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The governing equation of primordial gravitational waves in de Sitter space takes the form

of a harmonic oscillator with a time-dependent frequency. The Ermakov-Lewis invariant of

this time-dependent harmonic oscillator is obtained using the mode solutions of the primordial

gravitational wave and an auxiliary equation, which is dual to the mode equations, in de Sitter

space. Additionally, the dual symmetry of the mode functions of the primordial gravitational wave

is briefly mentioned by employing the invariance of the Schwarzian derivative.
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I. INTRODUCTION

It is widely accepted that an accelerating phase in the

early Universe is crucial for understanding the history

of the Universe and explaining cosmic background radi-

ation (CMB) anisotropy, large-scale structure (LSS) and

primordial gravitational waves. The CMB anisotropy,

LSS formation and the primordial gravitational wave are

known to have been seeded by the quantum fluctuations

in an inflationary period.

The governing equations, commonly referred to as the

Sasaki-Mukhanov equations [1, 2], which are responsi-

ble for the CMB, LSS, or primordial gravitational waves

are presented in the form of a time-dependent harmonic

oscillator (TDHO). The TDHO appears quite often in

the branch of physics for example in optics, black hole

physics and cosmology. The dynamics of a scalar field

in an expanding background can also be described by

a damped harmonic oscillator or a Caldirola-Kanai har-

monic oscillator [3,4].

We use the Ermakov-Lewis invariant approach to

study a TDHO problems in this work. The time-

dependent equations of motion can be transformed
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into the time-independent equations by introducing an

auxiliary field satisfying the Penny equation [5]. The

Ermakov-Lewis invariant method has been used to de-

fine an invariant vacuum for the quantum fluctuations

in inflation [6].

In Ermakov systems for the TDHO, there exists an in-

variant quantity whose physical meaning is proposed to

be a conserved energy in a time-independent harmonic

oscillator systems [7] or a conservation of an angular

momentum [8]. This invariant quantity can provide use-

ful tools for constructing the theoretical models of in-

flation. We can trace the underlying symmetries of the

time-dependent harmonic oscillator problems from the

Schwarz equation, which can be obtained from the Er-

makov systems using the nonlocal transformations. The

Schwarzian derivative is known to be invariant under the

SL(2, R) transformation.

In this study, we present a solution to the auxiliary

equations with the mode solutions of the primordial

gravitational wave in de Sitter space. We then show

that these solutions yield the constancy of the Ermakov-

Lewis invariant. Finally, we provide a brief overview of

the Schwarz equation through the nonlocal transforma-

tion from the Ermakov systems. The invariance of the

Schwarz derivative under the SL(2, R) transformation
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provides the dual symmetry of the mode functions of the

primordial gravitational wave [9].

II. PRIMORDIAL GRAVITATIONAL
WAVES IN DE SITTER SPACE

With a linearised Friedmann-Lemaitre-Robertson-

Walker metric for the tensor modes

ds2 = a2(η)[−dη2 + (δij + hij)dx
idxj , (1)

where hij is a traceless and transverse tensor perturba-

tion, the quadratic action for hij for the Einstein-Hilbert

action in de Sitter space is given by

δ2S =
M2

p

8

∫
dηd3xa2

[
h′ijh

ij ′ − (∂khij)(∂
khij)

]
, (2)

where the prime denotes the derivative with respect to

the conformal time η and we have used the mode decom-

position of hij as

hij(x, η) =
∑

λ=+,×

∫
d3k

(2π)3/2
ϵλij(k)h

λ
k(η)e

ik·x, (3)

where ϵλij is a polarization tensor and M2
p = 1/8πG is

the reduced Planck mass. Varying (2) with respect to

hij leads to the equation of motion for each polarization

mode of the gravitational wave

h′′k + 2
a′

a
h′k + k2hk = 0, (4)

where we have ignored the polarization superscript λ.

This equation reminds us the equation of motion of a

massless scalar field. If we introduce uk = hk

a , the equa-

tion of uk becomes

u′′k +

(
k2 − a′′

a

)
uk = 0. (5)

This takes the form of the time-dependent harmonic os-

cillator with a time-dependent frequency ω(η) = k2− a′′

a .

