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ABSTRACT

We consider the twistor theory approach to Kronheimer’s ALE metrics on the resolution of a Kleinian singu-
larity. The circle action on the 4-manifold induces a C*-action on a compactification of the twistor space and 
we identify the orbit of a generic twistor line as a nodal rational curve in a particular cohomology class of a 
projective rational surface. Using the results of N.Honda et. al. we identify this surface with the minitwistor 
space for the Einstein-Weyl structure on the 3-dimensional quotient of the ALE space by the circle action.

1 . I N T R O D U CT I O N
In [12, 13] Kronheimer gave a construction of asymptotically locally Euclidean (ALE) metrics in four 
dimensions by hyperkähler quotients. These metrics are defined on the complex surfaces obtained by 
resolving the singularity at the origin of C2/Γ, where Γ ⊂ SU(2) is a finite subgroup and the reso-
lution is by a configuration of rational curves which intersect according to a Dynkin diagram of type 
A,D,E. The construction gives a great deal of global information about the metric—completeness, 
asymptotic behaviour and moduli. Nevertheless, some aspects are impenetrable—for example, the 
case of E8 entails taking a vector space of dimension 4|Γ| = 480 and solving 357 quadratic equations 
even before taking a quotient to obtain a 4-manifold.

The aim of this paper is to give a different approach based on twistor theory, using algebraic geome-
try to highlight different ingredients, providing a fresh look at these spaces. Twistor theory was already 
used by the author 45 years ago in the Ak and Dk cases [6, 3] (even though the latter paper appeared 
much later) by using the algebraic equations defining the deformations of C2/Γ embedded in C3 as 
a singular affine surface or equivalently the other complex structures of the hyperkähler family. This 
method produced some local formulae but proved to be impossible for the consideration of the Ek
series.

Here we replace the equations by a compactification of the twistor space. This aspect appeared in 
a recent paper of the author [9], and in some respects this one can be considered as a sequel. In both 
cases we consider the action of a circle induced by the scalar action of C* on C2 and consider the family 
of invariant metrics. The basis of twistor theory consists of studying a distinguished family of rational 
curves—twistor lines—in the twistor space. In [9] we identified the twistor lines which are preserved 
by the C*-action in order to describe the induced metric on the central 2-sphere of fixed points in the 
ALE space. They are closures of C*-orbits. In this paper we identify the orbits of a general twistor line.
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338 • N. HITCHIN

The twistor space is a complex 3-manifold which is a fibration Z → P1. The circle action fixes two 
distinguished points u = 0,∞ on P1, and the fibre over these points is isomorphic to the complex 
structure of the resolved singularity. We introduce a compactification Z̄ which extends the fibration 
and consider the fibre over u = 1. This is a projective rational surface obtained by a systematic blowing 
up of points in the plane. An orbit of a twistor line is a surface in Z̄, which meets this fibre in a rational 
curve, and we identify in Theorem 4.1 the linear system to which these curves belong. The curves are, 
however, almost always singular, so earlier issues are transformed into the serious problem of identify-
ing nodal curves in a known linear system. Nevertheless, we consider some examples—the A2ℓ−1 case 
involves hyperelliptic curves, and we also address the constraint on an elliptic curve which appeared 
in the earlier treatment of the D4 case.

It is at this point that we make contact with the work of Honda [10, 11] who adapted the original 
Penrose twistor approach by replacing smooth rational curves with nodal ones. The relevant case here 
consists of the 3-parameter family of nodal curves in the surface u = 1, and this gives it an interpretation 
as the minitwistor space for an Einstein–Weyl structure on the 3-dimensional quotient of the ALE 
space by the circle action.

In the case of A1—the original Eguchi–Hanson metric which began the study of the locally 
Euclidean property—the rational surface is a quadric and the curves have no singularities—they 
are just plane sections. As a consequence we deduce that the quotient of the ALE manifold can be 
identified with hyperbolic 3-space, and we use this as a model for a brief discussion of the orbifold 
Einstein–Weyl geometry in general. In particular, the fixed 2-sphere in the ALE space becomes a 
2-sphere at infinity in the quotient. Infinity in the ALE space becomes a distinguished point with 
the orbifold structure of R3/Γ. We do not develop further the properties of these spaces, but the 
interpretation of a minitwistor space as the space of geodesics in an Einstein–Weyl manifold gives 
an explanation, in terms of closed geodesics, of the existence of the singularities in the rational curves.

