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Abstract: In the study of optical quantum information, quantum teleportation can be realized
by preparing multiphoton entangled states. Entanglement is a special quantum correlation, and
there is also a quantum correlation in separable quantum States, which comes from the
measurement of quantum states. Convex combinations of arbitrary quantum states are still
quantum states. From the spectral decomposition of a quantum state, an ensemble formed by a
complete eigenvector system can be determined, which corresponds to an orthogonal
projection operator family with rank 1, and the convex combination of the operator family will
correspond to a quantum state. The characterization of quantum correlation is an important
issue in the study of quantum information theory. A Quantum state that remains unchanged
under local orthogonal projection is a classical correlation state, which is not affected by
decoherence. Based on the standard orthogonal basis, this paper considers the correlation of the
quantum states formed by the convex combination of the operator family. According to the
separability and entanglement of the ground state and the mutual dissimilarity of the
corresponding non-zero eigenvalues, it is concluded that the convex combination of the
operator family formed by the separable standard orthogonal basis in the composite system
must be a classical correlation state. When the entangled pure state is an eigenvector, it is a
quantum correlation state if the corresponding eigenvalue is a non-zero single value. In the
case of multiple roots, we can illustrate that both are possible. For the correlation of unitary
evolution of quantum states under different standard orthogonal bases, the evolution law is
revealed by considering important quantum gates.

1. Introduction
With the development of optical quantum information technology, the experimental demonstration of
multi-qubit operation has entered a new stage of high complexity and high-performance optical
quantum processor prototypes. The preparation of quantum correlation state, the basic operation and
algorithm of optical quantum have been initially realized, and the characterization of quantum state
correlation is also the key problem of quantum correlation theory. The characterization of quantum
state correlation [1-3] is the key problem of quantum correlation theory. Relative to separability, there is
quantum entanglement [4-18] in composite systems. The entangled quantum state must be a quantum
correlation, and there is also a quantum correlation in the separable quantum state. Using the standard
orthogonal basis of the composite system, the local orthogonal projection measurement of the quantum
state can be given. On this basis, Guo [1] gives the definition of the classical associated state, which is a
quantum state that remains unchanged in the presence of some local orthogonal projection
measurement. However, with this definition, it is not easy to judge whether a quantum state is a
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classical correlation state or a quantum correlation state by calculation. Combined with Theorem 2.1.1
in [1], we can see that the classical associated state must be a quantum state diagonalized under a
separable standard orthogonal basis. Taking this as a starting point, we can construct classical
correlation states and quantum correlation states by convex combination. At the same time, the
correlation can be measured by the commutativity of the operator family generated in the standard
orthogonal basis and the distance between operators [1], but the calculation is also complicated.

2. Construction of classical correlation state and quantum associated state
We make ℋ஺ and ℋ஻ be Hilbert spaces, which are used to represent the state spaces of quantum
systems A and B according to the hypothesis of quantum mechanics. The state space of composite
systems A and B can be written as ℋ஺⨂ℋ஻ and abbreviated as ℋ஺஻, and its separable orthonormal
basis is ห݁௜⟩ห ௝݂ൿ, where {݁௜} and ൛ ௝݂ൟ are respectively orthonormal basis, i=1, 2, …,݀஺, j= 1,  2,  …,݀஻.
From this, we can get the local orthogonal projection measurement |݁௜⟩⟨ ௜݁| ⊗ ห ௝݂ൿൻ ௝݂ห,  which  is  a
family of one-rank projection operators. By using the convex combination of joint probability density
and operator family, the following definition can be given from Theorem 2.1.1 in [1].

Definition 1 If the quantum state ρ in the two-body quantum system ℋ஺஻ ≜ ℋ஺⨂ℋ஻ has the
following form

ρ = ∑ ∑ p୧୨
ୢా
୨ୀଵ

ୢఽ
୧ୀଵ |e୧⟩⟨e୧| ⊗ หf୨ൿൻf୨ห (1)

then, it is called a classical correlation state, where ൛݌௜௝ൟ is the joint probability distribution, i=1, 2, …,
݀஺ , j=  1,  2,  …, ݀஻ . {݁௜} and ൛ ௝݂ൟ are the standard orthogonal bases of  ℋ஺ and  ℋ஻ , respectively.
Otherwise, it is a quantum correlation state.

It can be seen from the definition that a joint probability distribution and the standard orthogonal
basis correspond to a classical correlation state, and conversely, a classical correlation state can have
different representations, in which ൛݌௜௝ൟ is the eigenvalue of the quantum state, and its eigenvector
system corresponds to an ensemble of separable pure states. Especially, when the non-zero
eigenvalues are all single roots, it is known from Theorem 2.1.2 in [1] that the expression is unique in
a sense. If there are non-zero multiple roots, the expression may not be unique, because different
eigenvectors can be selected to form standard orthogonal bases. So how to construct quantum
correlation states? Therefore, the following theorem is given.

