
QUANTUM CORRELATIONS:
FOUNDATIONAL AND
PRACTICAL ASPECTS

Alexander Paige

January 22, 2021

Thesis submitted for the partial fulfilment
of the degree of PhD

Centre for Doctoral Training in Controlled
Quantum Dynamics

Department of Physics
Imperial College London



Declarations

The copyright of this thesis rests with the author and is made available
under a Creative Commons Attribution Non-Commercial No Derivatives
licence. Researchers are free to copy, distribute or transmit the thesis
on the condition that they attribute it, that they do not use it for com-
mercial purposes and that they do not alter, transform or build upon it.
For any reuse or redistribution, researchers must make clear to others
the licence terms of this work.

The research presented in this thesis was carried out over the last
three and a half years by me under the supervision of Myungshik Kim.
I hereby declare that the material presented is a result of my work and
that of my acknowledged collaborators, except where otherwise suitably
referenced. Throughout the PhD I have been involved in the publication
of the following papers, which contain most of the work presented here:

• A. J. Paige, Benjamin Yadin, and M. S. Kim. “Quantum correla-
tions for anonymous metrology” Quantum, 3, 178 (2019)

• A. J. Paige, Hyukjoon Kwon, Selwyn Simsek, Chris N. Self, Johnnie
Gray, and M. S. Kim. “Quantum Delocalized Interactions” Physical
Review Letters 125, 240406 (2020)

• A. J. Paige, A. D. K. Plato, and M. S. Kim. Classical and non-
classical time dilation for quantum clocks. Physical Review Letters,
124, 160602 (2020)

• Hadrien Chevalier, A. J. Paige, and M. S. Kim. “Witnessing the
nonclassical nature of gravity in the presence of unknown interac-
tions” Phys. Rev. A 102, 022428 (2020)

• Hyukjoon Kwon, A. J. Paige, and M. S. Kim. “Condition on the
Rényi Entanglement Entropy under Stochastic Local Manipula-
tion” Physical Review Letters, 125 100502 (2020)

2



Abstract

Quantum correlations have been an integral if sometimes discomforting
aspect of quantum theory for over 85 years. From the early thought-
experiments where they were used to argue that quantum mechanics
was incomplete, through to their central position as resources in the
modern theory of quantum information theory, quantum correlations
have proved a hugely rich topic of study. This thesis explores a range of
practical and foundational aspects within this ever developing field.

Having reviewed fundamental material, we turn to consider the quan-
tum correlations for a task termed anonymous metrology. This is used to
demonstrate an operational distinction within the hierarchy of quantum
correlations. Building from this we formulate the concept of quantum
delocalised interactions, making use of quantum games to study the nec-
essary correlations. With these we establish strong connections to the
concurrence monotone and additionally a link with quantum teleporta-
tion. We then move to considering entanglement under motion when
relativity is accounted for. We demonstrate how the entanglement be-
tween internal energy and motional states can be affected by boosts
in an analogous way to the known behaviour for spins, and in a more
straightforward manner. We then show how this understanding sheds
light on the topic of proper time for quantum clocks. Finally we consider
a protocol where entanglement can be used to witness non-classicality
of gravity. We present improvements which help to bring the scheme
closer to experimental feasibility, together with pointing out a potential
loophole and how to close it.
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Chapter 1

Introduction

Chapters should always start with quotes, even if they are made up and
misattributed.

– Winston Churchill

1.1 Historical context and motivation

Quantum mechanics is arguably the most philosophically consequential physical
theory that has thus far been discovered. It forces us to shift our view of reality, and
despite being roughly a century old, we are still working through its consequences
and marvelling at its multifarious phenomena. Central to many of these is the
curious manner in which quantum systems can be correlated.

The laws of nature at the start of the 20th century seemed relatively ordered, with
matter diligently obeying Classical Mechanics, and allowing itself to be predictably
pushed and pulled around by Maxwellian Electromagnetism and Newtonian Gravity.
From time to time things got a bit heated but we had Thermodynamics to take care
of that. To willfully misquote Lord Kelvin’s infamous speech [1], physics was looking
good with only a couple of clouds left to deal with. Lord Kelvin is often lightly
mocked for his comments in 1900, with some form of indication that he would have
been better off obeying the old adage si tacuisses, philosophus mansisses. However, I
believe most scientists would be inordinately proud of making a speech highlighting
two specific problems for which the solutions were soon to completely revolutionize
physics.

The first of the clouds was the failure of the Michelson-Morley experiment [2] to
detect evidence for the luminiferous ether. The solution was famously provided by
Einstein’s theory of Special Relativity [3], and for extra credit he decided to put in
a further ten years of work to produce General Relativity [4], perhaps the greatest
intellectual achievement of any single human mind. These theories demanded a re-
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10 CHAPTER 1. INTRODUCTION

think of our understanding of space and time and the implications were certainly
profound. However, relativity still allows for a deterministic, comfortably local un-
derstanding of nature, niceties which would not go unchallenged by the other great
breakthrough of the early 20th century.

The second of Lord Kelvin’s clouds was the ultra-violet catastrophe. Quan-
tum mechanics was the answer, and unlike Relativity it was truly a child of many
fathers, with Planck [5], Einstein [6] Heisenberg [7], and Schrödinger [8], provid-
ing foundational insights, alongside vital contributions from many others. It was
quickly appreciated that quantum mechanics was non-deterministic, with the Born
rule providing probabilities from wave functions [9], and there was soon an awareness
of something even stranger lurking in the new formalism. In 1935 Einstein, Podol-
sky and Rosen published their famous challenge to the completeness of quantum
mechanics [10], on the grounds that with a particular two particle setup, they could
assign “elements of reality” to non-commuting momentum and position variables.
Though as Einstein later put it in a letter to Max Born, what he truly objected
to was the way quantum theory seemed to permit spukhafte Fernwirkung, spooky
action at a distance. Quantum correlations had been noticed, and the particular
effect was deemed so counter-intuitive as to lead the authors to conclude that “we
have thus shown that the wave function does not provide a complete description of
the physical reality,” and to this day, despite our subsequent understanding, we still
refer to their work as the EPR paradox.

The EPR paradox added fuel to the ongoing debate between Einstein and Bohr [11]
and prompted Schrödinger to coin the term Verschränkung in a letter to Einstein,
a word which he translated as Entanglement. Schrödinger added to the list of
charges [12], arguing that it was “discomforting that the theory should allow a sys-
tem to be steered or piloted into one or the other type of state at the experimenter’s
mercy,” and he was unequivocal on the significance of quantum correlations, open-
ing his paper by stating: “When two systems, of which we know the states by their
respective representatives, enter into temporary physical interaction due to known
forces between them, and when after a time of mutual influence the systems sepa-
rate again, then they can no longer be described in the same way as before, viz. by
endowing each of them with a representative of its own. I would not call that one
but rather the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought.”

In the intervening years the state of affairs with regards to locality in quantum
theory was complex. David Bohm managed to formulate his eponymous hidden
variables theory [13], in spite of an earlier ostensible proof by von Neumann that
this was not possible [14], although Grete Hermann had apparently pointed out
a flaw in the argument and been ignored [15]. Bohm and Aharanov presented a
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useful reformulation of the EPR paradox using spins [16], but it was not until the
seminal work of John Bell [17], nearly three decades after the paradox was put
forward, that a decent degree of clarity was established. It is interesting that such
a fundamental question took so long to be properly addressed, but quantum theory
had opened up a whole plethora of interesting problems to tackle, and there is
comfort in the instrumentalist view somewhat bluntly put by David Mermin as
“shut up and calculate.”

Fortunately, John Bell was, to borrow a term from Hardy and Spekkens [18],
more of the “shut up and contemplate” school of thought. He proved that no local
hidden variable theory could be consistent with the predictions of quantum mechan-
ics [17], a result which is now known as Bell’s Theorem, and he also rediscovered
the flaw in von Neumann’s argument against all hidden variable theories [19]. The
proof that local hidden variable theories could not reproduce the predictions of
quantum mechanics rested on their inability to violate what we now call Bell in-
equalities. These inequalities were later generalised [20] with an eye to experimental
realisation, and in 1972 the first empirical evidence against local hidden variables
was reported [21]. Subsequent experiments gave improved demonstrations of Bell
inequality violations [22, 23, 24, 25], culminating in 2015 with proclaimed loophole
free realisations [26, 27, 28]. Although it could be said that the setting-independence
loophole was not truly closed in these experiments, for which the use of cosmic pho-
tons has been proposed [29] and demonstrated [30], and although the unscientific
notion of superdeterminism can never be disproved, the verdict does seem clear.
Bell’s inequalities are violated. Regardless of the wishes of even one so intellectually
exalted as Einstein, nature simply is that weird.

For all its significance, Bell non-locality turns out to be only one piece in the
complex edifice of quantum correlations. This was not well understood at first,
and indeed it was not until the close of the 20th century that modern entanglement
theory started to take shape, with the importance of entanglement being increasingly
realised in the growing field of quantum information theory. It is an interesting
quirk of history that we knew the universe was quantum mechanical decades before
Shannon laid the foundations of classical information theory [31], emphasising the
power of technology in shaping the questions which scientists choose to ask. With
quantum theory standing ready, once there was an information theory it was only a
matter of time before people tried prepending quantum to it, and the field started
to establish foundational results throughout the 60s and 70s [32, 33, 34, 35, 36].
Initially the main focus of the research was on the capacity of quantum systems as
a means for straightforward communication, but quantum cryptography was added
by Bennett and Brassard in 1984 with their aptly named BB84 protocol [37], and
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quantum computation started to gain traction1 in the 90s with the work of Deutsch
and Jozsa [43], followed by the groundbreaking algorithm of Shor [44].

It was also in the 90s that a series of key results helped spur the formation of a
new perspective on entanglement. 1991 brought a proposal for a form of quantum
cryptography based on Bell’s theorem [45], 1992 gave quantum dense coding [46], and
1993 introduced the dramatically named quantum teleportation [47]. Entanglement
was increasingly being viewed as a resource, a quantity which in certain settings
enables tasks that would be otherwise impossible.

This shift in perspective brought rapid advancements to our understanding of
quantum correlations. Entanglement began to be formulated in the context of lo-
cal operations and classical communication [48, 49], whereby it can be manipulated
and distilled but not created. Measures of entanglement were formalised and devel-
oped [50, 51, 52, 53, 54], alongside entanglement witnesses [55, 56, 57, 58, 59, 60].
The emerging topic became truly vast(see [61] for an excellent review) and provided
the archetype for the concept of quantum resource theories [62], which has been ap-
plied to multiple other areas including purity [63], coherence [64], asymmetry [65],
and thermodynamics [66].

With growing interest in the field it also became clearer that one could distinguish
various types of quantum correlations, with the relationships between entanglement,
Bell non-locality and Schrodinger’s steering [12] further elucidated through pioneer-
ing work from Wiseman et al. [67] building from earlier work by Werner [68]. In
addition the early 2000s brought the introduction of quantum discord [69, 70], a
correlation weaker than entanglement, which spurred a whole new set of investi-
gations to quantify and interpret this new quantity [71, 72, 73, 74, 75]. And for
completeness, though it falls outside the focus of this work, it is worth mentioning
that researchers have even studied correlations beyond those allowed by quantum
theory [76, 77].

The physical possibilities and consequences of the various quantum correlations
have naturally been studied in a multitude of contexts. These have ranged from
their relevance to the power of quantum computation [78, 79, 80, 81, 82] and their
uses in metrology [83, 84, 85, 86, 87] right through to many body physics [88, 89, 90,
91, 92] and investigations regarding black-holes [93, 94, 95, 96, 97]. The breadth and
significance of this single topic is both remarkable and beautiful, a worthy example
for that most eloquent of Feynman quotes: “Nature uses only the longest threads to
weave her patterns, so that each small piece of her fabric reveals the organization of
the entire tapestry.”

1This was a significant period but not the start of interest in quantum computation, with early
discussions on the difficulties in classically simulating quantum systems from Poplavskii [38] and
Feynman [39], together with foundational work from Bennett [40], Benioff [41], and Toffoli [42].
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We have come a long way since the original proposal of the EPR paradox over
85 years ago. The path has not always been smooth, with progress at times slow
and occasionally the odd misstep, however, one must always remember that the
concepts at play are far from intuitive. I can illustrate with personal experience,
as I still recall my own first exposure to these ideas was anything but perspicacious
acceptance. It was during my undergraduate, and a friend of mine in the year above
had just been learning about Bell’s theorem in his lectures. He explained to me what
I now know to be the CHSH game [20], laying out how classically one could achieve
a win probability of no more than 0.75 and yet armed with the right entangled
state one could surpass this limit. Following his claim of this quantum advantage I
paused for thought and then, unable to keep the incredulity from my voice, asked
him “Do you actually believe that?” He patiently explained that it wasn’t really a
matter of belief, you can work through the maths and furthermore the effect had
been experimentally demonstrated. I found all of this fascinating, and yet rather
disconcerting. At a later date I spent some pen and paper time playing around with
entangled states, and managed for several hours to be completely convinced that I’d
worked out how they could be used to achieve instantaneous signalling. My point
is that quantum correlations and their consequences do not seem to come naturally
to the classically evolved human mind. Either that or I am an idiot, I’ll leave that
judgement as an exercise for the reader.

Over 85 years of study, and the topic of quantum correlations is still breaking
new ground, exposing new concepts, and advancing our understanding of nature.
This thesis presents the results of my own studies in this ever expanding field, the
topics and results of which will now be summarised.
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1.2 Thesis outline

Here we give brief outlines of the material presented in each of the chapters.

In Chapter 2 we shall review the physical and mathematical fundamentals nec-
essary for our study of quantum correlations. This will be divided into three main
sections: Mathematical preliminaries, where we review vectors in Hilbert spaces and
operators on Hilbert spaces; Fundamentals of quantum mechanics, where we briefly
go over the essential elements of quantum theory together with details of some key
example systems and relevant quantum information theoretic quantities; Funda-
mentals of quantum correlations, where we describe entanglement, Bell non-locality,
steering and finally quantum discord. This chapter is used to establish results that
will be subsequently called upon in the following chapters.

In Chapter 3 we study quantum correlations in an operational context. We in-
troduce and study a task termed anonymous metrology, whereby some unknown
variable is encoded in a quantum state in a manner which grants access to infor-
mation on the parameter whilst hiding where (and therefore by whom, hence the
anonymity) the encoding was performed. We perform a study of the quantum cor-
relations required for this task, distinguishing two strengths of anonymity which we
refer to as weak and strong. We show that the weak anonymity requires only dis-
cord, whereas the strong anonymity requires entanglement. We also establish that
the resourceful states do not sit neatly into the known correlation sets, with discord
not sufficient for weak anonymity and entanglement not sufficient for strong.

Chapter 4 builds off the work in Chapter 3, formalising the notion of delocalised
interactions and studying this concept in depth. This is achieved by formulating
quantum games which capture this notion and then studying two particular in-
stances. A connection with the concurrence entanglement measure is established,
in that it can be used to bound the win probability gain made available by quan-
tum states. We show that there are various cases where the bounds can be tight,
and a connection with quantum teleportation is found. In addition a trace distance
inequality is considered as an alternate approach to capturing the concept and this
is compared with the quantum games. Finally, the results of demonstrations of the
quantum games on an IBM superconducting qubit device are presented, including
a successful demonstration.

Chapter 5 shifts to a different topic in quantum correlations, namely understand-
ing how quantum entanglement can be affected by motion in a relativistic setting.
We first present the known effect that boosts can alter the entanglement between
the internal spin and motional state of a particle. This is a consequence of the
somewhat involved special relativistic Wigner rotations. We then show how similar
behaviour can be established for internal energy states much more straightforwardly,
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by simply properly accounting for mass-energy equivalence. We then demonstrate
understanding the correct form for the boost in this case enables us to better un-
derstand proper time for quantum clocks. This in turn leads us to appreciate that
without entanglement between the internal and motional states, we should expect
additional effects beyond those of classical time-dilation. This is due to the fact
that without entanglement between internal and motional states we do not have a
unique Lorentz factor. We use a theoretical clock model together with the experi-
mental example of atomic clocks to demonstrate this.

In Chapter 6 we consider quantum entanglement in a fascinating new context
whereby it could be the means by which gravity is shown to be non-classical. We
present a previously proposed experiment and perform a careful re-derivation of the
main result. The rest of the chapter is then focused on improving the protocol.
To this end an improved witness is found, and a procedure for hypothesis testing
proposed and tested. The net result is to dramatically reduce the interaction times
required and increase the noise tolerance, therefore bringing the proposal closer to
experimental feasibility. The statistical analysis allows one to distinguish the effect
of gravity even in situations where other interactions like the Casimir-Polder effect
is dominant, and we show it is robust to uncertainty in the strength of the non-
gravitational interaction terms. Then we present a final loophole that remains for
the skeptic, and demonstrate how to close it via state tomography.

We finish with Chapter 7 in which we present conclusions and outlook. We sum-
marise the work and present perspectives, together with putting forward suggestions
for future research directions.
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Chapter 2

Fundamentals

Do you know Hilbert? No? Then what are you doing in his space?

– Bad joke of unknown origin

2.1 Overview

In this chapter we review the fundamentals necessary for later chapters. We start
with mathematical preliminaries, laying out the two concepts which essentially en-
capsulate all of quantum theory, namely vectors in Hilbert spaces and operators on
Hilbert spaces. We also take this opportunity to present mathematical results which
shall prove useful in the proceeding material. Armed with these concepts and tools
we then turn to lay out the required fundamentals of quantum mechanics, defin-
ing states followed by their measurements and transformations. We then present
two important example systems, that of qubits and continuous variable systems,
before finishing by defining some useful information theoretic quantities, namely
the quantum trace distance, the fidelity, and the quantum Fisher information. The
third and final section deals with the requisite fundamentals of quantum correla-
tions. We start by discussing entanglement, first for pure states where we highlight
the importance of the Schmidt decomposition, the partial ordering from Nielsen’s
theorem and the von-Neumann entropy of entanglement. We then consider mixed
state entanglement and introduce entanglement witnesses, followed by entanglement
measures and monotones, giving a few relevant examples. After this we move to Bell
non-locality and quantum steering, for which we emphasise the operational mean-
ing and contrast the mathematical formulations with that of entanglement. Finally
we present quantum discord, defining it via mutual information and laying out the
non-discordant states.

17



18 CHAPTER 2. FUNDAMENTALS

2.2 Mathematical preliminaries

2.2.1 Vectors in Hilbert spaces

Quantum mechanics revolves around vectors in Hilbert spaces so we begin by clearly
defining what these are. Even some practicing physicists allow themselves to be a
bit fuzzy on Hilbert spaces, but they are simply vector spaces with added structure,
namely an inner product and a completeness condition under the corresponding
norm and distance measure. We shall proceed to build up these pieces accordingly
together with presenting a few useful results and definitions along the way. The
exposition here will be minimal, for a thorough grounding in vector spaces and
more general linear algebra see [98], for a specific focus on Hilbert spaces see [99].

A vector space V over a field F (quantum theory uses complex vector spaces so
F = C) is a set of elements (vectors) that is closed under vector addition and scalar
multiplication, so for every v,w ∈ V we have v+w ∈ V , and given any scalar a ∈ F
we have av ∈ V . Additionally these vector operations must satisfy the following
eight axioms

1. Associativity of addition: u + (v + w) = (u + v) + w.

2. Commutativity of addition: v + w = w + v.

3. Existence of additive identity: v + 0 = v, ∀v ∈ V .

4. Existence of additive inverse: ∀v ∈ V , ∃(−v) ∈ V , s.t. v + (−v) = 0.

5. Associativity of scalar multiplication: a(bv) = (ab)v.

6. Existence of scalar multiplicative identity: 1v = v, ∀v ∈ V .

7. Distributivity of vector sums: a(v + w) = av + aw.

8. Distributivity of scalar sums: (a+ b)v = av + bv.

A key concept for vector spaces is that of a basis. A basis B of a vector space V
is a linearly independent subset of V that spans V , which means that every vector
in V can be expressed as some linear combination of the vectors in B. This allows
us to define the dimension of a space dimV as the number of elements in a valid
basis for it.

An inner product space is a vector space with an inner product defined on it. An
inner product 〈v,w〉, maps any two vectors v,w ∈ V to a scalar value, and must
satisfy the following three conditions
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1. Second argument linearity1: 〈v, aw〉 = a〈v,w〉, 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉.

2. Conjugate symmetry: 〈v,w〉∗ = 〈w,v〉.

3. Positive definiteness: 〈v,v〉 = ‖v‖2 > 0, for v 6= 0.

Now that we have inner products we can define orthogonal and orthonormal
bases. An orthogonal basis B is a basis where every vector is orthogonal to every
other vector, i.e. 〈vi,vj〉 = 0 for vi,vj ∈ B, with i 6= j. An orthonormal basis is an
orthogonal basis where the vectors are normalised to unity so

〈vi,vj〉 = δij =

0 if i 6= j,

1 if i = j.
(2.1)

for vi,vj ∈ B.
Vectors in an inner product space satisfy the Cauchy-Schwarz Inequality

|〈v,w〉|2 ≤ 〈v,v〉〈w,w〉. (2.2)

This can be seen as follows. If v = 0 or w = 0, then the statement is trivially true,
so from now on we take them both to be non-zero. We have that ‖v − λw‖2 ≥ 0, the
left-hand side can be expanded to ‖v‖2 − λ∗〈v,w〉∗ − λ〈v,w〉 + λ∗λ‖w‖2. Setting
λ = 〈v,w〉∗

‖w‖2 , then gives the result as claimed. Note that |〈v,w〉|2 = 〈v,v〉〈w,w〉
requires v = λw, i.e. the vectors must be parallel.

A Hilbert space is an inner product space where the norm ‖v‖ =
√
〈v,v〉 and

corresponding distance measure d(v,w) = ‖v −w‖, turn it into a complete metric
space. A metric space is simply a set together with a metric or distance measure
defined on the set. A metric is a function that must satisfy the three axioms:

1. Identity of discernibles: d(v,w) = 0 ⇐⇒ v = w.

2. Symmetry: d(v,w) = d(w,v).

3. The triangle inequality: d(v,w) ≤ d(v,u) + d(u,w).

It is clear that d(v,w) = ‖v −w‖, satisfies the symmetry condition and the identity
of discernibles follows from positive definiteness of the inner product. The proof of
the triangle inequality proceeds as follows. We write d(v,w)2 = ‖v − u + u−w‖2,

and expand this out to write it as d(v,u)2+d(u,w)2+〈v+u,u−w〉+〈u+w,v−u〉.
Taking the maximum of the latter two terms and then applying the Cauchy-Schwarz

1It is common amongst mathematicians to use first argument linearity but we use second for
consistency with the physicists’ preferred Dirac notation convention which we shall be adopting.
Note that together with conjugate symmetry this means our inner product is anti-linear in the first
argument.
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inequality we rearrange to find that this expression is ≤ (d(v,u) + d(u,w))2, hence
the triangle inequality holds.

The completeness of a metric space can intuitively be understood as the idea
that there are no points missing from the space. More formally we say that if a
series of vectors

∑∞
k=0 vk converges absolutely in the sense that

∑∞
k=0 ‖vk‖ < ∞,

then the series must converge to an element of the Hilbert space.

The final mathematical definition that we need is that of dual spaces. Given a
vector space V over field F, the dual space V∗ is the set of all linear maps φ : V → F.
For Hilbert spaces, the Riesz representation theorem gives us that for every φ ∈ H∗

there exists a unique fφ ∈ H such that for any v ∈ H we have φ(v) = 〈fφ,v〉. This
final result enables the use of bra vectors which are a staple in quantum theory, and
our mention of linear maps leads nicely into the next topic we must cover.

2.2.2 Operators on Hilbert spaces

Besides vectors in Hilbert spaces, quantum mechanics makes constant use of opera-
tors on Hilbert spaces, so we briefly review these, together with some key definitions
and results. Again we shall tread lightly on this topic, so for a more detailed dis-
cussion we recommend the first chapter of John Watrous textbook [100], and for a
mathematical introduction to operator theory see [101].

Quantum operators, which we shall simply refer to as operators, are linear map-
pings between Hilbert spaces A : H1 → H2, with A(αv + βw) = αA(v) + βA(w).

Note that they can, and often are, mapping from one Hilbert space to itselfH1 → H1.

With this general notion of an operator, a vector in a complex Hilbert space H can
be viewed as an operator mapping C → H, and a dual vector can be viewed as a
mapping H → C.

Finite dimensional operators have corresponding matrices defined elementwise
as Mij = 〈ui, Avj〉 for orthornormal basis vectors with vj ∈ H1 and ui ∈ H2. As
such the definitions and results presented have corresponding matrix interpretations.
Accordingly, the kernel ker(A) of an operator A is the subspace of vectors u for
which Au = 0. In accordance with the rank-nullity theorem we may define the rank
of operator A as rank(A) = dim(H1) − dim(ker(A)). For the case of an operator
A mapping to and from the same space, i.e. H1 → H1, we often make use of
eigenvectors u and eigenvalues λ satisfying Au = λu. In addition, with basis vectors
{vj}nj=1 we define the trace and determinant respectively as

Tr{A} =
n∑
j=1

〈vj, Avj〉, (2.3)
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det{A} =
∑
π∈Sn

sgn(π)
n∏
j=1

〈vj, Avπ(j)〉, (2.4)

where Sn is the set of n element permutations and sgn(π) is +1 for even permutations
and −1 for odd. Note that these definitions do not depend on the choice of basis,
and in fact the trace equals the sum of the eigenvalues and the determinant equals
their product.

There are a number of useful classes of operators which have specific names and
definitions which we shall now lay out. For operator A : H1 → H2. the Adjoint
Operator A† : H2 → H1, is defined such that 〈w, Av〉 = 〈A†w,v〉, for v ∈ H1 and
w ∈ H2. For complex matrices the adjoint operation is equivalent to transposition
together with complex conjugation M † = (MT )∗. If A commutes with its adjoint
[A,A†] ≡ AA† − A†A = 0, then A is said to be a Normal Operator. If A = A† then
A is said to be a Hermitian Operator 2 and such operators have real eigenvalues. A
Hermitian operator A is Positive Semi-definite if all of its eigenvalues are greater
than or equal to zero. A positive semi-definite operator is a Projection Operator if
it satisfies P 2 = P. An operator U which when followed by its adjoint produces the
identity, i.e. U †U = 1H1 , is a Linear Isometry, and a Linear Isometry that maps to
and from the same space, i.e. H1 → H1, is called a Unitary Operator.

One of the most useful results when dealing with operators is the spectral the-
orem. This states that any normal operator A can be expressed in terms of its
orthonormal eigenvectors vi and eigenvalues λi as

A =
∑
i

λiviv
†
i . (2.5)

The right-hand expression is referred to as the spectral decomposition. As a matrix
equation this corresponds to the diagonalization M = UDU † where D is diagonal
and U is unitary.

Another useful result that builds off the spectral theorem is the singular value
decomposition. This states that any operator A can be expressed as

A =

rank(A)∑
i=1

siviw
†
i , (2.6)

for positive real numbers si and orthonormal sets of vectors wi ∈ H1 and vi ∈ H2.

For matrices we tend to express the singular value decomposition with a slight

2There are mathematical considerations about the correct usage of the terms Hermitian and
self-adjoint, but this shall not be important for our purposes.
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difference. For an m× n complex matrix M the factorization is of the form

M = UΣV †, (2.7)

where U is an m × m unitary matrix, Σ is an m × n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and V is an n× n unitary matrix.
This can be derived constructively as follows. The matrix M †M is seen to be
Hermitian which means we can diagonalize it M †M = V ΛV † in accordance with
the spectral theorem. Since it is also positive semi-definite we can write this out as
M †M =

∑
i σ

2
i viv

†
i , where vi are the eigenvectors ofM †M . We now define ui = Mvi

σi
,

and this can be straightforwardly shown to be a normalised eigenvector of MM †.

Stacking these together to form a matrix equation we have U = MV Σ−1, where
U, V have ith columns ui,vi and Σ is a diagonal matrix with entries σ−1

i . Note
that in cases where we lack full rank we simply add vectors to complete the unitary
matrices, together with adding zeros to Σ. The equation can now be rearranged to
the stated form M = UΣV †.

Finally we need to consider functions of operators, which relies on the spectral
theorem. Every function f : C → C may be extended to act on normal operators
A with eigenvectors vi and eigenvalues λi, via f(A) =

∑
i f(λi)viv

†
i . It is also often

useful to make use of their Taylor expansions.

With an understanding of functions of operators, we now conclude the mathe-
matical preliminaries by deriving a pair of results which are often useful for operator
manipulation. The first result, commonly referred to as Hadamard’s lemma, states
that

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + ... (2.8)

This can be seen by Taylor expanding the function f(s) = eAsBe−As about s = 0,

and then setting s = 1. Taking derivatives we find

df

ds
= eAsABe−As − eAsBAe−As = eAs[A,B]e−As, (2.9)

d2f

ds2
= eAsA[A,B]e−As − eAs[A,B]Ae−As = eAs[A, [A,B]]e−As, (2.10)

where this pattern continues for higher order terms. Thus the Taylor expansion
about s = 0 gives

f(s) = B + [A,B]s+
1

2!
[A, [A,B]]s2 + ..., (2.11)

and setting s = 1 (which is within the radius of convergence assuming that the
operator terms are well-behaved) gives the result as originally stated.
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The second result is a special case of the Baker-Campbell-Hausdorff (BCH) the-
orem. If [A, [A,B]] = [B, [A,B]] = 0, then

eA+B = eAeBe−[A,B]/2. (2.12)

This can be seen by considering the Taylor expansions of the two functions g(s) =

es(A+B) and h(s) = esAesBe−s
2[A,B]/2. Taking derivatives of g(s) we find

dng

dsn
= (A+B)ng(s). (2.13)

Differentiating h(s) we find

dh

ds
= AesAesBe−s

2[A,B]/2 + esABesBe−s
2[A,B]/2 + eAseBs(−s[A,B]e−s

2[A,B]/2),

= (A+ esABe−sA − s[A,B])h(s),

= (A+B)h(s).

(2.14)

Here we have used the fact that [A, [A,B]] = [B, [A,B]] = 0 and Hadamard’s lemma.
From this we see

dnh

dsn
= (A+B)nh(s). (2.15)

We have that g(0) = h(0) and thereby all the derivatives at s = 0 are equal, therefore
by Taylor’s theorem the two functions are equivalent g(s) = h(s). Setting s = 1 we
recover the result as originally stated.
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2.3 Fundamentals of quantum mechanics

There are numerous excellent introductions to quantum mechanics. For a general
introduction see [102], for an introduction with a focus on quantum computation
and quantum information theory see [103], and for even more focus on quantum
information theory and particularly the mathematical aspects see [100].

2.3.1 Quantum states

In quantum theory, systems are identified with some finite or infinite dimensional
complex Hilbert space H. The complete physical description of a closed system is
captured by its quantum state, which we denote using Dirac notation [104] as a
ket |ψ〉 ∈ H. Each ket has a corresponding dual vector which we denote as a bra
〈ψ| ∈ H∗, and inner products between two states |φ〉, |ψ〉 are accordingly denoted
as 〈φ|ψ〉. States are normalised 〈ψ|ψ〉 = 1, which allows for the Born rule, whereby
the probability of observing the system in state |φ〉, when it was prepared in state
|ψ〉 is given by |〈φ|ψ〉|2. A given physical state |ψ〉 has a global phase freedom such
that eiθ|ψ〉 is physically equivalent for all θ ∈ R. Strictly speaking this means that
quantum mechanical states are in fact rays, not vectors.

A ket such as |ψ〉 is commonly referred to as a pure state. Pure states denote com-
plete knowledge of the system, but often this is not the case. Classical uncertainty
is endemic to all experimental endeavours, so we may be 90% sure we prepared |ψ〉,
but there is a 10% chance that we actually prepared |φ〉. For practical purposes we
need a way to include these mixed states in the formalism. To accommodate these
situations we represent states with density operators ρ. These are linear operators
on H, which must be Hermitian ρ = ρ†, positive semi-definite ρ ≥ 0, and normalised
Tr(ρ) = 1. A pure state |ψ〉 is represented as the outer product ρ = |ψ〉〈ψ|, so has
Tr(ρ2) = 1, whereas a general mixed state with probabilities pi for states |ψi〉 is
written as ρ =

∑
i pi|ψi〉〈ψi|, and has Tr(ρ2) < 1. Note that the decomposition of

mixed states into these convex combinations is not unique, in fact there are an infi-
nite number of decompositions for every mixed state. The probability of observing
state ρ in the pure state |ψ〉 is given by 〈ψ|ρ|ψ〉.

We now turn to the treatment of composite systems, which naturally are vital to
the study of correlations. Given two quantum subsystems A and B, with individual
Hilbert spaces HA and HB respectively, the state space of the joint system is given
by the tensor product HA ⊗ HB. Note that the dimension of the new space is the
product dim(HA) × dim(HB), which is the root cause of the exponential scaling
problem for quantum states of many systems. This is in contrast to classical states
of maximal certainty which when combined can be described in a direct sum vector
space dim(VA)⊕dim(VB), which can intuitively be thought of as stacking the vectors
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on top of each other, where the dimensions only add.
We shall denote composite bipartite pure states interchangeably as |ψ〉A⊗|φ〉B =

|ψ〉A|φ〉B = |ψφ〉AB, and mixed states as ρAB or when appropriate ρA⊗ρB, with the
obvious generalizations to more than two subsystems. When we consider operators
that only act non-trivially on part of such composite systems we shall often abbre-
viate full expressions like OA ⊗ 1B by omitting identity operators thus OA. Given a
composite system ρAB, the state of a subsystem can be obtained by tracing out the
other subsystems, so ρA = TrB(ρAB) =

∑
i〈i|BρAB|i〉B, where the sum is over any

orthonormal basis in HB.With this we define the concept of purifications. The pure
state |ψ〉AB is a purification of the mixed state ρA if TrB(|ψ〉AB〈ψ|) = ρA. All purifi-
cations of ρA =

∑
j qj|φj〉A〈φj|, can be written as |ψ〉AB = UB′→B

∑
i

√
qj|φi〉A|i〉B′ ,

for some isometry UB′→B.

2.3.2 Measurements

Quantum theory is probabilistic, as such it makes predictions for the statistics of the
results from measurements of observables such as energy, position and momentum.
In the formalism, we represent physical observables with Hermitian operators O =

O† on H. The expectation value of observable O for a system in the pure state
|ψ〉 is given by 〈O〉 = 〈ψ|O|ψ〉. For a density operator ρ, we have 〈O〉 = Tr(ρO).

This is in direct accordance with the Born rule and the definition of expectation
values, as can be seen by using a spectral decomposition O =

∑
i oi|i〉〈i|, which

gives expectation value 〈O〉 =
∑

i oi〈i|ρ|i〉. The variance of O is likewise calculated
as (∆O)2 = 〈O2〉 − 〈O〉2.

We often deal with observables which do not commute [A,B] 6= 0. This results
in a limit to the precision with which the two observables can be simultaneously
predicted. This is the essence of the uncertainty principle, which is commonly stated
via the formula

(∆A)(∆B) ≥ 1

2
|〈[A,B]〉|. (2.16)

In words, there is a trade-off between our uncertainty on A and B. For instance, if we
can predict A almost exactly so that (∆A)→ 0, then we have maximal uncertainty
about B as (∆B)→∞.

This covers the statistics of our measurements but we need to understand what
happens in a particular instance as well. When we measure O and obtain the value
oi, we have projected the state onto the subspace spanned by the eigenvectors with
this eigenvalue. Writing O =

∑
j ojPj, we obtain the result oi with probability

pi = Tr(Piρ) and our system is then in the new state PiρPi/pi. The process of
the state being instantly changed by measurement is often called “collapsing” the
wavefunction. This type of measurement is referred to as a projective measurement.
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We can actually consider more general types of measurement, where we ob-
tain outcomes corresponding to elements in a Positive Operator Valued Measure
(POVM). A POVM is a set of positive semi-definite operators {Πi} that sum to the
identity

∑
i Πi = 1. The probability of obtaining outcome i is Tr{Πiρ}, and writing

Πi = M †
iMi, which is always possible for positive semi-definite operators, we have

the new state after this measurement outcome asMiρM
†
i /pi. These are the effect on

a subsystem of a projective measurement performed on the larger system of which
it is a part.

2.3.3 State transformations

We have considered states and observables, but besides the “collapse” induced by
measurements, we have not described how states change. We shall now lay out the
important aspects of state transformations.

The standard transformations to a pure quantum state |ψ〉, such as time evo-
lution, spatial translations and rotations, are all enacted by unitary operators U
resulting in some new state U |ψ〉. Time reversal is anti-unitary but we shall not be
making use of it in this work.

The most important example is time evolution which is governed by the time-
dependent Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ〉, (2.17)

where H is the Hamiltonian (energy) operator. This equation gives us that a system
starting in state |ψ(0)〉 and evolving under Hamiltonian operator H, will at time t
be in the state

|ψ(t)〉 = e−iHt/~|ψ(0)〉. (2.18)

So in other words we time evolve the state by acting on it with the unitary operator
U(t) = e−iHt/~.

