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Abstract
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colliders, and for three-jet production in deeply inelastic scattering experiments. We obtained the
amplitudes presented here by using their analytic properties to constrain their form.
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1. Introduction

Electron-positron annihilation provides a clean experimental laboratory for studying jet prop-
erties. Leading-order predictions for the production of up to five jets have been available for quite
some time [1,2,3,4], but the reduction of theoretical uncertainties requires next-to-leading-order
(NLO) QCD corrections. The NLO matrix elements for three-jet production and other O(a;) ob-
servables are also known [3], and numerical programs implementing these corrections [5] have been
widely used to extract a precise value of o, from hadronic event shapes at the Z pole [6].

Next-to-leading order corrections for more complicated processes are required, however, if
we wish to use QCD in probing for new physics in other standard model processes. In ete”
annihilation, for example, four-jet production is the lowest-order process in which the quark and
gluon color charges can be measured independently. Four-jet production is thus sensitive to the
presence of light colored fermions such as gluinos [7]. At LEP 2 the process ete™ — (v*,Z) — 4 jets
is a background to threshold production of W pairs, when both Ws decay hadronically. The one-
loop matrix elements required for an NLO study of four-jet production are also needed for a
next-to-next-to-leading (NNLO) study of three-jet production at the Z pole. Such a study (which
awaits the computation of certain two-loop matrix elements as well) would be desirable in order to
reduce the theoretical uncertainties in determining «, via this process.

In this paper we present analytic formulas for the one-loop helicity amplitudes for electron-
positron annihilation into four-quarks, ete™ — (v*, Z) — gq@Q@Q. Together with the leading-in-color
matrix elements for production of two quarks and two gluons, ete™ — gqgg [8,9], the leading-color
parts of these amplitudes have already been incorporated into an NLO program for ete™ — 4 jets
[10]. The same amplitudes presented here may also be used in computations of W or Z + 2 jet
production at hadron colliders and three-jet production in deeply inelastic scattering. Glover and
Miller [11] have also recently reported on a calculation of the squared one-loop matrix elements for
ete™ — v* = §¢QQ, summed over helicities and expressed in terms of Lorentz scalar products of
the quark four-momenta, rather than the spinor products that we employ. A comparison of their
results with those presented in this paper will be useful.

Recent years have seen a number of technical advances in the computation of one-loop am-
~ plitudes, which the authors have surveyed in a recent review article [12]. These advances have
made possible the calculation of all one-loop five-parton processes [13,14,15], as well as of a number
of infinite sequences of one-loop amplitudes [16,17,18,19]. The general strategy employed in this
paper (and in a subsequent paper on ete™ — gggg [8,9]) is to obtain amplitudes from their analytic
structure. In particular, we use the constraints of unitarity [20,18,19,21] and factorization [16,22],

as summarized in ref. [12]. This approach leads to relatively compact expressions, as compared
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with those obtained from a traditional, diagrammatic computation. In this approach, amplitudes
obtéinéd previously are recycled to obtain new amplitudes; manifest gauge invariance is therefqre
maintained. In a Feynman diagram approach each diagram alone is not gauge invariant, and each
is often much more complicated than a final sum over diagrams.

We use helicity methods [23,24] since they lead to relatively compact expressions for the am-
plitudes, and retain all spin information. We also make use of color decompositions [25] to help
simplify the analytic structures that must be computed. As a check, we have verified numerically
that the amplitudes presented in this paper agree with a direct Feynman diagram calculation we
performed.

The paper is organized as follows. In section 2, we briefly describe helicity methods and color
decompositions. We give the amplitudes, together with a brief description of the calculational
methods, in section 3; we describe the contribution proportional to the axial vector coupling of the
Z to the t,b quark isodoublet in subsection 3.4. A summary is included in section 4. We collect

descriptions of various integral functions appearing in the amplitudes in an appendix.

2. Basic Tools

In this section, we briefly review two of the basic tools useful for expressing amplitudes in
" a compact form: the spinor helicity method and color decompositions. The reader is referred to

review articles [26] and references therein for further details.

2.1 Spinor Helicity

In explicit calculations it is usually convenient to use a helicity basis, where all quantities
are rewritten in terms of Weyl spinors [k*). Although there are no external gluons in the final
ete” — GgQQ helicity amplitudes, they appear as intermediate states in various unitarity cuts
and factorization limits that are used to construct the amplitudes. We made use of the gluon

polarization vectors of Xu, Zhang and Chang [23,24],

_ <q_|7u|k_> <q+|7u|k+>

ef(kiq) = TR 6;(k;q)=—m, (2.1)

u

where k is the gluon momentum and ¢ is an arbitrary null ‘reference momentum’ which drops out of
final gauge-invariant amplitudes. The plus and minus labels on the polarization vectors refer to the
gluon helicities. Our (crossing-symmetric) convention takes all particles to be outgoing, and labels
the helicity and particle vs. antiparticle assignment accordingly. (That is, we write the amplitudes