This paper is based on a talk given in Oxford on 25 July 2023 at a conference for Peter Kronheimer’s 
60th birthday.

2 . T H E T W I STO R CO N ST RU CT I O N
The ALE metrics are hyperkähler, so have complex structures I, J, K  satisfying the quaternionic 
identities and preserved by the Levi–Civita connection. They define a 2-sphere of complex struc-
tures aI + bJ + cK , with a2 + b2 + c2 = 1. To obtain a 4-dimensional hyperkähler manifold via the 
twistor construction one needs a complex 3-manifold Z with a projection 𝜋 : Z → P1 and a family 
of sections, which we call twistor lines with normal bundle N ≅ 𝒪(1) ⊕𝒪(1). Deformation theory 
gives a complex 4-dimensional space of such sections where the tangent space at a point is isomor-
phic to H0(P1, N). A conformal structure is defined by declaring a null tangent vector to be a section 
of N, which vanishes at some point. In addition one requires a symplectic form along the fibres—a 
section of Λ2T*

Z/P1(2), where 𝒪(k) is the pull back by 𝜋 of 𝒪(k) on P1. This fixes a complex metric 
in the conformal class. Finally we require a real structure, an antiholomorphic involution 𝜎 : Z → Z, 
which covers the antipodal map u ↦ −1/ū on P1, preserves the relative symplectic form and induces 
a positive definite metric on the space M of real sections. Each fibre Zu meets a real section in a unique 
point and endows M with a complex structure and a complex symplectic form, with the fibres over 
u ∈ C∪ ∞ = P1 ≅ S2 realizing the 2-sphere of complex structures of the hyperkähler family.

Kronheimer’s construction identifies the twistor space, confirming the picture suggested in [6]. 
A finite subgroup Γ ⊂ SU(2) acts on C2, and there is a basis x, y, z of the ring of homogeneous 
invariant polynomials in (z1, z2) of degree ℓ, m, n, respectively, satisfying an equation f (x, y, z) = 0, 
which embeds the quotient C2/Γ as a singular affine surface in C3. A versal deformation consists of 
adding lower-degree polynomials to f, the coefficients of which can be understood as Weyl-invariant 
polynomials on the Cartan subalgebra 𝔥 of the Lie algebra of type ADE associated with Γ. Then 
f (x, y, z, h1,… , hk) = 0 is a family of affine surfaces, the generic one smooth. The twistor space for 
an S1-invariant metric is the hypersurface in the total space of 𝒪(ℓ) ⊕𝒪(m) ⊕𝒪(n) defined by 
f (x, y, z, a1u,… , aku) = 0, with ai being real, together with a resolution of the singularities at u = 0,∞. 
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The real structure is induced by the involution (z1, z2) ↦ (z̄2, −z̄1) on the invariant polynomials x, y, z
and u = z1/z2.

The A and D series are easy to write down because the invariant polynomials are so well known, in 
topology, for example, as Chern classes for Ak and Pontryagin and Euler classes for Dk: 

Ak : xy =
k+1

∏
i=1

(z − aiu), (1)

Dk : x2 − zy2 = − 1
z

(
k

∏
i=1

(z + a2
i u2) − u2k

k

∏
i=1

a2
i ) + 2yuk

k

∏
i=1

ai. (2)

Then finding the twistor lines is the ‘Diophantine’ problem of solving an algebraic equation with 
polynomial coefficients in u with polynomials x(u), y(u), z(u).

The first case is straightforward and was carried out in [6]: z(u) = cu2 + au − c̄ is a real quadratic and 
z − aiu = c(u − 𝛼i)(u − 𝛽i). Since the discriminant (a − ai)

2 + 4cc̄ is positive we can distinguish 𝛼i and 
𝛽i. Then one takes x(u) = A(u − 𝛼1)⋯(u − 𝛼k+1) and y(u) = B(u − 𝛽1)⋯(u − 𝛽k+1), with AB = ck+1

and a, c and A/|A| give four real local coordinates for the metric.
The Dk case is more complicated—here z(u) is a quartic polynomial. Rewriting the equation as 

zx2 − (zy +
k

∏
i=1

aiu)2 = −
k

∏
i=1

(z + a2
i u2),

we observe that a solution x(u), y(u) means that 

f (u, w) =
√z(u)x(u) − (z(u)y(u) + uk ∏k

i=1 ai)

√z(u)x(u) + (z(u)y(u) + uk ∏k
i=1 ai)

(3)

is a rational function on the elliptic curve w2 = z(u) with zeros pi and poles qi at w = ±iaju for some 
choice of signs. This is a single constraint, implemented by an elliptic integral, on the divisor class 
D = ∑i pi − qi, which reduces the five coefficients of z(u) to produce four local coordinates on the 
ALE space.