The most general evolution for a quantum state ρ is a quantum channel. This
is some map E : ρ → E(ρ) which must be completely positive and trace preserving
(CPTP). Trace preserving means that Tr(E(ρ)) = Tr(ρ). Completely positive means
that taking I as the identity channel, we must have that EA ⊗ IB(ρAB)) is positive
semi-definite for all choices of B as a valid Hilbert space and all positive semi-definite
ρAB within the full space AB. This last condition is to ensure that if E acts on some
subsystem then the whole state is still a valid quantum state.

These quantum channels all correspond with some unitary transformation on a
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larger composite system. As such we can express the action of a channel as

E(ρA) = TrB(UABρA ⊗ σBU †AB). (2.19)

Here σB is some initial ancilla system, and the unitary UAB in general interacts
the two subsystems A and B. Note that this view of general maps as the result of
unitary evolution on larger composite systems is directly analogous to how general
POVMs are the result of projective measurements on a larger composite system.

Taking a pure ancilla state σ = |0〉〈0| and some basis {|ψi〉}, for the B subsystem,
we can write the map in terms of Kraus operators Ki = 〈ψi|UAB|0〉, as

E(ρ) =
∑
i

KiρK
†
i . (2.20)

where
∑

iK
†
iKi = 1. Quantum channels can all be represented by Kraus operators,

but the decompositions are not unique.

2.3.4 Qubits

With the fundamentals of quantum mechanics defined, now is an appropriate mo-
ment to lay out two very important example systems. In principle quantum me-
chanics preferences no Hilbert space over any other. In practice the solutions to a
huge number of physical problems rely on two particular examples. The first is the
two dimensional qubit system.

Qubits are two level systems, the quantum mechanical equivalent of a bit, hence
the portmanteau name from quantum bit. Physical examples include two electronic
energy levels in atoms or ions, the polarization state of light, and current directions
in superconducting loops. For whatever physical system we work with, we tend to
assign some physically motivated computational basis with states |0〉 and |1〉, e.g.
the ground |g〉 and excited |e〉 states of some electronic transition for an ion. All
qubit pure state can be simply written as α|0〉+ β|1〉 with |α|2 + |β|2 = 1, or as the
equivalent column vector (α, β)T .

The set of Hermitian operators on the qubit Hilbert space is spanned by the
Identity and the three Pauli operators, which in the computational basis we write
as

I =

[
1 0

0 1

]
, σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0

0 −1

]
. (2.21)

Our convention is such that the computational basis vectors |0〉, |1〉, are eigenvectors
of σz and we shall use |±〉 = 1√

2
(|0〉 ± |1〉) to denote the eigenstates of σx.

All density operators for qubits can be expressed as ρ = 1
2
(I +

∑
i=x,y,z riσ

i),
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Figure 2.1: An example section of a quantum circuit. The lines represent qubits with
the gates applied to them from left to right. The gate H represents the Hadamard
operator |+〉〈0| + |−〉〈1|. The gates X, Y, Z represent the corresponding Pauli op-
erators. The dot-line-circle elements are controlled not (CNOT) gates, which cor-
respond to |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx, where the first subsystem is the qubit with the
dot on it. The final gate is an example of a general controlled unitary where in this
instance some known unitary U acts on two qubits.

where the vector r = (rx, ry, rz) is real and has ‖r‖ ≤ 1. This defines a ball, where
the bounding sphere represents pure states and the inside are mixed states. In
addition, all observables for qubits can be expressed as linear combinations of the
same four operators.

Qubits are the basic unit in what is termed circuit or gate based quantum com-
puting. The standard approach is directly analogous to bit-wise classical logic cir-
cuits with bits replaced by qubits and logic gates replaced by unitary operators.
These quantum circuits are compactly expressed using circuit diagrams as demon-
strated in Fig 2.1.

An important type of unitary often used in such circuits is the controlled unitary.
This is analogous to controlled gates in classical computation. A unitary operator is
enacted on some subsystem conditioned on the state of a different subsystem. For
instance the unitary U conditioned on a single qubit’s computational basis state
would be |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U. The controlled not (CNOT) gate as illustrated in
Fig. 2.1 is an example of this.

Finally, in the case where we have two qubits the computational basis is naturally
written as {|00〉, |01〉, |10〉, |11〉}, but we shall also make frequent use of the Bell
basis which consists of the four Bell states |φ±〉 = 1√

2
(|00〉 ± |11〉), and |ψ±〉 =

1√
2
(|01〉± |10〉). The significance of these states will become more apparent when we

turn to consider quantum correlations.



2.3. FUNDAMENTALS OF QUANTUM MECHANICS 29

2.3.5 Continuous variable system

The second important example is the continuous variable system. These are more
complicated than simple qubits, sitting at the other extreme with respect to dimen-
sionality. They are infinite dimensional systems, with physical examples including
the motion of quantum particles and the electromagnetic field of light.

We shall consider a 1D continuous variable system, for which we have position
x and momentum p observables which satisfy the canonical commutation relation
[x, p] = i~, or [X,P ] = i depending on convention. The generalization to higher
dimensions is straightforward and note that in the case of a light field these oper-
ators do not correspond to an actual position and momentum and are called field
quadratures. Physicists often like to talk in terms of eigenstates for these opera-
tors such that x|x0〉 = x0|x0〉 and p|p0〉 = p0|p0〉, with 〈x1|x2〉 = δ(x1 − x2), and
〈p1|p2〉 = δ(p1 − p2), where we are using the Dirac delta function. Some mathe-
maticians would rightly wring their hands and point out that operators with purely
continuous spectra do not have eigenvalues or eigenstates, and that delta functions
are functionals not functions so they do not count as proper eigenstates. We are
sympathetic to this view but shall press on with this terminology regardless. Cer-
tainly physicists do not regard these as physical states since they do not correspond
to square-integrable functions, but they are a convenient fiction.

We shall present two useful approaches to continuous variable systems. The first
is most commonly used for the motion of particles. It is termed wave mechanics and
is based around wave functions. The second is useful for light fields and trapped
particles and centers around ladder operators.

For the wave mechanics approach to continuous variables, we represent states
with complex-valued probability amplitudes. These are termed wave functions, for
instance ψ(x), where the choice of argument indicates we are using the position
representation, which is the most commonly used. The connection with the ket
representation is seen by writing 1 =

∫∞
−∞ |x〉〈x|, and then for a state |ψ〉, we expand

it in the position basis as

|ψ〉 =

∫ ∞
−∞
|x〉〈x|ψ〉dx =

∫ ∞
−∞

ψ(x)|x〉dx. (2.22)

The position operator in this representation is straightforward 〈x|x|ψ〉 = xψ(x).

The momentum operator can be found for this representation as follows. By evalu-
ation of 〈x|[x, p]|y〉 using both the canonical commutator relation and by expanding
the commutator, we find (x−y)〈x|p|y〉 = i~δ(x−y). Then taking (x−y)δ(x−y) = 0,

and differentiating we get (x − y) ∂
∂x
δ(x − y) = −δ(x − y). With these two equa-

tions we see that 〈x|p|y〉 = −i~ ∂
∂x
δ(x − y) + αδ(x − y), where from now on we set
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α = 0 as this term can be eliminated by a global phase shift. Using this we find
〈x|p|ψ〉 = −i~∂ψ(x)

∂x
.

The momentum representation is defined analogously. To switch between the
two we write 〈x|ψ〉 =

∫∞
−∞ dp〈x|p〉〈p|ψ〉. We therefore just need 〈x|p〉 which can be

found by writing out 〈x|p|p〉 to get the equation −i~ ∂
∂x
〈x|p〉 = p〈x|p〉, which gives

〈x|p〉 = ceipx/~. The constant c = 1√
2π~ can be found using δ(x) = 1

2π

∫∞
−∞ dke

ikx.

Two useful transformations to understand within these representations are spa-
tial translations and momentum boosts. A spatial translation T (x0) = e−ipx0/~ acts
as T (x0)|x〉 = |x + x0〉. This can be derived by considering the action of the posi-
tion operator on T (x0)|x〉. As such we write xe−ipx0/~|x〉 = eipx0/~e−ipx0/~xe−ipx0/~|x〉,
then by using Hadamard’s lemma this can be evaluated as (x + x0)e−ipx0/~|x〉, as
required. In terms of the wave function we have 〈x|T (x0)|ψ〉 = ψ(x−x0). The state
has been shifted in the positive x direction, as can be seen by noting the probability
amplitude ψ(0) that was at x = 0 is now at x = x0. The momentum boost is directly
analogous with B(p0) = eip0x/~ and B(p0)|p〉 = |p+ p0〉.

For the second approach to continuous variable systems we do not change our
state representation from kets, but instead form new convenient operators. We
define the lowering/annihilation operator as

a =

√
A

2~
(x+

i

A
p), (2.23)

where A is some physically motivated constant, and the ~ is absent if we are using the
[X,P ] = i convention. We also define the raising/creation operator as the adjoint
a†. These operators can then be seen to satisfy the Bosonic commutation relation
[a, a†] = 1.

These operators are not Hermitian so do not correspond to observables. However,
we can define the number operator n = a†a which is Hermitian, and its eigenvectors
n|n0〉 = n0|n〉 form a discrete basis for the Hilbert space, termed the number basis
or Fock basis. The raising and lowering operators do as their names imply with
a|n〉 =

√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉. There is a vacuum state |0〉 for which

a|0〉 = 0.

The Hamiltonian (energy operator) for a particle of mass m subject to a Har-
monic trap of frequency ω, can be rewritten with these operators (setting A = mω)
as

H =
p2

2m
+

1

2
mω2x2 = ~ω(a†a+

1

2
). (2.24)

This is also the Hamiltonian for a single mode Bosonic field such as light, therefore
the same mathematics is used to describe the two situations.

We close this section with a couple of example states that frequently crop up
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in this continuous variable setting. The first is the coherent state which is the
eigenstate of the annihilation operator a|α〉 = α|α〉, where α ∈ C. The coherent
state can be written out in the number basis as |α〉 = e−|α|

2/2
∑∞

n=0
αn√
n!
|n〉. Coherent

states form an overcomplete basis for the space such that 1
π

∫
d2α|α〉〈α| = 1. This

enables the Glauber-Sudarshan P representation, whereby we can write any state as
ρ =

∫
P (α)|α〉〈α|d2α, though it should be noted that P (α) is not always positive.

The coherent state is most commonly used to represent the state of light from a
laser but it is also used in the particle motion setting.

The second common state is the thermal state. This is a mixed state with
energy probabilities related by the Boltzmann distribution P (E) ∝ e−βE, with β =

(kBT )−1, where T is temperature and kB the Boltzmann constant. It can be written
out in the number basis as ρth = 1

1+n̄

∑∞
n=0

(
n̄

1+n̄

)n|n〉〈n|, with n̄ = (eβ~ω − 1)−1. It

can also be expressed with a Glauber-Sudarshan P representation as P (α) = e−|α|
2/n

πn
.

This state is used to represent thermal light and thermalised states of motion in a
harmonic trap.

2.3.6 Information theoretic quantities

The final topic that we need to cover here is that of useful information theoretic
quantities. We shall consider distance measures between states and a central mea-
sure in quantum metrology. In terms of measuring the distance between states we
shall mostly focus on the trace distance, but we shall also define the quantum state
fidelity and describe how these two quantities are related. The key metrological
quantity is the quantum Fisher information.

First we define the classical trace distance, which is sometimes referred to as
the L1 distance, or Kolmogorov distance. For two probability distributions p, and
q, made up of probabilities p(x) and q(x) defined over the same index set {x}, the
classical trace distance is defined as

Tc(p, q) ≡
1

2

∑
x

|p(x)− q(x)|. (2.25)

This defines a metric on probability distributions and is in clear correspondence with
the quantum definition of trace distance that now follows.

The (quantum) trace distance, is defined as

T (ρ, σ) ≡ 1

2
‖ρ− σ‖1, (2.26)

where ‖A‖1 ≡ Tr(
√
A†A) is the trace norm. We now review a series of standard

results that are useful when working with the trace distance.
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The first and most important result is the variational form for the trace distance,
which is

T (ρ, σ) = sup
Π

Tr[Π(ρ− σ)], (2.27)

where Π is a POVM element 0 ≤ Π ≤ 1. An important addition is that the maximal
value is obtained by choosing Π as the projector P onto the positive subspace of
ρ− σ.

To prove this we start by noting that ρ − σ is a Hermitian operator with some
positive and some negative eigenvalues. Since it is Hermitian we can write it as
ρ − σ = UDU †. Separating the positive and negative eigenvalues such that D =

D+ + D−, we have ρ − σ = Q − S, where Q = UD+U
† and S = −UD−U †. These

positive operators are manifestly orthogonal QS = −UD+D−U
† = 0. Using the

notation |A| =
√
A†A, it follows that |ρ − σ| = Q + S, and therefore T (ρ, σ) =

1
2
Tr|ρ − σ| = 1

2
(TrQ + TrS). We now use 0 = Tr(ρ − σ) = TrQ − TrS, to arrive

at T (ρ, σ) = TrQ. Letting P be the projector onto the support of Q, we have
Tr(P (ρ− σ)) = Tr(P (Q− S)) = Tr(Q) = T (ρ, σ). If we let Π be any other POVM
element we have Tr(Π(ρ− σ)) = Tr(Π(Q− S)) ≤ Tr(ΠQ) ≤ Tr(Q) = T (ρ, σ). This
concludes the proof.

This result is especially useful in proving other properties of the trace distance.
Perhaps most importantly it leads to the operational interpretation for the trace
distance as follows. Consider the task of single copy state discrimination where we
are given the state ρ or σ, with equal probability, and we are tasked with answering
which state it actually is. Without any measurement our maximum probability of
guessing the actual state correctly is 1

2
, since we will just guess a state. To do better

one applies some POVM measurement Πρ,Πσ, where if we get the first outcome we
guess ρ and σ for the second. The probability of guessing correctly is now pC =
1
2
Tr(Πρρ) + 1

2
Tr(Πσσ). Now using Πρ + Πσ = I we have pC = 1

2
[1 + 1

2
Tr(Πσ(σ− ρ))].

Now by the variational form theorem, the maximum value is given by pC = 1
2
[1 +

T (ρ, σ)], therefore the trace distance quantifies our ability to distinguish between
the two states.

It turns out that the trace distance defines a metric on the space of quantum
states. Thus it must satisfy the triangle inequality which can be seen by using
Eq. (2.27) to write T (ρ, σ) = Tr(P (ρ − σ)) = Tr(P (ρ − τ)) + Tr(P (τ − ρ)) ≤
T (ρ, τ) + T (τ, σ).

Another important property is that the trace distance is contractive under trace-
preserving quantum operations.

T (E(ρ), E(σ)) ≤ T (ρ, σ). (2.28)

To prove this we start by noting that since we have shown that T (ρ, σ) = Tr(Q),
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and E is trace preserving, we have Tr(Q) = Tr(E(Q)). Now consider the projector
P chosen such that T (E(ρ), E(σ)) = Tr[P (E(ρ)− E(σ))]. We now have Tr(E(Q)) ≥
Tr(PE(Q)) ≥ Tr[P (E(Q)− E(S))] = T (E(ρ), E(σ)), which concludes the proof.

It is useful to know how the trace distance behaves with regards to mixtures of
states. For this we use the strong convexity of the trace distance, which gives us
that

T (
∑
i

piρi,
∑
i

qiσi) ≤
∑
i

piT (ρi, σi) + Tc(p, q). (2.29)

To prove this we consider the projector P that is optimal in discriminating
∑

i piρi,

and
∑

i qiσi. We can then write

T (
∑
i

piρi,
∑
i

qiσi) = Tr[P (
∑
i

piρi −
∑
i

qiσi)],

=
∑
i

piTr(Pρi)−
∑
i

qiTr(Pσi),

=
∑
i

piTr[P (ρi − σi)] +
∑
i

(pi − qi)Tr(Pσi),

≤
∑
i

piT (ρi, σi) + Tc(p, q).

The first term in the last line follows from T (ρ, σ) = maxP Tr[P (ρ − σ)], and the
second term from writing

∑
i(pi−qi)Tr(Pσi) =

∑
i:pi>qi

(pi−qi)Tr(Pσi)−
∑

i:qi>pi
(qi−

pi)Tr(Pσi), and noting that 0 ≤ Tr(Pσi) ≤ 1 implies this is less than or equal to∑
i:pi>qi

(pi − qi),= Tc(p, q), the classical trace distance.

A useful corollary of this, termed convexity of the trace distance, is that

T (
∑
i

piρi, σ) ≤
∑
i

piT (ρi, σ). (2.30)

This follows from the strong convexity result by setting qi = pi and σi = σ.

The other main quantity of interest when comparing quantum states is the quan-
tum state fidelity. It is defined as

F (ρ, σ) =

[
Tr

(√√
ρσ
√
ρ

)]
. (2.31)

Note that some authors prefer to define the Fidelity as this quantity squared. For
pure states this definition corresponds to |〈ψρ|ψσ〉|.

We shall not go into the same level of detail regarding the properties of the
fidelity as we did for the trace distance. Instead we just note two important results
that will prove useful to us.
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The first result is that the fidelity satisfies

F (ρ⊗n1 , ρ⊗n2 ) = F (ρ1, ρ2)n. (2.32)

This follows from the definition and the fact that
√
A⊗ A =

√
A ⊗

√
A, together

with Tr(A⊗B) = Tr(A) Tr(B). This is in contrast to the trace distance which does
not scale in this multiplicative fashion for multiple copies of a system.

The second result is the relationship between fidelity and trace distance, as
captured by the Fuchs–van de Graaf inequalities [105], which states that

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√

1− F (ρ, σ)2. (2.33)

For pure states the right-hand inequality becomes tight, so

T (|ψ〉, |φ〉) =
√

1− F (|ψ〉, |φ〉)2, (2.34)

where here for the sake of brevity we are writing functions of pure states as f(|ψ〉)
rather than f(|ψ〉〈ψ|), and shall make use of this notational short-hand throughout.

The quantum Fisher information is the quantum analogue of the classical Fisher
information, so first we briefly discuss this quantity.

Consider a parameter θ which we want to estimate, and some random variable
X for which the probability depends on θ.We write the probability density function
of X conditioned on θ as f(X; θ). The Fisher information is then defined as

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)2 ∣∣∣∣θ
]
, (2.35)

where |θ denotes that we are taking the expectation value at a particular θ. Subject
to regularity conditions, this can be rewritten as

I(θ) = −E
[
∂2

∂θ2
log f(X; θ)

∣∣∣∣θ] . (2.36)

This form is more easily interpretable as it is now the curvature of the log-likelihood
curve evaluated at the point θ. The maximum likelihood value sits at a maximum on
this curve, and if the nearby curvature is small then there are lots of nearby values
with similar likelihood. Conversely a large curvature means we have a nice clean
peak in the likelihood, and thus the Fisher information helps capture the error in
our estimate.

This is formally captured by the Cramer-Rao bound, which states that the vari-
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ance for some unbiased estimate of θ given n samples, is bounded by

(∆θ)2 ≥ 1

nI(θ)
. (2.37)

Note that a factor of n is sometimes absorbed into the definition of the Fisher
information.

The quantum setting is somewhat more involved [106]. In this work we shall
only consider the situation where we want to estimate some parameter θ which has
been unitarily encoded in a state via observable H, so we write

ρ(θ) = e−iHθρ0e
iHθ. (2.38)

The statistical precision with which we can measure θ via measurements applied to
ρ(θ), satisfies the quantum Cramer-Rao bound

(∆θ)2 ≥ 1

F(ρ,H)
, (2.39)

where the quantum Fisher information is

F(ρ,H) = 2
∑
i,j

(λi − λj)2

λi + λj
|〈ψi|H|ψj〉|2, (2.40)

where ρ =
∑

i λi|ψi〉〈ψi| is a (θ independent due to the unitary evolution) spectral
decomposition, and we do not include terms in the sum for which λi = λj = 0.

This concludes the discussion on information theoretic quantities that we shall
use in the rest of this work, along with bringing to an end our exposition of the
necessary quantum fundamentals.
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2.4 Fundamentals of quantum correlations

Quantum correlations come in several strengths and they are all rich subjects in
themselves, with entanglement [107], Bell non-locality [108], quantum steering [109],
and quantum discord [110] each with a developed literature of their own. We shall
consider all of these to varying degrees, and we shall focus on bipartite correlations
throughout.

2.4.1 Pure state entanglement

As discussed previously, in quantum mechanics the pure state of an isolated system
is described by some ket |ψ〉A, drawn from some Hilbert space HA. Likewise for some
distinct isolated system with |φ〉B, and HB. However, a pure state for both systems
taken together must be drawn from a total Hilbert space that is the tensor product
of the two separate Hilbert spaces H = HA ⊗ HB. This Hilbert space contains
simple states like |ψ〉A ⊗ |φ〉B, which are termed product states, and indeed if we
took the direct sum HA ⊕HB to form the total Hilbert space then all states would
be of this type, where we can always assign a single pure state to each individual
system. However, the tensor product structure allows for composite states like
|ψ1〉A ⊗ |φ1〉B + |ψ2〉A ⊗ |φ2〉B, which cannot be written in product state form. For
states like this we can no longer assign a single pure state to either of the individual
systems. For the most complete description we must describe the systems together.
Such pure states are termed entangled.

We say that a pure state is entangled if it cannot be written as a product state.
However, consider the example state 1

2
(|0〉|1〉 + |1〉|0〉 + |0〉|0〉 + |1〉|1〉). Written in

this form it is not manifestly clear that this is in fact the product state |+〉|+〉.
This example is fairly simple but in higher dimensions one does not really want
to exhaustively work through the factoring. Any arbitrary state can be written as
|ψ〉 =

∑
i,j aij|i〉|j〉, for separate orthonormal bases {|i〉〉} and {|j〉〉}. Fortunately

any such state can be rewritten as |ψ〉 =
∑

k

√
λk|ψk〉|φk〉, with the sets {|ψk〉} and

{|φk〉} are both orthonormal. This can be proved as follows. The singular value
decomposition tells us that we can take the matrix a made up from components aij
and decompose it as a = UΛV †, where U and V are unitary and Λ is diagonal with
components we denote as

√
λk. We therefore write

|ψ〉 =
∑
i,j

∑
k

UikΛkkV
†
kj|i〉|j〉,

=
∑
k

Λkk(
∑
i

Uik|i〉)(
∑
j

V †kj|j〉),

=
∑
k

√
λk|ψk〉|φk〉.

(2.41)
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Here we have defined |ψk〉 =
∑

i Uik|i〉 and |φk〉 = V †kj|j〉. The fact that these form
orthonormal sets follows from the unitarity. The values

√
λk are called Schmidt

coefficients, and the number of non-zero Schmidt coefficients is called the Schmidt
number or Schmidt rank.

We have defined which pure states are entangled and with Schmidt decomposi-
tions it is straightforward to identify them, but this does not get us very far. Indeed,
looking from the point of view of Schmidt decompositions, all we have done is sepa-
rate out those states which have a Schmidt number of 1 and declared all the others
to be entangled. The problem is that we have defined entangled states but we have
not fully defined entanglement. For instance, consider the states 1√

2
(|00〉 + |11〉)

and
√

0.9|00〉+
√

0.1|11〉. With our current understanding we can say that both are
entangled, but we cannot say much more, such as whether one is more entangled
than the other.

The direction for our next step can be seen with the following thought experi-
ment. Consider Alice and Bob are in different labs, separated by a large distance.
They can only communicate via talking on the telephone. Alice has quantum sys-
tem A and Bob has quantum system B. The systems are initially in the joint state
|φ+〉AB = 1√

2
(|00〉AB + |11〉AB), which is entangled. Now Alice decides that she

actually wants them to share the state |11〉AB. To achieve this she measures her
system in the {|0〉A, |1〉A} basis, and communicates the result to Bob. Applying the
rules for measurement in quantum mechanics, we see that they will have the state
|00〉AB or |11〉AB, each with a 50% probability. In the case where they get |00〉AB
then they simply both apply σx to transform the state into |11〉AB. They have there-
fore managed to deterministically (with unit probability) transform their entangled
state |φ+〉AB, to the unentangled state |11〉AB. But now suppose Alice regrets her
decision and wants to transform back to the entangled state. Unfortunately with
their current setup it turns out that this is impossible. We therefore identify a new
feature to add to our conception of entanglement. We say that entanglement can-
not be deterministically increased by local operations and classical communication
(LOCC).

This simple step actually brings a large amount of novel structure to entangle-
ment. To illustrate, we return to the question of comparing the entangled states

1√
2
(|00〉+ |11〉) and

√
0.9|00〉+

√
0.1|11〉. We can transform from the former to the

latter state by using a local POVM with elements Π1 = 0.9|0〉〈0| + 0.1|1〉〈1| and
Π2 = 0.1|0〉〈0| + 0.9|1〉〈1|, followed by applying σx ⊗ σx when the Π2 case is ob-
tained. But there is no such protocol to deterministically go the other way. So we
say 1√

2
(|00〉+ |11〉) is more entangled than

√
0.9|00〉+

√
0.1|11〉.

With this idea we can extend a partial ordering for entanglement over all pure
states, via a result known as Nielsen’s theorem [111]. This states that |ψ〉AB may be



38 CHAPTER 2. FUNDAMENTALS

deterministically transformed via LOCC to |φ〉AB if and only if the eigenvalues of
ρA = TrA(|ψ〉AB〈ψ|) are majorized by the eigenvalues of σA = TrA(|φ〉AB〈φ|). The d
dimensional vector x is said to majorize the d dimensional vector y (written x � y)
if
∑k

i=1 x
↓
i ≥

∑k
i=1 y

↓
i for all k in the range 1, ..., d with equality holding when k = d.

Here the downward arrow denotes the vectors are taken in descending order. Note
that the eigenvalues of the reduced density matrices used in Nielsen’s theorem are
simply the λi from the Schmidt decompositions (note the lack of square root), and
we include any repeated zero values.

Now that we have a conception of which pure states are more entangled than
others, it is natural to seek some measure that captures this. We require some
function E which when |ψ〉 can be transformed to |φ〉 under deterministic LOCC,
must satisfy E(|ψ〉) ≥ E(|φ〉). We refer to this as monotonicity, however on its own
it is not enough to specify a unique function. However, if we add the condition
that E(|φ+〉) = 1 and an extensivity condition E(|φ〉⊗k) = kE(|ψ〉), then this does
specify a unique entanglement measure. This is the von-Neumann entropy of the
reduced state

E(|ψ〉AB) = S(ρA) = −Tr(ρA log ρA), (2.42)

where ρA = Tr(|ψ〉〈ψ|AB), and we shall use base 2 for our logarithms unless otherwise
stated.

To see why this is the case we need a key result regarding distillation of Bell states
in the asymptotic limit of many copies [112]. The result states that given N copies
of state |ψ〉, in the limit as N → ∞ there exist deterministic LOCC protocols to
reversibly convert between |ψ〉⊗NAB and |φ+〉⊗NS(ρA)

AB , where S(ρA) is the von-Neumann
entropy for the reduced state of |ψ〉AB.

Armed with this result we now prove the assertion that the von-Neumann en-
tropy is uniquely specified by the above conditions. Monotonicity applied to the
asymptotic interconversions enforces E(|ψ〉⊗NAB ) ≥ E(|φ+〉⊗NS(ρA)

AB ) and E(|ψ〉⊗NAB ) ≤
E(|φ+〉⊗NS(ρA)

AB ), therefore E(|ψ〉⊗NAB ) = E(|φ+〉⊗NS(ρA)
AB ) in the limit of large N. Using

extensivity and E(|φ+〉AB) = 1, we arrive at E(|ψ〉AB) = S(ρA).

At this point entanglement theory seems well behaved. This is mainly because
we have been restricting our attention to pure states. It is high time to throw a
spanner in the works, and we therefore turn to consider entanglement for mixed
states.

2.4.2 Mixed state entanglement

We first present two arguments which demonstrate the need to extend the conception
of entanglement to mixed states. The first is that previously we considered only
deterministic LOCC. In this context we said that we could not convert

√
0.9|00〉 +
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√
0.1|11〉 to |φ+〉 = 1√

2
(|00〉 + |11〉). However, consider using the POVM Π1 =

1
9
|0〉〈0|+|1〉〈1|, Π2 = 8

9
|0〉〈0|.With probability 0.2 we obtain the result corresponding

to Π1 and our state is then |φ+〉. So this looks like we have been able to increase
the entanglement, it is just that we have only been able to do it stochastically
rather than deterministically. This is termed Stochastic LOCC (SLOCC) and is a
subject of study in its own right [113, 114, 115, 116], but the key point is that the
possibility of such manipulations necessitates the inclusion of classical probabilities
into our understanding of entanglement. As discussed previously, the way to include
classical probabilities is with density operators and mixed states.

The second argument is more prosaic, and this is that we essentially never work
with pure states experimentally. Uncertainty is an inherent part of empirical science,
so if we want to be able to interpret the results from actual experiments in terms of
entanglement, then we simply must extend the concepts to the mixed state regime.

As in the case of pure states, we begin by defining the states which are not
entangled. A state is separable if it can be written in the form

ρAB =
∑
ij

pijρ
(i)
A ⊗ ρ

(j)
B . (2.43)

A state is entangled if it is not separable.

Unfortunately, unlike the case of pure states, for mixed states there is in general
no easy way to check if a state is separable or entangled. In fact the quantum
separability problem has been shown to be NP Hard [117]. As a results of this,
there are multiple approaches when considering whether certain mixed states are
entangled.

We shall start by introducing perhaps the bluntest but most practically effective
tool, which is entanglement witnesses. An entanglement witness is a Hermitian
observableW which satisfies 〈W 〉 = Tr(WσAB) ≥ 0 for all separable states σAB, but
which has 〈W 〉 = Tr(WρAB) < 0 for certain entangled states ρAB. The entangled
states for which the expectation value 〈W 〉 are negative, are said to be witnessed by
W. It is important to appreciate that no witness can witness all entangled states,
but that a witness can always be found for any entangled state. This follows nicely
from a geometric interpretation illustrated schematically in Figure 2.2, wherein we
can think of the witness as defining a hyperplane. This is possible because we can
view the expectation value Tr(Wρ) as an inner product 〈W, ρ〉 for the vector space
of Hermitian operators. This is termed the Hilbert-Schmidt inner product. With
this we can view W as defining the normal to a hyperplane and then all states
with Tr(WρAB) ≥ 0 fall on the hyperplane or to one side of it, and all states with
Tr(WρAB) < 0 fall on the other side. It is now apparent how a witness can work for
some entangled states but not others. Additionally, since the set of separable states
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Figure 2.2: Schematic illustration of an entanglement witness. The witness defines
a hyperplane with all the separable states on one side of it. All the entangled states
on the other side (such as ρ0) are witnessed by this choice of witness, but those on
the same side as the separable states (such as ρ1) are not.

is convex, we can imagine always being able to find a hyperplane which witnesses a
certain entangled state. Formalising this intuitive view is non-trivial and proceeds
via the Hahn-Banach theorem [118, 119].

The construction of witnesses is not always straightforward, however there is
one particularly useful result which often proves helpful in such matters and will
also help lead us beyond witnesses. This result is known as the Peres-Horodecki
criterion [120, 121].

The Peres-Horodecki criterion, sometimes referred to as the positive partial trans-
pose (PPT) condition, states that the partial transpose of a separable state must be
positive, and thus if it is not then the state must be entangled.

This can be proved straightforwardly by first considering taking the partial trans-
pose of the form for separable states presented in Eq. (2.43), to obtain

ρTBAB =
∑
ij

pijρ
(i)
A ⊗ ρ

(j)T
B . (2.44)

In accordance with the properties of density matrices, we have that ρ(j)T
B is a valid

state and therefore the whole state ρTBAB is a valid state, and as such must have
only positive eigenvalues. Therefore if the partial transpose of some state has a
negative eigenvalue then it cannot be written in the form of Eq. 2.43 and so we
know the state must be entangled. In the case of two qubits or a qubit and a qutrit
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(a three dimensional system) the PPT criterion has been shown to be necessary and
sufficient, however for higher dimensions it is not guaranteed that an entangled state
will give a negative eigenvalue.

In practise we cannot perform the partial transpose operation on a state, since
the transpose is a positive but not completely positive map and therefore is not
physical as per our previous discussion on quantum channels. However, we can use
the Peres-Horodecki criterion to construct witnesses. If we consider some entangled
state ρAB, take the partial transpose ρTBAB, and find that this state has a negative
eigenvalue with eigenvector |χ−〉, then we can write Tr

(
|χ−〉〈χ−|ρTBAB

)
< 0. But

the trace is invariant under partial transposition and therefore we also have that
Tr
(
|χ−〉〈χ−|TBρAB

)
< 0. This is precisely what we want for a witness, it only remains

to note that the reverse step together with the Peres-Horodecki criterion guarantees
us that Tr

(
|χ−〉〈χ−|TBσAB

)
≥ 0, for all separable states σAB. Therefore |χ−〉〈χ−|TB

is an entanglement witness.
Entanglement witnesses are certainly useful but they have some undesirable be-

haviour. Namely, that they cannot be consistently used to compare entangled states.
Consider Figure 2.2, and the comparison of ρ0 and ρ1. The first is declared entan-
gled by our witness but it is inconclusive on the second, however we cannot draw
conclusions from this regarding whether we can potentially use LOCC to transform
from one state to the other, or in any way argue that one state is more entangled
than the other.

A more powerful tool is that of entanglement monotones and measures [51, 52,
107]. These are names given to certain families of useful functions of states, and it
should be noted that these terms have not always been consistently defined. Here
we shall present the definitions of Plenio and Virmani, which we do via reference to
the following desirable properties.

1. Positivity: M(ρ) ∈ R+.

2. Vanishing for separable states: M(σ) = 0 for σ separable.

3. Monotonically decreasing on average under LOCC:

M(ρ) ≥
∑
i

piM

 KiρK
†
i

Tr
(
KiρK

†
i

)
 , (2.45)

where pi = Tr
(
KiρK

†
i

)
and the Ki are Kraus operators for some LOCC

protocol.

4. Reducing to the entropy of entanglement for pure states: M(|ψ〉) = E(|ψ〉)
with E as defined in Eq. (2.42).
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We can now define an entanglement monotone to be a function which satisfies 1,2,
and 3. An entanglement measure satisfies 1,2, and 4, and instead of 3 it must
satisfy the weaker condition of being montonically decreasing under determinis-
tic LOCC. It should be mentioned that though these are the most agreed upon
properties, sometimes other desirable properties are also sought, such as convexity
M(
∑

i piρi) ≤
∑

i piM(ρi), and additivity M(ρ⊗n) = nM(ρ).

An immediate example can be constructed from the Peres-Horodecki criterion.
This is termed the negativity and is defined as

N (ρ) =

∥∥ρTB∥∥
1
− 1

2
. (2.46)

This is simply the absolute sum of the negative eigenvalues of ρTB . This can be
seen by first writing ρTB =

∑
i λi|φi〉〈φi|, and noting that N (ρ) = (

∑
i |λi| − 1)/2.

Now since the trace is invariant under partial transposition we have that
∑

i λi = 1,

and hence N (ρ) =
∑

λi<0 |λi|. The negativity as defined has been shown to be an
entanglement monotone [122, 123].

There are a multitude of entanglement monotones and measures (see [107] for a
review) and we tend to choose those which are most relevant or convenient to the
particular setting of interest. We shall only discuss two more examples here. These
shall be an entanglement measure and a related entanglement monotone.

Our example of an entanglement measure is the entanglement of formation. It
is the minimal possible average entanglement over all pure state decompositions.
Mathematically we write this as

EF (ρ) = inf
∑
j

pjE(|ψj〉〈ψj|), (2.47)

where ρ =
∑

j pj|ψj〉〈ψj|.

The main reason we mention this measure is that it motivated the introduction
of the concurrence [124, 125], which is an entanglement monotone that we shall
make use of later. The concurrence C(ρ) can be used to give an explicit expression
for the entanglement of formation for a two qubit state via

EF (ρ) = f(C(ρ)), (2.48)

where

f(x) = −1 +
√

1− x2

2
log

1 +
√

1− x2

2
− 1−

√
1− x2

2
log

1−
√

1− x2

2
. (2.49)
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The concurrence of a two qubit mixed state is efficiently calculated as

C(ρ) ≡ max(0, λ1 − λ2 − λ3 − λ4), (2.50)

where λ1, ..., λ4 are the eigenvalues in decreasing order of R =
√√

ρρ̃
√
ρ, where

ρ̃ = (σy⊗σy)ρ∗(σy⊗σy), and ρ∗ denotes complex conjugation in the computational
basis. It is equivalent to work with the square roots of the eigenvalues of ρρ̃.

