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ABSTRACT

We consider the twistor theory approach to Kronheimer’s ALE metrics on the resolution of a Kleinian singu-
larity. The circle action on the 4-manifold induces a C*-action on a compactification of the twistor space and
we identify the orbit of a generic twistor line as a nodal rational curve in a particular cohomology class of a
projective rational surface. Using the results of N.Honda et. al. we identify this surface with the minitwistor
space for the Einstein-Weyl structure on the 3-dimensional quotient of the ALE space by the circle action.

1. INTRODUCTION

In [12, 13] Kronheimer gave a construction of asymptotically locally Euclidean (ALE) metrics in four
dimensions by hyperkihler quotients. These metrics are defined on the complex surfaces obtained by
resolving the singularity at the origin of C*/T, where I' C SU(2) is a finite subgroup and the reso-
lution is by a configuration of rational curves which intersect according to a Dynkin diagram of type
A,D,E. The construction gives a great deal of global information about the metric—completeness,
asymptotic behaviour and moduli. Nevertheless, some aspects are impenetrable—for example, the
case of Eg entails taking a vector space of dimension 4|I"| = 480 and solving 357 quadratic equations
even before taking a quotient to obtain a 4-manifold.

The aim of this paper is to give a different approach based on twistor theory, using algebraic geome-
try to highlight different ingredients, providing a fresh look at these spaces. Twistor theory was already
used by the author 45 years ago in the A and Dy, cases [6, 3] (even though the latter paper appeared
much later) by using the algebraic equations defining the deformations of C*/I" embedded in C* as
a singular affine surface or equivalently the other complex structures of the hyperkihler family. This
method produced some local formulae but proved to be impossible for the consideration of the E,
series.

Here we replace the equations by a compactification of the twistor space. This aspect appeared in
a recent paper of the author [9], and in some respects this one can be considered as a sequel. In both
cases we consider the action of a circle induced by the scalar action of C” on C* and consider the family
of invariant metrics. The basis of twistor theory consists of studying a distinguished family of rational
curves—twistor lines—in the twistor space. In [9] we identified the twistor lines which are preserved
by the C -action in order to describe the induced metric on the central 2-sphere of fixed points in the
ALE space. They are closures of C -orbits. In this paper we identify the orbits of a general twistor line.
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338 « N.HITCHIN

The twistor space is a complex 3-manifold which is a fibration Z — P". The circle action fixes two
distinguished points u = 0,00 on P!, and the fibre over these points is isomorphic to the complex
structure of the resolved singularity. We introduce a compactification Z which extends the fibration
and consider the fibre over u = 1. This is a projective rational surface obtained by a systematic blowing
up of points in the plane. An orbit of a twistor line is a surface in Z, which meets this fibre in a rational
curve, and we identify in Theorem 4.1 the linear system to which these curves belong. The curves are,
however, almost always singular, so earlier issues are transformed into the serious problem of identify-
ing nodal curves in a known linear system. Nevertheless, we consider some examples—the A,,_, case
involves hyperelliptic curves, and we also address the constraint on an elliptic curve which appeared
in the earlier treatment of the D, case.

It is at this point that we make contact with the work of Honda [10, 11] who adapted the original
Penrose twistor approach by replacing smooth rational curves with nodal ones. The relevant case here
consists of the 3-parameter family of nodal curves in the surface u = 1, and this gives it an interpretation
as the minitwistor space for an Einstein-Weyl structure on the 3-dimensional quotient of the ALE
space by the circle action.

In the case of A;—the original Eguchi-Hanson metric which began the study of the locally
Euclidean property—the rational surface is a quadric and the curves have no singularities—they
are just plane sections. As a consequence we deduce that the quotient of the ALE manifold can be
identified with hyperbolic 3-space, and we use this as a model for a brief discussion of the orbifold
Einstein-Weyl geometry in general. In particular, the fixed 2-sphere in the ALE space becomes a
2-sphere at infinity in the quotient. Infinity in the ALE space becomes a distinguished point with
the orbifold structure of R*/T". We do not develop further the properties of these spaces, but the
interpretation of a minitwistor space as the space of geodesics in an Einstein—-Weyl manifold gives
an explanation, in terms of closed geodesics, of the existence of the singularities in the rational curves.

