
2021 116

Eduardo Royo Amondarain

Non-perturbative physics
in lattice gauge theories

Director/es
Azcoiti Pérez, Vicente
Follana Adín, Eduardo



© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606



Eduardo Royo Amondarain

NON-PERTURBATIVE PHYSICS IN LATTICE
GAUGE THEORIES

Director/es

Azcoiti Pérez, Vicente
Follana Adín, Eduardo

Tesis Doctoral

Autor

2021

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Física



Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



Non-perturbative physics
in lattice gauge theories

Doctoral dissertation of

Eduardo Royo Amondarain

Supervised by

Vicente Azcoiti Pérez
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Educativo. Buenos ejemplos seŕıan mi profesora de Lengua en 1o de la E.S.O.
o mi tutor durante ese mismo curso, de Dibujo, sin olvidar la profesora que, en
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Departamento de F́ısica Teórica, cuyas asignaturas siempre dejaban con ganas de
seguir indagando en la materia. El agradecimiento al Departamento es doble, de
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Introduction

A few decades have passed since quantum chromodynamics (QCD) was established
as the theory describing strong interactions. It is broadly accepted as one of the
most successful theories in modern physics, and it has been extensively tested,
both from the theoretical and the experimental perspectives.

At high energies, QCD is asymptotically free, which means that its funda-
mental constituents, quarks and gluons, interact with a strength that decreases
as the energy scale reaches higher values. In this regime, it is feasible to use
perturbation theory to resolve short distance interactions. When studying high
energy cross sections, both short and long distance interactions have to be taken
into account. However, with the help of factorization theorems [1], it is possible
to combine perturbative QCD with some non-perturbative input, from empirical
or theoretical sources, and obtain predictions that can be confronted with ex-
periment. Indeed, this program has been carried out by a wide community of
scientists, working in hundreds of Universities, laboratories and often organized in
large international collaborations, including several particle colliders around the
world. The significant amount of evidence gathered has allowed QCD to become
a reliable component of the Standard Model of particle physics. Moreover, per-
turbative QCD is nowadays a very active field of research, since facilities such as
the Large Hadron Collider provide new experimental data every year [2], and a
great theoretical effort must be done in order to calculate the first terms of the
corresponding expansions.

On the other hand, for not-so-high energies, the strong interaction cannot be
reduced to a converging series of Feynman diagrams. In fact, one of the character-
istic properties of QCD is the so-called color-confinement. This means that quarks
are always (excluding high density regimes) in bound states, called hadrons, which
are color-neutral. In this purely non-perturbative regime, there are few techniques
that can analyze the theory successfully. Probably the most well-established of
them is lattice QCD. Since the foundational work of Wilson in 1974 [3], the suc-
cess of the lattice approach has been growing consistently over time. Whereas
during the first years performing the necessary calculations to extract meaningful
results from QCD seemed remote, the progressive refinement of the algorithms
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and the exponential increase of computer power available worldwide turned over
the situation. Many milestones have already been reached: precise simulations in-
cluding the effects of virtual quark loops [4], the determination of the light hadron
spectrum with fully controlled systematics [5] or, more recently, the computation
of the isospin splittings—mass difference between neutron and proton, and other
hadronic channels—with great agreement with the experimental data, even exceed-
ing its precision in some cases [6]. All of these are good examples of the success of
the method.

For the above reasons, QCD is believed to be the correct theory describing
strong interactions, both for high and low energies, and lattice QCD is recognized
by the community as a trustworthy ab initio approach that has an useful interac-
tion with experiment, paraphrasing Wilson [7]. It is tempting to think that, with
the current evolution of computing power, it is just a matter of time for the lattice
approach to address, and eventually solve, every non-perturbative problem that
still awaits an answer. Of course things are not so easy, and even if for a subset
of problems it would be enough to have more powerful machines, there are some
fundamental topics that still constitute open questions. At least two problems
share this status: the behavior of matter at finite baryonic density—including its
temperature-density phase diagram—and the studies involving topological effects
in QCD. Although, as we will see, there have been numerous attempts, the ad-
vances in both topics have been scarce. The main difficulty behind the modest
progress achieved in both areas is the same: the action of the theory is complex,
and there is no known reformulation that can avoid the appearance of a severe
sign problem (SSP).

The SSP can be defined as the problem of numerically evaluating the integral of
a highly oscillatory function, depending on a large number of variables. It belongs
to the NP-complete class of problems [8], meaning that finding an algorithm that
overcomes the SSP in polynomial time would be equivalent to prove that P=NP,
one of the seven Millennium Problems posed by the Clay Mathematics Institute.
In other words, if such an algorithm exists, it would solve all NP problems in
polynomial time. But, up to this day, the P vs NP dilemma remains without
answer, and consequently there is no general solution to the SSP that allows the
usual Monte Carlo techniques to work. Thus, efforts in trying to overcome this
major difficulty concentrate in the elaboration of different methods, tailored to the
specifics of the problem at hand. Such is the case of QCD with an imaginary part
in the action, which shows up when chemical potential (µ > 0) or topological (θ)
terms are present.

In order to advance in the understanding of complex action QCD, several pro-
posals have been developed over the last few decades. Complex Langevin dynam-
ics [9–11], the approaches developed by Azcoiti et al [12, 13] and, more recently,
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Lefschetz thimbles [14–16] and the density-of-states method [17–19], are relevant
examples of some of these attempts. In general, these strategies have allowed to
study a considerable number of toy models and, in some cases, have obtained
some interesting results for QCD with finite chemical potential. However, almost
no progress has been made with θ QCD, due to either the different fundamental
limitations these methods suffer of, or the practical difficulties that their imple-
mentations involve.

In this context, the main part of this thesis has been devoted to study models
which suffer from a SSP, such as the two-dimensional Ising model within an imag-
inary magnetic field or the massive 1-flavor Schwinger model with a θ term. In
the first case, we study the well-known model by means of analytical techniques,
exploring a region of the parameter space—real temperature and purely imaginary
magnetic field—somewhat unattended by the literature, possibly due to the diffi-
culty of applying either analytical or numerical techniques. According to the few
works that explore this system [20,21], a rich phase structure should be expected.
Our work pretends to test the validity of one of the methods of Azcoiti et al [13,21]
in this scenario, and, as long as it can provide an insight into a critical region that
suffers from a SSP—which had hampered the attainment of a numerical solution—
we hope that it can serve as a benchmark for methods aspiring to overcome the
SSP in any lattice gauge theory.

With the aim of engaging with QCD-like systems with a θ term, and in this way
develop further the methods dealing with the SSP, we have studied the massive
1-flavor Schwinger model with a θ term, which corresponds to QED in 1 + 1
dimensions. As we shall see, it shares a large number of features with QCD,
including confinement and, in a way, asymptotic freedom, being in fact broadly
used as its toy model. Moreover, defining the topological charge on the lattice
is almost trivial in this model, in contrast with any of the usual definitions of
this observable in lattice QCD, which are much more involved. This fact has
allowed us to explore the model with a feasible computational cost, obtaining
results that are compatible with Coleman’s analytical prediction [22] and, more
importantly, testing the method developed in [13] in a gauge theory with fermions,
which constitutes an important step in the way to its application in full QCD.

As a byproduct of the previous line of work, and driven by the necessity of
optimizing further our previous algorithms, we have also analysed the 2-flavor
version of the Schwinger model. In this case, we have bypassed the computation
of the full fermionic determinant by following an approach based on the use of
pseudofermions [23].

Beyond the study of systems afflicted by a SSP, another topic within lattice
QCD has been treated during the development of this thesis: the running coupling
αS. The dependence of αS(q2) with the momentum transfer q, which encodes the
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underlying interactions of quarks and gluons in the QCD framework, constitutes a
very active field of research, that includes a large variety of approaches [24]. The
interest that this matter generates is divided between the behavior of the coupling
in the infrared region—where nowadays there is no consensus about αS(q2 → 0)
tending to zero, freezing or even diverging—and at large momenta, where per-
turbative QCD can be applied and both experimental and theoretical methods
try to provide the most accurate approximation. In this context, lattice-based
strategies have been capable of delivering results both in the infrared region and
in the high energy regime, where in fact they provide the most precise determina-
tion of αS(MZ) [2]. Our work can be framed precisely into these approaches that
come from lattice QCD, and it relies upon a ghost-gluon vertex computation, as
in [25–27].

This thesis is orgnized as follows. In Chapter 1 we review the fundamentals
of some of the topics presented in this introduction, including a brief historical
review of the lattice approach. A motivation for the inclusion of a θ term in the
QCD action is developed in Chapter 2, together with a brief review of the existing
approaches to this problem. Chapter 3, based on the work presented in [28], is
dedicated to the Ising model within an imaginary magnetic field. Hereafter we
address the study of the massive Schwinger model with a θ term. The 1-flavor
results, relying on the work presented in [29], are reported in Chapter 4, whereas
the 2-flavor case is treated with a pseudofermions approach in Chapter 5. Finally,
Chapter 6 covers the computation of αs(q

2) via the ghost-gluon vertex. Lastly,
our conclusions are summarized in the homonymous chapter and technical details
concerning the computation of the cumulant expansion performed in Chapter 3
are given in Appendix A.



Introducción

Varias décadas han pasado desde que la cromodinámica cuántica (QCD, por sus
siglas en inglés) se estableció como la teoŕıa que describe las interacciones fuertes.
Es ampliamente aceptada como una de las teoŕıas más exitosas de la f́ısica moderna
y ha sido puesta a prueba de forma exhaustiva, tanto desde el punto de vista teórico
como del experimental.

A altas enerǵıas, QCD es asintóticamente libre, lo que significa que sus consti-
tuyentes fundamentales, quarks y gluones, interaccionan con una intensidad que
decrece conforme la enerǵıa alcanza escalas más altas. En esta situación, resulta
factible aplicar la teoŕıa de perturbaciones para resolver las interacciones a corta
distancia. Al estudiar secciones eficaces en procesos de altas enerǵıas, es necesario
tener en cuenta las interacciones producidas tanto a corta como a larga distancia.
Sin embargo, con la ayuda de los teoremas de factorización [1], es posible com-
binar QCD perturbativa con cierto input no perturbativo, proveniente de fuentes
emṕıricas o teóricas, y obtener aśı predicciones que pueden ser confrontadas ex-
perimentalmente. De hecho, este programa ha sido llevado a cabo por una amplia
comunidad de cient́ıficos y cient́ıficas, trabajando en cientos de Universidades, lab-
oratorios y habitualmente organizados en grandes colaboraciones internacionales,
incluyendo varios aceleradores de part́ıculas. La importante cantidad de evidencias
recogidas en este proceso ha permitido a QCD convertirse en un componente muy
fiable del actual Modelo Estándar de f́ısica de part́ıculas. Además, QCD pertur-
bativa es hoy en d́ıa un campo de investigación muy activo, toda vez que centros
como el Gran Colisionador de Hadrones proveen de nuevos datos experimentales
cada año [2], y debe invertirse un gran esfuerzo teórico en el cálculo de los primeros
términos de las expansiones correspondientes.

Por otro lado, para escalas de enerǵıa no tan elevadas, la interacción fuerte
no puede ser reducida a una serie convergente de diagramas de Feynman. De he-
cho, una de sus propiedades caracteŕısticas es el llamado confinamiento de color.
Esto significa que los quarks se encuentran siempre (excluyendo régimenes de alta
densidad) en estados ligados, llamados hadrones, que son neutrales respecto del
color. En esta situación puramente no perturbativa, hay pocas técnicas que puedan
analizar la teoŕıa con éxito. Probablemente la que mejor establecida está es QCD
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en el ret́ıculo, denominada comunmente lattice QCD. Desde el trabajo fundacional
de Wilson en 1974 [3], el éxito del método ha ido creciendo con el tiempo. Si bien
durante los primeros años realizar los cálculos necesarios para extraer resultados
significativos de QCD parećıa muy lejano, el progresivo refinamiento de los algorit-
mos junto con el crecimiento exponencial de la capacidad computacional mundial
dio la vuelta a la situación. Muchos hitos han sido ya alcanzados: simulaciones
precisas incluyendo los efectos de loops de quarks virtuales [4], la determinación
del espectro de hadrones ligeros con errores sistemáticos totalmente controlados [5]
o, más recientemente, la computación de los splittings de isosṕın (esto es, de las
diferencias de masa entre neutrón y protón, u otros canales hadrónicos) con gran
acuerdo con los datos experimentales, incluso excediendo su precisión en algunos
casos [6]. Todos ellos son buenos ejemplos del éxito de este enfoque.

Por los motivos citados, QCD es considerada como la teoŕıa que describe correc-
tamente la interacción fuerte, tanto para altas como para bajas enerǵıas, y lattice
QCD es reconocido por la comunidad como un método ab initio fiable que tiene
una interacción útil con lo experimental, parafraseando a Wilson [7]. Es tentador
pensar que, con la evolución actual de la potencia de cálculo, seŕıa simplemente
cuestión de tiempo que el enfoque de la lattice enfrentase y resolviese cada uno de
los problemas no perturbativos que todav́ıa esperan una solución. Por supuesto, las
cosas no son tan sencillas, e incluso cuando para un subconjunto de problemas bas-
taŕıa con contar con equipos más potentes, existen temas fundamentales que hoy
en d́ıa constituyen preguntas abiertas. Al menos dos problemas comparten este es-
tatus: el comportamiento de la materia a densidad bariónica finita—incluyendo su
diagrama de fases de temperatura-densidad—y los estudios que involucran efectos
topológicos en QCD. Aunque, como veremos, los intentos han sido numerosos, los
avances en ambos campos han sido escasos. La principal dificultad detrás de este
modesto progreso en ambas áreas es la misma: la acción de la teoŕıa es compleja,
y no existe reformulación conocida que pueda evitar la aparición de un problema
de signo severo (SSP, por sus siglas en inglés).

El SSP puede ser definido como el problema de evaluar numéricamente la in-
tegral de una función muy oscilatoria, que además depende de un gran número
de variables. Pertenece a la clase de problemas NP-completos [8], lo que significa
que encontrar un algoritmo que superase el SSP en tiempo polinómico equivaldŕıa
a probar que P=NP, uno de los siete Problemas del milenio propuestos por el
Clay Mathematics Institute. En otras palabras, si un algoritmo aśı existiese, re-
solveŕıa todos los problemas de clase NP en tiempo polinómico. Pero, hasta el
d́ıa de hoy, el dilema P vs NP continúa sin respuesta, y consecuentemente no
existe solución general para el SSP que permita la aplicación de las técnicas de
Montecarlo usuales. Aśı pues, los esfuerzos dedicados a intentar superar esta di-
ficultad se concentran en la elaboración de diferentes métodos, adaptados a las
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particularidades del problema en cuestión. Este es el caso de QCD con compo-
nente imaginaria en la acción, que aparece cuando están presentes los términos
correspondientes al potencial qúımico (µ > 0) o a efectos topológicos (θ 6= 0).

Con el objetivo de avanzar en la comprensión de QCD con acción compleja,
varias propuestas se han desarrollado a lo largo de las últimas décadas. La
dinámica de Langevin compleja [9–11], los métodos desarrollados por Azcoiti et
al [12,13] y, más recientemente, los dedales de Lefschetz [14–16] y el método de la
densidad de estados [17–19], son ejemplos relevantes de algunos de estos intentos.
En general, estas estrategias han permitido estudiar un número considerable de
toy models y, en algunos casos, han obtenido resultados interesantes para QCD
con potencial qúımico finito. Sin embargo, en el caso de θ QCD no se ha podido
obtener casi ningún progreso, debido bien a las diferentes limitaciones fundamen-
tales de las que los métodos citados adolecen, bien por las dificultades prácticas
que sus respectivas implementaciones implican.

En este contexto, la parte principal de esta tesis se ha dedicado al estudio
de modelos que sufren de un SSP, como el modelo de Ising bidimiensional con
campo magnético puramente imaginario, o el modelo de Schwinger masivo con un
único flavor y un término θ. En el primer caso, estudiamos el conocido modelo
por medio de técnicas anaĺıticas, explorando una región del espacio de parámetros
(temperatura real y campo magnético imaginario) algo desatendida en la liter-
atura, posiblemente debido a la dificultad de aplicar técnicas tanto anaĺıticas como
numéricas. De acuerdo con los pocos trabajos que exploran este sistema [20, 21],
se espera una estructura de fases con cierta riqueza. Nuesto trabajo pretende pro-
bar la validez de uno de los métodos de Azcoiti et al [13, 21] en este escenario y,
dado que puede arrojar algo de luz en una región cŕıtica que sufre de un SSP (que
ha obstaculizado la consecución de una solución numérica) esperamos que pueda
servir como referencia para otros métodos que aspiren a superar el problema del
signo en cualquier teoŕıa gauge en el ret́ıculo.

Con el objetivo de enfrentar sistemas similares a QCD con un término θ, y de
este modo desarrollar los métodos que lidian con el SSP, hemos estudiado el mod-
elo de Schwinger masivo con un flavor y término θ, que se corresponde con QED
en dimensión 1 + 1. Como veremos, comparte un gran número de propiedades
con QCD, incluyendo el confinamiento y, en cierto modo, la libertad asintótica,
por lo que de hecho es ampliamente usado como su toy model. Además, definir
la carga topológica en este modelo es casi trivial, en contraste con cualquiera de
las definiciones usuales para este observable en QCD, que resultan mucho más
intrincadas. Este hecho nos ha permitido explorar el modelo con un coste com-
putacional factible, obteniendo resultados compatibles con la predicción anaĺıtica
de Coleman [22] y, lo que es más importante, poninedo a prueba el método de-
sarrollado en [13] en una teoŕıa gauge con fermiones, lo que constituye un paso
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importante en el camino a su aplicación en QCD.
Como derivado de la ĺınea de trabajo anterior, y empujados por la necesidad

de una mayor optimización de los algoritmos anteriores, también hemos analizado
la versión de 2 flavors del modelo de Schwinger. En este caso, se ha evitado el
cálculo completo del determinante fermiónico siguiendo un enfoque basado en la
técnica de los pseudofermiones [23].

Más allá del estudio de sistemas afectados por un problema de signo, otro tema,
incluido dentro de lattice QCD, se ha tratado en esta tesis: el running coupling
αS. La dependencia de αS(q2) con el momento transferido q, que codifica las
interacciones subyacentes de quarks y gluones en el marco de QCD, constituye un
campo de investigación muy activo, que incluye una gran variedad de metodoloǵıas
[24]. El interés que esta materia genera se divide entre el comportamiento de
este acoplamiento en la región infrarroja, donde hoy en d́ıa no existe consenso
sobre si αS(q2 → 0) tiende a cero, se congela o incluso diverge, y a momentos
altos, donde QCD perturbativa puede ser aplicada y métodos tanto teóricos como
experimentales intentan proveer la aproximación más precisa. En este contexto,
las estrategias basadas en el ret́ıculo han sido capaces de ofrecer resultados para
ambos casos, consiguiendo de hecho la determinación más precisa para αS(MZ) [2].
Nuestro trabajo puede ubicarse precisamente entre los enfoques que vienen de la
lattice, y se apoya en un cálculo del vértice ghost-gluon, como en [25–27].

Esta tesis se organiza como sigue. En el Caṕıtulo 1 repasamos lo fundamental
de algunos de los temas presentados en esta introducción, incluyendo un breve
resumen histórico sobre el origen de lattice QCD. Una motivación para la inclusión
del término θ en la acción de QCD se desarrolla en el Caṕıtulo 2, junto con
un breve repaso de de los enfoques existentes para este problema. El Caṕıtulo
3, basado en el trabajo presentado en [28], se dedica al modelo de Ising en un
campo magnético puramente imaginario. A continuación enfrentamos el estudio
del modelo de Schwinger masivo con término θ. Los resultados para el caso de
un único flavor, presentados en [29], se ofrecen en el Caṕıtulo 4, mientras que
el caso de 2 flavors se trata con un método basado en pseudofermiones en el
Caṕıtulo 5. Finalmente, el Caṕıtulo 6 cubre la computación de αs(q

2) mediante el
vértice ghost-gluon. Para acabar, nuestras conclusiones se resumen en el caṕıtulo
homónomio, y algunos detalles técnicos, que conciernen al cómputo de la expansión
de cumulantes realizada en el Caṕıtulo 3, se discuten en el Apéndice A.



Chapter 1

The lattice approach

In this chapter we cover the essential points of the lattice approach to QCD, includ-
ing a brief historical review of its birth and evolution over the past few decades.
The main aspects of the formalism are explained, discussing the strenghs and lim-
itations of Monte Carlo methods when studying lattice gauge theories. Finally,
some considerations about the type of errors associated with this methodology are
discussed, recalling how we can control them and, eventually, in which way we can
provide a precise estimation of a given observable.

1.1 The dawn of color

The appearance of quarks and gluons as the fundamental constituents of baryons
and mesons is relatively recent. In order to give the necessary context, it is desir-
able to go back to the middle of the last century. The discovery of the pion through
cosmic ray experiments in 1947 [30], which was soon followed by those of the first
strange particles, the kaon and the Λ, marked the beginning of a tendency that
continued during the 50s, by means of different experiments involving particle col-
liders. This experimental fact, i.e., the discovery of a large number of new particles
and resonances that were somehow related, claimed for an explanation in terms of
a reduced set of degrees of freedom. It was in 1961 when Murray Gell-Mann (who
had previously introduced the strangeness as a quantum number, conserved by
both electromagnetic and strong interactions) provided a successful explanation of
the so-called particle zoo, in his famous The Eightfold Way [31]. By extending the
SU(2) isospin symmetry, Gell-Mann proposed a SU(3) flavor symmetry, broken
by mass differences, that was capable to organize all the observed hadronic states.
Moreover, this symmetry predicted the existence of the Ω− baryon, a particle that
was observed three years later, with a mass that matched accurately the value
anticipated by the model [32]. Precisely Gell-Mann in 1964, and independently

9
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Zweig [33], proposed that both mesons and baryons were composed of more fun-
damental constituents (called quarks by the mentor, and aces by his pupil) which
hold fractional electric charge.

