
all simply stack atop one another in the resulting spectrum. In the presence of a
non-zero chirp h; however, the degeneracy is broken as the higher |n| modes move
farther away from the central, unchirped value. This provides the first method for
creating closely spaced, multicolor bunching using EEHG.

To test this idea at NLCTA, we again used an EEHG configuration with 800nm/800nm
lasers to achieve the greatest stability and tuned the configuration for Echo-20 at 40

nm. For this setup, the dispersions were set as R%) = 12.5 mm and Rézﬁ) ~ 0.57 mm,
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and the beam energy for was 162 MeV. Then, having established a reliable signal
on the 20th harmonic, the RF phase in the first accelerating structure (X1 in figure
3.10) was adjusted by approximately 15 degrees over the course of 20 seconds, or 200
shots. The resulting spectrum in the vicinity of 40 nm is shown in figure [4.9

The RF phase (measured as an offset from the on-crest value) of the first accel-
erating structure was increased monotonically with shot number in figure but
not necessarily linearly. Furthermore, the direct control of the RF phase was not
calibrated to an absolute change in the arrival RF phase. Comparing the shift in the
central wavelength of the n = —1 harmonic, however, yields general agreement with
the uncalibrated RF phase that between shot 0 and 200 approximately 15 degrees of
RF phase were scanned.

We observed that as the RF phase was increased, two distinct sidebands formed
and moved away from the central n = —1 peak. Numerical simulations of this EEHG
setup show that the approximate maximum for the n = —1,m = 21 40 nm echo
bunching is given when A; ~ 25 and A, =~ 31, which is consistent with the measured
values of the laser modulations. In this configuration, there is nonzero bunching in the
n = —2,m = 22 and also the n = 0, m = 20 modes at approximately the 1-2% level,
while all other modes have bunching at < 0.1% and were not visible. From equation
[4.12] the n = 0 and n = —2 modes shift with opposite sign and equal magnitude
away from the central peak, which gives rise to the equally spaced sidebands visible
in figure [4.9] A similar analysis holds true starting with the n = —1,m = 20 42 nm
echo bunching which also splits in figure [£.9

In this particular configuration, the magnitudes of the sideband bunching peaks
(n = —2 and n = 0) were approximately equal, however this need not be the case.
For example, choosing instead A; = 34 reduces the n = —1 bunching by ~ 40%, and
leaves a non-negligible subsidiary bunching factor only in the n = —2 mode. This
would, in contrast to figure [4.9] result in an asymmetric spectrum around the central
n = —1 peak. In principle, by carefully tuning the echo parameters, a wide variety
of spectra are possible.

It is intriguing to consider how this effect might be exploited at an FEL facility. In

order to amplify multiple colors in an FEL the separate colors must be separated from
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the resonant wavelength by AA/A < p. To take a numerical example, consider an
EEHG-seeded EUV FEL with p = 1073, 0 = 100 keV, and lasers with \; = Ay = 266
nm operating at the 50th harmonic (5.32 nm). Full control of the n = —1 optimized
wavelength within the FEL bandwidth could be obtained by a zero-crossing X-band
cavity with power to provide a 100 MeV on-crest increase in beam energy. As the
n # —1 peaks furnish an even greater sensitivity to energy chirp, this provides an
upper limit on the RF power necessary to provide wavelength control using this
technique. Thus, the requirement of this zero-crossing X-band cavity seems eminently
reasonable for a full FEL facility. Consider, by way of comparison, that the structures
employed at the NLCTA were capable of providing an almost 100 MeV /m gradient,

so little floor space need be devoted to such functionality.

4.4 Simultaneous EEHG and HGHG Signals

As was previously mentioned, one significant difference between EEHG and HGHG
signals at the same wavelength is their response to electron beam energy chirp. In
general, HGHG signals tend to respond more strongly to changes in the electron
beam longitudinal phase space, at least for low values of |n|. Therefore, when there
is significant jitter due to time of arrival or RF power which cause fluctuations in the
energy chirp of the electron beam, the EEHG signal is significantly more stable than
the HGHG signal. This effect was previously observed at the 15th harmonic of the
2400 nm seed laser [83]. In that experiment, however, the configuration was changed
between the EEHG and HGHG setup in order to study the difference. Here we report
a similar measurement using an EEHG and HGHG signal contained within the same
electron beam.

The possibility of generating separate regions of EEHG and HGHG bunched
beams, and separating them, exists because the laser beams are in reality finite in
temporal extent. There may be areas where they overlap extensively, and others in

which one laser or the other dominates. To extend this notion, one can consider
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instead of the global bunching factor of equation [1.1] a local bunching factor,

1 = ikz;
T

b(k, 20,0.) =

(&
=1

, (4.13)

e,z

|z0—z;i|<dz

that is, a bunching factor in which one confines the sum to only those electrons within
a distance 0, from the reference position 2y, and N, , is the number of electrons in
such an interval. Then, the bunching factor becomes a function of position along the
electron bunch. The scale 4, is arbitrary, but should be chosen to be consistent with
the length scales of interest. For example, ¢, might be the cooperation length in a
free electron laser. Care should be taken, however, in the limit that ., becomes small
enough that it does not contain a representative number of electrons. For a given
0, as the number of electrons is increased to infinity, a definite bunching factor is
obtained. As the number of electrons is lowered, eventually the shot noise statistics
overwhelm the ‘true’ bunching factor. The interval ¢, should thus be chosen to be
well above the distance where shot noise overwhelms the fluid bunching.

In the fluid description of EEHG, however, the bunching spectrum computed from
equation [2.124] can be promoted to a local quantity as well by making the transforma-
tion A; 2 — Aj2(z). Some care should be taken in interpreting this bunching factor,
as it assumes that the each individual subsegment at location z is infinite in longi-
tudinal extent. However, as long as one is not concerned with the bandwidth of the
resulting signals (and, due to the already demonstrated low resolution of the EUV
spectrometer, we are not), and the typical length scale of change for A; »(2) is signif-
icantly longer than the radiation wavelength it remains a reasonable approximation
to consider.

To this end, we consider an infinite, uniform electron beam modulated by two
laser beams, which are both Gaussian in temporal extent with scaled length o, = 0.3.
The peak modulation amplitudes are A; = 44 and A, = 36, and the centers are
offset by a scaled distance of 0.6. These laser profiles are shown in figure ).
The dispersions in both chicanes for the echo setup are set such that B; = 0.818
and By = 0.13. The resulting bunching spectrum, both due to EEHG and HGHG
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Figure 4.10: The EEHG and HGHG signals for Gaussian, temporally offset laser
beams. Figure a) shows the laser profiles, each of which is a Gaussian with o, = 0.3.
Figure b) shows the resulting bunching, both due to EEHG and HGHG. There are
clearly separated regions of EEHG and HGHG bunching which may radiate indepen-
dently in a downstream undulator.

contributions, is shown in figure b). The bunching is computed assuming a laser
wavenumber ratio k = 1/3 and n = —1, m = 21. Note the z axis is of arbitrary scale,
so long as the laser profiles are significantly wider than the radiation wavelength.

In the region near z = 0.2 — 0.3 where there is significant overlap in the laser
profiles, a strong EEHG signal is established. However, at the tail of the laser 1 profile
near z ~ —0.15, the laser is not strong enough to achieve any significant striation in
the phase space and serves only to effectively increase the slice energy spread by a

small amount. In this region, the second laser operates essentially in HGHG mode on a
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Figure 4.11: Simultaneous EEHG and HGHG signals in the vicinity of 133 nm. Both
signals represent the 18th harmonic. This image was captured from the small VUV
spectrometer.

slightly heated beam, and is able to establish a weaker, but significant, HGHG signal.
These two signals essentially exist independently, and therefore could be considered
as if there were two separate electron beams: one with an EEHG modulation and one
with an HGHG modulation.

To investigate this possibility of simultaneous EEHG and HGHG signals, we set up
the echo configuration at NLCTA to approximately reproduce the situation in figure
4.10, For this configuration, the lasers were in the 800nm/2400nm configuration,
such that k = 1/3. Furthermore, we investigated the signal in the low-harmonic
regime near the 18th harmonic, or 133 nm, and the beam energy was approximately
185 MeV. The chicanes were re-tuned from their previous high harmonic settings to
accomodate this lower harmonic upconversion such that Ré? = 12.5 mm and Ré? =2
mm. Once an EEHG signal was established near 133 nm, the laser timings were
slightly detuned to create a situation similar to figure The resulting spectrum
over approximately 220 shots is shown in figure [4.11, Due to the long wavelength,

this spectrum was captured with the VUV spectrometer as opposed to the EUV
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spectrometer data shown in all other figures.

Due to a slight linear chirp on the electron beam, both the EEHG and HGHG
signals are slightly offset from the 18th harmonic at 133.3 nm. Clearly, however, the
HGHG signal is farther offset due to the previously discussed increased sensitivity to
linear chirp. The HGHG signal is also noticably less stable in this offset wavelength,
which is consistent with the results of [83]. Indeed, in attempting to establish an
EEHG signal, the stability of the central wavelength serves as a diagnostic tool to rule
out the possibility that it is due only to an HGHG interaction. We also acknowledge
the possibility that the HGHG section of the beam is simply on a larger chirped
portion of the electron beam. Since the electron beam is parabolic in energy due to
the X-band structures, the EEHG region may sit at the relatively un-chirped center,
while the HGHG region could exist at the largely chirped wings. Unfortunately, the
experimental data taken at the time does not allow us to further investigate this
possibility.

The technique described here is a crude version of the so-called fresh bunch tech-
nique [I10] which can be used to increase FEL power, especially for multi-staged
EEHG or HGHG techniques [71]. The particular configuration studied in figure [£.11]
however, is unlikely to be a useful configuration due to the large laser modulation
and low harmonic upconversion. Nevertheless, these results suggest the possibility of
manipulating the laser modulation envelopes in order to create distinct modulation
within a single electron beam. Coupled with the tuning of the dispersion (sec ,
and possibly linear chirp (sec , this creates a wealth of possibilities for fine-scale

tuning of the seeded electron beam bunching spectrum.



Chapter 5

EEHG and FEL Simulations

To err is human, but to really
foul things up you need a

computer.

Paul R. Ehrlich

In order to fully simulate all the physics of the EEHG process, it is necessary to
accurately model the electron beam from its birth at the cathode up until and through
the final radiating undulator. In general, the final radiating undulator should take
into account any possible gain from the EEHG prepared beam, so the full simulation
process is similar to that which occurs when simulating SASE FELs. This process is
known as a start-to-end (S2E) simulation, in that the electron beam is fully simulated
from the gun through the FEL radiator. Detailed studies of the radiation, such as its
diffraction through long or complicated optics elements, can be performed separately,
although these effects will not be included in these simulations.

The business of simulating the electron beam through the entire accelerator com-
plex is difficult because of the large disparity in energy between the beginning and end
of the beamline. Near the electron gun, the electron dynamics in the non-relativistic
regime are important to accurately capture the emittance and energy spread of the
resultant beam. In this regime, great care is taken to model the space charge forces

within the nascent electron bunch. After the first accelerating structure, however,

124
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the beam energy is generally high enough that space charge forces can either be ig-
nored completely or modeled with simple approximations. The simulation therefore
often proceeds in discrete steps where first the electron gun is handed with a space
charge code, e.g. ASTRA [103] or PARMELA [I11]. Simulations of the NLCTA
gun using ASTRA were previously discussed in Chapter [3] in the context of beam
characterization, and ASTRA is used throughout this chapter as well.