This paper is based on a talk given in Oxford on 25 July 2023 at a conference for Peter Kronheimer’s
60th birthday.

2. THETWISTOR CONSTRUCTION

The ALE metrics are hyperkahler, so have complex structures I,],K satisfying the quaternionic
identities and preserved by the Levi-Civita connection. They define a 2-sphere of complex struc-
tures al +bJ + cK, with a*+b*+¢* = 1. To obtain a 4-dimensional hyperkihler manifold via the
twistor construction one needs a complex 3-manifold Z with a projection 7 : Z — P! and a family
of sections, which we call twistor lines with normal bundle N =2 O(1) @ O(1). Deformation theory
gives a complex 4-dimensional space of such sections where the tangent space at a point is isomor-
phic to H°(P', N). A conformal structure is defined by declaring a null tangent vector to be a section
of N, which vanishes at some point. In addition one requires a symplectic form along the fibres—a
section of AZT;/PI(Z), where (k) is the pull back by 7 of @(k) on P*. This fixes a complex metric
in the conformal class. Finally we require a real structure, an antiholomorphic involution 0 : Z — Z,
which covers the antipodal map u — —1/# on P, preserves the relative symplectic form and induces
a positive definite metric on the space M of real sections. Each fibre Z, meets a real section in a unique
point and endows M with a complex structure and a complex symplectic form, with the fibres over
u € CUoo = P! 22 §? realizing the 2-sphere of complex structures of the hyperkihler family.
Kronheimer’s construction identifies the twistor space, confirming the picture suggested in [6].
A finite subgroup I' C SU(2) acts on C2, and there is a basis «, ¥,z of the ring of homogeneous
invariant polynomials in (z;,z,) of degree ¢,m,n, respectively, satisfying an equation f(x,y,z) = 0,
which embeds the quotient C*/Tasa singular affine surface in C3. A versal deformation consists of
adding lower-degree polynomials to f, the coefficients of which can be understood as Weyl-invariant
polynomials on the Cartan subalgebra fj of the Lie algebra of type ADE associated with I'. Then
f(x3,2,hy,...,h) =0 is a family of affine surfaces, the generic one smooth. The twistor space for
an S'-invariant metric is the hypersurface in the total space of O(f) ® O(m) @ O(n) defined by

f(x,9,2,a,u,...,a,u) = 0, with g, being real, together with a resolution of the singularities at u = 0, cc.
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ALE SPACES AND NODAL CURVES . 339

The real structure is induced by the involution (z,,z,) > (2,,~%, ) on the invariant polynomials x, y, z
andu =z,/z,.

The A and D series are easy to write down because the invariant polynomials are so well known, in
topology, for example, as Chern classes for A, and Pontryagin and Euler classes for Dy:

k+1

A, xy:H(z—aiu), (1)

k

k k
D, : ¥-z’= 1 (H(z +aiu?) —u** Ha?) + ZyukHai. (2)
Z \ix1 i1

i=1

Then finding the twistor lines is the ‘Diophantine’ problem of solving an algebraic equation with
polynomial coefficients in u with polynomials x(u), y(u),z(u).

The first case is straightforward and was carried out in [6]: z(u) = cu® + au — ¢is areal quadratic and
z—au=c(u-a;)(u—-3,). Since the discriminant (a — a,)* + 4c¢ is positive we can distinguish c; and
/3.. Then one takes x(u) = A(u— ;) - (u—0y,,) and y(u) = B(u— ;) - (u - B,,,), with AB = ¢**!
and a,c and A/|A| give four real local coordinates for the metric.

The Dy, case is more complicated—here z(u) is a quartic polynomial. Rewriting the equation as

k k
= (zy + I_Ia,u)2 = —H(z +au®),
i1 1

i=

we observe that a solution x(u), y(1) means that

Va(wx(u) = (2(w)y(w) +u*[T5, g
Va(x(u) + (z(w)y(w) +u [T, a)

is a rational function on the elliptic curve w” = z(u) with zeros p; and poles g; at w = +ia;u for some
choice of signs. This is a single constraint, implemented by an elliptic integral, on the divisor class
D =3)".p; - q; which reduces the five coefficients of z(u) to produce four local coordinates on the
ALE space.