At this point, some questions still remained to complete the quark puzzle. Par-
ticularly relevant was the fact that the Ω− particle, composed of three s quarks in
its ground state, should have a symmetric wave function. This was in contradic-
tion with Pauli exclusion principle, which required an antisymmetric wave function
under the exchange of two quarks, which were assumed to be fermions of spin 1/2.
Another concern involved the decay amplitudes predicted by the quark model,
which differed from the values measured in electron-positron colliders. Both issues
were addressed by Gell-Mann, Fritzsch and Bardeen, who during 1971 and 1972
introduced a new exact SU(3) symmetry for the quarks, named color [34–36],
which was exactly conserved. Color was soon interpreted as a gauge symmetry
and a field theory was constructed by Gell-Mann, Fritzsch and Leutwyler [37] and
independently by Gross and Wilczek [38] in 1973, who emphasized (as Politzer
in [39]) one of the characteristic properties of the new theoretical artifact: asymp-
totic freedom. Later, Fritzsch and Gell-Mann would finally give the theory its
modern name: Quantum Chromodynamics.

In order to complete the picture of QCD, another phenomenon had to be ex-
plained: why experiments only measure color singlets, i.e., baryons and mesons
are free of any color charge, and individual quarks are not present in nature as
free particles. To explain this confinement of quarks and gluons into hadrons,
Wilson demonstrated in 1974 how lattice gauge theories confine charged states in
the strong coupling limit [3]. This work set the basis for the qualitative under-
standing of color confinement—and in this way closes the early period in which
QCD was constructed—but its influence over the theory would transcend by far
this objective, since the regularization developed by Wilson opened a whole new
field within high energy physics. With respect to confinement itself, it should be
noted that, although there exist broad numerical evidence of its validity, today a
rigorous mathematical proof is still lacking.

1.2 A discretized spacetime

The formulation of Quantum Chromodynamics as the dynamical theory of the
strong interaction, together with the understanding of asymptotic freedom and
confinement, is without doubt one of the key milestones reached during the past
century. Even so, and due to the strongly coupled nature of the theory, the pre-
dictive power of QCD was severely limited during its first steps. Specially at low
energies, perturbative methods—developed with great success for processes involv-
ing Quantum Electrodynamics—were of no use, making observables such as the
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hadron spectrum unreachable.

In this context, Wilson introduced—in which is considered to be the founda-
tional work of the lattice approach [3]—a novel non-perturbative regularization of
QCD. The essential ideas of the procedure, applicable to any gauge theory, have
endured up to the present day, and are relatively simple. Starting from Feynman’s
path integral formalism, spacetime is discretized in a four-dimensional (Euclidean)
hypercube. All objects are now defined in the sites of the hypercube, or the links
joining them. This procedure is done in such a way that gauge symmetry is ex-
actly preserved. Although Lorentz (or Euclidean) invariance is lost for any finite
lattice spacing a, Wilson argued that this obstacle could be overcome by means of
a renormalization-group approach, possible if there exists a critical point at some
value of the gauge-coupling of the theory.

At this point, and even if lattice QCD had elucidated the confinement phe-
nomenon, it was unclear how the approach could be exploited in order to calculate
relevant physical observables. The turning point came by the end of the decade,
when a procedure widely used at the time in Statistical Mechanics was introduced
into the realm of Field Theory. In 1978, Wilson [40] proposed to apply Monte
Carlo methods, namely a Metropolis algorithm, to lattice gauge theories, in order
to elucidate numerically the confinement phenomenon. With a detailed prescrip-
tion of how observables should be measured in such a framework, he also pointed
out that the first calculations were already ongoing for the SU(2) gauge theory.
The first numerical results, that demonstrated the potential of the new technique,
came by Creutz, Jacobs and Rebbi in 1979 [41], who performed a simulation of
the gauge Z(2) model in four dimensions, observing a first-order transition that
supported the confinement hypothesis by countering a previous conjecture due to
Migdal [42]. In the same year, Wilson [43] presented another renormalization-
group approach to the SU(2) gauge theory, importing block-spin techniques from
Statistical Mechanics. Already in 1980, Creutz [44] provided further evidence of
both confinement and asymptotic freedom in the SU(2) gauge theory, ensuring
in this way the possibility of taking the continuum limit by holding constant a
physical observable like the string tension.

These novel ideas crystallized in several works over the years to follow, including
the pioneering computations of the rho meson mass for a discrete approximation of
the SU(2) theory, by Weingarten [45], or the calculation of several hadron masses
due to Hamber and Parisi [46], performed already with SU(3) as the gauge group.
In both cases, the limits imposed by computational resources were alleviated by
the use of the so-called quenched approximation, which neglects entirely the effect
of virtual quark loops—with the associated addition of uncontrolled errors. The
inclusion of full dynamical fermions, i.e., taking into account both gluon and quark
dynamics, was achieved first in 1983 by Azcoiti and Nakamura [47], who, leaning
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on the pseudofermions method proposed by Fucito et al [23], computed the mass
splitting of the rho and omega mesons for the icosahedral approximation of SU(2)
as the gauge group. A similar computation, also relying in the pseudofermionic
approach, was made by Hamber in 1985 [48], already using SU(3) as the gauge
symmetry group.

These early studies, even when they were made with very modest compu-
tational power by today standards, and with a number of sources of uncon-
trolled systematic errors—especially significant for those made within the quenched
approximation—were successful in proving the feasibility of the lattice approach.
During the subsequent decades, computing resources kept growing steadily. In par-
allel, new algorithmic and theoretical advances were developed, which ultimately
made possible breakthroughs such as the computation of the light hadron spectrum
from first principles [5] or, more recently, the determination of the isospin mass
splittings [6]. At present time, there exist many research groups actively working
in this area; state-of-the-art results can be reviewed annually in the proceedings
of the International Symposium on Lattice Field Theory.

For more details about the historical development of the lattice approach, in-
cluding a more technical discussion on the issue, we refer the interested reader to
the extensive review of Fodor and Hoelbling [49].

1.3 The formalism

At this point, and before discussing some of the caveats of the lattice approach, it
seems desirable to sketch at least the basic premises of the method. In any case,
for a more exhaustive introduction to the topic, we recommend the interested
reader the lecture notes of Davies [50] or the more recent book by Gattringer and
Lang [51], which in fact has served as a reference for some of the topics presented
in this section.

1.3.1 A finite path integral

The starting point of the approach is the path integral formalism [52,53], which, for
a given quantum field theory, allows to write its partition function as a functional
integral

Z =

∫
DΦe−S[Φ], (1.1)

where S is the euclidean action of the theory—even being considered at imaginary
time, physical information can be recovered as long as the theory fulfills a set of
axioms [54,55]—and the integration is meant to be performed over all possible con-
figurations of the fields of the theory, denoted generically by Φ. If we particularize
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for QCD, the fields to be considered are quarks ψ, antiquarks ψ̄ and gluons Aµ,
and (1.1) can be formulated schematically as

ZQCD =

∫
DψDψ̄DAµe−SQCD[ψ,ψ̄,Aµ], (1.2)

with vacuum expectation values of operators O(ψ, ψ̄, Aµ) being given by

〈O〉 =
1

ZQCD

∫
DψDψ̄DAµO(ψ, ψ̄,Aµ)e−SQCD[ψ,ψ̄,Aµ]. (1.3)

The precise meaning of the integration symbol present in (1.2) and (1.3) is a subtle
mathematical issue; at this point the theory would be ill-defined and a regulariza-
tion is mandatory in order to extract any physical information and avoid diver-
gences. To this end, there are several possibilities that lean on perturbative ex-
pansions in the coupling, such as Pauli-Villars (or dimensional) regularization [56],
which have been widely used both in QED and QCD. The prescription of Wilson
that was introduced earlier [3], is however the only fully non-perturbative regu-
larization known, allowing to study quantum field theories from first principles,
especially QCD beyond short-distance interactions, where confinement—together
with the highly non-trivial structure of the QCD vacuum—poses an insurmount-
able obstacle to perturbative-based approaches.

Thereby, going ahead with QCD, we discretize the continuum four-dimensional
euclidean space-time in an hypercubic grid with constant lattice spacing a; this
parameter will be the regulator of the theory, in which limit a → 0 its original
version is recovered. Moreover, we restrict the full spacetime to a simple 4-d box
of finite extent, limiting in this way the spatial volume and the imaginary-time
evolution of the system. By doing so, the number of variables to consider be-
comes finite and the original problem can begin to be pictured as computationally
treatable. If we return to (1.2), the fields ψ(x) and ψ̄(x) now take values only for
x = a(n1, n2, n3, n4), where ni are integers satisfying 0 ≤ nia < Li, Li being the
spatial (temporal) extent of the 4-d box in each dimension.

With respect to the gluon field Aµ(x), it is convenient to postpone briefly its
definition on the lattice. First, we should note that the action of the theory, SQCD

in (1.2), is the spacetime integral of the following euclidean1 lagrangian density,

LQCD = ψ̄ (iγµDµ +m)ψ +
1

2g2
Tr (FµνFµν), (1.4)

1The ordinary real-time version of LQCD, i.e., with Minkowski spacetime metric, is just
ψ̄ (iγµD

µ −m)ψ − Tr (FµνF
µν)/2g2. Note that we are using a rather compact notation, where

only spacetime indexes are explicit, while those corresponding to color, spin and flavor are kept
implicit. A more detailed notation could label quark (and antiquark) field components by ψfα,c,
since ψ is a 3-color vector, a 4-Dirac spinor and a nf -flavor vector. In the same way, m is a
diagonal matrix in flavor space, containing each one of the quark masses.
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Figure 1.1: A bidimensional section of a four dimensional lattice. Quark and
antiquark fields are defined at the sites of the grid, whereas links lie between
them, connecting nearest neighbors. The ordered product of the three elements
pictured—an antiquark, a link and a quark—is gauge invariant.

where Dµ = ∂µ − iAµ is the covariant derivative and Fµν is the gluon field tensor,
which depends only on the gluon field2Aµ and its derivatives. In the lattice, SQCD

becomes simply the sum over lattice sites of a discretized version of LQCD. Since
the derivative terms present in the continuum lagrangian—which involve both
quark and gluon fields—can be discretized in multiple ways via finite differences,
there is no unique prescription for the lattice expression of the action, Slatt. In fact,
a careful modification of this lattice action can be used to alleviate discretization
errors in a systematic way [57,58]. In any case, and in order to introduce the gluon
field Aµ(x) in the lattice, it is convenient to proceed as in the continuum, requiring
gauge symmetry to be preserved in the discretized action Slatt. To this end, we
focus on the quark and antiquark fields, which transform in the continuum as

ψ(x)→ G(x)ψ(x), (1.5)

ψ̄(x)→ ψ̄(x)G†(x), (1.6)

whereG(x) is an arbitrary element of the gauge group, SU(3) in QCD, and depends
on the coordinate x, since the action is required to be invariant under local—rather

2 Although it is not required for the following discussion, it is worth noting that the gluon
field Aµ—in contrast with its analogous in QED, the photon field—can be understood as a
vector field with eight color components, each of them corresponding to one element of the basis
of the SU(3) algebra (which are usually chosen to be proportional to the Gell-Mann matrices
λa). Alternatively, it is customary to talk about eight different gluon fields, since each of the
components of Aµ can be pictured as a gauge field on its own.
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than global—transformations. It is straightforward to extend this expressions to
the lattice by restricting its domain to the lattice sites, i.e., to x = a(n1, n2, n3, n4).
By doing so, local quark-antiquark products present in (1.4) retain their gauge in-
variance when considered in Slatt. Instead, the discretization of the term involving
the derivatives of the quark fields ∂µψ(x), even in its simplest form, give rise to
bi-local terms ψ̄(x)ψ(y), which would transform naively as

ψ̄(x)ψ(y)→ ψ̄(x)G†(x)G(y)ψ(y). (1.7)

In order to preserve the required symmetry, a gauge field Uµ(n) connecting every
couple of neighboring sites (n, n + µ̂) is introduced. Each of the gauge variables
Uµ(n), usually called links, is a member of the gauge group—SU(3) for QCD—and
it will represent in what follows the gluonic degrees of freedom. It is formally a
parallel transporter, related with its continuum counterpart Aµ(x) by

Uµ(n) = Pei
∫ n+µ̂
n Aµ(x)dx, (1.8)

where P indicates that the integral is to be made along the path ordered product
of Aµ(x). Under a gauge transformation, Uµ(n) changes as

Uµ(n)→ G(n)Uµ(n)G†(n+ µ̂). (1.9)

From (1.5) and (1.9) it follows that products of the form

ψ̄(n)Uµ(n)ψ(n+ µ̂), (1.10)

which connect neighboring quark and antiquark fields with the corresponding link
variable, as in Figure 1.1, are gauge invariant. In fact, it is possible to go further
and consider all possible gauge-invariant combinations composed by products of
gauge and fermion fields. A straightforward consequence of (1.9) is that ordered
products of link variables along a given path, connecting sites x and y, transform
as if they were a single link connecting precisely x with y. In order to make this
product of consecutive links gauge invariant, two possibilities arise: add a quark-
antiquark pair (placed at the end and the beginning of the path) or consider a
closed path and take the trace in color space; both alternatives are pictured in
Figure 1.2.

Having defined quark, antiquark and gluon fields on the lattice, we can now give
a precise meaning to the regularized version of the integration measureDψDψ̄DAµ,
which in the expressions of the partition function (1.2) and the expectation value
of an observable (1.3) was simply formulated as the sum over all possible configu-
rations. In its discretized version, all fields are only defined over a finite number of
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Figure 1.2: Two types of gauge-invariant quantities can be constructed on the
lattice: it suffices to consider any path, open or closed, and take the ordered
product of the links involved. In the first case, antiquark and quark fields should
be appended to the ends of the path; for a loop is enough to take the color trace.

points. This allows to rewrite the integration measure as a product of differentials,
formulating the following lattice version of ZQCD:

Zlatt =

∫ ∏
n,µ

dUµ(n)

∫ ∏
n

dψ(n)dψ̄(n)e−Slatt[ψ(n),ψ̄(n),Uµ(n)]. (1.11)

As the integration over the variables Uµ(n), elements of SU(3), is required to
be gauge invariant, it is to be performed according to the corresponding Haar
measure—uniquely defined up to a multiplicative constant. On the other hand, the
fermionic quantities ψ(n) and ψ̄(n) are anticommuting numbers, and thereby they
are to be evaluated according to the Grassmann (or Berezin) rules of integration.
In fact, these rules allow a considerable simplification of the previous expression,
for which is necessary to consider in a general way the form of Slatt. For this
purpose, it suffices to realize that every lattice action is the sum over all sites of
a given discretization of the lagrangian density LQCD (1.4), and as a consequence
it is possible to split the discretized action into a fermionic term Sf , bilinear in
antiquark and quark fields, and a purely gluonic term Sg, namely

Slatt(U, ψ, ψ̄) = ψ̄M(U)ψ + Sg(U), (1.12)

where M(U), the fermionic matrix, encodes the discretization of the covariant
derivative—thus depending on the gauge fields—and includes the fermion mass
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term. With this input, the fermionic degrees of freedom in the partition function
(1.11) can be integrated out analytically, arriving at

Zlatt =

∫
DUe−[Sg(U)−log detM(U)], (1.13)

where DU stands for an abbreviation of the product of Haar measures dUµ(n) of
(1.11). As a word of caution, it should be noted that in some relevant scenarios,
such as finite density QCD, the logarithmic term involving the fermionic determi-
nant can be a complex3 number. In any case, the same procedure can be applied
to the expectation value of an observable containing a product of a quark and an
antiquark; the continuum expression (1.3) then becomes

〈ψf2c2 (y)ψ̄f1c1 (x)〉latt =
1

Zlatt

∫ ∏
n,µ

dUµ(n)
[
M−1

]c2c1
f2f1

(y, x)e−[Sg−log detM ], (1.14)

where ci and fi label the color and flavor components of the field, respectively. The
above formula can be generalized also to higher order products, understanding that
a given observable has to be replaced by the corresponding Wick contraction.

Before discussing the actual form of Sg and M , i.e., of the lattice action, it is im-
portant to note several properties that follow from the last expressions. First, the
partition function Zlatt depends on fermions only through the determinant of M .
Moreover, this property is shared by the expectation value of any observable com-
posed solely by gauge fields. Neglecting the effect of the determinant, detM = 1,
simplifies notoriously the numerical computation of these kind of objects, at the
cost of ignoring the effects of virtual quark loops and thus introducing a source of
uncontrollable systematic error. Such procedure, as we noted in Section 1.2, was
profusely used in the early stages of lattice QCD, and it led to considerable success-
ful results in areas such as light hadron spectroscopy, where the masses of several
particles could be determined by different collaborations with sufficient statistical
precision, observing systematic deviations with respect to the experimental mea-
sures within the 10% level [59–62]. However, the quenched approximation—as it is
commonly referred to—is far from adequate when considering other scenarios, in-
cluding topological effects, finite density QCD or even hadron spectroscopy when
a few percent precision level is required. Moreover, in the case of some species
such as the η′ meson, the inclusion of the fermionic determinant is mandatory to
avoid dramatic discrepancies with experiment.4 Finally, when considering observ-
ables composed by quark fields, an additional dependence appears, via the inverse

3The finite density case, giving rise to a complex action, suffers from a sign problem when
a numerical evaluation of the path integral is to be performed. In Chapter 2, another complex
action system will be reviewed, namely QCD with a topological term in the action.

4 In the quenched approximation, the masses of the pseudoscalar meson η′ and the pion π0
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Figure 1.3: The most elementary gauge loop is called plaquette variable. Its trace
is a gauge invariant quantity, and in the continuum limit a → 0 it reduces to
Fµν(n) squared, i.e., the gluonic part of the QCD action.

fermion matrix, as in (1.14). In any case, the flip side of the analytical integration
of Grassmann variables is the introduction of the fermionic determinant—a highly
non-local object that severely increases the need of computing resources.

1.3.2 Gluon dynamics

In order to construct the lattice action components, Sg and M , it is required that
the gauge invariance of the continuum formulation remains preserved. As pictured
in Figure 1.2, when constructing lattice observables as products of gauge and quark
fields—or linear combinations of them—only two kind of gauge-invariant quantities
appear: gauge loops and quark-antiquark pairs connected by a gauge path. As
a consequence, Slatt is to be constructed by these type of terms. In addition to
that, it must have the proper limit when the lattice spacing a vanishes, although
this does not determine a unique action—the discretization of boson and fermion
derivative terms in SQCD introduces many degrees of freedom. In other words,
different lattice actions must share the limit

Slatt
a→0−−→ SQCD, (1.15)

even if they can have different subleading terms.
At this point, a legitimate question—that the cautious reader is probably al-

ready wondering—is if this freedom in choosing among an infinite number of ac-
tions will not spoil the continuum limit. In other words, all possible actions Slatt

are degenerate, while experimentally the former is much heavier. As explained by the Witten-
Veneziano mechanism [63,64], the chiral U(1) anomaly of QCD contributes significantly to the η′

mass, preventing the particle to be an approximate Goldstone boson. Furthermore, the theorized
η′-π0 splitting requires the existence of fermionic species: this is the reason why fermion dynamics
needs to be taken into account. In fact, lattice numerical studies confirm the WV picture [65]
and give good estimates for the η′ mass, as in [66], where u, d and s quarks are included into the
computations.
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conform a space in which just one point (namely SQCD, which corresponds to
a = 0) encodes the proper physics. Thus, we need at least to compute the limit
a → 0 along a given trajectory. But, even if we succeed in this labor, how could
we assure that the limit does in fact exist? If the presence of an alternative path,
leading to a different action, could not be discarded, our work would be in vain.
The answer to this concern is given by Renormalization Group theory: the con-
tinuum limit in any lattice model is to be taken in a critical point of the system,
where correlation length diverges and only a few parameters—such as symmetries,
dimension and critical exponents—determine the universality class of the model.
In the case of QCD, asymptotic freedom grants the existence of the required criti-
cal point; thereby, the continuum limit can be taken quite confidently, albeit there
exist other subtleties that have to be dealt with. For now, and in order to pre-
serve some discourse coherence, we left a more detailed answer to this issue for an
upcoming section.

In any case, it is worth to mention that the freedom in choosing an action has its
positive side. As we mentioned before, this leeway has been profusely used during
the last decades, with objectives such as to ameliorate discretization errors—this
is known as the Symanzik improvement program [57, 58]—or to preserve certain
symmetries on the lattice formulation. At the present time, there exist a number
of gauge and fermionic actions that are part of the standard lore of the lattice
community. In what follows, we go over the most elementary of them—discussing
first the gluonic term, since the introduction of fermions involves a number of
subtleties.

In order to address the construction of the gauge component of the lattice
action, Sg, it is advisable to identify one of the gauge-invariant objects presented
earlier, namely the smallest possible loop, which is composed by the product of
four consecutive links forming a square,

Uµν(n) := Uµ(n)Uν(n+ µ)U †µ(n+ ν)U †ν(n), (1.16)

as in Figure 1.3. It is conventionally called plaquette, and its color trace is, as
discussed earlier, a gauge-invariant quantity. More importantly, the sum of all
plaquettes give rise to a pure gluonic term in the action, which can be proven to
have the correct continuum limit if Sg is formulated in the following terms

Sg = β
∑
n,µ,ν

[
1− 1

3
Re TrUµν(n)

]
, (1.17)

with β = 6/g2
latt; the coupling glatt is simply the unrenormalized or bare version of

the coupling g present in ZQCD. This term is known as the Wilson gauge action,
and has discretization errors of order O(a2). Although there exist more involved
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prescriptions that minimize further the order of the errors, the original proposal of
Wilson provides a good balance between the precision achieved and the complexity
of its definition. In any case, improved gauge actions are built by adding higher
order terms to (1.17), involving loops larger than the plaquette that are suppressed
by powers of a. This type of gluonic actions are state-of-the-art in modern lattice
computations.

1.3.3 Interlude: chiral symmetry in the continuum

Just before addressing the construction of the fermionic matrix M , we found nec-
essary to make at least a shallow review of the role of chiral symmetry in QCD, as
its formulation on the lattice has deep and direct implications in how dynamical
fermions can enter into the lattice action.