This equation consists of Ermakov systems with the aux-

iliary equation

ρ′′k + ω2(η)ρk =
Ω2

ρ3k
, (6)

where Ω2 is an arbitrary constant. Multiplying ρk to (5)

and uk to (6) and then subtracting (6) from (5) yields

ρku
′′
k − ukρ

′′
k =

d

dη
(ρku

′
k − ρ′kuk) = −Ω2uk

ρ3k
. (7)

Multiplying the integration factor (ρku
′
k − ρ′kuk) on the

both sides, we have

(ρku
′
k − ukρ

′
k)
d

dη
(ρku

′
k − ukρ

′
k) = −Ω2uk

ρ3k
(ρku

′
k − ukρ

′
k),

(8)

or

1

2

d

dη
(ρku

′
k − ukρ

′
k)

2 = −1

2
Ω2 d

dη
(uk/ρk)

2 (9)

then we obtain the invariant quantities (Ermakov-Lewis

invariant) by integrating

I =
1

2

[
(ρku

′
k − ukρ

′
k)

2 +Ω2

(
uk
ρk

)2
]
. (10)

The physical meaning of this invariant is suggested in

several literature; conservation of an angular momentum

[8] , conservation of energy [7] and so on.

In the next section we will briefly introduce how to

solve the time-dependent harmonic oscillator using the

Ermakov-Lewis invariant method.

III. ERMAKOV-LEWIS INVARIANT

Equation (5) describes the time-dependent harmonic

oscillator with a time-dependent frequency ω2(η) = k2−
a′′/a and with a unit mass. Using the Ermakov-Lewis

invariant method that will be described here shortly, we

can obtain the solution to the time dependent harmonic

oscillator.

Transforming to a new variable by introducing an aux-

iliary function ρ(η)

vk = uk/ρk(η), (11)

the Eq. (5) is transformed as

d2vk
dτ2

+Ω2vk = 0, (12)

with ρ satisfying Eq. (6), where we have used

τ(η) =

∫ η 1

ρ2k(η
′)
dη′. (13)

Because the solution to (12) is given by

vk = e±iΩτ , (14)
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the solution to the time-dependent harmonic oscillator

becomes

uk(η) = ρk(η)e
±iΩ

∫
1

ρ2
k

dη
. (15)

Once we get the solution to (6), then we can obtain the

solution to (5) from (15).

The Hamiltonian for vk is given by

Hk(v, π; τ) =
1

2
π2
k +

1

2
Ω2v2k ≡ const., (16)

where πk is a conjugate momentum to v

πk =
∂vk
∂τ

= (ρku
′
k − ρ′kuk). (17)

In the original variable, the Hamiltonian (16) becomes

Ik = Hk(v, π; τ) =
1

2

[
(ρku

′
k − ρ′kuk)

2 +Ω2

(
uk
ρk

)2
]
,

(18)

and this is the Ermakov-Lewis invariant (10) which is

conserved

dIk
dt

=
∂Ik
∂t

+ {Ik, Hk} = 0 (19)

where {, } is a Poisson bracket for the classical systems

and can be thought of as a Dirac bracket for the quantum

systems. This implies the conservation of energy in the

transformed coordinate space.

The solutions to (6) is given by [5,10]

ρ =
√
aψ2 + bφ2 + 2cψφ, (20)

where ab − c2 = Ω2

W 2 and ψ and φ are two linearly in-

dependent solutions of (5) and W is a Wronskian of ψ

and φ. If we choose c = 0 and a = 1, then we can set to

b = Ω2/W 2, and then (20) can be written as

ρ =

[
ψ2 +

Ω2

W 2
φ2

]1/2
. (21)

As an example, we consider the de Sitter space with

a = eHt/H with a constant H, where t is a physical time

related to the conformal time as dt = a(η)dη, and we

have

a′′

a
=

2

η2
, η = − 1

H
e−Ht = − 1

aH
, (22)

then (5) can be solved exactly [11]

uk(η) =
√
|η|

[
CkJ3/2(k|η|) +DkY3/2(k|η|)

