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Abstract 
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1. Introduction 

Electron-positron annihilation provides a clean experimental laboratory for studying jet prop- 

erties. Leading-order predictions for the production of up to five jets have been available for quite 

some time [1,2,3,4], but the reduction of theoretical uncertainties requires next-to-leading-order 

(NLO) QCD corrections. The NLO matrix elements for three-jet production and other ~(cY,) ob- 

servables are also known [3], and numerical programs implementing these corrections [5] have been 

widely used to extract a precise value of a, from hadronic event shapes at the 2 pole [6]. 

Next-to-leading order corrections for more complicated processes are required, however, if 

we wish to use QCD in probing for new physics in other standard model processes. In e+e- 

annihilation, for example, four-jet production is the lowest-order process in which the quark and 

gluon color charges can be measured independently. Four-jet production is thus sensitive to the 

presence of light colored fermions such as gluinos [7]. At LEP 2 the process e+e- + (y*, 2) + 4 jets 

is a background to threshold production of W pairs, when both Ws decay hadronically. The one- 

loop matrix elements required for an NLO study of four-jet production are also needed for a 

next-to-next-to-leading (NNLO) study of three-jet production at the 2 pole. Such a study (which 

awaits the computation of certain two-loop matrix elements as well) would be desirable in order to 

reduce the theoretical uncertainties in determining Q, via this process. 

In this paper we present analytic formulas for the one-loop helicity amplitudes for electron- 

positron annihilation into four-quarks, e+e- --f (y*, 2) + QqaQ. Together with the leading-in-color 

- matrix elements for production of two quarks and two gluons, e+e- + Qqgg [8,9], the leading-color 

parts of these amplitudes have already been incorporated into an NLO program for e+e- --f 4 jets 

[lo]. The same amplitudes presented here may also be used in computations of W or 2 + 2 jet 

production at hadron colliders and three-jet production in deeply inelastic scattering. Glover and 

Miller [ll] have also recently reported on a calculation of the squared one-loop matrix elements for 

e+e- -+ y* + ijqQQ, summed over helicities and expressed in terms of Lorentz scalar products of 

the quark four-momenta, rather than the spinor products that we employ. A comparison of their 

results with those presented in this paper will be useful. 

Recent years have seen a number of technical advances in the computation of one-loop am- 

plitudes, which the authors have surveyed in a recent review article [la]. These advances have 

made possible the calculation of all one-loop five-parton processes [13,14,15], as well as of a number 

of infinite sequences of one-loop amplitudes [16,17,18,19]. The general strategy employed in this 

paper (and in a subsequent paper on e+e- + tjqgg [8,9]) is o o t bt ain amplitudes from their analytic 

structure. In particular, we use the constraints of unitarity [20,18,19,21] and factorization [16,22], 

as summarized in ref. [12]. Th is approach leads to relatively compact expressions, as compared 

2 



with those obtained from a traditional, diagrammatic computation. In this approach, amplitudes 

obtained previously are recycled to obtain new amplitudes; manifest gauge invariance is therefore 

maintained. In a Feynman diagram approach each diagram alone is not gauge invariant, and each 

is often much more complicated than a final sum over diagrams. 

We use helicity methods [23,24] since they lead to relatively compact expressions for the am- 

plitudes, and retain all spin information. We also make use of color decompositions [25] to help 

simplify the analytic structures that must be computed. As a check, we have verified numerically 

that the amplitudes presented in this paper agree with a direct Feynman diagram calculation we 

performed. 

The paper is organized as follows. In section 2, we briefly describe helicity methods and color 

decompositions. We give the amplitudes, together with a brief description of the calculational 

methods, in section 3; we describe the contribution proportional to the axial vector coupling of the 

2 to the t, b quark isodoublet in subsection 3.4. A summary is included in section 4. We collect 

descriptions of various integral functions appearing in the amplitudes in an appendix. 

2. Basic Tools 

In this section, we briefly review two of the basic tools useful for expressing amplitudes in 

a compact form: the spinor helicity method and color decompositions. The reader is referred to 

review articles [26] and references therein for further details. 

2.1 Spinor Helicity 

In explicit calculations it is usually convenient to use a helicity basis, where all quantities 

are rewritten in terms of Weyl spinors ]rC*). Although there are no external gluons in the final 

e+e- + ijqQQ helicity amplitudes, they appear as intermediate states in various unitarity cuts 

and factorization limits that are used to construct the amplitudes. We made use of the gluon 

polarization vectors of Xu, Zhang and Chang [23,24], 

E;(k 4) = (4-IYLh I”-) E-(k.q)= (Q+hl~+) 
Jzw ’ p ’ Jzh?l ’ 

(24 

where Ic is the gluon momentum and q is an arbitrary null ‘reference momentum’ which drops out of 

final gauge-invariant amplitudes. The plus and minus labels on the polarization vectors refer to the 

gluon helicities. Our (crossing-symmetric) convention takes all particles to be outgoing, and labels 

the helicity and particle vs. antiparticle assignment accordingly. (That is, we write the amplitudes 

for the process 0 -+ VtjqaQ.) For incoming (negative energy) momenta the helicity and particle 
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vs. antiparticle assignment are reversed. It is convenient to define 