In its continuum formulation, the action of QCD for Nf flavors is given by the
spacetime integral of the lagrangian (1.4). Focusing on the fermionic part and
keeping a compact notation, where ψ and ψ̄ fields are understood to be Nf -vectors
in flavor space, we have

SQCD-F =

∫
d4x ψ̄ (iγµDµ +m)ψ. (1.18)

For the particular case of zero fermion mass, i.e., if all the components of the
diagonal matrix m vanish, there exist two sets of transformations that leave the
above action invariant. The first family is composed by the so-called vector trans-
formations, given by

ψ → eiα1ψ ψ̄ → ψ̄e−iα1, (1.19)

ψ → eiαTiψ ψ̄ → ψ̄e−iαTi , (1.20)

where the Ti matrices are the generators of the flavor group, SU(Nf ), and so, the
index i runs from 1 to N2

f − 1. When considering altogether (1.19) and (1.20), the
group extends to U(Nf ). The other family of transformations can be constructed
by including a γ5 matrix in the previous ones, and thus they are given by

ψ → eiαγ51ψ ψ̄ → ψ̄e−iαγ51, (1.21)

ψ → eiαγ5Tiψ ψ̄ → ψ̄e−iαγ5Ti . (1.22)

This last set receives the name of axial transformations. When considered together
with vector transformations, they receive the name of chiral transformations; in the
same way, the massless limit—in which they preserve SQCD—is called chiral limit.
To differentiate the two sectors that compose chiral symmetry, it is customary to
label them with a V or a A subscript. In this way, the full chiral group is given by

SU(Nf )V × SU(Nf )A × U(1)V × U(1)A. (1.23)
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It is important to note that axial transformations are symmetries of the massless
action, but this symmetry is explicitly broken for finite mass quarks. On the
contrary, vector transformations (1.20) preserve the action also in the degenerate
mass case—i.e., Nf species of equal non-zero mass—conforming the well-known
isospin symmetry. Furthermore, (1.19) is always a symmetry of the action, which
implies baryon number conservation.

Equally relevant is the so-called axial anomaly. Although U(1)A is a symmetry
of the massless action, it is explicitly broken in the fully quantized theory. This
reduces the full expression (1.23) to the following symmetry group:

SU(Nf )V × SU(Nf )A × U(1)V . (1.24)

This group is usually expressed in slightly different terms. To this aim, it suffices
to recall that chiral symmetry splits both the quark fields and the action into two
separate pieces, commonly named left- and right-handed. Defining the projectors
PL and PR as

PL =
1− γ5

2
PR =

1 + γ5

2
, (1.25)

it is possible to partition the full flavor space, since introducing the projected quark
and antiquark fields

ψL,R ≡ PL,Rψ ψ̄L,R ≡ ψ̄PR,L, (1.26)

allows to express the quark (antiquark) field as the sum of ψL and ψR, separating
in this way the action into several components:

SQCD-F =

∫
d4x

{
ψ̄L (iγµDµ)ψL + ψ̄R (iγµDµ)ψR +

(
ψ̄LmψR + ψ̄RmψL

)}
.

(1.27)
From the above expression it trivially follows that, in the chiral limit, only the first
two components survive. Remarkably, they are completely decoupled in this limit,
interacting only through the mass terms in the above formula. For this reasons,
the chiral symmetry group (1.24) is often reformulated in terms of its left- and
right-handed degrees of freedom, i.e., as

SU(Nf )L × SU(Nf )R × U(1)V . (1.28)

In any case, when considering quarks of finite but degenerate mass, the axial sector
symmetry is broken explicitly—just the SU(Nf ) part, since the one corresponding
to U(1)A was already broken by the anomaly—and the above group gets reduced
to its vector sector U(Nf )V , or following the structure of (1.24)

SU(Nf )V × U(1)V . (1.29)
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Eventually, if one considers Nf flavors with different masses, the above symmetry
gets reduced to the tensor product of Nf copies of U(1)V .

Before closing this interlude, we want to stress a couple of issues concerning
chiral symmetry. The first one is that chiral symmetry—or more precisely, its
axial sector—is spontaneously broken in QCD at zero temperature. Let us
consider the action with just two flavors: up and down. Since these quarks have
a very small mass compared to the QCD scale, its explicit symmetry breaking,
corresponding to the shift between (1.28) and (1.29) for Nf = 2, should give rise
to experimental effects. In particular, some particles—as, e.g., parity partners—
should have almost-degenerate masses. However, this expected symmetry does not
match the observations; mass differences due to the explicit breaking of the QCD
action are significantly smaller than the experimental measures. The origin of
these discrepancies is, precisely, that the global symmetry (1.28) is spontaneously
broken, since the vacuum of the theory is not invariant under the corresponding
transformations. In other words, although the action is almost preserving chiral
symmetry, the ground state of the system is not.

The second point to discuss is just a corollary of the previous argument: since
there is a continuous symmetry being spontaneously broken, Goldstone’s theo-
rem predict the appearance of several massless bosons. This is in fact the case,
since if we consider just quarks u and d, we should expect three light bosons—
since the symmetry is slightly explicitly broken—which can be identified with the
three pions π0, π±. Including also the strange quark s, would account for eight
bosons, which can also be identified with the four kaons K0, K̄0, K± and the η
meson, which sums up to the three pions. Note that if we overlook the anomaly,
in the last case 9 light mesons should appear, and the η′ particle should be also
considered within this picture. It is precisely the anomaly what allows to explain
the η′ − π0 mass difference, as was stressed in the previous subsection.

With these considerations, we can now proceed to talk of fermions in the lattice,
with a last word of caution that summarizes the previous argument. The lightest
particles of the QCD spectrum gain their low masses thanks to the spontaneous
breaking of chiral symmetry. If we were to tweak the theory and remove the chiral
invariance from the action, the explicit breaking of this symmetry would prevent
these particles from being pseudo Goldstone bosons, and consequently their masses
would be expected to increase.

1.3.4 Dynamical fermions: doubling and chiral symmetry

In order to implement full QCD in the lattice, we need to choose an action Slatt

which, as in (1.12), can be decomposed into two components. First, a purely glu-
onic term Sg, for which a viable candidate has already been reviewed in subsection
1.3.2. In second place, a term involving quark and antiquark fields is needed. Now
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that the basics of chiral symmetry in continuum QCD have been discussed, we can
face the task of constructing this fermionic term, completing in this way the lattice
action. Thereby, in this subsection we will analyze the difficulties in proposing a
proper lattice version of the fermionic matrix M , which defines how quarks and
antiquarks interact.

While the construction of the Wilson gauge action (1.17) was not very trou-
blesome, the situation changes substantially when trying to proceed with the
fermionic part of the action in a similar way. The simplest approach to dis-
cretize the continuum term consists in replacing the first order derivatives in LQCD

by a standard symmetric difference. In this way, the continuum fermionic term
ψ̄ (iγµDµ +m)ψ becomes

1

2a
ψ̄(n)

[
iγµ
(
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

)
+m

]
ψ(n), (1.30)

which is indeed gauge-invariant, as bilocal products of quark-antiquark fields are
connected by the corresponding link variables. Unfortunately, this procedure in-
troduces the so-called doublers : for each of these naive fermions included in the
lattice action, 16 copies appear in the continuum limit, 15 of them being unphys-
ical. In order to fix this situation, an alternative is to use Wilson fermions, which
add an extra term to the naive formulation. Its aim is to assign a divergent mass,
of order O(a−1), to each of the unwanted doublers, decoupling them from the the-
ory in the continuum limit. This mechanism is sufficient to fix the continuum limit
of the action, however, the axial sector of chiral symmetry gets explicitly broken
in the lattice by the extra term—not only the anomalous part U(1)A, which in
fact should be broken, but the whole group U(Nf )A. In continuum QCD, as it was
discussed in the previous subsection, chiral symmetry plays a central role, since its
non-anomalous sector is spontaneously broken, producing approximate Goldstone
bosons. With an explicitly broken chiral symmetry, this mechanism is not possi-
ble anymore: particles such as pions, kaons or the η, which conform the so-called
meson octet, acquire masses well above its original values. This behavior hinders
actual simulations from reaching the physical point. In fact, during decades of
lattice numerical works, the achieved mass of the pion—a very relevant quantity,
being the lightest hadron in the spectrum—has been very far from its physical
value, which makes necessary to perform extrapolations to the physical point.

The previous discussion rises a natural question: is it possible to find a fermion
formulation that, whithout introducing unphysical multiplicities, preserves chiral
symmetry? For a long time, it was believed that, unfortunately, it was not. In
fact, far from being a technical complication, the doublers issue has its root in the
chiral anomaly of QCD. In the naive lattice formulation of (1.30) the anomaly dis-
appears, canceled exactly by the extra doublers. Adding the Wilson term, which
decouples the extra particles, can be interpreted as introducing a lattice version of
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the anomaly by hand—with one undesirable effect: it also breaks the non-anomalus
part of the symmetry, spoiling the spontaneous breaking mechanism. In fact, as
was proven in 1981 by Karsten and Smit [67], this is a general result: either the
axial anomaly is canceled by the presence of extra fermions, or it is introduced
in the lattice by a term that, necessarily, explicitly breaks chiral symmetry, in-
cluding its non-anomalous sector. In the same way, a contemporary result due to
Nielsen and Ninomiya—the so-called no-go theorem—states that it is not possible
to construct a lattice formulation of QCD that has at the same time absence of
doublers, chiral symmetry, and locality [68, 69]. Furthermore, there also exists a
scheme-independent version of this result, with slightly different conditions [70],
that makes the impossibility of regularizing a theory with chiral fermions a rather
profound question, not exclusive of the lattice approach. As a consequence, a
choice must be made between preserving chiral symmetry in its continuum form
or avoiding unwanted degrees of freedom; every fermion formulation on the lattice
suffers from one pathology or the other.

But, even though the above results are correct, a workaround fortunately exists.
Almost 40 years ago, Ginsparg and Wilson realized that a remnant of chiral symme-
try could be identified within the lattice formulation, in such a way that the axial
anomaly is still properly preserved and, at the same time, no unphysical degrees of
freedom are introduced [71]. While the continuum form of chiral symmetry—i.e.,
the preservation of the transformation sets (1.19) to (1.22)—requires the massles
Dirac operator to anticommute with γ5, the remnant symmetry proposed in [71]
verifies a broader restriction, namely

Dγ5 + γ5D = aDγ5D, (1.31)

where D ≡ iγµDµ stands for the massless Dirac operator. This condition is in
fact different from its continuum counterpart for every finite lattice spacing a,
although they converge in the a→ 0 limit. In this sense, (1.31) can be interpreted
as an extension of the continuum definition, with a singular advantage: it is able
to evade the Nielsen-Ninomiya no-go theorem, since only the continuum form of
chiral symmetry—with a vanishing right-hand side in (1.31)—is affected by it [72].
Moreover, a modified chiral rotation can be defined in the lattice, in such a way
that the gauge fields transform essentially as its continuum versions, preserving
relevant results as, i.e., the index theorem [73]. However, the solution given in [71]
was not constructive, in the sense that a particular form of D could not be found at
that moment; it would took almost two decades to find a practical implementation
of these ideas.

Within the above scenario, other alternatives would be explored over the years
to come. In fact, a number of these strategies were developed and nowadays are
part of the current lore of the field. They can be classified in groups according to
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how they deal with the doubling problem. Some approaches choose to give up chiral
symmetry; this is the case of Wilson fermions. In this category are also included
clover fermions, a Symanzik improved version of Wilson fermions that removes
O(a) discretization errors [74], and twisted mass fermions, which consider pairs of
mass degenerate Wilson fermions together with an isospin mass splitting term [75].
An alternative approach consists in preserving chiral symmetry, while assuming
some of the doublers degeneracy. Here the prime example are Kogut-Susskind or
staggered fermions [76]. This variant is constructed from the naive formulation,
but distributes the usual Dirac 4-spinor components over neighboring sites, in such
a way that the doublers degeneracy gets reduced from 16 to 4 species. Moreover,
for some observables it is possible to remove the residual degrees of freedom by
taking the fourth root of the fermion determinant—a procedure commonly referred
to as rooting, originally proposed by Marinari, Parisi and Rebbi, in the context of
the massive Schwinger model [77]. Although its validity was at first controversial,
both numerical evidence [78] and theoretical arguments [79] support that this
technique leads to the correct theory as long as continuum and chiral limits are
taken precisely in this order. As with Wilson fermions, there also exist Symanzik
improved versions of the staggered action; two of them, widely used by the lattice
community, are the Asqtad action [80]—for a-squared tadpole improved—and the
HISQ action [81]—for highly improved staggered quarks. In Chapter 4 we make
use of staggered quarks, while on Chapter 6 the analyzed configurations were
generated with the HISQ action.

For the sake of completeness—even if it is less related with the work devel-
oped in this thesis—there is still another class of fermions that deserves at least
a mention: the particular solutions of the Ginsparg-Wilson equation (1.31). They
preserve chiral symmetry without the doublers pathology, so in this sense they are
the best possible fermions, and they should be preferred when compared to other
alternatives. However, all their implementations suffer from the same illness—they
are by far the most expensive fermions in computational terms. As a consequence,
its use is reserved to situations where chiral symmetry is needed with considerable
precision. There exist two different solutions that are broadly used: they are called
overlap [82–84] and domain-wall [85, 86] fermions. In the first case, the fermionic
matrix is constructed by operating with a Wilson-like matrix—the result being
a costly non-sparse matrix. For domain-wall fermions, an extra fifth dimension
of infinite extent is needed to preserve chiral symmetry. Since in practice this is
implemented as an additional dimension in a finite lattice, a mild violation of the
symmetry still remains, although it can be controlled.
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1.3.5 Monte Carlo: ensembles and observables

Summing up all the previous considerations, we have now a fully regularized ver-
sion of QCD. Thereby, the original expressions for the partition function (1.2) and
the vacuum expectation value (1.3) of a given observable acquire now a well-defined
mathematical meaning.

If we now want to consider, e.g., a purely gluonic observable O(U), we should
compute the following integral:

〈O〉 =

∫
DUO(U)e−Slatt(U)∫

fflathcalDUe−Slatt(U)
. (1.32)

The above integration measure DU is composed by the product of as many indi-
vidual Haar measures as links are in the given lattice, which amount to V ≡

∏
i Li

times the dimension of the lattice. So, for almost any size that we can think
of, (1.32) contains a highly multidimensional integral, with a vast configuration
space that, even for small lattices, can not be fully explored by any computational
means. There exist however a class of numerical approaches, commonly referred
to as Monte Carlo methods, that are capable of properly sampling these kind of
spaces—to apply them to the lattice regularization was, in fact, one of the key
proposals of Wilson [40].

In order to compute the expectation value of (1.32), a first Monte Carlo ap-
proach could consist in generating a random sample of link configurations, i.e.,
a collection or ensemble of gauge fields U i, each one containing the information
of each individual link Uµ(n) in the lattice. Then, 〈O〉 could be computed as a
weighted average over the previous ensemble, with weight e−Slatt(U). In a similar
fashion, statistical errors could be computed by standard techniques. However,
this approach is too naive for the problem at hand, since the exponential factor in
(1.32) highly suppresses a great majority of the configuration space elements; in
other words, only a small subset of the whole space contributes significantly, and a
naive random sampling of the space would miss the area of interest. In order to fix
this issue, importance sampling is to be applied: again, an ensemble of configura-
tions U i is generated, but they should be selected with probability e−Slatt(U

i). Then,
provided a well-distributed ensemble of N elements is available, an estimator for
the expectation value of a given observable can be straightforwardly computed as

Ō =
1

N

N∑
i

O(U i). (1.33)

The original problem is now shifted to the generation of the U i collection. This can
be achieved by starting from a given initial configuration, say U1, and following a
Markov chain process, in which the selection of the next configuration is regulated
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by a probability that depends only on the immediate previous state. The idea is
that, even if one starts far from the meaningful configurations, the Markov process
should drive the system to an equilibrium state, in which the distribution e−Slatt(U

i)

is reproduced. To guarantee that, the transition probabilities from each U i to any
other U j need to be adequately defined. It is sufficient (but not necessary) to
require the detailed balance condition to be fulfilled, so if we label the transition
probability of the chain as p(U i|U j),

p(U i|U j)e−Slatt(U
j) = p(U j|U i)e−Slatt(U

i) (1.34)

would be required for every i and j. In this case, if the system is also ergodic—
meaning every configuration is accessible from any other in a finite number of
steps—it is guaranteed that, with independence of the initial configuration chosen,
the Markov process will reach equilibrium and, consequently, a well-distributed
ensemble will be generated.

Then, to elaborate a particular algorithm that follows the described Markov
process consists then in specifying how the next element of the chain is selected,
and which transition probabilities connect the configuration space. With re-
spect to the latter point, most of the algorithms used by the lattice community
verify the detailed balance condition. Maybe the most elementary of them is
Metropolis algorithm, which accepts a change between U i and U j with probability
max {1, e−∆Slatt}. This is exactly the approach followed in Chapter 3. More in-
volved alternatives include the heatbath algorithm [44], which often includes some
overrelaxation steps [87–89]. Furthermore, for the more general case in which
fermions are included into the action, one of the most widely used algorithms is
the Hybrid Monte Carlo [90,91], which at each update combines a microcanonical
evolution with a final metropolis step to accept or reject the proposed change.

In any case, the stochastic nature of Monte Carlo methods introduce some un-
certainty into the computed observables, in the form of statistical errors associated
to the corresponding estimators. Nevertheless, these can be dealt with without
much difficulty, just by taking into account two fundamentals. First, that the
generated ensemble has to be thermalized, meaning that sufficient iterations need
to be spent to reach the equilibrium distribution of the Markov chain. This can
be achieved by monitoring a set of observables that allow to determine when the
Markov evolution is stationary. Secondly, and even more important, is the inher-
ent correlation of the configurations generated by the update process—generally a
local algorithm that needs a high number of iterations to produce a new configu-
ration far from the original. In this case, the use of standard error analysis tools,
such as jacknife binning, or even the direct computation of autocorrelation times
for each observable, allows to estimate in a reliable way the statistical errors of
any computed observable.
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1.4 Reaching the continuum and sources of error

Up to this point, we have covered how continuum QCD can be regularized into a
spacetime lattice where, taking advantage of Monte Carlo methods, it is possible
to estimate vacuum expectation values of given observables. The computed ob-
servables will depend in general on the dimensions of the lattice and on the bare
values of the gauge coupling β and the Nf masses of the fermion species involved.
Although knowing these values can be enough for some applications, in most cal-
culations the objective is to obtain a physically measurable quantity that can be
eventually contrasted with experiment. This is not the case of the present thesis,
since the work being presented is not directly concerned about the last part of a
general lattice calculation; however, in order to give a general perspective of what
a complete computation would require, and for the sake of completeness, hereafter
we proceed with a brief overview of the issues involving the last steps of the lattice
approach.

Obtaining a physical prediction from bare lattice results requires a somewhat
involved limit procedure; not only the lattice spacing a should vanish—this would
be the continuum limit—but also the bare couplings should go to their physical
values. In other words, the physical point needs to be reached; if not, the simulated
theory would be describing an alternative scenario, one with, e.g., different hadron
masses. In fact, the couplings of the theory are not directly observable (since
confinement prevents quark fields to manifest outside a color-singlet, the mass of
the quark is not an observable and depends on the renormalization scheme). In
place, other observables, such as hadron masses ratios—which of course depend
on the aforementioned parameters—are to be computed in the lattice, so they
can be compared with the experimental values. Thus, in order to compute a given
quantity, it is necessary to keep track of several additional observables, one for each
of the free parameters—or flavor species—that are included into the calculation.
Morover, it should be noted that the lattice spacing a is not a free parameter of the
lattice theory, but another quantity that needs to be measured within the lattice.

The above scenario can be summarized as follows: we need to take the contin-
uum limit, a→ 0, while driving a set of physically measurable quantities to their
experimentally determined values. Moreover, since doing the computations on a
lattice of infinite extent is out of reach, the procedure is to be performed on a 4D
box of finite physical size.5 In order to take the a → 0 limit, it is required to re-
peat the computations at different lattice sizes, keeping the physical size of the box
constant. In this way, lattices with different values for the lattice spacing a—and
consequently for the number of nodes N—are computed, while the volume of the

5In fact, repeating the calculations in several box sizes allows to extrapolate the results to
the thermodynamic limit.
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box a4N is kept constant. It should be recalled that while N is a free parameter,
a is an observable that needs to be measured (depending not only on the gauge
coupling but also on the inclusion of fermionic species). So, as a first consequence,
keeping the physical volume constant is not a completely trivial issue.

The same problematic that appears when trying to fix the volume of the 4D
box applies to every physical observable that is intended to be kept constant (or
driven to a suitable value, obtained from experimental sources). To achieve this,
essentially two options are possible: either the free parameters are tuned in an
iterative process—one lattice at a time up to the physical point—or the computa-
tions are repeated for several values of these parameters, and then interpolated to
the desired point. A less ideal variation of the latter is to reach the physical point
by means of an extrapolation. This was in fact the rule during several decades of
lattice numerical computations, since the different types of fermion discretizations
(reviewed in Section 1.3.4) have many difficulties in reaching a sufficiently low
mass for the pion.6

As a final remark, it is important to stress that any full computation on the
lattice should include a careful analysis of all sources of errors. First, statistical
errors are introduced by the Monte Carlo evaluation process. These are however
relatively easy to deal with, since they can be estimated by standard methods and,
even more importantly, can be systematically reduced by increasing the computa-
tion time. A more challenging obstacle is in estimating the different issues leading
to systematic errors, specially when a high precision is desired—and previously
unnoticed systematic errors can become big enough to be taken into account. A
non-exhaustive but common record of the different sources of systematics consid-
ered would include the errors associated with the tuning or interpolation to the
physical point and the continuum limit process. Usually less severe are those re-
lated with the thermodynamic limit—finite volume effects—or with the exclusion
from the action of electromagnetic effects, which, given that the quarks are elec-
trically charged particles, should be accounted for. In general, any approximation
assumed should account for its corresponding error—as, e.g., the case of some lat-
tice fermion types which consider u and d quark bare masses as degenerate, and
thus are required to account for the corresponding isospin breaking effects.

6Although Ginsparg-Wilson fermions preserve chiral symmetry, they suffer from a large com-
putational overhead that spoils their advantage with respect to other fermion types, when reach-
ing a physical pion mass is considered.
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Chapter 2

Topology in QCD

In the previous chapter we have covered the essential points of the lattice approach
to QCD, which is in fact applicable to other gauge theories, mutatis mutandis.
Having reviewed the basics in a general way, our aim in the present chapter is to
set the focus on a particular aspect of QCD, providing the necessary context to
introduce and motivate upcoming chapters.

As was outlined at the beginning of this thesis, the lattice approach has proven
to be a reliable tool for the study of non-perturbative phenomena, and accounts
for a high number of successes. Even so, there exist some problems that still
constitute wide open questions, a major example being theories which have a
complex action. In this situation, the sign problem appears, forbidding standard
importance sampling techniques and forcing to look for alternative workarounds.
Within QCD, this is the case when finite density or the inclusion of a topological
term in the action are considered. In fact, our interest will be drawn by the latter
topic, which is commonly referred to as θ QCD.

Thereby, in this chapter we recall the fundamentals concerning topological ef-
fects in QCD, including a brief discussion on the strong CP problem and one of
its more popular solutions: the axion. Subsequently, we mention some of the ap-
proaches that deal with complex action systems, including the methods of Azcoiti
et al [12,13].