REMARK: Since this approach predates Kronheimer’s work it is perhaps useful to point out the con-
text. Both cases produced formulae in terms of local coordinates, and in the A case one could relate
thisin [6] to a previously derived expression for the metric [§] by Gibbons and Hawking whose global
interpretation was clear. In that sense the contribution of the twistor approach was to describe all the
complex structures in the hyperkihler family. At the time, there was no alternative expression for the
D, case and the local coordinates used were not sufficient to give a global description of the space, but
much later it made sense when moduli spaces of monopoles and their hyperkihler metrics were being
analysed. The constraint on the elliptic spectral curve of a charge 2 SU(2) monopole with singulari-
ties was almost the same as the one above. The difference, which changes the asymptotic behaviour of
the metric to asymptotically locally flat, is that the divisor class D, instead of being trivial and giving
a rational function, is the restriction of a canonical element in H'(TP!,9) to the curve w* = z(u),
where TP' = (9(2) is a non-compact surface, the tangent bundle of P'. The formulae in [3] require
only slight modification to apply to the ALE case.

Proceeding to the E,_case following this approach proved to be difficult, and it becomes easier, but
less explicit, to consider the algebraic geometry of compactifications.

fluw) = (3)

3. COMPACTIFICATIONS

If we compactify C? to P? then C?/I can be compactified to P}/T by adding the orbifold PYT at
infinity to the singular surface and its resolution. For the D, E series there are three orbifold points
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340 « N.HITCHIN

which give singularities of P' /T corresponding to the stabilizers of the vertices, midpoints of faces
and edges of a dihedron, tetrahedron, octahedron and icosahedron. These can be resolved [4] to give
a configuration of rational curves which support an anticanonical divisor: -K =2C + E + F + G. For
E, itis

C -1
3—k —2 -3
E F G
and for Dy and A,,_;:
c -1 C 0
—(k—-2) —2 -2 —/ —/
E F G D, Dy
G
e €3
€1 : €4
f
E

Figure 1. D, blowing up

REMARK: We consider Ay, with k being odd for uniformity here. The point is that the D, E, Dynkin
diagrams have a unique trivalent vertex which means that the corresponding rational curve in the res-
olution of the singularity is pointwise fixed. This will play an important role later. In the Ay case there
is a further circle action—a circle subgroup of SU(2) commuting with the action of the cyclic group I
and some combination fixes any one of the chains of rational curves. It is convenient to take the central
vertex as the fixed one when k is 0dd. In addition -1 € I" for all cases except Ay for k even.
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Conversely a rational surface with an anticanonical divisor as above is the compactification of one
of the versal deformations of the singular surface. This way the surface and its subvarieties replaces
the explicit equation. Following [9] consider the configuration in P* in Figure 1: a conic E with 4
points e}, ¢,, e5, ¢, and a line through x tangent to the conic at f. Blowing up the six points gives a cubic
surface (in fact the natural projective compactification of the D, equation (2)). Because E meets G
tangentially in the cubic we have three lines through a point and blowing up that point to give a -1
curve C gives three -2 curves and the compactification above for D,. Clearly blowing up further points
€5, € .-+, € gives the Dy configuration.

The E,_ series is similar but with an additional point y on G blown up.

The above describes a compactification of the fibres of the twistor space Z — P*. The ALE property
of the metric means that the 4-manifold has a conformal orbifold compactification by a single point (as
used in [1]), and as a consequence its twistor space has an orbifold compactification by adding P'/T".
After blowing up this gives a compactification, which extends the fibration, so we obtain Z — P’ where
each fibre Z, for u # 0,00 is holomorphically equivalent to one of the projective surfaces described
above.

4. THEC -ACTION

The c1rcle action on the ALE space induces a corresponding action on the twistor space, which extends
to a C -action, covering u -+ Au under the projection Z — P'. It preserves the fibres over u = 0,00
which correspond to complex structures +1, the resolution of the singularity and its complex conju-
gate. On the resolution the action fixes pointwise the rational curve defined by the trivalent vertex (we
shall call this C,) and two points of each of the other rational curves. We shall consider the orbit of a
generic twistor line P under this action.