(ij) E (ktylkj’), [ij] = (kflkj), 

(W> = (6 181 I kj) , (il(l + m>l$ = K I (Ql + Pm> I”;> , 

(i-l(ltm)(ntr)...lj+) = (ki l($~tL)($n + /4-)--- l k,+), 

P-2) 

for the spinor products, which is the notation we shall use to quote the results. Here all the 

momenta Ici are massless. The spinor inner products (i j), [ij] are antisymmetric and satisfy 

(ij) [j i] = 2Li * kj 5 Sije 

To maximize the benefit obtained from the spinor helicity formalism for loop amplitudes we 

must choose a compatible regularization scheme. In conventional dimensional regularization [27], 

the polarization vectors are (4 - 2c)-dimensional, which is incompatible with the spinor helicity 

method’s use of four-dimensional polarizations. To avoid this problem, we modify the regularization 

scheme so all helicity states are four-dimensional and only the loop momentum is continued to 

(4- 2~) dimensions. This is the four-dimensional-helicity (FDH) scheme [28], which has been shown 

to be equivalent at one-loop [29] t o an appropriate helicity formulation of Siegel’s dimensional- 

reduction scheme (DR) [30]. Th e conversion between schemes has been given in ref. [29]; there is 

no loss of generality in choosing the FDH/DR scheme. 

2.2 Color Decomposition 

In this section we describe a color decomposition [25] of the one-loop amplitude for efe- + 

QqQQ, in terms of group-theoretic factors (color structures) multiplied by kinematic functions called 

partial amplitudes. Because of the crossing symmetry of the spinor products [24] and of the integral 

functions (discussed in the appendix), these partial amplitudes may also be used to obtain the one- 

loop contributions to 2 or W + 2 jet production at hadron colliders or three jet production in 

deeply inelastic scattering. (For the case of the W, only the coupling constants need be changed 

in the formula given below.) 

The partial amplitudes are defined to be the coefficients of the various color structures. Con- 

sider the amplitude ds(lq, 20,3,, 4,; 5,-, 6e). At tree-level its decomposition is 

dpe(lg,20,39,4g) = 2e2g2 -Qq + G,Rv& pZ(S8s))A~e(lq,2~,3Q,4,-) 

+ (-Q” + vE,,v,&,, %(%~))A~~(3~,4q, I,, 2~) 1 (2.3) -. 

x 
( 
6,:” 6,“;’ - +:’ q) ) 

c 

where we have suppressed the 5,6 labels of the electron pair, e is the QED coupling, g the QCD 

coupling, Qq (QQ) is the charge of quark q (q uark Q) in units of e, and the left- and right-handed 
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where 0~ is the Weinberg angle. Eq. (2.3) contains the ratio of the 2 and photon propagators, 

P,(s) = 
S 

s-M,$+irzMZ 
(2.5) 

where MZ and Iz are the mass and width of the 2. We have given the decomposition for a general 

SU(N,) gauge group; N, = 3 for &CD. The two signs in vi correspond to up (+) and down (-) 

type quarks. 

The subscripts L and R refer to whether the particle to which the 2 couples is left- or right- 

handed. That is, vi is to be used for the configuration where the quark (leg 1) has plus helicity and 

the anti-quark (leg 4) h as minus helicity, which we denote by the shorthand (lz, 46). Similarly, vi 

corresponds to the configuration (19, 4:). Because the electron and positron are incoming in e+e- 

annihilation, our outgoing-momenta notation reverses their helicities and particle vs. anti-particle 

assignment. Thus, vh corresponds to the helicity configuration (5,) 6:) whereas vi corresponds to 

the configuration (5$, 6,). 

We have defined the tree and one-loop partial amplitudes Agee and AG;i to include a photon 

propagator. The ratio Pz(sss) appearing in eq. (2.3) th en replaces the photon propagator with 

a 2 propagator. This form of the amplitude is convenient for checking that amplitudes properly 

reduce to lower-point amplitudes when the e+ and e- momenta are taken to be collinear. 

At one loop there are three partial amplitudes, 

d~-'""p(1q,20,3Q,4q) = 

2e2g4 -Qq t vF,,&,jJ'z(d ) [Nd,; &y A6;l(lq,2Q,3Q,4q) t biy6;; &,2(1,,‘&3~,4,-)] 

+ (-Q" + G,&,, pZ(s56)) [Nc 6,“,” 5,“;1 A~;I(~Q, 4,, I,, 20) t 6;:’ 6,: &;@Q& 1,, 2~)] 

t &7,(%6) (6:: 6,; - +6:;' 6i:1)A6;s(lq,2q,3~,4,-) . 

c 1 
(2.6) 

Note the additional factor of N, in the color-tensor coefficients of A s;r,2 compared to the correspond- 

ing tensors in the tree-level amplitude. The A6;3 term arises from a fermion triangle graph [31]. 