2.1 A topological term in the action

When, during the description of the lattice formalism, the action of QCD was
introduced, no appearance of a complex term or a topological object was present.
Additionally, it was stressed that there are Nf + 1 free parameters in the theory,
namely the gauge coupling and the fermion masses. Actually, in the Lagrangian
density (1.4) there is a deliberate, and usual, omission: that of the θ or topological
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term, which in Euclidean spacetime corresponds to

Lθ = −iθ g2

64π2
εµνρσF

a
µνF

a
ρσ, (2.1)

where, as in (1.4), Fµν is the gluon field tensor, and the a index label color space.
Before going any further, we found worthy to discuss the nature and implications of
the above term by following a discourse close to the actual historical development.
In this way, we expect both to recall the main theoretical points and to motivate
the upcoming contents of this thesis.

2.1.1 From the axial anomaly to the strong CP problem

The Lagrangian density of QCD—and also its spacetime integral, the action—with
Nf flavors of massless quarks, is invariant under the group of chiral transforma-
tions, as defined in Section 1.3.3. In particular, its axial subgroup

U(Nf )A = SU(Nf )A × U(1)A (2.2)

holds only as a global symmetry in the massless fermion case, being explicitly
broken otherwise. Since the actual masses of up and down quarks—and, to a
lesser extent, of the strange quark—are small when compared with the QCD scale,
some signal of this approximate symmetry should be observable. However, as was
pointed out in the previous chapter, axial symmetry is spontaneously broken,
leading to the appearance of N2

f pseudo Goldstone bosons. Considering up, down
and strange quarks,1 Goldstone theorem would predict nine massless bosons, which
in fact could be identified, according to their inherited quantum numbers, with the
three pions π0, π±, the four kaons K0, K̄0, K± and the η and η′ mesons. Moreover,
each of these particles should have a relatively small and similar mass, since the
deviations from an ideal massless Goldstone would be justified only by the non-
zero, but again small, quark masses. However, the experimental mass of the η′ is
significantly higher than that of any of its eight companions, which discards this
particle from being a pseudo Goldstone. This π0 − η′ splitting, or equivalently,
η − η′ splitting, was in fact a puzzling question in the early development of QCD;
the solution of this paradox was to come by the axial U(1)A anomaly of the theory.

Although the anomaly mechanism was discovered by Adler [92] and Bell and
Jackiw [93] in 1969, and thus it was known before the formulation of QCD, it was
believed to have no physical effects in this theory. In fact, Weinberg addressed this

1One can also include only two flavors and consider up and down quarks, in which case
the spontaneous breaking of U(2)A would naively imply 4 Goldstone bosons. These could be
identified with the three pions and the η, according to their quantum numbers. In any case, the
experimental mass differences lead to analogous conclusions.
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question in 1975, suggesting that a way out of the so-called U(1) problem could
be achieved if the U(1)A symmetry was not conserved, although he dismissed the
anomaly as the source of this breaking [94]. The argument was a natural one,
since even if the conservation law of the axial current includes a term due to the
anomaly,

∂µ(iψ̄aγµγ5ψ
a) = −i g2

32π2
εµνρσF

a
µνF

a
ρσ, (2.3)

it can be shown that it is equivalent to a total derivative, and as a consequence
it seems reasonable to expect the Lagrangian of the theory to be unaffected by
it. By 1976, ’t Hooft—leaning on a previous work of Belavin et al [95] which
found topological solutions in 4D Yang-Mills theories—realized that the anomaly
term in (2.3) could be identified with instanton configurations that have non-
vanishing effects on the action, eventually leading to a finite contribution to the η′

mass [96]. A different approach, based on the 1/N expansion, was soon developed
by Witten and Veneziano, providing solid theoretical foundations to the mechanism
by which the η′ meson acquire its mass from the anomaly [63, 64]. In summary,
what occurs is that axial U(1)A symmetry is explicitly broken by the anomaly, and
as a consequence no Goldstone boson is produced; in other words, the mass of the
η′ is not protected, in contrast with the masses of the meson octet.

The aforementioned works gave a consistent solution to the U(1) problem. In
fact, they were supported by later lattice computations that numerically confirmed
the Witten-Veneziano picture [65, 66]. However, the realization that instanton
solutions have an actual contribution to the dynamics introduced another problem
in QCD. A term proportional to the anomaly (2.3) needs to be accounted for in
the Lagrangian density, coupled to an additional free parameter, the vacuum angle
θ. The expression (2.1) for Lθ is commonly written as

Lθ = −iθq(x), (2.4)

where q(x) is the topological charge density. Its spacetime integral,

Q =

∫
d4x q(x) =

∫
d4x

g2

64π2
εµνρσF

a
µνF

a
ρσ, (2.5)

is the topological charge. It has the characteristic property of being an integer
number, classifying gauge fields Aµ into different sectors that cannot be connected
by a sequence of infinitesimal gauge transformations. A first consequence of this
is that the vacuum state of the theory cannot be constructed as a perturbation
of a classical state; it has instead a fully non-perturbative nature [97]. In fact,
in a theory with massive fermions, θ labels an infinite number of non-equivalent
vacua, which are degenerate only in the massless case. The true vacuum is then
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a superposition across different topological sectors, and the partition function of
QCD can be written within the lattice regularization as

Zlatt =
∑
Q

eiθQZ(Q), (2.6)

where Z(Q) is the original partition function, considered at a fixed value of the
topological charge Q.

Moreover, concerning global symmetries, the topological charge is invariant
under charge conjugation, but not under parity or time reversal transformations;
as an immediate consequence, including Lθ in the QCD Lagrangian density spoils
the conservation of CP symmetry. This fact is quite troublesome, since there exist
stringent experimental constraints to any violation of CP in QCD processes, the
most relevant of them being the empirical upper bounds to the neutron electric
dipole moment, which ultimately restrict the θ vacuum angle to a value smaller
than 10−11. This need of fine tuning a free parameter constitutes the so-called
strong CP problem. In fact, the situation gets even worse if one considers the
full SM theory—i.e., QCD with several quark flavors that are also affected by
electroweak interactions—since the θ parameter coming from QCD gets shifted by
the complex phase of the Yukawa mass matrix. Thus, the total angle θ, which
should have physically measurable effects, is given by the sum of two components,

θ = θQCD + Arg detM, (2.7)

that emanate from quite different theoretical sources. In order to describe our
world, both parts should cancel out to a high level of precision.

Although at present the strong CP problem is still unsolved, different proposals
have been developed in order to explain it. Hereafter we go over the most popular
candidate, the Peccei-Quinn mechanism.

2.1.2 The Peccei-Quinn mechanism and the axion

A possible way out of the strong CP problem would be the existence of a mass-
less fermion in the theory, namely that the mass of the up quark would vanish.
This scenario would render the different θ vacua equivalent, or in other words, θ
would become an unphysical parameter. However, current experimental knowl-
edge discards this possibility with an outstanding margin of confidence [2], and
other mechanisms need to be searched for.

An altenative path is given by the so-called anthropic solution. It suffices to
consider that we live in a world where the θ parameter is just a very small number;
at least, smaller than 10−11. After all, there exist other examples of SM parameters
that are orders of magnitude apart, such us the bare masses of the quarks, where up



2.2. THE SIGN PROBLEM IN COMPLEX ACTION QCD 35

and top masses are separated by five orders of magnitude, roughly. However, the
solution of the U(1) problem requires a much more precise cancellation, specially
taking into account that there are two independent parameters in (2.7) that need
to be adjusted to this end.

Although it is not possible to absolutely discard the anthropic argument, the
truth is that this solution is not perceived as sufficiently satisfactory. Instead, the
strong CP problem has been interpreted since its appearance—and it still is—as a
sign of new physics beyond the Standard Model. A first mechanism dealing with
this question, and remarkably the most popular, was given by Peccei and Quinn
in 1977, who proposed that QCD could hold an additional U(1) global symmetry
that could drive dynamically the θ angle to zero [98]. Soon after, Weinberg [99],
and independently Wilczek [100], realized that the spontaneous breaking of the
postulated U(1)PQ symmetry gives rise to a light pseudo Goldstone boson, namely
a neutral pseudoscalar that was called axion. This new particle can be pictured
as a prediction of the Standard Model, in a way similar to the Higgs boson. In
fact, much interest is dedicated to the search of this particle, either by studying
different axion alternatives and its measurable implications or by exploring its vast
mass-coupling parameter space—a real challenge, since both parameters can vary
over many orders of magnitude. Nevertheless, several kinds of experiments are
currently devoted to this search, in part due to the fact that, in addition of solving
the strong CP problem, the axion constitutes a very promising candidate to the
cold dark matter of the Universe.

In any case, the properties of the axion, and those of other postulated axion-like
particles, are rich enough to touch on many areas of fundamental physics, such
as cosmology or string theory; for a thorough discussion on this extense topic,
we refer the reader to a recent review by Irastorza and Redondo [101]. For what
concerns this thesis, it suffices to stress that the topological objects of QCD—e.g.,
the topological susceptibility or the topological charge dependence on θ—have
a direct impact on axion physics, and so their computation within the lattice
framework is strongly motivated.

2.2 The sign problem in complex action QCD

As was outlined in the previous section, QCD has topological non-trivial solutions,
classically known as instantons, that need to be taken into account in order to
properly describe its physics. In fact, this situation is valid not just for QCD,
but for any 4D SU(N) gauge theory. In terms of the path integral formulation,
this implies the inclusion of an additional piece into the Lagrangian density, the
so-called θ term. In this way, the complete Lagrangian would be the sum of two



36 CHAPTER 2. TOPOLOGY IN QCD

pieces,

Lθ-QCD = LQCD + iθ
g2

64π2
εµνρσF

a
µνF

a
ρσ, (2.8)

where LQCD stands for the standard expression (1.4), which is both CP conserving
and real. In contrast, the second piece in the right hand side of (2.8) breaks CP—
as was stressed in the previous section—and, more importantly for the upcoming
discussion, is a purely imaginary number.

The topological nature of the θ term has direct physical effects: the vacuum
of the theory cannot be constructed as a quantum fluctuation around a classical
definite state [97]. Therefore, in order to properly analyze in which way QCD
depends on the θ parameter, a non-perturbative approach is required. Under this
circumstances, it would seem adequate to deal with the inclusion of the extra term
Lθ within the lattice regularization formalism. In principle, it would suffice to
find a proper discretization for the topological charge Q, and include its effects in
the corresponding Monte Carlo algorithm. Inconveniently, this is far from being
enough if non-vanishing values of the vacuum angle are to be explored, since the
θ term amounts to a complex phase in the action that gives rise to a severe sign
problem. Usual importance sampling methods are of no use in this situation, and
workarounds need to be found. At present, much of the achieved progress in this
topic involves computations of topological quantities at θ = 0, where standard
MC methods are still applicable. Although the definition of the topological charge
on the lattice is a subtle question, it is possible to compute quantities such as
the topological susceptibility χ, even with some difficulties [102]. However, little
progress has been achieved in the last decades in what concerns the study of the
θ > 0 case.

It is worth noting that the inclusion of the θ term is not the only example of
a sign problem being induced by a complex component into the action of QCD.
Another major example is given by finite density QCD, which takes place when a
non-zero chemical potential term is included into the fermionic matrix—a required
addition when considering high baryonic densities. This, in fact, is a relevant
scenario which affects several areas. It is needed in the studies of astrophysical
objects such as neutron stars. Moreover, in early Universe investigations, dealing
with extremely high values of both temperature and density is required. And, last
but not least, particle collider facilities reproduce these conditions in heavy ion
experiments. Although, thanks to asymptotic freedom, perturbative expansions
can offer an insight for some limiting cases—namely high energy, which translates
in high T or high µ—and the µ = 0 case is accessible to the standard importance
sampling techniques, almost the full µ − T phase diagram is beyond the reach of
these approaches.

In both of the cases above, considering a complex action results in the appear-
ance of a sign problem, which, as it was warned at the beginning of this thesis,
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constitutes one of the Millenium problems—in particular one that is not expected
to be solved with a positive outcome, which for our interests would be P=NP.
Therefore, the community has directed their efforts towards the development of
different alternatives that try to evade, or in some cases ameliorate, the sign prob-
lem in the systems of interest, i.e., in QCD or QCD-like models. In the next
section, we mention some of the more popular strategies, including a brief review
of the methods developed by Azcoiti et al [12, 13], which in fact are applied in
Chapter 4, when reconstructing the θ dependence of the Schwinger model.

2.3 Trying to overcome the Sign Problem

In order to progress in the study of complex action systems, different methods have
been developed over the years. In the cases where the sign problem is mild enough,
such as in finite density QCD for small values of the chemical potential µ, several
strategies can be followed with success. Perhaps the more straightforward ap-
proach is the technique known as reweighting. It introduces an auxiliary partition
function with non-negative density, which is used to reformulate the expectation
value of a given observable—computed in the original ensemble—in terms of other
expected values that are to be determined within the auxiliary ensemble. Indeed,
this change does not eliminate the problem, since the computational cost of this
method escalates exponentially with the volume of the system; however, it is useful
when applied to small systems, or in certain regions of the parameter space, such
as QCD with a small chemical potential µ, where the effects of the sign problem
are far from being severe. In this scenario, alternative approaches include Taylor
expansions around µ = 0 and analytic continuations from purely imaginary chem-
ical potential, although its scope is heavily bounded by the presence of a SSP; for
an extended discussion on this topic, we recommend the reader [103,104].

Apart from the above methods, that provide some insight for mild sign problem
regions—but fail to deliver otherwise—other procedures that have, in principle,
greater scope, have been developed over the last decades. In chronological order,
the first is Complex Langevin. The original works of Parisi and Klauder proposed
to generalize the Langevin equation formalism to the case of a complex-valued
distribution [9,10]. Even when rigorous proofs were lacking—e.g., the existence of
a stationary solution was a conjecture—the technique seemed to give correct results
in some cases [105]. However, in other systems the algorithm failed to converge,
or it did but to the wrong limit [106]. Interest in the method was rebounded when
Berges and Stamatescu realized that the instabilities of the Langevin evolution can
be dealt with if the stepsize is reduced enough [11]. In fact, using an adaptative
stepsize eliminates this problem [107]. Notwithstanding its recent successes, the
approach still has some caveats that need to be addressed, since in some scenarios



38 CHAPTER 2. TOPOLOGY IN QCD

it continues to converge to a wrong result. Current efforts are devoted to identify
under which conditions the proper solution can be reached, and what mechanisms
can be used to monitor if the Langevin evolution is to be trusted; for a review on
this topic, we refer to [108].

With a special focus on systems with a topological term in the action, a different
strategy was proposed by Azcoiti et al in 2002 [12]. In summary, the topological
charge dependence on θ is reconstructed from the probability distribution function
at θ = 0, which is to be computed from simulations at purely imaginary values
of θ, possible since in this case the action becomes real. These results are to
be adjusted to a suitable analytical expression that, once integrated, allows to
obtain q(θ) with the help of multiprecision algorithms. This approach proved to
work well in a number of systems, including the one dimensional Ising model and
the U(1) compact model in two dimensions, giving predictions for CP 3 and, in a
later work, for CP 9—a model that, as QCD, exhibits confinement and asymptotic
freedom [109]. Nevertheless, the scope of the approach gets hampered by the fact
that it cannot reconstruct a non-monotone order parameter [21]. In other words, if
a given model breaking CP gets this symmetry restored at θ = π, then q(θ) needs
to decrease at some point; in this situation, the method fails to reproduce this
behavior and a flattening is observed—which, on the other hand, it is generally
avoided in models with (spontaneously) broken symmetry at θ = π.

Initially with the aim of crosschecking the above method, an alternative ap-
proach, using the same input—i.e., Monte Carlo simulations at imaginary values
of the vacuum angle θ—was proposed in 2003 [13]. In this case, an additional
assumption needs to be made, namely that in order to reconstruct the full θ de-
pendence, no critical points are allowed, except at most at θ = π. This poses
a severe obstacle to its applicability in finite density QCD, where a rich phase
diagram is expected, but is in principle well adapted to θ QCD, where only one
phase transition—if any—is surmised, precisely at θ = π [102]. Besides the later
assumption, a particular extrapolation is required, that needs certain observables
to vary as slowly as possible. For this reason, the method is expected to work well,
among others, in asymptotically free gauge theories. This approach, which has
already obtained good results in a variety of models [109–111], has been applied
in Chapter 4 to reconstruct the θ dependence of the massive Schwinger model; for
a more extensive review, covering the specifics of the actual implementation, we
refer the reader to Section 4.3.

Finally, other recent approaches to complex action systems can be mentioned,
such as Lefschetz thimbles [14–16] or the density-of-states or LLR method [17–19].
Their details are beyond the scope of this thesis, since their application to QCD
with a topological term seems, for now, remote.



Chapter 3

Ising model with a θ term

In this chapter we present our work on the two-dimensional antiferromagnetic Ising
model with a purely imaginary magnetic field, which can be interpreted as a toy
model for the usual θ physics, and that was published in [28]. Our motivation,
as it was anticipated at the beginning of this thesis, is twofold. First, we pretend
to provide a benchmark calculation in a system which suffers from a strong sign
problem, so that our results can be used to test Monte Carlo methods developed
to tackle such problems. In second place, we want to test the predictions of
the method developed by Azcoiti et al. [13] regarding this system [21], since its
performance with the expected non-trivial phase diagram could entail additional
obstacles for its reliable application in other scenarios.

In the forecoming sections, we justify the choice of model and review their
fundamentals. Then, we discuss the analytical techniques applied, including the
exact computation of the first eight cumulants of the expansion of the effective
Hamiltonian in powers of the inverse temperature, which allows to calculate phys-
ical observables for a large number of degrees of freedom with the help of stan-
dard multi-precision algorithms. Finally, we report accurate results for the free
energy density, internal energy, standard and staggered magnetization, and the
position and nature of the critical line, which confirm the mean-field qualitative
picture of [21], and which should be quantitatively reliable, at least in the high-
temperature regime, including the entire critical line.

3.1 Why Ising?

As has been argued along the first chapters of this work, numerical simulation of
systems with a severe sign problem is one of the major challenges for high-energy
theorists—a statement which is also valid for their solid-state colleagues. If we
denote the microscopic states of a given physical system by s, and the thermody-

39



40 CHAPTER 3. ISING MODEL WITH A θ TERM

namics of such system is described by a partition function of the form

Z =
∑
s

P (s), (3.1)

we say that the system in question presents a sign problem if the “weights” P (s)
are not real and positive: This implies that we cannot interpret P (s) as a proper
probability distribution, and the standard, efficient Monte Carlo algorithms cannot
be applied. Not all sign problems are equally severe. Let us restrict ourselves for
simplicity to the case where the P (s) are real but not positive definite1. One
can easily devise a reweighting algorithm that uses the absolute value |P (s)| as
the weight of each state, and shifts the sign of P (s) into the observables. Now a
standard Monte Carlo method is applicable, and in the limit of infinite statistics
we should obtain the correct result. With finite statistics, however, a key quantity
is the thermodynamic average of the sign of each contribution to the partition
function, that is, 〈sign(P (s))〉. If this quantity goes to zero exponentially with the
volume, 〈sign〉 ∝ e−αV , then we would need an exponential amount (in the volume
of the system V ) of statistics to get correct results, which is of course impossible
in practice. In this case we say that the sign problem is severe.

Beyond QCD at finite baryon density or QCD with a topological term in the ac-
tion, there exist other physically relevant systems which suffer from a SSP. Some of
the most popular examples include chains of quantum spins with antiferromagnetic
interactions, the two-dimensional O(3) non linear sigma model with a topological
term or the Hubbard model. The existence of a SSP is the main reason for the
little progress made on the theoretical understanding of these physical systems
outside of phenomenological models.

In order to check novel Monte Carlo methods designed to tackle such prob-
lems, it is highly desirable to have a set of benchmark calculations as extensive
as possible. For very few systems an analytic solution is known, for example,
the one-dimensional antiferromagnetic Ising model with an imaginary magnetic
field, the two-dimensional compact U(1) model with topological term, or the two-
dimensional Ising model with an imaginary magnetic field h = iπ/2. In a few other
cases the sign problem can be avoided by reformulating the physical system with
new degrees of freedom, taking advantage of the fact that a good choice of these de-
grees of freedom provides an equivalent physical system free from the sign problem,
which can therefore be simulated by standard methods; see e.g. [112] for a recent
discussion on this dualization approach. Unfortunately this idea works only in a
few cases which, until now, are not the most interesting physical systems—indeed
none of the examples previously mentioned have been solved with this idea.

Within the above scenario, our intention in this work is to provide a benchmark
calculation for a system for which we do not have an analytic solution available,

1The discussion for complex weights does not add any fundamental difficulty.
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nor a reformulation that avoids the sign problem. We study the two-dimensional
antiferromagnetic Ising model with a purely imaginary magnetic field, which can
be thought of as a toy model for the usual θ physics. Indeed the Euclidean partition
function for QCD with a nonvanishing θ term can be written in the form

ZV (θ) =
∑
n

pV (n)eiθn (3.2)

where n, the topological charge, is an integer, and pV (n) is, up to a normalization,
the probability of the topological sector n at θ = 0. This has the same structure as
the partition function of the antiferromagnetic Ising model in an external purely
imaginary magnetic field, as we will see in detail later on, and we expect that the
SSP in both systems should also be similar.

This system was studied in [20] by locating the zeros of the partition func-
tion in the complex temperature-magnetic field plane, and they found, for purely
imaginary magnetic field, a rich phase structure with two phases characterized by
a vanishing (nonvanishing) staggered magnetization, separated by a phase transi-
tion line. We study this system by an exact cumulant expansion to eighth order,
followed by the analytic computation of the partition function and other physical
quantities for a large number of degrees of freedom with the help of a standard
multiprecision algorithm. This amounts essentially to the computation of the ef-
fective Hamiltonian up to order T−8, and therefore is expected to work well in the
high-temperature regime, and we provide strong evidence that this is indeed the
case. Our results are consistent with [20], and extend the results of [21], obtained
through the application of algorithms developed in [12, 13], and through a mean-
field analysis. We are able to obtain a more precise quantitative determination of
the transition line separating the paramagnetic and antiferromagnetic phases of
the model.

For some systems with a SSP, we know a priori that the partition function
will be positive, for example systems in thermal equilibrium with a (Hermitian)
Hamiltonian description. Such is the case in a quantum field theory with a θ term.
In the toy model we study here, although we do not have a rigorous proof in this
case,2 we have evidence that, at least in the region where the approximation we
use is valid, the partition function is indeed positive (it is trivially always real).