for the process 0 — V§qQ@Q.) For incoming (negative energy) momenta the helicity and particle
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Vs. gntiparticle assignment are reversed. It is convenient to define
(i5) = (k7 1K), (i3] = (kT 1k
i) = (k7 |kl k7)) E+m)lg) = (ki [ (Kot ) [ B5) 5 (2.2)
@10+ m)(nt )57 = (k7 TR+ ) (B + Be) -+ [ KD,

for the spinor products, which is the notation we shall use to quote the results. Here all the
momenta k; are massless. The spinor inner products (¢j), [¢j] are antisymmetric and satisfy
(1) 1) = 2ki - kj = sij.

To maximize the benefit obtained from the spinor helicity formalism for loop amplitudes we
must choose a compatible regularization scheme. In conventional dimensional regularization [27],
the polarization vectors are (4 — 2¢)-dimensional, which is incompatible with the spinor helicity
method’s use of four-dimensional polarizations. To avoid this problem, we modify the regularization
scheme so all helicity states are four-dimensional and only the loop momentum is continued to
(4—2¢) dimensions. This is the four-dimensional-helicity (FDH) scheme [28], which has been shown
to be equivalent at one-loop [29] to an appropriate helicity formulation of Siegel’s dimensional-
reduction scheme (DR) [30] The conversion between schemes has been given in ref. [29]; there is

no loss of generality in choosing the FDH/DR scheme.

2.2 Color Decomposition

In this section we describe a color decomposition [25] of the one-loop amplitude for ete™ —
§qQQ, in terms of group-theoretic factors (color structures) multiplied by kinematic functions called
partial amplitudes. Because of the crossing symmetry of the spinor products [24] and of the integral
functions (discussed in the appendix), these partial amplitudes may also be used to obtain the one-
loop contributions to Z or W + 2 jet production at hadron colliders or three jet production in
deeply inelastic scattering. (For the case of the W, only the coupling constants need be changed
in the formula given below.)

The partial amplitudes are defined to be the coefficients of the various color structures. Con-

sider the amplitude As(14,2q,30,44; 5e, 6¢). At tree-level its decomposition is
A (14,20,30,4g) = 2¢°97 [(—Qq + 0§, rvf g Palsss)) AE** (15,20, 39, 4g)
+ (—QQ + 05 qo? g Pz(s56))Agee(3Q,4q, 14,20) (2.3)
x (626 Lé“éiz
il i3 - Nc il ’i3 ?

* where we have suppressed the 5,6 labels of the electron pair, e is the QED coupling, g the QCD
coupling, Q7 (Q?) is the charge of quark ¢ (quark @) in units of e, and the left- and right-handed
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couplings are

e = —14 2sin’ Gy Ve = 2sin’ Oy
L sin 20w ’ B sin20w ’ (2.4)
ol — +1 — 2Q%sin? Oy ol — - 20Q9sin? Oy .
L= sin 20y ’ R™  sin20w

where @y is the Weinberg angle. Eq. (2.3) contains the ratio of the Z and photon propagators,

S

Pas) = SR T, o,

(2.5)

where Mz and I'z are the mass and width of the Z. We have given the decomposition for a general
SU(N.,) gauge group; N, = 3 for QCD. The two signs in v} correspond to up (+) and down (—)
type quarks.

The subscripts I and R refer to whether the particle to which the Z couples is left- or right-

handed. That is, v} is to be used for the configuration where the quark (leg 1) has plus helicity and

+

the anti-quark (leg 4) has minus helicity, which we denote by the shorthand (13

,47 ). Similarly, v}
corresponds to the configuration (1, 4;1-"). Because the electron and positron are incoming in ete~
annihilation, our outgoing-momenta notation reverses their helicities and particle vs. anti-particle
assignnfent. Thus, v§ corresponds to the helicity configuration (57,6} ) whereas v§ corresponds to
the configuration (57,67).

~ We have defined the tree and one-loop partial amplitudes A{®® and Ag.; to include a photon
propagator. The ratio Pz(ss¢) appearing in eq. (2.3) then replaces the photon propagator with
a Z propagator. This form of the amplitude is convenient for checking that amplitudes properly

reduce to lower-point amplitudes when the et and e~ momenta are taken to be collinear.

At one loop there are three partial amplitudes,
1-loo
As p(lq,sz3Q’4§) =
2¢?g* [(—Qq + 05 ol 7 P2(s50) ) [Ne8, 62 Aet (14,29, 30,49) + 614 6.7 Acia(14:20,30,4s)

+ (=@ + 05 w0 1 Pr(ss6)) [Ve 672 6.5 Asin (30,40, 10, 2) + 857 6 A6 (39,43, 11, 20))

e
+ siz’é’ffw Pa(sse) (622 6.5 - Nic(sf; 62) Asis(14,20:30:47)] -
(2.6)

~ Note the additional factor of N, in the color-tensor coefficients of Ag;; 2 compared to the correspond-
ing tensors in the tree-level amplitude. The Ag;3 term arises from a fermion triangle graph [31].
It violates the axial symmetry, and is proportional to the axial coupling of the Z to the top and
bottom quark isodoublet as well as to the top—bottom mass splitting (see section 3.4). The cor-

" responding charges vanish for the photon and the W boson, and this term does not contribute to

amplitudes for the latter bosons.