Remark: Since this approach predates Kronheimer’s work it is perhaps useful to point out the con-
text. Both cases produced formulae in terms of local coordinates, and in the Ak case one could relate 
this in [6] to a previously derived expression for the metric [5] by Gibbons and Hawking whose global 
interpretation was clear. In that sense the contribution of the twistor approach was to describe all the 
complex structures in the hyperkähler family. At the time, there was no alternative expression for the 
Dk case and the local coordinates used were not sufficient to give a global description of the space, but 
much later it made sense when moduli spaces of monopoles and their hyperkähler metrics were being 
analysed. The constraint on the elliptic spectral curve of a charge 2 SU(2) monopole with singulari-
ties was almost the same as the one above. The difference, which changes the asymptotic behaviour of 
the metric to asymptotically locally flat, is that the divisor class D, instead of being trivial and giving 
a rational function, is the restriction of a canonical element in H1(TP1,𝒪) to the curve w2 = z(u), 
where TP1 = 𝒪(2) is a non-compact surface, the tangent bundle of P1. The formulae in [3] require 
only slight modification to apply to the ALE case.

Proceeding to the Ek case following this approach proved to be difficult, and it becomes easier, but 
less explicit, to consider the algebraic geometry of compactifications.

3 . CO M PACT I F I C AT I O N S
If we compactify C2 to P2 then C2/Γ can be compactified to P2/Γ by adding the orbifold P1/Γ at 
infinity to the singular surface and its resolution. For the D,E series there are three orbifold points 
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340 • N. HITCHIN

which give singularities of P1/Γ corresponding to the stabilizers of the vertices, midpoints of faces 
and edges of a dihedron, tetrahedron, octahedron and icosahedron. These can be resolved [4] to give 
a configuration of rational curves which support an anticanonical divisor: −K = 2C + E + F + G. For 
Ek it is

and for Dk and A2ℓ−1:

Figure 1. D4 blowing up

Remark: We consider Ak, with k being odd for uniformity here. The point is that the Dk,Ek Dynkin 
diagrams have a unique trivalent vertex which means that the corresponding rational curve in the res-
olution of the singularity is pointwise fixed. This will play an important role later. In the Ak case there 
is a further circle action—a circle subgroup of SU(2) commuting with the action of the cyclic group Γ
and some combination fixes any one of the chains of rational curves. It is convenient to take the central 
vertex as the fixed one when k is odd. In addition −1 ∈ Γ for all cases except Ak for k even.
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ALE SPACES AND NODAL CURVES • 341

Conversely a rational surface with an anticanonical divisor as above is the compactification of one 
of the versal deformations of the singular surface. This way the surface and its subvarieties replaces 
the explicit equation. Following [9] consider the configuration in P2 in Figure 1: a conic E with 4 
points e1, e2, e3, e4 and a line through x tangent to the conic at f. Blowing up the six points gives a cubic 
surface (in fact the natural projective compactification of the D4 equation (2)). Because E meets G
tangentially in the cubic we have three lines through a point and blowing up that point to give a −1 
curve C gives three −2 curves and the compactification above for D4. Clearly blowing up further points 
e5, e6,… , ek gives the Dk configuration.

The Ek series is similar but with an additional point y on G blown up.
The above describes a compactification of the fibres of the twistor space Z → P1. The ALE property 

of the metric means that the 4-manifold has a conformal orbifold compactification by a single point (as 
used in [1]), and as a consequence its twistor space has an orbifold compactification by adding P1/Γ. 
After blowing up this gives a compactification, which extends the fibration, so we obtain Z̄ → P1 where 
each fibre Z̄u for u ≠ 0,∞ is holomorphically equivalent to one of the projective surfaces described 
above.