Such evidence is twofold. First, we can prove rigorously that up to the fifth
cumulant, the partition function is indeed positive. Unfortunately we have not
been able to extend this proof to higher cumulants, but in our multiprecision
calculations with up to eight cumulants, we have never seen an instance where

2This would imply a nontrivial restriction on the position of the Lee-Yang zeros for the
antiferromagnetic Ising model. To the best of our knowledge, very little is rigorously known
about such zeros.
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the partition function is negative or vanishes. This is highly nontrivial: If instead
of a constant imaginary magnetic field we try, for example, to put a staggered
imaginary field in our lattice (this is of course equivalent to the ferromagnetic
model with a constant imaginary field), we immediately get a fluctuating sign for
the partition function.

Second, there have been studies locating the Lee-Yang zeros of the antiferro-
magnetic two-dimensional Ising model up to 142 lattices [113], and in 12 × 13
lattices [20]. Up to that size there is no sign of any zeros cutting the imaginary
axis at any temperature.

Whereas this by no means amounts to a rigorous proof, we believe it provides
a strong indication that, at least in the region of interest for our work, this model
should have a positive partition function.

Hereafter, Section 3.2 is devoted to formulate the model and to recall the main
ingredients and results of the mean-field approximation developed in [21]. In Sec.
3.3 we introduce the cumulant expansion, report the analytical results for the first
eight cumulants in the two-dimensional model, and write the analytical expressions
for the free energy and mean values of interesting physical quantities. The results
for the staggered magnetization, susceptibility, and phase diagram of the model
are reported in Sec. 3.4, where we also compare our results at h = 0 and iπ/2 with
the analytical solutions of [114–116]. In Sec. 3.5 we report our conclusions. The
technical details of the analytical computation of the cumulant expansion can be
found in Appendix A.

3.2 Two-dimensional Ising model

The Ising model [20, 114–119] has been studied for a long time now, and it has
known analytical solutions in the one-dimensional case at any external magnetic
field h [117], and in two dimensions only for the case without magnetic field h [114]
and for h = iθ/2 = iπ/2 [115, 116]. The model with a pure imaginary magnetic
field suffers from a SSP in any number of dimensions. In addition to that, the
expected phase diagram for d ≥ 2 is non trivial [21], making the reconstruction
of the θ dependence of the observables even more challenging. All this makes the
model a good theoretical laboratory to test new methods designed to deal with
the SSP. It is therefore worthwhile to carry out a detailed study of this model
at purely imaginary magnetic field, particularly because little progress has been
achieved on reconstructing the θ dependence of the observables, apart from the
analysis of [21] and the recent study in [120].
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The partition function of the model, following the conventions of [21], is:

Z =
∑
{si}

exp

(
F
∑
<ij>

sisj + iθ
1

2

∑
i

si

)
. (3.3)

The half magnetization
M

2
≡ 1

2

∑
i

si, (3.4)

is an integer taking any value between −N/2 and N/2, where N is an even number
denoting the total number of spins in the lattice. It is in this sense that we identify
M/2 with a topological charge and regard the imaginary magnetic field term in
the action as a θ term. It is important to mention that, from now on, we will
consider only the antiferromagnetic case F < 0, since the model with imaginary
field does not define a unitary theory for arbitrary values of the ferromagnetic
coupling [115,121].

As we shall see in detail in the next section, by dividing the rectangular lattice
into two sublattices, introducing the respective magnetizationsM1 andM2, making
a cumulant expansion and keeping only the first cumulant, we arrive at the follow-
ing approximation to the partition function (where d denotes the dimensionality
of the lattice):

Z1c(F, θ) =
∑
{si}

exp

(
iθ
M1 +M2

2
+ 4

Fd

N
M1M2

)
. (3.5)

We recall now the mean-field analysis carried out in [21]. The resulting partition
function,

ZMF (F, θ) =
∑
{si}

exp

(
iθ
M1 +M2

2
− Fd

N
(M1 −M2)2

)
, (3.6)

is different from Eq. (3.5). However, it can be seen to give the same qualitative
results for the observables and the phase diagram. In this regard, we will consider
the first-cumulant expansion Z1c as a mean-field approximation to Z, and the
general expansion itself as an improvement of it, at least for small F , where the
expansion is expected to converge.

Applying standard saddle-point techniques to the mean-field partition function
[21], one obtains the F−θ phase diagram shown in Fig. 3.1. A second order critical
line,

dFc =
1

2
cos2 θc

2
, (3.7)

separates two different phases: a staggered one, with 〈ms〉 6= 0, for F > Fc(θ), and
a paramagnetic one, with 〈ms〉 = 0, for F ≤ Fc(θ).
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Figure 3.1: Phase diagram of the mean-field approach of [21] to the antiferromag-
netic Ising model in the F − θ plane.

3.3 Cumulant expansion and observables

Our interest is focused on the antiferromagnetic model, where the staggered mag-
netization is a good order parameter. From now on we will work with a rectangular
two-dimensional lattice, although the method is easily generalizable to any number
of dimensions. We divide the lattice into two sublattices Ω1 and Ω2 in a chess-
board fashion. In the two-dimensional lattice this means that if i and j index,
respectively, the row and the column of a given spin, this spin will be in the first
(second) sublattice if the sum i + j is even (odd). For simplicity we will require
both lengths of the lattice to be even. Denoting by N the total number of points
in the lattice, we define the magnetization densities m1 and m2 as

mj ≡
Mj

N/2
≡
∑

i∈Ωj
si

N/2
j = 1, 2, (3.8)

and the density of staggered magnetization is

ms ≡
m1 −m2

2
. (3.9)

Let us denote by g(m1,m2) the number of microstates with magnetization
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densities m1 and m2 in sublattices Ω1 and Ω2, respectively, that is,

g(m1,m2) =
∑
{si}

δ

(∑
i∈Ω1

si −M1

)
δ

(∑
i∈Ω2

si −M2

)
. (3.10)

A trivial computation gives:

g(m1,m2) =

(
N/2

N1+

)(
N/2

N2+

)
, (3.11)

with Nj+ ≡ N(1 + mj)/4 for j = 1, 2. Now, by restricting ourselves to the set of
configurations with given magnetization densities m1 and m2, it is straightforward
to define the expectation value of a general observable O({si}) within this subset—
i.e., at fixed m1,m2—as:

〈O〉m1,m2
≡ 1

g(m1,m2)

∑
{si}

δ(
∑
i∈Ω1

si −M1)δ(
∑
i∈Ω2

si −M2) O({si}). (3.12)

Then, the sum over all possible spin configurations in the original partition function
(3.3) can be partially summed up—at least formally—grouping together sectors
with equal magnetization densities m1,m2. By doing so, and taking into account
the above definitions, the reformulated partition function takes the following form:

Z =
∑
m1,m2

g(m1,m2)

〈
exp

(
i
θ

2

∑
i

si + F
∑
<ij>

sisj

)〉
m1,m2

. (3.13)

The θ term in Eq. (3.13) is just iθ (m1 +m2)N/4, and therefore constant at fixed
m1 and m2; we can take it out of the expectation value, arriving at

Z =
∑
m1,m2

g(m1,m2)e
1
4
Niθ(m1+m2)

〈
exp

(
F
∑
<ij>

sisj

)〉
m1,m2

. (3.14)

We cannot evaluate exactly the expectation value in Eq. (3.14), as that would be
equivalent to solving exactly the model for arbitrary values of the external field.
Instead we perform a cumulant expansion and truncate at a given order. Let us
recall the definition: 〈

etX
〉
≡ exp

(
∞∑
n=1

κn
tn

n!

)
, (3.15)

where the nth cumulant κn is an nth degree polynomial in the first n noncentral
moments of X, given by the following recursion formula:

κn = µ′n −
n−1∑
m=1

(
n− 1

m− 1

)
κmµ

′
n−m, µ′n ≡ 〈Xn〉 . (3.16)
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By expanding in cumulants in our partition function, taking t = F and X =∑
sisj, we obtain

Z =
∑
m1,m2

g(m1,m2) exp

(
1

4
Niθ(m1 +m2) +

∞∑
n=1

κn(m1,m2)
F n

n!

)
, (3.17)

where now the moments are given by

µ′n =

〈(∑
<i,j>

sisj

)n〉
m1,m2

. (3.18)

The computation of these quantities is somewhat involved, and we relegate the
details to Appendix A. We calculate the cumulants using a numerical (but exact)
method, up to n = 8. The results, at leading order in N3, for d = 2, are

κ1 = 2Nm1m2,

κ2 = 2N(m1
2 − 1)(m2

2 − 1),

κ3 = 8Nm1m2(m1
2 − 1)(m2

2 − 1),

κ4 = 4N(21m1
2m2

2 − 9(m1
2 +m2

2) + 5)

×(m1
2 − 1)(m2

2 − 1),

κ5 = 32N(51m1
2m2

2 − 39m1
2 − 39m2

2 + 31)

×m1m2(m1
2 − 1)(m2

2 − 1),

κ6 = 64N(675m1
4m2

4 − 690[m1
4m2

2 +m1
2m2

4]

+705m1
2m2

2 + 75[m1
4 +m2

4 −m1
2 −m2

2] + 8)

×(m1
2 − 1)(m2

2 − 1),

κ7 = 128N(10935m4
1m

4
2 − 13950[m4

1m
2
2 +m2

1m
4
2]

+3375[m4
1 +m4

2] + 17760m2
1m

2
2 − 4290[m2

1 +m2
2]

+1051)m1m2(m2
1 − 1)(m2

2 − 1).

3We can calculate the subleading terms also, but they become irrelevant as we approach the
thermodynamic limit.
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κ8 = 32N(1685565m1
6m2

6 − 2604735[m1
6m2

4

+m1
4m2

6] + 994455[m1
6m2

2 +m1
2m2

6]

−55125[m1
6 +m2

6] + 4026645m1
4m2

4

−1541085[m1
4m2

2 +m1
2m2

4] + 85575[m1
4 +m2

4]

+595077m1
2m2

2 − 33663[m1
2 +m2

2] + 2125)

×(m2
1 − 1)(m2

2 − 1) (3.19)

Now we can compute an approximation to the expectation value of any ob-
servable that depends on the spin configuration only through the values of the
magnetization densities m1,m2—i.e., of the form O(m1,m2)—as follows:

〈O〉 =
1

Z
∑
m1,m2

O(m1,m2)g(m1,m2)

× exp

{
iθ
M1 +M2

2
+

nmax∑
n=1

F n

n!
κn(m1,m2)

}
,

(3.20)

where 〈O〉 depends implicitly on the number of cumulants included in the approx-
imation, nmax, and on the number of spins of the system N . Taking the limit of
both nmax and N to infinity, we should recover the exact result in the thermody-
namic limit. Using this technique, we have computed several observables, such as
the density of free energy φ, the density of internal energy e, the specific heat cv
and both the usual and the staggered magnetization 〈m〉 and 〈ms〉, respectively.
The precise definitions of the computed observables are the following:

φ ≡ − 1

NF
logZ, (3.21)

e ≡ − 1

2N

∂ logZ
∂F

, cv ≡ −F 2 ∂

∂F
e, (3.22)

〈m〉 ≡
〈
m1 +m2

2

〉
, 〈ms〉 ≡

〈
m1 −m2

2

〉
. (3.23)

It must be noted that at θ = π, where the model has an analytical solution, the
free energy has a singularity at F = 0 [115, 116]. In the next section we will talk
about its nonsingular part, which is simply the result of subtracting the singular
term from the full expression:

φ ≡ φns −
1

2F
log (1− e4F ). (3.24)
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As we have mentioned before, the complex-valued exponentials in Eq. (3.20)
give rise to a severe sign problem. To deal with it we use a multiprecision algorithm,
which allows us to keep as many digits as needed. In order to crosscheck our
calculations we have used several multiprecision libraries (GMP, GNU MPFR,
GNU MPC, gmpy2) to do the sum over m1 and m2. The computational cost
when computing the observables grows on one hand with N2 due to the number
of summands in (3.20). In addition to that, the number of digits needed grows
linearly with N , increasing the cost of each multiprecision operation.

3.4 Results

At θ = 0 and π we know the analytical solution for the two-dimensional Ising model
[114–116], and therefore we can compare the exact results with the approximations
obtained from Eq. (3.20). We can see in Figs. 3.2 and 3.3 the density of free energy
as a function of the coupling |F |, for different approximations. Concretely we show
the approximations obtained by keeping only the first, up to the fourth, and up
to the eighth cumulant. For clarity we show only the results corresponding to the
largest size N that we have calculated, although we have carefully checked that the
finite-size effects are tiny at that value of N . We can see that the agreement with
the exact result, especially for the fourth and eighth approximations, is excellent
at small |F |, where we can expect the cumulant expansion to be well behaved.
At |F | & 0.57 the approximations start to drift away from the analytic result,
especially the eighth, possibly indicating the lack of convergence of the cumulant
expansion at such larger couplings.

The above results are consistent with those of the density of internal energy,
which we can see in Figs. 3.4-3.6. The same can be said about the specific heat
for θ = π, in Fig. 3.7. The results of the specific heat for θ = 0, in Fig. 3.8, show
also a good agreement with the analytical solution, as long as we are far from the
critical point. In the neighborhood of the critical point we can see that keeping
a finite number of cumulants has a strong impact. However, the results seem to
converge to the exact solution quickly when we increase the number of cumulants,
and indeed the peak when including all eight cumulants is not far from the analytic
result.

The agreement with the exact results both at θ = 0 and at π suggests that the
cumulant expansion can be trusted at all values of θ, as long as |F | . 0.57.

We expect a nonvanishing value of 〈ms〉 to signal the transition from the para-
magnetic to the staggered phase. Because of translational symmetry, we cannot
simply compute this observable, since for a finite N system it is always zero [per-
muting m1 and m2 leaves Eq. (3.20) invariant]. However, we can compute 〈m2

s〉,
which also separates the weak and strong coupling phases.
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In Fig. 3.9 we show results for 〈m2
s〉 at θ = 2. One can see how, as we approach

the thermodynamic limit, 〈m2
s〉 becomes a steeper function of |F |. To obtain the

critical line for a given cumulant approximation, we numerically calculate the
quantity d

dθ
〈m2

s〉 (which should diverge in the thermodynamic limit at the critical
line), and find the maximum along lines of constant θ. This gives us, for each
size N and each value of θ, Fc(θ). We can see in Fig. 3.10 the behavior of such
quantity as a function of F and N , for the specific value θ = 2, in the eight
cumulant approximation. The height of the peak does not scale as N , at least
at the volumes we have been able to calculate, therefore suggesting a continuous
phase transition; however, our data are not extensive enough to calculate the
critical exponents.

The phase diagram obtained in this way is shown in Fig. 3.11, for several
truncation orders of the cumulant expansion. The transition lines that we obtain
lie entirely below |F | = .45, where we have good evidence that the cumulant
expansion works well. The change from the line corresponding to k = 1 and 4 is
very large, but the results seem to stabilize quickly with the order of the expansion,
and the lines corresponding to k = 4 and 8 are quite close together. Therefore we
expect the phase diagram for k = 8 to be a quite accurate approximation to the
exact one. Further evidence of this is the agreement with the few maximal values
for Fc estimated in [20] from the computation of the zeros of the partition function
of the model in the complex temperature-magnetic field plane. As can be seen in
the plot, they lie above but quite close to our k = 8 line.

As another crosscheck we show in Fig. 3.12 results for the specific heat at
θ = 2 in the eight cumulant approximation, computed for several system sizes.
The behavior is similar to the one in Fig. 3.10: a peak of increasing height in
the vicinity of the critical point, and smooth behavior and small finite N effects
elsewhere.

3.5 Conclusions

We have analyzed the two-dimensional antiferromagnetic Ising model with an
imaginary magnetic field by analytical techniques. We have calculated the first
eight cumulants of what is essentially the expansion of the effective Hamiltonian
in powers of the inverse temperature, and computed physical quantities for a large
number of degrees of freedom with the help of multiprecision algorithms. The mo-
tivation for such a calculation was to have an example of a physical system with
SSP and nontrivial phase structure, the dynamics of which is well known, at least
in the high-temperature region.

Our results confirm the qualitative picture described in [21], and predict the
existence of two phases in this model, which can be characterized by the staggered
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Figure 3.2: Free energy (−Fφ) at θ = 0, N = 2000 for the square-lattice AF Ising
model in the kth cumulant approximation.
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Figure 3.3: Nonsingular part of the free energy (−Fφ) at θ = π,N = 2000.
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Figure 3.4: Internal energy e(F ) computed for one, four, and eight cumulants at
θ = 0 and N = 2000.

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e(
F

)

|F |

k=1
k=4
k=8

Analytic

Figure 3.5: Internal energy density e(F ) at θ = π,N = 2000 at several cumulant
expansions.
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Figure 3.6: Nonsingular part of the internal energy at θ = π,N = 2000.
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Figure 3.7: Specific heat at θ = π,N = 2000, plotted against the analytical
expression.
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Figure 3.8: Specific heat at θ = 0, plotted against the analytical solution. At
θ = 0, Fc = log(1 +
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2)/2 ≈ 0.4407.
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Figure 3.11: The critical line Fc(θ), computed as the maximum of d〈m2
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Figure 3.12: Specific heat cv with k = 8 and θ = 2. Solid lines are just a guide to
the eye.

magnetization as an order parameter. The finite-size scaling suggests that the
two phases are separated by a continuous phase transition line. The position
of the critical point at θ = 0 is in very good agreement with the exact result
Fc = log(1 +

√
2)/2 ≈ 0.4407, and the free and internal energy densities at θ = π

agree also well with the analytical prediction, at least in the high-temperature
regime, thus giving reliability to our results in this region. Therefore this model
could be a good laboratory to check proposals to simulate physical systems afflicted
by a SSP. Moreover, we have confirmed that the system under discussion has a
more involved phase diagram than in the expected θ QCD case, which would have,
at most, a single critical point in θ = π. In this sense, the reconstruction method
of [13], which when applied in [21] was capable of detecting the presence of a
critical region, is strongly supported.
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Chapter 4

Massive 1-flavor Schwinger model
with a θ term

We analyze here the massive 1-flavor Schwinger model with a θ term and a quan-
tized topological charge. Our work, published in [29], relies on the approach of
Azcoiti et al in [13]. We are able to calculate the full dependence of the order
parameter with θ in a system that includes dynamical fermions. Moreover, our re-
sults at θ = π are compatible with Coleman’s conjecture [22] on the phase diagram
of this model.

This chapter is organized as follows: after motivating the topic in the first
section, we summarize some relevant features of the Schwinger model with a topo-
logical term in Sec. 4.2. Since the proposal [13] to analyze physical systems with
a topological term in the action has been found to be particularly well suited to
bypass the sign problem in asymptotically free gauge theories, we decided to apply
it, and Sec. 4.3 contains a brief review of the method. In Sec. 4.4 we give some
technical details concerning the lattice setup and the computer simulations per-
formed. Sec. 4.5 shows our results for the topological charge density as a function
of θ at several fermion masses and gauge couplings, and finally we end this chapter
by reporting our conclusions.

4.1 Motivation

The nature and origin of dark matter constitute one of the most wide open ques-
tions in modern physics. To gain some insight in this puzzling problem, it is highly
desirable to elucidate the existence of new low-mass, weakly interacting particles
from a theoretical, phenomenological and experimental point of view. As was out-
lined in Chapter 2, the light particle that has gathered the most attention is the
axion, predicted by Weinberg and Wilczek [99], and Wilczek [100] in the Peccei and

57
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Quinn mechanism [98] to explain the absence of parity and temporal invariance
violations induced by the QCD vacuum. The axion is one of the more interest-
ing candidates to make the dark matter of the universe, and the axion potential,
that determines the dynamics of the axion field, plays a fundamental role in this
context.

The QCD axion model relates the topological susceptibility χT with the axion
mass ma and decay constant fa through the relation χT = m2

af
2
a . The axion

mass is, on the other hand, an essential ingredient in the calculation of the axion
abundance in the Universe. Therefore, a precise computation of the topological
properties of QCD and of their temperature dependence becomes of primordial
interest in this context. Understanding the role of the θ parameter in QCD and
its connection with the strong CP problem is one of the major challenges for high
energy theorists [122].

The calculation of the topological susceptibility in QCD is already a challenge,
but calculating the complete potential requires a strategy to deal with the presence
of a highly oscillating term in the path integral; in other words, one needs to
circumvent a severe sign problem. In fact euclidean lattice gauge theory, our main
non-perturbative tool for studying QCD from first principles, has not been able
to help us much because of the imaginary contribution to the action coming from
the θ term, that prevents the applicability of the importance sampling method
[102]. This is the main reason why the only progress in the analysis of the finite
temperature θ dependence of the vacuum energy density in pure gauge QCD,
outside of approximations, reduces to the computation of the first few coefficients
in the expansion of the free energy density in powers of θ [123], and the situation
in full QCD with dynamical fermions is, on the other hand, even worse [124–129].

Much experience has been developed in the last years concerning the strengths
and weaknesses of the approaches [12,13], which aspire to eventually overcome the
sign problem in θ QCD. As a matter of fact, it has been applied successfully to
the computation of the vacuum energy density and the topological charge density
in a handful of interesting physical systems [21,109–111,130]. Our purpose in the
present chapter is to take advantage of this experience to perform a first step in
the ambitious program of computing the θ dependence of the QCD vacuum energy
density.

Thereby, we analyze the θ dependence of a toy model for QCD, the Schwinger
model, on the lattice. Strictly speaking, the Schwinger model in the continuum is
not asymptotically free, as QCD, since it is super-renormalizable and the Callan-
Symanzik β-function vanishes. However, in the lattice version, since the continuum
coupling is dimensionful, the continuum theory is reached at infinite inverse square
gauge coupling β = 1/e2a2, much in the same way as four-dimensional asymptot-
ically free gauge theories such as QCD. Furthermore the model is confining [131],
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exactly solvable at zero fermion mass, has non-trivial topology and shows explicitly
the UA(1) axial anomaly [132] through a non-vanishing value of the chiral conden-
sate in the chiral limit, in the one-flavor case. These are basically the reasons why
this model has been extensively used as a toy model for QCD.

It should be noted that, for two dimensional systems such as the Schwinger
model with a θ term, there exist numerical methods such as Hamiltonian methods
[133–135] and the Grassmann tensor renormalization group method [136] that have
been applied successfully. However, such approaches are currently only applicable
to two-dimensional systems, whereas our aim is to test a method that should, in
principle, be applicable also to four-dimensional theories such as QCD.