It violates the axial symmetry, and is proportional to the axial coupling of the 2 to the top and 

bottom quark isodoublet as well as to the top-bottom mass splitting (see section 3.4). The cor- 

responding charges vanish for the photon and the W boson, and this term does not contribute to 

amplitudes for the latter bosons. 

._. 
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Helicity conservation for massless quarks and leptons ensures that there are only 23 = 8 possible 

helicity configurations for e+e- --+ QqQQ, namely two choices for each fermion line. Because the 

electron line couples through the current (5*]yp]6*) = (67]yfi]57), ‘t * t 1 is rivial to reverse its helicity 

simply by exchanging 5 and 6 in the partial amplitudes Ape and A6;+, and exchanging V; f--f vi in 

the prefactors in eqs. (2.3) and (2.6) as discussed above. We can use parity to reverse all helicities 

simultaneously in the partial amplitudes Ape, A6;1 and As$, by complex conjugating all spinor 

products ((i j) tf [j i]). Th e axial vector contribution A6;3 is also complex conjugated, but acquires 

an additional overall minus sign from the 75 in the loop. Thus we are left with just two independent 

helicity configurations, which we may take to be d6( 1t, 2$, 3;, 4i; 5,) 6:) (we shall again suppress 

the 5,6 labels below). 

The partial amplitudes can be further expressed in terms of ‘primitive amplitudes’ [15]. The 

primitive amplitudes are gauge-invariant classes of color-stripped amplitudes from which we can 

build the partial amplitudes. (In ref. [15] the primitive amplitudes were defined to have a fixed 

ordering of the external legs, but here we extend the notion to mean gauge-invariant color-stripped 

building-blocks for amplitudes.) It turns out that some signs in the reduction of partial amplitudes 

to primitive amplitudes depend on which of the two helicity configurations one is considering, so 

for clarity -we shall explicitly list the two cases separately. Although color decompositions do not 

depend on the helicity choices, these sign differences appear because we have used the symmetries 

of the primitive amplitudes to reduce the number of independent ones required. 

The formulae for A6;i( 1:) 2;) 3;’ 4;) in terms of the primitive amplitudes are 

A6;r(1;,2;,39,4,) = A,++(1,2,3,4)+ yA;‘++(l,2,3,4)- FAi++(1,2,3,4) 
c c 

-j&b3 ( A++ 1,2,3,4)+ A$-(1,3&t)) t $Af(2,3,1,4), 

As;2(1;,2&3,$4,) = A$-(1,3,2,4)- yA;Y++(l,2,3,4)+ zAls’++(1,2,3,4) (2.7) 
c c 

+ $(A,+-(LWt A,++(L2,3,4)) - -&&@,3,1,4); 

A6;3(l;,2;,3;,44) = Ar(1,4,2,3), 

where n, is the number of scalars* (n, = 0 in &CD) and nf is the number of Dirac fermions. 

Within the context of supersymmetry decompositions [13,32,12] it is natural to divide the fermion 

contribution into s and f pieces as we have done here. 

* As in refs. [13,15], each scalar here contains four states (to match the four states of Dirac fermions) so that 7~~ 

must be divided by two for comparisons to conventional normalizations of scalars. 
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For the other independent helicity configuration As;+( 1:) 2~’ 3;,46), we have, 

A&;,2&3;,4,) = A,+-(1,2,3,4)+ yA;l+-(1,2,3,4)- %A’6’+-(1,2,3,4) 

- $&A$-(1,2,3,4;+ A,++(1,3,2,4)) - 4-=A$(3 2 1 4) j-q 7” ’ 

As;z(1;,2;,3;,4;) = A,++(1,3,2,4)- ?A;‘+-(1,2,3,4)+ SAffi’f-(1,2,3,4) (2.8) 
c c 

+ j$(A:f(1,3,2,4)+ A,$-(1,2,3,4)) + +A:(3,2,1,4), 

A&1;,2&3;,4;) = -A,““(1,4,3,2). 

Note that A$ and A:” appear with a different permutation of the arguments, and the opposite sign, 

compared with the previous helicity structure. The signs in the above expressions also depend on 

the relative phase conventions of the two helicity amplitudes; we have chosen a convention where 

A Fe,+-(1,3,2,4) = -Aper++(1,2,3,4). Of course, consistency between tree and loop amplitudes 

- must be maintained. 