Firstly consider flat space R*. The twistor space Z here is the total space of the vector bundle O(1) &
O(1) — P! and its compactification by P! is P*. Blowing up this line at infinity gives Z — P! with
fibres P*. In homogeneous coordinates we remove the line z, = z, = 0 from P and the projection to
P! is u = z,/z,. The 4-parameter family of twistor lines considered as sections of O(1) & O(1) are
2z, = az, + bzy,z, = cz, + dz,. The real lines are given by d = a,¢ = —b. Fix (a,b,c,d) to give a twistor
line P, and then \ € C’ transforms P to

z, = daz, + \ bz, zy = Az, + A\ ldz,.
Eliminating \ we see that the closure of the orbit of P is the quadric surface in P* given by
(czy — az;)(dz, — bzy) + (ad — bc)zyz, = 0.

In particular the surface meets the line at infinity at two points [0,0,4,c], [0,0, b, d]. The quadric meets
the fibre u = 0, where z; = 0 which from the equation reads (cz, — az;)(dz, — bz;) = 0 and consists of
two lines L,, L, meeting at the origin, the closure of two orbits in C* under the scalar C-action. One
line is given by the orbit of the intersection of P with the fibre u =0, and the other is a line in P3, the
limiting transform as A — oo.

In the ALE case we take a generic twistor line P and consider the closure X of the orbit. The orb-
ifold compactification of Z clearly produces a similar pair of lines L, L, as the flat case. Now consider
the C -action on the complement in Z of the fibre over u = 00, as in [9] Section 7. The action defines
a stratification (of Bialynicki-Birula type) according to the limit tz as t — 0. These limits are fixed
points of the action and lie over u = 0. There we have a one-dimensional fixed point set C, and zero-
dimensional fixed points on the other curves of the resolution. The open stratum consists of C -orbits
which flow down to the fixed curve C,. Thus a generic point on the generic twistor line P has a limit
on C, and so this curve is another component of the intersection X N Z,. Note that the intersection
number (L, + L, + C;).Cy = 1 +1 -2 = 0. In fact the cohomology class of X in H*(Z,Z) must van-
ish on C, since the class [C,] C H,(Z,Z) appears as a holomorphic curve with conjugate complex
structures in u = 0, 0.
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342 « N.HITCHIN

A generic point in the fibre Z flows down to the fixed locus C,,. It does not lie on the upward flow
from the isolated fixed points and hence does not meet the other rational curves in the resolution. As a
consequence the lines L, L,, orbit closures, only intersect C,,. But we saw above that the intersection
number is 0 with C,, so the cohomology class of X vanishes on all classes in H, (Z,, Z).

Now consider the intersection X N Z,, the fibre over u = 1. Since H,(Z,,Z) = H,(Z,,Z), we learn
from the above discussion that the divisor class Q of X in Z, has the property that Q is trivial on the
affine part H,(Z,,Z) C H,(Z,,Z) and also on E, F, G for the D, E, series and D,,D, for A,, . This
yields the following:

THEOREM 4.1 The divisor class Q of the image of a twistor line in the rational surface Z, is given by
Eq: Q = 12C+4E + 6F + 4G,
E,: Q =24C+6E+ 12F + 8¢,
Eg : Q =60C + 12E + 30F + 20G, (4)
A,y 1:Q={C+D, +D,,
D, :Q=(2k-4)C+2E+(k-2)F+(k-2)G.

and in each case the intersection number Q* = |T'| and KQ = —4 where the ALE space is
asymptotic to C*/T.

Proof Since the curves C,E, F, G and D,, D, are disjoint from the representative cycles in
H,(Z,,Z) = H,(Z,,Z) we canlook for classes Q = a,C + a,E + a,F + a5G, etc., which
satisfy QE = QF = QG = 0, and also, since L,, L, intersect C transversally, QC = 2. Using the
configurations in Section 3 this leads to the list. Then Q * and KQ can be calculated directly
using the adjunction formula for the rational curves C, E, etc. O

Since the image of a twistor line is a rational curve, the adjunction formula KQ + Q?* = 2¢ -2 says
that these curves are singular, and if they have simple nodes then there must be |I'| /2 — 1 singularities.
Thus each twistor line defines a nodal curve in the linear system Q. However, Honda and Nakata [10]
prove that if a smooth projective surface S has a rational curve C with 0 > 0 nodes as all its singularities
and C* +1 -2 > 0, then the variety of such curves is non-singular and C* + 1 - 2J-dimensional. In
our case Q* + 1 — 28 = 3 and so the images of the 4-parameter family of twistor lines give an open set
in the 3-parameter variety of nodal curves in the linear system. The context of Honda’s work appears
in Section 7. We shall henceforth denote the surface Z, by S.