4.2 The massive Schwinger model with a θ term

The Schwinger model is Quantum Electrodynamics in 1+1-dimensions [137]. The
euclidean continuum action reads

S =

∫
d2x

{
ψ̄(x)γµ (∂µ + ieAµ(x))ψ(x) +mψ̄(x)ψ(x) +

1

4
F 2
µν(x)

}
, (4.1)

where m is the fermion mass and e is the electric charge or gauge coupling, which
has the same dimension as m. After a simple rescaling of the fields the action can
be written as

S =

∫
d2x

{
ψ̄(x)γµ (∂µ + iAµ(x))ψ(x) +mψ̄(x)ψ(x) +

1

4e2
F 2
µν(x)

}
, (4.2)

where Fµν(x) = ∂µAν(x)−∂νAµ(x) and γµ are 2×2 matrices satisfying the algebra

{γµ, γν} = 2gµν . (4.3)

where gµν stands for the Euclidean metric tensor.
At the classical level this action is invariant in the chiral limit under the UA(1)

global transformations

ψ → eiαγ5ψ, (4.4)

ψ̄ → ψ̄eiαγ5 , (4.5)

leading to the conservation of the axial current

JAµ (x) = ψ̄(x)γµγ5ψ(x). (4.6)
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However the axial symmetry is broken at the quantum level because of the axial
anomaly, as was discussed in detail in Section 1.3.3. The divergence of the axial
current is

∂µJ
A
µ (x) =

1

2π
εµνFµν(x), (4.7)

with εµν the antisymmetric tensor, and therefore does not vanish. The axial
anomaly induces a topological θ term in the action of the form

Stop =
iθ

4π

∫
d2xεµνFµν(x), (4.8)

where the topological charge Q = 1
4π

∫
d2xεµνFµν(x) is an integer.

Our purpose is then to analyze the θ dependence of the model described by
the action (4.2)+(4.8)

S =

∫
d2x

{
ψ̄γµ (∂µ + iAµ)ψ +mψ̄ψ +

1

4e2
F 2
µν +

iθ

4π
εµνFµν

}
. (4.9)

A simple analysis of this model on the lattice suggests that it should undergo
a phase transition at some intermediate fermion mass m and θ = π, even at finite
lattice spacing. Indeed the lattice model is analytically solvable in the infinite
fermion mass limit (pure gauge two-dimensional electrodynamics with topological
term) [138, 139], and it is well known that the density of topological charge ap-
proaches a non-vanishing vacuum expectation value at θ = π for any value of the
inverse square gauge coupling β, exhibiting spontaneous symmetry breaking. On
the other hand by expanding the vacuum energy density in powers of m, treating
the fermion mass as a perturbation [140], one gets for the vacuum expectation
value of the density of topological charge the following θ dependence:

〈−iq〉 = mΣsinθ +
1

2
m2 sin (2θ) (χP − χS) + · · · , (4.10)

with Σ the vacuum expectation value of the chiral condensate in the chiral limit
and at θ = 0 (Σ = eγee/2π3/2 in the continuum limit), and χP and χS the pseu-
doscalar and scalar susceptibilities respectively. Equation (4.10) shows how the Z2

symmetry at θ = π is realized order by order in the perturbative expansion of the
topological charge in powers of the fermion mass m, and therefore a critical point
separating the large and small fermion mass phases is expected.

Indeed the model was analyzed in the continuum by Coleman in [22], where he
conjectured the existence of a phase transition at θ = π, and some intermediate
fermion mass m separating a ”weak coupling” phase ( e

m
<< 1), where the Z2

symmetry of the model at θ = π is spontaneously broken, from a ”strong cou-
pling” phase ( e

m
>> 1) where the Z2 symmetry is realized in the vacuum. This
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conjecture was corroborated in [133, 134] using the lattice Hamiltonian approach
with staggered fermions, and more recently in [136] using the Grassmann tensor
renormalization group and Wilson fermions.

4.3 Computing the order parameter as a func-

tion of θ

To compute the θ dependence of the density of topological charge we use the
approach proposed in reference [13]. The only assumption in this approach is the
absence of phase transitions at real values of θ except at most at θ = π. The
method is based in extrapolating a suitably defined function to the origin. This
function turns out to be very smooth in all the cases considered up to now [21,
109–111], and this makes us confident on the whole procedure. Here we summarize
the main steps.

From numerical simulations of our physical system at imaginary values of θ =
−ih (real values of h), which are free from the severe sign problem, we compute the
density of topological charge q(−ih) as a function of h, and introduce the following
functions:

z = cosh
h

2
, (4.11)

y(z) =
q(−ih)

tanh h
2

. (4.12)

The procedure to find out the density of topological charge at real values of θ
relies on scaling transformations [13]. We define the function yλ (z) as

yλ (z) = y
(
e
λ
2 z
)
. (4.13)

For negative values of λ, the function yλ (z) allows us to calculate the order pa-
rameter

(
tanh h

2
y (z)

)
below the threshold z = 1. If y (z) is non-vanishing for

any positive z,1 then we can plot yλ/y against y. Furthermore, in the case that
yλ/y is a smooth function of y close to the origin, then we can rely on a simple
extrapolation to y = 0. Of course, a smooth behavior of yλ/y cannot be taken for
granted; however no violations of this rule have been found in the exactly solvable
models.

1Even though the possibility of a vanishing y (z) for some value z > 0 cannot be completely
excluded, it does not happen for any of the analytically solvable models we know.
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The behavior of the model at θ = π can be ascertained from this extrapolation.
At θ = π the model has the same Z2 symmetry than at θ = 0. We can define an
effective exponent γλ by

γλ =
2

λ
ln

(
yλ
y

)
. (4.14)

As z → 0, the order parameter tan θ
2
y
(
cos θ

2

)
behaves as (π − θ)γλ−1. Therefore,

a value of γλ = 1 implies spontaneous symmetry breaking at θ = π. A value
between 1 < γλ < 2 signals a second order phase transition, and the corresponding
susceptibility diverges. Finally, if γλ = 2, the symmetry is realized (at least for
the selected order parameter), there is no phase transition and the free energy is
analytic at θ = π.2

We can take the information contained in the quotient yλ
y

(y), and calculate

the order parameter for any value of θ through an iterative procedure [13]. The
outline of the procedure is the following:

• Beginning from a point y (zi) = yi, we find the value yi+1 such that yλ = yi.

By definition, yi+1 = y
(
e
−λ
2 zi

)
.

• Replace yi by yi+1, and start again.

The procedure is repeated until enough values of y are know for z < 1 (see Fig.
4.1). This method can be used for any model, as long as our assumptions of
smoothness and absence of singular behavior are verified during the numerical
computations. The reliability of our approach in practical applications is better
when the following conditions are met:

1. y(z) takes small values for values of z of order 1.

2. The dependence on y of the functions yλ/y and γλ is soft enough to allow a
reliable extrapolation.

In the one-dimensional Ising model within an imaginary magnetic field these two
properties are realized in the low temperature regime [13], and the two and three-
dimensional models also show a very good behavior in this regime [21]. Indeed
the relevant feature, at least in what concerns point 1, is that, at low tempera-
tures, the magnetic susceptibility at small values of the real external magnetic field
takes small values. In the more interesting case of asymptotically free models, the
analogue of the magnetic susceptibility is the topological susceptibility, and it is
well known that topological structures are strongly suppressed near the continuum

2Other possibilities are allowed, for instance, any γλ > 1, γλ ∈ N leads to symmetry real-
ization for the order parameter at θ = π and to an analytic free energy. If γλ lies between two
natural numbers, p < γλ < q, p, q ∈ N, then a transition of order q takes place.
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Figure 4.1: Iterative method used to compute the different values of y(z). yλ is
plotted as a function of y using a dashed line in the region where direct measure-
ments are available, and a continuous line in the extrapolated region. The straight
continuous line represents yλ = y. Reproduced from [13].

limit. Therefore, and on qualitative grounds, we expect a good implementation
of our method in the Schwinger model or in QCD, at least close enough to the
continuum limit.

The high reliability of this method has been tested in several models. In ref-
erence [13], where the approach was proposed, the θ-dependence of the density
of topological charge in CP 3 was computed at β = 0.4 on 100 × 100 lattices,
and the numerical results were compared with the corresponding results obtained
from a completely independent method, the one proposed in [12], based on the
computation of the probability distribution function of the density of the topolog-
ical charge, finding a perfect agreement between the two independent approaches.
In [109] the two independent methods [12, 13] were also applied to the analysis of
the θ dependence of the CP 9 model. The results of the two methods were again in
agreement within statistical errors at the % level. Furthermore a very good agree-
ment of the scaling of the density of topological charge with the prediction of the
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renormalization group equation was also found in [109], this being the strongest
indication that the continuum θ dependence of CP 9 was fully reconstructed and
that CP symmetry is spontaneously broken at θ = π, as predicted by the large N
expansion. In [110] the method described in this section was applied to the anal-
ysis of the critical behavior of CP 1 at θ = π, finding a region outside the strong
coupling regime where Haldane’s conjecture [141] is verified. Lastly, in [111], the
critical behavior at θ = π of the two-dimensional O(3) nonlinear sigma model with
topological term on the lattice was investigated, also using the method described
in this section; the results were compatible with a second-order phase transition,
with the critical exponent of the SU(2)1 Wess-Zumino-Novikov-Witten model, for
sufficiently small values of the coupling.

All these results show the high reliability of [13], especially when applied to
asymptotically free theories, or in the weak coupling regime. However since this
chapter deals with the Schwinger model, we want to add a new test of our method
intimately related to this model. It is well known that pure gauge compact elec-
trodynamics in two dimensions with a topological term can be analytically solved
on a lattice of infinite extent [138, 139]. In Fig. 4.2 we plot our results for the
topological charge density of this model against the θ-parameter, obtained using
our method, in a 20 × 20 lattice, and β = 4. The continuous line shows the ana-
lytical result in the thermodynamic limit. As can be seen the agreement is very
good.

4.4 Details of the simulation

We use the lattice version of the continuum action (4.9) with staggered fermions
and standard Wilson form for the pure gauge part. It reads as follows,

S =
1

2

∑
n,µ

ηµ(n)χ̄(n){Uµ(n)χ(n+ µ̂)

−U †µ(n− µ̂)χ(n− µ̂)}+m
∑
n

χ̄(n)χ(n)

−β
∑
n

Re
(
U1(n)U2(n+ 1̂)U †1(n+ 2̂)U †2(n)

)
−iθ

∑
n

q(n), (4.15)

where the notation is standard. The compact gauge variable Uµ(n) is related to
the non-compact gauge field Aµ(n) in the usual way

Uµ(n) = eiaAµ(n) = eiφµ(n), (4.16)
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Figure 4.2: Order parameter as a function of θ for β = 4.0 in the pure gauge
theory, m→∞. The continuous blue line is the exact result.

with a the lattice spacing, and the local topological charge q(n) is given by

q(n) =
1

2π

(
φ1(n) + φ2(n+ 1̂)

− φ1(n+ 2̂)− φ2(n) mod 2π
)
. (4.17)

An important point is that this charge is quantized, and therefore the partition
function of the model has exact 2π periodicity in θ, as is the case in the continuum
theory.3

We will analyze in what follows the model given by action (4.15), taking the
square root of the fermion determinant in order to describe only one flavor. There
is ample evidence that this procedure leads to the correct physics in the contin-
uum limit, including the effects of the anomaly. For example, the Microcanonical
Fermion Average (MFA) approach [143] was applied years ago to simulate the
one-flavor Schwinger model on the lattice at θ = 0, using the standard Wilson

3This is an important difference with the approach in [142], which makes a comparison with
our results at finite lattice spacing difficult.
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action for the gauge field and staggered fermions. The results [144] reproduce the
exact value of the chiral condensate in the chiral continuum limit up to 3 decimal
places.4

As explained in Sec. 4.3, in order to find the dependence on θ of the density
of topological charge q, we need to compute the expected value of q for imaginary
values of θ. In this case standard Monte Carlo algorithms work well, and we can
sample the distribution e−S generated by (4.15) with any of these methods. We
have used a standard Metropolis approach, trying to update each link sequentially
in every sweep.

We want to use an exact Monte Carlo method, and the fermionic part of the
action forces us to recompute the whole fermion determinant at each attempt to
update one link, that is, N times each sweep. Indeed, this is the most expensive
part of the algorithm. All our lattices are of size 16 × 16, and we computed
the eigenvalues of the fermion matrix with the GNU Scientific Library, taking
advantage of the standard even-odd decomposition of the staggered fermions Dirac
operator. The simulations have been run at the U-LITE computer facility at the
INFN National Laboratories of Gran Sasso.

We present in the following section results for several massesm, gauge couplings
β, and fields h (imaginary θ). At each point of the parameter space, we run the
algorithm and take up to 100k measurements, each one made every ten sweeps.
For the β = 3,m = 0.05 case, where more precision was needed, nine independent
runs were performed. Between 5-10% of the initial configurations are discarded
for thermalization. The errors of the expected values are estimated by a standard
jackknife binning.

4.5 Results

Our results for the exponent γ are summarized in Figures 4.3 and 4.4. As is
apparent in Fig. 4.3, the behavior at fixed β is very different as we vary the
fermion mass. The data corresponding to m = 0.5 lie essentially on top of the
analytic m =∞ curve (that is, pure gauge theory [139]), and therefore this mass
corresponds to the phase with broken symmetry at θ = π. On the other hand, the
data for both the m = 0.05 and the m = 0 case extrapolate to a value clearly above
1, indicating symmetry restoration at θ = π, although our data are not precise
enough to make a definite statement on the value of γ. In Fig. 4.4 we present the
results at fixed m = 0 for the various coupling constants we have studied. We see
as before a clear extrapolation to a value of γ above 1,5 in stark contrast with the
pure gauge theory case.

4See also [145,146].
5This is also the case for β = 3, m = 0.05, which is not shown in these figures.
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Figure 4.3: Exponent γ for β = 2.0 and various fermion masses. The shaded areas
give an estimation of the ambiguity in the extrapolation to yλ = 0. The continuous
red line is the analytic result in the pure gauge theory.

We have also been able to extract the full dependence of the order parameter
as a function of the angle, q(θ). In Fig. 4.5 we show details of the fit y versus yλ
for a particular value of the parameters, in order to give an idea of the precision of
our data. This will be followed by the iterative procedure depicted in Sec. 4.3 in
order to produce the curve q(θ). Regarding the error estimation, it is impossible to
follow the error propagation from the values of q at imaginary θ to the final result of
q(θ). To overcome this impasse we proceed in the following way: first we generate
20 sets of synthetic data for q(h) having the same mean value and distribution of
the actual Monte Carlo data; then we compute, following the same scheme (fit of
y vs. yλ and iterative procedure), 20 realization of q(θ); from the distribution of
these values around the curve computed from the real data, we can infer the error
associated to each value of q(θ), which will be shown in the following figures as a
shaded band. Moreover, for the β = 3,m = 0.05 case, where we have data from
several independent runs, we have also done the analysis in a different way: we
divide the data into four independent sets, and we analyze each set independently.
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Figure 4.4: Exponent γ for m = 0.0 and various coupling constants. The shaded
areas give an estimation of the ambiguity in the extrapolation to yλ = 0. The
continuous red line is the analytic result in the pure gauge theory, corresponding
to infinite fermion mass.

We plot in Fig. 4.6 the results of each of the independent analysis for an interval
of θ. As can be seen, the errors we would obtain by averaging the independent
points are fully consistent with the synthetic-data estimation.

In Fig. 4.6 we present q(θ) at β = 3 for two masses in the symmetry restored
phase, as well as at β = 2 and m = 0.5, in the symmetry broken phase (and also
the corresponding analytic results for the pure gauge case at both values of β for
comparison).

In Fig. 4.7 we show the results for m = 0 and the three different values of the
coupling constant we have simulated. We can clearly see the restoration of the
symmetry as we approach θ = π. In Fig. 4.8 we show, for β = 3.0 and m = 0,
the order parameter q(θ) in the vicinity of θ = π. Fitting q(θ) near θ = π in
the symmetry restored phase allows us to extract the exponent (π − θ)ε, which is
related to γ by ε = γ − 1.6 We present in Table 4.1 our results for ε.

6The numerical procedure used to extract the two exponents is different, and therefore the
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Table 4.1:

β m ε

2.0 0.0 0.67(4)

2.0 0.05 0.43(5)

3.0 0.0 0.92(7)

3.0 0.05 0.70(21)

4.0 0.0 0.94(19)

To finish this Sec. we want to discuss a little bit more on the results for the
massless Schwinger model reported in Fig. 4.7. It is well known that the continuum
formulation of the massless Schwinger model shows no θ dependence, because the
θ term in the action can be canceled by an anomalous chiral transformation which

results, although compatible within errors, will also be different.
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Figure 4.6: Order parameter as a function of θ. The data at m = 0.0 and m = 0.05
correspond to β = 3.0, whereas the points at m = 0.5 correspond to β = 2. Blue
points, corresponding to the results of four independent runs, are also shown, to
provide a different estimate of the error. The continuous line labeled m =∞ is the
pure gauge analytic result for β = 3.0, whereas the dotted line is the corresponding
analytic result for β = 2.0.

does not change the fermion-gauge action if the fermion mass vanishes. Hence the
non-trivial θ dependence of the density of topological charge shown in Fig. 4.7
may seem surprising. However, the massless staggered Dirac operator does not
have exact zero-modes, and therefore, for a given gauge configuration, a nonzero
value of the quantized topological charge Q does not imply the existence of a
corresponding number of zero-modes in the staggered Dirac operator, as would be
the case, for example, with the overlap Dirac operator. What we should expect
instead is that, as we approach the continuum limit, the topological charge density
vanishes. This is indeed what seems to happen, as is suggested by Fig. 4.9.
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Figure 4.7: Order parameter as a function of θ, at m = 0.0 and different coupling
constants.

4.6 Conclusions and outlook

All our results are compatible with the standard lore on this model, and in partic-
ular with Coleman’s conjecture on the existence of two distinct phases at θ = π, a
symmetry breaking phase at large mass, and a symmetry restored phase at small
mass.

Our simulations are a proof of concept, and are not extensive enough to de-
termine precisely the position of the critical mass at θ = π or its properties in
detail. But the important point is that we have succeeded in calculating the full
dependence of the order parameter in θ in a gauge theory with fermions and a
quantized topological charge, using a method that should, in principle, work also
in higher dimensional theories.
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Chapter 5

Preliminary results on two-flavor
Schwinger—a pseudofermionic
approach

Hereafter we present our work with the massive Schwinger model with a θ term and
two distinct fermionic species. Although the starting point of the study consists in
the application of the same Monte Carlo algorithm that was developed for Chap-
ter 4—a standard implementation of Kogut-Susskind fermions with a Metropolis
update—a search for more efficient algorithms proves to be necessary in order to
fully test the capabilities of the q(θ) reconstruction approach of [13].

5.1 Motivation

The study of the Schwinger model with a single flavor of massive fermions and
the inclusion of a θ term was carried out in the previous chapter with considerable
success, since the dependence of the topological charge on θ was determined on the
lattice for the whole domain of the vacuum angle, up to θ = π. This was achieved
thanks to standard Monte Carlo simulations performed at purely imaginary values
of θ, which are the basic input for the reconstruction method of [13]. In these
real-action computations, staggered (Kogut-Susskind) fermions were used, and
the determinant of the fermionic matrix was calculated at every Metropolis step
by extracting numerically all its eigenvalues—a technique as reliable as inefficient.
In order to adjust the computation to the one-flavor case, the square root of this
determinant needs to be taken; since the actual weight employed by the algorithm
depends on the logarithm of the determinant, this rooting procedure amounts
to multiplying by a factor of 1/2. If instead we consider a factor of Nf/2, the
discussion is valid for the Schwinger model with Nf fermion species—in fact, this

75
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is the only change required in the algorithm.
Having developed an algorithm that can be trivially extended to the multi-

flavored case, it seems natural to apply it, at least, to the cases that are closely
related to one of our main interests during this thesis: the study of topological
objects on lattice gauge theories, and its implications in QCD. In fact, this is the
case for the two-flavored version of the model: its action holds a U(2) symmetry
in the chiral limit, of which its axial U(1) subgroup is broken by the anomaly,
much in the same way as QCD. The remaining SU(2) group constitutes a true
symmetry of the theory that, contrary to what occurs in low temperature QCD,
is exactly preserved—as granted by a Theorem due to Coleman,1 a continuous
symmetry cannot be spontaneously broken in a two-dimensional system, as long
as interactions are kept sufficiently local. This exactly preserved symmetry results
to be an interesting property, as long as it is shared by the high temperature
phase of QCD. In other words, QCD at high temperatures has in the chiral limit
an exactly preserved chiral symmetry (contrary to the less exotic low temperature
phase, as was discussed in Section 1.3.3). This fact favors the study the two-flavor
Schwinger model as a mechanism to gain insight about the topological properties
of finite temperature QCD.

Beyond its interest as a toy model of QCD, the Nf = 2 Schwinger model
presents a more involved θ behaviour than its single flavored counterpart. The
later presents, at θ = π, two distinct phases depending on the coupling e/m. While
P symmetry is spontaneously broken at weak coupling, in the strong coupling (or
light mass) limit the vacuum energy density can be expanded in terms of the
fermion mass m, its leading contribution being

E(θ) ∼ me cos θ. (5.1)

As a consequence, the symmetry is exactly preserved and the topological suscep-
tibility remains finite. By the contrary, the two-flavor version of the model, which
has a similar behavior in the weak coupling region, has a more involved θ depen-
dence on the vacuum angle. As it was shown by Coleman [22], a strong coupling
approximation allows to write the energy density θ dependence as

E(θ) ∼ m
4
3 e

2
3 cos

4
3
θ

2
, (5.2)

which eventually leads to P exact conservation at θ = π, but with a divergent topo-
logical susceptibility—the characteristic of a continuous phase transition. This ap-
proximation, valid in principle when e/m >> 1, implies a value of δ = 1/3 for the

1Although this result is proven by Coleman in the context of quantum field theories [147], it
is commonly known as Mermin-Wagner theorm, since they arrived to the same conclusions in
statistical physics [148].
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associated critical exponent, which describes how the topological charge density
vanishes as θ approaches π. Additionally, the lightest bosons of the spectrum are
predicted to be an isotriplet and an isosinglet, the quotient of its masses being√

3. It is worth noting that precisely this mass ratio has been recently the subject
of some controversy, since a recent work by Azcoiti [149] found a subtantial dis-
crepancy with respect to the original computation of Coleman [22]. Furthermore,
Georgi [150] has drown even more attention to this model, by proposing a solution
to the three questions posed by Coleman in [22] that could entail the existence
of a novel mechanism, capable of generating the appearance of fine-tuning in low-
energy effective theories and, consequently, with promising potential concerning
any of the hierarchy problems that afflict the Standard Model. In any case, since
a critical point is expected in this model at θ = π, this system poses a relevant
challenge for the reconstruction method that was applied during Chapter 4; to this
effect, it serves as an additional motivation to this work—a particularly pragmatic
one, arguably.