A representative diagram for the primitive amplitudes Ag’+*(1,2,3,4) and Ai’+*(l,2,3,4), 

corresponding to those terms in the partial amplitudes proportional to the number of fermions 

nf, is depicted in fig. 1. There are only two such diagrams. The ‘parent’ pentagon diagram for 

the leading-color helicity amplitude A$*(1,2,3,4) is depicted in fig. 2. (By a ‘parent’ diagram 

we mean a diagram from which all other diagrams in the set can be obtained via a continuous 

‘pinching’ process, in which two lines attached to the loop are brought together to a four-point 

interaction - if such an interaction exists - or further pulled out from the loop, and left as the 

branches of a tree attached to the loop.) The parent box and triangle diagrams for the subleading- 

color primitive amplitude At(1,2,3,4) are depicted in fig. 3. (We combine the triangle-parent 

contributions with the box-parent contributions because the former are so simple, and the two 

have an identical color structure.) The fermion-loop triangle diagram, proportional to the axial 

coupling of the 2 to quarks, is shown in fig. 4. We neglect the IL, d, s, c quark masses, and so only 

the t, b quark pair survives an isodoublet cancellation in the loop, thanks to its large mass splitting. 
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+ (112) 4-h {3,4}) 

Figure 4. Triangle diagram for the amplitude component A:“, proportional to the axial 

coupling of the Z to quarks. 

Formulas (2.3) and (2.6) apply to the case of unequal quark flavors, 4 # &. The equal flavor 

amplitude may be obtained from the unequal-flavor formula by subtracting the same formula with - 

Q and Q exchanged (or 4 and 0 exchanged, but not both), and then setting & = q in all the 

coupling constant prefactors. (Equal-flavor cross sections also require an identical-particle factor 

in the phase-space measure, which is ($)” for e+e- + qqqq.) 

The virtual part of the next-to-leading order correction to the parton-level cross-section is 

given by 

doi%O,virtud 
6 

= 2 c Re[&ree * &-loop 

colors 
I- 

It is a straightforward exercise (which we leave to the reader) to ev aluate this color sum in terms 

(2.9) 

of partial amplitudes. 

3. The Amplitudes 

In constructing the amplitudes presented here, we use two basic analytic properties: that their 

imaginary (absorptive) parts be determined from the Cutkosky rules [20], and that they factorize 

on particle poles. These analytic properties of amplitudes have, of course, played an important role 

in field theory for many decades; we make use of recent developments which allow us to to obtain 

complete amplitudes with no subtractions. In order to maximize the efficiency of the computation 

it is useful to perform the computation in the manner described in ref. [la]. Due to the complexity 

of the kinematics for the processes presented here, further techniques are required to minimize the 

appearance of undesired spurious poles; these will be discussed in ref. [9]. 
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The primitive amplitudes Af and A: are proportional to tree amhlitudes and are given by 
- 

A;‘+*(1,2,3,4)= crA~e(l~,2~,3F,,49;5,1,6~) 1-i (5)’ - ;] , 

(34 
Afs’+*(1,2,3,4) = crA~e(l~,2~,3~,49;5,-,6~) ; 

where Atee is given below, 

cy = 
(4$’ 

r(1 + c)l?(l - c) 

ryl - 2E) 

and D = 4 - 2~. 

9 (3.2) _ 

The contribution AgX is finite (see below). It is convenient to decompose the remaining prim- 

itive amplitudes into divergent (V) and finite (F) pieces, 

A; = cr A, 
[ 

tree, qp + i p] , 
(3.3) 

where 

a={++, +-7 4 (3.4) 

labels the primitive amplitude under discussion. The quantities Aye’+* coincide with the true 

tree partial amplitudes appearing in eq. (2.3), 

Ar”(1;,2$3;,4- s;5;,6;) = Ape’+*(1,2,3,4). (3.5) 

(We continue to omit the arguments of the primitive amplitudes corresponding to the lepton pair.) 

We express the amplitudes in terms of the spinor products (2.2), the Lorentz products sij = 

(Li + kj)” and tijm = (L; + kj + k,)2, and the following combinations of kinematic invariants, 

612 = s12 - s34 - s56, 634 = s34 - s56 - s12 , 656 = s 56 - s12 - s34 , 

A3 = 5j2 + S;4 + $6 - 

P-6) 

h2s34 - 2s34s56 - 2s56sl2 . 

The latter quantity is the negative of the Gram determinant associated with the set of massive 

momenta{kl+k2,k3+k4,k5+k6}. 

The amplitudes we present are bare ones, i.e., no ultra-violet subtraction has been performed. 

To obtain the renormalized amplitudes in an MS-type subtraction scheme, one should subtract the 

quantity 

from the the amplitude (2.6). 

We quote the results in the FDH scheme [30,28], but these may easily be converted to the 

‘t Hooft-Veltman scheme; to do so one would add the quantity 
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to the amplitude (2.6) and change the coupling constant from the non-standard QDR to the standard 

o&. The conversion between the various schemes is discussed in refs. [29]. 

3.1 The Helicity Configuration q+a+Q-Q- 

We first give the primitive amplitude A6++(1,2,3,4) which contributes to the leading color 

part of -46;1(lq, + 2&3;,4;; 5,,6:). Th is amplitude is odd under a ‘flip symmetry’, which is the 

combined operation of a permutation and spinor-product complex conjugation: 

flip: 1*4, 2-3, 5-6, (ub)tt [ub], (a-lblc-) H (a+lblc+) = (c-l+-). 