Helicity conservation for massless quarks and leptons ensures that there are only 22 = 8 possible
heliéit); configurations for ete™ — §gQQ, namely two choices for each fermion line. Because the
electron line couples through the current (5%|vy#|6%) = (6F|y#|5F), it is trivial to reverse its helicity
simply by exchanging 5 and 6 in the partial amplitudes A§®® and As;;, and exchanging v§ < v§ in
the prefactors in eqs. (2.3) and (2.6) as discussed above. We can use parity to reverse all helicities
simultaneously in the partial amplitudes A§™¢, Ag1 and As;2, by complex conjugating all spinor
products ((i j) < [77]). The axial vector contribution Ag;3 is also complex conjugated, but acquires
an additional overall minus sign from the 5 in the loop. Thus we are left with just two independent
helicity configurations, which we may take to be ./46(1+ 2i 32;, 47357 ,6%) (we shall again suppress
the 5,6 labels below).

The partial amplitudes can be further expressed in terms of ‘primitive amplitudes’ [15]. The
primitive amplitudes are gauge-invariant classes of color-stripped amplitudes from which we can
build the partial amplitudes. (In ref. [15] the primitive amplitudes were defined to have a fixed
ordering of the external legs, but here we extend the notion to mean gauge-invariant color-stripped
building-blocks for amplitudes.) It turns out that some signs in the reduction of partial amplitudes
to primitive amplitudes depend on which of the two helicity configurations one is considering, so
for clarity we shall explicitly list the two cases separately. Although color decompositions do not
depend on the helicity choices, these sign differences appear because we have used the symmetries
of the primitive amplitudes to reduce the number of independent ones required.

The formulz for As;i(lj, 25, 3&,4,; ) in terms of the primitive amplitudes are
A + AFT(1,2,3,4)+ 2 4214 (1,2,3,4) — 2L ARYH(1,2,3,4
6;1( 2 3Q7 q)_ (1 3, )+T 6 ( 2,3, )_F 6 (17 )3, )

2 ) 0
- N—Cz(AeT+(1,2,3,4)+ AF=(1,3,2,4)) + N_gAﬁl(z,g, 1,4,

Aep(1F,28,35,47) = AT (1,3,2,4) - T Bs “ Y p0¥+(1,2,3,4) + Z,fAf t+(1,2,3,4)  (2.7)
1
+F(A+ (1,3,2,4) + AF1(1,2,3,4)) -

I Ag‘(Q, 3,1,4),

Asa(17,25,35,47) = A5"(1,4,2,3),
where n, is the number of scalars* (ns = 0 in QCD) and ny is the number of Dirac fermions.

Within the context of supersymmetry decompositions [13,32,12] it is natural to divide the fermion

contribution into s and f pieces as we have done here.

* Asin refs. [13,15], each scalar here contains four states (to match the four states of Dirac fermions) so that n,
must be divided by two for comparisons to conventional normalizations of scalars.

6



For the other independent helicity configuration As; 2(1+ 22 35,4,1 ), we have,

As(1F,25,3h,47) = A~ (1,2,3,4) + = As+(1234)—]\;’Af+(1234)

Nc
2 1
(AF~(1,2,3,4)+ AF1(1,3,2,4)) - j—v—2A2(3,2, 1,4),

N?

Aep(17,25,35,47) = AT*(1,3,2,4) - L A2 +7(1,2,3,4) + —75”—/1{;*‘(1,2,3,4) (2.8)

Nc

+ W(Ag+(1,3,2,4)+ AF(1,2,3,4))

N2 $(3,2,1,4),

[

Asa(1],25.35,47) = —45%(1,4,3,2).

Note that A§ and A2* appear with a different permutation of the arguments, and the opposite sign,
compared with the previous helicity structure. The signs in the above expressions also depend on
- the relative phase conventions of the two helicity amplitudes; we have chosen a convention where

Al =(1,3,2,4) = —AF*11(1,2,3,4). Of course, consistency between tree and loop amplitudes

" must be maintained.