Afterwards, the beam is then propagated through the transport line and subse-
quent acceleration structures with a faster code designed for beam optics, e.g. ELE-
GANT [I12]. Some codes provide a unified functionality, in which the computation
of space charge can be seamlessly carried out throughout the entire beamline, e.g.
IMPACT [113]. It is during this portion of the simulation that any EEHG simula-
tions can be included. Generally, the interaction between the electron beam and laser
in the modulating undulators can be accurately modeled analytically [40], and the
dispersion in the chicanes can be calculated using 2nd order transport.

There are some notable exceptions, however, when these simple results cannot
be applied to the modulation and dispersion portion of the beamline. The first
exception is when there exists significant gain in the modulation section, as is often
the case in a multi-stage HGHG beamline. In this case, one must employ a full
FEL code to model the interaction, and possibly switch back to a beam transport
code to model the transport between modulation sections. The second exception is
when the beam density is high enough that either coherent synchrotron radiation
[114] [49], intra-beam scattering [I15] [I16], or the stochastic CSR term (chapter
@ become important effects. While simple analytic models for these effects exist, a
complete description requires an intensive computational model. Therefore, one must
carefully anticipate the magnitude of any smearing effects in the chicanes and deal
with them appropriately, either through a simplified but sufficient model, or with
a full and expensive numerical simulation. For all simulations presented here, the
code ELEGANT is employed for the beam transport and simulation of the EEHG
undulators and chicanes. Due to the relatively low beam density of the NLCTA beam,
it is not necessary to take account for any of the aforementioned radiation effects.

Finally, the electron beam arrives at the FEL undulator where the electrons are
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again handed off to a third simulation code. The popular FEL simulation code GEN-
ESIS [117], employs the Slowly-Varying Envelope Approximation (SVEA) [118]. The
SVEA allows one to average the radiation field envelope over a radiation wavelength,
which greatly speeds up the simulation of the FEL process. The radiation and elec-
tron beam, then, can be sliced up into discrete portions, each with a length of the
radiation wavelength. This approximation is valid and has been extensively tested
over a wide range of SASE parameters, leading to its widespread adoption for machine
study and optimization simulations. However, there has been some doubt that this
approximation gives valid results in the case of the complicated EEHG phase space,
which may contain variations on the radiation wavelength scale. Additionally, the im-
plementation of the slicing procedure can conflict with electrons moving substantial
longitudinal distances in the radiating undulator due to the laser modulation, requir-
ing awkward work-arounds. For these reasons, the FEL simulations in this thesis are
performed with the un-averaged FEL code PUFFIN [I119].

5.1 Benchmarking FEL Codes

5.1.1 Harmonic Lasing Benchmarks

Before discussing simulations of NLCTA or novel simulations of EEHG, we first
present new benchmarking results which extend the correspondence between aver-
aged and unaveraged FEL codes. Several averaged codes were previously compared
in a variety of harmonic lasing studies [120], and we extend this result with the in-
clusion of new unaveraged, PUFFIN results. In the previous study, the codes FAST,
GENESIS, and GINGER were compared, so we briefly discuss each in turn.

The 3D version of the FAST code [121] was developed in the late 90s to allow a non
steady state, 3D simulation of FEL physics with the computing resources of the time.
As FAST is an averaged FEL code, the electron beam is sliced up into elementary
volumes of at least one resonance wavelength in longitudinal extent. The radiation
field is expanded into azimuthal modes, rather than sampled on a Cartesian grid,

with the number of azimuthal modes m defining the resolution of the simulation. In
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situations which have smoothly varying field profiles, and especially near saturation,
this approximation may allow many fewer sampling points to be used than would be
required to achieve the same resolution on a Cartesian grid.

GENESIS [117], by contrast, discretizes the transverse field onto a Cartesian mesh.
In describing the dynamics of the electrons through the undulator, the wiggling mo-
tion on an individual period scale is averaged over to produce the familiar J factor
(see eq: . The result is that the coupling to harmonics of the fundamental can be
achieved by simply solving the relevant equations with the substitution for 7, [122].

Finally, GINGER [123], like FAST, employs cylindrically symmetric azimuthal
modes in its field decomposition. The grid spacing, however, is not linear in this
space, but instead follows a sinh function formula which yields more grid points near
the dense center of the beam. Like GENESIS, GINGER models harmonics through
the effective coupling of J.

These three codes all differ on a pragmatic level in their written language, parallel
implementation, and specific algorithms in other ways which are not listed here. The
important distinction, however, is that they all employ the SVEA approximation.
PUFFIN, on the other hand, does not.

PUFFIN is the 3D successor to an earlier 1D unaveraged code. As it does not make
the SVEA approximation, PUFFIN allows the electromagnetic field to be consistently
modeled at the sub-resonance scale, limited only by the Nyquist criterion due to the
sampling. Since the field is discretized in all three dimensions, it is quite similar in
spirit to a Particle In Cell (PIC) plasma physics code.

The diffraction of the electric field is performed via the Fourier split-step method,
in which the field first diffracts in free space, and then in a second step propagates with
no diffraction but driven by the electrons. Electron motion, as the field, is individually
tracked on a sub-period scale. Therefore, nowhere in the equations does the 7 factor
exist — it is implicitly included by modeling the detailed motion of the electrons in the
undulator. A corollary of this, however, is that in order to accurately describe this
motion, 2 10 integration steps must be performed per undulator period. Combined
with the inclusion of sub-harmonic longitudinal grid spacing, it is easy to see that

PUFFIN is enormously more computationally expensive than its averaged cousins.
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Figure 5.1: A comparison of the gain curves for the LCLS-I like scenario at the
fundamental of 6 keV between codes. The Maz label for the FAST curve specifies the
azimuthal modes employed.

However, because of this extra information, it is implicitly assumed that simulations
in PUFFIN should be more accurate than averaged simulations, and therefore it can
be used to benchmark these speedier alternatives.

The first situation to benchmark, and one which was also studied in reference
[120], is a simple SASE and artificial harmonic lasing setup. For this case, the facility
setup is an approximant to LCLS-I operating at 6 keV fundamental radiation energy.
The electron beam energy is 11.62 GeV with ey ~ 0.4 pm, while the undulator has
K = 3.5 and A\, = 3.5 cm. The slice energy spread is 1.4 MeV, and the current is
3 kA. This electron beam is artificially created, with assumed Gaussian dimensions
to match these quantities, although in the longitudinal plane it is assumed a flat
top distribution. Because of limitations in the PUFFIN code suite at the time these
simulations were performed, and to facilitate comparisons between codes, the focusing
was assumed to be done by an artificial channel which would keep an approximate
beta function (8) ~ 26 m. This focusing is artificial in that it cannot be replicated

by a quadrupole lattice as it simultaneously focuses in x and y. The resulting gain
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curve for the fundamental mode is shown in figure [5.1]

Due to the high current and low value for emittance and (f), the fundamental
radiation saturates quickly at z ~ 45 m for all codes. Indeed, all codes are in excel-
lent agreement once in the exponential gain regime. Some disagreement does exist
in the startup process. This disagreement is thought to be due to the various com-
peting modes in the SASE startup, and the limit of any given code to resolve them.
Therefore, when using a code such as FAST in which the number of azimuthal modes
specifies the field resolution, the start-up power is in general highly dependent on the
mode resolution. The same is true for the grid mesh used in PUFFIN to discretize the
field. However, since there is not significant FEL interaction with these modes, one
is allowed to use a lower resolution and still obtain an accurate high-gain FEL analy-
sis, as is verified by the high-gain behavior. We briefly note, however, that although
the exponential gain and saturated behavior is not affected by this discrepancy, self-
seeded setups in which the process is terminated well before saturation may well be
sensitive to a factor of 2 ~ 4 in power suggested by figure 5.1l Therefore, a future
avenue of study may be to conduct a more detailed comparison between a wider suite
of codes focusing on this issue. Here we will not take this tack and instead focus on
the comparison between the averaged and unaveraged nature of the codes.

Having established a baseline SASE benchmark, we now turn to an artificial har-
monic lasing scenario. As mentioned above, the averaged codes generally employ
the J, factor to describe couplings to the various harmonic modes. Therefore, by
artificially zeroing out these factors, one can examine only the production of, say,
the third harmonic. This is precisely how the averaged codes achieve this ‘artificial
harmonic lasing’. PUFFIN, however, models the complete dynamics of the electron
beam, so no such artificial toggle is available. Instead, at every diffraction step, PUF-
FIN Fourier transforms the field in order to propagate it, which allows a convenient
point of filtering. In order to replicate the artificial harmonic lasing, we apply a band-
pass filter around the 3rd harmonic in PUFFIN each diffraction step. The width of
this bandpass filter is arbitrary so long as it is large enough to capture the full FEL
bandwidth (= p), and does not intersect nearby harmonics. For reference, PUFFIN

performs a diffraction step once every 10 undulator periods in these simulations, as
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Figure 5.2: A comparison of the gain curves for the LCLS-I like scenario at the third
harmonic of 18 keV between codes. The Maz label for the FAST curve specifies the
azimuthal modes employed.

the short wavelength radiation does not diffract quickly (its associated Rayleigh range
is approximately 24 m), so all radiation but the third harmonic is filtered out every
10 undulator periods. The comparison of these artificial harmonic lasing scenarios is
shown in figure [5.2,

As before, the codes are all in excellent agreement well into the high-gain regime,
but show disagreement during the startup process. One additionally observes a small
amount of noise during the PUFFIN startup process, which is due to the discrete
nature of the bandpass filter as described above. This comparison shows that, at
least in this relatively simple case, the approximation of using J, to describe the
coupling to harmonics is reasonable.

Having established correspondence for a simple, artificial harmonic lasing scenario,
we now turn to the real thing. The main idea behind harmonic lasing is to suppress
the growth of the fundamental radiation mode by installing a series of periodic phase
shifters [124]. These phase shifters can take the form of small chicanes or partial un-

dulator periods, which serve only to delay the electron beam relative to the photons
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Figure 5.3: The phase shifts for the realistic harmonic lasing in the LCLS-II case as
a function of shift #. Higher shift # corresponds to farther along the undulator line.
Note all shifts are a multiple of the target harmonic: \/3. Figure from [120].

by a fraction of a wavelength. Consider both the fundamental radiation wavelength
A and its third harmonic A\/3. As the electron beam radiates and begins the process
of FEL microbunching, the electrons are pushed into buckets spaced by one (funda-
mental) radiation wavelength. Then, if they are shifted longitudinally by a distance
A/3 the electrons will radiate partially out of phase, thus canceling out some of the
fundamental radiation, while they continue to radiate in phase for the third harmonic.
Thus, if repeated phase shifts at a multiple of A/3 are performed, the growth of the
fundamental is stunted while the third harmonic proceeds unfettered.

It is precisely this segmented structure that was studied to benchmark various
codes in a true harmonic lasing regime. For this case, however, a beam more similar
to LCLS-II was adopted, with an energy of 4 GeV, emittance of 0.4 pm, slice energy
spread of 0.5 MeV, and peak current of only 1 kA. The undulator was similar to
LCLS-IT as well, with K = 2.23 and A\, = 2.6 cm, and a strong artificial focusing
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Figure 5.4: A comparison of the gain curves for the LCLS-II like scenario at the first
(h = 1, stars) and third (h = 3, solid lines) harmonics. Note that due to the close
spacing of the Genesis h = 1 points, this curve appears as a solid line.

lattice with () = 12 m. For these parameters, the fundamental energy is 1.67
keV, while the third harmonic is at 5 keV. Note that, for the PUFFIN, FAST, and
GINGER models, a continuous artificial focusing lattice was employed throughout,
while the GENESIS model had a realistic FODO lattice which merely generated the
requisite average beta. The undulator lattice was modeled as continuous, 45 period
segments, which were broken up by short or long drift sections. The short sections
were 5 undulator periods long, while the long drifts were 30 periods long, and they
alternated in a short-short-long pattern. Each of these break sections also contained
a phase shifter, whose shift value was chosen according to the distribution shown
in figure All phase shift values are a multiple of A/3, and the perscription for
choosing them comes from reference [125], with detailed considerations of the 3D FEL
physics giving rise to the non-uniform distribution of phase shift values. The result
of this simulation is shown in figure [5.4]

With this realistic harmonic lasing simulation, we begin to see differences in the
results of each code. To begin with, the problem of resolving startup modes persists.
Each code shows that third harmonic gain begins in earnest between 30 and 40 me-

ters, and saturates somewhere near 80 m. The fundamental also appears effectively
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suppressed until about 60 m in each simulation, which suggests that this is a feature
of the phase shifting lattice shown in figure rather than a peculiarity in any par-
ticular code. Nevertheless, especially when one considers the ratio of fundamental
to third harmonic power, there is substantial disagreement between the codes. GIN-
GER, in particular, sees the largest disparity between the two, while the other three
are more similar but show small deviations. The root cause of this disagreement is
unknown, although the resolving of startup modes, by changing the grid resolution,
was investigated and does not appear to affect this final harmonic-to-fundamental
power ratio.

