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The governing equation of primordial gravitational waves in de Sitter space takes the form

of a harmonic oscillator with a time-dependent frequency. The Ermakov-Lewis invariant of

this time-dependent harmonic oscillator is obtained using the mode solutions of the primordial

gravitational wave and an auxiliary equation, which is dual to the mode equations, in de Sitter

space. Additionally, the dual symmetry of the mode functions of the primordial gravitational wave

is briefly mentioned by employing the invariance of the Schwarzian derivative.
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I. INTRODUCTION

It is widely accepted that an accelerating phase in the
early Universe is crucial for understanding the history
of the Universe and explaining cosmic background radi-
ation (CMB) anisotropy, large-scale structure (LSS) and
primordial gravitational waves. The CMB anisotropy,
LSS formation and the primordial gravitational wave are
known to have been seeded by the quantum fluctuations
in an inflationary period.

The governing equations, commonly referred to as the
Sasaki-Mukhanov equations [1, 2], which are responsi-
ble for the CMB, LSS, or primordial gravitational waves
are presented in the form of a time-dependent harmonic
oscillator (TDHO). The TDHO appears quite often in
the branch of physics for example in optics, black hole
physics and cosmology. The dynamics of a scalar field
in an expanding background can also be described by
a damped harmonic oscillator or a Caldirola-Kanai har-
monic oscillator [3,4].

We use the Ermakov-Lewis invariant approach to
study a TDHO problems in this work. The time-

dependent equations of motion can be transformed
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into the time-independent equations by introducing an
auxiliary field satisfying the Penny equation [5]. The
Ermakov-Lewis invariant method has been used to de-
fine an invariant vacuum for the quantum fluctuations
in inflation [6].

In Ermakov systems for the TDHO, there exists an in-
variant quantity whose physical meaning is proposed to
be a conserved energy in a time-independent harmonic
oscillator systems [7] or a conservation of an angular
momentum [8]. This invariant quantity can provide use-
ful tools for constructing the theoretical models of in-
flation. We can trace the underlying symmetries of the
time-dependent harmonic oscillator problems from the
Schwarz equation, which can be obtained from the Er-
makov systems using the nonlocal transformations. The
Schwarzian derivative is known to be invariant under the
SL(2, R) transformation.

In this study, we present a solution to the auxiliary
equations with the mode solutions of the primordial
gravitational wave in de Sitter space. We then show
that these solutions yield the constancy of the Ermakov-
Lewis invariant. Finally, we provide a brief overview of
the Schwarz equation through the nonlocal transforma-
tion from the Ermakov systems. The invariance of the

Schwarz derivative under the SL(2, R) transformation
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provides the dual symmetry of the mode functions of the

primordial gravitational wave [9].

II. PRIMORDIAL GRAVITATIONAL
WAVES IN DE SITTER SPACE

With a linearised Friedmann-Lemaitre-Robertson-

Walker metric for the tensor modes

ds® = a*(n)[—dn® + (6i; + hij)dx'da? (1)

where h;; is a traceless and transverse tensor perturba-
tion, the quadratic action for h;; for the Einstein-Hilbert

action in de Sitter space is given by
Mz? 3. 2|1 i k1]
%S:if/ﬁmxal%h — (Dhiy)@H7)|, (@)

where the prime denotes the derivative with respect to
the conformal time 7 and we have used the mode decom-

position of h;; as

233377
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A is a polarization tensor and M} = 1/87G is

ij
the reduced Planck mass. Varying (2) with respect to

where €

h;j leads to the equation of motion for each polarization

mode of the gravitational wave
al
Z+2Eh§€+k2hk =0, (4)

where we have ignored the polarization superscript .
This equation reminds us the equation of motion of a
massless scalar field. If we introduce uy = %, the equa-

tion of u; becomes

"
" (k2 - 0;) wp = 0. (5)

This takes the form of the time-dependent harmonic os-

cillator with a time-dependent frequency w(n) = k? — “—”

This equation consists of Ermakov systems with the aux-
iliary equation
QQ

P + W (M)pe = 5, (6)
Pk

where Q2 is an arbitrary constant. Multiplying p to (5)
and ug, to (6) and then subtracting (6) from (5) yields
Q2uk

d
Pkug - ukP% = dj}(ﬂk% - P%Uk) = —7- (7)
k
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Multiplying the integration factor (pgxu) — pjug) on the

both sides, we have

d Q%
(pruy, — ukpZ)d*(pkuk —uppl) = — g (it — upply),
n Pk
(8)
or
1 d /\2 2
3dn —(pruy, — urp),)” = —*Q a (Uk/Pk:) 9)

then we obtain the invariant quantities (Ermakov-Lewis

invariant) by integrating

2
u
=3 |(pruj, = ugp)” + Q2 (k> ] . (10)
Pk

The physical meaning of this invariant is suggested in
several literature; conservation of an angular momentum
[8] , conservation of energy [7] and so on.

In the next section we will briefly introduce how to
solve the time-dependent harmonic oscillator using the

Ermakov-Lewis invariant method.

ITI. ERMAKOV-LEWIS INVARIANT

Equation (5) describes the time-dependent harmonic
oscillator with a time-dependent frequency w?(n) = k? —
a”/a and with a unit mass. Using the Ermakov-Lewis
invariant method that will be described here shortly, we
can obtain the solution to the time dependent harmonic
oscillator.

Transforming to a new variable by introducing an aux-

iliary function p(n)

vk = ug/pr(n), (11)

the Eq. (5) is transformed as

dvk
dr?