We highlight the fact that this expression for concurrence is equivalent to a
definition via the convex roof extension

C(ρ) = inf
∑
j

pjC(|ψj〉), (2.51)

where the infimum is taken over all such ensemble decompositions of the form ρ =∑
j pj|ψj〉〈ψj|, and where for a pure qubit state in Schmidt decomposed form |ψ〉 =

√
λ0|00〉 +

√
λ1|11〉 the concurrence is simply C(|ψ〉) = 2

√
λ0λ1. We note that this

can also be viewed as the convex-roof extended negativity [126].

Though the initial focus for concurrence was centred on the entanglement of
formation, it has since been studied, generalised and measured in various con-
texts [127, 128, 129, 130, 131, 132, 133]. As mentioned, we shall make particular use
of this monotone later.

There is a large quantity of material on entanglement in mixed systems and we
cannot cover it all here. For completeness we close by describing the modern view
of entanglement as a quantum resource theory [62]. To define a resource theory one
needs to specify two things: a set of free operations and a set of free states. The free
operations are quantum operations that we consider free to perform, in the sense
that we do not need to use any of the resource to enact them. The operations are
chosen to respect some physically motivated restriction. The free states are the set
of states that we can prepare freely, so are those states which can be prepared under
the same physical restriction as used to define the free operations. We can if we
want consider preparing the free states as special cases of the free operations, then
specifying the free operations fully defines the resource theory. Naturally to have
a consistent resource theory the free operations acting on free states must not give
non-free states, since this would mean we could create a resource state for free.

For the resource theory of entanglement, the physical scenario considered is spa-
tially separate labs that can exchange classical information. The set of free opera-
tions are all those that can be achieved via LOCC. The free states are the separable
states as defined in Eq. (2.43), since they can be produced via local operations and
shared classical randomness. In this setting entangled states are resource states that
can allow one to perform operations outside of the set LOCC such as teleportation
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of an unknown quantum state. These choices are good because entanglement cannot
be increased under LOCC, and the physical restriction is well motivated. Indeed it
is the situation most labs in the world are currently in, they have reliable classical
channels between them but not quantum channels. Note that one could take a larger
set of free operations by considering all operations that map separable states to sep-
arable states. This would include Alice and Bob swapping their systems, which does
not produce entanglement but is clearly not in LOCC. Working with this larger set
can be useful for mathematical convenience but a true resource theory should be
physically motivated.

In summary, we tend to view entanglement as a resource and have a set of tools
for quantifying it, which we select from as appropriate to the problem of interest.
With this all said we have presented all the key entanglement concepts that we
shall call upon later, so we leave this topic here and move to discussing the other
important types of quantum correlations.

2.4.3 Bell Non-Locality and Steering

Here we shall present the concepts of Bell non-locality and steering. In doing this we
closely follow the presentation in the seminal work of Wiseman et al. [134]. We begin
by giving the simple operational definitions for Bell non-local (BNL) and steerable
states, and then move to mathematical definitions.

We start with Bell non-locality. Consider a setting where Alice and Bob share
copies of a bipartite quantum state where Alice holds one subsystem and Bob the
other. They are not allowed to communicate. Their task is to persuade Charlie that
they have entanglement by making measurements and passing him results. Charlie
is a skeptic so if he can explain the correlations between their results using a local
hidden variable (LHV) model then he will, and if he can do this he will claim they
do not have entanglement. The set of states that Alice and Bob can use to succeed
are the Bell non-local states.

For the steerable states we change the setup so that Alice is preparing the bi-
partite quantum states, keeping one subsystem and sending the other over to Bob.
They make measurements on their parts and communicate classically, and Alice’s
task is to persuade Bob that she has been producing copies of an entangled state.
Bob is skeptical and if he can explain the results with a local hidden state (LHS)
model then he will. The states that Alice can use to succeed in this case are the
steerable states. The set of Bell non-local states is strictly larger than the set of
steerable states which is strictly larger than the set of entangled states.

Before giving the mathematical definitions of Bell non-locality and steering it is
informative to reformulate the definition of entanglement in terms of the probabilities
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of results from measurements. First we establish terminology. We denote the set of
all observables on Alice’s system as Dα. For A ∈ Dα, we denote its set of eigenvalues
{a} by λ(A). The probability that Alice obtains result a ∈ λ(A), given that she
measured A ∈ Dα, on the quantum state W, is denoted P (a|A;W ). Similar notation
is used for Bob’s measurements.

A state is entangled if it is not separable. A state W is separable if it is not of
the form given in Eq. (2.43), which we write here asW =

∑
ξ pξσξ⊗ρξ. Equivalently

we can say a state is separable if for all a ∈ λ(A), b ∈ λ(B), for all A ∈ Dα, B ∈ Dβ,
we can find some set of pξ, σξ, ρξ such that

P (a, b|A,B;W ) =
∑
ξ

pξP (a|A;σξ)P (b|B; ρξ), (2.52)

where P (a|A;σξ), P (b|B; ρξ) are given by the Born rule. Equivalently a state is
entangled if this is not the case.

With this formulation in hand we now return to mathematically define Bell
non-locality. A state is Bell non-local if we can find measurement sets Mα ⊆ Dα,
Mβ ⊆ Dβ, such that the correlations of the results cannot be explained by a LHV
model. The results can be explained by a LHV model if for all a ∈ λ(A), b ∈ λ(B),

for all A ∈ Mα, B ∈ Mβ, we find probability distributions pξ, P (a|A, ξ), P (b|B, ξ)
such that

P (a, b|A,B;W ) =
∑
ξ

pξP (a|A, ξ)P (b|B, ξ), (2.53)

and a state is Bell non-local if there exists a measurement setMα×Mβ, for which
this is not the case.

We now turn to the notion of steering which, unlike entanglement and Bell non-
locality, is asymmetric. Alice makes a choice of measurement A, and obtains the
result a, which means she knows the state Bob has, the options for which are defined
by the ensemble EA ≡ {ρ̃Aa : a ∈ λ(A)}. Here we write Bob’s unnormalized states
ρ̃Aa ≡ Trα[(ΠA

a ⊗ 1)W ], where ΠA
a is the projector onto the eigenspace of A, with

eigenvalue a.

The test for steering proceeds as follows. Alice announces the ensembles EA : A ∈
Mα, that she can steer Bob’s state into. Bob picks an ensemble EA and asks Alice to
steer his state into it. Alice measures A and tells Bob the result obtained such that
he knows his state should be ρAa . They repeat this many times and Bob determines
whether he is actually getting the states ρAa , and whether they are occurring at the
correct frequency Tr(ρ̃Aa ).

If Alice is trying to deceive Bob then she will be giving him a known LHS ρξ,

chosen from an ensemble F = {pξρξ}. Alice knows the value of ξ, so would announce
a, using a stochastic map that defines p(a|A, ξ). Hence if Bob can find an ensemble
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F, and a probability distribution p(a|A, ξ), such that

ρ̃Aa =
∑
ξ

p(a|A, ξ)pξρξ, (2.54)

then Bob will not be convinced Alice is steering his state. If Bob cannot describe
the results in this manner then he concludes there is steering.

Steering can be recast with a condition that sits between those given in Eq.
(2.52) and Eq. (2.53). Alice has not demonstrated steering if for all a ∈ λ(A),

b ∈ λ(B), for all A ∈Mα, B ∈ Dβ, we can find pξ, P (a|A, ξ), ρξ such that

P (a, b|A,B;W ) =
∑
ξ

pξP (a|A, ξ)P (b|B; ρξ), (2.55)

where P (b|B; ρξ) is given by the Born rule. If this is not the case then she has
demonstrated steering and if there existsMα, that demonstrates steering for state
W, then we say W is steerable. Comparing the forms of Eq. (2.52), Eq. (2.53), and
Eq. (2.55) shows that Bell non-locality is stronger than steering which is stronger
than entanglement. As we discuss in the next section all three of these relations are
strictly stronger i.e. the corresponding sets of states are proper subsets.

A resource theory of steering has been formulated [135] where the free operations
are those that can be performed via local operations and one way classical communi-
cation (1W-LOCC), from Bob to Alice for the case where we consider Alice steering
Bob’s state. Note that, since we know LOCC cannot produce entanglement from
separable states and all steerable states are entangled, the restriction to only one
way classical communication is to prevent free operations taking us from entangled
states to steerable states.

Non-locality is viewed as an information theoretic resource [136]. In particular it
is a resource for device independent quantum information processing (DQIP), where
all devices are viewed as black boxes, and has been formulated as a resource the-
ory [137]. The free operations are those that can be performed via local operations
and communication that takes place before the inputs are known [138], otherwise
the communication could be used to create nonlocal correlations.

2.4.4 Discord

We now turn to the weakest form of non-classical correlation. Quantum discord
was introduced relatively recently [70, 69], and it is aptly named, as it has certainly
caused a fair bit of discord in the quantum community. The criticisms tend to focus
on it being too prevalent (almost all states have non-zero quantum discord [139]) and
not being practically useful for anything. My own view is that regardless of these
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issues, its study has still proved interesting and that it has helped us improve our
general understanding of quantum theory and in particular prompts us to sharpen
and refine what we mean when we talk about quantum correlations.

Quantum discord has been investigated in numerous areas of quantum infor-
mation [140, 141, 110]. Operational connections have been proposed in quan-
tum state merging [73, 74], quantum communication [142], and bounding entangle-
ment distribution [143] (which followed on from the result that one can distribute
entanglement with separable states [144] which has been experimentally demon-
strated [145, 146, 147]). Discord has also been investigated in metrology [85], and it
has been claimed interferometric power can be quantified by discord [86, 87]. There
has also been work on discord’s role in noisy quantum computing [82]. In partic-
ular for DCQ1 [148] it was claimed that discord could account for the quantum
advantage where entanglement could not [80]. However it was subsequently shown
that the speedup is present in a case where there is vanishing discord [81], throwing
significant doubt on its role as the responsible resource.

Discord can be a fairly subtle concept to get across. Essentially states with
quantum discord are those whose quantum mutual information is larger than the
maximum classical mutual information one could obtain via POVMs. Therefore to
present an explicit definition we must first give the definition of classical mutual
information

J(A : B) = H(A) +H(B)−H(AB), (2.56)

where H(A) is the Shannon entropy of the random variable A.

Similarly the definition of quantum mutual information is

Iρ(A : B) = S(ρA) + S(ρB)− S(ρAB), (2.57)

where S(ρA) is the von-Neumann entropy of state ρA. Note that these are both
symmetric quantities.

The most general quantum measurement we can perform is a POVM which is
defined by a set of operators {Fi} that are Hermitian F †i = Fi, positive semi-definite
Fi ≥ 0, and sum to unity

∑
i Fi = 1.We now write the mutual information obtained

via a POVM {Aa} on A as

Jρ(B|{Aa}) = S(ρB)−
∑
a

paS(ρB|a), (2.58)

where pa = TrAB(AaρAB), and ρB|a = TrA(AaρAB)/pa. Note we use the subscript ρ
to distinguish this from the classical mutual information. This mutual information
is not a symmetric quantity.
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We write the maximization of this quantity over all possible POVMs as

Jρ(B|A) = max
{Aa}

Jρ(B|{Aa}). (2.59)

Now the asymmetric quantum discord is defined as

δρ(B|A) = Iρ(A : B)− Jρ(B|A). (2.60)

We can understand this equation as defining the discord to be the difference be-
tween the total correlations and the maximum classical correlations obtainable via
a POVM. Viewed another way we are essentially dividing up the total correlations
into a quantum and classical part.

Note that Eq. (2.60) is asymmetric. To define the symmetric quantum discord
we first write

Jρ(A : B) = max
{Aa},{Bb}

Jρ({Aa} : {Bb}), (2.61)

and then we have the symmetric discord

δρ(A : B) = Iρ(A : B)− Jρ(A : B). (2.62)

To understand more clearly what these definitions capture it is useful to examine
the states that do not have discord. To this end, one defines Classical Classical (CC),
Classical Quantum (CQ), and Quantum Classical (QC) states, as states that can be
written in the respective forms

ρAB =


∑

i,j pij|i〉〈i|A ⊗ |j〉〈j|B, CC,∑
i pi|i〉〈i|A ⊗ |ρ

(i)
B , CQ,∑

j pjρ
(j)
A ⊗ |j〉〈j|B, QC,

(2.63)

where the sets of states {|i〉〈i|}, and {|j〉〈j|}, are orthonormal sets.

Now a state has δρ(B|A) = 0 if and only if the state is CQ. Similarly we have
δρ(A|B) = 0 if and only if the state is QC and δρ(A : B) = 0, if and only if the state
is CC. The states that are not in any of these three sets have quantum discord and
are sometimes referred to as quantum correlated states [149].

Since CC, CQ, and QC states are all separable it is clear all entangled states
have discord, however not all discordant states are entangled. A simple example of
a state that has discord but is not entangled is |00〉〈00|+ |+ +〉〈+ + |.

There is as yet no resource theory of discord. It is known that the set of op-
erations that do not create quantum correlations are the commutativity preserving
operations [150], but these do not have a practical motivation and there are ad-



2.4. FUNDAMENTALS OF QUANTUM CORRELATIONS 49

ditional difficulties such as the set of free states not being convex. This lack of a
physically motivated resource view may indicate that discord captures too large a
set of states to be in general viewed as a useful quantity.

This brings an end to our presentation on the fundamentals of quantum correla-
tions, and with it an end to this chapter on fundamentals. We now turn to our first
application of these tools.
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Chapter 3

Anonymous Metrology

Anonymity is no excuse for stupidity
– Albert Einstein

3.1 Overview

Amongst their many uses, quantum correlations can be used to hide information non-
locally [151, 152, 153, 154, 155]. Recent studies have investigated non-locally hiding
computations [156], and when it is possible to mask quantum information [157]. In
this chapter, we present the task of anonymous metrology, which involves encoding
an initially unknown continuous parameter in a state whilst hiding where the encod-
ing happened. We identify the quantum states that enable the task and separately
treat the two cases of having a trustworthy or untrustworthy source of states. We
term the resourceful states as weakly anonymous (WA) and strongly anonymous
(SA) respectively, and give physical intuition for the distinction by demonstrating
how SA states allow the encoding’s location to be not just hidden but quantum
mechanically delocalised. We derive general forms for the WA and SA states, us-
ing modes of translational asymmetry [158, 159] for the former, and for the latter
showing equivalence to the entangled “maximally correlated states” [160] extended
by degeneracy. We then determine the nature of their quantum correlations. As
discussed in Chapter 2, quantum correlations exist in different “strengths”, from dis-
cord [140] to full Bell nonlocality [161], and understanding their respective utilities
remains to be fully explored. Whilst there are several works that demonstrate an
operational use for discord [162, 73, 87, 85], our results additionally reveal an op-
erational distinction between different types of quantum correlations. We find that
WA states require a form of discord that we term aligned discord, while SA states
require a stronger type of correlation, correspondingly termed aligned entanglement.
This chapter draws from [163].

51
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Figure 3.1: Illustration of the anonymous metrology task. Initially A and B share
the state ρAB, and one of them is given the system to hide. They engineer UA, or
VB, to encode θ into the shared state, then both halves are sent to C.

3.2 Defining anonymous metrology

We introduce the task of anonymous metrology with an example, illustrated in
Fig. 3.1. Alice and Bob are in spatially separated laboratories, and one of them
receives a system, the location of which they must keep hidden (e.g. some valuable
diamond). Charlie wants them to probe it with a (finite-dimensional) quantum
system to give him information about some initially unknown continuous parameter
θ (such as a refractive index).

We make the following assumptions:

• If the object is in Alice’s lab, it interacts with her system such that the lat-
ter undergoes a unitary transformation UA(θ) = e−iθHA with some parameter-
independent Hamiltonian HA. (Otherwise, Alice’s system is unchanged.) Sim-
ilarly, Bob’s system undergoes VB(θ) = e−iθGB if the object is with him.

• Alice and Bob may use classical communication freely, but this is not secure.
Charlie is also allowed to know the set-up of their labs, so he knows the
quantum operations they apply.

• Their devices are unsecure, in that any measurement outcomes obtained are
assumed to be available to Charlie. Note that they may implement any
parameter-independent local unitaries without loss of security. Hence it is
possible to effectively change the eigenbasis of HA, GB arbitrarily.

The task is to enable Charlie to estimate θ, but prevent him from learning where
the hidden system is, i.e. the one who actually encoded θ into the quantum system
must remain anonymous.
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At first glance this task may seem impossible, since θ is initially unknown and
Alice and Bob can only learn its value via untrusted local measurements. With
Charlie accessing their measurement results we might fear that he will always be
able to determine where the encoding is happening and thus the system’s location.
However it turns out that quantum resources allow them to succeed in this task.

We formalize this statement later, but we shall start by illustrating with a simple
example using an entangled state. We allow Alice and Bob to request copies of a
bipartite quantum state ρAB to use as a resource. Consider the situation when they
choose the Bell state |ψ+〉AB = 1√

2
(|00〉AB + |11〉AB). Alice could apply UA(θ) =

e−iθ|1〉A〈1|, to produce |ψ(θ)〉AB = 1√
2
(|00〉AB + e−iθ|11〉AB), but similarly Bob could

apply VB(θ) = e−iθ|1〉B〈1|, and for all θ he produces the same state. This indicates the
solution to their problem. The one who has the hidden system interacts their half
of ρAB with it, to realize the relevant encoding unitary (they may need a rescaling
such that θ ∈ [0, 2π)), and then they both send their halves of |ψ(θ)〉AB to Charlie.
Given multiple copies Charlie can determine θ to arbitrary precision but cannot tell
if it was UA or VB that changed the state, so cannot learn the system’s location1.
Clearly the Bell state is a resource for this task, but we shall show that a number
of quantum states are, and in some cases they are not entangled.

3.2.1 Anonymity and encoding conditions

For anonymous metrology there are two relevant sets of useful states, and the choice
between them depends on who provides the states for Alice and Bob.

First consider the situation where a trustworthy fourth party, who will never
share information with Charlie, is sending quantum states to them. Alice and Bob
should request copies of a state ρAB, that satisfies two conditions. First that they
can find continuously parameterised unitaries UA(θ), VB(θ) such that, for θ in some
interval,

UA(θ)ρABU
†
A(θ) = VB(θ)ρABV

†
B(θ). (3.1)

This is termed the weak anonymity condition, since it ensures that for a given pa-
rameter the same state is produced no matter who encoded it. The second condition
is that from the same interval, different phases produce different states, i.e. given
θ 6= φ we have

UA(θ)ρABU
†
A(θ) 6= UA(φ)ρABU

†
A(φ). (3.2)

We term this the encoding condition since it ensures that different parameters are
mapped to different states, so in principle Charlie learns at least some information

1Note instead of sending states to Charlie they could perform a set of informationally com-
plete local measurements, tomographically reconstruct the state and extract θ from it, but this is
unnecessarily complicated and would generally be less efficient for learning θ.
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about the parameter.

If however it is Charlie who is sending the states (or the fourth party is un-
trustworthy) then anonymity with these states is not assured. The most dangerous
situation is when Charlie holds a third system and knows the pure state |ψ〉ABC ,
but Alice and Bob only know the state ρAB = TrC(|ψ〉ABC〈ψ|). They can verify that
they have been sent copies of ρAB by using a subset of the states they receive to
perform metrology, but by doing this they cannot learn what Charlie holds. We also
note that using a finite number of copies for metrology will inevitably lead to some
finite error, and we address this later in section 3.5.1 where we show robustness for
the protocol.

To maintain anonymity when Charlie could be holding a purification, they must
be able to find unitaries such that UA(θ)|ψ〉ABC = VB(θ)|ψ〉ABC , up to an irrel-
evant global phase. We use this to derive a condition on the states ρAB that
they can choose. We expand using the Schmidt decomposition to write the full
state as |ψ〉ABC =

∑
j λj|φj〉AB ⊗ |χj〉C , in terms of an orthogonal product ba-

sis. We then project onto |χj〉C , and have UA(θ)|φj〉AB = VB(θ)|φj〉AB. Writing
ρAB =

∑
j |λj|2|φj〉AB〈φj|, and acting from the left with UA(θ), we arrive at

UA(θ)ρAB = VB(θ)ρAB. (3.3)

This is termed the strong anonymity condition. A more direct way to arrive at this
is simply to start from UA(θ)|ψ〉ABC = VB(θ)|ψ〉ABC , act from the right with 〈ψ|ABC ,
and then apply TrC . However, reversing the argument is most straightforwardly done
by working with the kets from the Schmidt decomposition. We start from Eq. (3.3),
write out ρAB =

∑
j |λj|2|φj〉AB〈φj|, and act from the right with |φj〉AB to find that

UA(θ)|φj〉AB = VB(θ)|φj〉AB. Using this together with the fact that all purifications
of ρAB =

∑
j |λj|2|φj〉AB〈φj|, can be written as |ψ〉ABC = UC′→C

∑
i λj|φi〉AB|i〉C′ ,

where UC′→C is an isometry, we arrive at UA(θ)|ψ〉ABC = VB(θ)|ψ〉ABC .
Hence the state |ψ〉ABC has unitaries that satisfy UA(θ)|ψ〉ABC = VB(θ)|ψ〉ABC ,

if and only if ρAB = TrC(|ψ〉ABC〈ψ|) has unitaries that satisfy Eq. (3.3). It is clear
that Eq. (3.3) implies Eq. (3.1), but not vice versa, so the condition (3.3) is stronger.
With this we now formally establish appropriate terminology.

Definitions: A state ρAB is a weakly anonymous (WA) state if there exist unitaries
UA(θ) = e−iθHA , and VB(θ) = e−iθGB that satisfy the conditions given by Eq. (3.1)
and (3.2). The subset of these that also satisfy the condition of Eq. (3.3) are strongly
anonymous (SA) states.

For pure states the WA and SA conditions coincide, and furthermore a pure
state is WA/SA if and only if it is entangled. To prove sufficiency we use the
Schmidt decomposition to write |ψ〉AB =

∑
j λj|φj〉A⊗|χj〉B. Entangled states have
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a Schmidt number of at least two, so without loss of generality we take λ0 6= 0 and
λ1 6= 0. Now the unitaries UA(θ) = e−iθ|φ1〉〈φ1|A , and VB(θ) = e−iθ|χ1〉〈χ1|B , satisfy
the conditions. Hence all pure entangled states are WA/SA. To prove entanglement
is necessary consider a separable state |ψ〉AB = |φ〉A ⊗ |χ〉B. The anonymity con-
dition becomes UA(θ)|φ〉A ⊗ |χ〉B = |φ〉A ⊗ VB(θ)|χ〉B. Applying the ket 〈φ|A we
get 〈φ|UA(θ)|φ〉|χ〉B = VB(θ)|χ〉B, and projecting this equation onto itself we arrive
at |〈φ|UA(θ)|φ〉| = 1. Hence UA(θ) only imparts an unobservable global phase, so
violates the encoding condition. Therefore entanglement is necessary for pure states
to be WA/SA.

For mixed states things are more complicated. We find that a resource distinction
between WA and SA opens up, and we shall fully address this shortly. Before getting
to this it is useful to present a different non-local task that helps to illustrate the
significant operational distinction between the WA and SA cases.

Hiding the location of a system from Charlie somewhat resembles hiding which-
path information. We can think of where the diamond goes as similar to where a
particle goes in some interference experiment. We can formalise this intuition with
the following setup. Consider Alice and Bob are tasked with measuring a system that
is put in a superposition of going to Alice and Bob. Can they perform measurements
without acquiring which-path information and thus without decohering the spatial
superposition?

Formalizing this, we consider quantizing the path degree of freedom P of the
system to be measured; it is put into some superposition a|L〉P + b|R〉P of going left
to Alice and right to Bob. They then want to use ρAB to measure this system that
has been put into a spatial superposition, but without decohering said superposition.
We consider the unitary that they jointly perform. Alice sets up her lab such that
if the particle comes to her then she performs the controlled unitary UA, and Bob
does similarly with VB (we leave the θ-dependence implicit). Together this gives the
full unitary as

W = |L〉P 〈L| ⊗ UA ⊗ 1B + |R〉P 〈R| ⊗ 1A ⊗ VB, (3.4)

We act with this on the initial state

ρ = (a|L〉+ b|R〉)P (a∗〈L|+ b∗〈R|)⊗ ρAB. (3.5)

Writing the new state as a matrix in the L,R basis we have

ρ′ =

[
|a|2UAρABU †A ab∗UAρABV

†
B

a∗bVBρABU
†
A |b|2VBρABV †B

]
. (3.6)
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We see that if
UAρABU

†
A = VBρABV

†
B = VBρABU

†
A, (3.7)

then we can factor out and write our state in the product form

ρ′ = (a|L〉+ b|R〉)P (a∗〈L|+ b∗〈R|)⊗ UAρABU †A. (3.8)

Factorisation is also possible with any phase factor on the right-hand side of Eq. (3.7),
resulting in a relative phase appearing in system P . This phase may be absorbed
into the definition of UA.

The conditions of Eq. (3.7) are seen to be equivalent to the SA condition of
Eq. (3.3). This emphasises the fact that the SA condition ensures no information
exists on where the interaction took place. The interaction was delocalised by the
correlations. We shall explore this phenomenon in much greater depth in the next
chapter. For now we return to the task at hand and move from operational consid-
erations to investigate the form of the resourceful states.

3.3 Form of useful states

3.3.1 Form of WA states

In order to arrive at a form for the WA states, it is useful to employ modes of trans-
lational asymmetry [158, 159]. Given our unitary action UA,θ(.) = UA(θ)(.)U †A(θ),

a given state can be decomposed into modes as ρA =
∑

ω ρ
(ω)
A , where UA,θ(ρ(ω)

A ) =

eiωθρ
(ω)
A . This is akin to Fourier decomposition of a function. We can select out

modes with the twirling superoperator

PωA = lim
θ0→∞

1

2θ0

∫ θ0

−θ0
dθe−iωθUA,θ. (3.9)

One can verify that PωA(ρA) = ρ
(ω)
A . We similarly define PωB, using the twirling

superoperator VB,θ(.) = VB(θ)(.)V †B(θ). Both of these twirling superoperators sat-
isfy a relation of the form UA,θPωA = eiωθPωA, together with a completeness relation∑

ω PωA = 1. We can see the first of these holds by writing out

UA,θPωA = lim
θ0→∞

1

2θ0

∫ θ0

−θ0
dθ′e−iωθ

′UA,θUA,θ′ ,

= lim
θ0→∞

1

2θ0

∫ θ0

−θ0
dθ′e−iωθ

′UA,θ′+θ,

= eiωθ lim
θ0→∞

1

2θ0

∫ θ0+θ

−θ0+θ

dθ′e−iωθ
′UA,θ′ = eiωθPωA.

(3.10)



3.3. FORM OF USEFUL STATES 57

Additionally, the completeness relation follows by first noting that we can write
UA(θ) =

∑
n e

inθ
∑

α |n, α〉〈n, α|, and the space of linear maps will be spanned by
{|n, α〉〈m,β|}. Then mode decomposition is simply viewed as separating out sub-
spaces {|n + ω, α〉〈n, β|}, labeled by a fixed ω. Since PωA picks out one of these
subspaces, the sum over all ω returns the full space, hence

∑
ω PωA = 1.

Returning to the task at hand, we can rewrite the WA condition of Eq. (3.1)
in terms of superoperators by simply multiplying by e−iωθ

2θ0
, integrating

∫ θ0
−θ0 dθ, and

taking the limit θ0 →∞, to get

PωAρAB = PωBρAB. (3.11)

We prove the converse by acting on this equation with UA,θVB,θ, to get eiωθVB,θPωAρAB =

eiωθUA,θPωBρAB. The eiωθ terms cancel, and then summing over ω using the complete-
ness relations we return to VB,θρAB = UA,θρAB. Hence Eq (3.11) captures the weak
anonymity condition. Note that the encoding condition Eq. (3.2) now becomes the
statement that there must be some ω 6= 0 for which PωAρAB 6= 0.

From Eq. (3.11) we can explicitly write the form of the WA states. First we
define

ρ
(ω1,ω2)
AB =

∑
i,i′,j,j′,

Ei′=Ei+ω1,
Ej′=Ej+ω2

cii′jj′ |i〉A〈i′| ⊗ |j〉B〈j′|, (3.12)

where HA|i〉 = Ei|i〉, with HA the Hamiltonian generator of UA,θ, and similarly for
B. Then the WA states are of the form

ρAB =
∑
ω

ρ
(ω,ω)
AB , (3.13)

where we require non-zero terms for ω 6= 0 so that encoding is possible.

This shows that WA states are those with correlated modes of asymmetry, which
indicates a connection with the resource of quantum coherence [164]. We can view
WA states as having correlated coherence in the eigenbasis of the unitaries. There
is a formal similarity with the correlated coherence defined in [165, 166, 167, 168].

3.3.2 Form of SA states

We now derive the form of SA states. Here, working with modes of asymmetry is
not as straightforward, which for completeness we now demonstrate.

Starting from the SA condition UA(θ)ρAB = VB(θ)ρAB, we act from the right
with V †B(θ). We then multiply by e−iωθ

2θ0
, integrate

∫ θ0
−θ0 dθ, and take the limit of

θ0 → ∞. Writing the superoperator WAB,θ(.) = UA(θ)(.)V †B(θ), we then define the
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split twirling superoperator

PωAB = lim
θ0→∞

1

2θ0

∫ θ0

−θ0
dθe−iωθWAB,θ, (3.14)

and we arrive at
PωABρAB = PωBρAB. (3.15)

To go the other way we first note that by summing over ω in this equation we find∑
ω PωABρAB = ρAB, even though PωAB does not satisfy a completeness relation in

general (note that we can have a completeness relation if we restrict the unitaries to
share the same spectrum). This allows us to perform essentially the same argument
as in the WA case. We note that WAB,θPωAB = eiωθPωAB, and then act on Eq. (3.15)
with WAB,θVB,θ, cancel the eiωθ terms and sum over ω to arrive back at the original
SA conditions. However, the split twirling superoperator PωAB is not an established
tool, and as such it is not as straightforward to go from these expressions to a form
for the useful states, therefore we adopt a different approach.

Rearranging the anonymity condition of Eq. (3.3) to (UA(θ) − VB(θ))ρAB =

0, and taking matrix elements in the eigenbasis of the local unitaries, we obtain
(ui(θ) − vi′(θ))〈ii′|ρAB|jj′〉 = 0. The non-zero matrix elements are those for which
ui(θ) = vi′(θ). Initially it is simplest to consider the non-degenerate case so that
ui(θ) 6= uj(θ),∀i 6= j and similarly for the vi. With this the largest set of non-
zero matrix elements is achieved by pairing every ui(θ) with a vi′(θ) such that
ui(θ) = vi′(θ). Since relabeling is physically irrelevant we can write the non-zero
matrix elements as 〈ii|ρAB|jj〉, and so we write the state as ρAB =

∑
i,j ρij|ii〉〈jj|.

This is the form of so-called “maximally correlated” states [160]. Note that we need
at least one non-zero off-diagonal ρij = ρ∗ji, to ensure that the encoding condition of
Eq. (3.2) is satisfied.

We can lift the non-degeneracy restriction by introducing a new label, such that
we write states that are degenerate under UA as |iλ〉. We then write the form of SA
states as

ρAB =
∑

i,j,λ,λ′,µ,µ′

ρijλλ′µµ′|iλ, iλ′〉AB〈jµ, jµ′|. (3.16)

Hence the SA states are a generalisation of the “maximally correlated” states, where
we only include the entangled ones.

For completeness we can also generalise both cases to the multipartite case. To
generalise the WA states is straightforward. We consider the case of n subsystems
labeled 1, 2, ..., n and demand that the anonymity condition holds between every
pair of subsystems. Now the WA condition in terms of the twirling superoperators
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becomes
Pωαρ12...n = Pωβ ρ12...n, (3.17)

for all α, β in the set 1, 2, ..., n. In direct analogy to the bipartite case we have

ρ
(ω1,...,ωn)
1...n =

∑
i,i′,...,k,k′,

Ei′=Ei+ω1,...,
Ek′=Ek+ωn

cii′...kk′|i〉1〈i′| ⊗ ...⊗ |k〉n〈k′|, (3.18)

and now we can write the WA states as

ρ12...n =
∑
ω

ρ
(ω,ω,...,ω)
12...n , (3.19)

where as before we require non-zero terms for ω 6= 0 so that encoding is possible.
For the SA state we generalise the condition to be Uαρ12...n = Uβρ12...n, for all α, β

in the set 1, 2, ..., n. We apply the same approach as before, taking matrix elements
in the eigenbasis of the unitaries. Working in the non-degenerate case with the same
approach as before we find each of these equations gives us an expression for the
allowed non-zero terms like |iikl...n〉〈jjk′l′, , , n|, and |ikil...n〉〈jk′jl′, , , n|. Taking
all such conditions together we see the only non-zero terms allowed are of the form
|iii...i〉〈jjj...j|. And so we have the form

ρ12...n =
∑
i,j

ρij|ii...i〉〈jj...j|. (3.20)

One can then extend to allow for degeneracy in the same way as before by introducing
degeneracy labels.

This concludes our discussion on the form of the useful states. Having established
these expressions for WA and SA states, we can now turn to discuss their quantum
correlations.

3.4 Quantum correlations required

For the anonymity tasks, we shall show that information is being hidden by the
quantum correlations of the states. The main correlations that prove relevant are
entanglement and discord, as described in detail in Section 2.4. To briefly recap the
important points, both entanglement and discord can be defined mathematically
by specifying forms for the correlated states. A bipartite state is entangled if it
cannot be written in the separable form ρAB =

∑
i piρ

(i)
A ⊗ ρ

(i)
B . A bipartite state

is deemed discordant if, for some local basis, it cannot be written in any of the
following three forms ρAB =

∑
i,j pij|i〉〈i|A ⊗ |j〉〈j|B, ρAB =

∑
i pi|i〉〈i|A ⊗ ρB|i,
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and ρAB =
∑

j pjρA|j ⊗ |j〉〈j|B, termed Classical-Classical (CC), Classical-Quantum
(CQ), and Quantum-Classical (QC) respectively. It follows from these definitions
that entangled states are a subset of discordant states.

As we shall show, the WA and SA states form subsets of the known sets of
correlated states. We therefore use the terms aligned discord and aligned entangle-
ment for the WA and SA resources respectively. For aligned discord we establish
that discord is necessary but not sufficient, and entanglement is neither necessary
nor sufficient. For aligned entanglement we show entanglement is necessary but not
sufficient. This is illustrated in Fig. 3.2.

Figure 3.2: Schematic summary of the relations between all quantum states (Q), and
those that are discordant (D), aligned discordant (AD), entangled (E), and aligned
entangled (AE).

3.4.1 WA Hamiltonian condition

Before proving these results, we recast the WA conditions in terms of Hamiltonians,
to describe families of unitaries that encode a continuous parameter. If we were to
demand Eq. (3.1) and (3.2) without enforcing the continuous parameter requirement,
then an anonymous encoding would be given by the classically correlated state
ρAB = 1

2
(|00〉〈00| + |11〉〈11|), with bit flip unitaries UA = σxA, and VB = σxB. Note

that for the SA case there is no such distinction.

Writing UA(θ) = e−iθHA , and VB(θ) = e−iθGB , we see that the weak anonymity
condition of Eq. (3.1) is equivalent to requiring that there exist local Hermitian
operators HA, GB, for which

[HA −GB, ρAB] = 0. (3.21)
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Similarly the encoding condition of Eq. (3.2), becomes

[HA, ρAB] 6= 0. (3.22)

We can work with these conditions to intrinsically restrict to continuous parameter
encodings.

3.4.2 Aligned discord

To prove discord is necessary we start with a CQ state which we write out as
ρAB =

∑
a λa|ψa〉〈ψa| ⊗ ρB|a, and take that for some choice of Hermitian operators

HA and GB we have [HA, ρAB] = [GB, ρAB]. We project A onto |ψc〉〈ψc| and use the
fact that 〈ψc|[HA, |ψa〉〈ψa|]|ψc〉 = 0 to get λc[GB, ρB|c] = 0, ∀c. From this we find
that [HA, ρAB] = 0. Hence we can only satisfy the anonymity condition if we violate
the encoding condition. Essentially the same argument works for a QC state, so it
is true for all non-discordant states. This proves that discord is necessary for WA
states.

The fact entanglement is not necessary is proved with the Werner state [68]
ρW = a|ψ−〉〈ψ−|+ 1−a

4
1. The WA conditions can always be satisfied using e−iθ|1〉〈1|,

except when a = 1, but the state is not entangled for values of a ≤ 1
3
.

To prove that neither entanglement nor discord are sufficient we use a two-qubit
example. We construct a state that is entangled and discordant but is not of the
appropriate form. We therefore first need to discuss the explicit forms of WA states
for two qubits.