A representative diagram for the primitive amplitudes Ag'+i(1,2,3,4) and Aé’+i(1,2,3,4),
corresponding to those terms in the partial amplitudes proportional to the number of fermions
ny, is depicted in fig. 1. There are only two such diagrams. The ‘parent’ pentagon diagram for
the leading-color helicity amplitude Ag *(1,2,3,4) is depicted in fig. 2. (By a ‘parent’ diagram
we mean a diagram from which all other diagrams in the set can be obtained via a continuous
‘pinching’ process, in which two lines attached to the loop are brought together to a four-point
interaction — if such an interaction exists — or further pulled out from the loop, and left as the
~ branches of a tree attached to the loop.) The parent box and triangle diagrams for the subleading-
color primitive amplitude A§(1,2,3,4) are depicted in fig. 3. (We combine the triangle-parent
contributions with the box-parent contributions because the former are so simple, and the two
have an identical color structure.) The fermion-loop triangle diagram, proportional to the axial
~ coupling of the Z to quarks, is shown in fig. 4. We neglect the u,d, s, ¢ quark masses, and so only

the t, b quark pair survives an isodoublet cancellation in the loop, thanks to its large mass splitting.
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+ ({1.2} + {3.4))

Figure 4. Triangle diagram for the amplitude component Ag*, proportional to the axial
coupling of the Z to quarks.

Formulas (2.3) and (2.6) apply to the case of unequal quark flavors, ¢ # @. The equal flavor
amplitude may be obtained from the unequal-flavor formula by subtracting the same formula with
¢ and @ exchanged (or § and @ exchanged, but not both), and then setting @ = ¢ in all the
coupling constant prefactors. (Equal-flavor cross sections also require an identical-particle factor
in the phase-space measure, which is (%)2 for ete™ — Gqqq.)

The virtual part of the next-to-leading order correction to the parton-level cross-section is
given by

do_é\ILO,virtual =9 Z Re [Agree *Atls-loop] ) (29)
colors
It is a straightforward exercise (which we leave to the reader) to evaluate this color sum in terms

of partial amplitudes.

3. The Amplitudes

In constructing the amplitudes presented here, we use two basic analytic properties: that their
imaginary (absorptive) parts be determined from the Cutkosky rules [20], and that they factorize
~on particle poles. These analytic properties of amplitudes have, of course, played an important role
in field theory for many decades; we make use of recent developments which allow us to to obtain
complete amplitudes with no subtractions. In order to maximize the efficiency of the computation
it is useful to perform the computation in the manner described in ref. [12]. Due to the complexity
* of the kinematics for the processes presented here, further techniques are required to minimize the

appearance of undesired spurious poles; these will be discussed in ref. [9].
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The primitive amplitudes A{5 and AZ are proportional to tree amplitudes and are given by

1 2\ 8
AFTE(1,2,3,4) = ecpAE*(1, 25,35, 455761 -3 (L= ) -5
_ 72°7Q7Q - 3e \ —s893 9 (3 1)
+x ree - 1 Hz ‘ '
ALY(1,2,3,4) = e A (17, 25,37, 44: 57, 67) [; ) T2
where A{;ee is given below,
1 T(1+gI%*(1-¢ (3.2)

T T Unr—< T(1-2¢9
~and D =4 — 2e.
The contribution A is finite (see below). It is convenient to decompose the remaining prim-

itive amplitudes into divergent (V') and finite (F') pieces,
AS = e [Ag‘“"“V“ +iFe|, : (3.3)

where
a={++, +-, sl} (3.4)

tree,++
A6

labels the primitive amplitude under discussion. The quantities coincide with the true

tree partial amplitudes appearing in eq. (2.3),
Alree(1F,2%,33,44:57,67) = A5°°7(1,2,3,4). (3.5)

(We continue to omit the arguments of the primitive amplitudes corresponding to the lepton pair.)
We express the amplitudes in terms of the spinor products (2.2), the Lorentz products s;; =

(ki + k;)? and t;j,, = (ki + k;j + km )?, and the following combinations of kinematic invariants,

612 = S12 — 34 — S56 634 = 834 — S56 — S12 5 056 = 56 — S12 — S34 (3 6)
Az = sy + 834 + stg — 2512534 — 2534556 — 2856512 - .
The latter quantity is the negative of the Gram determinant associated with the set of massive
momenta {ky + k2, k3 + k4, ks + ke }.

The amplitudes we present are bare ones, i.e., no ultra-violet subtraction has been performed.

To obtain the renormalized amplitudes in an MS-type subtraction scheme, one should subtract the

1 /11 2 1 ng
er N, g2 [ (— - A ~f~>] Alree | (3.7)

quantity
€
from the the amplitude (2.6).

We quote the results in the FDH scheme [30,28], but these may easily be converted to the

’t Hooft-Veltman scheme; to do so one would add the quantity

2 1 ree
—cr N g° (5 - N—CQ) Ag (3.8)
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to the amplitude (2.6) and change the coupling constant from the non-standard apy to the standard

a7z The conversion between the various schemes is discussed in refs. [29].