(3.9) 

The corresponding tree amplitude for this helicity configuration is 

A ye1++(1,2,3,4) = i P 21(54) (31(1+ 2)16) + i (3 4) [6 11(51(3 + 4112) 

S23S56t123 S23S56t234 . 
(3.10) 

We have 

V++(1,2,3,4) = -$ (($)‘t(&--)‘)t$($)‘-~ln(~)+~, (3.11) 

F++(1,2,3,4) = w + ‘416)” [l 212 (4 5)2 

(23)[56]t12s(lI(2 t 3)14) - [231(5%23(41(2+ 3)11) 

t~:;h(s34,t123;S12,S56) 1 
(1](2t3)]6)[12]Lo(& (3]4]6)Lo(=) 

t123 t123 

+ 

(23) t123 1 
1 1 

-- 2 (2 3) [5 61 tm(ll(2 t 3)14) ((31211)(11(2+ 3)16)) t2 123 1 
- flip , 

(3.12) 

where ‘flip’ is to be applied to all the preceding terms in F++ 
-2mh 

and the functions Li, Ls-r and Ls-, 

are defined in the appendix. 

3.2 The Helicity Configuration q+&-Q+ij- 

We now give the result for Ai-(1,2,3,4), which contributes to the leading color part of the 

partial amplitude As;l(l~,20,3~,4~;5,,6~). Th is amplitude is odd under the same flip symme- 

try (3.9) as At+. The tree amplitude is 

A pe,+-(l, 2, 3,4) = -i L1 3l (~~JJf/~f,$ 3)16) _ i la 4, [S2~~~/~~3~ 4)13) . (3.13) 
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Note that AFer+-(1,2,3,4) L -Ape'++(1,3,2,4). 

For the one-loop contributions we have 

V+-(1,2,3,4)= -; 

Note that V+-(1,2,3,4) = V++(1,2,3,4). The finite part is 

F+-(1,2,3,4) = 
[l 312 (4 5)2 (12)" (31(1 + 2)16)" 

- 
[23](56)t123(41(2+3)11) •t (23)[56]t123(13)2(11(2+3)14) Ls-l > ( 

-s12 -323 

-t123' -t123 

[l 312 (4 5)2 (31(1-i- 2)16)2(21(1 + W2 -2mh 

-[23](56)t123(41(2 t 3)ll) + (23)[56]tm(11(2 + 3)14)(31(1+ 2)14)2 Ls-l (S34't123'S12'S56) 

:(a2 - ~34) (5 1) @I(3 t 4)12)(11(2 t 413) _ 1 (~12 - ~34) [2 3](5 1) (5 2) 

2 (5 6) OK2 + 3)14)(11(3 + 4>12>2 2 (5 6) PIP + 3)14)(11(3 + 4>12> 

1 (t134 - t234) [3 41(5 1) (5 4) WI (51) (52) Olw-4)13) 

- 5 (5 6) (lI(2 + 3)14)(11(3 •t 4>12> - (5 6) (II@ + 3)14)(11(3 + 4112) 

+ L(5 1) 16 2](11(2 t 4)13)(h - 2%) + ;(51(1 t 2)16)(11(2 t 4)13) 

(UP + w)P1(3 •t w>2 2 OK2 + 3N4(w -I- w> 
_ blC2 + 413)(snM~511,6~ - (5l2l6)) - bd(5lll2)(@$) - (51611)(11216))) 

OK2 -I- 3)14&1(3 + 4IW3 

-9 
1 @I(1 + 4)13)(51(1+ 2)16)s56 13m(s12 s34 s56) 

(ll(2 t 3)14)A, 1 3 ' ' 

[13](12)(31(1 t 2)16)" Lo = 

t [5 61 tm (13) (31(1+ 2)14) 
( > 1 [l 312 (2 3) (l/(2 t 3)16)2 L1 ( > * -- 
312 2 [56]tm(l@ + 3)14) s;3 

+ [13](1~(2t3)/6)(2~(1+3)/6)Lo(~) + [13](12)(l/(2+3)16)(31(lt2)~6)Lo(*) 

[5 61 tm(ll(2 + 3)14) s23 [5 61 tlm (13) (ll(2 + 3)14) s23 

- 1 [6412 (42j2 t123 L@) [6 412 (4 2) t123 Lo(*) 

5 - (23) WI (I@ + 3)14) t;23 [561 (11(2 + 3)14)(31(1 + 2)14) s56 

[64](42)(21(1 t 3)16) Lo(f%) 

2 (23)[561(11(2+3)14) 356 

+ (31(1 •t 2)14)(&3 t 4)12)A, ('12 - s34) [ ( 
(12) [6 1][6 21 tlm + [1‘4 (5 1) (5 2) tm 

[5 61 (56) > 

t (%2 - 656) (5 2) (11(3 t 4>l2) [I61 

+ ((sl3 + s23&23 t 324) - sl2(312 + s23 - s14))(51116) 

t ((sl4 + s24)(%3 t sl4) - S12 S12 - s23 t sl4))(512/6)] ln( z) ( 

- flip , 
(3.15) 

where ‘flip’ is to be applied to all the preceding terms in F+-. 