It is clear that in the case of a realistic, harmonic lasing simulation, the exact
simulation parameters (grid slicing, shot noise handling, macroparticle number, etc.)
may have some noticable effect on the final result. Further study is apparently neces-
sary to pin down appropriate simulation parameters to generate a sufficiently accurate
simulation of these scenarios. Nevertheless, especially from a glance at figure[5.4] one
certainly cannot distinguish between the averaged and unaveraged models. Therefore,
in so far as this distinction is concerned, it appears the averaged models are doing a

sufficient job at modeling the physics of harmonic lasing.

5.1.2 Seeded FERMI Benchmarks

We now turn to benchmarking averaged and unaveraged FEL codes in the more
advanced case of a seeded electron beam. We compare only GENESIS and PUFFIN,
and choose accelerator parameters intended to model the FERMI accelerator [5]. The
FERMI machine has been operating in both single-stage HGHG [70] and two-stage
HGHG modes [71] for some time. Furthermore, there are currently proof of principle
experiments in the design and planning stages for an EEHG configuration at FERMI
[126]. Therefore, this machine makes an excellent test case against which to compare
simulation codes.

The first scenario we imagine is a replica of the original HGHG configuration
implemented FERMI [70]. For this study, the electron beam energy is 1.24 GeV with
slice energy spread of 150 keV, emittance of 2 pm, and peak (flat top) current 300
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A. The undulator used is planar and has K = 3.452, A\, = 5.5 cm, and an artificial
focusing lattice with (8) = 10 m.

The HGHG manipulation is performed in an analytic way, rather than tracking
a laser-modulator interaction and a full chicane simulation. Equations
are therefore used to model the HGHG manipulation, which amounts to having a
perfectly sinusoidal modulation and perfectly linear Rs4 dispersion. The seed laser has
wavelength A = 260 nm, and its intensity is chosen to produce a modulation amplitude
of A =6, or about 900 keV. By using the analytical formula for the modulation, we
implicitly assume the laser pulse to be infinite in temporal and transverse extent.

The subsequent chicane is tuned to produce optimal bunching at the 8th harmonic
of the seed laser, but is chosen to slightly under-bunch the electron beam with a value
B = 0.164, as opposed to the optimal choice of B = 0.182. This slight detuning is to
account for the significant Rjsg of the radiating undulator itself, such that the electron
beam does not over disperse before significant gain is accumulated. This value was
obtained by running several simulations with various detuned B values and taking
the approximate maximum of the output power. This procedure is analogous to how
the chicane values would be optimized in practice, by varying the chicane Rss and
optimizing for the highest FEL output power on a downstream detector. While in
this example, there was a significant difference in optimal B values (~ 10%), this
is a peculiarity of the high-modulation HGHG scheme and relatively long radiation
wavelength. EEHG experiments, and in general harder X-ray FELs, will be much
less sensitive to this additional Rss and the optimal B values will be closer to those
computed from the bunching factor.

The resulting gain curves for both GENESIS and PUFFIN simulations, as well
as the experimental data from [70] are shown in figure The GENESIS simula-
tion includes the realistic undulator module lengths, as well as break sections with
quadrupole focusing. The PUFFIN simulation, by contrast, consists of a single undu-
lator with an artificial focusing lattice. To make a meaningful comparison to both the
data and the segmented undulator, the PUFFIN horizontal coordinate is therefore
scaled by the ratio of physical beamline length to active undulator length in order

to approximately account for this. This scaling should fairly accurately capture the
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Figure 5.5: The gain curve for the HGHG modulated beam with FERMI-like pa-
rameters compared between PUFFIN, GENESIS, and the experimental data. The
PUFFIN curve is scaled along the undulator axis to account for the lack of break
sections.

dynamics so long as the diffraction effects in the break sections are not large. For this
HGHG setup, the diffraction effects are small until the beam enters the saturation
regime, which is not modeled here.

The GENESIS simulation in figure is performed with Version 4 of the code:
A new, experimental version compared to the one in common use. This new version
has many new features, but importantly here, it allows the current of the electron
bunch to be sliced up on a sub-wavelength scale. Thus, the current spike due to
compression (see the final plot in figure can be resolved, while in the old version
of GENESIS it is simply averaged over. In principle this may affect the fine structure
of the time-dependent simulation, but a separate study suggests that for this case the
final output power and spectrum are generally unchanged between GENESIS versions
3 and 4.

With these caveats in mind, the agreement between PUFFIN, GENESIS, and

the experimental data is quite good. The final data point seems to suggest a slight
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Figure 5.6: The FERMI HGHG spectrum compared between PUFFIN and GENESIS
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saturation based on the simulated gain curves in both PUFFIN and GENESIS.

We consider now the radiated spectrum near z = 18 m, or the approximate end
of the undulator, which is shown in figure [5.6l The 8th harmonic of the seed laser,
which is the one resonant with the radiating undulator, has energy 38.15 eV. In
addition to this, we see all the HGHG harmonics which are produced as a result
of the modulation and dispersion (which are all present, see fig: . These side
harmonics are far outside the FEL bandwidth, however, and thus are not amplified
and are at a level of 10~* compared to the main peak (which is approximately the gain
of this FEL). The width of the spectral peaks, as well as their relative amplitudes,
are in good agreement between the codes.

These results suggest that GENESIS is quite accurate in modeling the simple
single-stage phase space manipulations required for an HGHG-seeded FEL. We there-
fore turn to the more complex case of an EEHG FEL.

For the EEHG simulations, the setup is similar but slightly altered from the HGHG
setup to account for the changes in the machine from 2012-2017. The electron beam

energy is now 2 GeV, the slice energy spread 200 keV, slice emittance of 1 pym, and
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Figure 5.7: The FERMI-like EEHG spectrum near saturation for GENESIS and
PUFFIN simulations. The spectrum is normalized to its maximum.

the peak (flat-top) current is increased to &~ 650 A. The undulator is also changed, to
account for the difference between the FEL-1 and FEL-2 beamlines at FERMI, and
now has K =2.28 A\, =3 cm, and (5) = 10 m.

There are now two seed lasers, each of which has A = 266 nm. The EEHG
configuration is designed to optimize the bunching at the 75th harmonic of this seed,
or 3.54 nm. To this end, the EEHG parameters selected have A; = Ay = 3, By =
25.9487 and By = 0.353074. These selected parameters optimize the bunching at the
75th harmonic, but may not be attainable in practice. This is especially true for the
large value of By, which requires a large and well-designed first chicane. Nevertheless,
these parameters provide a reasonable testing ground for comparing averaged and
unaveraged codes in handling a complex phase space.

A comparison of the output spectrum near saturation between both PUFFIN and
GENESIS is shown in figure The clear peak in the middle is the 75th harmonic
of the seed lasers, while the subsequent side peaks are nearby excited modes from the
EEHG manipulation which are outside the FEL bandwidth. The relative amplitude,

as well as widths, of the main and subsidiary harmonics are in excellent agreement
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between the codes. The logarithmic scale of figure 5.7/ enhances what small differences
exist, but the peaks generally show agreement out to 10% of the main peak height.
GENESIS, however, seems to show a small redshifted sideband for the peaks of the
75th, 76th, and 77th harmonics which does not appear in the PUFFIN simulations.

With this same EEHG configuration, we also investigated the effects of additional
structure on the electron beam. In particular, we choose a single sinusoidal oscillation
imposed on the electron beam prior to the first EEHG modulation as (notation as in
equations [2.1182.121]),

po = p—1 + Apsin(kolp), (5.1)

where kg = ko/k1, and kg is the wavenumber of the mode of interest, and now p_; is
the initial (scaled) momentum. This represents a single, sinusoidal mode of amplitude
Ap and wavenumber kg = 27/)¢. In a Fourier sense, these modes can be considered
the building blocks of more complicated energy structure, such as that present in
the microbunching instability (section . Note, however, that the microbunching
instability involves not only energy modulations but their associated density modu-
lations, which are not captured by equation [5.1] Nevertheless, the system’s response
to modulations of the type in equation [5.1]is an interesting test case both in regards
to the microbunching instability and also how sidebands are treated in averaged and
unaveraged codes.

With the same EEHG configuration as above, we add an additional modulation
with Ay = 2 and Ay = 3 pm. The resulting spectra near saturation are shown in figure
£.8 This additional structure on the electron beam manifests in both the PUFFIN
and GENESIS simulation as a sideband for each EEHG harmonic. The location of

the sideband is related to the wavenumber of the mode, such that ,

ksideband = kE' + qk07 (52>

where kg is the wavenumber of the relevant echo harmonic and ¢ and integer. Gen-
erally, only those modes with ¢ = +1 contribute substantially, as those with larger
frequency separations become exponentially damped, which can be seen by examining

excitation bandwidth equation [2.128, In the context of this excitation bandwidth,
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Figure 5.8: The FERMI-like EEHG spectrum near saturation for GENESIS and
PUFFIN simulations with an included single-frequency modulation. The modulation
has parameters Ay = 2 and Ay = 3 pm. The spectrum is normalized to its maximum.

the presented configuration has £ > 0, and therefore preferentially excites the low-
frequency, ¢ = —1 sideband from equation [5.2 This explains the absence of the
high frequency sideband from the spectra in either PUFFIN or GENESIS simulations
shown in figure [5.8|

The relative amplitude of this sideband peak, especially for the main harmonic
near resonance, is in good agreement between the two codes. The presence of the
sideband is also consistent in the other EEHG harmonics, although there are some
amplitude variations at the 10~° level for this unamplified radiation. Other discrepen-
cies in the spectrum, while small, can be traced to individual shot noise variations in
each simulation. Even upon averaging, variations may not converge as the PUFFIN
simulations used a particle to macroparticle ratio of ~ 36 in order to keep the simu-
lation size manageable, while the GENESIS simulations were performed one-to-one.

These results strongly suggest that GENESIS V4 simulations are an adequate
tool to simulate EEHG manipulated beams with the inclusion of microbunching-like
energy structure. Despite the excellent agreement, due to the predilections of the
author PUFFIN will be used for all subsequent FEL simulations. We will now take
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a closer look with PUFFIN alone at how EEHG interacts with the microbunching
instability.

5.2 The Microbunching Instability and EEHG

One interesting question relating to EEHG is how its phase space transformations
are impacted by structure from the microbunching instability (UBI). The UBI is
believed to be the cause of the observed pedestal effects observed in self-seeded at the
LCLS, for example [8] [127]. This configuration was recently analyzed analytically,
wherein the FEL equations with seed radiation were solved in the presence of the UBI
structure [12§]. We aim to understand how a beam-based seed, such as one generated
by EEHG, is affected by the same UBI and explore this question through PUFFIN
simulations.