3.1 The Helicity Configuration ¢tQ+tQ g~
We first give the primitive amplitude AZ*(1,2,3,4) which contributes to the leading color

part of As, 1(1+ 2+ 3Q’4q 155 ,6F). This amplitude is odd under a “flip symmetry’, which is the

combined operation of a permutation and spinor-product complex conjugation:

flip: 14, 23, 56, (ab) < [abd], (a_|b|c_><—><a+|blc+>:<c_|b|a_>

(3.9)
The corresponding tree amplitude for this helicity configuration is
4
qme (1 3.0y LABDEA 2 GHEUEIBOR
8238561123 S235561234
We have
V++(1234):—i(( ,U/Z E+<l‘l‘2 € +3<H2 6_§1n<—523)+g (311)
N €2 —812 — 834 e — 823 2 — 3856 9 ’ ’

o Ela+2l6° [12]* (45)’
F++(1a2’3’4)—((23>[56]t123<1|(2+3)|4) [23](56)t123(4|(2+3)|1>>

_312 ——323 ~2mh
X [Ls_l( , ) +Ls_; (334,t123;312,856)]
~1t123 —t123

(3](1 + 2)|6) [(1|(2+3)I6) [12] LO( t) N (3|4|6)L0< t)]
[56](1](2 + 3)[4) 123 123 (23) 123

—ti23
82

2L —823
1 [(<3|2|1><1I(2 +3)16)) 1—333“2 + (3]4]6)%t3,5

(23)[56}t123(L|(2+ 3)|4)

_ }_ L1 (—_tsus)
2 t%23

—flip,
(3.12)

~2mh

where “flip’ is to be applied to all the preceding terms in F** and the functions L;, Ls_y and Ls_,

are defined in the appendix.
3.2 The Helicity Configuration ¢t Q- Q*g~

We now give the result for A3 ~(1,2,3,4), which contributes to the leading color part of the

partial amplitude Ag, 1(1+ 2 35,4,1 ;55 ,67). This amplitude is odd under the same flip symme-

try (3.9) as AéH. The tree amphtude is

3B RI3)0 | RHBUGICR+3)

Ao t7(1,2,3,4) =
8235561123 8238561234

(3.13)
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’ 1
Note that Ag°*7(1,2,3,4) = —A¢**¥(1,3,2,4).

For the one-loop contributions we have

2\ ¢ 2 0\ ¢ 2 0\ ¢ —S93

AR —Z];— ((—i‘n) * <—Z34) ) * 3% (‘izs) - g111(_556) * 19—0 (3.14)
Note that V+=(1,2,3,4) = V*¥(1,2,3,4). The finite part is
(_ [13) (45)° n (12)* (3](1 + 2)6)? ) l(ﬂ ﬂa_)

[23](56)t123{(4(2+ 3)[1) ~ (23)[56]t123 (1 3) (1](2 + 3)|4) T\ —t123 " —t123
N (_ [13]% (45)2 (3|(1 + 2)|6)2(2|(1 + 3)]4)* )szh(s 23 512 55)
[23](56) t123(4](2 + 3)1)  (23)[56]tro3(L|(2 + 3)[4)(3](L+ 2)4)2 ) "1 73411237512, 556
4 [1(312 —334) (51) 513+ 4)[2)(1|(2+4)[3) 1 (s12 — s34) [23](5 1)

2 (56) (1](2 + 3)[4)(1[(3 + 4)[2)? 2(56) (1I(2+3)I4><1|(3+4)|2>

(134 — 1234)[34] (5 1) (54) [12](51)(52) (1](2 +4)[3)

Ft=(1,2,3,4)=

1

2 (56) (11(2+ 3)[4)(1|(3+4)[2)  (56)(1](2+ 3)[4)(L|(3+ 4)[2)
1(51)[62] (1](2 4+ 4)[3)(t234 — 2s34) | 1 (5](1 +2)[6)(1](2 + 4)|3)

2 (12 +3)[9(1(3 +4)|2)2 2 (1/(2 + 3)[4)(1I(3 + 4)|2)
{12+ 4)13) (s12612((5]1]6) — (5]216)) — 856 ((5]1]2)(2]56) — (5/6]1){1|2]6)))
(1](2 + 3)[4){1I(3 + 4)[2) A3

+

110+ D3I+ 2I6)55] om

"2 e+, J2mee s

a2 Bl () 1P e e+ b (52)

B0l (1) G+ 2 s 2 BOamCZ+3 %

pa e+ 30+ (=) 802 e+ slepi0 2 b (25)
[5 6] t123(1](2 + 3)[4) 523 [56]t123 (13) (1[(2 + 3)|4) 523

_ 1 (64 (42) tigs Ll( tws) [64] (42) t135 LO(—tslses)
S @ABOICIE By BOIC+IMEIIT DM s

64142 @2l 1 3)l6) o (Z22)
(23)[56](1[(2+3)[4)  ss6
1 (12)[61][62]ties  [12](51)(52) t1a4
T BTG+ 2 A [(S“ - 334)( [56] (56 )
+ (2512 — 656) (52) (1](3 + 4)[2) [1 6]