3.3 Subleading Color Primitive Amplitude 

Here we give the primitive amplitude Af(l,2,3,4), w lc contributes only at subleading order h' h 
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in N,. The “tree amplitude” appearing in eq. (3.3) is 

AFe’“‘(1,2,3,4) = i 1131(5 4) PU •t 3116) _ i (24) [6 31(51(2 + 4)11) 
(3.16) 

Note that Ateets1(2,3, 1,4) = -Ape’++(1,2,3,4). 

For the subleading-color primitive amplitude, it is convenient to introduce an ‘exchange’ op- 

eration where the 5,6 fermion pair is exchanged with the 1,2 fermion pair, 

exchange: l-6, 2-5. (3.17) 

‘- _ The box-parent part of A$ is even under this exchange. It is also convenient to define a symmetry 

operation ‘flip-sl’ (distinct from the leading-color ‘flip’), 

flip-sl: l-5, 2-6, 3-4, (ab)*[ub], (a-plC-)H(u+plc+)=(c-lblu-). 

(3.18) 

The singular contribution is 

V”‘(1,2,3,4) = -1 
[ c2(&)E-$($J-4] + [-jq$J'-:($JE-;I' 

(3.19) 

where the first bracket is from the ‘box parent’ graphs in fig. 3a and the second bracket is from the 

‘triangle parent’ graphs in fig. 3b. In fact, the entire contribution from the triangle parent diagrams 
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is contained in the second bracket. The finite contribution is 

FS1(1,2,3,4) = 
[l 312 (4 5)2 (3lP + 2)16)“(W + 3)li2 1 -2mh 

[la] (56) t123(4](1 + 2)]3) - (12) [56] t123(3](1 + 2)]4)3 Ls-l (s34’ t123’S12’S56) 

t T1;m(s12,S34,S56) t ' 
[6412 (42j2 tm L1(%) [64](42)(2](1 + 3)]6) L”(+ 

2 0 2> L5 61 131c1 + 2>14) t;23 + 2 (12) [5 61(31(1 -t-2)14) s56 

(23) (24) [6412 t123 Lo(2$) 
- 

(12) [5 61 @I(1 + ‘w2 

1 (23) [641(21(1 t 3)16) ln 

~56 - 2(12)[56](31(1 t 2)14)2 

-- - 
4 (12)[561 t123(31(1+ 2x4) 

in(z) flip-s11 

([5 6](2 5j2 634656 - 2 (1 2)2 (5 6) [6 11" 612 t 4 (12) s56 (5 2) [6 11 656) 

I” > 6d 

[la1 (2 5) 
- :(3](1+2)]4)(56)A3 ((52) ($12 - ~34) 2 (56)[6 ll(l2)) - 

3 t123 

+ ?(31(1 t 2)[4)@ 
((5 2) [I61 (634656 t 2 s12&2)+ 2 ([121 [561(25)2 + (12>(56)[6 1 

1 t123 -- 

2 (31(1+2)14)& ( 
(5 2) [l 61 _ [l y5(62;j2 - (l ;;F1112) 

P 2116 4lP 2) 
•t (- (3((1 t 2),4j2A3 

(5lP + 3111) 
+ (5 6) @I(1 t 2)14)& > ((52) 656 - 2(5/(3+4)/1)(12)) 

[641(3 2)h 
- ([16] 656 - 2 @I(3 t 4)16) [121) 

[56](31(1t 2)14)2& 
_ 

+ @I(1 i-:)14)& 
((54)[411(21(1t3)16)+[631(23)(51(2+4)11)) 

[6 4lP 2) 
+2 (12)[561(31(1 +2)14)& 

(-2 (2~5~6)~56 t @I(3 t 4)1+534) 

(52) 
- 2 (12)(56)(31(1-t 2)14)& 

J34 ((53)[341(42)+ (54)[411(12) - (51(1+2)13) (32)) 

_ b41 PIP + 3)16)(2--1(5 + 6X1 + 2>13+> + 1 (23) [461 @I(1 + 3)16) 
(12) [56]h(31(1 t 2)]4)2 2 (12) L-5 61(3lP + w92 

1 (W + 3)W2 -- 
4 (12) [561t123(31(1 t 2)14) + 

(52) ((45) (‘I(’ ’ 3)14) - (’ 5, t”‘) 
(12) (56)t123(31(1t2)14) > 1 _ flip_sl 

1 (t123634 + %2s56) 

( 

[6 II2 (5 a2 
> 

[6 1lF 2) 
- ii (3](1 t 2)]4)& [12][56] + (12)(56) +(t123 - t124)(3](1$2)]4)A3 

+ exchange, 
(3.20) 

where ‘exchange’ is to be applied to all the preceding terms in FS1, but ‘flip-sl’ is to be applied only 

to the terms inside the brackets ([ 1) in which it appears. The three-mass triangle coefficient T is 
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given by 