The microbunching instability was discussed in section [2.3.2 and for our pur-
poses here we need only recall the basic form of the instability. It produces energy

modulations A(k) (as well as density modulations) with the form,
A(k) ~ Agk* exp (—k*/k3) (5.3)

for some critical wavenumber ko and amplitude Ay. This produces a broad band
energy structure on the beam, which in general has significant contributions in wave-
length space from A = 1 ~ 30 pm or greater for choices of \g ~ pm, which is
reasonable when compared to realistic UBI spectra (see figures , . The total

UBI contribution can then be obtained as an integral over these modes,

< Ak

po = pi + / ]5 ) sin(ks — 6(k))dk. (5.4)
0 1

for a phase ¢(k) and normalization constant k;. Naively, we might assume ¢(k) to be

random, but such a choice would reduce equation [5.4] to the addition of uncorrelated

noise which would serve only to increase the effective energy spread of the beam.

Rather, as is clearly true from visual inspection of figure [2.18] there is an inherent
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Figure 5.9: An example longitudinal phase space of the simulated microbunching
instability using equation This realization has N,, = 40, Ao = 3 pm, and Ay = 2.

correlation length in the UBI structure that prevents this smearing into simple un-
correlated noise. We can ignore the complexities of this correlation by splitting the

integral expression into a discrete sum of N, separate modes,

Nm
i=1

We can now assume that the various phases are uncorrelated, and shift the question
to how many modes N,,, should be used. Clearly, it make sense to only choose k values
over the range where A(k) is substantial. In the case where N, is small, (O(1)), we
have a coherent modulation which is more indicative of several lasers than the UBI,
which is not desirable. On the other end of the spectrum, N,, — oo results in the
same conundrum as the integral expression in which the resulting modulation simply
becomes noise.

In practice, we simply choose a value of N,, which produces a spectrum that is
qualitatively similar to what is observed in microbunching studies. This turns out to

be a value in the neighborhood N,,, = 20 ~ 100. The overall amplitude of modulation
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obviously also depends on N,,, so we must choose a method of normalization. We
choose a normalized amplitude A, to be such that the sum of all N,, modes produces
the same energy spread increase as a single sinusoidal modulation with amplitude Ajg.
Since each mode is independent, the total increase in energy is computed in an rms

sense and we have the following relation,

Ao = . (5.6)

It is more convenient to therefore parameterize the modulation by the net effect
through Ag than the N,,-dependent parameter Ay. Another choice for normalization
would be to parameterize to the total increase in energy spread of the beam. This
total energy spread increase, A, is related to our choice of Ay as,

A
A = 1+7°. (5.7)

One realization with N, = 40, Ao = 3 pm, and Ay = 2 is shown in figure [5.9
The random features of the instability are well captured in this instance, and all that
remains is to choose appropriate values for Ay and Ag to reproduce the overall features
of the instability.

The question now is how does the combined EEHG /FEL system respond to these
modulations? The FEL imagined in these simulations is an approximation to the
FERMI FEL: It operates at 2 GeV, with slice energy spread of 1 MeV, and emittance
of 1 um. For simplicity, we consider a continuous planar undulator which has K =
2.28, A\, = 3 cm, and a constant [ artificial focusing lattice with (8) = 25 m.

The EEHG configuration is provided by two 266 nm lasers, each of which modu-
lates the beam by 3 MeV, corresponding to three times the slice energy spread. For
this study, the modulation is computed analytically, rather than tracking electrons
through the laser-modulator interaction. Therefore, the modulation is perfectly sinu-
soidal, and the following dispersion sections represent perfectly linear chicanes. The

chicanes are optimized for bunching at 3.5 nm, or the 75th harmonic of the seed
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Figure 5.10: A comparison of the FEL spectra for £ < 0 and £ > 0 configurations
with microbunching structure. Also shown are the excitation bandwidths for each
configuration. Five separate realizations of the UBI noise are shown.

lasers. However, recalling that the value of B; has twin optima for positive and nega-
tive values of the parameter £ (eq. , we consider setups with each configuration.
The resulting FEL spectra for several shots, as well as the excitation bandwidths for
the +¢ configurations (eq. [2.128)) are shown in figure [5.10]

While both & configurations look similar for the central EEHG peak, we observe
that the & > 0 configuration has a significant side-band pedestal for low k. By
contrast, the £ < 0 configuration shows only minimal sideband intrusions, even in the
blue region of its excitation bandwidth. Both EEHG configurations will preferentially
excite the UBI modes in their own excitation bandwidth, but the FEL process is
asymmetric. Due to the FEL detuning curve with energy (fig , blueshifted
components compared to resonance can become highly suppressed while those which
are redshifted suffer only mild degredation. In this sense, the FEL acts as a low-pass
filter. Therefore, when the EEHG configuration is operated in the £ < 0 mode, the
UBI modes are preferentially excited in the blue and subsequently suppressed by the
FEL mechanism. This observation is important to the operation of an EEHG-seeded
FEL in which the mitigation of the UBI may be a key design constraint.

The microbunching instability also impacts the performance of non-optimal EEHG
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Figure 5.11: Various FEL spectra from the n = —2, £ > 0 configuration with mi-
crobunching structure. Due to the lower bunching factor at the target harmonic, the
contrast between the sidebands and central peak is less extreme than in the n = —1
case. Note the axis scale as compared to figure m

configurations, such as those with higher n number. The spectrum of the same FEL
adopting the n = —2, £ > 0 configuration with the same microbunching structure
is shown in figure [5.11] Since the bunching at the target harmonic is lower in the
high |n| configuration, the contrast between the central peak and sideband is reduced
considerably. Note, however, that the low-pass nature of the FEL still purifies the
blue end of the spectrum. We conclude that in the presence of significant microbunch-
ing structure, choosing the ¢ < 0 configuration is highly beneficial, especially when
operating in a higher |n| mode.

This interplay between the EEHG manipulation and FEL mechanics presents the
possibility of minimizing negative effects due to the microbunching instability. Given
a well-characterized UBI, one can selectively tune the EEHG configuration through
study of equation to suppress amplification at the peak location of the UBI.
These sidebands, however, may actually be beneficial to certain user experiments, and
experiments at FERMI have intentionally used them as a seed to generate multicolor
FEL pulses [129]. The extended ability of EEHG to manipulate how the UBI presents
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as bunching structure on the beam, then, is another avenue to control and manipulate

in detail the bunching structure that radiates in the undulator.

5.3 Start-to-End NLCTA Simulations

As previously mentioned, start-to-end simulations consist of three separate parts.
The first is the low energy, space charge relevant section in which ASTRA is used to
model the electron gun through the first accelerating cavity. The second section em-
ploys ELEGANT to track the electrons through the entire linac including the EEHG
modulators and chicanes. Finally, PUFFIN is used to simulate the FEL interaction
(or in the case of NLCTA, just coherent emission) in the VISA undulator.

Simulations of the NLCTA electron gun have already been described in section
3.3, so we briefly revisit them here. One difference between the optimization routine
described previously is the focus on peak current. Having abandoned the possibility
of significant gain in the VISA undulator, the more critical parameters become the
slice energy spread and emittance of the electron bunch. The electron bunch length,
and hence peak current, is important only to ensure the relative uniformity of the
electron bunch after passing through the X-band acceleration cavities.

Due to the betatron smearing effect described in section [4.1.1] a low emittance
is critical in order to preserve bunching at high harmonics. To illustrate this effect,
we created several Gaussian electron bunches with different rms bunch lengths and
emittances and pass each through an identical transport line. The transport line
is optimized for EEHG with a zero emittance bunch and no energy structure (one
which has no curvature due to the RF accelerators), and thus comes directly from
the optimization of equation [2.124 The resulting bunching at the 75th harmonic
of the 2400nm seed laser as a function of emittance and bunch length is shown in
figure The quoted emittance is the slice emittance at the end of the first linac
section, rather than the measured projected emittance. The bunching is measured
immediately prior to entry into the VISA undulator, and so does not contain the
additional smearing incurred due to that focusing lattice.

These simulations were performed with 10° particles, which puts an effective floor
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Figure 5.12: The EEHG-induced bunching at 32 nm as a function of emittance and
bunch length. The different rms bunch lengths are shown as different colors, with 130
um approximating the true bunch length.

on the bunching around 1/ \/ﬁp = 1073, which is approached by the longest bunches
as €, — 107% m. As the slice emittance could not be accurately measured with
the NLCTA diagnostics, figure [5.12] provides a clue as to the true slice emittance.
Values larger than ~ 1 pm show suppression of the bunching, and we thus infer that
the true slice emittance is below this level. Based on this observation, the following
simulations assume a beam with initial slice emittance of ¢, ~ 0.7 pm , rather than
the measured projected value of ~ 2 nm. In a sense then, the existence of bunching
at such high harmonics provides a crude upper limit for the slice emittance of the
electron bunch. This idea has recently been expanded upon in the HGHG-seeded
FEL FLASH, wherein the slice properties of the beam can be recovered from the
efficiency of the seeding process [130].

For the representative start-to-end simulation, the number of macroparticles was
increased to 4 x 107 to be able to ultimately be able to resolve the low, high harmonic
bunching. For a 50 pC electron bunch, this corresponds to a ratio of 8 electrons
per macroparticle. These macroparticles are first generated by the Astra program

generator, and are used for each subsequent leg of the simulation.
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Figure 5.13: The evolution of the normalized transverse slice emittance and rms beam
length in the NLCTA electron gun from Astra.
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Figure 5.14: The transverse phase space distribution at the end of the NLCTA injector
line. Plotted is a 100:1 down-sampled distribution. The vertical dimension is similar.
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Figure 5.15: The longitudinal phase space distribution at the end of the NLCTA
injector line. Plotted is a 100:1 down-sampled distribution. The off-crest acceleration
in the final X-band structure results in a substantial energy chirp.

The electron beam of 50 pC is generated at the cathode with 1 ps FWHM time
spread (0.4 ps rms) from a 1 mm spot. The transverse momenta are drawn from a
Fermi-Dirac distribution with a work function of 4.4 eV and photon energy of 4.7
eV [131]. The S-band gun has a maximum accelerating voltage of 110 MV /m and is
dephased by 28.65° forward of crest, such that the accelerating voltage grows with
time as the electrons are emitted from the cathode. The first X-band cavity, which
is also simulated in Astra, is also de-phased 9° off crest to provide some compression
to the electron bunch. The evolution of the beam emittance and rms bunch length
through the electron injector for this particular run is shown in figure |5.13| The final
phase space distribution is shown for the transverse plane in figure |5.14] and in the
longitudinal plane in figure [5.15

The Astra model ends after the first accelerating structure and the particles are
transferred to Elegant. The rest of the NLCTA beamline, up until the VISA undu-
lator, is modeled in Elegant. The laser modulators are modeled using the LSRMDLTR

element which integrates through the undulator trajectory with a co-propagating laser
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Figure 5.16: The simulated RMS beam sizes along the NLCTA beamline. The posi-
tions of the first (M1) and second (M2) modulator are indicated.

beam. The laser spot sizes used, 2mm, are significantly larger than the electron beam
sizes and the resulting modulation is almost perfectly sinusoidal.