4 . T H E C*-ACT I O N
The circle action on the ALE space induces a corresponding action on the twistor space, which extends 
to a C*-action, covering u ↦ 𝜆u under the projection Z̄ → P1. It preserves the fibres over u = 0,∞
which correspond to complex structures ±I, the resolution of the singularity and its complex conju-
gate. On the resolution the action fixes pointwise the rational curve defined by the trivalent vertex (we 
shall call this C0) and two points of each of the other rational curves. We shall consider the orbit of a 
generic twistor line P under this action.

Firstly consider flat space R4. The twistor space Z here is the total space of the vector bundle 𝒪(1) ⊕
𝒪(1) → P1 and its compactification by P1 is P3. Blowing up this line at infinity gives Z̄ → P1 with 
fibres P2. In homogeneous coordinates we remove the line z0 = z1 = 0 from P3 and the projection to 
P1 is u = z1/z0. The 4-parameter family of twistor lines considered as sections of 𝒪(1) ⊕𝒪(1) are 
z2 = az1 + bz0, z3 = cz1 + dz0. The real lines are given by d = ā, c = −b̄. Fix (a, b, c, d) to give a twistor 
line P, and then 𝜆 ∈ C* transforms P to 

z2 = 𝜆az1 + 𝜆−1bz0, z3 = 𝜆cz1 + 𝜆−1dz0.

Eliminating 𝜆 we see that the closure of the orbit of P is the quadric surface in P3 given by 

(cz2 − az3)(dz2 − bz3) + (ad − bc)z0z1 = 0.

In particular the surface meets the line at infinity at two points [0, 0, a, c], [0, 0, b, d]. The quadric meets 
the fibre u = 0, where z1 = 0 which from the equation reads (cz2 − az3)(dz2 − bz3) = 0 and consists of 
two lines L1, L2 meeting at the origin, the closure of two orbits in C2 under the scalar C*-action. One 
line is given by the orbit of the intersection of P with the fibre u = 0, and the other is a line in P3, the 
limiting transform as 𝜆 → ∞.

In the ALE case we take a generic twistor line P and consider the closure X of the orbit. The orb-
ifold compactification of Z clearly produces a similar pair of lines L1, L2 as the flat case. Now consider 
the C*-action on the complement in Z̄ of the fibre over u = ∞, as in [9] Section 7. The action defines 
a stratification (of Bialynicki–Birula type) according to the limit tz as t → 0. These limits are fixed 
points of the action and lie over u = 0. There we have a one-dimensional fixed point set C0 and zero-
dimensional fixed points on the other curves of the resolution. The open stratum consists of C*-orbits 
which flow down to the fixed curve C0. Thus a generic point on the generic twistor line P has a limit 
on C0 and so this curve is another component of the intersection X ∩ Z̄0. Note that the intersection 
number (L1 + L2 + C0).C0 = 1 + 1 − 2 = 0. In fact the cohomology class of X in H2(Z̄,Z) must van-
ish on C0 since the class [C0] ⊂ H2(Z̄,Z) appears as a holomorphic curve with conjugate complex 
structures in u = 0,∞.
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342 • N. HITCHIN

A generic point in the fibre Z̄0 flows down to the fixed locus C0. It does not lie on the upward flow 
from the isolated fixed points and hence does not meet the other rational curves in the resolution. As a 
consequence the lines L1, L2, orbit closures, only intersect C0. But we saw above that the intersection 
number is 0 with C0, so the cohomology class of X vanishes on all classes in H2(Z0,Z).

Now consider the intersection X ∩ Z̄1, the fibre over u = 1. Since H2(Z1,Z) ≅ H2(Z0,Z), we learn 
from the above discussion that the divisor class Q  of X in Z̄1 has the property that Q  is trivial on the 
affine part H2(Z1,Z) ⊂ H2(Z̄1,Z) and also on E, F, G for the Dk,Ek series and D1, D2 for A2ℓ−1. This 
yields the following:

Theorem 4.1 The divisor class Q of the image of a twistor line in the rational surface Z̄1 is given by 

E6 : Q = 12C + 4E + 6F + 4G,

E7 : Q = 24C + 6E + 12F + 8G,

E8 : Q = 60C + 12E + 30F + 20G, (4)

A2ℓ−1 : Q = ℓC + D1 + D2,

Dk : Q = (2k − 4)C + 2E + (k − 2)F + (k − 2)G.

and in each case the intersection number Q 2 = |Γ| and KQ = −4 where the ALE space is 
asymptotic to C2/Γ.