T = 3S3&2& +&2s56) 
([I ‘I (“j2 [5 61-k (‘6) [6 ‘I2 (1’)) _ 6si2s56s34 (5 2) [6 11 Ct123 - t124) 

(3@ + 2>l4Pi (3U t 2)14&i 
t123 - 

(3lP + 2)14@3 
((5 2) [6 I](356 + ~12 t ~34) t [la] (2 5)2 [5 61 t (5 6) [6 112 (12)) 

_ (5lP t 3)ll) 

(31(1 + 2)14)‘b 
([6 51 (5 2) 656 - [6 l] (12) 612) - [’ 2;$;‘;;;4;;;‘6)2 

(2 3) [6 41 - (31(1 + 2)14)2A3 (t5 6, s56 (I6 ‘1 t 123 - 16 5](5 2) [2 11) - [12] &a((2 5) tm - (2 1) [161(6 5))) 

(2 3)2 [6 412 

“(12)[56](31(1 t 2)l4)” 

Pwww+w) 1 _ 
(30 t 2)14)2 

- +d34 + 2SnSx 

2([65](52)6 56 [61](12)S12) [63](24) - - 
(12) [5 61 A3 

+ 2 (-(21314)(41516)fi56 t (2]1]3)(3]4]6)&2 t (21 (1+3)16)~34~34) 
w t 3M 

(12) [5 61(31(1+ 2)14)A3 

+ 4 PU t 3PN5lP t 3w34 _ (t123S34 + 2s12s56)(w •t 3116) P41(35) 

(310 t 2114P3 S12S56(w + w)" 

t 2 (- [121(2 3) [3 41(4 5) t (5 6) [6 41(4 3) 13 11 t (5lP t 3)&34) s12~~;;13;;j14j 

- ;(tndsn t ~~~~~~6)s12s~~~~lj~~‘2,14, 

1 (t123 - t124) 

- %2S56@1(1 t 2)l4) 
(2 w t 3)16)((51311) - (51411)) 

_ t ((21316) - (21416))(51(2 •t 4111) t [6 11(25) 634) 

t -(5(311) t (51411) t ;(t P 41(3 5) P 31(4 5) [3 6lP 4) 

123 - t124)((3](1 + 2)]4) + (4](1 t 2)]3) s12s56 

- (4 (2](1 t 3)]6) - (21316) t (21416)) [’ 31 (45) . 
sl2s56 

(3.21) 

3.4 Axial Vector Contribution 

The primitive amplitude Ag”( 1,2,3,4) is unique in that neither of the external quark pairs 

couples directly to the vector bosom instead they couple through the fermion-loop triangle diagram 

shown in fig. 4. The contribution to the amplitude (2.6) vanishes when the vector boson is a photon 

(by Furry’s theorem, i.e. charge conjugation invariance). The 2 contribution is proportional to 

the axial vector coupling of the 2 to the quarks in the loop. As the u,d,s,c quark masses may 

be neglected, only the t, b quark pair survives an isodoublet cancellation in the loop, due to its 

large mass splitting. We use the results of ref. [31] to obtain this contribution; that paper presents 

the fully off-shell Zgg vertex, and we need only contract it with the three fermion currents. The 
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infrared- and ultraviolet-finite result is 

% 
Ar(1,2,3,4) = -- 

w2 

[611[131(45) 

P 21 
+ (1 * 3, 2 cf 4) , 

(3.22) 

where the integral f( m is defined in the appendix. We need only the large mass expansion (for ) 

m = mt) and the m = 0 limit (for m = mb) of this integral; these are presented in the appendix. 

4. Summary and Conclusions 

In this paper we presented all one-loop four-quark amplitudes which enter into the computation 

of the next-to-leading order QCD corrections to e+e- + (y*, 2) + 4 jets. The two-quark two- 

gluon amplitudes will be presented elsewhere [8,9]. We obtained the amplitudes by demanding that 

their functional forms satisfy unitarity and factorization. We also used a color decomposition and 

a helicity basis to express the amplitudes in a compact form. This way of obtaining amplitudes is 

significantly more efficient than using Feynman diagrams, since previously computed amplitudes 

are used to construct new ones. These amplitudes can be incorporated into numerical jet programs, 

which should lead to an improved knowledge of the QCD background to searches for new physics 

in various processes. Indeed, the leading-in-N, parts of the contributions presented here, together _ 

‘- with those for two quarks and two gluons [8,9] h ave already been inserted into one such program _ 

for four-jet production in e+e- annihilation [lo]. 
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Appendix I. Integral Functions 

We collect here the integral functions appearing in the text, which contain all logarithms and 

dilogarithms present in the amplitudes. Except for the contribution of the top quark to the fermion 

triangle loop in A:“, all internal lines are taken to be massless. The following functions already 

appear in the evaluation of pentagon loop integrals where all external legs are massless, and of box 
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integrals with one external mass, e.g. as occur in the one-loop five-gluon amplitudes [13]: 
- 

146 
Lo(r) = - 

l-r’ 
L&) = w-) + l 

l--r ’ 
7r2 

L~-~(r~,r~)=Li2(l-rr)+Li2(l-r2)+lnrrlnr2-~, 

where the dilogarithm is 

Liz(z) = - 
J 

x dy 141 - Y> 

0 Y a 

(I4 

(1.2) 

The function Ls-r is simply related to the scalar box integral with one external mass, evaluated in 

six space-time dimensions where it is infrared- and ultraviolet-finite. 