+ Q% =0, (12)

with p satisfying Eq. (6), where we have used

n 1 ,
7(n) = / pi(n’)dn : (13)

Because the solution to (12) is given by

v = e:I:iQT (14)

)
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the solution to the time-dependent harmonic oscillator

becomes

+iQ [ édn

uk(n) = pr(n)e (15)

Once we get the solution to (6), then we can obtain the
solution to (5) from (15).

The Hamiltonian for v is given by

1 1
Hy(v,m;7) = 577,% + 592112 = const., (16)

where 7y, is a conjugate momentum to v

8vk
= 5 = (Pruk = pru). (17)

In the original variable, the Hamiltonian (16) becomes

2
1
I = Hy(v,m;7) = o | (pwtf — phu)® + 02 (22 ) |
2 Pk
(18)
and this is the Ermakov-Lewis invariant (10) which is
conserved
dl,, 0OI
Sk L H =0 19
g~ o Uk Hed (19)

where {, } is a Poisson bracket for the classical systems
and can be thought of as a Dirac bracket for the quantum
systems. This implies the conservation of energy in the
transformed coordinate space.

The solutions to (6) is given by [5,10]

p=/ap? + bp?® + 2cp, (20)
where ab — ¢ = 5‘2/—22 and i and ¢ are two linearly in-

dependent solutions of (5) and W is a Wronskian of ¢
and ¢. If we choose ¢ = 0 and a = 1, then we can set to
b= 0%/W?, and then (20) can be written as

9 1/2
p= [1#2 + Wﬁﬂ : (21)

As an example, we consider the de Sitter space with
a = e /H with a constant H, where t is a physical time
related to the conformal time as dt = a(n)dn, and we

have

- - 22
R 7° " (22)

then (5) can be solved exactly [11]

ur(n) = V10l [Cuds 2 (Klnl) + DiYasa(klnl)],  (23)

where J3/5(x) and Y3)9(z) are the Bessel and Neumann
functoin with the order 3/2, respectively. The Wronskian

of the two independent solutions of (23) are

2
W = ujuhy — ujug = — (24)

With the solution (23), the solution of the auxiliary equa-
tion (6) from (20) leads to

p’“:{% (Sinf) - COS(I)>2 + ”2%2 <sin(a?) + COZ(“”))Q} 7
(25)

where & = k|n| and we have used

Syt =y 2 (eoster + )

2 (COS@ + sin(z)) : (26)

™ x

Ya/a(z) = —

If we choose Q2 as ({2 is an arbitrary constant)

4

w2’

3 1 1/2
Pk = \/% (1+k2|772> . (28)

With (23) and (25), we can check the Ermakov-Lewis
invariant Ij (10) becomes constant,
232

12 2
Ik:ia Q +? (29)

QP =Ww?= (27)

then we get

IV. SYMMETRY IN TIME-DEPENDENT
SYSTEMS

In this section we will briefly mention the underlying
symmetries of the time-dependent harmonic oscillator.
The Ermakov systems are transformed by the nonlocal
transformation into the Schwarz equation. When we per-

form the nonlocal transformation
2 =u? (30)

where we have omitted the subscript k£ of u; in this sec-
tion, then (5) is transformed into the third-order differen-

tial equations and it turns out that the Schwarz equation

Slz] = 2w*(n), (31)
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where S[z] is the Schwarzian derivative

Mg 2 P AR NAE
st-5-3(3) - (5) 2 (5) - @
With the similar transformation ¢ = p=2, (6) becomes
Sle] = —202€"7 + 27, (33)

which is a variant of the Schwarz equation. The
Schwarzian derivative S[z] in (32) is known to be in-

variant under the SL(2, R) transformations

az+b
cz+d’

zZ= ad — be # 0, (34)
i.e. S[Z] = S|z]. The Schwarz equation (31) has a solution

of the quotient form

a0l (35)

(L)’
where o(t) and ¥(t) are the two linearly independent
solution of (5).
Since S[z] is invariant under the transformation (34),
it can be proved that u”/u is also invariant under the

transformation (30) [12]

" "

1 1
= —55[2;} = —55[2] = Z’ (36)

N

:z‘

which leads to [12]

dn’
u*(n)

These properties of dual symmetry have been employed

i) = Cruly) + Cantr) [ ! (37)

in the investigation of the scale invariance [9] and the

enhancement of the power spectrum [13].

V. SUMMARY AND DISCUSSIONS

We have considered the primordial gravitational wave
in de Sitter space and found that the governing equation,
the Sasaki-Mukhanov equation, of the primordial gravi-
tational waves takes the form of the harmonic oscillator
with a time-dependent frequency. The Ermakov-Lewis
invariant method is used to study the TDHO problems
in de Sitter space. With the solutions to the gravita-
tional wave modes, ui and the auxiliary field, pi, we
have shown that the Ermakov-Lewis invariant becomes

constant and then is conserved.
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The nonlocal transformation of the variables trans-
forms the gravitational wave mode equations and the
auxiliary field equation into third-order differential equa-
tions, known as the Schwarz equation. The Schwarz
derivative is known to have a symmetry under the
SL(2, R) transformation. This dual symmetry allows to
study the scale invariance as well as the enhancement of
the power spectrum in an early phase of the universe.

Although we have focused on the primordial gravita-
tional wave for this work, we can extend it to the scalar
mode equations responsible for the large-scale struc-
tures and the cosmic background radiation anisotropy. It
would be interesting to study the role of the Ermakov-
Lewis invariant and the symmetric properties of the
Schwarzian derivative to constrain the inflationary model
or to provide additional observables to help understand

the evolution of our universe.
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