The full collection of NLCTA quadrupoles are scanned in order to find an adequate
optics solution which satisfies three criteria. The first is that the electron beam size
remains relatively small, less than 0.5mm rms, in each of the two modulators. The
second criterion is that the final Twiss parameters are adequately matched into the
VISA undulator at the end of the beamline. Due to the small matched beta functions
for the VISA, this leads to a sharp squeeze at the end of the beamline. The final, and
most tricky criterion, can be stated as the minimization of the quantity [ yrdz over
the EEHG portion of the beamline. This is done to minimize the emittance smearing
effect discussed in section Unfortunately, the built-in Elegant optimizer is lim-
ited, and [ y7dz could not be optimized on directly. A useful proxy was to minimize
the number of waists in the EEHG section of the beamline. Since waists contain small
[ and large «, and thus large v, this provides a crude optimization. Indeed, without
a careful choice of beam optics through the EEHG section any produced bunching

can be destroyed before even reaching the VISA undulator. The resulting beam sizes
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Figure 5.17: The simulated longitudinal EEHG phase space immediately prior to the
VISA undulator. The inset shows the region near ¢t = 0 wherein the detailed EEHG
structure is resolved.

along the lattice are shown in figure [5.16|

The longitudinal phase space immediately prior to the VISA undulator is shown
in figure[5.17} The overall curvature due to the X-band accelerating cavities is visible,
although the large chirp which was introduced by the first cavity (X1, figure
has been mostly removed by the second accelerating structure (X2). The inset shows
the detailed EEHG structure for a small region near the center of the beam.

At this point the particle distribution is handed off to PUFFIN to compute the
undulator radiation from the VISA. The PUFFIN simulation contains 15 longitudinal
grid nodes per radiation wavelength (= 114 nm) and performs 20 integration steps
per undulator period. The transverse grid mesh used for the radiation is 45 x 45 nodes
and extends to +£9 x o,,. The radiation is diffracted after the integration through
every undulator period.

The resulting radiation spectrum, integrated over the transverse plane, is shown in
figure [5.18] The spontaneous radiation spectrum obtained by an otherwise identical
simulation with the modulating lasers turned off was subtracted from the lasers-on

spectrum.
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Figure 5.18: The VISA radiation spectrum in the vicinity of 32 nm as simulated
in PUFFIN. The spontaneous background radiation (with no laser modulations) has
been subtracted off.

The simulated harmonic envelope of the EEHG peaks in figure [5.18 is slightly
different from the one measured in the experiment (figure . This is likely caused
by slightly differing chicane and laser parameters which were allowed to vary in a
narrow range for the start-to-end simulation. It is also possible that a slightly dif-
ferent electron beam energy chirp and curvature contributed to the different optimal
configurations.

Nevertheless, the start-to-end simulation provides a representative spectrum for
those obtained in the EEHG experiments at NLCTA. In particular, the ratio of co-
herent emission to spontaneous emission (not shown) for the highest harmonics is
only a factor of a few in both the simulation and experiment. This initially surpris-
ing experimental result is confirmed by the simulations. The time-of-flight emittance
effect, discussed in section likely causes large portions of the beam to de-bunch
prematurely. This de-bunching happens both in the focusing lattice leading up to
the VISA and in the channel of the VISA itself, and seems to ultimately limit the
attainable high harmonics at NLCTA.
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It is clear from these simulations that the production of 32 nm coherent radiation
at the current NLCTA facility pushes the envelope of what is possible with that setup.
A more detailed study, or an effort to extend to even lower wavelengths, would require
modification of one of the factors which enter into equation [4.10] Perhaps the easiest
knob to tune is the focusing lattice, embodied in the factor (yr). A detailed study
of the focusing lattice for the final Echo-75 data was not performed however, so it is
unknown how close to the optimal configuration it may have been. Nevertheless, the
VISA undulator focusing is the one aspect of the lattice which cannot be substantially
altered. Similarly, barring the introduction of a new, state-of-the-art electron gun, it
is unlikely that the slice emittance could be lowered substantially.

The final tool, therefore, is to use the adiabatic damping of the beam emittance
with energy to compensate. An increase in the beam energy also has the added effect
of radiating on a lower undulator harmonic. While there are several practical barriers
to implementing a beam energy increase at the NLCTA, it seems clear from both
simulations and the experiments that this would be the most promising avenue to

extend the capability to produce high harmonic radiation.



Chapter 6

Stochastic Coherent Synchrotron

Radiation

If you don’t know where you're
going, you’ll end up somewhere

else.

— Yogi Berra

Coherent synchrotron radiation (CSR) is an important effect which needs to be
considered when designing modern FEL accelerators. The simple one-dimensional,
steady state CSR result was discussed in section [2.3.1] whereby an electron traversing
a bend creates a wakefield which can change the energy of other particles copropa-
gating with it. This one-dimensional theory is an excellent approximation in most
cases to the effect in modern machines, with only small corrections in the shape of
the wakefield arising for bunches with full 3D structure.

In practice, the full CSR-field is often computed in a semi-analytical fashion, by
convolving the numerically computed line density of the electron bunch with the
analytically derived one-dimensional wakefunction [132] [I33]. This approach accu-
rately produces the one-dimensional effect, but due to the analytic nature of the
wakefunction employed, typically does not capture all physical effects. Various nu-

merical schemes introduce more complexity [134] [135] or numerical efficiency [136],

153
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but generally proceed along similar lines and make various approximations to keep
the computation manageable.

Recently, however, advances in computing power have made it possible to brute
force solve the Liénard-Wiechert equations for a realistic number of electrons (=~ 10%)
tranversing a bend magnet [137] [I38]. These simulations make no assumptions on
the nature of the wake, and can be performed with one with one macroparticle per
electron in order to properly simulate any physical shot noise effects. Curiously, it
was discovered that the longitudinal electric field due to CSR became noisy at high
energies [I37], with its mean value being given by the simple 1D expression and
a standard deviation about this value which seems to grow quickly with ~. Since
the simulations are one-to-one, this noise is not numerical, and instead is due to
the granular nature of the particle distribution. In addition, the growth with -,
hypothesized in [I37] to be as 42, is alarming as it has the potential to become a
dominant source of scatter for high energy electron beams. We therefore endeavored
to uncover the source for this noisy CSR effect, and understand any role it may play
in limiting future accelerators.

Before delving into the mathematics, we first briefly give the form of the following
derivation. By carefully examining the 3-dimensional CSR field, we identify a narrow
cone of radiation whose dimensions shrink rapidly with 7, while the intensity of this
radiation cone grows with . By carefully considering the volume of this region, we
derive the mean number radiation cones a centrally-located electron interacts with.
Due to simple counting statistics, there is then a fluctuation about this mean value
given by the square root of the number of expected interactions. These counting
statistics fluctuations are found to be ultimately responsible for the noise observed in
[137]. After describing this field variation, we then extend the analysis to a diffusive
model in which, as an electron traverses the bend, it receives many longitudinal ‘kicks’
from this field variation, and therefore performs a diffusion in energy. These are the

essential physical mechanisms which we will now describe in detail.
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Figure 6.1: The 3D coordinate system used to describe the CSR radiation. The
radiation is emitted at retarded position P’ and received at the observation point A
(which has its 2D projection Ay). The observation point is offset from the nominal
circular trajectory by horizontal coordinate x and vertical coordinate Y. The vectors
5 and 7 respectively represent the tangent and perpendicular to the observation point
trajectory.

6.1 A Three-Dimensional CSR Model

We begin with a three-dimensional model for the CSR effect based on the Liénard-
Wiechert fields and extends the two-dimensional model by Huang, Kwan, and Carl-
sten [I35]. A similar model was also developed recently to handle off-momentum
particles by Cai [I39]. The model involves electrons moving on perfectly circular
tracks created by an ideal dipole magnet. In this model, there is no momentum in
either the transverse or vertical direction. The coordinate system used to describe
this motion, and subsequent radiation, is shown in figure In these coordinates

radiation is emitted by the particle P at the retarded position P’ at time ¢/, and
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received by particle A at position A and present time ¢, at which moment P is now
at P. The position of particle A is described then by the coordinates («, z,y), where
r=yx/Rand y=7T/R.

The radiation field can be computed via the Liénard-Wiechert fields at location

f: <a7 x? y)?

Era(Z,t) = 4;60% ﬁxp((gﬁ;l;f) : (6.1)

This is only the radiation component of the field, as we are not concerned with the

ret

velocity component which is only a short-ranged effect. The vector arithmetic is

facilitated by the following geometric relations,

ﬁ-ﬁ’:%(% [1+g—z— 2—(1+x)2D, (6.2)
2
fz-ﬂ_)':ﬂwl— (%) sin(n), (6.3)
2

n-5=sin(a+vY+n)+ 1—(%) -1, (6.4)

. yB\*
n-&=—/1- m cos(a+n + ), (6.5)
ﬁ-@=%, (6.6)
B 5= Bcos(a+1), (6.7)
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F.g= %C sin(a + ), (6.9)
5":% = _%ic cos(a + 1), (6.10)

where we also have the following geometric relations for 7,

(L2242 —1-%

cos(n) = ~ (6.11)
-9 /E_z — 2 ’
. . 1+
sin(n) = sin(a + w)wz— (6.12)
¥ 2
62

Finally, the angle 1 represents the retarded time condition, and follows the relation
v = PBp/R. Tt is related to the other physical coordinates (a,x,y) through the

following transcendental equation,

_2:1+y2+(1+x)2—2(1+x)cos(a—|—1/1)- (6.13)

32

It is this transcendental equation which creates the bulk of the difficulty in CSR
calculations, as it cannot be solved analytically. Various approximations, such as
expanding out the cosine, yield solutions with small domains of applicability, but
this procedure is increasingly less helpful for a three-dimensional beam. We therefore

leave the angle ¢ as implicitly defined by equation [6.13]
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The various electric field components can then be computed as,

q5* 1

E, =
dmeg R W (62(x+1)7zin(oc+¢) _ 1>3 [

sinfa + 1) (1 B+ Dsin(a+ w))

(4

Bsin(a + 1) <—Ié—§ + 22 + 22 + y2>

- (& - 17—yt 1) (<poosta+v) -

N Bz + 1) sin(a + ¢) cos(a + ) N

1 5232/2 _1>]’
N ;

N

(6.14)
_qp? 1 B%(x + 1) sin(a + )
“ 7 AregR2 B2(2+1) sin(a+1)) 3 [cos(a +v) ( ) B 1)
v <T -1
+ i (7 (o2 402) — 02 (2sinta +0) (o + Dsinta+0) - )

+ cos(a + ) (B? (z(z +2) + ) — wQ))] ,

(6.15)

- B2+
YT AmegR2 2 () — B2 (x + 1) sin(a + )

(6.16)

where E, = E - s, B, = E-# and E, = E- 7. While messy, these expressions allow a
reasonable computation of the CSR fields to be performed.

A noteworthy aspect of these fields, first identified in Ref. [135], is the denominator
which gives rise to a sharp, trough-like feature primarily in the 4z, —a direction. The
two-dimensional cut of this trough feature for the longitudinal field E; is shown in
ﬁgurein scaled coordinates where E = F/(q/(47%epy?)), & = /2, and & = a/~>.
Due to the presence of the same denominator factor, a similar but not identical trough
feature exists in the transverse x and y fields as well. Introducing the scaled vertical

coordinate § = y/?, we visualize the full nature of the ‘tube’ by plotting the E,=—2
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5

Figure 6.2: The trough feature viewed in the (Z, @) plane in scaled coordinates. The
scaled minimum is at E™! = —4. Note that there are significant, close-range fields
near £ = & ~ 0 which we do not discuss in detail.

contour in figure (as seen in equation , the low point is E, = —4). Already
we can see the opening in the vertical dimension as well as the constant width in the
a dimension.