For a two qubit bipartite state ρAB, where the eigenvalues of ρA = TrB(ρAB),

are non-degenerate and similarly for ρB, such that they have unique eigenvectors,
then the WA states are those that, when written in the eigenbasis of their reduced
density matrices, have the form

ρ =


α 0 0 ε

0 β 0 0

0 0 γ 0

ε∗ 0 0 δ

 or


α 0 0 0

0 β ε 0

0 ε∗ γ 0

0 0 0 δ

 , (3.23)

where ε 6= 0. These two forms are related by a relabelling of the eigenbasis of ρA.
We can arrive at this by considering the general form given in Eq. (3.11), and

here we present a constructive proof from the Hamiltonian WA conditions of Eq.
(3.21) and (3.22). First note the local HamiltonianHA must share an eigenbasis with
ρA and similarly for GB. Using this local eigenbasis we take matrix elements of Eq.
(3.21) to get (hi−gj−hi′+gj′)〈ij|ρAB|i′j′〉 = 0, where h, g are the local Hamiltonian
eigenvalues. From this equation we see that the diagonal terms 〈ij|ρAB|ij〉 are
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unconstrained. To see what other terms are free to be non-zero we need to consider
when we can make (hi − gj − hi′ + gj′) = 0.

Since we have 2 qubits we have 4 eigenvalues to set: h0, h1, g0, g1. The encoding
condition Eq. (3.22) enforces h0 6= h1 and g0 6= g1, and that ρAB has at least one
off-diagonal term, since HA ⊗ 1B is diagonal and diagonal matrices commute with
each other. We now have two options, choose h0 = g0, and h1 = g1, or h0 = g1, and
h1 = g0. The first case allows the terms 〈00|ρAB|11〉, and 〈11|ρAB|00〉, to be non-zero
and the second case allows 〈01|ρAB|10〉, and 〈10|ρAB|01〉. Putting this all together
we arrive at the forms stated in Eq. (3.23).

Purely for interest’s sake, there is also a nice alternative way to arrive at Eq.
(3.23), using tools from asymmetry theory [169]. First we note that we can write
the WA anonymity condition as a symmetry constraint by using the G-twirling
superoperator, which we define as

G(ρAB) = lim
θ0→∞

1

2θ0

∫ θ0

−θ0
dθ UA,θ ⊗ V†B,θρAB. (3.24)

With this we can write the WA condition as

G(ρAB) = ρAB, (3.25)

Taking the two-qubit case we write out the unitaries

UA(θ)⊗ VB(θ)† =

[
1 0

0 eiaθ

]
⊗

[
1 0

0 e−ibθ

]
=


1 0 0 0

0 e−ibθ 0 0

0 0 eiaθ 0

0 0 0 ei(a−b)θ

 . (3.26)

We then find

UA,θ ⊗ V†B,θρAB =


1 eibθ e−iaθ e−i(a−b)θ

e−ibθ 1 e−i(a+b)θ e−iaθ

eiaθ ei(a+b)θ 1 eibθ

ei(a−b)θ eiaθ e−ibθ 1

 ∗ ρAB, (3.27)

where ∗ denotes the entrywise product in the computational basis. When we inte-
grate to perform the G-twirling, the two choices of either a = b, or a = −b, give the
two forms of viable density matrix, as in Eq. (3.23).

The facts that entanglement and discord are not sufficient are proved by a two
qubit example that is not of the form given in Eq. (3.23) but is entangled (and
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therefore discordant). First we define

ρ1 = (
√
a|00〉+

√
1− a|11〉)(

√
a〈00|+

√
1− a〈11|)

ρ2 = (
√
b|01〉+

√
1− b|10〉)(

√
b〈01|+

√
1− b〈10|)

(3.28)

Now we can form ρ = mρ1 + (1−m)ρ2. Choosing a, b 6= 1
2
ensures we have unique

local eigenvectors. Picking the fairly arbitrary values a = 0.45, b = 0.4,m = 0.35,

we find the matrix in its local eigenbasis is approximately
0.2 0 0 0.2

0 0.3 0.3 0

0 0.3 0.4 0

0.2 0 0 0.1

 , (3.29)

where we are quoting values only to one significant figure. This is not in one of
the viable forms given in Eq. (3.23). Taking the partial transpose it has a negative
eigenvalue. Thus by the Peres-Horodecki criterion [120, 121] the state is entangled.
Since entangled states are always discordant, this example proves neither discord
nor entanglement are sufficient. Furthermore, if one wanted to show this result just
for discord, the simpler example 1

2
(|00〉〈00|+ |+ +〉〈+ + |) suffices, since this state

is discordant but in the local eigenbasis can be written as
0.729 0 0 0.125

0 0.125 0.125 0

0 0.125 0.125 0

0.125 0 0 0.021

 , (3.30)

where here we are quoting to three significant figures to keep the trace normalization
apparent. As in the last case, this is not in one of the viable forms given by Eq.
(3.23). This concludes the proof.

3.4.3 Aligned entanglement

The fact entanglement is necessary for SA states follows from applying the Peres-
Horodecki criterion [120, 121] to states of the form presented in Eq. (3.16). The fact
that it is not sufficient also follows, since not all entangled states can be written in
this form, for example the Werner state. We now present a detailed account of this.

Starting from the form given in Eq. (3.16) we find that entanglement is necessary
for aligned entanglement. To see this we write ρAB =

∑
i,j αij|ii〉AB〈jj|, where we

have dropped the degeneracy labels. In order to not violate the encoding condition
of Eq. (3.2) we must have a k and l for which k 6= l, and αkl = eiφkl|αkl| 6= 0.
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We can apply the local unitary e−iφkl|k〉A〈k|, without affecting the entanglement, and
we absorb the phases into the αkl, and αlk, such that now they are both real and
positive. We then perform the partial transpose to get ρTBAB =

∑
i,j αij|ij〉AB〈ji|,

and see that the state |kl〉 − |lk〉, is an eigenvector, with the negative eigenvalue
−|αkl|. Hence by the Peres-Horodecki criterion [120, 121], aligned entangled states
are always entangled.

We can also prove this result that entanglement is necessary for SA states without
relying on the form given in Eq. (3.16). To do this we first state and prove the
following useful lemma.

Given a probability distribution {pj}, and a set of complex numbers {Zj}, where
|Zj| ≤ 1. Then

∑
j pjZj = eiξ, if and only if Zj = eiξ, ∀j where we only consider j for

which pj 6= 0. To see this is true, note any complex number on the boundary of the
unit disk cannot be expressed as a convex combination of other complex numbers
in the unit disk. This should be convincing but for completeness we give a more
formal proof.

If Zj = eiξ, then clearly
∑

j pjZj = eiξ, so we now just need to prove the other
direction. For a set of non-zero complex numbers ζj, we have |

∑
j ζj| ≤

∑
j |ζj|,

with equality if and only if arg(ζj) = arg(ζk),∀j, k. This is just a restatement of the
polygon inequality (generalisation of the triangle inequality) for complex numbers.
We now write

∑
j pjZj =

∑
j ζj, and from this we have∑

j

|ζj| =
∑
j

pj|Zj| ≤
∑
j

pj = 1, (3.31)

where we used |Zj| ≤ 1, so the equality holds when |Zj| = 1∀j. We now have

|
∑
j

ζj| ≤
∑
j

|ζj| ≤ 1. (3.32)

However, we know |
∑

j ζj| = |eiξ| = 1, and so these three terms must in fact all be
equal. The conditions on the inequalities then tell us every Zj has unit magnitude
and the same fixed argument. This shared argument must be ξ and therefore we
have the Zj = eiξ as claimed.

We can now use this lemma to prove entanglement is necessary for SA states.
From the anonymity condition of Eq. (3.3) we obtain Tr(UA(θ)V †B(θ)ρAB) = 1.With
a separable state ρAB =

∑
j pjρ

(j)
A ⊗ ρ

(j)
B , the condition becomes∑

j

pjTr(UA(θ)ρ
(j)
A )Tr(V †B(θ)ρ

(j)
B ) = 1. (3.33)

Since |Tr(UA(θ)ρ
(j)
A )| ≤ 1, and |Tr(VB(θ)ρ

(j)
B )| ≤ 1, we can use the above stated
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lemma to conclude that Tr(UA(θ)ρ
(j)
A )Tr(V †B(θ)ρ

(j)
B ) = 1. This can only be true

if |Tr(UA(θ)ρ
(j)
A )| = 1, so Tr(UA(θ)ρ

(j)
A ) = eiφ(j). Using the eigendecomposition

ρ
(j)
A =

∑
k q

(j)
k |ψ

(j)
k 〉〈ψ

(j)
k |, this becomes

∑
k q

(j)
k 〈ψ

(j)
k |UA(θ)|ψ(j)

k 〉 = eiφA(j). Apply-
ing the same lemma again we have that 〈ψ(j)

k |UA(θ)|ψ(j)
k 〉 = eiφA(j). This implies

UA(θ)|ψ(j)
k 〉 = eiφA(j)|ψ(j)

k 〉. We now see that this violates the encoding condition
since

UA(θ)ρABU
†
A(θ) =

∑
j,k

pjq
(j)
k eiφA(j)|ψ(j)

k 〉〈ψ
(j)
k |e

−iφA(j) ⊗ ρ(j)
B = ρAB. (3.34)

We have therefore shown that all separable states cannot satisfy the SA conditions
and hence entanglement is necessary.

To prove that entanglement is not sufficient we use the Werner state example
ρW = a|ψ−〉〈ψ−| + 1−a

4
1, and show the only way that this can satisfy the strong

anonymity condition of Eq. (3.3) is if it violates the encoding condition. The
anonymity condition becomes

aUA(θ)|ψ−〉〈ψ−|+ 1− a
4

UA(θ) = aVB(θ)|ψ−〉〈ψ−|+ 1− a
4

VB(θ). (3.35)

We now act from the right with |ψ−〉, and we get through to UA(θ)|ψ−〉 = VB(θ)|ψ−〉.
Substituting this into the original condition we have UA(θ)⊗1B = IA⊗VB(θ). This
implies UA(θ) = 1A, and hence we must violate the encoding condition. This is true
for 0 < a < 1, and thus is true for values of a for which the state is entangled. Hence
entanglement is not sufficient for aligned entanglement.

Note that the Werner state also reveals that SA states are not simply the entan-
gled WA states, but a strict subset of them. It also proves that steerability and Bell
non-locality are not sufficient for aligned entanglement since for a > 1

2
the state is

steerable [134], and for a > 1√
2
it is known to be Bell non-local [170].

3.5 Using non-ideal states

3.5.1 Robustness

The anonymous metrology protocol has robust anonymity. If Alice and Bob verify
that their state ρAB is close to a WA/SA state σAB, in terms of trace distance
T (ρAB, σAB) ≤ ε, then this bounds Charlie’s ability to correctly guess who applied
the unitary. For the WA case we have T (UAρABU

†
A, VBρABV

†
B) ≤ 2ε, and for the SA

case we have T (UA|ψ〉ABC , VB|ψ〉ABC) ≤ 2
√
ε− ε2. We now prove these results.

First we consider the WA case. Alice and Bob can use a random selection of the
copies they receive to verify that the state they are using ρAB is close, in terms of
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trace distance, to a WA state σAB. Formally we say they verify that

T (ρAB, σAB) ≤ ε. (3.36)

We now show that this leads to a bound on T (UAρABU
†
A, VBρABV

†
B). This quantifies

Charlie’s ability to distinguish whether Alice or Bob applied their unitary, since the
maximal probability of correctly guessing the state is

PWA =
1

2
(1 + T (UAρABU

†
A, VAρABV

†
A)), (3.37)

as discussed in Section 2.3.6.

Starting from Eq. (3.36) we use the fact that trace distance is preserved under
unitaries to write

T (UAρABU
†
A, σ

′
AB) ≤ ε, (3.38)

T (VBρABV
†
B, σ

′
AB) ≤ ε, (3.39)

where we have defined σ′AB = UAσABU
†
A = VBσABV

†
B, using the fact σAB is a WA

state. We now use the triangle inequality T (A,C) ≤ T (A,B) + T (B,C), to arrive
at

T (UAρABU
†
A, VBρABV

†
B) ≤ 2ε. (3.40)

We now turn to the SA case. Again Alice and Bob use some of their states to
establish Eq. (3.36). However, for the SA case we need to consider distinguishability
for the fully purified states, so we need to bound T (UA(θ)|ψ〉ABC , VB(θ)|ψ〉ABC).

First consider the fidelity between the two states UA|ψ〉ABC , and VB|ψ〉ABC . This
can be written out as

F (UA|ψ〉ABC , VB|ψ〉ABC) = |〈ψ|ABCV †BUA|ψ〉ABC | = |Tr(V
†
BUAρAB))|. (3.41)

We then can proceed to write

1− |Tr(V †BUAρAB)| ≤ |1− Tr(V †BUAρAB)|,

= |Tr(σAB − V †BUAρAB)|,

= |Tr(V †BUA(σAB − ρAB))|,

≤ Tr(|V †BUA(σAB − ρAB)|),

= Tr(|σAB − ρAB|),

= 2T (ρAB, σAB),

where in the third line we used the fact that σAB is an SA state.
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We now have

|Tr(V †BUAρAB)| ≥ 1− 2T (ρAB, σAB) ≥ 1− 2ε, (3.42)

and taking this together with Eq. (3.41) shows that we have a bound on the fidelity
of

F (UA|ψ〉ABC , VB|ψ〉ABC) ≥ 1− 2ε. (3.43)

We now change this to an inequality in terms of the trace distance by using the fact
that for pure states T (|ψ〉, |φ〉) =

√
1− F (|ψ〉, |φ〉)2, to arrive at

T (UA|ψ〉ABC , VB|ψ〉ABC) ≤ 2
√
ε− ε2. (3.44)

Pulling this all together we have shown that given a single copy, the probabilities
for Charlie to correctly guess where the encoding happened are bounded [171], as
PWA ≤ 1

2
+ ε, and PSA ≤ 1

2
+
√
ε− ε2.

It is worth noting that in general Alice and Bob send multiple copies, which
Charlie could use to improve his guess. However using the property of the fidelity
that F (ρ⊗n1 , ρ⊗n2 ) = F (ρ1, ρ2)n, and the Fuchs-van de Graff inequality 1− F ≤ T ≤√

1− F 2 [105], we find that

T (ρ⊗n1 , ρ⊗n2 ) ≤
√

1− [1− T (ρ1, ρ2)]2n. (3.45)

Hence robustness for many copies follows, since a bound for the single copy case
implies a bound for the multiple copy case.

3.5.2 General figure of merit

Following similar considerations, we now define a general figure of merit for any
bipartite state ρ used for anonymous metrology. For given Hamiltonians H,G,
we can bound the increase in Charlie’s guessing probability to δ by limiting the
number of copies sent. Using Fuchs-van de Graff we bound the probability gain with
δ ≤ 1

2

√
1−minθ F (ρH(θ), ρG(θ))⊗n, where ρH(θ) and ρG(θ) are the states Charlie is

trying to discriminate between and the minimisation over θ is to ensure anonymity
for the whole range of parameter values. From this we then see that to maintain
this level of anonymity, Alice and Bob must keep the number of copies they send to
be no more than

nδ =
log(1− (2δ)2)

2 log minθ F (ρH(θ), ρG(θ))
. (3.46)

The usefulness of a state in parameter estimation may be quantified by the
quantum Fisher information (QFI) F [106], which sets a lower limit on the uncer-
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tainty ∆θ with which a parameter θ can be estimated, via the quantum Cramér-Rao
bound: ∆θ ≥ (nF)−1/2 for n measurements. We are considering the unitary encod-
ing ρH(θ) = UA(θ)ρU †A(θ), so we denote the QFI as F(ρ;HA). Since the QFI can
depend on which party does the encoding, we define the average

F̄(ρ;H,G) =
1

2
(F(ρ;HA) + F(ρ;GB)). (3.47)

We combine F̄ , and nδ to form the figure of merit nδF̄ . This captures the amount
of parameter information that can be transferred to Charlie with δ anonymity. We
identify the state-dependent part as the figure of merit

M(ρ;H,G) =
F̄(ρ;H,G)

− log minθ F (ρH(θ), ρG(θ))
. (3.48)

The largerM(ρ;H,G), the better a state ρ is for anonymous metrology with Hamil-
tonians H,G.

For a function purely of the state, we must maximize over all possible choices of
Hamiltonian. In order for this to be well-defined, we need to bound the spectra –
therefore we define

M(ρ) = min
H,G, ‖H‖op=‖G‖op=1

M(ρ;H,G), (3.49)

where ‖ · ‖op is the standard operator norm, defined as

‖A‖op = inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖ ∀v ∈ V }. (3.50)

3.6 Conclusions

We have shown that quantum mechanics enables a metrology protocol whereby a
continuous parameter may be determined whilst hiding the location where it was
encoded. We established the nature of the quantum correlations responsible for this
phenomenon, according to the level of privacy required. With a trusted source of
states, discord is needed, while entanglement provides privacy with an untrusted
source. The useful correlations have a particular symmetry, and are named aligned
discord and aligned entanglement respectively.

We note that the difference between the WA and SA tasks resembles device-
dependent versus device-independent cryptography, where the former requires dis-
cord and the latter entanglement [172], specifically Bell non-locality. However the
tasks are clearly distinct, and importantly we note that they do not produce the
same sets of resourceful states. This is most readily seen by considering the aligned
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discord states that are useful for the WA task. For these states discord and entangle-
ment are not sufficient, whereas for the device-dependent quantum key distribution
task entanglement is sufficient.

The fact the WA case only requires discord reduces the technological challenge in
realizing protocols, with discord being relatively robust to noise [173, 162]. The SA
states are more practically challenging, but bring greater operational power. It is also
noteworthy that there is a connection between aligned discord/entanglement and
quantum coherence. This is indicated by the redefinition of the WA states in terms
of modes of asymmetry given in Eq. (3.11). This suggests a potential link between
the anonymity resources and the resource of quantum coherence [174, 175, 176, 177].
The anonymity resources should arguably be viewed as a hybrid of coherence and
correlation. One could describe it as correlated coherence, though this appears
distinct from the correlated coherence of [165, 166, 167, 168].

Our results highlight an operational boundary within the hierarchy of quantum
correlations, providing a novel nonclassical task whereby different correlations are
at play depending on the desired level of anonymity. With this established, we now
proceed to depart on a tangent, namely the noted point of further interest that
SA states allowed measurements to be delocalised as demonstrated by the lack of
decoherence of spatial superpositions. In the next chapter we shall follow this thread,
reframe the problem in a more general manner which allows the consideration of all
states, and develop a deeper understanding of this highly non-classical phenomenon.
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Chapter 4

Quantum Delocalised Interactions

Location, location, location.
– Incorrectly attributed to Lord Harold Samuel

4.1 Overview

In this chapter, we study quantum delocalised-interactions, whereby information
encoded using non-locally superposed quantum states, is recorded via local inter-
actions whilst causing less disturbance than would be classically possible. This
indicates that such interactions cannot be said to happen at a single location. This
stands in stark contrast to our classical intuition that interactions happen at unique
places, we just might not know where. This non-classical phenomenon has in fact
been instrumental in enabling certain quantum protocols [178, 163]. In order to
characterise delocalised interactions quantitatively, we formulate quantum games
and study two particular instances. We establish that the win probabilities of these
games are upper bounded in terms of the concurrence for two-qubit states [124, 125],
and the bounds can be saturated for any pure state and a broad class of mixed
states. This provides an operational meaning of the concurrence, which has been
a widely studied measure of entanglement but is often viewed as a mathematical
device. We find that the capacity for non-classical teleportation fidelity [47] guar-
antees the capacity for non-classical performance in a delocalised-interaction game.
Furthermore, we consider the possibility of establishing an information theoretic
notion of delocalised-interactions by utilising the trace distance, and compare this
with the formulated games. There are connections between the two in limiting cases
but numerics indicate that in general the derived inequality does not always cap-
ture delocalised-interactions as established by the games. We also demonstrate the
games using an IBM quantum processor, achieving non-classical performance. This
chapter draws from [179].

71
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4.2 Double slit illustration

First we illustrate what we mean by delocalised-interactions using the familiar double
slit thought experiment. Suppose a game where Charlie (C) either sends a particle
through the double slit or does not. Alice (A) standing at one slit together with
Bob (B) standing at the other, team up to guess whether C sent the particle or not,
without destroying the interference pattern.

Figure 4.1: Illustration of the imagined double-slit setup. A and B must try to record
when C sends through particles, whilst attempting to not damage the interference
pattern.

To win this game, A and B should be able to distinguish between two different
states passing through the double-slit, namely a vacuum state |0〉 and a superposition
between spatially separated states |ψL〉+ |ψR〉, by locally interacting with the par-
ticle. Note these states can also be written as |00〉ApBp and 1√

2
(|10〉ApBp + |01〉ApBp),

where Ap and Bp are the particle Fock spaces at A and B’s locations. If A and
B only share classical resources (non-entangled states), then within the game a
perfect record of the existence of the particle is impossible due to the complemen-
tarity principle of quantum mechanics. There will be a trade-off, the more infor-
mation A and B locally record on whether a particle is present, the more they
destroy the interference between the different paths by disturbing the superposi-
tion state |ψL〉 + |ψR〉 [180]. On the other hand, if A and B share copies of a Bell
state, for example, |Φ+〉AB = 1√

2
(|00〉 + |11〉)AB, then they can produce a perfect

record of when there were particles without affecting the interference pattern. To
do this, A and B set up their local interactions such that the particle flips the local
state as |0〉A(B)|1〉Ap(Bp) → |1〉A(B)|1〉Ap(Bp) and |1〉A(B)|1〉Ap(Bp) → |0〉A(B)|1〉Ap(Bp),

while the local states remain the same when the particle is not present. Un-
der this interaction, the resulting joint state evolves as |Φ+〉AB(|ψL〉 + |ψR〉) →
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1√
2
(|01〉 + |10〉)AB(|ψL〉 + |ψR〉) = |Ψ+〉AB(|ψL〉 + |ψR〉) when C sent the particle or

|Φ+〉AB|0〉 → |Φ+〉AB|0〉 when C does not send the particle. The interference pat-
terns of the particle have not been disturbed and A and B will have a perfect record
of the existence of the particle as their shared outcome states |Φ+〉AB and |Ψ+〉AB
are perfectly distinguishable.

Note that the key property is not simply that we end up in the same state with
either unitary, or else the classically correlated state 1

2
(|00〉〈00| + |11〉〈11|) would

exhibit the same behaviour, and it does not. One can appreciate this better by
considering the purification 1√

2
(|000〉 + |111〉), which is transformed to orthogonal

states by σxA, σxB, and hence even though there is no difference in the original state,
the information as to which side the unitary happened still exists in the universe
(adhering to the “church of the larger Hilbert space” as coined by John Smolin,
whereby every mixed state can be viewed as part of some larger pure state).

As illustrated in the double-slit experiment, entanglement allows us to overcome
the trade-off between “information gain via local interaction” and “disturbance in
non-local superposition” i.e., recording information encoded using non-locally su-
perposed quantum states, via local interactions whilst causing less disturbance than
would be classically possible. We term this phenomenon delocalised-interactions,
as the interaction cannot be known to have definitely happened at either A or B’s
location, since this would destroy the non-local superposition. We proceed to con-
struct a formal quantum game to quantitatively capture the advantage of sharing
entanglement between A and B when demonstrating delocalised-interactions.

4.3 Formulation of quantum games

4.3.1 Background on quantum games

A key method for studying particular aspects of entanglement is to consider non-local
games, where entanglement can provide a non-classical advantage. The archetypal
example is the game constructed from the Clauser-Horne-Shimony-Holt (CHSH)
test [20]. In this CHSH game, Charlie passes two random classical bits x, y ∈ {0, 1}
to Alice and Bob respectively. Without communicating to each other, Alice and
Bob must select and send back bits a, b ∈ {0, 1} respectively, and they win the game
if a⊕ b = x ·y, where ⊕ denotes addition modulo 2. The best classical strategy gives
a win probability of 0.75, but using entangled quantum resources they can win with
the maximum probability 1

2
(1 + 1√

2
) ≈ 0.85.

This game constructed from Clauser-Horne-Shimony-Holt test is an example
of a general class of games called XOR games [181]. Further games have been
considered where the questions are asked with quantum states, as in semi-quantum
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Alice (A)
𝝆𝑨𝑩

𝒛 𝑨𝒑𝑩𝒑

𝑼𝑨𝑨𝒑 𝑽𝑩𝑩𝒑

Charlie (C)

Bob (B)

{ 𝒛 𝑨𝒑𝑩𝒑}∈ 𝓩

PNP game: 𝓩 = 𝟎𝟎 𝑨𝒑𝑩𝒑 , 𝚿
#
𝑨𝒑𝑩𝒑

BD game: 𝓩 = 𝚽#
𝑨𝒑𝑩𝒑 , 𝚿

#
𝑨𝒑𝑩𝒑

𝝆′𝑨𝑩
(𝒛)

𝝆′𝑨𝒑𝑩𝒑
(𝒛)

Charlie (C)

Alice (A) Bob (B)

Guess 𝒛

Is the state 
undisturbed?

Figure 4.2: Schematic illustration of the quantum delocalised-interaction games as
described in the main text, with ρ′ApBp denoting the final state returned to C, and
ρ
′(z)
AB denoting the final state obtained by A and B, which they measure to determine

their guess for z. The sets of question states used for the PNP game and the BD
game are presented at the top.

non-local games [182, 183] that can witness all forms of entanglement, and includes
as a subclass the quantum XOR games [184]. There are also extended non-local
games (sometimes referred to as bipartite steering games) [185, 186, 187] in which
the referee also holds a quantum system that is provided at the start of the game
by the players, and numerous other interesting setups and variations have been
studied [188, 189, 190, 191, 192, 193].

4.3.2 Quantum delocalised-interaction games

We formulate general quantum delocalised-interaction games as follows (illustrated
in Fig. 4.2)

1. C prepares a state |z〉ApBp selected from some finite set of question states Z
with non-zero probability Pz, and sends the subsystems Ap and Bp to A and
B, respectively.

2. A and B attempt to record the information z onto their shared state ρAB via
local controlled unitaries UAAp and VBBp , then return the subsystems Ap and
Bp to C.

3. C checks whether the returned subsystems ApBp have been disturbed by per-
forming a projective measurement onto the initial state |z〉ApBp .

4. A and B perform joint measurements Π
(za)
AB to determine their answer za.

5. A and B win the game if their answer is correct za = z, and C’s projective
measurement returns the initial state |z〉ApBp .
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The question states must not be chosen such that A and B cannot distinguish
them, and at least one |z〉ApBp ∈ Z must be entangled. This condition ensures that
the games capture the classical trade-off which a quantum delocalised-interaction
circumvents.

The probability that A and B win the game is given as

p(ρAB) =
∑
z

PzTr
[
(Π

(z)
AB ⊗ |z〉〈z|)W (ρAB ⊗ |z〉〈z|)W †], (4.1)

where W = UAAp ⊗ VBBp . We shall use the superscript form pm to denote the
maximum of this quantity over all choices of measurements ΠAB and controlled
unitaries UAAp , VBBp , and we shall use subscripts to distinguish specific instances.

4.4 Particle/No-Particle game

The double-slit scenario can now be simplified into an example of a quantum delocalised-
interaction game. In this case, Z = {|p〉, |np〉} with Pp = 1/2 = Pnp and we take
|p〉 = 1√

2
(|01〉ApBp + |10〉ApBp), and |np〉 = |00〉ApBp , which represent the states after

passing the double-slit depending on whether C sends (p) or does not send (np) the
particle.

We also choose to work with the interaction only happening if the particle
exists in the local subsystem, since a unitary in the absence of a particle physi-
cally corresponds to free evolution which we can simply factor out. Hence UAAp =

1A⊗ |0〉Ap〈0|+UA⊗ |1〉Ap〈1| and VBBp = 1B ⊗ |0〉Bp〈0|+ VB ⊗ |1〉Bp〈1|. The overall
interaction then can be written as

W = 1AB ⊗ |00〉ApBp〈00|+ UA ⊗ 1B ⊗ |10〉ApBp〈10|

+ 1A ⊗ VB ⊗ |01〉ApBp〈01|+ UA ⊗ VB ⊗ |11〉ApBp〈11|.
(4.2)

We refer to this game as the Particle/No-Particle (PNP) game. The total win
probability after maximization over the choice of POVMs can be written as

ppnp(ρAB) =
1

2
+

1

2
eigs+(σ̃AB − ρAB), (4.3)

where σ̃AB = 1
4
(UA + VB)ρAB(UA + VB)†, eigs+ sums the positive eigenvalues.
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4.4.1 Pure states

We shall now show that for any pure two-qubit state, the maximum obtainable win
probability for the PNP game is given by

pm
pnp(|ψ〉AB) =

3

4
+

1

4
C(|ψ〉AB), (4.4)

where C(|ψ〉AB) = 2
√
λ0λ1 with λi denoting the Schmidt coefficients, is the well-

known concurrence entanglement monotone [124, 125] which is zero for all separable
states, giving the classical bound as 3

4
. We can therefore view the game as providing

a direct operational meaning of pure state concurrence.

Before proving this result we should note that it has interesting implications, for
instance one might have thought that A and B would be helped by allowing a pre-
processing step where they have temporary access to all the states they will use, and
can apply entanglement distillation. However, using the concurrence result we can
show that this would not increase their win probability. Consider A and B granted
pre-processing access to N copies of the qubit state |ψ〉, from which they distil m
copies of the maximally entangled state and N − m pure separable states. Then
when the game starts they use these new states one by one, and win m cases with
probability 1 and N −m cases with the maximum classical win probability 3

4
. It is

known that in the asymptotic limit of large N we have m = NE(|ψ〉), where E(|ψ〉)
is the entanglement entropy [112]. This means the win probability for the outlined
distillation strategy will be bounded by 1

N
[NE(|ψ〉)+ 3

4
(N−NE(|ψ〉)] = 3

4
+ 1

4
E(|ψ〉).

However by using the original states they would obtain 3
4

+ 1
4
C(|ψ〉), and it is known

that C(|ψ〉) ≥ E(|ψ〉). Therefore the distillation does not provide improvement.

We now turn to the proof of Eq. (4.4). We proceed by deriving a more general
result for the maximum win probability of any pure state. Using Eq. (4.3), which
already maximises over the choice of measurements, the win probability for a pure
state can be written as

ppnp(|ψ〉AB〈ψ|) =
1

2
[1 + eigs+(M)], (4.5)

where M = 1
4
(|ψu〉 + |ψv〉)(〈ψu| + 〈ψv|)− |ψ〉〈ψ|, and we are writing UA|ψ〉 = |ψu〉,

VB|ψ〉 = |ψv〉.
We now need to maximise over the choice of unitaries. Note that if |ψu〉+ |ψv〉 is

parallel with |ψ〉, then it follows that M ≤ 0, and so ppnp ≤ 1
2
. This means we just

need to consider the case where this is not true, such that M has rank 2. The two
non-zero eigenvalues must sum to Tr(M), so we writem1+m2 = 1

2
(1+Re〈ψu|ψv〉)−1,

from which we have −1 ≤ m1 +m2 ≤ 0. This means that we can have at most one
positive eigenvalue, and the maximization will choose unitaries that maximise the
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magnitude of this positive eigenvalue.

We now consider an operator of the general formM = K1|ψ〉〈ψ|K†1−K2|ψ〉〈ψ|K†2,
(we are performing a more general treatment as the result shall prove useful later
as well). For this we derive an expression for its eigenvalues. We write

m(αK1|ψ〉+ βK2|ψ〉) = (K1|ψ〉〈ψ|K†1 −K2|ψ〉〈ψ|K†2)(αK1|ψ〉+ βK2|ψ〉)

= (α〈ψ|K†1K1|ψ〉+ β〈ψ|K†1K2|ψ〉)K1|ψ〉 − (α〈ψ|K†2K1|ψ〉+ β〈ψ|K†2K2|ψ〉)K2|ψ〉.

Under the assumption that K1|ψ〉 and K2|ψ〉 are not proportional, and defining
kij = 〈ψ|K†iKj|ψ〉, we obtain the following two equations

mα = (αk11 + βk12),

mβ = −(αk21 + βk22).

Combining these to eliminate α and β we find

m2 + (k22 − k11)m− (k11k22 − k12k21) = 0.

The solutions to this quadratic equation are then found to be

m =
1

2

(
k11 − k22 ±

√
(k22 + k11)2 − 4k12k21

)
. (4.6)

Applying this result to the case at hand we find that the largest eigenvalue is
given by

m(k, κ) =
(k − 1) +

√
(k + 1)2 − 4κ

2
,

where k = 〈ψ|K†K|ψ〉, and κ = |〈ψ|K|ψ〉|2, and K = (UA + VB)/2. We write these
out explicitly as

k =
1

2
(1 + Re〈ψ|U †AVB|ψ〉),

κ =
1

4
(u2 + v2 + 2uv cos ∆φ),

where we are using 〈ψ|UA|ψ〉 = eiφAu and 〈ψ|VB|ψ〉 = eiφBv with u, v ∈ R≥0, and
∆φ ≡ φA − φB.

We now insert a resolution of the identity 1 = |ψ〉〈ψ|+ P⊥ to rewrite k as

k =
1

2
(1 + uv cos(∆φ) + Re〈ψ|U †AP⊥VB|ψ〉).

From this we write
k ≤ 1

2
[1 + uv cos ∆φ+G(|ψ〉)] ≡ kb,
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where
G(|ψ〉) ≡ max

UA,VB
|〈ψ|U †AP⊥VB|ψ〉|,

is a state dependent constant.

We shall only consider values of G(|ψ〉) < 1 since the maximum win probability
is 1 for G = 1. Now since increasing k can only increase m we can write m(k, κ) ≤
m(kb, κ). This is important as by construction m(kb, κ), only depends on the three
variables u, v,∆φ, and this enables us to maximise via taking partial derivatives.

We start by writing

m̃(k, κ) ≡ m(kb, κ) =
(kb − 1) +

√
(kb + 1)2 − 4κ

2
,

where we have kb = 1
2
[1 + uv cos ∆φ+G(|ψ〉)], and κ = 1

4
(u2 + v2 + 2uv cos ∆φ).

Taking partial derivatives w.r.t. ∆φ, u, v via the chain rule we find

∂m̃

∂∆φ
= −1

4
uv sin ∆φ(1 +

kb − 1√
(kb + 1)2 − 4κ

),

∂m̃

∂u
=

1

4
(1 +

kb − 1√
(kb + 1)2 − 4κ

)(v cos ∆φ)− 1

2
√

(kb + 1)2 − 4κ
u,

∂m̃

∂v
=

1

4
(1 +

kb − 1√
(kb + 1)2 − 4κ

)(u cos ∆φ)− 1

2
√

(kb + 1)2 − 4κ
v.

Setting these expressions equal to zero we obtain the three equations

0 = Xuv sin ∆φ, (4.7)

0 = Xv cos ∆φ− Y u, (4.8)

0 = Xu cos ∆φ− Y v, (4.9)

where X ≡ 1
2
(1 + kb−1√

(kb+1)2−4κ
), and Y ≡ 1√

(kb+1)2−4κ
.

First we observe that X cannot equal zero. To see this we set it to zero and
solve by squaring it to arrive at kb = κ, but this does not make the original term
zero. We also note that Y ≡ 1√

(kb+1)2−4κ
cannot equal zero either.

It follows from this that to satisfy Eq. (4.7) we must take u = 0, v = 0, or
sin ∆φ = 0. If we consider u = 0 then Eq. (4.9) implies v = 0. Similarly if we
consider v = 0, then Eq. (4.8) implies u = 0. So in both cases we have u = v = 0,

and this naturally makes the choice of ∆φ irrelevant. From this we see that the only
choice we now have to consider is sin ∆φ = 0.

Taking this case we write Eq. (4.8) and Eq. (4.9) as ±Xv = Y u and ±Xu = Y v

respectively. Now if either ±Xv = Y u = 0 or ±Xu = Y v = 0, then we quickly see
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this implies u = v = 0, so we just need to consider the option of ±Xv = Y u 6= 0

and ±Xu = Y v 6= 0. In this case we can divide through and get u2 = v2 so u = ±v.
Substituting back we have (X±Y )u = 0 but we find that (X±Y ) 6= 0, so we again
arrive back at u = 0, v = 0, which means ±Xv = Y u = 0 and ±Xu = Y v = 0, so
we have a contradiction.

Putting all this together we have found that the only turning point solution is
given by u = v = 0. This gives κ = 0 and kb = 1

2
(1 + G(|ψ〉)). And plugging this

into the original equation we arrive at the result

m̃max =
1

2
(1 +G(|ψ〉)).

To verify that this is a maximum we first note that because we are interested
in the line u = v = 0 for all ∆φ then we simply have a 2D problem in each plane
defined by a fixed value of ∆φ. Thus we apply the two dimensional second partial
derivative test.

The required second-order partial derivatives are found to be

∂2m̃(u = v = 0)

∂u2
= − 1

2 +G
,

∂2m̃(u = v = 0)

∂v2
= − 1

2 +G
,

∂2m̃(u = v = 0)

∂u∂v
=
∂2m̃(u = v = 0)

∂v∂u
=
(1

4
+
G− 1

G+ 3

)
cos ∆φ.

From which one finds the determinant of the Hessian matrix as

D(u, v) =
1

(2 +G)2
− (

1

4
+
G− 1

G+ 3

)2
cos2 ∆φ.

Now since D(u, v) > 0 and ∂2m̃(u=v=0)
∂u2 < 0 for all valid values of ∆φ and G, the

second partial derivative test informs us that we have found a maximum.