Proof Since the curves C, E, F, G and D1, D2 are disjoint from the representative cycles in 
H2(Z0,Z) ≅ H2(Z1,Z) we can look for classes Q = a0C + a1E + a2F + a3G, etc., which 
satisfy QE = QF = QG = 0, and also, since L1, L2 intersect C transversally, QC = 2. Using the 
configurations in Section 3 this leads to the list. Then Q 2 and KQ  can be calculated directly 
using the adjunction formula for the rational curves C, E, etc. �

Since the image of a twistor line is a rational curve, the adjunction formula KQ + Q 2 = 2g − 2 says 
that these curves are singular, and if they have simple nodes then there must be |Γ|/2 − 1 singularities. 
Thus each twistor line defines a nodal curve in the linear system Q. However, Honda and Nakata [10] 
prove that if a smooth projective surface S has a rational curve C with 𝛿 > 0 nodes as all its singularities 
and C2 + 1 − 2𝛿 > 0, then the variety of such curves is non-singular and C2 + 1 − 2𝛿-dimensional. In 
our case Q 2 + 1 − 2𝛿 = 3 and so the images of the 4-parameter family of twistor lines give an open set 
in the 3-parameter variety of nodal curves in the linear system. The context of Honda’s work appears 
in Section 7. We shall henceforth denote the surface Z̄1 by S.

Remark: Note that since E came from a conic in the plane, and G a line under the blowing up 
from the plane, on blowing down a nodal curve in the linear system Q  to P2 the coefficients of E, G
in equations (4) show that the image is a plane curve in general of high degree and with singular 
behaviour at f, apart from the movable nodes.

5 . E X A M P L E S
5.1. A2ℓ−1

The configuration of curves for A2ℓ−1 can be achieved by taking S to be the projective bundle P(𝒪⊕
𝒪(ℓ)) → P1 with 2ℓ points a1,… , a2ℓ on the zero section blown up. Then C is a fibre, D1 the infinity 
section and D2 the blown up zero section.
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From equation (4) we have Q = ℓC + D1 + D2 and QC = 2 which means that, if z is an affine 
coordinate on P1, Q  has an equation of the hyperelliptic form 

w2 + p(z)w + q(z) = 0,

where p(z) has degree ℓ and q(z) degree 2ℓ and vanishes at each z = ai, so q(z) = c(z − a1)…(z − a2ℓ). 
Here Γ is the cyclic group Z2ℓ, so we require |Γ|/2 − 1 = ℓ − 1 nodes. This means that p(z)2 − 4q(z)
must have ℓ − 1 double zeros. There are ℓ − 1 constraints on the ℓ + 1 coefficients of p(z) together with 
the multiplier c giving the expected (ℓ + 2) − (ℓ − 1) = 3 parameters.

Note that for ℓ = 1 there are no singularities and the image of a twistor line is a smooth rational 
curve of self-intersection 2. In the model here we can blow down the −1 curves D1 and D2 to obtain a 
quadric surface and then the curves are plane sections. We shall meet this fact again in the final section.

When ℓ = 2, by a projective transformation we can take three of the four points to be (0, 1,∞) and 
write q(z) = 𝜆2℘(u) using the Weierstrass ℘-function. Then the general constraint is for 𝜆℘′(u) +
a0 + a1℘(u) + a2℘2(u) to have a double zero.

Removing the anticanonical divisor gives the affine surface xy = (z − a1)…(z − a2ℓ), the versal 
deformation of xy = z2ℓ, as described in Section 8.4 of [9]. The real structure interchanges D1, D2, 
and if z = a ≠ ai the curve xy = (a − a1)…(a − a2ℓ) ≅ C* compactified with two points from D1, D2, 
respectively, belongs to the pencil generated by C.

5.2. D4
In this case equation (4) gives Q = 4C + 2E + 2F + 2G = −2K . Now, as discussed in Section 3, S is a 
cubic surface Σ ⊂ P3 blown up at a point a giving the −1 curve C. Since the embedding of Σ is the 
anticanonical system, curves in the linear system Q  consist of intersections with quadric surfaces in 
P3 meeting the cubic tangentially at that point and three others. We shall see next in this approach the 
constrained elliptic curve in the description of Section 2.