The box function analogous to Ls-1, but for two adjacent external masses, is 

Ls?yh(s, t; rn:, mz) = - Liz (~-~)-Li2(l-~)-~lnZ(~)+~ln(~)ln(~) 

+ i(s-m:- 
[ 

ma+ 
m2m2 
+ 1 Izm(s, rni, mi) , 

(I-3) 
where Jzrn is the three-mass scalar triangle integral. Here we use only a version of this box function 

with lim removed, 

-2mh 
Ls-, (s, t; mf, mi) = - Lig (l-~)-Li2(l-f-~ln2(~)+~ln(+)ln(~~4, 

The analytic properties of these integrals are straightforward to obtain from the prescription 

of adding a small positive imaginary part to each invariant, sij + sij + i&. One expands the 

logarithmic ratios, In(r) E In(s) = ln(-s) - ln(-s’), and then uses 

ln(-s - i.5) = In Is] - iir@(s), (1.5) 

where O(s) is the step function: O(s > 0) = 1 and O(s < 0) = 0. The imaginary part of the 

dilogarithm Li2( 1 - r) is given in terms of the logarithmic ratio, 

ImLiz(1 - T) = -ln(l- r) Imln(r). (I-6) 

For T > 0 the real part of Liz(l - r) is given directly by eq. (1.2). For T < 0 one may use [33] 

ReLi2(1-r) = g-ln]r]ln]l-r]-ReLi2(r), (1.7) 

with ReLiz(r) given by eq. (1.2). 
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The analytic structure of 1:” is more complicated [34,35,36], and the numerical representation 

we use depends on the kinematics. The integral is defined by 

1 

133m(S12,S34,S56) = I d%iS(l-ai -a2 -u3) 
1 

(1.8) 
0 -S12ala2 - s34a2a3 - s56a3al 

This integral is symmetric under any permutation of its three arguments. The signs of all three of 

its arguments may be simultaneously reversed by complex conjugating the integral and multiplying 

by an overall minus sign. Therefore we only have to consider two cases, 

1. The Euclidean region ~12,534, s56 < 0, which is related by the sign flip to the pure Minkowski 

region (SIX, 334, s56 > 0) relevant for e+e- annihilation. Here the imaginary part vanishes. This 

region has two subcases, depending on the sign of the Gram determinant A~(sI~, ~34, s56) defined 

in eq. (3.6): 

la. As < 0, 

lb. A3 ,> 0. 

2. The mixed region 512, s56 < 0, 534 > 0, for which As is always positive. 

In region la one may use a symmetric representation found by Lu and Perez [34], which is 

closely related to that given in ref. 1361: 

13m= & [Cl, (2tan-‘(9)) +Cl2 (Ztan-r (F)) +Cl2 (2tan-’ (?))I, 3 

(1.9) 

where the Sij are defined in eq. (3.6) and the Clausen function C12(2) is defined by 

C12(2) = 2 y = -lx& ln(]2sin(t/2)]). 
n=l 0 

(1.10) 

In regions lb and 2 a convenient representation is given by Ussyukina and Davydychev [35], 

13m=-~Re[2(~i2(-~~)+~i2(-~y))tln(p.)ln(py)+ln(~)ln(~)+~] (I11) 3 

- i7@(s34)ln (612 + d&)(656 + &> 

6 (612 - d&I>@56 - 6) > ,' 

where 
512 534 2s56 

CC=-, y=-, p= 

s56 s56 656 + & * 

(1.12) 

Although the expressions for lzrn contain an overall factor of l/&, they are finite as As + 0. 

Finally, in the top quark contribution to A:” the combination f(mt) - f(mb) appears, where 

f(m) is the integral 

J 
1 

f(m; %2,s34,s56) = d3Ui S(1 - ur - a2 - u3) m2 _ 
u2a3 

. (1.13) 
0 sl2ala2 - s34a2a3 - s56a3al 
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This integral is complicated for arbitrary mass m; however, the large and small mass limits of it 

suffice for mt and mb respectively. For m = mt we simply Taylor expand the integrand in l/m; for 

m = mb we set mb to zero, and reduce f(0) t o a linear combination of the massless scalar triangle 

integral 1:” given above, logarithms and rational functions. We get 

1 
f(mt;Sl2,S34,S56)= 24m2 + 

(2S34 + 512 + 856) 

360m: 
+ e-0, 

t 

&) sl2ln ($) - 

(1.14) 
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