+ ((s13 + 523)(s23 + 524) — s12(512 + 523 — 514)) (5]1/6)

+ ((s14 + s24)(s13 + 514) — s12(812 — 523 + 814))<5|2|6>] 1n(:2:3)

—flip,
(3.15)

where ‘flip’ is to be applied to all the preceding terms in F +-,
* 3.3 Subleading Color Primitive Amplitude

Here we give the primitive amplitude A$(1,2,3,4), which contributes only at subleading order
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in N.. The “tree amplitude” appearing in eq. (3.3) is

Agree,sl(1’2,3,4) =3 [1 3] <5 4> <2|§1 + 3)|6> —3 <2 4) [6 3] <’5|§2 + 4)“) . (316)
8128561123 $128560124

Note that A®®'(2,3,1,4) = —45° 17 (1,2,3,4).

For the subleading-color primitive amplitude, it is convenient to introduce an ‘exchange’ op-

eration where the 5,6 fermion pair is exchanged with the 1,2 fermion pair,

exchange: 16, 2«5, (3.17)

" The box-parent part of A8 is even under this exchange. It is also convenient to define a symmetr
} P p 6 g y y

operation ‘flip_sl’ (distinct from the leading-color ‘flip’),

flip_sl: 15, 26, 3«4, (ab)<[ad], (a7|b|c7) e (at|b|ct)=(c|bla").
(3.18)

The singular contribution is

1/ 2\ 3/ ur\° 1/ w2\ 3/ u2\" 7

Vve(1,2,3,4)= |[-= - = —4 —= _ 2 _ !
( B ) [ €2 (—334) 2¢ (—‘834 + €2 —812 2¢ —812 2 ’
, (3.19)

* where the first bracket is from the ‘box parent’ graphs in fig. 3a and the second bracket is from the

‘triangle parent’ graphs in fig. 3b. In fact, the entire contribution from the triangle parent diagrams
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is contained in the second bracket. The finite contribution is

[13]2 (45)° _ <3|(1+2)!6)2(2|(1+3)|4>2]ivszmh(s st 512, 550)
[12](56)t123(4|(1 4+ 2)|3)  (12)[56]t123(3|(1 +2)]4)3 —1 (834,%123; 512, 856

. L Pt L(EE) ez e e (32
*Tg(““m”““wiumwmmu+mu> 7, A2 6] GI(I T 28 sss

F*(1,2,3,4) = [

 eneabfas W(EE) 1 enkgease (2t
(12)[56] 3|(1+2)[4)*  s56 2(12)[56]@BI(1+2)[4)2  \ —s56
3 (2](1 + 3)|6)* 1123
212)[56]tzs BI(1 + 2)1) In( - 556 ) - ﬂlp'SI]
—s12\ (3 (12] 2 2 2
1 [12](25)
(3(1+2)|4) (56) A3

((52) (s12 — 534) — 2(56)[61](12))

123
@3|(1+2)|4)A%. ((52)

2
g [16] (634856 + 2512612) + 2 ([12][56](25)% + (12) (56) [61]%) 656)

+

@BI(1 +2)[49)As (56) [56]
[12][64](32) G2+ 3)[1)
CBIA+2)14)245  (56) BI(1+2)[4)As

G 6][?3Tgf3+2)2;ﬁ§m3 ([16]656 — 2 (2/(3+4)[6) [12])

T e (69 B1RI+3)10+(63123) G-+ 1)

G462

B BEIBI+ 25,

-2 e At (B3B 4 2) + (G M 1(12) = 61+ 2)) (32)
_4I0+3IOETIG+60+ 203 | 1 23)E6E(0+ )0
(DB 6ltas B0+ 2R 2(12) 56131 + 24

SR 10 S TCL 1L T RN L TS W

TIDBE B0 0/ T (1266 B0+ 2 :

)((52) 656 — 2 (61(3 + 4)I1) (12)

+

+2

—2 (2]56)656 + (2/(3 + 4)/6)834)

+

1 (t123634 + 2512856) 7 [61] (52) [61](52)
2 3|(1+2)4)As ([12][56] (12)(56))+(t123_t124)(3|(1+2)|4)A3

+ exchange,
(3.20)

" where ‘exchange’ is to be applied to all the preceding terms in F*', but ‘flip_sl’ is to be applied only

to the terms inside the brackets ([ |) in which it appears. The three-mass triangle coefficient T is
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given by

[12](25)° [56]+ (56) [6 1)° {12))
311+ 2)[4)A3

(t123 — t124)

— 6512856534 (52) (6 1] (3](1+ 2)|4)AZ

T = 3s34(t123034 + 2312856)(

" B+ 2)0A, f;|4>A3(<5 2)[6 1] (56 + 512 + s34) + [12](25)° [56] + (56) [6 1) (12))
(51(2+3)|1) [12](56) (2I(3 + 4)[6)*
T Bl T D), (0202 e (611120 612) = AT iR
(23)[64]

((56) 656 ([6 1]123 — [65](52) [21]) — [12]612({25) tr2s — (21)[16] (6 5)))

(23)" [6 4]
12)[56]3[(1 +2)[4)°

T @I(1+2)4)2A,
_(23)[64](5](2+ 3)|1)
BI(1 +2)4)?