5.2 The model

The action of the one-flavor massive Schwinger model with a θ term can be easily
generalized to its multi-flavor version by adding an index f , running from 1 to Nf ,
to the original expression (4.9). In this manner, the action for Nf flavors of equal
charge e and mass m yields

SNf =

∫
d2x


Nf∑
1

ψ̄f [γµ (∂µ + iAµ) +m]ψf +
1

4e2
F 2
µν +

iθ

4π
εµνFµν

 . (5.3)

Following the reasoning of the previous chapter, it is possible to discretize the
above continuum action by using Kogut-Susskind fermions and the standard Wil-
son action for the gauge part, as in (4.15). At this point we recall that a procedure
commonly known as rooting was needed to get the one-flavor theory from the
corresponding lattice action, since staggered fermions are not completely free of
the doubling problem—they describe two degenerate species of fermions, in two
dimensions. But, as long as we are interested in the two-flavor version, it suffices
to consider the exact same action (4.15) and dismiss the rooting step.

The next step would imply performing a Monte Carlo simulation, much in
the same way as in Chapter 4. However, while in our one-flavor study it was
enough to perform a proof-of-concept calculation, our aim with the Nf = 2 case
is to determine more involved quantities, such as the critical exponent of the
expected θ = π phase transition. Even if the brute force approach of the previous
chapter was able to deliver results in, roughly speaking, a few months of computer
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time—which are to be multiplied by a factor of 160: the cores available to be run
independently in a cluster facility—the time required for the present analysis, with
similar computing resources, would need to be counted in years, thereby exceeding
the lifespan of this thesis. In this situation, the main purpose of the chapter is to
find an alternative to our previous algorithm, that is capable to give sufficiently
precise results for the θ reconstruction technique to work.

5.3 Pseudofermions come into play

In order to achieve a greater computational efficiency, even at the cost of intro-
ducing some systematic errors, we have chosen to implement an algorithm based
on the pseudofermion approach of Fucito et al [23]. As was discussed in Chap-
ter 1, and particularly detailed in Section 1.3.1, the fermionic degrees of freedom
present in the lattice partition function can be analytically integred out. Nonthe-
less, this procedure has a cost: the introduction of the fermionic determinant, an
involved object which depends in a highly non-linear way on the gauge fields—and
so, implies a prohibitive computational price for any Monte Carlo simulation.

The key ingredient of [23] is to substitute the exact determination of the
fermionic determinant M by a suitable estimation. To this end, auxiliary bosonic
degrees of freedom are introduced, ruled by their own dynamics. If we label them
by Φ̄,Φ, the inverse of the determinant can be formulated as an integral,

1

detM
=

∫ ∏
i

dΦ̄idΦi exp

(
−
∑
j,k

Φ̄jMjkΦk

)
. (5.4)

In fact, since what is needed for our Monte Carlo process is the ratio of two
determinants (and in the case of a Metropolis-like algorithm, with relatively close
associated matrices) an immediate corollary of the above is given by

detM

det (M + δM)
=

〈
exp

(
−
∑
j,k

Φ̄jδMjkΦk

)〉
PSF

, (5.5)

where 〈·〉PSF is to be understood as the expectation value within the pseud-
ofermions Φ̄,Φ ensemble, distributed precisely as indicated in (5.4).

Equation (5.5) makes the ratio between determinants suitable to be computed
by means of an additional Monte Carlo algorithm. That is, at each step of the
original algorithm (which consist in proposing a change in the gauge fields Uµ(n)
that can be accepted or rejected) a new ensemble of pseudofermions Φ̄,Φ needs
to be generated, in order to evaluate the observable Φ̄jδMjkΦk, which eventually
delivers an estimation for the ratio of determinants. In practice, the ensemble
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of pseudofermions—its size grows linearly with the system—is updated a small
number of times, n, and the observable is computed at each of these steps and
averaged. The procedure is then exact in the limit of large n, and introduces
systematic errors, as well as statistical ones, when keeping the number of steps
finite.

A number of legitimate questions can be asked about the feasibility of this
approach within the context of the Schwinger model with a topological term in
the action. A non-exahustive list would include how large shoud be n in order to
give a sufficiently precise result, what is the magnitude of the systematic errors
when computing q(θ = ih), for suitable values of h, or what is the magnitude of the
computing efficiency increase—and if it is enough to achieve the objectives stated
at the beginning of the chapter. In the forthcoming section we try to answer and
illustrate these questions.

5.4 Results and conclusions

The pseudofermion method of Fucito et al [23] has been applied in many scenarios,
and their strengths and limitations have been already studied. Our purpose here
is to analyze the potential of this method when applied to the Schwinger model—a
system with both dynamical fermions and a topological term in the action. To
this aim, we have performed a number of tests that help to delimit which section
of the parameter space of the model is amenable to the use of this technique.

To begin with, we recall that the algorithm makes use of two distinct dynamics
in its Monte Carlo evolution. Whereas the gauge fields evolve according to the
action described in Section 5.2, the pseudofermion fields are regulated by (5.5),
performing n Metropolis inner sweeps each time a tentative change for the gauge
fields is proposed. In this manner, a pseudofermion sweep consists in sequentially
trying to update each one of the complex bosonic variables Φ. Real and imaginary
parts of the proposed complex shifts are randomly distributed, and also bounded
by the technical parameter δmax. In Figure 5.1 we show the result of choosing a
relatively high value for this parameter in the one-flavor model, since for n as high
as 80 the result obtained shows a systematic deviation from that obtained with
the standard approach.

The first conclusion is the following: the dependence on the δmax parameter
needs to be taken into account to avoid too large systematic errors. In Figure 5.2
it can be seen how a larger value of this parameter implies a greater number n of
the steps needed by the algorithm to reach the correct solution. For this reasons,
and after considering similar tests, the value of δmax is fixed in what follows to
δ = 0.25.

Another point that could compromise the viability of the method is the strength
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Figure 5.1: Results for a 16× 16 lattice, with β = 3, h ≈ 1.51,mf = 0.05, Nf = 1
and δmax = 1. The expectation value of the topological charge density, < q >, is
computed for several values of the number of pseudofermion Metropolis sweeps,
namely for n = 1, 2, 5, 10, 20, 40, 80. Solid lines are to be identified with the up-
per and lower confidence intervals provided by the approach of [29], described in
Chapter 4.

of the topological term, measured by h in our simulations at pure imaginary values
of the parameter θ = ih. In fact, this dependence on h can be seen in Figs. 5.3
and 5.4, which show results for the two-flavor Schwinger model. While for h = 0.3
the pseudofermion approach seems to reach the correct value as soon as for n = 2,
a stronger topological term, of h = 1.7, results in a spoiled convergence, with
systematic deviations still appearing for n = 40.

At this point we want to stress that, for a 16× 16 lattice, as in Figs. 5.3 and
5.4, the computational efficiency of the standard method of Chapter 4 is roughly
on par with the pseudofermion approach when n = 80. Since the cost of the latter
depends linearly on n, this means that, e.g., using n = 2 would give a factor of 40
speed-up with respect to the former algorithm.

Taking into account the above conclusions, we have performed resource inten-
sive simulations (allocated in the LNGS cluster), comparing both methods, in the
two-flavored model for β = 3 and m = 0.12, using δmax = 0.25 and n = 10. The
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Figure 5.2: The dependence of the pseudofermion approach on δmax is studied in a
8× 8 lattice, with β = 3, h ≈ 1.51,mf = 0.05 and Nf = 1. Several δmax curves are
presented, showing a varying convergence rate. The number of sweeps n required
to match the correct result grows rapidly with δmax.

corresponding results are displayed in Fig. 5.5, where a very good agreement is
observed up to h = 0.5; beyond that point, systematic deviations appear—bigger
than statistical errors—slowly increasing with h.

In the light of the above results, it results convenient to clarify at least two
issues. First, that we have compared the efficiency of two approaches in a particular
area of the parameter space, suited to the determination of the critical exponent
mentioned in the beginning of this chapter [22, 149]. In a 162 lattice, the cost is
balanced at n = 80 pseudofermion Metropolis sweeps. We recall that the need of
such comparison arise from the practical inability of the method of Chapter 4 to
be extended to larger lattice sizes, which are required to elucidate the Nf = 2 case.
While both approaches have a computational cost that escalates with N—i.e., the
number of gauge fields that have to tentatively change—an extra factor due to
the computation of the associated weight is needed. This is the main difference
between the compared algorithms; while the determination of all the eigenvalues
of the fermionic matrix is very costly, of order N3 (even being sparse, it is never
better than N2), the pseudofermion evolution grows linearly with the number of
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Figure 5.3: Results for the two-flavor Schwinger model in a 16×16 lattice, with β =
3, h = 0.3 and mf = 0.12. δmax is kept at 0.25 and the number of pseudofermion
sweeps varies between 1 and 40. At this value of h, a very rapid convergence is
observed.

degrees of freedom. This leads to a linear dependence on the size of the lattice N ,
which yields a total factor of N2. For this reason, the algorithm presented in this
chapter, being faster than its standard counterpart in a 162 lattice, is expected to
perform way better at larger lattice sizes.

A second question that should be answered is how important are the system-
atic effects introduced by the pseudofermion approximation. As we noted above,
this depends on the strength of the topological term. For small values of h, the
differences are unnoticeable, appearing around h > 0.5 and growing consistently
with this parameter. However, the aim of performing simulations at purely imagi-
nary values of θ is to apply the reconstruction method of [13], as in Chapter 4. In
order to perform the required extrapolation, the most important values of h to be
analyzed are those close to the origin. Thereby, the pseudofermion approach gives
with reliable accuracy precisely the region of interest for the θ dependence study.
Moreover, at small values of h the number of n steps needed to reduce systematic
errors decreases, giving an additional potential source of optimization.

All in all, a better dependence on the lattice size together with a good perfor-
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Figure 5.4: Results for the two-flavor Schwinger model in a 16×16 lattice, with β =
3, h = 0.3 and mf = 0.12. δmax is kept at 0.25 and the number of pseudofermion
sweeps varies between 1 and 40. At this value of h, much higher than in the
previous figure, convergence can only be guessed to occur beyond n = 40.

mance at low imaginary θ (real h), makes the pseudofermion approach an interest-
ing candidate to explore the phase diagram of the multi-flavored Schwinger model
with a θ term. The next step, that transcends the scope of this chapter, would
imply a large-scale simulation, including larger lattice sizes, which could provide
some insight into several aspects of the system under study and, consequently, of
finite temperature QCD.
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Figure 5.5: Results for the two-flavor Schwinger model in a 16 × 16 lattice, with
β = 3 and mf = 0.12. δmax = 0.25 and n = 10. The pseudofermion approach is
confronted with the method of Chapter 4, with great agreement for small values
of h, although systematic deviations are otherwise observed.



Chapter 6

Exploratory ghost-gluon study on
αs with HISQ fermions

In this last chapter we put aside the study of topological effects to face a non-
perturbative quantity of the utmost relevance in QCD—its running coupling con-
stant αs. Our intention is to explore the dependence of the coupling on the mo-
mentum transfer q, by means of a purely gluonic method, following Sternbeck et
al [26]. In this way, it is possible to compute gluon and ghost propagators, G(q2)
and D(q2), in the lattice, eventually leading to the determination of αs(q

2).

In the following sections we motivate the topic and review briefly the most
relevant mathematical relations, describing with some detail the technical issues
involved in the propagators determination. After that, our results—obtained from
large sets of configurations generated by the MILC collaboration—are presented.
The chapter is finished with some considerations concerning how the present study
could be extended.

6.1 Motivation

The determination of the αs coupling constant constitutes a very active field of
research. In fact, the Particle Data Group periodically provide a global average
of this quantity, including both theoretical calculations of lattice simulations and
experimental determinations, such as from hadronic τ decays or e+e− annihilation
processes, that allow to give an estimate—at a given scale, usually that of the Z
boson—of the strong coupling αs [2]. Remarkably enough, the last decade has
been marked by a setback of the precision achieved when calculating the global
average of this quantity, in part due to the existence of previously underestimated
sources of systematic error that were present in lattice computations.

In this situation, there cohabit several independent approaches within the lat-
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tice formalism, developed by a number of international collaborations such as
HPQCD [4, 151, 152], PACS-CS [153], ETM [154], and other research groups
[155, 156]. These approaches differ in a number of technicalities, including how
fermions are implemented on the lattice. Moreover, different observables can be
studied in order to extract αs, an example being heavy quark correlators in [152],
or the determination of the static potential in [156], which in fact gives a value for
αs(MZ) that exhibits some tension with the rest of lattice predictions.

Our intention in the current chapter is to explore the potential of combining the
ghost-gluon vertex technique of Sternbeck et al [26], which was already applied to
twisted mass fermions in [154], with the highly improved staggered action (HISQ),
used by the HPQCD collaboration [78]. To this aim, we will analyze ghost and
gluon fields in a collection of ensembles generated by the MILC collaboration with
the HISQ action [157].

6.2 αs and the ghost-gluon vertex

Before going any further, it should be noted that the running coupling αs is not a
physically observable quantity. Instead, it acquires a precise meaning only in the
context of perturbation theory. Then, in order to compare two given results for the
coupling it is necessary to take into account the renormalization scheme. Typical
choices in the literature are momentum subtraction schemes, the more common
including MS, MS and MOM. While the standard computed value of αs(MZ) is
tipically given in the literature in the MS scheme [2], the present approach is
defined in a MOM scheme, in which renormalization constants are defined by
requiring two- and three-point functions to equal their tree level expressions at a
given energy scale µ [158].

There exist a number of ways that allow to calculate the value of the running
coupling αs on the lattice. As it has been just mentioned, the present work follows
the approach of Sternbeck et al [26], although with the focus set in a different region
(since we are not particularly interested in the infrared limit of αs). Hereafter, we
review the essentials of the method.

The computation of αs in the lattice starts by realizing how ghost and gluon
propagators can be exploited. Its dressing functions can be used to determine the
running coupling as a renormalization group invariant, in a momentum subtraction
scheme [25], as

αs(q
2) =

g2
0

4π
ZD(q2)Z2

G(q2), (6.1)

where ZD and ZG are respectively the bare dressing functions of gluon and ghost
propagators; we discuss how to compute these functions in the next sections.
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Although in usual lattice computations, as we reviewed in Chapter 1, fixing the
gauge is not necessary, the mathematical expressions for ghost and gluon propa-
gators adopt a simpler form in the Landau gauge—which in fact makes the whole
computation feasible. Consequently, in what follows all expressions will be under-
stood to be valid within the Landau gauge.

6.3 The gluon propagator

To begin with, the starting point is the standard 4-dimensional lattice of V sites,
and 4V link variables Ux,µ ∈ SU(Nc = 3). The lattice gluon fields, which live in
the mid-point of each link, Ax,µ ≡ Aµ(x+ µ̂/2), are defined as

Ax,µ :=
1

2i
(Ux,µ − U †x,µ)− 1

6i
Tr(Ux,µ − U †x,µ). (6.2)

Additionally, we recall that the color components Aax,µ of the gluon field can be
computed as

Aax,µ := 2 Tr(T aAx,µ) = 2 · ImTr(T aUx,µ), (6.3)

where the definition (6.2) has been used. With these expressions, we can compute
the bare gluon propagator on the lattice as

Dab
µν(k) =

〈
Ãaµ(k)Ãbν(−k)

〉
U
, (6.4)

where Ãµ = ÃaµT
a are the Fourier transformed gluon fields. In other words,

Dab
µν(q(k)) =

1

V

〈∑
x,y

Aax,µA
b
y,νe

ik·(x+µ̂/2)e−ik·(y+ν̂/2)

〉
U

, (6.5)

where the momentum q(k) is given by

qµ(kµ) =
2

a
sin

(
πkµ
Lµ

)
. (6.6)

If we assume now that Dab
µν(q(k)) has the same tensor structure than its continuum

counterpart,

Dab
µν(q) = δab

(
δµν − qµqν

q2

)
D(q2), (6.7)

it suffices a bit of algebra to obtain an expression for the scalar part of the prop-
agator D(q2),

D(q2) =
1

(D − 1)(N2
c − 1)

∑
aµ

Daa
µµ(q), (6.8)
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which is related with the dressed propagator simply by

ZD(q2) ≡ q2D(q2). (6.9)

In practical terms, the key step in this computation—in terms of computational
complexity—is the Fourier transformation of the gauge fields. Fortunately, Fast
Fourier Transform algorithms allow to compute very efficiently expression (6.5),
especially taking into account that a single application of the algorithm delivers
the propagator for every lattice value of the momenta qµ at once.

6.4 The ghost propagator

Following [27], the ghost propagator in the lattice is defined in the Landau gauge
as

Gab(k) = a2

〈∑
xy

(
M−1

)ab
xy
eik·(x−y)

〉
= δabG(q), (6.10)

where the real symmetric matrix M is the Fadeev-Popov operator, defined by

Mab
xy =

∑
µ

(
Aabx,µδx,y −Bab

x,µδx+µ̂,y − Cab
x,µδx−µ̂,y

)
(6.11)

with

Aabx,µ = ReTr
[
{T a, T b}(Ux,µ + Ux−µ̂,µ)

]
, (6.12)

Bab
x,µ = 2 ·ReTr

[
T bT aUx,µ

]
, (6.13)

Cab
x,µ = 2 ·ReTr

[
T aT bUx−µ̂,µ

]
. (6.14)

In order to compute (6.10), the following system of equations needs to be solved Max,byc
by
c = δac cos (k · x) ,

Max,bys
by
c = δac sin (k · x) .

(6.15)

The 8V -component vectors cc, sc are computed with the conjugate gradient method
and can be used to determine the inverse of M . Together with (6.10), and assuming
the tensor structure of the continuum, Gab(qµ) = δabG(q2), we have

G(q2) =
1

(N2
c − 1)

∑
ax

[cos (k · x) caxa + sin (k · x) saxa ] , (6.16)

with the corresponding dressed propagator being given by

ZG(q2) ≡ q2G(q2). (6.17)
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β m′l/m
′
s m′s m′c N3

s ×Nt a (fm) # of cnfgs

6.00 1/5 0.0509 0.0635 243 × 64 0.1218(7) 1053

6.30 1/5 0.0370 0.0440 323 × 96 0.0879(5) 1008

6.72 1/5 0.0240 0.0286 483 × 144 0.0573(4) 1017

Table 6.1: Details of the three ensembles studied.

In contrast with the gluon determination of the previous section, the steps here
described are much more expensive in computational terms. In particular, numer-
ically solving the system of equations (6.15) is a very demanding task which, at
large lattice sizes—as the ones studied in this chapter are—requires large resources,
both in terms of memory and processing time. Furthermore, lattice artifacts are
expected to be more intense both at large and at off-diagonal momenta, due to
the lack of rotational symmetry on the lattice in the latter case [159]. For this
reasons, the ghost propagator, and as a consequence also αs, have been computed
only for a handful of selected diagonal momenta.

6.5 Results

We have analyzed three sets of configurations, made available by the MILC collab-
oration [157]. The details of their parameters are summarized in Table 6.1. Prior
to the propagators determination, we fixed every configuration to Landau gauge.
To this end, it is necessary to make use of an iterative optimization algorithm. As
is well known, this type of algorithms could suffer from a severe critical slowing
down problem. In the case of large lattices, as some of the ones analyzed here, this
obstacle can turn insurmountable. However, we have evaded this difficulty by ap-
plying a Fourier-accelerated algorithm, originally proposed by Davies et al [160],
which allows to alleviate the computational overhead, making the gauge fixing
procedure feasible. In this process, the fixing procedure was stopped only when
every local gauge field verified the transversality condition—the lattice version of
∂µAµ = 0—up to Θ < 10−14, with the same definition of [160]. Such level of
precision was proved to be necessary, since the propagators are quite sensitive to
the gauge condition.

Once the whole sets were fixed to Landau gauge, we have computed both
propagators, G(q2) and D(q2), for a total of seven diagonal momenta,

k = (n, n, n, n) for n = 1, . . . , 7. (6.18)

As we mentioned earlier, the ghost computation, and in a lesser way the gauge
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# of configurations 1 1053

Landau gauge-fixing time (core-h) 7.1 7.1k

Propagators for 7 momenta (core-h) 19.7 20.8k

Total time (7 momenta) (core-h) 26.9 28.3k

Each additional momentum (core-h) +3.0k

Table 6.2: Distribution of computing times involved in the 243 × 64 ensemble.

fixing procedure, are very demanding in terms of computing resources. This being
the case, actual calculations have required to be performed in large cluster facil-
ities, which provide both the computing power and the memory needed to store
the largest configurations. To this end, the University of Cambridge computing
services have been used, including the cluster Darwin, and its 2017 update CSD3.
For the first set, of volume 243×64, 28k core-hours were used in Darwin; to exem-
plify how these are distributed, see Table 6.2. For the 323× 96 set, a total of 135k
core-hours, also in Darwin, were used. Finally, the ensemble corresponding to the
bigger lattice size, 483 × 144, was analyzed with a total cost of 452k core-hours of
the newer cluster CSD3.

Our results for both bare unrenormalized propagators are shown in Figure 6.1,
as a function of the squared lattice momenta in physical units. By means of Eq.
6.1, the previous results can be applied to determine αs. Taking into account that,
according with the particular implementation of the HISQ action in the analysed
MILC configurations,

g2
0 ≡

5

3

2Nc

β
=

10

β
, (6.19)

our final results for the unrenormalized version of the running coupling are shown
in Fig. 6.2. As a preliminary conclusion, these results can be checked to be
qualitatively in agreement with those of the literature, see e.g. [25,26,154]. In any
case, in order to provide an estimate for the αs(MZ) in the MS renormalization
scheme, the corresponding β function should be carefully studied and integrated,
together with a thorough study of present volume effects and lattice artifacts, since
the knowledge of its dependence would allow to estimate the systematic errors of
the method. Finally, the relatively low value of the estimated statistical errors in
the studied ensembles drive us to conclude that completing the present analysis
would be worthwhile, potentially leading to a valuable contribution to the world
average of the strong running coupling.
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Conclusions and outlook

In the beginning of this thesis we emphasized the key role of lattice QCD as the
main tool capable of dealing with non-perturbative phenomena, in QCD and be-
yond. Their successes are many, as it has been documented in Chapter 1. Up to the
present day, there exist several international collaborations that work intensively
to provide theoretical estimates that match the ever-increasing precision of the ex-
perimental measures. But, notwithstanding the achievements in phenomenology
grounds, there exist open questions that seem to evade any attempt of resolution.
Indeed, this is the case of QCD when the topological θ term is included into its
action, as it has been reviewed in Chapter 2.