REMARK: Note that since E came from a conic in the plane, and G a line under the blowing up
from the plane, on blowing down a nodal curve in the linear system Q to P? the coefficients of E, G
in equations (4) show that the image is a plane curve in general of high degree and with singular
behaviour at f, apart from the movable nodes.

5. EXAMPLES
5.1 Ay,

The configuration of curves for A,, ; can be achieved by taking S to be the projective bundle P(O &
O(¢)) — P! with 2¢ points a,, ..., a,, on the zero section blown up. Then C is a fibre, D, the infinity
section and D, the blown up zero section.

GzZ0z Yyose L0 uo 3senb Aq 9020662/2£€/1/9. /21011 yiew(b/wod dno-ojwepese//:sdiy wols papeojumoq



ALE SPACES AND NODAL CURVES « 343

C 0
—/ —/
D, D,

From equation (4) we have Q = ¢C+ D, +D, and QC =2 which means that, if z is an affine
coordinate on P!, Q has an equation of the hyperelliptic form

w? +p(2)w+q(z) =0,

where p(z) has degree £ and q(z) degree 2¢ and vanishesateachz = a,,s0q(z) = c(z - a,) ... (z— a,).
Here I is the cyclic group Z,,, so we require |I'|/2 — 1 = £ — 1 nodes. This means that p(z)* - 4q(z)
must have £ — 1 double zeros. There are £ — 1 constraints on the £ + 1 coefficients of p(z) together with
the multiplier ¢ giving the expected (£ +2) — (¢ — 1) = 3 parameters.

Note that for £ = 1 there are no singularities and the image of a twistor line is a smooth rational
curve of self-intersection 2. In the model here we can blow down the —1 curves D, and D, to obtain a
quadric surface and then the curves are plane sections. We shall meet this fact again in the final section.

When £ = 2, by a projective transformation we can take three of the four points to be (0, 1,00) and
write q(z) = A*p(u) using the Weierstrass p-function. Then the general constraint is for Ao’ (u) +
ay + a;9(u) + a,*(u) to have a double zero.

Removing the anticanonical divisor gives the affine surface xy = (z—a,)...(z — a,,), the versal
deformation of xy = zzz, as described in Section 8.4 of [9]. The real structure interchanges D;,D,,
andifz = a # a, the curve xy = (a—a,) ... (a— a,,) = C compactified with two points from D,,D,,
respectively, belongs to the pencil generated by C.

52.D,

In this case equation (4) gives Q = 4C +2E +2F + 2G = —2K. Now, as discussed in Section 3, S is a
cubic surface ¥ C P* blown up at a point a giving the —1 curve C. Since the embedding of ¥ is the
anticanonical system, curves in the linear system Q consist of intersections with quadric surfaces in
P? meeting the cubic tangentially at that point and three others. We shall see next in this approach the
constrained elliptic curve in the description of Section 2.

The cubic surface X is the blow-up of the plane at the six points x,f, a,, a,, a3, a, as in the diagram.
We denote the images in 3 of the curves E, F, etc. in S by E«, Fs, etc. and a generic twistor line P & p!
maps to the nodal curve Q. C . The lines E., F., G« meet at the point a. Blowing down further to the
plane we write the curves as E., etc.

Consider the pencil of planes in P* containing the line E. C 3. This is the linear system —Ky, — E.,
and

Q.(-Ky, —E.) = (-2K)(-K+ C-E) = 4.

A plane through E. meets the line X. in a point, so X parametrizes the pencil, and Qx is a 4-fold cover
of X-.

In Figure 2, the lines through x are the points of X, but also express the conic E« as a double cover
of X. branched over f and the point of contact of the other tangent from x. Let ¢ be an affine parameter
on E., where t =0 is the point f and the covering involution is ¢ = —t. Then t% is an affine parameter
on X" and ¢ = 0 is the line G... The plane in the pencil defined by > = 0 meets Q. in the image of the

G202 UoIBIN 20 uo 3s8nb Aq 902066./LE€/1/9./8101e/urewb/woo"dno-olwapese//:sdjy Wol papeojumod



344 .« N.HITCHIN

€9 €3
€1

Figure 2. The planar model

zeros of a quartic polynomial z(«) on P!, and then, if t = 4, is the point ¢, on the conic E., t = —g; is the
other intersection of the line joining x to ¢;. The rational function (3) on the elliptic curve t* = z(u) is
then

f(t)=H(t_“i)

(t+ai).