As this trough feature is an interesting long ranged feature of the CSR field, we
study it in more detail. To begin with, its location is easily found in ¥ to be given

by,

Yy = By z(x +2), (6.17)
And the value of the field at this trough (y = 0) is found to be,

—qf*y*

Fla — 1
* omeoR? (1 +x)

(6.18)

Since in general z < 1, the trough can be considered infinite in extent and with nearly
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0

Figure 6.3: A three-dimensional contour (E, = —2) of the radiation tube in scaled
coordinates.

constant amplitude which scales as v*. This simple observation yields a potential path
towards explaining the field variations observed in numerical simulations. If there is a
region in field space with finite volume which scales inversely with v to some power, as
v is increased fewer and fewer particles populate this region. Due to simple counting
statistics, there will be a variation in the realized field due to the finite number of
particles IV, sampling the region, which will scale as \/ﬁp. Depending on the exact
scaling of the volume and amplitude of this region, it is possible to get a noise term

which grows rapidly with v simply due to particle granularity.
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We take this tack to explain this phenomenon. What we would like to compute

/ E.. (6.19)
Trough

However, due to the complicated form of FE,, analytically computing this integral

is,

is out of the question. Instead, we approximate the value of E as constant in the
trough at E from equation m There is of course a geometrical factor accounting
for the real non-constancy which we refer to as g. The task is then reduced to finding
the volume of the trough region in 3D. By examining the bounding countours of
the trough volume, we will compute its volume and hence the expected number of
particles in this region, thereby deriving the variance as described above.

As a preliminary, we examine the net contribution of the trough to the electric

field, we can rewrite in terms of the coordinate n and compute, at fixed x¢ > 0,

0o 3m/d—z0/2 dev
/ Eq(a, zo,0)da = / Ey(n, xo,0)—dn. (6.20)
—oc0 7/A+ao/2 dn
Note that the limits of 00 should not be taken literally due to the 27 periodicity in
« — in practice, all contributions have decayed by a ~ 1. The transformation from
a to n variables allows us to bypass the transcendental condition on 1 and compute
this integral directly. It turns out that the inner trough portion of this integral from
n=15- %, 7+ %] contributes —2+, while the wings as a« — *o0 each contribute ~y
and the entire integral vanishes. Therefore, for a uniform beam, the trough feature
does not contribute to the radiation field. This result is complimentary to the well-
known 1D result that ffooo Es(c,0,0)da = 0, that a uniform beam does not radiate
(this is trivially true for the 1D case as evidenced by the total derivative in equation
2.102). Even for a Gaussian beam, if the longitudinal extent is much larger than the
longitudinal scale ~ v73, the net contribution is small, and the primary function of
the trough is therefore to contribute to the variance around the deterministic CSR
solution.

Turning now to the question of the volume of this region, in the («, z) plane this is
easily found [135] where sinnp = . One finds that the width in o , At = 4/(3+?), and
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we can consider the trough infinite in x extent. To investigate the vertical behavior, we
restrict to the ‘bottom’ of the trough by setting a = ar = arccos [HL:J —/B\/m,
and note that it is bounded in a by a4 (z) = ar £ #

At this point, we make the qualitative distinction between a ‘large’ and ‘small’
beam in vertical extent. For a large beam, we expand out the electric field in the
vicinity of the trough to second order in y gives the following approximate bound on

the vertical extent of the trough,

y+(z) = iQ\/g\/TE- (6.21)

Thus, the vertical extent scales as v~ ! for a large beam. By contrast, a ‘small’ beam
is not large enough to sufficiently sample this vertical extent, and it is as though the
trough is constant in the vertical dimension. The precise meaning of this qualitative
distinction will now be made clear. In the context of classical synchrotron radiation,
this scaling is simply a different way of seeing the 1/ opening angle of the radiation
[25].

We now transition the discussion from the electric field due to a single electron to
the contribution from the entire electron bunch. The electric field given above is the
electric field due to an electron centered at the origin, and the total contribution at

any point can be computed as,

Np
E.ZOT<057 x7y> :ZES(OQ — o, —X,Y; — y)
i=1 (6.22)

M} /p<04/7 x/a y,)Es(O/ - Q, z' — L, y/ - y)da/dx/dy/,

where in passing to the continuum limit we introduce the density p(«,z,y). For
a symmetric particle distribution, however, p(—a, —x, —y) = p(«a, z,y). The above
integral can therefore be understood by integrating the particle distribution over the
single-electron electric field. In this language, we therefore refer to particles being
‘contained within the trough’, even though in more physical terms, what is meant

is ‘particles whose trough intersects the point of interest’. This symmetry argument
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allows for the much simpler computation of the total fraction of electrons contained
within the trough region.

Assuming a Gaussian distribution defined by the scaled rms quantities o, =
o..r/R and likewise for y and «, where o, p is the physical rms width, we have

the fraction computed as,

00 y+(z) oy (z)
f= [ [y [ daptay.a) (6.23)
0 y(@)  Ja (@

where for the Gaussian distribution, in terms of the scaled variables, centered at

r=y=a=0,
— 20z 20 204 . 624
p(aja Y, Oé) (277)3/20'950'@;0'04 e Y ( )
For large «, the a integral can be simplified by noticing that ay(z) ~ ——\/_x3/2

Remarkably, this integral admits an analytic, exact solution in terms of Bessel and

hypergeometric functions with only this mild assumption on a(x), and is given by,

=—1 V2
fﬁ 1 2\/_ O'Gl"f(z,wgia) 9\/§I‘ 3 » 1 3‘1 5.8571
- \/%0'1_ 4 2472 2747
5) 35378
— 8=V (2 LR (5,52 -
(4> (4’4’2’4’

8\/_u_1 3 2

729v03

9
-1 4="1 459*1 7976202
62 +45) Ly (—— ) [e Z

Where we have introduced the (dimensionless, as all o are scaled variables) parameter,

[ (16271 +63)1

1
1

S

(6.25)
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(6.26)
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In light of equation[6.21] the case of = < 1 is essentially a 2-D beam, where the vertical
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extent of the radiation trough plays no role over the entire beam. By contrast, for
= > 1, the beam’s vertical size is much larger than the radiation trough — as far as
the radiation trough is concerned, this is a beam which is infinite and uniform in y

extent. In these limits of large and small = we have the simple solutions for v > 1,

16 Y27 (27v2030(F) - 1608 ( )

=1
3/2~453 &
F=1, 2413V§ viodoy ~ . (6.27)
erf (6\/%3%) =1

The incredibly complicated expression of equation [6.25[is reduced to this extremely
simple form in these = limits. Of particular note is the fact that f(Z > 1) ~ 74
while f(Z < 1) ~ y73. Given the interpretation of = as the effective dimensionality
of the beam, these scaling results agree with the preliminary trough volume study.
Having described how the volume of the trough is populated by the electrons, we
now can state that (again, due to simple counting statistics) there will be a variance
in the field due to the number of electrons populating it. In particular, the variance

in the longitudinal electric field can be expressed as,

op, = gEr\/fN,, (6.28)

where N, is the total number of electrons, EI is the value of the E-field at the
bottom of the trough (equation , and g is a geometrical factor to account for its
non-constancy over the trough (¢ = 1/4 in the assumption that the trough is a 2-D
pyramid, g = 4/9 for a parabola, and g ~ 0.73 for a Gaussian to +10, etc.).

We briefly recapitulate how we arrived at equation [6.28] By assuming the electric
field is constant across the trough region, we reduce the problem to finding the fraction
of electrons contained within the trough: f. Having computed this for a Gaussian
distribution, there is a counting variance proportional to the strength of the field and
the square root of the number of particles \/m in the trough. Thus we are able to
immediately write down equation [6.28]

With equation [6.28 in hand, and since ET ~ 4%, we can immediately write down
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Figure 6.4: The normalized electron trough fraction as a function of a = xy/0, for
the cases 2> 1 and = < 1.

the scaling with energy in the different = regimes,

2 E>1
! (6.29)

O'ES ~ .
¥ EK ]

This is in agreement with the results of [I37], wherein it was computationally shown
that og, ~ 7% with simulations in the Z > 1 regime. This preliminary result supports
the conclusion that this variance could potentially become a problem at high energies.

These results, due to the form of the integral [6.23], have only applied to the center
of the electron bunch. By shifting p(z,y, a) = p(x—x0, y—yo, ®— ) wWe can compute
the quantity f for off-center particles. In practice, we are most interested in those
with zy # 0, so we restrict the analysis to p(x —xg, y, @). As before, analytic solutions
are available in the large and small = limit, and can be expressed in terms of the ratio
a =x9/0,. As with equationhowever, their form is not particularly illuminating.

Particularly useful solutions are available in the realistic limit that o2 > o3 as,

_a? .1.4% \/ial“(é) .3.4% )

erf(ﬁ>—|—1 =K1
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Due to the complicated nature of the hypergeometric functions, the normalized elec-
tron fraction is plotted in figure . The general trend is that f(a) is larger for a
positive, and quickly goes to zero for a negative, implying that the noise contribution
to the CSR field is larger for electrons on the outside of the bend than those on the
inside. Intuitively, given the field of figure |6.2] since the trough feature extends only
to positive x, those electrons on the outside are exposed to more of these features,
thus leading to a greater noise contribution. Notably, the noise contribution grows
much quicker in the Z > 1 limit, whereas for = < 1, the noise levels off around a ~ 2.

This distinction is in accord with intuition based on the different = limits and the
opening angle of the radiation cone. For = < 1, all electrons are essentially in the
y = 0 plane, and therefore the opening of the radiation in the y plane has no effect and
only increasing the number of electrons visible through an increase in x matters. By
contrast, for = > 1, there are y # 0 electrons which sit below or above the receiving
particle. One must therefore go far enough out in x that their 1/ opening angles
intersect the y = 0 plane for their influence to be felt. It is this distinction that gives

rise the steady increase in f(a) with a for the = > 1 case.

6.2 Fluctuations in Particle Energy and Emittance

Growth

Having fully described the variance of the longitudinal field, the question now arises as
to how this field variance affects the electron distribution. In particular, equation [6.28]
gives the variance due to a particular electron configuration, but does not include any
information on how this configuration evolves as the entire electron bunch traverses
a bend magnet.

Recall that the coordinate system of[6.1]is a co-moving coordinate system with the
electrons as they traverse a bend of constant radius. In general, only the particle on
the reference trajectory will remain at constant coordinates as it traverses the bend.
We model the electron beam as monoenergetic, so all electrons travel on tracks of

the same radius R, although their center-points are offset from one another by their



CHAPTER 6. STOCHASTIC COHERENT SYNCHROTRON RADIATION 167

initial coordinates. Due to these offset centers, their relative displacements from the
reference trajectory change as the bend is traversed. In the picture of [6.2] electrons
at initial coordinates (o, z9) move on distorted tracks as the bend is traversed. The
exact form of the tracks is computed from the simple offset-circle trigonometry. Note
that we also consider a beam with zero emittance, such that the particles do not move
in y.

The interpretation of this motion, however, is that electrons which originally pop-
ulate the trough region will, after some distance through the bend, leave the region
and be replaced by a new set of particles. The frequency with which this happens
is referred to as the ‘refresh rate’ for the CSR trough. Intuitively, particles closer to
the central particle will refresh much slower than those further away, and an average
needs to be taken. The particles drift primarily in the o dimension with a ‘velocity’

given by simple geometry as,

da  xg
- ~ = (6.31)
where recall that x( is already scaled to the radius R, and we have omitted a small
term quadratic in the offset agy. The trough is of constant a extent Aa = #, SO we
define the distance z. it takes for a particle at xy to cross the trough as,
Ze = Sj?io' (6.32)

We now seek to define an average crossing distance over the entire electron bunch:

Z = (z.). The naive expectation for this average,

_ 7
zZ =

Uf% /0 %exéﬂ%@m, (6.33)
is formally divergent for small z. Fortunately, nature provides a lower bound cutoff
for this integral. As the electron bunch moves through a bend magnet for only a finite
angle ©, and hence a finite time, those electrons with small x4y will not have enough
time to traverse the trough region. Therefore, we can define a minimum coordinate

b such that through an evolution of angle © this particle will have enough time to
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traverse the trough as,
4

T390

This provides a lower-limit to the integral of equation [6.33] and allows its evaluation

b (6.34)

to a solution for small ratio b/o,,

zZ= %’73% (—'yE +log2 —log a%) : (6.35)
where vp ~ 0.577 is the Euler-Mascheroni constant.