]
, (23)

where J3/2(x) and Y3/2(x) are the Bessel and Neumann

functoin with the order 3/2, respectively. The Wronskian

of the two independent solutions of (23) are

W = u1u
′
2 − u′1u2 =

2

π
. (24)

With the solution (23), the solution of the auxiliary equa-
tion (6) from (20) leads to

ρk=

[
2

kπ

(
sin(x)

x
− cos(x)

)2

+
πΩ2

2k

(
sin(x) +

cos(x)

x

)2]1/2

,

(25)

where x = k|η| and we have used

J3/2(x) =

√
2

πx

(
− cos(x) +

sin(x)

x

)
,

Y3/2(x) =−
√

2

πx

(
cos(x)

x
+ sin(x)

)
. (26)

If we choose Ω as (Ω is an arbitrary constant)

Ω2 =W 2 =
4

π2
, (27)

then we get

ρk =

√
2

πk

(
1 +

1

k2|η|2

)1/2

. (28)

With (23) and (25), we can check the Ermakov-Lewis

invariant Ik (10) becomes constant,

Ik =
1

2
α2Ω2 +

2β2

π2
. (29)

IV. SYMMETRY IN TIME-DEPENDENT
SYSTEMS

In this section we will briefly mention the underlying

symmetries of the time-dependent harmonic oscillator.

The Ermakov systems are transformed by the nonlocal

transformation into the Schwarz equation. When we per-

form the nonlocal transformation

z′ = u−2, (30)

where we have omitted the subscript k of uk in this sec-

tion, then (5) is transformed into the third-order differen-

tial equations and it turns out that the Schwarz equation

S[z] = 2ω2(η), (31)
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where S[z] is the Schwarzian derivative

S[z] =
z′′′

z′
− 3

2

(
z′′

z′

)2

=

(
z′′

z′

)′

− 1

2

(
z′′

z′

)2

. (32)

With the similar transformation ξ′ = ρ−2, (6) becomes

S[ξ] = −2Ω2ξ′2 + 2ω2, (33)

which is a variant of the Schwarz equation. The

Schwarzian derivative S[z] in (32) is known to be in-

variant under the SL(2, R) transformations

z̃ =
az + b

cz + d
, ad− bc ̸= 0, (34)

i.e. S[z̃] = S[z]. The Schwarz equation (31) has a solution

of the quotient form

z =
φ(t)

ψ(t)
, (35)

where φ(t) and ψ(t) are the two linearly independent

solution of (5).

Since S[z] is invariant under the transformation (34),

it can be proved that u′′/u is also invariant under the

transformation (30) [12]

ũ′′

ũ
= −1

2
S[z̃] = −1

2
S[z] =

u′′

u
, (36)

which leads to [12]

ũ(η) = C1u(η) + C2u(η)

∫ η dη′

u2(η)
. (37)

These properties of dual symmetry have been employed

in the investigation of the scale invariance [9] and the

enhancement of the power spectrum [13].

V. SUMMARY AND DISCUSSIONS

We have considered the primordial gravitational wave

in de Sitter space and found that the governing equation,

the Sasaki-Mukhanov equation, of the primordial gravi-

tational waves takes the form of the harmonic oscillator

with a time-dependent frequency. The Ermakov-Lewis

invariant method is used to study the TDHO problems

in de Sitter space. With the solutions to the gravita-

tional wave modes, uk and the auxiliary field, ρk, we

have shown that the Ermakov-Lewis invariant becomes

constant and then is conserved.

The nonlocal transformation of the variables trans-

forms the gravitational wave mode equations and the

auxiliary field equation into third-order differential equa-

tions, known as the Schwarz equation. The Schwarz

derivative is known to have a symmetry under the

SL(2, R) transformation. This dual symmetry allows to

study the scale invariance as well as the enhancement of

the power spectrum in an early phase of the universe.

Although we have focused on the primordial gravita-

tional wave for this work, we can extend it to the scalar

mode equations responsible for the large-scale struc-

tures and the cosmic background radiation anisotropy. It

would be interesting to study the role of the Ermakov-

Lewis invariant and the symmetric properties of the

Schwarzian derivative to constrain the inflationary model

or to provide additional observables to help understand

the evolution of our universe.
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