6. THE CENTRAL SPHERE

We take a small diversion here to see a rather different interpretation of the surface S = Z,. The element
—1 € S! defines a holomorphic involution on the twistor space and composing with ¢, a new real
structure 7 which covers u = 1/ with fixed point set |u\ = 1 - the reflective rather than the antipodal
real structure on P'. So the fibre S given by u = 1 has a real structure.

The link between the twistor space approach and the hyperkihler geometry of a fixed 4-manifold
consists of the C* trivialization of the bundle Z — P by the real twistor lines: they define a foliation
by sections of 7 : Z — P'. Then the real twistor lines through the holomorphic curve C, C Z, inter-
sect the fibre Z, in a 2-sphere. Since C, is fixed by —1 € S, so are the real twistor lines passing through
it and hence also the 2-sphere, which is then a component of the fixed point set of the action of 7on
Z,. Thus the 2-sphere is a component of the real points of the affine surface. From this point of view S
may be considered as the complexification of this central 2-sphere.

The paper [9] gave a description of the metric on this sphere induced by the hyperkihler metric on
the ALE space. It is a component of an affine surface in R® and inherits the natural area form. Its con-
formal structure is defined by two complex conjugate foliations by null curves of the compexification.
In [9] these are shown to be given by two conjugate pencils of rational curves of zero self-intersection.
Moreover these curves are characterized by intersecting C, and C at one point and having zero inter-
section with the cycles coming from the other rational curves in the resolution. Given our derivation
of Q in the previous section, it is clear that Q = D + 7(D) where D is the divisor class for one pencil.

ExAMPLE: For A, S blows down to a quadric surface P' x P! and the null curves are the two fami-
lies of lines D =2 O(1,0), 7(D) = O(0, 1). The projected twistor lines are plane sections, in the divisor
class O(1,1). The Eguchi-Hanson metric on the cotangent bundle of the 2-sphere is rotation-invariant
and therefore a standard metric on the real quadric x} + x5 + xg =1inR%.
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ALE SPACES AND NODAL CURVES « 34§

REMARK: An expression for D is given in [9] in terms of the exceptional curves arising from blowing
up the points ¢;, f, g, ,y on P2, but there is an unfortunate choice of notation, with E, denoting the -1
curve coming from the line in the plane joining « to e;. If E; is the blow up of the point ¢, then in the
D, case E, is indeed its complex conjugate, but this does not necessarily hold for the E, series.

One way to determine the action of the real structure 7 on the cohomology of S is to note that,
because it changes orientation on the holomorphic 2-spheres in the resolution, the action is -1 on the
cohomology of the affine part Z,. The circle action acts trivially on the E, F, G configuration at infinity,
and so 7 coincides with the antipodal real form. Then the total class E + F + G in H*(S,Z) is acted
on by +1, but in the case of E¢ consideration of the real structure (z,,z,) > (z;,-z,) acting on the
invariant polynomials

45 /222, 4 A - /322 4 4_ 4
42322 + 28, 2 -2iV322 42, z5,(2h -2

shows that Tinterchanges the cohomology classes E and G.

7. EINSTEIN-WEYL MANIFOLDS

We can now place the theorem we used of Honda and Nakata in the context they were studying,
which is to regard the complex surface S (or more precisely an open set of it) as a minitwistor space
for a 3-dimensional Einstein-Weyl manifold M. This is a manifold M with a conformal structure and
a torsion-free connection preserving it such that the symmetrized Ricci tensor R,  is a scalar. The
skew-symmetric component R, ; is a 2-form which is essentially the curvature of the line bundle of
volume forms. This was the original idea in 4 dimensions of incorporating the electromagnetic field
into general relativity. In practical terms one can choose a metric g in the conformal equivalence class,
and then the Weyl connection satisfies Vg = 2w ® g for a 1-form w.

The differential-geometric link with the ALE spaces is the fact that the quotient of a hyperkihler
4-manifold by an isometric circle action is an Einstein-Weyl 3-manifold. In local coordinates a
representative metric can [2] be put in the form

g= e“(dxz + dyz) +dt?, w = —u,dt, (5)

where u satisfies the SU(0c0) Toda equation u,, +u,, + (e“),, = 0.