—2([65](52) 656 — [61](12) é12)

1
- 5(t123534 + 2312356)<

[63](24)
(12)[56] A3
+ 2 (—(21314)(4]5|6)856 + (2]1]3)(3[46)612 + (2/(1 + 3)|6)534834) 12 [5(26|]((13I13i|62>)|4>A

2[(1 +3)16){5[(2 + 3)|1) s34 (2[(1 +3)[6) [1 4] (35) -
Bl +2)[4As s12856 (3|(1 + 2)[4)?

+2(—[12](23)[34](45) + (56) [64] (43)[3 1] 4 (51(2 + 3)[1)554) slziiL((g;13J)rl62>)l4>
' [16](25)

812856<3|(1 + 2)|4>
>(2 21(1+ 3)[6)((3131) - (514]1))
+ ({21316) ~ (21416))(51(2 + 4)[1) + [6 1](25) 634)

(5|3|1 (5l4/1) + ;(t123—t124>(<“41<35> [131<45>>))[36]<24>
- (4

+4

— (123034 + 2512 556)

(t123634 + 2512556)

1
2
1 (t123 — t124)
2 312356(3|(1 + 2)|4

3(1+2)14)  @(1+2)3 812556
[13](45)

(211 +3)I6) — (213(6) + (21416)) =~

(3.21)

3.4 Axial Vector Contribution

The primitive amplitude A2*(1,2,3,4) is unique in that neither of the external quark pairs
couples directly to the vector boson; instead they couple through the fermion-loop triangle diagram

~ shown in fig. 4. The contribution to the amplitude (2.6) vanishes when the vector boson is a photon
(by Furry’s theorem, i.e. charge conjugation invariance). The Z contribution is proportional to
the axial vector coupling of the Z to the quarks in the loop. As the u,d,s,c quark masses may
be neglected, only the ¢,b quark pair survives an isodoublet cancellation in the loop, due to its
large mass splitting. We use the results of ref. [31] to obtain this contribution; that paper presents

the fully off-shell Zgg vertex, and we need only contract it with the three fermion currents. The
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infrared- and ultraviolet-finite result is

A%*(1,2,3,4) =

_ 21, f(mt, 8124534, 856) — f(mb, 812,834, 356) ([6 3] (4 2) <2 5) _ [6 1] [1 3] (4 5))
' (47!')2 Ss56 - <1 2) [1 2]

+(1-3, 2-4),
(3.22)

where the integral f(m) is defined in the appendix. We need only the large mass expansion (for

m = m;) and the m = 0 limit (for m = m,) of this integral; these are presented in the appendix.

4. Summary and Conclusions

In this paper we presented all one-loop four-quark amplitudes which enter into the computation
of the next-to-leading order QCD corrections to ete™ — (7*,Z) — 4 jets. The two-quark two-
gluon amplitudes will be presented elsewhere [8,9]. We obtained the amplitudes by demanding that
their functional forms satisfy unitarity and factorization. We also used a color decomposition and
a helicity basis to express the amplitudes in a compact form. This way of obtaining amplitudes is
significantly more efficient than using Feynman diagrams, since previously computed amplitudes
are used to construct new ones. These amplitudes can be incorporated into numerical jet programs,
which should lead to an improved knowledge of the QCD background to searches for new physics

" in various processes. Indeed, the leading-in- N, parts of the contributions presented here, together

" with those for two quarks and two gluons [8,9] have already been inserted into one such program

for four-jet production in ete~ annihilation [10].

Acknowledgements

L.D. thanks Adrian Signer for useful discussions. L.D. and D.A.K. are grateful for the support
of NATO Collaborative Research Grant CRG-921322. S.W. acknowledges the support of the
Studienstiftung des deutschen Volkes and of the CEA, under CFR #161635.

Appendix I. Integral Functions

We collect here the integral functions appearing in the text, which contain all logarithms and
dilogarithms present in the amplitudes. Except for the contribution of the top quark to the fermion
~ triangle loop in A%X, all internal lines are taken to be massless. The following functions already

appear in the evaluation of pentagon loop integrals where all external legs are massless, and of box
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integrals with one external mass, e.g. as occur in the one-loop five-gluon amplitudes [13]:

Lo(r) = 11n£r3 ) Li(r) = Lol(T_):: 1 ’ (L1)

LS_l(’Pl,T‘z) = L12(1 — 7'1) + L12(1 — 7‘2) 4+Inry Inry —

where the dilogarithm is
Lis(z / dy In(1-y) (1.2)

The function Ls_; is simply related to the scalar box integral with one external mass, evaluated in
six space-time dimensions where it is infrared- and ultraviolet-finite.