This is the average arclength it takes for the electron distribution in the CSR
trough to refresh. A physical meaning of Z is that if we observe the longitudinal
electric field at the center of the bunch as it traverses the bend, the fluctuations in
that field will have a characteristic length scale Z.

To tie this result back to the variance of the longitudinal field for a single distri-
bution, we approximate the dynamical motion of the electrons into and out of the
trough region as a binary process. At arc position zy, the distribution is in state S,
which pulls one particular sample from the variance of equation [6.28 At position
zo+ Z, the distribution is now in state &1, which is assumed to be independent of &,
and pulls a new, uncorrelated sample from equation [6.28] Of course, the distribution
G, is not independent of &, and is instead the direct temporal evolution of it. How-
ever, since we are only concerned with a small volume in space, we can treat these
two as independent since those particles which have not entered or have already left
give approximately zero contribution.

One caveat here is that the form of the distribution & is assumed to be inde-
pendent of arc position z. For example, if & is a Gaussian in z and «, its standard
deviations o, and o, are assumed independent of z. In reality, this is not true given
the geometric model described. Given that each particle moves on circular trajecto-
ries with merely offset centers, not different radii, an initially Gaussian bunch will
deform under transport. In effect, the bunch does not rotate along with the circular
trajectory, and so becomes skewed as the two dimensions mix.

This situation is illustrated in figure In this example, o, = 1079 while
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Figure 6.5: An uneven electron beam is geometrically skewed in the bend magnet.
Subfigure a) shows the mean electron trajectory in green, with the superimposed
electron distributions at four separate points. As the electron beam does not rotate
with the track, its dimensions in the (z, ) plane distort, seen in subfigure b).
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0, = 3 x 107°. As the distribution distorts, in particular, o, becomes significantly
larger, which alters the mean 1-dimensional CSR field.

This complication can be avoided if this geometric effect is kept small compared
to the rms beam size. The requirement on the rms distribution can be represented

by the expression,
0, sin(O)

V14 02+ 20, cos(0)

for a total evolution angle ©. The geometric effect is also irrelevant under the stronger

Oo > (6.36)

condition o, < g,, and we restrict our analysis to situations in which this holds.
This model is then essentially that of a random walk with discrete step size zZ and
step amplitude og_, from which we can directly write down the diffusion in energy &

experienced by the central particle as,
g = qop,V2Z. (6.37)

Again, in the language of the random walk, here z/z is the number of steps taken,
while the kick per step is given by og z (the variance is approximated as constant
over the refresh distance). We briefly note that the Z which defines the random walk
step size is not necessarily identical to the trough-crossing z derived in equation [6.35|
There may be a small discrepancy constant between the two, although equation |6.35
captures the fundamental scaling of this parameter with both o, and ~.

The diffusive character of this effect is evidenced by the fact that it is proportional
to /2, which is of course by construction. Due to the step size from z, however, the
~ dependence is altered from the field variance of equation Although the effect
seemed to grow quickly with v when observing the field fluctuations, the important
physical effect, the energy change, grows only between /2 and v depending on the
dimensionality (=) of the beam. This observation casts doubt on the initial hypothesis
that this stochastic effect may become competitive with other diffusive effects such
as ISR (eq. at high energies.

Nevertheless, this fluctuation in particle energy causes an increase in beam emit-
tance as the bend is traversed. Unlike the average CSR field effect, given in the 1D
approximation by the wake [2.16] this effect cannot be removed due to clever choice
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of optics [52]. Assuming the emittance growth is small compared to the original

emittance, this growth can be written as [16],

Ae= L (%)2 (H), (6.38)

where H is the well-known dispersion invariant,
H =y + 200 + B, (6.39)

where «, 3, are all Twiss parameters, not relativistic parameters. The function H
comes up often when discussing emittance growth in dispersive systems, and indeed
the steady-state beam sizes and energy spreads in a storage ring are proportional to
it [16]. Despite its relative importance, it is still known simply as ‘curly-H’.

The final conclusion is therefore that the emittance growth through a bend scales
somewhere between v and ~? for the stochastic CSR term. By contrast, the ISR
effect (eq [4.1)) scales as v*. As before, this suggests that this new stochastic term
is not of dominant importance at the high energy range for bunch compressors in
X-FEL systems. However, the emittance growth will also be proportional to the
beam density through the various beam sizes o, , , which are packed into equation
[6.37. This causes the stochastic CSR effect to have more in common with Intra-Beam
scattering (discussed in section than ISR.

6.3 Comparison with Liénard-Wiechert Simulations

Having developed the analytical theory to explain the original surprising simulation
results of [I37], we now turn to a comparison between these results. The simulation
code we use is the same as was used in the studies of [I37] and [I3§], which is based
on a massively parallel solution the Liénard-Wiechert equations. This parallelization
enables the code to run efficiently on large distributed clusters, and thus model a
physical number of electrons for realistic beams. The main difficulty, finding the
retarded time corresponding to a given observation point, is solved by first performing

a crude bisection search to approximately find the retarded time and then employing
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a secondary root-finding step (Newton’s method) to achieve a relative accuracy in the
retarded time of 10710,

In this model, the particle trajectories are all known beforehand as perfectly cir-
cular trajectories due to the bending magnetic field. Thus, the equations of motion
are not solved for the electrons. Rather, their position is simply advanced along this
predefined track. In this way, there is no reaction to the electromagnetic field by the
electron bunch, and its distribution can be considered ‘frozen’ as far as analytical
calculations are concerned (although, the geometric distortion effect shown in figure
is still present). The program computes the electromagnetic field resolved into
velocity and radiation components on a cartesian grid at an arbitrary location. For
the time being, however, we are primarily interested in the longitudinal radiation
electric field for comparison with the above model.

The first point of comparison is in the variation in longitudinal electric field, which
is computed from equation [6.28, We also adjust the electron bunch to live in either

I

= extreme limit to facilitate the comparison. The electron beam used has a charge
of 10 pC, and is therefore composed of 6.25 x 107 electron macroparticles. The bend
radius is taken to be one meter. For this study, we sample the longitudinal electric
field at the bunch center only. The results of this simulation and comparison to the
analytic expression from equation [6.28| are shown in figure [6.6]

The simulation with 2 < 1 has 0, = 1x 107, 0, =5x 1077, and 0, = 1 x 1077,
while the = > 1 has 0, = 5x 1077, 0, = 1 x 107, and 0, = 1 x 107*. For each
v, 500 realizations of the electron distribution were used to compute the standard
deviation in longitudinal electric field. The error bars in the simulation data points
represent this finite sample size. The analytical curves are based on the full expression
from equation [6.25| rather than the limiting expressions, and a value of g = 0.33 is
assumed for the each calculation. Due to the extreme dimensions in the = > 1 beam,
simulations above v ~ 2000 become significantly noisy and therefore the curve was
only computed up to this point.

The analytical result is in extremely good agreement with the simulation data,
although the arbitrary nature of ¢ should be understood to essentially provide a

scaling adjustment on these curves. Nevertheless, the fact that ¢ = 0.33 is used for
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Figure 6.6: Comparison between theory and simulation for the longitudinal CSR field
in both = limits as a function electron beam energy . All other parameters are fixed.
The error bars are uncertainty estimates due to the finite number of simulations (500).

both cases demonstrates that it is not a free parameter. Note, however, that the
magnitude of the fluctuations for = < 1 is approximately two orders of magnitude
lower than for = >> 1, which is generally attributed to the extra factor of v'/2.

We also simulate the field in off-axis locations to test the radial dependence of

equation [6.30, The results are shown in figure for both a = > 1 and = < 1 case.
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Figure 6.7: A comparison of the off-axis field variation og, (a), normalized to its
central value op (a = 0) for both = > 1 and = <« 1 bunches. The error bars
represent a 1/+y/Ngy, variation in the results of 5000 independent simulations.

Both simulations have E = 500 MeV and a bend radius R = 1 m with 6.24 x 10°
particles and o, = 0, = 107°. To achieve the different = limits, the = < 1 simulation
has 0, = 5x 1077 while Z > 1 has 0, = 4 X 107°. The agreement between simulation
and theory is excellent as much of the theoretical uncertainty, contained in the g
factor of equation |6.28] is normalized out.

Having verified the analytical model for the static field case, we turn to the evo-
lution of the field through the bend. For these simulations, we take the electron
beam to have an energy 200-350 MeV and low charge 0.5 pC, which then evolves
through three degrees of a 1 m bend magnet. The evolution proceeds in discrete
steps of size dz &~ 25 pm, which is sufficient to resolve the noise structure at these
low energies. From equation |6.35} even the highest energy simulation with £ = 350
MeV has z ~ 800 pm. The electron beam for this study has o, = 0, = 1 x 1075,
and 0, = 1 x 1075, For each beam energy, 100 separate runs are performed to de-
velop statistics for resulting normalized diffusion in energy, and are compared with
the analytical results in figure

This diffusion is normalized to the mean energy of the electron bunch, which

highlights the fact that it scales as predicted with +. The analytical curve is produced
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Figure 6.8: The cumulative diffusion in energy, normalized to the mean electron
energy, due to the longitudinal field through the bend. The four averaged simulation
curves are shown for each energy are each computed from 100 separate realizations
of the electron beam. The 200 MeV analytic curve from equation [6.37] is shown in
magenta.

by choosing the ambiguous g factor as before to be ¢ = 0.33 which produces good
agreement in the calculation of simply op,. The analytical result thus differs from
the simulated curves likely in the discrepancy between the z definition of equation
[6.35] and the fixed-time random walk definition of Z which is referred to in equation
637 Although the two should be (and are clearly) related, there is likely an O(1)
factor to convert between the two that needs to be established empirically.

Nonetheless, the curves are clearly proportional to y/z, which provides evidence for
the random-walk like character assumed in the theoretical model. Note that this case
has o, = 0, which was explicitly chosen to remove the complication of a z-varying
Gaussian distribution (figure [6.5)).

We can also test the o, dependence of the solution by varying this parameter.
In order to ensure a z-invariant Gaussian, o, < o, should be maintained however.
Several different evolution curves for various values of o, are plotted in figure [6.9]
These simulations have £ = 200 MeV, 0, =5 x 107°, and 0, = 107, and 6.24 x 10°

particles, or 1 pC of charge. The various computational curves are the deviations
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Figure 6.9: The cumulative diffusion in energy for various values of o,. Each compu-
tational curve is the result of 100 separate simulations. The dashed scaled curves are
taken from the o, = 5 x 107° and scaled according to equation and The
theory curve is the pure result from equation

produced by 100 separate runs as a function of the transport distance z. The scaled
curves represent the o, = 5x 107 curve scaled according to the theoretical prediction
for z of equation [6.35] These scaled curves accurately reproduce the o, dependence,
confirming that the the full o, dependence, including the logarithm, of equation [6.35
is correct.

Finally, the pure theory curve is presented for the o, = 5 x 107° case. As men-
tioned before, due to some ambiguity regarding a constant factor with z, this curve
is relatively close but does not exactly match the computational situation. Given the
myriad approximations that enter into this curve, however, and the verification of
the scaling of this curve with o, and ~, this is reasonable agreement. In comparison
with simulations, it appears that z — z/2 accurately reproduces the computational
curves. This suggests that the correct transition from a full-width trough crossing
value of z to a random-walk z differ by approximately a factor of two. This empirical

fact could be employed to obtain more accurate results from equation [6.37]
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6.4 Implications for Current and Future Facilities

Having established the theoretical model and compared against full simulations, we
seek now to take stock of the importance of this effect. From the numerical examples
presented in figures and [6.9] the absolute magnitude of this effect seems to be
quite small. This is especially true when compared with another source of stochastic
energy spread in high-energy bend magnets: ISR. We should therefore consider this
new effect in comparison to other deleterious effects.