When we do this we find

m(k, κ) ≤ m(kb, κ) ≤ 1

2
[1 +G(|ψ〉)].

Using this with Eq. (4.5) we arrive at

ppnp(|ψ〉AB) ≤ 3

4
+

1

4
G(|ψ〉AB).

This bound is obtainable for all pure states. In order to see this we note that
if we only consider unitaries that map the initial state to an orthogonal state
such that 〈ψ|UA|ψ〉 = 0 and 〈ψ|VB|ψ〉 = 0. Then the win probability becomes
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3
4

+ 1
4
Re[Tr(UA|ψ〉AB〈ψ|V †B)], which by inserting the previous resolution of iden-

tity becomes 3
4

+ 1
4
Re[〈ψ|UAP⊥V †B|ψ〉]. We can always choose phases such that

〈ψ|UAP⊥V †B|ψ〉 is real, and hence we see that all we need to do is find the best
choice of UA, VB subject to the orthogonality constraint, and we thus obtain the
optimal win probability

pm
pnp(|ψ〉AB) =

3

4
+

1

4
G(|ψ〉AB),

where we use the superscript m to denote the maximum obtainable value.

Now to complete the proof of Eq. (4.4) we prove that for qubit states G(ρAB) =

C(ρAB). We start by defining the orthogonal basis states

|ψ〉 =
√
r|00〉+

√
1− r|11〉,

|ψ1〉 =
√
r|10〉+

√
1− r|01〉,

|ψ2〉 =
√

1− r|10〉 −
√
r|01〉.

|ψ3〉 =
√

1− r|00〉 −
√
r|11〉,

We can then write P⊥ =
∑

i |ψi〉〈ψi|.

We parametrize the unitaries in terms of the identity and Pauli operators as
UA = eiφAa · σA, where σ = (1, σx, σy, σz)T , a = (a0, ia1, ia2, ia3)T , ai ∈ R and∑

i a
2
i = 1. Similarly we write VB = eiφBb · σB. We also define the three vectors

~a = (a1, a2, a3)T , ~b = (b1, b2, b3)T , and ~σ = (σx, σy, σz)T ,

We wish to evaluate

〈ψ|U †AP⊥VB|ψ〉 = ei(φB−φA)〈ψ|~a · ~σP⊥~b · ~σ|ψ〉,

= ei(φB−φA)(〈ψ|~a · ~σ|ψ1〉〈ψ1|~b · ~σ|ψ〉

+ 〈ψ|~a · ~σ|ψ2〉〈ψ2|~b · ~σ|ψ〉+ 〈ψ|~a · ~σ|ψ3〉〈ψ3|~b · ~σ|ψ〉).

(4.10)

To do this we calculate

〈ψ1|~a · ~σ|ψ〉 = a1 + ia2(2r − 1)),

〈ψ2|~a · ~σ|ψ〉 = 2ia2

√
r(1− r),

〈ψ3|~a · ~σ|ψ〉 = 2a3

√
r(1− r),

〈ψ1|~b · ~σ|ψ〉 = 2b1

√
r(1− r),

〈ψ2|~b · ~σ|ψ〉 = −ib2 + b1(1− 2r),

〈ψ3|~b · ~σ|ψ〉 = 2b3

√
r(1− r).
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We use these to evaluate Eq. (4.10) and find

〈ψ|U †AP⊥VB|ψ〉 = ei(φB−φA)
[
2b1

√
r(1− r)(a1 − ia2(2r − 1))

+ (−ib2 + b1(1− 2r))(−2ia2

√
r(1− r)) + 4a3b3r(1− r)

]
,

= 2
√
r(1− r)ei(φB−φA)(a1b1 − a2b2 + 2a3b3

√
r(1− r)).

Taking the modulus of this gives

|〈ψ|V †BP⊥UA|ψ〉| = |2
√
r(1− r)(a1b1 − a2b2 + 2a3b3

√
r(1− r))|.

By writing ~v1 = (a1, a2, a3)T , ~v2 = (b1,−b2, 2
√
r(1− r)b3)T , we can rewrite the

right-hand side as 2
√
r(1− r)|~v1 ·~v2|. The Cauchy-Schwarz inequality gives |~v1 ·~v2| ≤

|~v1||~v2|, and it is straightforward to show |~v1| ≤ 1 and |~v2| ≤ 1, which leads us to
|〈ψ|V †BP⊥UA|ψ〉| ≤ 2

√
r(1− r). Since this maximum is clearly obtainable by for

instance setting a1 = b1 = 1 and the other terms to zero we conclude

G(|ψ〉AB) = max
UA,VB

|〈ψ|U †AP⊥VB|ψ〉| = 2
√
r(1− r) = C(|ψ〉AB),

where we have identified 2
√
r(1− r) as the pure state concurrence [124, 125], (which

for pure states coincides with the negativity [123]). This concludes the proof of
Eq. (4.4).

4.4.2 Mixed state bounds

To generalise Eq. (4.4) to mixed states we use the fact that the maximum win prob-
ability is a convex function pm(

∑
i riρ

(i)) ≤
∑

i rip
m(ρ(i)), which can be intuitively

understood as follows. Consider A and B being either given copies of a known state∑
i riρ

(i), or given labelled copies of known states ρ(i) where the number of each is in
proportion to ri. From the second case they can reproduce the first case by simply
ignoring the labels, therefore in the second case they must be able to obtain at least
as high a win probability as in the first case, hence the convexity result. Using this,
combined with the fact that C(ρAB) = inf

∑
i qiC(|ψi〉AB), we extend Eq. (4.4) to a

bound for mixed states, giving

pm
pnp(ρAB) ≤ 3

4
+
C(ρAB)

4
. (4.11)

Since the concurrence has an analytic closed form, we can now easily calculate a
bound on the win probability gain for any two-qubit state.

From this we can also view the game as providing a direct operational meaning
of concurrence for mixed states that saturate the bound. It is therefore natural
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to ask whether the bound can be tight for mixed states. We shall answer this
with detailed examples in the next section, but the answer turns out to be yes, as
demonstrated by mixtures of two Bell states. However, we shall also show that not
all mixed states saturate the bound as demonstrated by Werner-like states [194]
ρAB = a|ψk〉AB〈ψk|+ 1−a

4
1AB, where 0 ≤ a ≤ 1 and |ψk〉 is chosen as one of the four

Bell states.

We can however, understand this behaviour as the mixedness of states degrading
the record quality. Consider the extreme example of the maximally mixed state
1AB/n. It is clear that if A and B try to unitarily encode the presence of a particle
in this state then they will not gain information. This inability of the state to acquire
information is what we intuitively mean when we say it has bad record quality.

We capture this general effect via a bound we term the record quality bound.
This both formalises the above observation and will enable us to analytically prove
that certain states cannot provide advantage in the PNP game. We write the record
quality bound as

pm
pnp(ρAB) ≤ 1

2
+

1

2
Tc(λ

↑, λ↓), (4.12)

where we denote the classical trace distance Tc(p, q) = 1
2

∑
i |pi − qi| for probability

vectors p, q defined over the same index set, and λ↑ is the vector of eigenvalues of ρ
arranged in ascending order and including any zero values. For the 1AB/n example,
we see that the win probability cannot exceed 1

2
, i.e., the best they can do is just

guess.

The proof proceeds as follows. First we note that one can rewrite the win prob-
ability in terms of a trace distance but care is needed on account of σ̃AB not being
normalised. To see this we perform the standard separation of positive and nega-
tive eigenvalues by writing σ̃ − ρ = Q − S, so that |σ̃ − ρ| = Q + S, and therefore
T (σ̃, ρ) = 1

2
Tr|σ̃−ρ| = 1

2
(TrQ+TrS).We now use Tr(σ̃−ρ) = Trσ̃−1 = TrQ−TrS,

to find that TrQ = T (σ̃, ρ) − 1
2

+ 1
2
Trσ̃. Finally the fact that TrQ = eigs+(σ̃ − ρ),

leads through to

ppnp(ρAB) =
1

4
+

1

2
T (σ̃AB, ρAB) +

1

4
Tr[σ̃AB]. (4.13)

With this we now write σ̃AB = σAB−σ̃(−)
AB , where σAB = 1

2
(UAρABU

†
A+VBρABV

†
B),

and σ̃
(−)
AB = 1

4
(UA − VB)ρAB(UA − VB)†. Since T (σ̃AB, ρAB) = 1

2
||σ̃AB − ρAB||1, we

can apply the triangle inequality ||A + B||1 ≤ ||A||1 + ||B||1, to get T (σ̃AB, ρAB) ≤
T (σAB, ρAB) + 1

2
Tr(σ̃(−)

AB ). Using this with Eq. (4.13), and noting that Tr(σ̃(−)
AB ) +

Tr(σ̃AB) = 1, we arrive at

ppnp(ρAB) ≤ 1

2
+

1

2
T
(
ρAB,

UAρABU
†
A + VBρABV

†
B

2

)
. (4.14)
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Before progressing further, we can understand this more intuitively by consider-
ing a variation on the game, where C no longer performs a measurement afterwards
to see if they have decohered the state. This means we are just focusing on A and
B’s ability to record the presence of a particle. The win probability for this game
is derived similarly to before, and we find p̃pnp(ρAB) = 1

2
+ 1

2
T (ρAB, σAB), where we

have already performed the maximization over the choice of POVMs.

This is an easier game by construction, so the maximum win probability for
it must upper bound the maximum win probability of the original game. This
therefore gives the same bound that we arrived at via the triangle inequality, given
in Eq. (4.14).

In order to proceed, we make use of convexity of the trace distance which gives

T
(
ρAB,

UAρABU
†
A + VBρABV

†
B

2

)
≤ 1

2
(T (ρAB, UAρABU

†
A) + T (ρAB, VBρABV

†
B)).

(4.15)
We then use the fact that a maximization over all possible global unitaries will
always give a value greater than or equal to that obtained by maximization over
locally restricted unitaries to write

1

2
max
UA,VB

(T (ρAB, UAρABU
†
A) + T (ρAB, VBρABV

†
B)) ≤ max

UAB
T (ρAB, UABρABU

†
AB).

(4.16)
These inequalities combined with Eq. (4.14), allow us to bound the win probability
for the PNP game as

ppnp(ρAB) ≤ 1

2
+

1

2
max
UAB

T (ρAB, UABρABU
†
AB). (4.17)

We now state and prove the following Lemma. For two density matrices ρ and
σ defined on the same Hilbert space H of dimension n. It holds that

T (ρ, σ) ≤ Tc(λ
↑, µ↓),

where T is the quantum trace distance, Tc the Kolmogorov (classical trace) distance,
λ↑ is the vector of n eigenvalues of ρ arranged in ascending order and µ↓ is the vector
of n eigenvalues of σ arranged in descending order, where these vectors of eigenvalues
include any zero values.

To prove this we start by writing ρ =
∑

i λi|ψi〉〈ψi|, σ =
∑

i µi|φi〉〈φi|, and
ρ−σ =

∑
i ai|αi〉〈αi|, with all the eigenvalues arranged in ascending order such that

λ1 ≤ λ2 ≤ ... ≤ λn and similarly for the others. The trace distance 1
2
Tr|ρ − σ|, is

given by the sum of the positive eigenvalues of ρ− σ, i.e. T (ρ, σ) =
∑

i,ai≥0 ai.

We now shall make use of the Min-max theorem which we state as follows.
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Consider a Hermitian operator H, defined on a Hilbert space H of dimension n.

We denote k dimensional subspaces as Hk, i.e. this denotes any Hilbert space
that satisfies Hk ⊆ H, and dim(Hk) = k. Now working with normalised vectors
|〈χ|χ〉| = 1, the Min-max theorem states that the eigenvalues of H, arranged such
that h1 ≤ h2 ≤ ... ≤ hn, satisfy

hk = min
Hk

max
|χ〉∈Hk

〈χ|H|χ〉.

A simple corollary of this is that

hk ≤ hk+l ≤ max
|χ〉∈Hk+l

〈χ|H|χ〉.

We apply this Corollary to ρ− σ to get

ak ≤ max
|χ〉∈Hk+l

n∑
i=1

(λi|〈χ|ψi〉|2 − µi|〈χ|φi〉|2). (4.18)

This is true for any choice of Hk+l. We shall proceed by defining a particular case.
To this end we define the linear operator

L =
n−k∑
i=1

|ei〉(
√
λn−i+1〈ψn−i+1|+

√
µi〈φi|),

where the |ei〉 form some set of orthonormal vectors.

We now consider the kernel of L. We know that the kernel of a linear operator
is a vector space, and L|χ〉 = 0 implies the following n− k constraints√

λn−i+1〈ψn−i+1|χ〉+
√
µi〈φi|χ〉 = 0. (4.19)

This specifies a k + l dimensional subspace with l = 0 if the constraints are inde-
pendent and l 6= 0 otherwise. From this we see that we can choose to define Hk+l

as the kernel of L.

We now rewrite Eq. (4.18) as

ak ≤ max
|χ〉∈Hk+l

( k∑
i=1

λi|〈χ|ψi〉|2 −
n∑

i=n−k+1

µi|〈χ|φi〉|2

+
n−k∑
i=1

(λn−i+1|〈ψn−i+1|χ〉|2 − µi|〈φi|χ〉|2
)
.
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Substituting in for the constraints of Eq. (4.19) we have

ak ≤ max
|χ〉

( k∑
i=1

λi|〈χ|ψi〉|2 −
n∑

i=n−k+1

µi|〈χ|φi〉|2
)
.

From this we find
ak ≤ λk − µn−k+1.

Now we use this to write

T (ρ, σ) =
∑
i,ai≥0

ai,

≤
∑
i,ai≥0

(λi − µn−i+1),

≤
∑

i,(λi−µn−i+1)≥0

(λi − µn−i+1),

=
∑

j,(λn−j−µj+1)≥0

(λn−j − µj+1).

By writing the last term in this way it is now clear that this is equal to the Kol-
mogorov (classical trace) distance Tc(λ↑, µ↓), therefore we have the stated result.

We now apply this lemma to Eq. (4.17). Since ρAB and UABρABU
†
AB have the

same eigenvalues we have

T (ρAB, UABρABU
†
AB) ≤ Tc(λ

↑, λ↓), (4.20)

and using this we arrive at the final form for the record quality bound

pm
pnp(ρAB) ≤ 1

2
+

1

2
Tc(λ

↑, λ↓).

With this bound and the concurrence bound of Eq. (4.11) in hand, we turn to
examine explicit example states.

4.4.3 Mixed state examples

For pure states we have the equality Eq. (4.4), whereas for mixed states we have
only a bound Eq. (4.11). As mentioned above, the question of whether this bound
can be tight for mixed states is answered in the affirmative with mixtures of two
Bell states as a straightforward example.

To see this, consider the specific example ρ = a|ψ+〉〈ψ+|+ (1− a)|ψ−〉〈ψ−|. We
find ρ̃ = (Y ⊗ Y )ρ∗(Y ⊗ Y ) = ρ, so ρρ̃ = ρ2, and from this we find C(ρ) = 1 − 2a

for a ≤ 1
2
, and C(ρ) = 2a − 1 for a ≥ 1

2
. Now for a ≤ 1

2
, we calculate the win



86 CHAPTER 4. QUANTUM DELOCALISED INTERACTIONS

0.0 0.2 0.4 0.6 0.8 1.0
a

0.5

0.6

0.7

0.8

0.9

1.0
W

in
 P

ro
ba

bi
lit

y
Concurrence bound
Record quality bound
H2 ⊗H2 optimization results
H4 ⊗H4 optimization results

Figure 4.3: Plot showing the numerically optimized PNP win probabilities and
bounds for 2-qubit states of the form a|ψk〉〈ψk|+ 1−a

4
1, for different values of a, as

described in the main text.

probability from Eq. (4.3) with the choices UA = XA, and VB = −XB, noting that
this choice maps ρ to an orthogonal state. For this choice of unitaries we find
pw(ρ) = 1− a

2
= 3

4
+ 1−2a

4
, and for a ≥ 1

2
, we take UA = XA, and VB = XB, for which

we get pw(ρ) = 1
2
(1 + a) = 3

4
+ 2a−1

4
. We see that in both instances we are exactly

saturating the concurrence bound.

However, not all mixed states can saturate the bound. An informative example is
given by states of the form ρAB = a|ψk〉AB〈ψk|+ 1−a

4
1AB, where 0 ≤ a ≤ 1 and |ψk〉 is

chosen as one of the four Bell states (e.g. the Werner state [194]). The H2⊗H2 data
points in Fig. 4.3 show the results of numerical optimization over choices of unitaries
for these qubit states (our code made use of qutip [195, 196]). This indicates that
the record quality bound can be saturated. This can be demonstrated analytically
with UA = σxA, and VB = ±σxB, where the sign is chosen to match the sign of
〈ψk|σxAσxB|ψk〉. This gives pw = 1

2
(1 + a), which exactly saturates the bound and is

therefore an optimal tactic.

Since the Werner-like state is entangled for a > 1
3
, these results indicate that

entanglement is not sufficient to observe nonclassical advantage in the PNP quantum
game. Additionally we note that the capacity for Bell non-locality is not necessary
for a state to demonstrate non-classical performance, since there is a local model for
projective measurements for a . 0.66 [197].
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The limiting factor for these states is poor record quality, but this issue could in
principle be dealt with if we change the rules and allow A and B unlimited access
to additional pure separable resources. This introduction of additional classical
resources is seen to be equivalent to embedding in a higher dimensional Hilbert
space, which then zero-pads the vector of eigenvalues such that Tc(λ↑, λ↓) = 0. If
A and B share a Werner state and are given access to the additional pure qubit
state |00〉A′B′〈00|, this is equivalent to allowing them to optimize their unitaries
UA, VB over the group U(4) as opposed to the previous case where we used U(2).

The H4⊗H4 data points in Figure 4.3 illustrate the numerical optimization results
for this. As expected the win probability is never significantly below the 3

4
classical

limit. However, we note the striking feature that the win probability still does
not get above the classical limit until a > 1

2
, and that when it does it follows the

H2 ⊗ H2 record quality bound. This indicates that entanglement is not sufficient
to demonstrate non-classical performance even when we change the rules to grant
access to additional pure classical resources.

4.4.4 Different sending probabilities

As we have seen, the record quality factor complicates the situation. It would be
cleaner to have a game where improvements come from getting more entangled
states, but for the PNP game if we go from the maximally mixed state to a pure
separable state then we have increased the maximum win probability by 1

4
without

any increase in entanglement.

A key problem is that the |np〉ApBp = |00〉ApBp does not get disturbed when
measured, so can be measured using a separable state without consequence. This
suggests two approaches. The first is to reduce the probability of sending this state,
and the second is to replace this state completely. In this section we consider the
former which turns out to be a less promising approach, then in the next section we
turn to the latter.

Accounting for different probabilities for C sending a particle Pp and no particle
Pnp, the win probability can be written as

ppnp(ρAB) = Pnp + eigs+(Ppσ̃AB − PnpρAB),

For pure states, using the same logic and notation as before via Eq. (4.6) we arrive
at needing to maximise

n = Ppk − Pnp +
√

(Ppk + Pnp)2 − 4PpPnpκ
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As before we instead maximise an upper bound on this given by

ñ = Ppkb − Pnp +
√

(Ppkb + Pnp)2 − 4PpPnpκ,

where we have kb = 1
2
[1 + uv cos ∆φ + G(|ψ〉)], and κ = 1

4
(u2 + v2 + 2uv cos ∆φ).

Calculating the partial derivatives we find

∂ñ

∂∆φ
= −1

2
uv sin ∆φ(Pp +

P 2
pkb − PpPnp√

(Ppkb + Pnp)2 − 4PpPnpκ
),

∂ñ

∂u
=

1

2
(Pp+

P 2
pkb − PpPnp√

(Ppkb + Pnp)2 − 4PpPnpκ
)(v cos ∆φ)− PpPnp√

(Ppkb + Pnp)2 − 4PpPnpκ
u,

∂ñ

∂v
=

1

2
(Pp+

P 2
pkb − PpPnp√

(Ppkb + Pnp)2 − 4PpPnpκ
)(v cos ∆φ)− PpPnp√

(Ppkb + Pnp)2 − 4PpPnpκ
v,

Setting these expressions equal to zero we obtain the three equations

0 = X̃uv sin ∆φ, (4.21)

0 = X̃v cos ∆φ− Ỹ u, (4.22)

0 = X̃u cos ∆φ− Ỹ v, (4.23)

where X̃ ≡ (Pp +
P 2

pkb−PpPnp√
(Ppkb+Pnp)2−4PpPnpκ

) and Ỹ = 2PpPnp√
(Ppkb+Pnp)2−4PpPnpκ

. Note that

setting Pp = Pnp = 1/2, recovers the equations we had before.

For Pp 6= 0 and Pnp 6= 0, we as before find that neither X̃ nor Ỹ can equal zero.
It follows that to satisfy Eq. (4.21) we must take u = 0, v = 0, or sin ∆φ = 0. If we
consider u = 0 then Eq. (4.23) implies v = 0. Similarly if we consider v = 0, then
Eq. (4.22) implies u = 0. So in both cases we have u = v = 0, and this naturally
makes the choice of ∆φ irrelevant. Therefore the only choice we now have to consider
is sin ∆φ = 0.

Taking this case we write Eq. (4.22) and Eq. (4.23) as ±X̃v = Ỹ u and ±X̃u =

Ỹ v respectively. Now if either ±X̃v = Ỹ u = 0 or ±X̃u = Ỹ v = 0, then this
implies u = v = 0, so we just need to consider the option of ±X̃v = Ỹ u 6= 0 and
±X̃u = Ỹ v 6= 0. In this case we can divide through and get u2 = v2 so u = ±v.
Substituting back we have (X̃ ± Ỹ )u = 0. We have

X̃ ± Ỹ = Pp +
P 2

pkb − PpPnp ± 2PpPnp√
(Ppkb + Pnp)2 − 4PpPnpκ

,
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and see that for the relevant ranges only X̃ − Ỹ could be equal to zero so we write

Pp +
P 2

pkb − 3PpPnp√
(Ppkb + Pnp)2 − 4PpPnpκ

= 0.

The solution to this equation is kb = Pnp
Pp

+ κ
2
. Plugging in the definitions of kb and

κ and using that sin ∆φ = 0, and u2 = v2, we have

u2 ∓ u2 = 2(1 +G(|ψ〉))− 4Pnp

Pp
.

We can check for our previous result by setting Pnp = Pp = 1
2
, we then have that

the right hand side is always negative for G(|ψ〉) < 1, therefore there is no real
solution. For Pnp ≥ Pp this argument holds, but for Pnp < Pp things are more
complicated. However, we can extract a useful extra result for the case of separable
states G(|ψ〉) = 0. For these we find that the right hand side is negative for Pp <

2
3
,

and for this by similar arguments to before we have that the turning point is given
by u = v = 0. This gives the maximum separable win probability in this range as
Pnp + 1

2
Pp. It makes sense that this regime breaks down at Pp = 2

3
because this is

when doing nothing and simply always guessing that there is a particle, will give
equal win probability to measuring all the time and losing half the time when there
is a particle.

This approach is valid but complicated. As we shall show, replacing the question
state |np〉ApBp = |00〉ApBp results in a much more fruitful setting.

4.5 Bell distinguishing game

Here we study a modified game that indicates an even stronger connection with con-
currence. In the PNP game considered above, the no particle state |np〉 = |00〉ApBp ,
has no spatial superposition which can be damaged by the local measurements.
To move away from this, we can consider replacing |00〉ApBp , with the Bell state
|φ+〉ApBp = 1√

2
(|00〉ApBp + |11〉ApBp). So Alice and Bob are now tasked with distin-

guishing two Bell states |ψ+〉 and |φ+〉 whilst trying to return them undamaged. We
shall refer to this as the Bell-Distinguishing (BD) game. It is noteworthy that this
task can be viewed as detecting local bit-flip errors, where in contrast to a conven-
tional syndrome measurement [198] one is using two ancilla modes, each of which
can only interact with its local part of the system.
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4.5.1 Concurrence bound

Unlike for the PNP game we shall just focus on the two-qubit case. For these
states we again find that the concurrence quantifies the maximum obtainable win
probability, via

pm
bd(|ψ〉AB) =

1

2
+

1

2
C(|ψ〉AB), (4.24)

and thus we have the general bound

pm
bd(ρAB) ≤ 1

2
+

1

2
C(ρAB). (4.25)

We prove this as follows. The win probability for a pure state |ψ〉, can be written
as

pbd =
k11 + k22 +

√
(k11 + k22)2 − 4k12k21

4
.

where kij = 〈ψ|K†iKj|ψ〉, with K1 = (UA + VB)/2 and K1 = (UAVB + 1)/2

One can rewrite the terms as

k11 + k22 = 1 + 〈ψ|AB|ψ〉,

k12 =
1

2
〈ψ|(A+B)|ψ〉,

where we have defined the local operators A = (UA +U †A)/2, and B = (VB + V †B)/2.

We can then re-express the term under the square root as

(1 + 〈ψ|AB|ψ〉)2−〈ψ|(A+B)|ψ〉2 = 〈ψ|(1 + AB)|ψ〉2 − 〈ψ|(A+B)|ψ〉2,

= 〈ψ|(1 + AB + A+B)|ψ〉〈ψ|(1 + AB − A−B)|ψ〉,

= 24〈ψ|Π+
AΠ+

B[|ψ〉〈ψ|Π−AΠ−B|ψ〉.

where we define the positive semi-definite operators Π±A = (1± A)/2, and similarly
for B.

We also write

k11 + k22 = 〈ψ|(1 + AB)|ψ〉,

=
1

2
〈ψ|(1 + A)(1 +B)− (1− A)(1−B)|ψ〉,

= 2(〈ψ|Π+
AΠ+

B|ψ〉+ 〈ψ|Π−AΠ−B|ψ〉).

Putting these together we have

pbd =
〈ψ|Π+

AΠ+
B|ψ〉+ 〈ψ|Π−AΠ−B|ψ〉+ 2

√
〈ψ|Π+

AΠ+
B|ψ〉〈ψ|Π

−
AΠ−B|ψ〉

2
,

=
1

2

(√
〈ψ|Π+

AΠ+
B|ψ〉+

√
〈ψ|Π−AΠ−B|ψ〉

)2
.
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Now considering qubit states we write |ψ〉 =
√
r|00〉+

√
1− r|11〉, and we denote

ai,j = 〈i|Π+
A|j〉, and bi,j = 〈i|Π+

B|j〉. Since Π+
A ≥ 0, we have a00a11 ≥ |a01|2, and since

1− Π+
A ≥ 0, we have (1− a00)(1− a11) ≥ |a01|2. Using these we write

〈ψ|Π+
AΠ+

B|ψ〉 ≤ ra00b00 + (1− r)a11b11 + 2
√
r(1− r)

√
a00a11b00b11,

= (
√
ra00b00 +

√
(1− r)a11b11)2,

and similarly

〈ψ|Π−AΠ−B|ψ〉 ≤= (
√
r(1− a00)(1− b00) +

√
(1− r)(1− a11)(1− b11))2.

This now gives us that

pm
bd ≤

1

2
[
√
r(
√
a00b00 +

√
(1− a00)(1− b00) +

√
1− r(

√
a11b11 +

√
(1− a11)(1− b11))]2,

≤ 1

2
[
√
r +
√

1− r]2,

=
1

2
[1 + C(|ψ〉)].

The bit flip strategy saturates this bound thus proving the equality in Eq. (4.24).
We can then extend to mixed states in the usual manner to obtain Eq. (4.25).

4.5.2 Bound saturation

Unlike for the PNP game, Werner-like states can saturate the concurrence bound,
and in fact we find that the well studied Bell diagonal states [199, 200, 201, 202, 203,
204] can all saturate the bound. In order to prove this, we note that there exists
a tactic with win probability at least equal to the fully entangled fraction (singlet
fraction) F(ρ) = maxψ〈ψ|ρ|ψ〉, where the maximum is taken over all maximally
entangled states of the system. A and B can achieve this by adopting the optimal
tactic for the maximally entangled pure state |ψ∗〉 = arg maxψ〈ψ|ρ|ψ〉. Since all
entangled Bell diagonal states have concurrence C(ρ) = 2F(ρ) − 1, so the tactic
outlined above leads to pbd(ρ) = 1

2
+ 1

2
C(ρ) thus saturating the bound.

The above outlined tactic also produces an interesting corollary regarding quan-
tum teleportation [47], namely that all entangled two-qubit states capable of non-
classical teleportation fidelity are also capable of non-classical performance in the
BD game, since it is known that a two-qubit state can achieve non-classical tele-
portation fidelity if and only if F > 1

2
[205, 206]. It would be an interesting open

question to study whether the converse statement is true. We conjecture that this
might be the case by numerically verifying that examples of entangled two-qubit
states with F < 1

2
[207] do not show non-classical BD performance.
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4.6 Information theoretic approach

It is interesting to consider a different approach to studying the phenomenon of
delocalised interactions. In particular, it may prove insightful to ask whether there
are information theoretic quantities that can be used to intuitively capture the
capacity for states to perform delocalised-interactions. Here we consider one such
formulation and compare this with the above studied games.

4.6.1 Trace distance inequality

For any separable state ρAB, with any purification state |Ψ〉ABC such that ρAB =

TrC |Ψ〉ABC〈Ψ|, then for all unitaries UA, and VB, acting locally on A, and B, we
have that

T (UAρABU
†
A, ρAB) ≤ T (UA|Ψ〉ABC , VB|Ψ〉ABC), (4.26)

where T (ρ, σ) ≡ 1
2
||ρ− σ||1 is the standard quantum mechanical trace distance.

The proof is as follows . First we prove that for the special case of pure separable
states (product states) we have

T (UA|ψ〉AB, |ψ〉AB) ≤ T (UA|ψ〉AB, VB|ψ〉AB). (4.27)

To prove this we first note that for product states |〈ψ|V †BUA|ψ〉| = |〈ψ|V
†
B|ψ〉〈ψ|UA|ψ〉|.

It then follows that

T (UA|ψ〉AB, VB|ψ〉AB) =

√
1− |〈ψ|V †BUA|ψ〉|2

=

√
1− |〈ψ|V †B|ψ〉〈ψ|UA|ψ〉|2

≥
√

1− |〈ψ|UA|ψ〉|2

= T (UA|ψ〉AB, |ψ〉AB)

We use this result to prove the general statement as follows. Using the fact that a
separable state can be decomposed into a convex mixture of product states ρAB =∑

i qi|ψi〉AB〈ψi|, we write

T (UAρABU
†
A, ρAB) = T (

∑
i

qiUA|ψi〉AB〈ψi|U †A,
∑
i

qi|ψi〉AB〈ψi|)

≤
∑
i

qiT (UA|ψi〉AB, |ψi〉AB)

≤
∑
i

qiT (UA|ψi〉AB, VB|ψi〉AB)

≤ T (UA|Ψ〉ABC , VB|Ψ〉ABC).

To get to the second line we use convexity of the trace distance and to get to



4.6. INFORMATION THEORETIC APPROACH 93

the third we use Eq. (4.27). To arrive at the last line we consider doing state
discrimination between the two states UA|Ψ〉ABC , VB|Ψ〉ABC . All purifications of
ρAB =

∑
i qi|ψi〉〈ψi| can be written as |Ψ〉ABC = UC′→C

∑
i |ψi〉AB|i〉C′ , where UC′→C

is an isometry. A strategy to discriminate between UA|Ψ〉ABC , and VB|Ψ〉ABC ,
is given by first undoing any isometry, then measuring in the |i〉C basis, and fi-
nally performing the optimally discriminating measurement between UA|ψi〉AB and
VB|ψi〉AB. This will correctly discriminate between the two states with probability∑

i
qi
2

(1 + T (UA|ψi〉AB, VB|ψi〉AB), however the maximal discrimination probability
is given by 1

2
(1 + T (UA|Ψ〉ABC , VB|Ψ〉ABC), hence

∑
i qiT (UA|ψi〉AB, VB|ψi〉AB) ≤

T (UA|Ψ〉ABC , VB|Ψ〉ABC). This concludes the proof.
This result has a nice operational interpretation. The left-hand side is the trace

distance T (UAρABU
†
A, ρAB), which quantifies the probability that one can tell the lo-

cal unitary UA has been applied to ρAB. The right-hand side T (UA|Ψ〉ABC , VB|Ψ〉ABC),

quantifies the probability that someone given access to the full purified state can
distinguish the application of UA from a unitary action VB on the other subsystem.

4.6.2 Comparison with games

Despite the operational meaning, violation of this inequality does not appear to
correspond directly with non-classical performance in the considered delocalised-
interaction games. For pure states it does, but we can see this does not extend to
mixed states with the Werner state example. For the PNP and BD games we have
non-classical performance for a > 1

2
, and a > 1

3
respectively. However, numerically

we find violation of the trace distance inequality only for a > 7
10
. Despite this, it

is interesting to note that if we add the additional condition that A and B must
keep a perfect record of what they received, or that the Bell states must not be
decohered at all, then non-classical performance implies violation of the inequality
for both games. These correspond to the extreme cases, where keeping a perfect
record means having the left-hand side of the trace distance inequality equal to 1,

and no decoherence requires the right-hand side to equal 0.

To show this we first consider the PNP game subject to one of the following
conditions

1. A and B must always correctly record whether there was a particle and they
win if C projects onto his original state.

2. A and B must ensure that C always projects onto his original state and they
win when they correctly record whether there was a particle.

Note that these can both be considered tactical choices for the general PNP game.
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Taking condition 1, A and B aim to achieve the largest possible win probability
ppnp1 subject to a perfect record condition. They must maximise

ppnp1(ρAB) =
3

4
+

1

4
Re[Tr(UAρABV †B)],

s.t. T (ρAB,
1

2
(UAρABU

†
A + VBρABV

†
B)) = 1.

(4.28)

Note that in a finite-size Hilbert space condition 1 implies a restriction of the states
ρAB that can be used to play this version of the game. In addition, we know that this
game has the same bound as the general game, since we showed that for pure states
the best tactic was to choose unitaries that map the initial state to an orthogonal
state, in other words satisfying condition 1.

We can use our trace distance inequality to derive the classical bound for the
win probability. Condition 1 and convexity of the trace distance implies that
T (ρAB, UAρABU

†
A) = 1. If ρAB is a separable state then by the trace distance

inequality we have T (UA|Ψ〉ABC , VB|Ψ〉ABC) = 1, which can be written as (1 −
|Tr(UAρABV †B)|2)1/2 = 1, and therefore |Tr(UAρABV †B)| = 0. Using this in the expres-
sion for the win probability given in Eq. (4.28) we have that for all separable states
the maximum win probability is 3

4
. Therefore we can conclude that non-classical

performance in the game implies violation of the trace distance inequality.

We now turn to consider condition 2. For this the entanglement bound is different
from the general PNP game, so we proceed to derive it for qubits as follows. Taking
condition 2 the problem is to maximise

ppnp2(ρAB) =
1

2
[1 + T (UAρABU

†
A, ρAB)],

s.t. Re[Tr(UAρABV †B)] = 1.
(4.29)

Note that non-trivially satisfying the condition of Eq. (4.29) implies a restriction to
states that can non-trivially satisfy UAρAB = VBρAB, which were termed strongly
anonymous (SA) in the previous chapter, and were shown to be the “maximally
correlated” states studied by Rains [208].

We make use of the fact that the form of states that can satisfy UAρAB = VBρAB

was derived earlier. We have that a general two qubit SA state can be written in
the eigenbasis of the local unitaries UA, VB, as

ρAB = ρ00|00〉〈00|+ ρ01|00〉〈11|+ ρ∗01|11〉〈00|+ (1− ρ00)|11〉〈11|.

Since this is in the eigenbasis of the local unitaries, the unitary action UA can only
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introduce off diagonal phases, so all possible UAρABUA can be written as

UAρABUA = ρ00|00〉〈00|+ eiφρ01|00〉〈11|+ e−iφρ∗01|11〉〈00|+ (1− ρ00)|11〉〈11|.

The trace distance T (UAρABUA, ρAB) is then calculated via the standard formula
T (ρ, σ) = 1

2
Tr(
√

(ρ− σ)†(ρ− σ)). Using an appropriate basis we can write the
states in matrix form and have

UAρABUA − ρAB =

[
0 ρ01(eiφ − 1)

ρ∗01(e−iφ − 1) 0

]
.

from which it follows that

T (UAρABUA, ρAB) =
√

2(1− cosφ)|ρ01|.

As expected this is clearly maximised when cosφ = −1 and obtains a maximal value
of 2|ρ01|.

We now calculate the concurrence, first writing out ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), as

ρ̃AB = (1− ρ00)|00〉〈00|+ ρ01|00〉〈11|+ ρ∗01|11〉〈00|+ ρ00|11〉〈11|.

In matrix form we find

ρABρ̃AB =

[
ρ00(1− ρ00) + |ρ01|2 2ρ00ρ01

2(1− ρ00)ρ∗01 ρ00(1− ρ00) + |ρ01|2

]
.