We can describe this more globally, following [8]. The circle action on the ALE space preserves the
Kihler form w, for this complex structure. Then t in the equation is, up to a constant, the moment
map for this action. The quotient by the circle action of a level set ¢ = ¢ is a Kédhler quotient, with an
induced holomorphic structure, and u,e* (dx* + dy*) at t = c is this metric. The time-dependent metric
h = ¢“(dx* + dy*) on this surface satisfies the second-order equation h,, = rh, where & is the Gaussian
curvature.

On the hyperkihler manifold the circle action generates a vector field X and the vector field IX is
horizontal and is the gradient of the moment map t. Thus the dt? term in formula (5) shows that this
choice of metric in the conformal class is determined by rescaling the quotient metric with the norm
square of X to make dt have length 1.

The twistor theory for Einstein-Weyl 3-manifolds was established in [7] and based on the
minitwistor quotient of a twistor space: if there is a good quotient of the complex 3-manifold Z by a C-
action, then the normal bundle of a twistor line is an extension @ — O(1) & O(1) — O(2) where the
trivial sub-bundle is tangent to an orbit of the action. Then the quotient is a surface S, and the twistor
lines project to rational curves of self-intersection 2. The two models for this are § = O(2), the tan-
gent bundle of P!, and § = P! x P! with the corresponding Einstein-Weyl structures being R?, with
the flat metric or hyperbolic metric, respectively. Furthermore, the only compact complex surfaces
which admit such curves give locally the same geometry.

This is where the work of [10] comes to the rescue, considering families of nodal curves. In that
paper a local tubular neighbourhood of a rational nodal curve is constructed, which can be ‘normal-
ized’ to the neighbourhood of a smooth curve of self-intersection 2. Our surface S is a global substitute

GzZ0z Yyose L0 uo 3senb Aq 9020662/2£€/1/9. /21011 yiew(b/wod dno-ojwepese//:sdiy wols papeojumoq



346 + N.HITCHIN

for the quotient of the ALE twistor space—locally around a twistor line, we can find a quotient, and
this will constitute an example of this local normalization. The authors of [ 10, 11] apply this to intro-
duce many examples of Einstein-Weyl manifolds from the geometry of compact rational surfaces. In
fact, as the first author of [10] has pointed out, Section 5.2 of that paper contains a family which
includes our A, _, case.

In the case of A,, ; the surface S and its nodal curves have already been described here in
Section S.1. There is another action—a triholomorphic action—of the circle on the 4-manifold, and
the quotient Einstein-Weyl structure is here just the Levi-Civita connection of the flat metric on R>.
This is essentially the Gibbons-Hawking Ansatz [$]. We can see this from the twistor point of view:
the C -action (%,,2) = (A, A1y,2) on O(k +1) @ O(k + 1) @ O(2) preserves z, and twistor lines
project to sections z(u) of @(2) — P!, the minitwistor space for R®.

For the action we are considering in this paper an explicit formula for the Ay Einstein-Weyl structure
can be found in [2], based on earlier work of Ward [14]. For k= 1, we already observed that S is a
quadric, and so the Einstein-Weyl quotient is hyperbolic 3-space, but it is useful to see this concretely.
One standard form of this A, metric is the following, using left-invariant 1-forms o; on SU(2):

2 2 2
= G D - amIs

which clearly shows that as r — 00 it becomes asymptotically a quotient of Euclidean space and as
r — 1 we get the 2-sphere C,, with metric (Jf + 0’%) /4. The vector field X given by the circle action is
dual to 0.

If we take the Kihler form to be 2rdr A 05 + r*c| A 0, then the moment mapis t = * and (X, X) =
(t—t')/4. This gives the data for the Toda form for the metric (5), and one finds w = —dlog(t2 -1)
and so dw = 0. This means that the volume bundle for the conformal structure is flat and we can rescale
the metric by a power of (t* - 1) to obtain a Levi-Civita connection for the hyperbolic 3-space:

2

1
0 _pp4)2 (dp2 + sz(af +03 ) .
Here 2r* = p> + p~%, and so p — 1 corresponds to r — 1—the central 2-sphere becomes the 2-
sphere at infinity in hyperbolic space. As r — 00, p — 00 and infinity in the ALE space defines a
distinguished origin in the hyperbolic space.