In addition to ISR, the closely spaced electrons in the bunch can perform multiple
small-angle Coulomb scatters in which emittance can grow. This process is known as
Intra-Beam Scattering (IBS), and can also lead to emittance growth at high energy.
The theory behind this effect has been worked out for some time, and numerous
formulations exist [140] [141] [I7]. The exact formula are complicated, but the effect

is generally characterized by a rise time 7" such that,

L_ 1 dve (6.40)

T e dt
The fact that the effect is usually characterized by a rise time is evidence that it is
typically important in ring machines only after many turns. A useful approximation

for high energy beams has been given by Bane [142] as,

1 r2cNA

- 3/4 3/4
Ty 167363/ ey/ Os0p€xy

(Hayugoane (7) (B84, (641)

where A is the Coulomb logarithm, o, is the relative energy spread, oy = o, 2 4

Hefex + Hyley, a = ogy '\ Be/€x, b = ouy'/By/€,, and we have the function

definition,

AVE B du
ane = ) 42
) = L [ e e (6:42)

A similar timescale for dilution of the slice energy spread can be worked out with
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1/T, = 0, 'd(0p)/dt, and,

1 r2cN.A a 1

. e e —-1/4
T, 167363/462/40 o3 (TG (Z) (B0 (6.43)
xT s¥p

Despite all this complexity, the v* dependence of the prefactor is evident, suggest-
ing that IBS can be dominant for dense beams in moderate energy environments. A
simplified model of the IBS effect for a cylindrical beam yields the more useful energy
spread growth rate [?] [106],

I Te
dz 2 IA f)/zo'a:,yeN .

(6.44)

In contrast to ISR, but with similarity to the effect of this chapter, is the depen-
dence on the beam density. In a dense beam limit, there may therefore be competition
with IBS even at relatively moderate beam energies.

To investigate, consider the variation with the radial beamsize, which from equa-
tion is clearly o, /2 In the small beam limit (2 <« 1), f is independent of o, and

thus the only contribution comes from z, which varies like log(o,)/0,. This implies
that the diffusion due to the stochastic CSR effect scales as 1/ ol! 1 depending on

the details of the logarithm. This compares favorably to the density dependence of

Y 2, while for

the stochastic CSR effect we have in both Z limits (assuming 02 > 03), o¢ ~ 04 /.

the IBS. In the longitudinal dimension, again, IBS is proportional to o4

Finally, we note that the IBS effect actually falls with energy (or is constant, depend-
ing on whether one observes relative changes or not), while the stochastic CSR term

1/2~1  Thus, the stochastic CSR effect combines the density dependence

grows with ~
found in IBS with some of the energy dependence found in ISR.

In the comparison to IBS, one sees that there is actually quite a similarity be-
tween the two effects. IBS is caused by multiple small-angle scatters off the Coulomb
field, which was immediately dropped from the Liénard-Wiechert expression in our
calculations. The effect described in this chapter, by contrast, is essentially due to
the scattering off multiple synchrotron radiation cones from the radiation portion of

the field. In this sense, these effects can be viewed as two sides of the same coin:
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stochastic based scattering of the electromagnetic field.

As a concrete example, consider the first bunch compressor for LCLS-II. We as-
sume a bunch energy £ = 250 MeV, ey = 0.1 pm, o, = 100 pm, and o,, ~ 50pm.
For the final bunch compression magnet, we take p = 2.0 m with a length Ly, = 0.2
m. For these parameters, the stochastic CSR effect produces an energy variation
og ~ 130 eV, while ISR produces an energy spread of of5% ~ 8 eV. Although IBS is
a cumulative effect that occurs even outside bend magnets, in the final magnet alone
it produces og ~ 2000eV.

This suggests a hierarchy of effects which rise and fall in importance along the
length of the accelerator as both energy and beam density change. For example,
due to the rapid scaling of ISR with energy, by the second bunch compressor ISR
dominates over the other two effects in an LCLS-II like scenario. Nevertheless, this
numerical example shows that the stochastic CSR term may not be irrelevant in all
cases. Whether or not there exists an existing or planned setup in which it is the
dominant effect, however, is unknown at this time. One possible candidate, though,
is the dense, energetic beams which are often produced via plasma acceleration [143].
These beams can have extremely small emittances, high currents, and substantial
energies. Therefore, there is potentially a zone in which the energy is not so high
that ISR dominates, but high enough that the stochastic CSR term overwhelms IBS.
Future high density plasma-derived beams may therefore be limited by the stochastic
CSR effect when using dipole magnets to manipulate the beam.

Finally, the arguments which led to the derivation of the stochastic CSR effect
apply equally well to several related problems. The most obvious is to the horizontal
and vertical fields in a perfect dipole bend, which should share a similar variance.
This transverse field noise would directly couple to emittance growth, and could po-
tentially dominate over the longitudinal effect. We also acknowledge that a similar
diffusion effect should exist in undulator magnets. The finite radiation cone of un-
dulator radiation should provide a similar particle granularity effect, resulting in a
noisy electromagnetic field. Analysis of this situation is complicated by the more
complex trajectory which may render the geometric approach employed in this chap-

ter fruitless. In retrospect, it is only through the simple circular geometry and clever
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coordinate choice that workable analytical results were able to be obtained even with
all the simplifications employed. One method of attack which may prove fruitful is to
describe the effect as Compton scattering off a finite number of photons, rather than
the classical picture employed here. This should capture the same essential physics

through a different lens and result in agreement between the two approaches.
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Conclusion

I think this is the beginning of a
beautiful friendship.

—Rick Blaine, Casablanca

This thesis has dealt with the production of, and issues surrounding, high bright-
ness electron beams. The majority of this work has centered around the production
of an EEHG beam containing high harmonic content at the NLCTA facility. Through
enabling instrumentation and technologies developed in this thesis, we were able to
demonstrate the upconversion of a 2400 nm conventional laser to electron bunching
at 32 nm. This represents a harmonic factor increase of 75 in a single seeding stage,
which offers tantalizing prospects to seeding a full-blown FEL in the soft X-ray.

As conventional laser pulses at 266 nm, produced from a frequency tripled 800 nm
Ti:Sa laser, are readily available, a factor of 75 in harmonic increase puts the target
bunching wavelength at 3.5 nm. This wavelength sits solidly in the soft X-ray regime,
and in contrast to the cascaded setup employed at FERMI [71], can be achieved
in a single stage. The utilization of a single stage allows an EEHG signal which is
more robust to electron beam imperfections than cascaded HGHG [76], making it an
attractive alternative for generating stable, fully coherent pulses.

The experiments reported on in this thesis not only confirm that EEHG bunching

can be produced at high harmonics, but also serve as a scaled experiment for larger
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machines. The energy modulations employed, AF =~ 100 keV, are similar in magni-
tude to those which would be used at an FEL facility. Due to the relative coldness of
the NLCTA electron beam, o ~ 1 keV, the scaled EEHG parameters (A, B) differ
dramatically from those which would be used at a larger, more energetic accelerator.
Nevertheless, the absolute values of the energy modulations and chicane Rss values
are relatively similar to those being considered in, for example, the FERMI study
of possible EEHG configurations [126]. In this sense the NLCTA results provide a
representative proof of concept for EEHG at high harmonics.

Along the way to ultimately obtaining radiation at 32 nm, emittance related
smearing effects were observed to severely limit the harmonic upconversion efficiency.
Fortunately, this main obstacle does not seem to be a limiting factor at larger facilities.
Although the target radiation wavelength, say 3.5 nm, is smaller by a factor of 9,
both the beam energy and averaged beta function are significantly larger at full-scale
facilities. From equation [£.5 and recalling the extraordinarily small § of the VISA
undulator, the scaling with facility size seems favorable to overcome this emittance
effect. Furthermore, in a facility with significant gain, the length L in equation
need only be of order the gain length as the FEL interaction will compensate for small
amounts debunching.

In contrast, energy smearing effects such as IBS, ISR, and the newly derived
stochastic CSR, were exceedingly small at the NLCTA due to the low beam energy in
the magnetic chicanes. These effects, however, are well known and can be designed
around by clever design of the chicanes and beam optics. So while many of the
problems that would be faced by a full fledged EEHG based FEL were dealt with in
the course of this thesis, there exist some which were unimportant at the NLCTA but
would be of concern at high energies and vice versa.

Beyond merely generating radiation at high harmonics, we established several dif-
ferent methods of generating multicolor radiation pulses using EEHG. One method
is to generate distinct regions of HGHG and EEHG bunching on the same beam and
tune their separation by varying the electron beam energy chirp. The other method
involves choosing a degenerate EEHG configuration where multiple |n| modes are

present and again adjusting the linear beam chirp to provide wavelength separation.



CHAPTER 7. CONCLUSION 183

While we were able to make a cursory verification of these configurations, neither the
facility nor the experimental program was designed to provide a thorough investiga-
tion.

In particular, a facility with a zero-crossing accelerating cavity immediately prior
to the EEHG manipulation sections would allow for a much more exhaustive study of
these effects. This would allow a much finer scale control of the wavelength spacing
of the produced sub-harmonics. Furthermore, the EUV spectrometer constructed as
part of this thesis was not designed to perform high resolution measurements, but
rather as a gain-driven device to detect small signals. As its operation resolution was
observed to be somewhat large (0A =~ 0.2 nm), it is not an ideal tool for measuring
subharmonic spacing. A dedicated, high resolution spectrometer would allow for
the detailed analysis of these schemes, including the possible production of radiation
sidebands contained within a representative FEL bandwidth ~ p. The most likely
scenario is that these measurements would be carried out in the VUV, similar to
figure in order to work with more stable harmonics as well as to facilitate the
use of a higher resolution spectrometer.

The NLCTA facility is not large enough to develop a reliable microbunching insta-
bility (UBI), so simulations were performed to investigate the response of an EEHG-
seeded FEL to this instability as well. These simulations agree well with analytical
theory which states that the EEHG parameters can selectively excite or damp certain
modulation wavelengths. Given a broad-band source such as the microbunching in-
stability there exists the possibility of tuning the EEHG configuration to excite only
the desired multicolor spectrum. This is fundamentally similar to using the laser
heater suppression to selectively frequency mix UBI elements into the HGHG-seeded
FEL to provide a multicolor seed [129]. In the EEHG configuration, however, the
control of two sets of lasers and chicanes provide a greater range of tunability for
this type of configuration. As before, a larger facility with a tunable laser heater and
EEHG setup would be better equipped to experimentally explore this possibility.

Finally, while the analytical theory and simulations behind the stochastic CSR
effect were presented in chapter [6] not all aspects of this phenomenon were discussed.

Chief among these are the contributions due to the vertical and horizontal electric
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fields. Since both fields contain the same denominator term which is responsible for
the trough, they too should contain a noise term. These noise terms would act di-
rectly on the transverse dimensions of the beam, rather than coupling to the dispersion
through the factor H. It is possible, therefore, that they may represent a compara-
ble or larger effect compared to the longitudinal growth term which was thoroughly
discussed. Further analysis should determine regimes of dominance for this various
effect, and whether they may need to be considered in dense beam facilities.

The larger question of the effect on the beams in realistic facilities remains open
as well. Although we have tried to give some accounting of the various scalings, and
example magnitudes, a comprehensive analysis of existing electron beams is lacking.
From the theoretical point of view, one would like to find a facility in which this
effect is substantial enough to be measured and verify both the analytical theory and
simulations. This confirmation would lend confidence to efforts to mitigate the effect,
through, for example, deforming the beam shape, should the stochastic term ever

become a major source of emittance degradation at a future facility.
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