The eigenvalues are given by λ± = ρ00(1− ρ00) + |ρ01|2 ± 2
√
ρ00(1− ρ00)|ρ00|2, and

the square roots of these are
√
λ± =

√
ρ00(1− ρ00) ± |ρ01|. The fact that density

matrices are positive semi-definite means that
√
ρ00(1− ρ00) ≥ |ρ01| and therefore√

λ+ ≥
√
λ−, so the concurrence is calculated as√

λ+ −
√
λ− = 2|ρ01|.

But this is precisely the maximum value of T (UAρABUA, ρ), therefore we have shown
that for qubit states that can be used to play this game we have maximum win
probability

pm
pnp2(ρAB) =

1

2
[1 + C(ρAB)].

This is clearly reminiscent of the BD game concurrence bound, but note that not all
Bell diagonal states are SA states, and therefore some states that saturate the BD
game concurrence bound cannot even be used to play the PNP game with condition
2.
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We could consider higher dimensional cases. The form for SA states (with
no degeneracy) is

∑
i,j ρi,j|ii〉〈jj|, and our local unitaries are of the form UA =∑

k e
iφk |k〉A〈k|, VB =

∑
k e

iφk |k〉B〈k|. For the two qubit case we had two unitary
phases to vary one relative phase in the state (the off-diagonal term). This made
the maximization simple as we just arranged the relative phase to be π. However, we
straight away can see that for high d dimensions we shall clearly run into a problem
with the number of unitary phases scaling as only d, whereas the number of relative
phases scales as (d2 − d)/2. Furthermore, even in the case d = 3, where the scaling
is not a problem since (32 − 3)/2 = 3, the result from the optimization appears to
be a long and unenlightening expression.

Now that we know the classical bound, it is straightforward to demonstrate
that non-classical performance implies violation of the trace inequality. Condition
2 implies that T (UA|Ψ〉, VB|Ψ〉) = 0, and hence for all separable states under this
condition we have T (UAρABU

†
A, ρAB) = 0, giving a maximum win probability of 1

2
,

i.e. without some form of entanglement all A and B can do is guess. Therefore we
have the claimed result.

What of the BD game. For condition 1 the problem becomes the maximisation
of

pbd1(ρAB) =
1

2
+

1

4
Re[Tr(UAρABV †B + UAρABVB)],

s.t. T (
1

2
(ρAB + UAVBρABU

†
AV
†
B),

1

2
(UAρABU

†
A + VBρABV

†
B)) = 1.

(4.30)

The classical bound for this game is the guessing probability of 1
2
, as we would

expect. Applying the convexity of the trace distance to the condition of Eq. (4.30)
leads through to T (ρAB, UAρABU

†
A) = 1. Then by applying the same arguments as

above with the trace distance inequality we conclude that |Tr(UAρABV †B)| = 0 and
|Tr(UAρABVB)| = 0, therefore the maximum win probability is 1

2
.

For the BD game under condition 2 we have to maximise

pbd2(ρAB) =
1

2
[1 + T (UAρABU

†
A, ρAB)],

s.t. Re[Tr(UAρABV †B)] = Re[Tr(UAρABVB)] = 1.
(4.31)

Unlike in the PNP game, this time there is no need to derive a new bound, the
guessing probability of 1

2
is still the best we can do classically in accordance with

Eq. (4.31) (since it is the do nothing strategy). By precisely the same argument
as before we then see that the trace distance inequality implies a maximum win
probability of 1

2
. Thus we have found that in all four cases, non-classical performance

implies violation of the trace distance inequality.

These correspond to the extreme cases, where keeping a perfect record means
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having the left-hand side of Eq. (4.26) equal to 1, and no decoherence requires the
right-hand side to equal 0.

This shows that the trace distance inequality is part way successful in capturing
the notion of delocalised-interactions, but that it is not strong enough. The satisfying
operational interpretation cannot make up for this, and so it would be interesting
if alternative approaches based on information theoretic quantities can be shown to
produce a more complete picture in future research.

4.7 IBM machine demonstration

We implemented demonstrations for both the PNP and BD game, using different
circuits to represent the various cases of different states prepared by Charlie. For
both games we ran circuits for Alice and Bob having an entangled resource state |ψ+〉
and only having a separable resource state |00〉. We designed the demonstrations to
be implemented on a sequence of four qubits with linear connectivity. This is because
it is a simple approach that requires only low depth circuits and is consistent with
the qubit connectivity of the IBM device we selected, but naturally one could create
more complex circuits using other architectures. We used Paris as it was the most
recent device provided by IBM at the time of running.

The circuits for an initial entangled resource state are illustrated in Fig. 4.4. The
circuits represent the cases where Charlie prepares |φ+〉, |ψ+〉, and |00〉 respectively.
The qubits q0, q3 are used to represent the resource state of Alice and Bob so corre-
spond to A,B respectively. The qubits q1, q2 will represent the state Charlie sends
and correspond to Ap, Bp, where this labelling ensures that A interacts with Ap and
B with Bp. However, qubits q1, q2 have an extra use as before representing Ap, Bp,

they will be used to distribute the initial entanglement between q0 and q3. We shall
clarify the action of the circuits by explicitly describing their four stages.

The first stage is to prepare q0, q3 in the |ψ+〉q0,q3 Bell state, as this will be
the entangled resource state. This is achieved by first preparing q1, q2 in the state
|ψ+〉q1, q2 by applying Hq1 followed by CXq1q2 , and then moving out this state by
applying the swaps SWAPq1q0 and SWAPq2q3 . This stage is the same for all three
of the entangled cases, and when we do the separable cases we simply omit it and
thereby Alice and Bob start with the unentangled |00〉q0,q3

The second stage is to prepare Charlie’s question state. This can be one of the
three states |φ+〉q1,q2 , |ψ+〉q1,q2 , |00〉q1,q2 , where for the BD game we use the first two
and for the PNP game we use the latter two. The |φ+〉 state is prepared by applying
CXq1q2Hq1 , the |ψ+〉 state by applying Xq1CXq1q2Hq1 , and the |00〉 state requires no
operations. This is the same for the separable cases because Alice and Bob’s tactics
have no bearing on the game as administered by Charlie.
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Figure 4.4: Circuit diagrams for A and B using the entangled resource state |φ+〉
and Charlie sending |φ+〉, |ψ+〉, and |00〉, respectively. The circuits are partitioned
into sections: AB State Preparation, C State Preparation, Interaction, and Mea-
surement.

The third stage is the interaction stage and is the same in all cases. It is made
up of the controlled unitaries CXq1q0 and CXq2q3 . This is followed by the fourth and
final stage which is the measurement stage. If Charlie has prepared an entangled
state then he applies CXq1q2 followed by Hq1 , and then all qubits are measured in
the computational basis.

Each circuit was run with 8192 shots, with the win probabilities calculated from
the measurement results, and these are presented in Fig. 4.5. The bars represent
probabilities calculated from the data and the maximum total win probability for
separable states is represented by the green dashed line. Note that it is the total
probability that this line applies to, where the total probability is simply the average
of the other two probabilities.
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Figure 4.5: Plot of the results calculated from the Paris device measurements. The
top plot is for the BD game and the bottom plot is for the PNP game. The total win
probability is calculated for equal probability of sending either state. The blue bars
are for the entangled initial resource state, the red for the separable, and the green
line is to show the maximum classical win probabilities of 1

2
, and 3

4
, respectively.
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Focusing first on the BD results, we see that the entangled state total win proba-
bility is higher than the classical limit of 0.5, from which we calculate that it demon-
strates a usable concurrence of 0.42, and thus a convincing delocalised interaction.
However, the realised win probability is far below the ideal case of 1. Additionally,
we note the separable case is below the classical limit, demonstrating the problem
with noise even for the classical strategy. For the standard PNP game we note that
we were unable to convincingly demonstrate non-classical performance, as the en-
tangled state total win probability approximately matches the classical limit of 0.75,

it does not exceed it. Despite this, it should be noted that the entangled strategy
still out performs the separable strategy as run on the device, which indicates the
entanglement is still acting beneficially. Furthermore, if we use the different sending
probabilities Pp = 2

3
, Pnp = 1

3
then we get total win probability 0.72 which is higher

than this game’s classical limit of 2
3
. Note however, that we currently do not have a

way to directly relate this violation to an entanglement measure. Clearly the noise
in the device is significant, but we still see non-classical behaviour and with the im-
pressive rate of improvement in this field [209] one can envisage even better results
in the near future.

Though the BD case apparently clearly demonstrates delocalised-interactions, as
in Bell tests, there are a number of loopholes [210] one could consider to avoid the
conclusion that a delocalised interaction took place. Chief amongst them is that A
and B actually interacted during the game, which could be solved by keeping them
space-like separated for the duration. The difficulty with this comes from having to
reliably and quickly send quantum information, which for superconducting qubits
is not currently feasible, therefore photonic qubits [211] could prove to be more
appropriate.

4.8 Conclusions

In this chapter we studied the concept of delocalised-interactions. Information en-
coded using non-locally superposed quantum states, is recorded via local interac-
tions whilst disturbing the superposition less than would be classically possible.
This phenomenon has interesting foundational implications regarding events not re-
quiring unique locations and has also been a key component for certain quantum
protocols [178, 163].

In order to systematically study this quantum effect, we introduced and investi-
gated quantum games for which non-classical performance demonstrates delocalised-
interactions. We performed an in depth study of two particular instances, termed
the Particle/No Particle game and the Bell Distinguishing game. This enabled us
to prove a direct operational use of concurrence in bounding the non-classical win
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probabilities, and a connection with quantum teleportation.
We also considered an information theoretic approach based on a trace distance

inequality. This had a pleasing operational interpretation, but we found that though
its violation corresponded with non-classical performance in the games for certain
cases, in general it was not strong enough to fully capture the concept of delocalised
interactions.

Finally, the delocalised-interaction games were demonstrated on an IBM super-
conducting quantum processor. Despite noise we were able to claim non-classical
performance, though it must be noted that this was in no sense a a loophole free
demonstration.

Our work can spur further research building from the tools and ideas introduced
here, such as generalising to higher dimensions or multipartite settings, and estab-
lishing the exact nature of the connection with quantum teleportation. Additionally
there may be improvements to understanding the phenomenon with information
theoretic quantities, and it may prove interesting to compare the notions here with
ideas regarding quantum mechanical time-delocalization [212].

With this chapter and the one preceding it we have performed detailed studies in
operational settings for quantum correlations. In other words we have been looking
at what quantum correlations, and in particular entanglement, make possible. In
the next chapter we shift lenses and ask not what entanglement can do but how it
behaves, in particular when we consider motion and relativity.
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Chapter 5

Entanglement under motion

I do not define time, space, place and motion, as being well known to all.
– Isaac Newton in Principia

Just wait til you get a load of my definitions.
– Albert Einstein in Response

5.1 Overview

In this chapter we shall consider entanglement under motion. In particular the
interesting effects when relativity is accounted for. We start by reviewing established
results regarding internal spin degrees of freedom. We then show that analogous
behaviour can be established more straightforwardly for the case of internal energy
states. In doing this, we write down and examine an appropriate form for the
required velocity boost. We then use this understanding to establish a distinction
between classical and non-classical proper time for quantum clocks, with the velocity
boost being the key to obtaining the classical behaviour. To do this we consider
sequences of appropriately centred boosts and evolution operators to derive the
different possible clock behaviours in a twin paradox scenario. From the classical
observer’s frame we show that the difference between the classical observer and
quantum clock being set in motion is captured by translation operators, and that
it is the transformation under translation operators that enables the velocity boost
to describe both situations. In addition, we show how the necessary translation
operators can be understood via considering the placement of the origin for the
required potentials. We highlight that without an internal state dependent force
one should expect additional effects. We demonstrate this for a theoretical clock
model and in a more practical setting by deriving frequency shifts in ion traps,
predicting the already observed shifts and an additional smaller shift. This chapter
draws from [213].

103
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5.2 Motion altering entanglement

5.2.1 Spin and motion

In the late 1990s and early 2000s, interesting work emerged on how the entanglement
properties of spin systems can be affected by motion [214, 215, 216, 217]. The
authors showed that relativistic physics indicates potentially unintuitive behaviour
when considering changes of references frames, centred around the fact that boosts
can vary the entanglement between spin and motional degrees of freedom.

Perhaps the most straightforward way to understand this is by first discussing the
Thomas-Wigner rotation [218, 219]. This is the name given to a special relativistic
phenomenon, whereby the combination of two non-collinear boosts results in not
simply another boost, but a boost together with some additional rotation.

Writing the matrix for a boost of velocity v in block diagonal form we have

Λv =

(
γv −γv

c
vT

−γv
c
v I + γ2

v

c2(γv+1)
vvT

)
, (5.1)

where c denotes the speed of light and the Lorentz factor is γv = 1√
1−‖v‖2/c2

.

Now the combination of two boosts is found to be

ΛvΛu =

(
γ −aT

−b M

)
, (5.2)

where
γ = γvγu(1 + vTu/c2), (5.3)

a =
γ

c
(u⊕r v), (5.4)

b =
γ

c
(v ⊕r u), (5.5)

M = γuγv
vuT

c2
+ (I +

γ2
v

c2(γv + 1)
vvT )(I +

γ2
u

c2(γu + 1)
uuT ), (5.6)

and we are using ⊕r to denote relativistic velocity addition, which is defined as

u⊕r v =
1

1 + uTv/c2

[(
1 +

γu
c2(1 + γu)

uTv

)
u +

1

γu
v

]
. (5.7)

The key result is that ΛvΛu cannot in general be written as a single boost Λw

for some velocity w. Instead it can be decomposed into a boost and a rotation as

ΛvΛu = R(ε)Λca/γ, (5.8)
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where R(ε) is a rotation about the vector ε, which has direction ε̂ = u×v
‖u×v‖ , and

magnitude given by

cos ‖ε‖ =
(1 + γ + γu + γv)2

(1 + γ)(1 + γu)(1 + γv)
− 1. (5.9)

With this concept outlined we can now turn from classical special relativity to
the consequences for quantum mechanical spin operators. We work with a particle
which has some internal spin degree of freedom, such that the full Hilbert space
is Hmotional ⊗ Hspin. Consider said particle in some lab frame where it has been
prepared in a motional pure state |φ〉 and a spin pure state |s〉, such that the full
state can be written as the product state |φ〉|s〉.

If we boost past this system with velocity v then what happens to our description
of this state? First note that we can consider the motional state as a wavepacket
of momentum states, i.e. |φ〉 =

∫
dpφ(p)|p〉, where φ(p) = 〈p|φ〉. Each of these

momentum states defines a different frame. To illustrate this we write |p〉|s〉 in
terms of a boost transformation Λup as Λup|0〉|s〉. We now act on the full state with
Λv and thus write the state in the new frame as∫

dpφ(p)ΛvΛup|0〉|s〉. (5.10)

Now we use the fact that ΛvΛup will in general not produce just a boost but also
some rotation which will affect the spin state. Furthermore, this rotation will in
general depend on p.We therefore can heuristically write the action of this operator
as ΛvΛup|0〉|s〉 = |qp〉R(θp)|s〉 = |qp〉|sp〉, where qp is some resulting momentum
for which we explicitly highlight the p dependence, and R(θp) is some rotation
applied to the spin state, where again we emphasise the p dependence. The full
state can in this manner be written as∫

dpφ(p)|qp〉|sp〉. (5.11)

It is now apparent that in general this state is not separable. By boosting to a
different frame the internal and motional states can become entangled.

This phenomenon leads to interesting consequences. For instance, as noted by
Gingrich and Adami [217], taking a pair of entangled spins and boosting to a different
frame can result in the spin states becoming less entangled, the entanglement having
shifted into their motional states. Understanding the phenomenon can result in a
significant shift in perspective, indeed Peres, Scudo and Turno [216] went so far as
to say that “we have shown that the notion “spin state of a particle” is meaningless
if we don’t specify its complete state, including the momentum variables.”
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5.2.2 Energy and motion

The results outlined above whereby boosting can affect the entanglement between
an internal spin state and its motional state are highly interesting. However, the
results are somewhat lengthy to derive and Wigner rotations are not an intuitively
easy to grasp concept. We shall now show that the capacity for relativity to lead
to such phenomena does not require such complexity, we simply need to consider a
different consequence of relativity theory, perhaps the best known consequence.

As many a T-shirt will tell you, E = Mc2. This is the well known concept Einstein
introduced in the follow up paper [220] to his introduction of Special Relativity.
Now consider the consequences of this for some quantum system which is prepared
in an energy superposition, for instance a trapped ion prepared in a superposition
of electronic excited states 1√

2
(|0〉 + |1〉). Relativity informs us that the ion must

also be considered in a superposition of inertial masses. In the ground state we can
write M0 and in the excited state we have M1. If we change frame by boosting past
this atom at velocity v then this will impart different momenta depending on which
branch of the superposition we are considering. We will respectively impart M0v

and M1v, and therefore by the same reasoning as for the rotations above, we shall
have affected the entanglement between the internal and motional state.

We can formalise this simple reasoning by introducing the one-dimensional ve-
locity boost operator

Bv(vb) ≡ ei(m+H0/c2)vbx/~, (5.12)

where we have decomposed the total mass M = m+H0/c
2, using the internal state

Hamiltonian H0, and we takem as the rest mass of the particle in the internal energy
ground state |0〉, with H0|0〉 = 0.

An immediate consequence of using this velocity boost is precisely the fact de-
scribed above that frame changes alter the entanglement between the motional and
internal degrees of freedom. Repeating the above analysis but now with the boost
operator we can write Bv(vb)|p〉 1√

2
(|0〉 + |1〉) = 1√

2
(|p + M0vb〉|0〉 + |p + M1vb〉|1〉).

The internal and motional states are separable and maximally entangled for the
non-boosted and boosted frames respectively.

It is interesting to consider the size of this effect in a more practical setting.
As such we shall consider a Gaussian motional state and calculate how much our
description of the internal state changes when we boost to a new frame. To this
end, assume that in the laboratory frame we have prepared our system to be in the
state |φ〉 1√

2
(|0〉+ |1〉), where |φ〉 is a Gaussian state, such that in the position basis

we can write

φ(x) = 〈x|φ〉 =
e−x

2/4σ2
x

σ
1/2
x (2π)1/4

, (5.13)
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where we have chosen our origin as the centre of the wave-packet, and note that this
is normalised such that

∫∞
−∞ dx|φ(x)|2 = 1.

In the laboratory frame, the state of the internal energy system is naturally
1√
2
(|0〉+|1〉). However, if we now boost to a new frame our description of the internal

state changes, as the tracing out of the motional state will have a decohering effect.
The new state can be written in matrix form as

ρ =
1

2

(
1 〈φ|e−i(∆M)vbx/~|φ〉

〈φ|ei(∆M)vbx/~|φ〉 1

)
, (5.14)

where (∆M) = M1 −M0.

We can evaluate the off-diagonal terms via

〈φ|e−i(∆M)vbx/~|φ〉 =

∫ ∞
−∞

dxe−i(∆M)vbx/~|φ(x)|2,

=
1

σx(2π)1/2

∫ ∞
−∞

dxe−x
2/2σ2

x−i(∆M)vbx/~,

=
e−σ

2
x(∆M)2v2

b/2~
2

σx(2π)1/2

∫ ∞
−∞

dxe
− (x+iσ2

x(∆M)vb/~)2

2σ2
x ,

= e−σ
2
x(∆M)2v2

b/2~
2

.

(5.15)

Here we have used the standard trick of completing the square in the exponent to
evaluate the Gaussian integral. We therefore have that the new internal state can
be written as

ρ =
1

2

(
1 e−σ

2
x(∆M)2v2

b/2~
2

e−σ
2
x(∆M)2v2

b/2~
2

1

)
, (5.16)

with exponential decay terms on the off-diagonal, which kill off the coherences more
strongly as we increase (∆M), vb or σx. The dependence on (∆M) and vb is intuitive,
and the dependence on σx can be understood by recalling that as we increase the
uncertainty in position we are decreasing the uncertainty in momentum, and there-
fore getting closer to the extreme case of momentum eigenstates considered above,
where even the smallest boost and mass difference will lead to orthogonal motional
states.

In order to better appreciate the effect we now consider the magnitude of this
decay in a day to day setting. Consider an experimentalist with a trapped ion[221],
prepared with its internal state in an optical qubit superposition. If the experimen-
talist then walks across the room to get a cup of tea1, what is the effect on their
description of the state?

A human walks at roughly vb ≈ 1.5ms−1 and the average experimentalist is

1Don’t worry, I’m sure the experimentalist has no intention of drinking the tea in the lab as
that would no doubt violate health and safety protocols.
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human. An optical qubit has ω0 ≈ 1015s−1 which gives (∆M) = ~ω0/c
2 ∼ 10−36kg.

To estimate the position variance we shall assume that the ion has been prepared
close to its ground state. The ground state is easy to solve for by using a|0〉 = 0,

and acting on this as 〈x|a|0〉 = 0. Recall that a =
√

mωm
2~ (x + i

mωm
p) with ωm the

motional trapping frequency and m the ions mass (here we shall ignore the variation
since we only care about orders of magnitude), and also that 〈x|p|ψ〉 = −i~∂ψ

∂x
. Using

these and writing 〈x|0〉 = ψ0(x) we find the differential equation

(x+
~

mωm

∂

∂x
)ψ0(x) = 0. (5.17)

This can be solved to give the normalised ground state wave-function

ψ0(x) =
(mωm
π~

)1/4

e−mωmx
2/2~. (5.18)

This gives us the variance σ2
x = ~

2mωm
, and using a trap frequency ωm ≈ 106s−1 and

ion mass m ≈ 10−26kg, we have σ2
x ∼ 10−15m2.

Putting all of this together we have a σ2
x(∆M)2v2

b/2~2 ∼ 10−19, so we can write
the off-diagonal coherences as e−σ2

x(∆M)2v2
b/2~

2 ≈ 1 − 10−19. It is a very small effect,
interesting but not something that should trouble us day to day. However, when
we consider atomic clocks later on we shall show that the consequences of the mass
difference between energy levels are not always so negligible.

Another interesting effect that suggests itself during this discussion, is the poten-
tial limits of our initial assumption, namely that the state is prepared in |φ〉 1√

2
(|0〉+

|1〉). It is immediately apparent that if we want to use motional ground states then
this is not possible, since the motional ground state depends on the mass so is dif-
ferent for the two branches of the superposition. We should then write the full state
as 1√

2
(|φ0〉|0〉+ |φ1〉|1〉), and if we are just interested in the internal qubit state then

the coherences depend on 〈φ1|φ0〉. For two motional ground states we can evaluate
this as

〈φ1|φ0〉 =

(
M0ωM0

π~

)1/4(
M1ωM1

π~

)1/4 ∫ ∞
−∞

dxe−(M1ωM0
+M0ωM1

)x2/2~,

=

(
M0ωM0

π~

)1/4(
M1ωM1

π~

)1/4(
M0ωM0 +M1ωM1

2π~

)−1/2

,

=

√
2(M0ωM0M1ωM1)1/4√
M0ωM0 +M1ωM1

,

=

√
2(M0M1)1/8

(
√
M0 +

√
M1)1/2

.

(5.19)

Note that here we have had to account for the fact that ω will be mass dependent, as
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can be appreciated by considering that for a harmonic oscillator we have Mω2 = k

and noting that this “spring constant” k should be held constant. In the final line
we used this relation to write the expression entirely in terms of the masses.

This result implies a limit to the purity of the internal energy state taken on
its own. We can calculate this using the same numbers as before and find that
for this we have 〈φ1|φ0〉 ≈ 1 − 10−16. As expected, the effect is very small, and
would no doubt be dwarfed in experiments by other forms of noise, but again it is
an interesting consequence of properly accounting for the entanglement induced via
the relativistic treatment.

We shall move on from practical considerations for now and return to consider the
form of the boost presented in Eq. (5.12). We shall now examine how we can arrive
at this form more rigorously. We do this by beginning from the fully relativistic
momentum transformation for a particle of rest mass M, and initial momentum p,

for a new frame moving at velocity v. The Lorentz boost gives

p′ =
√
γ2
v − 1

√
M2c2 + p2 + γvp, (5.20)

where γv = (1 − v2/c2)−1/2. Now writing M̂ = m + H0/c
2, and taking v2

c2
, H0/mc

2,

and p2

m2c2
, as all � 1, then to first order we find

p′ ≈ p+mv(1 +
H0

mc2
+

p2

2m2c2
) +

v2

2c2
p. (5.21)

If we consider working in the limit where H0/mc
2 � 1 but H0/mc

2 � p2

m2c2
and

H0/mc
2 � v2

c2
, we can recover the momentum shift as used in the definition of the

boost operator. In other words, this boost operator is valid when the relevant rela-
tivistic correction for the frames of interest is the mass-energy dependent correction
and not the corrections resulting from high velocities.

One can also examine the boost by considering the limiting behaviour for the
Lie algebra of the Poincaré group. The relevant commutation relations are

[H, p] = 0,

[H,K] = i~cp,

[p,K] =
i~
c
H,

(5.22)

where H is the generator of time translations, p the generator of spatial translations
and K the generator of boosts.

For our case we are setting H = Mc2 + p2/2M, K = −Mcx, and p = p. We then
find [H, p] = 0, [H,K] = i~cp, and [p,K] = i~

c
Mc2. Note the last one does not exactly

satisfy the Poincaré commutation relation, for which we would need not Mc2 but
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Mc2 +p2/2M. This is exactly analogous to the situation in standard non-relativistic
quantum mechanics, as one can see by replacing M with m. The difference then
is that we are accounting for the term H0/c

2 that is contained in M. In order for
this term to be significant where the p2/2M term can still be neglected, we require
H0/c

2 � p2/2M, which is satisfied if we are in the regime H0/mc
2 � p2/m2c2.

With the boost of Eq. (5.12) we have immediately seen similar behaviour for en-
ergy states as that found for spins, and we did not need the complications of Wigner
rotations. As such the various interesting consequences found in the former case can
also be considered for the latter. For instance, we could perform a boost relative to
a pair of energy qubits that are entangled and this could shift the entanglement to
their motional states. It could thus be debated whether we should choose to follow
Peres, Scudo and Turno [216] and say that we have shown that the notion “energy
state of a particle” is meaningless if we don’t specify its complete state.

It is worth noting some of the differences between the energy and spin case, for
though they have clear similarities, there are also important differences. The most
obvious is that they depend on conjugate variables. For spin the boost includes
a coupling of the internal state and the momentum, whereas for energy the boost
couples the internal state and the position. As such, the momentum state should
not lead to entangling between internal spin and motional states, but it leads to
the maximal effect for internal energy and motional states, and vice versa for the
position state.

Another difference is that in the energy case the boost operator cannot affect the
states spanned by the energy state. For spin we can have some continuous rotation
applied to the spin, so by boosting we could take it from | ↑〉〈↑ | to some state where
| ↓〉〈↓ | is included in the span. For the energy case we do not have this as the boost
operator is always diagonal in the energy basis.

A final difference worth noting here is that the spin effect requires multiple spatial
dimensions. For a Wigner rotation the boosts have to be non-collinear. In the case
of energy this is not so, one dimension is sufficient to witness the effect, and this
contributes to the greater simplicity in calculating its consequences.

Despite these differences, the overarching conclusion is similar. When we account
for relativistic effects we can end up with different frames observing differing entan-
glement properties for the various subsystems, as a consequence of boosts affecting
the entanglement between internal and motional states.

The inclusion of mass-energy equivalence into quantum mechanics is not new.
In particular, the mass-energy equivalence has been used to modify non-relativistic
Hamiltonians in order to study quantum mechanical proper time [222]. With the
velocity boost laid out in this chapter we are able to shed new light on this topic.



5.3. CONSEQUENCES FOR PROPER TIME OF QUANTUM CLOCKS 111

5.3 Consequences for proper time of quantum clocks

Proper time, ideal clocks, and boosts are well understood classically, but subtleties
arise in quantum physics. We shall first give a brief overview of some of the ideas and
research on this topic. We shall then show that a proper understanding of classical
time dilation for quantum clocks requires use of the velocity boost defined above.
We contrast this with the alternative uncoupled momentum effect and demonstrate
that it is velocity boosts which lead to the ideal behaviour in both cases where the
quantum clock and classical observer are set in motion.

Ideal clocks and proper time are key concepts in special and general relativ-
ity [223]. Full understanding of the union between relativity and quantum mechan-
ics, must include how these ideas extend to the quantum realm. Recent work in
this area can broadly be divided by whether the quantum clocks follow classical or
quantum trajectories.

Adopting the former approach [224, 225, 226, 227] enables the utilization of
techniques from quantum field theory in curved spacetime. In particular this has
allowed explorations into consequences of the Unruh effect [228], and applications
of techniques from relativistic quantum metrology [229, 230]. On the other hand,
for quantum clocks following quantum mechanical trajectories [222, 231, 232, 233,
234, 235, 236, 237, 238, 239, 240], most progress has been made investigating con-
nections between proper time and mass superpositions [241]. This has necessitated
the rejection of the Bargmann mass superselection rule [242], on the grounds that
our universe is not Galilean. Notably this paradigm was used to investigate ideas
for intrinsic time dilation decoherence caused by gravity [231].

We shall follow the second approach, where the clock’s motion is described quan-
tum mechanically. We show that a quantum clock set into motion by a force that
does not depend on the internal state is not witnessing classical time dilation, since
there is no unique Lorentz factor. This is because quantum clocks require coherence
in some non-degenerate energy states [243, 244] but the inertial mass of this energy
means that assigning an identical momentum to each branch of the superposition
does not correspond to a well defined velocity. We therefore show that momentum
boosts lead to a nonclassical dilation due to the lack of a unique Lorentz factor.
On the other hand, by suitably coupling the motional and internal degrees of free-
dom, one can see that the velocity boost exactly recovers the expected classical time
dilation results for the “twin paradox,” in both cases where the observer and the
quantum clock are respectively the ones set in motion.

We start from a Hamiltonian modified to account for the inertial mass of internal
energy. We shall use this to point out the tempting but incorrect identification of
classical time dilation and quantum clocks.
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5.3.1 Modified Hamiltonian

We here present the simplest argument for the modified Hamiltonian. Note that
this modification along with being introduced to study quantum mechanical proper
time [222], has also been shown to resolve paradoxes in quantum optics [245, 246].
For a free composite particle of massM, the non-relativistic Hamiltonian will consist
of a kinetic energy term p2

2M
, and an internal energy term H0. However the internal

energy should contribute to the inertial mass since special relativity dictates that
energy and inertial mass are equivalent. This leads to M = m + H0/c

2, where we
take m as the rest mass of the particle in its internal energy ground state |0〉, and
set H0|0〉 = 0. Thus we have

H =
p2

2M
+H0,

=
p2

2m
+H0

(
1− p2

2mMc2

)
.

(5.23)

To arrive at the second line we have used 1/(x+ y) = 1/x− y/x(x+ y). Note that
since M is now operator valued, there is potential for ambiguity with operator or-
dering. However if the internal Hamiltonian commutes with the total momentum
[H0, p] = 0, then [M−1, p] = 0. Fully accounting for relativity would strictly imply
that the internal degrees of freedom should be described by a relativistic wave equa-
tion (or a quantum field theory). However the approach here is that regardless of
the formalism, the effect on the centre of mass dynamics should only be via a mass
change, otherwise we could not claim that energy contributes to inertial mass as
dictated by mass-energy equivalence.

This Hamiltonian is often expanded inH0/mc
2 neglecting higher order terms [231,

246] to write

H =
p2

2m
+H0

(
1− p2

2(mc)2

)
. (5.24)

It is then tempting to claim that (1− p2

2m2c2
) represents our familiar notion of time

dilation, however, this is not correct as we shall show. It should be emphasised that
this Hamiltonian is often a good approximation but that it can prove misleading.

It is also important to emphasise that we shall always be working in the limit
where the energy E =

√
p2c2 +M2c4 is approximated by E = p2/2M + Mc2. In

words, one can consider the regime we utilise as one where the mechanics can be
treated in a “Newtonian” sense, but the rest mass of the internal energy is now
accounted for. On a technical level one must appreciate (as noted in [234]) that
there are two relevant small quantities: H0/mc

2 and p2/m2c2, where the first relates
to the internal degrees of freedom and the second can be viewed as a motional v2/c2

term (note p2/m2c2 > p2/M2c2,). It is therefore not sufficient to merely think of
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approximations in terms of how many factors of 1/c2, are present. One can consider
the regime where H0/mc

2 � 1, but H0/mc
2 � p2/m2c2. With this in mind one

arrives at Eq. (5.23) (plus ground state rest mass energy) by expanding the full
relativistic energy E =

√
M2c4 + p2c2 = γMc2, neglecting terms of O(p4/m4c4)

in the Lorentz factor whilst retaining the H0/mc
2 terms and translating the zero

of energy by mc2. Note that in practise the order of H0/mc
2 terms kept would be

dictated by the physical system under consideration and depends on the integer n
for which (H0/mc

2)n � p2/m2c2. However, as will become apparent, it will prove
more straightforward for our initial theoretical study to work with the untruncated
(1+H0/mc

2)−1. We shall denote the unitary evolution generated by Eq. (5.23) over
time t as U(t).

5.3.2 Different boosts

We now explore the consequences of the modified Hamiltonian. Time is a complex
topic in quantum mechanics [247, 248], but here we shall simply take the internal
state (Hamiltonian H0) to define some quantum clock, and consider the situation
where it is boosted away and back, then measured to observe the motion’s effect on
the clock. To do this we use the following sequence of operations as illustrated in
Fig. 5.1. First we apply some boost operator to the particle and let it freely evolve
for some time t, then at a shifted position we apply the inverse boost twice and let it
evolve for another time t, and finally we apply the original boost to stop the motion.
Note the magnitude of all boosts must be chosen such that the state is kept within
the approximation regime of our Hamiltonian.

We initially work with the boost that corresponds to the claim that the (1− p2

2m2c2
)

in Eq. (5.24) is the correct classical time dilation. This is the standard quantum
mechanical momentum boost, which centred at the origin we write as

Bp(pb) ≡ eipbx/~. (5.25)

This acts on momentum eigenstates as Bp(pb)|p〉 = |p + pb〉. This represents the
physical situation typically considered for use in the laboratory [249], with no inter-
nal state dependence as per the potentials typically used to move quantum systems
(e.g. an ion moved via an Electromagnetic potential).

Using this boost, the translation operator T (pbt/m) = e−ippbt/m~, and the free
evolution under the Hamiltonian of Eq. (5.23), we have

Bp(pb)U(t)T (pbt/m)Bp(−2pb)T (−pbt/m)U(t)Bp(pb) = e−
i2t
~

p2

2M e
2it
~

p2b
2m e−

2it
~ H0(1− p2b

2mMc2
).

(5.26)
The first exponential term is the unaltered motional evolution of the state that we
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𝟐𝒕

Figure 5.1: Schematic illustration of the boost and evolution sequence. Note that
the second boost is twice the inverse of the first, as it has to stop the initial motion
and then replicate it in the opposite direction. Note also that this stage is shifted
away from the origin via appropriate translation operators.

would expect if we had not applied any of the boosts. This term has no pb dependent
relativistic corrections, which is not surprising since the adopted formalism does not
include the relevant relativistic motional terms. The second term is a global phase
that is connected to the choice of the translation operators, discussed in detail below.
However, it is the final term that captures the effect on the evolution of the internal
state and therefore is our primary focus.

The third exponential term in Eq. (5.26) has the internal Hamiltonian multiplied
by a factor (1− p2

b

2mMc2
) that is less than unity. This is precisely the factor we would

get by considering Eq. (5.23) acting on a momentum eigenstate |pb〉. We see that
if we have some coherence in the internal state and are using it as a clock, then
it appears that the clock is running slower. Note it is not dilated by a constant
inverse Lorentz factor as in classical relativity. We can see why this is so by asking
what Lorentz factor we would expect. The clock has been given a momentum pb but
because our clock is in a superposition of energies En, we also have a superposition
of different masses Mn = m+En/c

2. Hence we can write various velocities and thus
Lorentz factors. For example, the N single shot values γn =

√
1 + p2

b/M
2
nc

2, or the
expectation value of an operator 〈γ〉. Furthermore, Eq. (5.26) indicates that none of
these is correct. Instead the dilation of the phase factor between any two branches
n,m is 1 − p2

f/2MnMmc
2, so is always bounded by the single shot inverse Lorentz
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factors for the individual branches. We in particular note that this is not equivalent
to what one would expect from the analogous classical mixture of Lorentz factors,
as we now show.