The box function analogous to Ls_y, but for two adjacent external masses, is

2 2
mh m m 1 —38 1 —S$ —$
LS2 (stml,mz)—_h? (1—7) L12< —Tz>—§1n2 <—_t)+§1n<_m%)h’l(_m%)

1 mim2] s
+[2(5_m1 2)+ : 2:|Ig (‘Svm%amg)’

, : (1.3)
where I3™ is the three-mass scalar triangle integral. Here we use only a version of this box function

with I3™ removed,

~~2mh m? m3 1. 5/(-s 1 -5 -8
Ls_; (s,t;m},m3) = —Li, (1—7) Li, ( ; )—§In <_—t>+51n( ml)ln(—m§> .
(1.4)

The analytic properties of these integrals are straightforward to obtain from the prescription

of adding a small positive imaginary part to each invariant, s;; — s;; + ie. One expands the

logarithmic ratios, In(r) = In(=%) = In(—s) — In(—s'), and then uses
In(—s —2e) = In|s| —irO(s), (1.5)

where O(s) is the step function: (s > 0) = 1 and O(s < 0) = 0. The imaginary part of the

dilogarithm Liz(1 — r) is given in terms of the logarithmic ratio,
ImLis(1—7) = —In(1—r) Imln(r). (1.6)

For 7 > 0 the real part of Liz(1 — 7) is given directly by eq. (I.2). For r < 0 one may use [33]

2
ReLiy(1—r) = %—ln[rlln|1—r|—ReLig(T), (L.7)

with ReLis(r) given by eq. (1.2).

17



The analytic structure of I3™ is more complicated [34,35,36], and the numerical representation

we use.depends on the kinematics. The integral is defined by

. 1
. 1
Igm($12,834,856) = / dBai 5(1 — a1 — Qg — a3) . (18)
0 —812010A2 — 83402043 — S560301

This integral is symmetric under any permutation of its three arguments. The signs of all three of
its arguments may be simultaneously reversed by complex conjugating the integral and multiplying
by an overall minus sign. Therefore we only have to consider two cases,
1. The Euclidean region sy3, 834,56 < 0, which is related by the sign flip to the pure Minkowski
region (812, 834,356 > 0) relevant for e*e™ annihilation. Here the imaginary part vanishes. This
region has two subcases, depending on the sign of the Gram determinant As(s12, $34, 856) defined
in eq. (3.6):

la. Az < 0,

1b. A3z > 0.
2. The mixed region s12, ss6 < 0, s34 > 0, for which A3 is always positive.

In region la one may use a symmetric representation found by Lu and Perez [34], which is
closely related to that given in ref. [36]:

L= \/:QA—3 [012 (2tan_1 (—‘/;E)) +Clp (2 tan™! (%)) + Cly (Qtan'l (%))] ,
| (L9)

where the é;; are defined in eq. (3.6) and the Clausen function Cly(z) is defined by

Cly(z) = ismT(L—;w:) = —/Ozdt In(j2sin(2/2)]). (1.10)

n=1

In regions 1b and 2 a convenient representation is given by Ussyukina and Davydychev [35],

1 : : y 1+py)

3m __ __ _ _ J ~s
L™= \/A_;;Re [Q(le( pz) + Lia(—py)) + In(pz) In(py) + In (x>ln <1+pm) + 3 ] o

_ imO(s34) In ((512 + VA3 )(656 + VA3)> ‘
VA3 (612 — VA3)(856 — VA3) /)
where
S12 534 2556

s s 2% 112
) U s U Gt Vs (112)

Although the expressions for I3™ contain an overall factor of 1/4/Aj3, they are finite as Az — 0.
Finally, in the top quark contribution to A2* the combination f(m:)— f(m;) appears, where

f(m) is the integral

a3

1
f(m; s12, 834, 856) = / d’a; §(1 — a1 — az — a3) (L.13)
0

m? — 8120102 — S34020a3 — S56d341
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This integral is complicated for arbitrary mass m; however, the large and small mass limits of it
suffice for my and my respectively. For m = m; we simply Taylor expand the integrand in 1/m; for
m = m; we set m, to zero, and reduce f(0) to a linear combination of the massless scalar triangle
integral I3™ given above, logarithms and rational functions. We get

1 (2534 + 512 + Ss56)

24m? 360m?

35340 1 m 3560 1 —s
f(0; 812, 834, S56) = ( 2534 - A_a) 812356133 (812, 834, S56) + (—% - E) S121n ( 12)

+<3812512~ 1 see In —S56 \ 834
Ag 2A3 56 —834 2A3

+...’

f(mt; 812,834, 356) =
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