The cubic surface Σ is the blow-up of the plane at the six points x, f , a1, a2, a3, a4 as in the diagram. 
We denote the images in Σ of the curves E, F, etc. in S by E*, F*, etc. and a generic twistor line P ≅ P1

maps to the nodal curve Q* ⊂ Σ. The lines E*, F*, G* meet at the point a. Blowing down further to the 
plane we write the curves as E**, etc. 

Consider the pencil of planes in P3 containing the line E* ⊂ Σ. This is the linear system −KΣ − E*, 
and 

Q*(−KΣ − E*) = (−2K)(−K + C − E) = 4.

A plane through E* meets the line X* in a point, so X* parametrizes the pencil, and Q* is a 4-fold cover 
of X*.

In Figure 2, the lines through x are the points of X*, but also express the conic E** as a double cover 
of X* branched over f  and the point of contact of the other tangent from x. Let t be an affine parameter 
on E*, where t = 0 is the point f  and the covering involution is t ↦ −t. Then t2 is an affine parameter 
on X* and t2 = 0 is the line G**. The plane in the pencil defined by t2 = 0 meets Q* in the image of the 
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344 • N. HITCHIN

Figure 2. The planar model

zeros of a quartic polynomial z(u) on P1, and then, if t = ai is the point ei on the conic E**, t = −ai is the 
other intersection of the line joining x to ei. The rational function (3) on the elliptic curve t2 = z(u) is 
then 

f (t) =
4

∏
i=1

(t − ai)
(t + ai)

.

6 . T H E C E N T R A L S P H E R E
We take a small diversion here to see a rather different interpretation of the surface S = Z̄1. The element 
−1 ∈ S1 defines a holomorphic involution on the twistor space and composing with 𝜎, a new real 
structure 𝜏 which covers u ↦ 1/ū with fixed point set |u| = 1 – the reflective rather than the antipodal 
real structure on P1. So the fibre S given by u = 1 has a real structure.

The link between the twistor space approach and the hyperkähler geometry of a fixed 4-manifold 
consists of the C∞ trivialization of the bundle Z → P1 by the real twistor lines: they define a foliation 
by sections of 𝜋 : Z → P1. Then the real twistor lines through the holomorphic curve C0 ⊂ Z0 inter-
sect the fibre Z1 in a 2-sphere. Since C0 is fixed by −1 ∈ S1, so are the real twistor lines passing through 
it and hence also the 2-sphere, which is then a component of the fixed point set of the action of 𝜏 on 
Z1. Thus the 2-sphere is a component of the real points of the affine surface. From this point of view S
may be considered as the complexification of this central 2-sphere.

The paper [9] gave a description of the metric on this sphere induced by the hyperkähler metric on 
the ALE space. It is a component of an affine surface in R3 and inherits the natural area form. Its con-
formal structure is defined by two complex conjugate foliations by null curves of the compexification. 
In [9] these are shown to be given by two conjugate pencils of rational curves of zero self-intersection. 
Moreover these curves are characterized by intersecting C0 and C at one point and having zero inter-
section with the cycles coming from the other rational curves in the resolution. Given our derivation 
of Q  in the previous section, it is clear that Q = D + 𝜏(D) where D is the divisor class for one pencil.

Example: For A1, S blows down to a quadric surface P1 × P1 and the null curves are the two fami-
lies of lines D ≅ 𝒪(1, 0),𝜏(D) ≅ 𝒪(0, 1). The projected twistor lines are plane sections, in the divisor 
class 𝒪(1, 1). The Eguchi–Hanson metric on the cotangent bundle of the 2-sphere is rotation-invariant 
and therefore a standard metric on the real quadric x2

1 + x2
2 + x2

3 = 1 in R3.
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Remark: An expression for D is given in [9] in terms of the exceptional curves arising from blowing 
up the points ei, f , g, x, y on P2, but there is an unfortunate choice of notation, with Ēi denoting the −1 
curve coming from the line in the plane joining x to ei. If Ei is the blow up of the point ei then in the 
Dk case Ēi is indeed its complex conjugate, but this does not necessarily hold for the Ek series.