First one must note that with a classical mixture we can no longer use the internal
state as a clock, so we must consider that we have some idealized classical clock that
follows along. For simplicity we illustrate with a two-level system, and take an
equal classical mixture of the two masses M0, M1. Working with the momentum
boost, the two branches of the mixture will be put into different frames defining
different Lorentz factors γ0, γ1. After time t in the initial frame we measure the
time elapsed on the classical clocks and would get t/γ0 half of the time and t/γ1

the other half. When we take many measurements, we would write our average
time as t(1/γ0 + 1/γ1)/2. Working to first order in p2/M2c2 we find that this gives
us t[1 − p2

4c2
M2

0 +M2
1

M2
0M

2
1

]. This can now be contrasted with our result from the quantum
analysis where we have shown the theory predicts our measurement of the time
elapsed is t[1 − p2

2M0M1c2
], note this is the inverse Lorentz factor defined using the

geometric mean mass
√
M0M1. We see the two are not equivalent. The classical

case is unsurprisingly a simple average as we are just taking a statistical mixture of
two situations with well-defined Lorentz factors. The quantum case is stranger, as
the clock is not in a well-defined frame but a superposition across frames. Hence it
is not a priori obvious how it should behave and indeed we show its behaviour does
not correspond to the classical average.

Once we appreciate these general problems we can also see that there is ambiguity
in the translation operations. It is natural to center the boost back at a distance
from the origin that is equal to the relative velocity imparted multiplied by the
time it has freely evolved, but if there are multiple velocities then there are multiple
such distances. The clock will have been moved by vt = (pb/M)t, (this can be
seen in the boost sequence Bp(−pb)U(t)Bp(pb) which generates the position shift
operator e−

it
~
ppb
M , together with the exponential of a kinetic term). Therefore each

internal energy defines the shift pbt/(m + En/c
2), so we could justifiably choose

to use T (pbt/(m + En/c
2) for any of the occupied n. This would make the second

exponential term in Eq. (5.26) become e−
it
~ (

p2b
2m
− p2b

(m+En/c2)
)
, but as this is just altering

a global phase it does not affect the clock.
Finally we point out that even working to first order in H0/mc

2 we get the
displacement operator e−

it
~
ppb
m

(1− H0
mc2

), which is still dependent on the internal state.
This is because, unlike the Lorentz factors, the velocities imparted on the different
masses are still disparate at this level of approximation. Given sufficient time, and
some reasonable localization, the different branches of the clock could in principle
become completely spatially separate, which is clearly not in keeping with an in-
terpretation that to this level of approximation we can view this as a clock moving
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along a single trajectory. Note that when we move it away and back (as per usual
in a twin paradox scenario), then we can cancel the shift effects and therefore not
notice, but that does not remove the clear issue with the single trajectory interpre-
tation. This shows that we cannot avoid the conceptual problems by simply working
to lower order in H0/mc

2.

In order to solve the above problems, we instead use the modified boost operator
which we introduced earlier in the chapter in Eq. (5.12), namely

Bv(vb) ≡ ei(m+H0/c2)vbx/~. (5.27)

The motivation for this is clear, we are trying to define a unique velocity and thereby
a unique Lorentz factor. One can derive its form in the relevant non-relativistic
limit as discussed above, and also relate it to the extended Galilean boost G(v, t) =

eiv(Mx−tp)/~ where M is operator valued, via G(v, t) = U(t)Bv(v)U †(t). The position
shift for the clock is now uniquely defined to be vbt, and using this we write

Bv(vb)U(t)T (vbt)Bv(−2vb)T (−vbt)U(t)Bv(vb) = e−
2it
~

p2

2M e
2it
~
mv2

b
2 e−

2it
~ H0(1− v2

b
2c2

).

(5.28)
As before the first term is the unaltered motional evolution and the second term is a
global phase. It is the third term that interests us. From this we see that the clock
has run slower by the inverse of the classical Lorentz factor γ−1 ≈ (1− v2

b

2c2
). This is

exactly as required for classical time dilation.

We can go further and consider the situation where the classical observer is the
one that is set into motion. This means that the boosts must all be centred at the
origin which gives us

Bv(−vb)U(t)Bv(2vb)U(t)Bv(−vb) = e−
2it
~

p2

2M e−
2it
~
mv2

b
2 e−

2it
~ H0(1+

v2
b

2c2
). (5.29)

Here the quantum clock is running faster by the classical Lorentz factor γ ≈ (1+
v2
b

2c2
).

This is again as expected as the classical observer is moving so their clock runs slower.
It is satisfying and encouraging that the modified Hamiltonian produces the correct
solution to the twin paradox when we use the velocity boost. The key difference in
the two cases is caused by the manner in which the velocity boost transforms under
translations T−1(s)Bv(vb)T (s) = ei(m+H0/c2)vbs/~Bv(vb). It is important to realise
that we cannot have the same interpretation with momentum boosts due to the fact
that a classical observer cannot move in a superposition of velocities. Note also
that the case of the observer moving was examined in a concomitant manner by
Greenberger [241].

It is worth a further comment here on the motional term e−
2it
~

p2

2M . As stated
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above this has been left unaffected by the boosting which is due to the adopted
approximations. The full relativistic algebra shown earlier would indicate that a

correction term e±
2it
~

p2v2
b

4Mc2 is missing. To obtain a fully consistent regime for these
equations one requires this term to approximate the identity, thus restricting the
wavepacket momentum spread and time t.

A final point of interest here is to note that with the velocity boost one can show
consistency with the equivalence principle. We take fixed acceleration a, for time t
broken into n time steps δt = t

n
. For a single time step δt, we apply a boost Bv(aδt),

and the evolution U(δt). This gives the unitary (U(δt)Bv(aδt))
n, for which we take

n → ∞, and reverse the Trotter expansion [250] to arrive at a new unitary which
defines the Hamiltonian in the accelerating frame as H = p2

2M
+ H0 + aMx. This

agrees with the result from an alternative derivation for the accelerating frame’s
Hamiltonian [251], and importantly is the same form as Hamiltonians to describe
the composite particle in a gravitational potential [222, 231, 232, 233].

5.3.3 Hamiltonian description of translations

The translation operators play a key role in the above. To better understand them
we can consider the Hamiltonians necessary to enact the boosts on the state. We
start with the velocity case.

Consider classical observers Alice and Bob at rest in each other’s frames, sep-
arated by a distance vbt. Alice initially holds a quantum clock and she sends it to
Bob by applying the potential −α(m + H0/c

2)x for a short time ∆t such that the
full Hamiltonian in this time is

H =
p2

2M
+H0 − α(m+H0/c

2)x. (5.30)

We choose α large and ∆t small with α∆t = vb, such that the first two terms are
irrelevant and we effectively generate U(∆t) = ei(m+H0/c2)vbx/~.

After time t evolving under the free Hamiltonian, the clock reaches Bob who
applies a potential to send it back. Viewed from Alice’s frame this potential is
+2α(m+H0/c

2)(x− vbt). So the full Hamiltonian is

H =
p2

2M
+H0 + 2α(m+H0/c

2)(x− vbt). (5.31)

This means that the operator generated in the appropriate limit is

e−2i(m+H0/c2)(x−vbt)/~ = T (vbt)Bv(−2vb)T (−vbt). (5.32)

One can do the same thing for the momentum boosts but there is now an extra
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subtlety. Namely, that we do not have a uniquely defined position to centre Bob’s
potential from, but as we can see from T (L)Bp(−2pb)T (−L) = e−2ipb(x−L), this
only alters a global phase. However, this is only true if we insist on a uniquely
defined position shift. It is at least formally interesting to note that if we allow
for the positioning of Bob’s boost back to be dependent on the internal state, such
that the translation operator is T (pbt/M), then we find the internal state evolution
multiplied by (1 +

p2
b

2mMc2
). So the clock runs faster, analogously to the boosted

classical observer case, but again not by a relevant classical Lorentz factor. It may
be that this approach has some interpretation in the emerging topic of quantum
reference frames [252].

5.4 The nonclassical behaviour

We have shown that the description of proper time for quantum clocks requires veloc-
ity boosts and therefore for cases without internal state dependent forces additional
effects must arise. For instance we can consider the effect on proposed theoretical
clock models and naturally find the emergence of non-ideal clock behaviour.

The example we consider here is the Salecker-Wigner-Peres (SWP) definition of
a quantum clock [253, 254]. Taking the internal energy Hilbert space to be spanned
by N non-degenerate energy eigenstates |n〉, n = 0, 1, ..., N − 1, with equally spaced
eigenvalues such that H0 =

∑
n n~ω0|n〉〈n|. The SWP clock is then defined by the

N orthogonal states |wk〉 = 1√
N

∑N−1
n=0 e

−2πikn/N |n〉 . Initialised in |w0〉, the clock will
pass through successive states |wk〉 at external times tk = kτ, where τ = 2π

Nω0
. One

then defines a clock operator

Tc = τ
∑
k

k |wk〉 〈wk| , (5.33)

with variance (∆Tc)
2 = 0 at times tk, and (∆Tc)

2 6= 0 in-between.

For this setup we see that the ideal clock behaviour is broken by the non-linear
H0 dependence in the nonclassical dilation term H0(1 − p2

2m(m+H0/c2)c2
). The initial

state |w0〉 evolving under this will no longer in general reach perfect alignment with
the later clock states |wk〉 = 1√

N

∑N−1
n=0 e

−2πikn/N |n〉 and therefore there are no longer
well defined ticks with (∆Tc)

2 = 0.

In addition to such theoretical considerations, the non-classical behaviour can
have physical consequences. We now turn to demonstrate this point by deriving
observed frequency shifts in ion trap atomic clocks and indicating a small additional
shift.
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5.4.1 Atomic clocks

The velocity boost is the relevant operator when dealing with questions of classical
proper time for quantum clocks. However, setting a clock in motion in this man-
ner requires an entangling force that couples the internal and motional degrees of
freedom, but for physical situations this is often not the case. Under these cir-
cumstances the momentum boost behaviour is more relevant. There has been an
experimental proposal [239] to use a trapped single electron to test for interference
effects caused by the Hamiltonian of Eq. (5.23). As a different example we shall
consider trapped ion optical atomic clock frequency shifts, and arguing they already
provide corroboration for the modified Hamiltonian and potentially could provide
more. Similar conclusions were also reached in [255]. Since current experimental
values give 〈H0〉

mc2
≈ 10−10 � 〈p2〉

m2c2
≈ 10−19, these systems are a good candidate to

study the modified Hamiltonian.

Figure 5.2: Atomic clock setup. A trapped ion is cooled to near its motional ground
state. The internal qubit, with frequency gap ω0, is initialised in the ground state.
A laser is used to set up Rabi oscillations, and its frequency ωl varied to optimise
the transition probability.

First we briefly outline the basic operation of an ion trap atomic clock as il-
lustrated in Fig. 5.2 (see [256] for a comprehensive review). An ion is trapped in
a harmonic potential with trap frequency ωm, and the clock reference frequency is
obtained by tuning a laser to an electronic transition frequency ω0 of the ion. The
laser frequency is varied to maximise the probability of exciting a transition, which
standard quantum mechanics predicts will occur when ωl ≈ ω0. However, with rel-
ativity the ion’s motion will lead to a dilation effect, which manifests in a frequency
shift of the transition. The common approach for incorporating this is to apply the
classical time dilation formula, substituting the expectation value of the momentum
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squared to give ωl ≈ ω0(1− 〈p2〉
2m2c2

). This is found to be in line with experiment [257].

The approach works well, however it is essentially a semi-classical analysis, be-
cause we are making no relativistic correction to the quantum mechanical descrip-
tion. A more natural method is to start from the Hamiltonian of Eq. (5.23). The
interaction of an ion with a monochromatic classical laser field is a well documented
problem [258], and adapting the standard approach we can derive a differential
equation to describe the time evolution (details presented below). Under simplify-
ing approximations we find that the frequency shift for an ion initially in the nth
Fock state is

ωl ≈ ω0(1−
~ωm(n+ 1

2
)

2mc2
+

~ω0~ωm(n+ 1
2
)

2(mc2)2
). (5.34)

The first correction term is the same type of shift studied in [239] and is broadly
in agreement with the semi-classical argument and the observations [257]. This
provides empirical evidence for the modified Hamiltonian, since it gives a quan-
tum mechanical description for a real world experiment up to the level of precision
achieved. The second correction term captures the additional behaviour that we
now expect, however it should be taken as illustrative rather than a concrete exper-
imental prediction. Here we have not considered other effects that could be relevant
at this precision, such as the higher order p2/M2c2 term. To predict such new shifts
one should perform full simulations, with all relevant physics, and using experimen-
tal parameters. However, we can make estimates based on the terms above and for a
typical experiment the new shift would be a factor of ~ω0

mc2
∼ 10−10 smaller than that

observed. Thus state of the art experiments are far from observing these effects.
While this is discouraging, the key point is that the modified Hamiltonian predicts
effects that could lead to new observable consequences.

We now present the derivation of Eq. (5.34). Using the modified Hamiltonian we
can alter the standard approach for the interaction of an ion with a monochromatic
classical laser field [258]. For the general case the relativistic modification is com-
plicated to work with, however when the laser is tuned close to resonance we can
neglect certain fast oscillating terms via a rotating wave approximation and thus
write our Hamiltonian as

H = ~ωm(a†a+
1

2
) + ~ω0|e〉〈e|(1−

p2

2m(m+ ~ω0

c2
)c2

) +
~Ω

2
(|e〉〈g|e−iωlt + |g〉〈e|eiωlt),

(5.35)
where a is the motional annihilation operator, ωm the trap frequency, |g〉, |e〉 are the
ground and excited states of the internal energy qubit, and Ω is the Rabi frequency.

We now substitute the form |ψ(t)〉 =
∑

n(an|n〉|g〉 + bn|n〉|e〉) into the time
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dependent Schrödinger equation, which gives

i~
∑
n

(
∂an
∂t
|n〉|g〉+

∂bn
∂t
|n〉|e〉) =

∑
n

(
~ωm(n+

1

2
)(an|n〉|g〉+ bn|n〉|e〉)

+ ~ω0(1− p2

2m(m+ ~ω0

c2
)c2

)bn|n〉|e〉+
~Ω

2
(e−iωltan|n〉|e〉+ eiωltbn|n〉|g〉)

)
. (5.36)

Applying 〈j|〈e| to Eq. (5.36) gives

i~
∂bj
∂t

= (~ωm(j+
1

2
) +~ω0)bj−

~ω0

2m(m+ ~ω0

c2
)c2

∑
n

bn〈j|p2|n〉+ ~Ω

2
e−iωltaj, (5.37)

and applying 〈j|〈g| to Eq. (5.36) gives

i~
∂aj
∂t

= ~ωm(j +
1

2
)aj +

~Ω

2
eiωltbj. (5.38)

We now write aj(t) = e−iωmt(j+
1
2

)ãj(t), and bj(t) = e−it(ωm(j+ 1
2

)+φ(j))b̃j(t), where we
define the function φ(j) = ω0 −G(2j + 1), and the constant G = ω0

2m(m+
~ω0
c2

)c2
~mωm

2
.

We also explicitly evaluate 〈j|p2|n〉, and adopt the convention that b̃j<0 = 0. This
produces the new differential equations

i
∂b̃j
∂t

=
Ω

2
e−it(ωl−φ(j))ãj +G(

√
j(j − 1)b̃j−2e

it(2ωm+φ(j)−φ(j−2))

+
√

(j + 2)(j + 1)b̃j+2e
−it(2ωm+φ(j+2)−φ(j))),

(5.39)

i
∂ãj
∂t

=
Ω

2
eit(ωl−φ(j))b̃j. (5.40)

Taking Eq. (5.39) we rearrange for ∂ãj
∂t
, substitute into Eq. (5.40), and find

∂2b̃j
∂t2

+ i[ωl − φ(j)]
∂b̃j
∂t

+
Ω2

4
b̃j = −iG

(
∂b̃j−2

∂t
eit[2ωm+φ(j)−φ(j−2)]

+ i[ωl + 2ωm − φ(j − 2)]b̃j−2e
it[2ωm+φ(j)−φ(j−2)]

+
∂b̃j+2

∂t
e−it[2ωm−φ(j)+φ(j+2)] − i[2ωm + φ(j + 2)− ωl]b̃j+2e

−it[2ωm−φ(j)+φ(j+2)]

)
,

(5.41)

where b̃j(t) = eit(ωm(j+ 1
2

)+φ(j))bj(t), φ(j) = ω0 −G(2j + 1), G = ~ω0ωm

4(m+
~ω0
c2

)c2
, and b̃j is

set to zero for j < 0.

In general these equations need to be solved numerically, however we can gain
insight via simplifying approximations. First note that the left hand side of Eq.
(5.41) is the differential equation for Rabi oscillations, where the timescale is defined
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by Ω. The right hand side has terms that oscillate with frequencies 2ωm ± φ(j) ∓
φ(j ∓ 2). With these significantly greater than Ω, the separation of time scales
allows us to neglect the fast oscillating terms. Under this approximation one finds
the differential equation ∂2b̃j

∂t2
+ i(ωl − φ(j))

∂b̃j
∂t

+ Ω2

4
b̃j = 0 which has the resonance

condition ωl = φ(j). Taking the case where the ion is initially in the nth Fock state
we find

ωl ≈ ω0(1−
~ωm(n+ 1

2
)

2mc2
+

~ω0~ωm(n+ 1
2
)

2(mc2)2
). (5.42)

This is the result quoted above.

To understand the approximation regime one needs to consider the two rel-
evant small quantities H0/mc

2 and p2/m2c2, (note p2/m2c2 ≥ p2/M2c2 since m
is the ground state mass). Starting from the relativistic expression for energy√
M2c4 + p2c2, we can expand out and examine the following terms

H = mc2 +H0 +
p2

2m
(1− H0

mc2
+
( H0

mc2

)2
)− p2

2m

1

4

p2

m2c2
(5.43)

In order to arrive at the shift result as quoted we require H0/mc
2 � (p2/m2c2), for

the first shift and (H0/mc
2)2 � (p2/m2c2), for the second. For an ion trap we have

typical values of H0/mc
2 ≡ 10−10 and p2/m2c2 ≡ 10−19 and so whilst we can say

H0/mc
2 � (p2/m2c2), we do not have (H0/mc

2)2 � (p2/m2c2). This is why we de-
scribe the second term as illustrative rather than a concrete experimental prediction.
To experimentally investigate the consequences of the (H0/mc

2)2 term one would
need to perform more complete simulations or find some alternative system to ion
traps which can reach the required regime. We can however make estimates of the
size of the new shift based on the terms above, and as stated above, for a typical
ion trap the new shift would be a factor of ~ω0

mc2
∼ 10−10 less than those observed.

5.5 Conclusions

We began this chapter by discussing established results on how the entanglement of
internal spin systems and motional states can be affected by boosts when relativity
is accounted for. We then demonstrated how similar behaviour can be obtained
much more straightforwardly for energy states by using mass energy equivalence,
and we compared and contrasted these.

We then considered the new velocity boosts in the context of proper time. We
demonstrated that there are conceptual problems with viewing momentum boosts
as leading to quantum clocks witnessing a classical time dilation. We found that
the velocity boost recovers the expected classical behaviour and demonstrated the
importance of translation operators in distinguishing the cases of the clock or the



5.5. CONCLUSIONS 123

observer being set in motion. We showed how this can be understood by considering
the Hamiltonians necessary to realise the boosts on the quantum clock. We also
showed the velocity boost also enables a simple demonstration for consistency with
the gravitational equivalence principle.

We emphasised that moving the quantum clock without an internal state depen-
dent force should present additional effects. We considered the effects of the non-
classical dilation for the SWP clock, finding it removes the ideal clock behaviour.
From a practical point of view we demonstrated the consequences of the non-classical
dilation for ion trap atomic clocks, finding that the formalism predicts the already
observed relativistic frequency shift and indicates an additional small correction.

This chapter shows the power of a simple idea. We were able to go from an inter-
esting result focused on how entanglement is affected under motion, to developing a
better understanding for the concept of proper time for quantum clocks. In the next
chapter we shall consider another setting where one simple idea in entanglement
theory has the potential for deep consequences.
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Chapter 6

Witnessing non-classical gravity

Gravity is a contributing factor in nearly 73 percent of all accidents involv-
ing falling objects. And yet the so-called “federal government” does nothing!

– Dave Barry

6.1 Overview

In this chapter we examine the role entanglement could play in establishing the
answer to arguably one of the most important questions in physics: is gravity non-
classical? We critically revisit a spin witness proposal [259] aimed at answering this
question, examining new theoretical considerations and improvements. We begin
by summarising the original treatment which makes use of certain approximations
which we show to be valid: the corrections are negligible for reasonable thermal
states. We go on to demonstrate that by introducing an improved entanglement
witness, we can reveal entanglement in a much shorter free fall time. We propose
and demonstrate a likelihood ratio approach to rule out alternative interaction ex-
planations and show that this allows one to reach conclusions on the non-classicality
of gravity even in regimes dominated by non-gravitational forces, such as Casimir-
Polder (CP) interactions. We show that this can still be true even with error in
our knowledge of the non-gravitational coupling strength. Our approach allows
revelation of entanglement in a 20 times shorter free-fall duration than in the origi-
nal proposal. Finally, we point out that although witness experiments can provide
convincing evidence, a fully rigorous certification of gravitationally induced entan-
glement would require more, such as the knowledge of an entanglement monotone.
We illustrate a solution to this loophole using state tomography, and we find the
number of repetitions required in different settings. This chapter draws from [260].
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6.2 Non-Classicality of gravity

6.2.1 The problem

Gravity, was the first of the four known fundamental forces to be studied, but is
now the one for which our understanding appears least complete. It is currently best
described by Einstein’s general relativity, which is a classical field theory [261]. This
description has proven to be impressively robust to experimental evidence, once one
allows for the existence of dark matter and dark energy, and up to this point there is
still no convincing empirical evidence going against its predictions [262]. However,
there are many cases where the coexistence of general relativity and quantum theory
indicates problematic open questions [263, 264]. The most common view is that
gravity cannot remain a classical theory, and therefore finding evidence for its non-
classicality is a highly important research direction in modern physics.

The pursuit of evidence to help understand the interplay between gravity and
quantum theory has given rise to novel ideas and experimental proposals [265, 266,
267, 268, 269, 270, 271]. In particular recent works suggesting tests for gravitation-
ally generated entanglement [272, 259] have drawn significant attention [273, 274,
275, 276, 277, 278, 279]. The central idea behind this direction can be put rela-
tively simply. Entanglement cannot be increased by local operations and classical
communication, therefore if gravity can be used to increase entanglement between
two quantum systems then gravity must be acting in a non-classical manner. Note
that the original claim about witnessing a quantum feature of gravity [272, 259] has
been subject to some debate [275], but it was pointed out that what is tested is
a non-classicality of the gravitational field, in the sense that a successful test rules
out any framework in which its state is described by (possibly probabilistic) unique
(tensorial, vectorial, scalar, etc.) values at each space-time point [280, 281]. Regard-
less of terminology, the realization of such a proposal would be significant, as far as
gravitationally induced entanglement would demonstrate a behaviour -superposition
of space-time geometry - that is not predicted by GR [270, 276, 279].

In this chapter we focus on a spin witness approach [259], which we shall refer
to as the spin witness protocol. The spin witness protocol proposes to use microdia-
monds each with an embedded NV-center, and put them through two Mach-Zehnder
setups that are positioned close to one another. If gravity is non-classical in nature
then it should induce phase shifts between the spins and thus result in an entangled
spin state which can be verified via measurements at the end. We shall give a more
detailed account of the proposal in the next section. From an experimental point of
view there are several difficulties in the splitting and refocusing operations, such as
control pulse timing, particle rotation [282], radiation and spin decoherence [283],
along with dipole-dipole interactions, diamagnetic properties of diamond, overheat-



6.2. NON-CLASSICALITY OF GRAVITY 127

ing and loading issues [284, 285, 286]. In working to overcome these issues it could
prove necessary to adopt a significantly different approach, such as replacing the
internal spin degree of freedom with a physically separate qubit system that is en-
tangled to the motional state, as in [287]. These experimental issues are highly
important but they are not the focus of this work. Instead, we address theoret-
ical questions that underpin the protocol, independent of our ability to overcome
the immense experimental challenges. As we shall show, this work makes any such
experiment more viable.

6.2.2 The spin witness protocol

We here present the spin witness protocol and introduce notations that will be used
throughout the rest of the chapter. We shall derive the results presented in [259]
with a modification, namely without using position eigenstates. Instead we shall
start from products of two arbitrary trapped motional states, and specialize to the
case of two copies of the same motional state. We shall show that the resulting
corrections to the position eigenstate approximation are negligible in a reasonable
range of trapping frequencies and temperatures.

The reason we choose to perform the derivation in this more complicated set-
ting is chiefly to rigorously establish more consistency for the conclusions in [259].
The original proposal implicitly adopts two theoretical simplifications: using po-
sition eigenstates throughout, and assuming that tracing out the motional degree
of freedom after refocusing does not completely decohere the spin state. Although
useful for illustrating the key ideas, it should be noted that these are in fact con-
tradictory. If the states at the end could somehow be close to delta-distributed
in position-space, then drift could certainly not be neglected. Therefore, for the
sake of completeness, in our presentation we relax the first simplifying assumption
and derive the second. This rigorously shows that the original position eigenstate
approximation is unproblematic.

The setup is illustrated in Fig. 6.1, and consists of two adjacent Mach-Zehnder
interferometers. The quantum system of interest is the motion of two particles, one
for each interferometer, and their internal spin degrees of freedom. The full initial
state ρi is comprised of two copies of local motional states separated by a distance
d, with each particle’s spin prepared in an equal superposition. The splitting stage
is then a spin-controlled spatial displacement by ±δ, which puts the system into the
state ρ(0) with two spin dependent spatial superpositions. The free-fall duration is
labelled by τ , after which the state is ρ(τ). This is the stage in which the particles
are intended to interact gravitationally for a sufficiently long time such that some
resulting entanglement can be subsequently measured. The refocusing stage merges
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Figure 6.1: Illustration of the SWP protocol. The two systems have two position
coordinates, the origins of which are separated by a distance d.

the positional superpositions, resulting in some final state that depends on the free-
fall duration ρf (τ), and the system is thus prepared for spin state measurements. We
shall take this merging to be non-adaptive so that it does not account for possible
drift during free-fall.

We follow the lines of the original proposal in assuming that the splitting and
refocusing operations can be done in a negligibly short amount of time compared to
the free-fall time, and by using a Newtonian potential for gravity. Since d/c � τ ,
this is a completely valid [274] static limit to the fully general relativistic description,
which was proven to formulate the same predictions in the case of superposition of
geometries [279]. It is worth emphasising that the protocol itself, in its conclusion
on non-classicality through entanglement growth, is model agnostic [277, 288].

We now derive the final state ρf (τ) in detail. Consider two identical particles
of mass m that are initially in a product of two arbitrary motional states and in
a superposition of spin states ρi = (π1 ⊗ ρ+) ⊗ (π2 ⊗ ρ+). We have introduced
ρ+ = 1

2
(|sL〉 + |sR〉)(〈sL| + 〈sR|), where this spin notation will provide labels for

the displacements. As in the original proposal, we assume the spin-controlled spa-
tial splitting can be done in a short time, and such that there is no mean mo-
mentum at the beginning of the free fall. That is, the splitting operation reads
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(DL ⊗ |sL〉〈sL|+DR ⊗ |sR〉〈sR|)⊗2, where Dµ = D(κµ) = eκµa
†−κ∗µa is the displace-

ment operator, and κR = −κL = κ ∈ R+. We denote δ the physical distance by
which the state is displaced, so κ = δ

√
mω/2~ where ω is some initial trap frequency.

The refocusing is simply the conjugate operation.

For now we treat the free-fall stage as simply free evolution under the Hamilto-
nian

Hd =
p2

1 + p2
2

2m
− Gm2

d+ x2 − x1

, (6.1)

where G is the gravitational constant. We denote the unitary evolution generated
by this acting for time τ as Ud.

Combining the appropriate operations for splitting, free-fall, and refocusing, we
have the final state obtained in this noiseless case as

ρf (τ) =
1

4

∑
αβµν

(D†α ⊗D
†
β)Ud(Dα ⊗Dβ)ρi(Dµ ⊗Dν)U

†
d(D†µ ⊗D†ν), (6.2)

where the sum is performed over (α, β, µ, ν) ∈ {L,R}.
The displacement operators around the unitaries simply amount to a shift of ori-

gins for the position operators, which can be absorbed into the separating distance d.
Explicitly, (D†µ⊗D†ν)Ud(Dµ⊗Dν) = Udµν where dµν = d−δµ+δν ∈ {d−2δ, d, d+2δ}.
Thus, instead of having three distinct relative displacements, we deal with three dis-
tinct separations and propagators acting on the same initial state. Then, the matrix
elements sαβµν of the reduced spin state Trmotion[ρf (τ)] =

∑
αβµν sαβµν |sαsβ〉〈sµsν |

boil down to the bipartite vacuum expectation values

sαβµν =
1

4
Tr
[
U †αβUµν(π1 ⊗ π2)

]
. (6.3)

Pulling out the order zero potential term −Gm2/dµν from the Hamiltonian, we
transform Eq. (6.3) to obtain

sαβµν =
1

4
exp

[
−iGm2τ

~
Q

(1)
αβµν

]
Tr
[
/U
†
αβ
/Uµν(π1 ⊗ π2)

]
. (6.4)

where ∀n ∈ N we define
Q

(n)
αβµν =

1

dnαβ
− 1

dnµν
, (6.5)

and we use /U to denote unitaries with the zero-order phase factored out, or equiv-
alently the evolution generated by Hamiltonians modified to remove the order zero
potentials. Essentially, the propagation of the full system is equivalent, up to a shift
of position operator origins, to a sum of four pairwise evolutions, three of which are
distinct. The position eigenstate approximation, which was adopted in the original
proposal [259] equates to discarding the remaining trace term. This then answers
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the question of when the conclusions are valid, we need this trace term to be a good
approximation to unity,

Tr
[
/U
†
αβ
/Uµν(π1 ⊗ π2)

]
≈ 1. (6.6)

To investigate how reasonable the approximation is we consider restricting to
the case where |x2 − x1| � d − 2δ and inspect results that can thus be obtained
with a truncated potential. If the truncation is made to first order then the Baker-
Campbell-Hausdorff identity gives

/U
†
αβ
/Uµν = e−iτ

3G2m3Q
(4)
αβµν/6~ exp

[
−iτGmQ(2)

αβµν

~

(
m(x1 − x2) +

τ

2
(p1 − p2)

)]
.

(6.7)
As expected from classical mechanics, the two particles are displaced towards one
another and acquire opposite momenta, that is, we can rewrite Eq. (6.7) as

/U
†
αβ
/Uµν = e−iτ

3G2m3Q
(4)
αβµν/6~D (θαβµν)⊗D (−θαβµν) , (6.8)

where we write

θαβµν =
GmQ

(2)
αβµντ√
2

[
τ

2

√
mω

~
− i
√
m

~ω

]
. (6.9)

We now consider the two motional states to be identical π1 = π2 = π, and we
write the initial motional state in the Glauber-Sudarshan P-representation as

π⊗2 =

∫∫
d2εd2ζP (ε)P (ζ) |εζ〉〈εζ| , (6.10)

the relevant trace term is then

Tr
[
/U
†
αβ
/Uµνπ

⊗2
]

=

∫∫
d2εd2ζP (ε)P (ζ) Tr

[
/U
†
αβ
/Uµν |εζ〉〈εζ|

]
. (6.11)

Taking this together with Eq. (6.8) we find that

Tr
[
/U
†
αβ
/Uµνπ

⊗2
]

= e−iG
2m3τ3Q

(4)
αβµν/6~I(θαβµν), (6.12)

where
I(θαβµν) =

∫∫
d2εd2ζP (ε)P (ζ) 〈ε|ε+ θαβµν〉 〈ζ|ζ − θαβµν〉 . (6.13)



6.2. NON-CLASSICALITY OF GRAVITY 131

This double integral can be simplified as

I(θ) = e−|θ|
2

(∫
d2εP (ε)e

1
2

(ε∗θ−θ∗ε)
)(∫

d2ζP (ζ)e
1
2

(θ∗ζ−ζ∗θ)
)
,

= e−|θ|
2

P̃

(
θ

2

)
P̃

(
−θ

2

)
,

= e−|θ|
2

(
CN

(
θ

2

))2

,

(6.14)

where we have dropped the indices for θ and used the fact that the P -function is
real and so has even Fourier transform P̃ , and where CN is the normally ordered
characteristic function [289] of the initial local state π (that we have two copies of).
Explicitly we write CN(λ) = Tr

[
πeλa

†
e−λ

∗a
]
.

Taking all this together we now have

Tr
[
/U
†
αβ
/Uµνπ

⊗2
]

= e−iτ
3G2m3Q

(4)
αβµν/6~e−|θαβµν |

2

(
CN

(
θαβµν

2

))2

. (6.15)

With this we can assess the approximation for specific initial states. Here we
take the initial local state as thermal with 〈N〉 = n. For this the characteristic
function is CN(λ) = e−n|λ|

2
. This can be straightforwardly shown, starting from the

familiar P (ε) = e−|ε|
2/n

πn
, and rewriting the integral with ε = x+ iy and θ = a+ ib as

follows

CN

(
θ

2

)
=

1

πn

∫
d2εe−|ε|

2/n+ 1
2

(ε∗θ−θ∗ε),

=
1

πn

∫
dxe−x

2/n+ixb

∫
dye−y

2/n+iya,

=
1

πn

∫
dxe−(x−inb/2)2/ne−nb

2/4

∫
dye−(y−ina/2)2/ne−na

2/4,

= e−n|θ|
2/4.

(6.16)

For the second line we have completed the square in the exponents and for the third
we used the result for the standard Gaussian integral.

From this, the resulting trace term for an initial thermal state with 〈N̂〉 = n is

Tr
[
/U
†
αβ
/Uµνπ

⊗2
]

= e−iG
2m3τ3Q

(4)
αβµν/6~e−(n

2
+1)|θαβµν |2 . (6.17)

We see that this consists of a first order phase correction and a first order decoherence
effect due to drift.

To facilitate comparison, we work with the parameters of the original pro-
posal [259], (d = 400 µm, δ = 125 µm, m = 10−14 kg) and with a sensible trapping
frequency ω = 103 Hz [290]. Note that the experiment needs to be performed for a
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time such that the original phase term exp
[
−iGm2τ

~ Q
(1)
αβµν

]
becomes sufficiently large.

For these parameters we find |Q(1)| ∼ 3.6 × 103 m−1, and thus the desired phase
reaches unit radian after a characteristic free-fall duration τ ∼ 4.4 s. We can now
calculate the corrections. We find |Q(4)| ∼ 6.2×1014 m−4, such that after 10 seconds
of free-fall the phase correction is approximately 4× 10−12 rad and the decoherence
factors are exp(−2.8× 10−8) and exp(−0.014) ≈ 0.99 respectively for zero temper-
ature and T = 7.6 mK (n = 106). This shows that the original position eigenstate
approximation is valid for the considered regime, and the main factor of decoherence
will originate from noise in the device and the environment, rather than from the
limits of this simplifying approximation.

With this established we shall for the most part take the form posited in the
original proposal [259] as our noiseless state. We shall include noise as discussed
later, but the noiseless case for the final reduced spin state will be considered to be

|ψs(τ)〉 =
1

2
(|00〉+ ei∆φLR |01〉+ ei∆φRL |10〉+ |11〉), (6.18)

where ∆φµν = Gm2τ(1
d
− 1

dµν
) and we have discarded a global phase term.

Before moving to consider measurements and our proposed improvements to the
protocol, we need a final discussion on the Casimir-Polder (CP) effect. It was argued
that the CP interactions could be neglected with the original parameters [259]. One
can write down the potential from [291] as V̂ C

µν = −α(R, ε)/(dµν + x2 − x1)7, where
α(R, ε) =

(
ε−1
ε+2

)2 23~cR6

4π
depends on the radius R of the particles (taken to be spheres)

and their relative permittivity ε. The spin density matrix elements are then

sαβµν =
1

4
exp

(
−it
~

(
Gm2Q

(1)
αβµν + αQ

(7)
αβµν

))
Tr
[
/U
†
αβ
/Uµν(π1 ⊗ π2)

]
. (6.19)

With R ≈ 10−4 m, which roughly corresponds to a diamond microsphere of mass
10−14 kg and ε ≈ 5.7, the most rapidly evolving terms have a gravity frequency of
0.226 Hz and a CP frequency 0.016 Hz. Therefore the CP interaction is negligible
compared to the gravitational effect if the closest approach is above 200 µm.

Later we shall show how to overcome the CP closest approach limit given in [259],
so it is worth mentioning that the position eigenstate approximation is still valid in
a smaller setup separation. If we decrease the separation distance d from 450 µm to
350 µm, the closest approach is then 100 µm such that for the |RL〉 pair the regime
is dominated by CP coupling, which becomes roughly 4 times as strong as the
gravitational coupling. The characteristic free-fall duration is lowered to τ ≈ 54 ms.
After 1 second of free-fall, the phase correction is approximately 7.03×10−14 rad and
the decoherence factors are exp(−5× 10−11) and exp(−2.5× 10−6) respectively for
zero temperature and T = 7.6 mK (n = 106). These corrections are still negligible.



6.3. IMPROVING THE PROTOCOL 133

6.3 Improving the protocol

6.3.1 Witnesses for gravitationally induced entanglement

We now present the non-separability condition from [259], and show its correspond-
ing entanglement witness is not optimal. We propose an optimal entanglement
witness in the sense that it theoretically can detect entanglement for arbitrarily
short free-fall durations τ .