Deeply connected with the strong CP problem, and of great importance in
axion physics, the study of the θ dependence of QCD has been the long-sighted
goal of this thesis. Certainly, this is an ambitious objective, since there exist many
difficulties when considering θ QCD on the lattice, one of the most fundamental
being the presence of a severe sign problem that makes the system unattainable
to standard Monte Carlo simulations. In this scenario, our efforts have been first
directed towards the testing of a promising method that would in principle allow
to reconstruct the full θ dependence of observables as the topological charge [13].
Thereby, in Chapter 3, following [28], we have crosschecked a previous work that,
making use of the reconstruction method of Azcoiti et al, found signs of a rich
phase structure in the antiferromagnetic Ising model within an imaginary magnetic
field—which can be thought of as a θ term [21]. By making use of a combination of
analytical and numerical—but exact—techniques, our results have supported the
previous qualitative picture, thus confirming the potential of the reconstruction
method in a theory that, when compared to θ QCD, holds a more intricate phase
diagram. In the same spirit, Chapter 4 has been devoted to the study of the
massive one-flavor Schwinger model with a θ term in the action, which frequently
serves as a toy model of QCD, as presented in [29]. To apply the reconstruction
method [13] in this system implies a stringent exam concerning its possibilities of
being successfully applied to full QCD, as it shares many of its potential obstacles—
but not all, since it holds a very elementary definition of the topological charge, in
contrast with the difficulties that appear in the SU(3) 4d theory. Actually, we have
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been able to obtain the full q(θ) dependence of the model for some selected points
of the parameter space. These results are coherent with the existent literature,
confirming a previous conjecture due to Coleman, and thus reinforcing the viability
of the reconstruction approach.

Initially devised as an extension of the previous study, in Chapter 5 we have
presented our work with the 2-flavor version of the Schwinger model with a θ term
in the action. Our motivation was two-fold: first, the model is expected to have a
second order phase transition at θ = π and, in this sense, it poses a challenge to
the reconstruction method. Moreover, the mass ratio of the lightest bosons of the
spectrum has been the subject of a recent controversy [149], and an independent
computation could clarify the issue. Secondly, the 2-flavor system serves as a toy
model for the high temperature phase of QCD, since both theories share an exactly
preserved SU(2) chiral symmetry. Since the direct approach applied in Chapter 4
didn’t have the required computational efficiency, we have developed an algorithm
based on the use of pseudofermions, following the original prescription of [23]. Our
results support a more intensive calculation involving larger lattice sizes, since the
region where the pseudofermion approach delivers better coincides with the one
required by the reconstruction approach.

Last, in Chapter 6 we have set aside the study of systems with a sign problem,
focusing our interest in the determination of the strong running coupling αs(MZ).
As the Particle Data Group reports periodically [2], many efforts are devoted
to obtain a precise value for this perturbative-defined quantity, both from the
experimental and the theoretical perspectives. In the later case, there exist several
lattice approaches that try to provide the most accurate result. With this aim, we
have explored the potential of applying the ghost-gluon vertex approach of [25],
to three large HISQ ensembles, provided by the MILC collaboration. Our results
show promising statistical errors, and we conclude that a complete analysis of
lattice artifacts and other systematic errors would be worthwile, possibly leading
to a valuable contribution to the lattice world-average of the running coupling.

To give a closure to this thesis, and in particular to our study of θ physics,
we want to stress out some final ideas. First, there are clear signs, according to
the results presented in Chapters 3 and 4, that point to the viability of applying
the reconstruction approach [13] to full QCD. To implement this program would
require simulations at pure imaginary values of θ in the SU(3) theory, including
some variety of fermions. However, if compared with the Schwinger model analy-
sis, QCD comes with an additional obstacle—the computation of the topological
charge. In essence, the determination of the θ dependence would require, at the
very least, a sufficiently well-behaved lattice definition of the topological charge,
which additionally should be computationally tractable, in order to be included
into the corresponding Monte Carlo dynamics. To found a balanced solution to
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this problem is left out of the scope of this document—this endeavor should be
confronted in future works.
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Conclusiones

Al comenzar esta tesis enfatizábamos el papel clave de lattice QCD como la her-
ramienta principal capaz de enfrentarse a fenómenos no perturbativos, en QCD y
más allá. Sus éxitos son muchos, como ha quedado documentado en el Caṕıtulo 1.
Hasta el d́ıa de hoy, existen varias colaboraciones internacionales que trabajan in-
tensivamente para ofrecer estimaciones teóricas que igualen la creciente precisión
de las medidas experimentales. Pero, sin desmerecer los logros en el área de la
fenomenoloǵıa, existen preguntas abiertas que parecen evadir cualquier intento de
resolución. Por supuesto, este es el caso de QCD cuando el término topológico θ
se incluye en su acción, como se repasó en el Caṕıtulo 2.

Profundamente conectado con el problema CP fuerte, y de gran importancia
en f́ısica de axiones, el estudio de la dependencia en θ de QCD ha sido el objetivo
a largo plazo de esta tesis. Ciertamente, se trata de un objetivo ambicioso, toda
vez que existen varias dificultades importantes cuando se considera θ QCD en el
ret́ıculo, siendo una de las más fundamentales la presencia de un problema de signo
severo que hace el sistema inalcanzable a las simulaciones de Montecarlo usuales.
En este escenario, nuestros esfuerzos se han dirigido en primer lugar hacia la cor-
roboración de un método prometedor que podŕıa permitir, en principio, reconstruir
completamente la dependencia en θ de observables como la carga topológica [13].
Aśı, en el Caṕıtulo 3, siguiendo [28], hemos comprobado un trabajo previo que,
haciendo uso del método de reconstrucción de Azcoiti et al, encontró signos de
una estructura de fases rica en el modelo de Ising antiferromagnético con campo
magnético puramente imaginario—que puede verse como un término θ [21]. Ha-
ciendo uso de una combinación de técnicas anaĺıticas y numéricas (pero exactas),
nuestros resultados apoyan la imagen cualitativa anterior, confirmando aśı el po-
tencial del método de reconstrucción en una teoŕıa que, si se compara con θ QCD,
posee un diagrama de fases más enrevesado. Con el mismo esṕıritu, el Caṕıtulo
4 se ha dedicado al estudio del modelo de Schwinger masivo con un único fla-
vor y término θ en la acción, que sirve frecuentemente como toy model de QCD,
tal y como se presenta en [29]. Aplicar el método de reconstrucción [13] en este
sistema implica un exigente examen a sus posibilidades de ser aplicado en QCD,
ya que comparte muchos de sus obstáculos potenciales—aunque no todos, ya que
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mantiene una definición muy elemental de la carga topológica, en contraste con las
dificultades que aparecen en la teoŕıa SU(3) en 4 dimensiones. De hecho, hemos
conseguido obtener la dependencia completa q(θ) para el modelo en algunos puntos
seleccionados del espacio de parámetros. Estos resultados son coherentes con la
literatura existente, confirmando una conjetura previa de Coleman, y reforzando
aśı la viabilidad del método de reconstrucción.

Inicialmente concebido como una extensión del estudio anterior, en el Caṕıtulo
5 hemos presentado nuestro trabajo con la versión de dos flavors del modelo de
Schwinger con un término θ en la acción. Nuestra motivación era doble: primero,
en este modelo se espera una transición de fase de segundo orden en θ = π y, en
este sentido, plantea un desaf́ıo al método de reconstrucción. Además, la ratio
entre las masas de los bosones más ligeros del espectro ha sido el sujeto de una
controversia reciente [149], y un cálculo independiente podŕıa clarificar la situación.
En segundo lugar, el sistema de dos flavors sirve como toy model para la fase de
alta temperatura de QCD, dado que ambas teoŕıas comparten una simetŕıa quiral
SU(2) que es preservada de forma exacta. Como el enfoque directo aplicado en el
Caṕıtulo 4 no teńıa la eficiencia computacional requerida, hemos desarrollado un
algoritmo basado en el uso de pseudofermiones, siguiendo la prescripción original
de [23]. Nuestros resultados apoyan un cálculo más extenso que incluya ret́ıculos de
mayor tamaño, dado que la región en la que el método basado en pseudofermiones
se comporta mejor coincide con la requerida por el método de reconstrucción.

Por último, en el Caṕıtulo 6 hemos dejado a un lado el estudio de sistemas con
un problema de signo, centrando nuestro interés en la determinación del running
coupling de la interacción fuerte, αs(MZ). Tal y como el Particle Data Group re-
fiere periódicamente [2], son dedicados muchos esfuerzos a la obtención de un valor
preciso para esta cantidad definida perturbativamente, tanto desde perspectivas
experimentales como teóricas. En este último caso, existen varios enfoques que,
desde el ret́ıculo, tratan de ofrecer el resultado más preciso. Con este objetivo,
hemos explorado el potencial de aplicar el método del vértice ghost-gluon de [25]
a tres grandes conjuntos de configuraciones HISQ, facilitadas por la colaboración
MILC. Nuestos resultados muestran unos errores estad́ısticos prometedores, y con-
cluimos que un análisis completo de los artefactos del ret́ıculo y otras fuentes de
errores sistemáticos seŕıa provechoso, pudiendo llevar a una contribución valiosa
para la media mundial del running-coupling.

Para dar un cierre a esta tesis, y en particular a nuestro estudio de la depen-
dencia en θ, queremos recalcar algunas ideas finales. En primer lugar, existen
signos claros, de acuerdo con los resultados presentados en los Caṕıtulos 3 y 4,
que apuntan a la viabilidad de la aplicación del método de reconstrucción [13]
a QCD. Implementar este programa requeriŕıa de simulaciones a valores pura-
mente imaginarios de θ en la teoŕıa SU(3), incluyendo alguna de las variedades de
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fermiones. Sin embargo, si se compara con el análisis del modelo de Schwinger,
QCD conlleva un obstáculo adicional—la computación de la carga topológica. En
esencia, la determinación de la dependencia en θ requeriŕıa, como mı́nimo, de una
definición que se comportase lo suficientemente bien en el ret́ıculo y que, a su vez,
fuese computacionalmente tratable, para aśı poder ser incluida en la dinámica de
Montecarlo correspondiente. Encontrar una solución equilibrada a este problema
se deja fuera del alcance de este documento—este cometido deberá ser afrontado
en trabajos futuros.
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Appendix A

Computation of the cumulants κn

In order to use expressions (3.17) and (3.20), we need to compute the cumulants
κn. The nth cumulant can be calculated in terms of the first n noncentral moments
µ′n,

µ′n ≡

〈(∑
<ij>

sisj

)n〉
m1,m2

, (A.1)

by means of the recursion relation (3.16). The summation over < ij > runs
over each couple of neighboring spins, or in other words, over each link. Two
neighboring spins always belong to different sublattices.

Before going further, let us comment on two intermediate results. First, we
consider a lattice of N spins, the magnetization of which is the sum m =

∑
i si,

and ask about the expected value of the product of n of these spins at fixed m (or
fixed N+, the number of positive spins), that is, 〈s1s2 · · · sn〉m. One can perform
this calculation by means of the microcanonical formalism, arriving at

〈s1s2 · · · sn〉m =
1(
N
N+

) n∑
k=0

(−1)k
(
n

k

)(
N − n

N+ − n+ k

)
. (A.2)

In the above expression, k can be read as the number of negative spins in the
product s1s2 · · · sn. In this way, the first summand, k = 0, counts the number
of states with zero negative spins in the product s1s2 · · · sn and multiplies it by
the expectation value of the product in this case, (−1)0 = 1. The second one,
k = 1, does the same for one negative spin in s1 · · · sn, and so on. Dividing the
sum by the total number of configurations with magnetization m = 2N+/N − 1,
one obtains the previous expectation value at fixed m. Secondly, consider an
observable O(m1,m2) in our two sublattice system, with a dependence on m1 and
m2 such as we can write it as O1(m1)O2(m2). In this case, from the definition
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(3.12) of the expectation value at fixed m1 and m2, we have

〈O1(m1)O2(m2)〉m1,m2
= 〈O1(m1)〉m1

〈O2(m2)〉m2
. (A.3)

This immediately applies to the spin product s1s2 · · · sn. We can always divide it
into two products sa · · · sb and sα · · · sβ, each one containing the spins of one of
the sublattices, and then

〈s1s2 · · · sn〉m1,m2
= 〈sa · · · sb〉m1

〈sα · · · sβ〉m2
. (A.4)

With the previous couple of results, we come back to Eq. (A.1), and apply the
linearity of the expectation value, arriving at

µ′n =
∑

<ij>,<kl>,··· ,<pq>

〈sisjsksl · · · spsq〉m1,m2
, (A.5)

which is the sum of the expectation values of the product of n links, running over
all permutations with repetitions of these links. Then, in every summand we have
the product of 2n spins, in some cases with some of them identical. Taking into
account that s2

i = 1 ∀i, each summand can be reduced to the expectation value
of the product of n1 + n2 different spins, n1 and n2 being the number of spins
in each sublattice. Since by means of Eq. (A.2) we already have an expression
that computes 〈s1 · · · sn〉m, the problem is reduced to count how many summands
in Eq. (A.5) have (n1, n2) spins. We call these numbers geometrical factors, and
denote them by G(n1, n2). Following this convention, we can write the nth central
moment as

µ′n =
∑
{n1,n2}

G(n1, n2)〈sa · · · sb︸ ︷︷ ︸
n1 spins

〉m1〈sα · · · sβ︸ ︷︷ ︸
n2 spins

〉m2 , (A.6)

where the sum runs over the couples of integers (n1, n2) the sum of which is even
and less than or equal to n.

The computation of the geometrical factors G(n1, n2) can be done by hand for
the first few cumulants. As an example, for the second noncentral moment µ′2 we
have to compute four cases: the two links being the same (sharing both spins),
sharing only one spin belonging to the first or the second sublattice, and finally
not sharing any spin at all. That is, in terms of the previous notation,

{(n1, n2)} = {(0, 0), (2, 0), (0, 2), (2, 2)}. (A.7)

The factors G(n1, n2) can be computed easily in this case, even for an hypercubic
lattice of arbitrary dimension d, arriving at the following expression for the second
moment

µ′2 = Nd〈1〉+Nd(d− 1)(〈s1s2〉m1 + 〈s1s2〉m2)

+Nd(Nd− 2(d− 1)− 1)〈s1s2〉m1〈s1s2〉m2 .

(A.8)
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We can use this expression to calculate the second cumulant κ2,

κ2 = µ′2 − µ′
2
1
N→∞−−−→ Nd(m2

1 − 1)(m2
2 − 1), (A.9)

where we have taken the thermodynamic limit, keeping only the terms of order
O(N), which is the leading order for all cumulants. Subleading orders can be
preserved if needed, but they are not relevant for our paper. The difficulty of
the previous computation escalates quickly with the order n of the cumulant, and
it is quite cumbersome for just n ≥ 4. In order to get beyond this limitation,
we have developed a program which computes the geometrical factors G(n1, n2)
numerically for a finite L × L bidimensional lattice. Since these factors G(n1, n2)
are polynomials in N of order ≤ n (and with integer coefficients), we can run the
program for lattices of n + 1 different sizes, obtaining a set of (N ,G(N)) points,
which we can use to recover the exact integer coefficients of each geometrical factor,
by means of the Lagrange interpolation formula.

The basic idea of the program is very simple. We just construct a periodic
rectangular L×M lattice, with L,M > n, n being the order of the cumulant we
want to compute. With this restriction we avoid products of links crossing the
entire lattice, that would not appear in the thermodynamic limit for any finite
cumulant. Once we have this, we start a loop running over all the permutations
with repetitions of n links, and perform the following steps,

• We have a product of n links, or equivalently 2n spins, s1 · · · s2n.

• Recursively, we remove couples of equal spins from this product.

• We classify the remaining product by the number of spins in each sublattice,
(n1, n2).

• We add one to the geometric factor G(n1, n2) and proceed to the next itera-
tion.

When the algorithm finishes, we obtain all the G(n1, n2) values for a given N =
LM . The computational cost is associated to the number of iterations of the main
loop, which grows as (LM)n, that is, exponentially with the order of the cumulant.
In practice, we have only reached the computation of the fourth cumulant with
this program. However, a number of optimizations can be implemented in order
to reach higher order cumulants, which we summarize in what follows.

A.1 Translational symmetry

Our lattice is symmetric under translations, implying that all geometrical factors
are proportional to Nd, the number of links. Fixing, e.g., the first link of the
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product, one obtains the same G(n1, n2), but divided by a common factor Nd.
The same factor is gained in the overall speed of the program. In addition to
that, the degree of the polynomials G(n1, n2) is also reduced by one, and it suffices
with n (instead of n + 1) different sizes in order to recover the N dependence.
One can go even further by realizing that the geometrical factor corresponding to
non-neighboring links, G(n, n), is the only one with maximum degree Nn−1. This
allows us to express it in terms of the remaining factors,

1

Nd
G(n, n) = (Nd)n−1

− 1

Nd

∑
{(n1,n2)}\(n,n)

G(n1, n2), (A.10)

which are only of order n − 2 or less. This means that it is enough to run the
program for n − 1 lattice sizes, compute all the geometrical factors but G(n, n)
via the Lagrange interpolator, and then with the previous expression find the N
dependence of this last factor.

A.2 From permutations to combinations

The product of links commutes, so its contribution to the geometrical factors is the
same regardless of the order. Then, we can change the main loop over permutations
with repetition to a loop over combinations with repetition, by taking into account
the multiplicity of each combination. Schematically, we perform∑

i,j,...,k contrib(lilj · · · lk)

→
∑

i≤j≤···≤k

mult× contrib(lilj · · · lk), (A.11)

where contrib represents a function in our program that takes a product of links
and returns the contribution to the geometrical factors. If there are r different
links, each one appearing k1, . . . , kr times, the multiplicity of the combination is
given by

mult =
n!

k1! · · · kr!
. (A.12)

A.3 Blocks - Grouping links together

Many of the link products have few, if any, repeated spins, and their contributions
to the geometrical factors can be counted without having to analyze one by one
each of them. This is possible by grouping them in sets of links that we will call in
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what follows blocks, and replacing the loop over link products by a loop over block
products. When the blocks in a product are not neighbors (i.e., they do not have
any common spin), we do not need to perform the computation link by link and
the contribution can be summed up trivially. Let b1 and b3 be two non-neighboring
blocks, each one composed by Nb links, and let us denote the contributions to the
geometrical factors by λ(n1, n2), where λ is an integer counting how many products
of links have n1 (n2) spins in the first (second) sublattice. Then we have

contrib(b1b3) = N2
b (2, 2), (A.13)

or in general, for the product of k non-neighboring blocks, Nk
b (k, k). Following

this strategy, we divide our lattice into unidimensional blocks of 2M links, in a
way that the jth block, bj, contains all links the first spin of which belongs to the
jth column. As a consequence, bj is a neighbor of blocks j − 1 and j + 1, and,
taking into account the boundary conditions, b0 and bL−1 are neighbors too.

When we have a product of neighboring blocks, we proceed as before, analyzing
the link products one by one, and there is no computational saving. But when the
n blocks are not neighbors, we move from (Nd)n iterations to a single one.

A.4 Clusters of blocks

The block method, as defined above, fails to save any computation time if two or
more blocks are neighbors in a given block product. However, we can extend the
method by dividing each block product into several subproducts, which we will
denote as clusters. In each cluster, one can always connect one block to another
by the equivalence relation of being neighbors (sharing spins). And in the same
way, in each product different clusters never share any spin. This allows us to
compute the contributions of each cluster separately, and then compose them with
the following law,

λ1(a, b)⊕ λ2(c, d) = λ1λ2(a+ c, b+ d). (A.14)

If the contributions of the clusters involve more than one geometrical factor, lin-
earity applies, ∑

ab

λab(a, b) ⊕
∑
cd

λcd(c, d) =∑
ab,cd

λabλcd(a+ c, b+ d). (A.15)

Processing one cluster with k blocks takes a computing time proportional to (Nd)k.
So dividing the whole block product in smaller clusters implies for almost every
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block product a significant amount of time saved. Only when all the blocks are
part of the same cluster there is no speed up.

Another major optimization can be performed by realizing that translational
invariance can also be applied here, since a given cluster, say b0b1b1, and any of its
translations, b0+tb1+tb1+t, have the same contribution to the geometrical factors.
Then, when a cluster is going to be computed, we can express it in terms of its
equivalence class, compute its contribution, and store it in memory. Every time
one of its translations appears, we just take the value from the memory, saving
a lot of computing time. In addition to that, once we have computed the factors
G(n1, n2) for the first size L×M , we know in advance all the cluster contributions
for any L′ ×M lattice (the blocks keep its size constant). Since almost all the
computing time is spent in figuring out the cluster contributions, we reduce in
this way the full problem of computing the geometrical factors in lattices of n− 1
different sizes to only one size, the smallest one, M ×M . In practice, the time
spent by the rest of the sizes needed is barely the 1− 2% of that of the first size.

A.5 Computation of a cluster

The last optimization concerns the computation of the clusters themselves. Until
now it is done simply by performing a loop over each possible permutation of
links belonging to each of the blocks in the cluster. However, one can go one step
further and divide the blocks composing the cluster into smaller sets, that we will
call sites. A site is simply the set of two links the first spin of which lies in the site
i, j, that is,

site(i, j) ≡ {sijsi+1,j, sijsi,j+1}. (A.16)

With this new subdivision, we can apply in the same way the techniques described
above. In order to compute the cluster b1 . . . bk, we start a loop over every per-
mutation of sites s1 . . . sk, with si ∈ bi. Each site product is divided into clusters,
the contributions of which can be summed with Eq. (A.15) and are calculated by
performing another loop over each link product (2k iterations for a site product
of k elements). Finally, by summing up each site product contribution, we obtain
the whole cluster contribution.

All the described optimizations do not remove the exponential dependence on
n of the algorithm. However, they allow us to reach the eighth cumulant, which
takes about three days of computing time in a modern laptop.
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