One way to determine the action of the real structure 𝜏 on the cohomology of S is to note that, 
because it changes orientation on the holomorphic 2-spheres in the resolution, the action is −1 on the 
cohomology of the affine part Z1. The circle action acts trivially on the E, F, G configuration at infinity, 
and so 𝜏 coincides with the antipodal real form. Then the total class E + F + G in H2(S,Z) is acted 
on by +1, but in the case of E6 consideration of the real structure (z1, z2) ↦ (z̄1, −z̄1) acting on the 
invariant polynomials 

z4
1 + 2i

√
3z2

1z2
2 + z4

2, z4
1 − 2i

√
3z2

1z2
2 + z4

2, z1z2(z4
1 − z4

2)

shows that 𝜏 interchanges the cohomology classes E and G.

7 . E I N ST E I N –W E Y L M A N I F O L D S
We can now place the theorem we used of Honda and Nakata in the context they were studying, 
which is to regard the complex surface S (or more precisely an open set of it) as a minitwistor space 
for a 3-dimensional Einstein–Weyl manifold M. This is a manifold M with a conformal structure and 
a torsion-free connection preserving it such that the symmetrized Ricci tensor R(i,j) is a scalar. The 
skew-symmetric component R[i,j] is a 2-form which is essentially the curvature of the line bundle of 
volume forms. This was the original idea in 4 dimensions of incorporating the electromagnetic field 
into general relativity. In practical terms one can choose a metric g in the conformal equivalence class, 
and then the Weyl connection satisfies ∇g = 2𝜔 ⊗ g  for a 1-form 𝜔.

The differential-geometric link with the ALE spaces is the fact that the quotient of a hyperkähler 
4-manifold by an isometric circle action is an Einstein–Weyl 3-manifold. In local coordinates a 
representative metric can [2] be put in the form 

g = eu(dx2 + dy2) + dt2, 𝜔 = −utdt, (5)

where u satisfies the SU(∞) Toda equation uxx + uyy + (eu)tt = 0.
We can describe this more globally, following [8]. The circle action on the ALE space preserves the 

Kähler form 𝜔1 for this complex structure. Then t in the equation is, up to a constant, the moment 
map for this action. The quotient by the circle action of a level set t = c is a Kähler quotient, with an 
induced holomorphic structure, and ute

u(dx2 + dy2) at t = c is this metric. The time-dependent metric 
h = eu(dx2 + dy2) on this surface satisfies the second-order equation htt = 𝜅h, where 𝜅 is the Gaussian 
curvature.

On the hyperkähler manifold the circle action generates a vector field X and the vector field IX is 
horizontal and is the gradient of the moment map t. Thus the dt2 term in formula (5) shows that this 
choice of metric in the conformal class is determined by rescaling the quotient metric with the norm 
square of X to make dt have length 1.

The twistor theory for Einstein–Weyl 3-manifolds was established in [7] and based on the 
minitwistor quotient of a twistor space: if there is a good quotient of the complex 3-manifold Z by a C-
action, then the normal bundle of a twistor line is an extension 𝒪 → 𝒪(1) ⊕𝒪(1) → 𝒪(2) where the 
trivial sub-bundle is tangent to an orbit of the action. Then the quotient is a surface S, and the twistor 
lines project to rational curves of self-intersection 2. The two models for this are S = 𝒪(2), the tan-
gent bundle of P1, and S = P1 × P1 with the corresponding Einstein–Weyl structures being R3, with 
the flat metric or hyperbolic metric, respectively. Furthermore, the only compact complex surfaces 
which admit such curves give locally the same geometry.

This is where the work of [10] comes to the rescue, considering families of nodal curves. In that 
paper a local tubular neighbourhood of a rational nodal curve is constructed, which can be ‘normal-
ized’ to the neighbourhood of a smooth curve of self-intersection 2. Our surface S is a global substitute 
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for the quotient of the ALE twistor space—locally around a twistor line, we can find a quotient, and 
this will constitute an example of this local normalization. The authors of [10, 11] apply this to intro-
duce many examples of Einstein–Weyl manifolds from the geometry of compact rational surfaces. In 
fact, as the first author of [10] has pointed out, Section 5.2 of that paper contains a family which 
includes our A2ℓ−1 case.