From the pure spin state resulting from the position eigenstate approximation,
one can read off ∆φLR+∆φRL ∈ {2nπ|n ∈ Z} as a necessary and sufficient condition
for separability. In [259], the condition | 〈σx ⊗ σz〉 + 〈σy ⊗ σy〉 | > 1 is proposed to
certify the entanglement. This formally corresponds to selecting

W0 = I ⊗ I + σx ⊗ σz + σy ⊗ σy, (6.20)

as an entanglement witness [292], as for any separable two qubit state ρ, Tr(W0ρ) ≥
0. In the noiseless case and using the same parameters as above, entanglement is
revealed after roughly 8 seconds of free-fall, as shown in Fig. 6.2.

Although the order of magnitude for the required free-fall time is promising, it
would still correspond to a falling distance of a few 102 meters on Earth, and is still
3 orders of magnitude above the coherence times observed in cutting edge matter-
wave interferometry with much less massive particles [293]. Adapting the protocol
to work with shorter free-fall times makes it not only more feasible on Earth, but
also more robust to decoherence. To illustrate the effect of decoherence, we choose a
scattering term that induces an exponential dephasing of local motional states [294].
We shall denote the off-diagonal damping rate γ. Explicitly in the local position
eigenstate basis {|L〉 , |R〉}, the decoherence after duration τ acts as a dephasing
channel π 7−→ (1 − p)π + pσzπσz where p = (1 − e−γτ )/2. The original witness
W0 fails to detect any entanglement for γ ≥ 0.03 s−1. The failure of this witness is
primarily due to the fact that even in an ideal zero-temperature noiseless scenario,
it requires over 8 seconds of free-fall time for revelation. This means that when
there is noise it is being allowed too long to destroy the entanglement. It is also not
obvious that we have to accept these long free-fall times, since state negativity is
achieved immediately, as shown in Fig. 6.3.

To shorten the required interaction time, we construct another entanglement
witness using few local Pauli measurements in the spirit of [295], using the PPT-
criterion [296]. For the purposes of constructing a new witness we consider the case
where φ = ∆φLR � ∆φRL,∆φ, which amounts to neglecting all but the phase in-
duced by the strongest interacting couple of states. In the position eigenstate approx-
imation, the final spin state would then read |ψs(φ)〉 = 1

2
(|00〉+ |01〉+eiφ |10〉+ |11〉)
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Figure 6.2: Tr(W0 |ψs〉〈ψs|), where W0 is the entanglement witness put forward
in [259], as a function of free-fall time with decoherence rates γ ∈ {0, 0.01, 0.02, 0.03}.
At γ = 0.03 the witness can no longer reveal entanglement.

with density operator ρs(φ) = |ψs(φ)〉〈ψs(φ)|. We take the partial transpose ρΓ2
s (φ),

and find that the eigenstate associated with the negative eigenvalue is |χ−(φ)〉 =
1
2
(|00〉+ie−iφ/2 |01〉−ieiφ/2 |10〉−e−iφ |11〉). Taking φ = 0 (this is to reduce the num-

ber of Pauli operators involved) one has 4 |χ−〉〈χ−| = I⊗I−σx⊗σx+σz⊗σy−σy⊗σz,
and we propose this as our new witness

W1 = 4 |χ−〉〈χ−|Γ2 = I ⊗ I − σx ⊗ σx − σy ⊗ σz − σz ⊗ σy. (6.21)

It transpires that this new witness reveals entanglement immediately after the
start of the free-fall, as shown in Fig. 6.4, as long as the decoherence rate γ satisfies
γ < (ωRL + ωLR)/2 where the ω are the respective coupling strengths ωµνt = ∆φµν .

This can be proved as follows. In terms of density matrix components we write

Tr(W1ρ) = Tr(ρ) + 2 Im{ρ12}+ 2 Im{ρ13} − 2 Re{ρ14} − 2 Re{ρ23}

−2 Im{ρ24} − 2 Im{ρ34}.
(6.22)

The pure spin state from the position eigenstate approximation is

ρ =
1

4


1 e−i∆φLR e−i∆φRL 1

ei∆φLR 1 ei(∆φLR−∆φRL) ei∆φLR

ei∆φRL ei(∆φRL−∆φLR) 1 ei∆φRL

1 e−i∆φLR e−i∆φRL 1

 . (6.23)
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Our decoherence model is a damping of off diagonal terms of local states with
exponential decay rate γ. This amounts to an entrywise multiplication of the spin
density matrix by 

1 e−γt e−γt e−2γt

e−γt 1 e−2γt e−γt

e−γt e−2γt 1 e−γt

e−2γt e−γt e−γt 1

 (6.24)

Taking the components of the full decohered spin state into Eq. (6.22) we can write
the witness expectation value as

Tr(W1ρ) = 1− e−γt (sin(∆φLR) + sin(∆φRL))− 1

2
e−2γt(1 + cos(∆φLR −∆φRL)).

(6.25)
Writing ωµνt = ∆φµν a first order expansion around t = 0 gives

Tr(W1ρ) = (2γ − (ωLR + ωRL))t. (6.26)

We see that for short times this will be negative so long as γ < (ωRL + ωLR)/2.

Alternatively we can view this as a condition on the decoherence rate, in that we
will not be able to immediately witness entanglement for decoherence rates greater
than the average of the two path frequencies γ ≥ (ωRL + ωLR)/2.

Taking the original parameter values, the witness works in principle for γ <

0.0627 s−1. Numerical tests reveal that in fact the state is not entangled for any
higher decoherence rates, showing that in this sense our new witness is optimal.

Having a witness that can detect entanglement in theory with arbitrarily minute
phase accumulation is advantageous, as it decreases the required free-fall duration.
However, it raises the question of residual interactions, such as CP coupling. Even
if gravity were to be the dominant interaction, small CP couplings would still in-
duce entanglement that will be detected by the new witness. Empirical results are
statistical statements, and the presence of additional interactions also should afflict
experimental data on the original witness W0. If measurements are performed af-
ter a free-fall duration τ when 〈W0〉 is barely negative, then one must be able to
make statistical statements on the impact of non-gravitational interactions on the
observed entanglement. The consequences of such an experiment being realized are
important enough to justify a more rigorous approach to the significance of these em-
pirical results. In the same spirit as high-energy physics experiments are processed,
the effect of a negligible but still existing CP effect on the entanglement witness and
more precisely on the resulting statistics and probability of false positives, deserve
closer inspection.
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Figure 6.3: Negativity of the spin state N (ρs) =
∑

λ∈Sp(ρs)∩R− |λ| with respect to
free-fall time with decoherence rates γ ∈ {0, 0.01, 0.02, 0.03}. Negativity is an entan-
glement monotone, and the state is entangled when the negativity is positive [122].

Figure 6.4: Tr(W1 |ψs〉〈ψs|) as a function of free-fall time with decoherence rates
γ ∈ {0, 0.01, 0.02, 0.03}. The witness in theory can reveal entanglement even for
strong decoherence rates if the free-fall time is kept short. This comes at the expense
of expectation values that are closer to zero.
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6.3.2 Hypothesis testing the gravitational coupling

Here we shall show how it is possible to infer the presence of a gravitational interac-
tion from the witness measurements, in a manner which allows one to rule out the
possibility that the observed entangled state could have been obtained only from
the CP interaction. We do this by making use of statistical hypothesis testing, and
with this we are then able to show that when the two Mach-Zehnder setups are
brought closer to one another one can still certify the presence of the gravitational
interaction, even at distances where gravity is not the dominant interaction.

In order to affirm that the final spin state was induced by a gravitational propa-
gator in the presence of other interactions we adapt the approach developed in [297]
for entanglement verification. In using such statistical methods, we assume the ex-
periment can be repeated, for instance with particle recycling as outlined in [266].
For now we shall assume that we have good knowledge of the non-gravitational in-
teractions, so for this section we limit ourselves to a CP interaction with known
coupling strength. In the next section we shall show how the same techniques can
work even when this is not the case.

First we need to discuss the statistical method we use, which is termed the
likelihood ratio test. This test is the most powerful test for a given confidence level,
a result known as the Neyman-Pearson lemma [298], which we shall prove as part
of our presentation of the test.

Suppose we have two hypotheses: a null hypothesisH0 : θ = θ0 and an alternative
hypothesis H1 : θ = θ1. The likelihood function for θ given that some discrete
random variable X has been observed as X = x is written as L(θ|x) = Pθ(X = x).

For a continuous random variable we would use the probability density function. To
perform a likelihood ratio test we take the ratio Λ(x) = L(θ0|x)

L(θ1|x)
, and then if Λ(x) > c

we do not reject H0, if Λ(x) = c we reject with probability q, and if Λ(x) < c we
reject. The values are chosen so that qP (Λ = c|H0) + P (Λ < c|H0) = α, in other
words the probability of incorrectly rejecting the null hypothesis is α, this is termed
the significance level. The Neyman-Pearson lemma states that the likelihood ratio
test is the most powerful statistical test at significance level α. The power of a binary
hypothesis test is the probability that the test rejects the null hypothesis H0 when
a specific alternative hypothesis H1 is true. This lemma can be proved as follows.

First define the rejection region of the Neyman-Pearson ratio test

RNP =

{
x :
L(θ0|x)

L(θ1|x)
≤ c

}
, (6.27)

where we are using q = 1 and c is chosen so that P (RNP |θ0) = α, with the probability
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of data falling in region R given parameter θ given by

P (R|θ) =

∫
R

L(θ|x)dx. (6.28)

Consider a different rejection region RA for which the significance level is at least α
so

P (RA|θ0) ≤ P (RNP |θ0). (6.29)

We now note that we can break up these probabilities in terms of intersections
with the complement regions as P (RNP ) = P (RNP ∩RA) + P (RNP ∩Rc

A) and also
P (RA) = P (RNP ∩RA) + P (Rc

NP ∩RA), which allows us to then rewrite the above
inequality of Eq. (6.29) as

P (Rc
NP ∩RA|θ0) ≤ P (RNP ∩Rc

A|θ0). (6.30)

The powers of the tests are P (RNP |θ1) and P (RA|θ1). We want to prove that the
ratio test is of equal or greater power so P (RNP |θ1) ≥ P (RA|θ1), which we can
rewrite using the same trick as before to be

P (RNP ∩Rc
A|θ1) ≥ P (RA ∩Rc

NP |θ1). (6.31)

This can then be proved as follows

P (RNP ∩Rc
A|θ1) =

∫
RNP∩RcA

L(θ1|x)dx,

≥ 1

c

∫
RNP∩RcA

L(θ0|x)dx,

=
1

c
P (RNP ∩Rc

A|θ0),

≥ 1

c
P (Rc

NP ∩RA|θ0),

=
1

c

∫
RcNP∩RA

L(θ0|x)dx,

>

∫
RcNP∩RA

L(θ1|x)dx,

= P (Rc
NP ∩RA|θ1).

(6.32)

To get to the second line we have used the relation in Eq. (6.27), to get to the forth
line we used Eq. (6.30), and to get to the sixth line we used the complementary
relation to Eq. (6.27), since the integral is entirely contained within the region Rc

NP .
This concludes the proof of the lemma, since we have shown that the likelihood ratio
test is at least as powerful as any other test at the same significance level.
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Having described the statistical test that we plan to use, we now lay out the null
and alternative hypotheses that we shall be testing.

• The null hypothesis H0 is: “The observed entangled state is the result of CP
interactions without gravity.”

• The alternative hypothesis Ha is: “The observed entangled state results not
only from CP coupling but also from the gravitational interaction.”

It should be stressed that the test of these hypotheses is the second of two distinct
ways in which the approach outlined here uses the measurement data. The first is
to straightforwardly confirm that the state is entangled via a negative expectation
value for the witness given in Eq. (6.21). The second is then to rule out H0 in favour
of Ha, via a likelihood ratio test, or in other words establishing that gravity played
a part in obtaining the observed entangled state.

In the original presentation [259] this distinction is not made, both tests are
considered to be contained within the use of the sub-optimal witness. This is be-
cause the distances are set such that the CP interaction alone should not be able
to demonstrate entanglement with this witness, and therefore a negative witness
expectation value is taken to demonstrate both entanglement and that the gravita-
tional interaction was responsible. As we shall show, separating these tasks brings
advantages.

In order to obtain the likelihood ratios, we consider settings where one can choose
to measure a list of bipartite Pauli observables σ = [σ1, ..., σl] a number N ∈ N∗

times each. Every bipartite observable has 4 eigenstates, and we denote the full list
of eigenstates as e = [|e11〉 , ..., |e14〉 , |e21〉 , ..., |el4〉]. This defines a 4l-dimensional
probability vector

p = [pij]1≤i≤l,1≤j≤4 = [Tr(ρ |eij〉〈eij|)]. (6.33)

The data D is a list of numbers of measurement outcomes, each corresponding to an
obtained eigenstate, n = [n11, ..., n14, n21, ..., nl4]. The probability of having obtained
the empirical vector n given state ρ is the joint probability distribution

P(n|ρ) =
∏
ij

p
nij
ij

def.
= L(ρ|D). (6.34)

The likelihood ratio to test whether we should reject our null hypothesis in favour
of the alternative is

Λa =
L(ρC(γ, t)|Da)
L(ρCG(γ, t)|Da)

, (6.35)

where ρC is the spin density matrix obtained with an exclusively CP induced evo-
lution (null hypothesis state), and ρCG is the state obtained under full CP and
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gravitational propagator (alternative hypothesis state). We shall evaluate this ra-
tio at the free-fall duration τ , which is chosen to correspond to the duration after
which the witness expectation value is minimal in the alternative hypothesis so as
to maximize the probability of certifying entanglement, and is thus made dependent
on γ.

For computational reasons we shall make the standard switch to using the nega-
tive logarithmic likelihood ratio λa = −2 log(Λa). High values of λa strongly support
the alternative hypothesis. This choice is convenient since the logarithmic likelihood
ratio reduces to the scalar product

λa = 2na.
(

log
(
p
a

)
− log

(
p

0

))
. (6.36)

For the adopted witness presented in Eq. (6.21), we have l = 3 and we take the
data Da as a set of 3N empirical measurement outcomes, N for each bipartite Pauli
observable (σx ⊗ σx, σy ⊗ σz, σz ⊗ σy) on ρCG. It is possible to predict values of λa
that are typically obtained, but we also need to establish what a sufficiently good
value of λa is.

Our overall aim is to achieve the minimum rate of false positives, i.e. we want to
have a small significance level α or equivalently a high confidence level 1−α. Given
we have some desired significance level α, we can then define the minimum value
λmin via

P(λa ≥ λmin|H0) = α. (6.37)

In order to find values for λmin we simply generate multiple sets of data D0

assuming the null hypothesis is true, and then make use of the distribution of the
resulting λ0 for different values of N . For α = 1%, λmin is then the 99-th percentile
of the obtained λ0.

With the λmin(N, γ, τ) determined, we return to calculating values of λa from
sets of data generated with the alternative hypothesis assumed as true. We can then
examine the probability of obtaining λa ≥ λmin. This frequency is termed state
distinction success rate, and is what has been plotted in Fig. 6.5 for a confidence
level of 99%. This has been performed both for the original parameter settings and
for a closer separation d = 350 µm.

From Fig. 6.5, we can see that for the original separation d = 450 µm, in the
noiseless case as well as with strong decoherence, 102 measurements of W1, obtained
with 3×102 repetitions of the experiment is enough to almost certainly reject the null
hypothesis state in favour of the alternative state with a false positive probability of
less than 1%. We also observe that for the closer separation setting d = 350 µm cer-
tifying the alternative state reliably requires around 103 repetitions. These number
of repetitions seem reasonable to expect from a reproducible experimental setup.
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Figure 6.5: W1 measurement state distinction success rates for a 99% confidence
threshold, with respect to the number of bipartite Pauli measurements, for noiseless
and strong decoherence scenarios. The crosses correspond to the original separation
distance d = 450µm while the dots correspond to the closer separation d = 350µm.
We observe that for decoherence rate γ = 0.03 and separating distance d = 450 µm,
measuring W1 102 times is enough to consistently tell the two states apart with a
false positive probability of 1%.

As stated previously, one must also be able to certify entanglement from the
witness empirical data. We see from Fig. 6.6 that even though in the original
d = 450 µm separation 102 witness measurements is sufficient to certify the alter-
native state, there is only a 70% chance that entanglement will be certified in the
strong decoherence scenario. Conversely, in the closer separation setup d = 350 µm
the resulting state is more entangled, which makes entanglement certification more
likely to succeed, and it is then the rejection of the null hypothesis in favour of the
alternative hypothesis that is more demanding.

This shows that there is a trade-off present, and one should carefully consider how
to optimise the strategy adopted depending on the experimental setup and expected
noise. The important point is that we have demonstrated that the protocol does not
need to be limited to negligible CP coupling. As such the distance can be reduced
as part of improving our approach to witnessing the desired non-classical effect.

Hence, from the repeated measurement of a single entanglement witness, pro-
vided good enough knowledge of the non-gravitational interactions, one can confirm
the presence of an entangled state that could not have been obtained without grav-
ity. On its own, obtaining such experimental conclusions would be quite convincing
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Figure 6.6: Probability of observing a negative empirical W1 witness average, with
respect to the number of bipartite Pauli measurements, for noiseless and strong
decoherence scenarios. The crosses correspond to the original separation distance
d = 450µm while the dots correspond to d = 350µm.

regarding the entangling ability of gravity, especially if gravity is the dominant in-
teraction.

One could ask whether quantum state tomography could be more reliable for
state distinction. In fact this turns out not to be the case. To rule out H0 in
favour of Ha, the witness measurement and full tomography are equivalently efficient
even in a regime dominated by CP interactions, that is, with the separation d

brought down to 350 µm. This is illustrated on the dotted plots in Fig. 6.5 and
Fig. 6.7. In both the cases of tomographic and witness measurements, the CP limit
can be overcome, and distinguishing the two states reliably requires around 103

bipartite Pauli measurements, that is, around 3× 102 witness measurements, or 102

state tomographies. It seems the witness measurement works well enough not to
need tomography. We shall see in Sec. 6.4 why it can still be interesting to use
tomographic data.

A final point here is that this does not rule out the possibility for better sets of
measurements than those provided by our new witness. Some alternative fixed set
of Pauli measurements could be found to perform better, or perhaps an adaptive
scheme [299] could provide improvements. Alternatively, an experiment for which
joint measurements are easily implemented would bring new possibilities into play.
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Figure 6.7: Tomographic state distinction success rates, for a 99% confidence thresh-
old, with respect to the number of bipartite Pauli measurements, for noiseless and
strong decoherence scenarios. The crosses correspond to the original separation
distance d = 450 µm while the dots correspond to the closer separation d = 350 µm.

6.3.3 Uncertainty in non-gravitational interactions

Having shown how to account for known non-gravitational interactions, we now in-
vestigate the impact on our approach of uncertainty in the non-gravitational interac-
tion strength. As a method to rule out H0, we demonstrated the use of a likelihood
ratio test, and in doing so we assumed good knowledge of the non-gravitational in-
teractions. Here, we shall show that the protocol and the likelihood ratio method
are robust even when there is uncertainty in the non-gravitational coupling con-
stants, with no need for modifications such as performing the experiment with two
different separation distances. This is essentially due to the fact that a difference
measurement is already included in the density matrix state that is a result of the
double interferometry, and that our proposed witness measurement relies on multiple
independent Pauli measurements.

The CP coupling constant α(R, ε) is a good example of a quantity that is not
precisely known, as some uncertainty may simply arise from the geometry of the not
strictly spherical microdiamonds. From first glance at Eq. (6.19) it seems that an
uncertainty in the CP interaction could potentially account for the observed data
we could obtain given Ha is true, and thus ruin all hopes of ruling out modified but
plausible versions of H0, in which the value of α is allowed a plausible degree of un-
certainty. The immediately apparent potential issue is that the witness expectation
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Figure 6.8: Witness measurement success rates with d = 350 µm, γ = 0.3 s−1 of
ruling out H0 or the modified H0 in favour of Ha, with respect to the number of
bipartite Pauli measurements.

values 〈W1〉0 and 〈W1〉a measured on the two possible states after a fixed free-fall
duration τ may coincide up to the error in α. In other words we might think gravity
is responsible for the witness expectation value but it could also be accounted for
by a larger α.

Although for the original separation distance d = 450 µm, this would require a
relative uncertainty on α of over 500%, not having precise knowledge of α becomes
more problematic at the proposed smaller separation setting d = 350 µm. With this
closer separation setting and a decoherence rate of γ = 0.3 s−1 the proposed optimal
free-fall duration for witnessing entanglement is τ = 0.34 s. Numerics show that for
this same free-fall duration, a modified null hypothesis state where α′ = 1.087α will
yield the same witness expectation value. This means a less than 9% uncertainty
on α is sufficient for witness measurement values in the null-hypothesis state to
converge to the same value as in the alternative hypothesis. One known solution to
solve this issue is to use the fact that the CP potential follows a 1/r7 law, whereas the
gravitational follows 1/r, which should show if we repeat the experiment but slightly
increase the separation distance, sometimes referred to as a differential measurement.

However, we in fact do not need to change the separation at all. Interestingly,
the protocol is already itself a differential measurement, and although one can think
of a modified α that could make the null and alternative witness expectation values
coincide, differences will still show in the individual Pauli observables involved in



6.4. MONOTONICITY LOOPHOLE 145

the witness measurement. This is corroborated by the plot shown on Fig. 6.8 where
we observe that the success rate still increases with the number of measurements,
despite having performed α → 1.087α for the null hypothesis state, such that the
witness expectation values are equal in both hypotheses. This modification of α in
the null hypothesis just makes it more demanding to rule out H0 but not impossible.
The number of bipartite Pauli measurements for a good state distinction success rate
go from a few 103 to a little less than 104.

In fact, the spin density matrices in the null and alternative hypotheses can
never be made equal by a simple change in the coupling constants. This is because
in Eq. (6.19) the Q(1) and Q(7) quantities are non-proportional tensors, they are
differences between several proximities to different powers. Let us note that the
same observation applies if one wishes to include dipole-dipole interactions, which
would involve a Q(3) quantity that is linearly independent of Q(1) and Q(7). The
only term that could not be separated would be one that varies with distance as
gravity does and thus contributes some Q(1) term. This emphasises the power of our
approach based on Pauli measurement likelihood ratios, rather than comparisons
of only the witness expectation values. The latter case cannot distinguish these
different interactions, whereas the former can.

6.4 Monotonicity loophole

6.4.1 Alternative states

Finally, we address a potential loophole for the witness-based approach and de-
scribe how full tomography could be used to provide a solution. We present results
from tomographic simulations which provide an order of magnitude estimate for the
number of measurements required for this approach.

We have shown that by analyzing the witness’ Pauli measurements, we are able to
state with a high degree of statistical confidence not only that the state is entangled
but also that the state was produced by a gravitational interaction as opposed to
merely a CP interaction. This would be a highly significant observation, but there
remains a potential loophole. Since entanglement witnesses are not entanglement
monotones, a skeptic could argue that we have not explicitly shown that gravity
has increased the entanglement. Indeed, in our model the null hypothesis state is
already entangled, with negativity N (ρC) = N0 > 0, and there exist other valid
quantum states ρ′CG that are indistinguishable from ρCG in the witness statistics, for
which the negativities Na may satisfy N0 > Na > 0. One such state can be found
explicitly as follows.

We have simulated a 3 × 103 element string of Pauli outcome data obtained
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from 103 measurements of W1 on the alternative hypothesis state ρCG. Given this
data, we have constructed a state ρlh that is at least as likely as ρCG given the data
but has a negativity that is lower than the null hypothesis state ρC . Explicitly for
separation distance d = 350 µm, decoherence rate γ = 0.3 s−1 with corresponding
free-fall duration τ = 0.34 s, one has N (ρC) ≈ 0.108 > N (ρlh) ≈ 0.104, where
quoting values to three decimal places we have

ρlh ≈


0.257 0.009 + 0.012i 0.042− 0.174i 0.211 + 0.011i

0.009− 0.0120i 0.244 0.108− 0.023i −0.008 + 0.004i

0.042 + 0.174i 0.108 + 0.023i 0.245 0.017 + 0.161i

0.211− 0.011i −0.008− 0.004i 0.017− 0.161i 0.254

 .

(6.38)
This state was obtained via a constrained optimization method (sequential least
squares programming) on the surface of a 15-dimensional sphere representing the
valid 2-qubit quantum state space, parameterized by 15 real angles. The function
to minimize was the negative logarithmic likelihood ratio given the data, under the
constraint that the state should be less negative than the null hypothesis state.

However contrived the argument would have to be to justify such a state, an
answer to eliminate this loophole can be provided by using full tomography and using
complete data to calculate an entanglement monotone, as we shall demonstrate.

6.4.2 Closing loophole with state reconstruction

Quantum state tomography is a method to estimate quantum states from a com-
plete set of measurements on many copies of the same state. It has been widely
studied in general [103, 300] as well as in its application to entanglement verifica-
tion [301]. Tomographic data allows one to perform state reconstruction and to
formulate rigorous and more general statistical statements on negativity distribu-
tions. We construct state estimators using the well known method of maximum
likelihood estimation [302]. It may not always be the most accurate estimation
method [303], but it is sufficient for our purpose, and indeed has been extensively
used in experiments [304, 305, 306].

We seek to predict how reliably the experiment with tomographic data can certify
gravitationally induced entanglement growth. To this end, we simulate a series of
full tomographies on the null and alternative hypothesis states ρC and ρCG, and re-
construct their corresponding maximum likelihood states ρML following a fixed-point
iterative method [307]. Explicitly, the maximum likelihood state can be obtained
from the empirical data vector n = [ni]1≤i≤4N containing the number of occurrence
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Setting
Repetitions

1 10 102 103

d = 450µm γ = 0 1.8% 40.7% > 99.9% > 99.9%
γ = 0.03 2.6% 2.8% 66.3% > 99.9%

d = 350µm γ = 0 1.2% 7.5% 53.2% > 99.9%
γ = 0.3 1.7% 4.1% 10.2% 88.7%

Figure 6.9: Probability for the reconstructed alternative hypothesis state to have a
higher negativity than the 99-th percentile most entangled reconstructed null hy-
pothesis state, with respect to the number of tomographic trials. Results are shown
for the original and shorter separation distances, and for the noiseless and strongest
decoherence rate cases.

of the Pauli-measurement outcome |ei〉〈ei| as it solves ρML = R(ρML)ρML, where

R : ρ 7−→ 1

||n||1

∑
i

ni
Tr(ρ |ei〉〈ei|)

|ei〉〈ei| . (6.39)

Then the sequence of two-qubit density matrices defined by ρ0 = I4/4 and ∀k ∈
N, ρk+1 = NTr (R(ρk)ρkR(ρk)) where NTr designates trace normalization, converges
heuristically to the maximum-likelihood state. In our simulations, we end the algo-
rithm at the 100th iteration. Among 103 trials of 10 full tomographic data genera-
tions and reconstructions, the fidelity F(ρ100, ρ) between the simulated states is at
least 90% and on average 95%. Among 103 trials of 103 tomographies, the fidelity
is systematically over 99%.

From the maximum likelihood reconstructed states, we find different negativity
distributions in the two hypotheses. The results are summed up in Fig. 6.9, and show
that in the original separation d = 450 µm a few 102 full tomographies is enough to
consistently reject the null hypothesis in the strongest considered decoherence rate,
and for the closer setup d = 350 µm where the CP interaction becomes significant,
103 full tomographies (so 9×103 bipartite Pauli measurements) is sufficient to reject
the null hypothesis almost 90% of the time, in the strongest decoherence scenario
with γ = 0.3 s−1.

It is therefore possible, in a relatively large but not unreasonable number of state
tomographies, to obtain reliable proof of entanglement growth by gravitational in-
teraction even in the presence of other stronger known couplings, and some unknown
interactions that contribute to the dynamics as a decoherence rate.

It should be emphasised that an experiment that adopts the witness approach
and finds positive results will be more than convincing enough for most physicists.
The tomographic approach should be viewed as an extra piece that could follow, in
order to make the empirical evidence more rigorous and complete.
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6.5 Conclusion

The recent proposal [259] for a test of the non-classical nature of gravity features
a promising protocol. Although the experimental requirements are futuristic, some
important theoretical questions, such as the adopted approximations, the possibility
of a better witness, the necessity of a CP closest approach limit, and the closing
of possible loopholes, were left open. In this chapter, we have addressed those
questions.

We showed that the approximation of the initial work are valid for a good range
of thermal states in the range of proposed experiment durations. By introducing
a new entanglement witness, we were able to show that entanglement revelation
is possible with dramatically less free-fall time. We have furthermore pointed out
that the result of the experiment should be analysed statistically and that this
enables closer distances where the CP interaction is no longer negligible, i.e. we
have enabled a relaxing of the original proposals requirement that gravity be the
dominant interaction. We also showed that our statistical approach allows one
to deal with some uncertainty in the coupling constants of the other significant
interactions, illustrated again with the CP interaction. In brief our work enables the
spin witness protocol to work better with noisy dynamics, in sub-second interaction
times.

Finally, we pointed out a potential loophole with the witness approach based
on the fact witnesses are not entanglement monotones and illustrated how this can
be rigorously closed using state tomography. An interesting future research direc-
tion would be to see if the same result can be achieved more efficiently, through
some adaptive approach or a hybrid scheme where witness measurements are sup-
plemented by a limited number of measurements in other bases.



Chapter 7

Conclusions and Outlook

He knew that all the hazards and perils were now drawing together to a
point: the next day would be a day of doom, the day of final effort or
disaster, the last gasp.

– J. R. R. Tolkien, The Return of the King

In this thesis we have presented work on quantum correlations. We began by
providing historical context and motivation, tracing the story back from the early
20th century through to the modern understanding within the field of quantum
information theory. This was followed by a chapter laying out the fundamentals,
taking in the necessary mathematics, quantum theory and foundations of quantum
correlations. We then reported results from research on various topics in the field of
quantum correlations. These have ranged from points of foundational interest such
as understanding entanglement’s capacity to enable interactions to be delocalised
and how entanglement can be affected by relativistic motion, through to more prac-
tical uses as a resource for sharing information whilst maintaining anonymity and
as a means to experimentally test for non-classicality of gravity. This has hopefully
demonstrated some of the impressive breadth of ideas and new directions within the
field. In this final chapter we shall briefly draw together the main conclusions and
look forward to future research directions for each of the topics considered.

In Chapter 3 we characterised the quantum correlations required for maintaining
anonymity in a metrology task. The most interesting result was the demonstrated
operational distinction between subsets of discord and entanglement. It also cap-
tured anonymity resources which appear to resemble some hybrid of coherence and
correlation which could prove an interesting topic for further study. Experimental
realisations would probably be possible, but the protocol does not have any obvious
commercial applications, instead it helps clarify the strengths of the various quantum
correlations. Furthermore, results on the strongly anonymous case were the direct
inspiration for the developments in formulating and understanding delocalised in-
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teractions. More generally, the use of quantum correlations to hide information is
still a topic of interest [308, 309, 310], and the related topic of quantum cryptogra-
phy may be close to significant commercial fruition, with companies already selling
actual devices [311].

In Chapter 4 we formulated and studied delocalised interactions. The concept
of delocalised interactions is physically interesting in large part by virtue of its clas-
sically unintuitive nature, demonstrating that interactions can happen without a
unique location and that entanglement is key to this departure from classical logic.
The strong relation with concurrence was an unexpected discovery, together with
the connection to teleportation which could be further explored in future work. The
attempt to encapsulate the concept with an information theoretic inequality did
not fully succeed but remains an interesting direction for further study. Perhaps
entropic quantities could prove superior to the trace distance in this regard. Addi-
tional research could also generalise the games to multipartite settings, where it is
known that entanglement can have a more complicated structure, even for just three
qubits [312]. Further generalisation could be found by exploring the use of higher
dimensional quantum systems and investigating games with more question states.
From an experimental point of view it was pleasing to be able to demonstrate the
effect using the IBM device, but a less noisy demonstration with attention paid to
closing loopholes could provide a more convincing demonstration.

In Chapter 5 we studied entanglement under motion when relativity is accounted
for. We showed how the capacity for boosts to change the entanglement between
internal spin and motional states is also present for internal energy levels, and indeed
is relatively more straightforward to work with. We found that this could lead
to small but interesting effects such as reducing the purity of energy-level based
qubits. We then applied our understanding of these boosts to the question of proper
time for quantum clocks and recovered the full behaviour for both cases in a twin-
paradox scenario. We contrasted this with the non-classical behaviour caused by
momentum boosts, in particular deriving the experimentally observed behaviour
for atomic clocks together with an additional frequency shift. This situation where
clocks are defined despite occupying superpositions of frames might prove interesting
to study through the lens of quantum reference frames [252]. The topic of proper
time for quantum clocks is an active area of study, although unfortunately many of
the new effects are not easy to demonstrate experimentally. Perhaps technological
improvements or novel quantum control techniques will help move this forward.
From a theoretical point of view there is still a lack of consensus on the importance
of entanglement between internal and motion degrees of freedom in order to claim
classical time dilation [249, 313, 314]. Hopefully going forward a clear understanding
and terminology can be agreed upon across the community.
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In Chapter 6 we introduced improvements to a proposed protocol for testing
non-classicality of gravity. This helped bring the experiment closer to feasibility,
though it is still a highly challenging project. However there is a continuing effort to
improve, such as recent work addressing important aspects for noise mitigation [315].
It could be interesting to see if we can build further on our approach, for instance by
considering non-linear entanglement witnesses [316], or by trying to close the mono-
tonicity loophole with some minimal introduction of new measurement settings or
an adaptive scheme rather than full tomography. There can be other approaches to
the problem of witnessing non-classical gravity such as using non-Gaussianity [317]
and it could be fruitful to see if such proposals can be enhanced by the tools we
made use of here. It would also be worthwhile to understand whether different pro-
posals can be robust to non-gravitational interactions of unknown strength, which
we demonstrated in the spin witness protocol and is essentially a consequence of it
being a form of difference measurement. There has also been a proposal to use a
similar setup to the spin witness protocol but to test for discreteness of time [318], so
there could be opportunities to build on this line of enquiry. Additionally, it could
prove beneficial to consider the spin witness protocol but refocused to observing
the effects of the Casimir-Polder interaction. Since at short distances this can be
significantly stronger than the gravitational interaction and it does not require as
large masses, it might prove an easier first experiment to realise. This would demon-
strate a novel phenomenon in creating and verifying entanglement generated by the
Casimir-Polder force, and would also serve as a useful testing ground to develop and
improve ideas with the aim of an eventual experiment to test for non-classicality of
gravity.

The overall outlook for quantum correlations as a field of study is certainly posi-
tive. We have only touched on a handful of the many directions in which this field is
advancing. In the 85 years since its inception, many important questions have been
answered, but we are still uncovering new facets and deepening our understanding
of this most enigmatic of topics. Conceptual questions in this area are naturally
enticing to theorists, but with the ever impressive improvements in quantum tech-
nology we are arguably in a golden age for quantum research. The much touted
quantum internet [319, 320] seems ever nearer, with a growing number of demon-
stration networks [321, 322, 323, 324] and realisations of various quantum protocols
using satellites [325, 326, 327, 328, 329, 330, 331]. Additionally the field of quantum
computation keeps advancing [332, 333, 334, 335]. Researchers can now construct
devices with which they claim to demonstrate the dramatically named quantum
supremacy [336], and though this is a controversial assertion, it would have seemed
completely outlandish not that long ago. With large networks of distributed en-
tanglement and such well controlled multi-qubit quantum systems, the ability to
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manipulate entanglement and realise protocols that test or make use of quantum
correlations is ever expanding. Just to take one example, so much past study of
quantum correlations has focused on the bipartite setting, but the preponderance
of large scale quantum systems could spur a new wave of improvements to our un-
derstanding of the multipartite settings. In addition to this direction of progress,
we should also highlight that quantum control of increasingly massive systems has
also shown great advancements [337, 338, 339, 340, 341, 342, 343]. Not only do
some of these bring practical uses such as in quantum sensing [344], but they also
provide the potential for probing new regimes together with various exciting tests
of fundamental physics, in which as we have seen, entanglement can play a key role.

As a final point to bear in mind, it is always difficult to fully envisage where sci-
ence and technology will take us. In 1952 Schrödinger wrote that “we never experi-
ment with just one electron or atom or (small) molecule. In thought-experiments we
sometimes assume that we do; this invariably entails ridiculous consequences” [345].
The 2012 Nobel prize was awarded for ground-breaking experimental methods that
enable measuring and manipulation of individual quantum systems. The lesson is
that even great scientists can be blindsided by the advancements in our ability to
control and investigate nature. As such, new experimental breakthroughs could
open entirely unexpected areas for quantum research, but one would not bet against
the importance of quantum correlations in aiding our understanding for whatever
direction the field moves. Quantum correlations will always remain one of the most
counter-intuitive and foundationally important aspects of quantum theory.
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