These two features hold in the general ALE case: the Einstein—-Weyl quotient has an asymptotic
2-sphere and an orbifold central point modelled on R*/T, where I is acting via its image I'/ & 1 in
SO(3). There will be other singularities pertaining to isolated fixed points of the circle action or fixed
points under finite subgroups. This is not the place to go into further details, but it allows for the
opportunity to give a geometrical meaning to the appearance of nodes in the twistor lines.

In the original situation of smooth rational curves of self-intersection 2, the minitwistor space is a
complex surface, which is interpreted as the space of oriented geodesics for the Weyl connection, with
the antipodal real structure being the change of orientation. Then two real twistor lines intersect at
two points because two points in the 3-manifold have a unique geodesic connecting them (with two
orientations).

In our case the global interpretation of the surface S in terms of geodesics is necessarily more com-
plex and in particular the self-intersection Q* = ||, so we expect |I'| /2 geodesics joining two points.
In a neighbourhood of the orbifold point this is clear: take a fundamental domain in the I'/ & 1 - cov-
ering and two points p, q. Then we shall encounter geodesics joining p to each of the |I"|/2-translates
ofg.

The same principal applies to a single point p. In a local normalized neighbourhood the smooth
rational curve represents the geodesics corresponding to the tangent directions at p, along each of
which passes a geodesic. But, as with the geodesics on a cone, globally we obtain geodesics which
return with a different direction, giving an identification of pairs of points on the curve and hence a
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node on its image in the space of geodesics. We lose one of the geodesics when we had two points to
give |I'|/2 - 1 singularities.

i

o

11.
12.

13.

14

REFERENCES

M. F. Atiyah, Green’s functions for self-dual four-manifolds, Adv. Math. Suppl. Stud. 7 (1981), 129-158.

D. Calderbank, The geometry of the Toda equation, J. Geometry and Physics 36 (2000), 152-162.

S. Cherkis and N. Hitchin, Gravitational instantons of type Dy, Comm.Math.Phys. 260 (2005), 299-317.

M. Demazure, H. Pinkham and B. Teissier, Séminaire sur les Singularités des surfaces, Lecture Notes in Mathemat-
ics, 777, Springer Verlag, Heidelberg, 1980.

G. Gibbons and S. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978), 430-432.

N.J. Hitchin, Polygons and gravitons, Math. Proc. Camb. Phil. Soc. 85 (1979), 465-476.

N.J. Hitchin, Complex manifolds and Einstein’s equations, In Twistor geometry and nonlinear systems, (Eds. H.
Doebner et al.), Lecture Notes in Mathematics, 970, Springer, Berlin, 1982, 73-99.

N. J. Hitchin, Higgs Bundles and Diffeomorphism groups, in “Surveys in Differential Geometry Vol 21” (Eds. H.
-D. Cao and S. -T. Yau), International Press, Cambridge, Mass, 2016, 139-163.

N.J. Hitchin, The central sphere of an ALE space, Quarterly Journal of Mathematics 72 (2021), 277-337.

. N. Honda and F. Nakata, Minitwistor spaces, Severi varieties, and Einstein-Weyl structure, Ann. Glob. Anal.

Geom. 39 (2011),293-323.

N. Honda, Segre quartic surfaces and minitwistor spaces, New York J. Math. 28 (2022), 672-704.

P. B. Kronheimer, The construction of ALE spaces as hyperkihler quotients, ] Differential Geometry 29 (1989),
665-683.

P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989), 685-697.
R. S. Ward, Einstein-Weyl spaces and SU(c0) Toda fields, Class. Quantum Grav. 7 (1990), 95-98.

G202 UoIBIN 20 uo 3s8nb Aq 902066./LE€/1/9./8101e/urewb/woo"dno-olwapese//:sdjy Wol papeojumod



	Ale spaces and nodal curves
	1. Introduction
	2. THE TWISTOR CONSTRUCTION
	3. COMPACTIFICATIONS
	4. THE C*-ACTION
	5. EXAMPLES
	5.1. A2-1
	5.2. D4

	6. THE CENTRAL SPHERE
	7. EINSTEIN–WEYL MANIFOLDS
	References