In the case of A2ℓ−1 the surface S and its nodal curves have already been described here in 
Section 5.1. There is another action—a triholomorphic action—of the circle on the 4-manifold, and 
the quotient Einstein–Weyl structure is here just the Levi–Civita connection of the flat metric on R3. 
This is essentially the Gibbons–Hawking Ansatz [5]. We can see this from the twistor point of view: 
the C*-action (x, y, z) ↦ (𝜆x,𝜆−1y, z) on 𝒪(k + 1) ⊕𝒪(k + 1) ⊕𝒪(2) preserves z, and twistor lines 
project to sections z(u) of 𝒪(2) → P1, the minitwistor space for R3.

For the action we are considering in this paper an explicit formula for the Ak Einstein-Weyl structure 
can be found in [2], based on earlier work of Ward [14]. For k = 1, we already observed that S is a 
quadric, and so the Einstein–Weyl quotient is hyperbolic 3-space, but it is useful to see this concretely. 
One standard form of this A1 metric is the following, using left-invariant 1-forms 𝜎i on SU(2): 

g = dr2

(1 − (1/r)4)
+ r2

4
(𝜎2

1 + 𝜎2
2) + r2

4
(1 − (1/r)4)𝜎2

3 ,

which clearly shows that as r → ∞ it becomes asymptotically a quotient of Euclidean space and as 
r → 1 we get the 2-sphere C0 with metric (𝜎2

1 + 𝜎2
2)/4. The vector field X given by the circle action is 

dual to 𝜎3.
If we take the Kähler form to be 2rdr ∧ 𝜎3 + r2𝜎1 ∧ 𝜎2 then the moment map is t = r2 and (X , X) =

(t − t−1)/4. This gives the data for the Toda form for the metric (5), and one finds 𝜔 = −d log(t2 − 1)
and so d𝜔 = 0. This means that the volume bundle for the conformal structure is flat and we can rescale 
the metric by a power of (t2 − 1) to obtain a Levi–Civita connection for the hyperbolic 3-space: 

𝜌2

(1 − 𝜌4)2
(d𝜌2 + 1

4
𝜌2(𝜎2

1 + 𝜎2
2)) .

Here 2r2 = 𝜌2 + 𝜌−2, and so 𝜌 → 1 corresponds to r → 1—the central 2-sphere becomes the 2-
sphere at infinity in hyperbolic space. As r → ∞, 𝜌 → ∞ and infinity in the ALE space defines a 
distinguished origin in the hyperbolic space.

These two features hold in the general ALE case: the Einstein–Weyl quotient has an asymptotic 
2-sphere and an orbifold central point modelled on R3/Γ, where Γ is acting via its image Γ/ ± 1 in 
SO(3). There will be other singularities pertaining to isolated fixed points of the circle action or fixed 
points under finite subgroups. This is not the place to go into further details, but it allows for the 
opportunity to give a geometrical meaning to the appearance of nodes in the twistor lines.

In the original situation of smooth rational curves of self-intersection 2, the minitwistor space is a 
complex surface, which is interpreted as the space of oriented geodesics for the Weyl connection, with 
the antipodal real structure being the change of orientation. Then two real twistor lines intersect at 
two points because two points in the 3-manifold have a unique geodesic connecting them (with two 
orientations).

In our case the global interpretation of the surface S in terms of geodesics is necessarily more com-
plex and in particular the self-intersection Q 2 = |Γ|, so we expect |Γ|/2 geodesics joining two points. 
In a neighbourhood of the orbifold point this is clear: take a fundamental domain in the Γ/ ± 1 - cov-
ering and two points p, q. Then we shall encounter geodesics joining p to each of the |Γ|/2-translates 
of q.

The same principal applies to a single point p. In a local normalized neighbourhood the smooth 
rational curve represents the geodesics corresponding to the tangent directions at p, along each of 
which passes a geodesic. But, as with the geodesics on a cone, globally we obtain geodesics which 
return with a different direction, giving an identification of pairs of points on the curve and hence a 

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/76/1/337/7990706 by guest on 07 M
arch 2025



ALE SPACES AND NODAL CURVES • 347

node on its image in the space of geodesics. We lose one of the geodesics when we had two points to 
give |Γ|/2 − 1 singularities.
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