Theorem 1 For the quantum system  ℋ஺஻ , given the standard orthogonal basis {݁௜} , its
corresponding probability density ,… ,i=1, 2 ,{௜݌} ݀஺ ݀஻, considers the convex combination

Ρ = ∑ ௜݌
ௗಲௗಳ
௜ୀଵ |݁௜⟩⟨ ௜݁|  (2)

where ௜݌ is a non-zero characteristic single root, |݁௜⟩ is an entangled state, and ρ is a quantum
correlation state. When ௜݌ is a non-zero characteristic multiple roots, even if the corresponding
characteristic state is entangled, ρ may be a classical correlation state.

Proof It can be seen that Formula (2) is a spectral decomposition of ρ and a positive operator with a
trace of 1, so it is a quantum state. When ௜݌ is a non-zero characteristic root, if it is a classical
correlation state, then ௜݌ is an eigenvalue, and the corresponding | |݁௜⟩ is a separable pure state, which
contradicts the hypothesis, so it is a quantum correlation state. When ௜݌ is a non-zero characteristic
multiple roots, if we choose bell state

|e୧⟩ = ቄ ଵ
√ଶ

(|00⟩ ± |11⟩), ଵ
√ଶ

(|01⟩ ± |10⟩)ቅ,  (3)

the probability densities are ቄଵ
ଶ

, ଵ
ଶ

, 0, 0ቅ ܽ݊݀ ቄଵ
ଶ

, 0, ଵ
ଶ

, 0ቅ, respectively. Then

ଵߩ =
1
4

(|00⟩ + |11⟩)(⟨00| + ⟨11|) +
1
4

(|00⟩ − |11⟩)(⟨00| − ⟨11|)

                                 =
1
2

|00⟩⟨00| +
1
2

|11⟩⟨11|
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= ଵ
ଶ

൮
1

0
0

1

൲ (4)

ଶߩ =
1
4

(|00⟩ + |11⟩)(⟨00| + ⟨11|) +
1
4

(|01⟩ + |10⟩)(⟨01| + ⟨10|)

=
1
4

|00⟩⟨00| +
1
4

|11⟩⟨11| +
1
4

|00⟩⟨11| +
1
4

|11⟩⟨00|

+
1
4

|01⟩⟨01| +
1
4

|01⟩⟨10| +
1
4

|10⟩⟨01| +
1
4

|10⟩⟨10|

= ଵ
ସ

൮
1

1
1

1
1

1
1

1

൲. (5)

It can be seen that ଵߩ is a convex combination of separable orthogonal pure States, and the matrix
under separable orthogonal basis is a diagonal matrix, which is a classical correlation state. Although
the surface of ଶߩ looks like a combination of separable orthogonal pure states, the sum of weights is
not 1, it is not a probability distribution, and it is not a diagonal matrix, but a quantum correlation
state. The theorem is proved.

Next, the measurement method of quantum correlation introduced in [1] is further illustrated.
Example 1 For Werner state,

w஛ = λ|Ψି⟩⟨Ψି|+ଵି஛
ଷ

(|Ψା⟩⟨Ψା| + |Φି⟩⟨Φି| + |Φା⟩⟨Φା|) (6)

where ߣ ∈ [0,1], หΨ±ൿ = ଵ
√ଶ

(|01⟩ ± |10⟩), |Φି⟩ = |11⟩, |Φା⟩ = |00⟩ . According to the Peres-
Horodeckes criterion, which is the judgment method of separability and entanglement, it can be
concluded that it is separable when 0 ≤ ߣ ≤ 0.5 , and entangled when 0.5 < ߣ ≤ 1 . (ఒݓ)ܳ =
√ଶ(ଵିସఒ)

ଵ଼
is further calculated by the measurement method of quantum correlation in [1], and we get

that when ߣ = 0.25, ఒݓ is a classical correlation state; otherwise, it is a quantum correlation state. The
above judgment method is complicated in calculation. According to the conclusion of Theorem 1,
when ߣ ≠ ଵିఒ

ଷ
, that is, λ≠0.25, ఒݓ is a quantum correlation state. When ߣ = ଵିఒ

ଷ
λ, that is, λ=0.25, its

corresponding characteristic subspace happens to be a two-dimensional composite system, and a
separable natural basis can be selected, so ఒݓ is a classical correlation state.

Example 2 For two-dimensional quantum systems ℋ஺ and ℋ஻ , the natural basis is selected
|0⟩ =൫ଵ

଴൯, |1⟩ =൫଴
ଵ൯, and

ଵߩ = ଵ
ଶ

(|0⟩ + |1⟩)(⟨0| + ⟨1|) ⊗ |0⟩⟨0| = ଵ
ଶ

ቀ1 1
1 1ቁ ⊗ ቀ1 0

0 0ቁ,                  (7)

ଶߩ = |0⟩⟨0| ⊗ |0⟩⟨0| = ቀ1 0
0 0ቁ ⊗ ቀ1 0

0 0ቁ.                                                 (8)
Obviously, the product states ଵߩ and ଶߩ are both classical correlation states. Considering their

convex combination ߩ = ଵߩߣ + (1 − ଶߩ(ߣ , for  0 < ߣ < 1 ,  ℋ஺ can’t choose |0⟩, |1⟩ and ଵ
√ଶ

(|0⟩ +

|1⟩), ଵ
√ଶ

(|0⟩ − |1⟩) at the same time, so it is a quantum correlation state. On the other hand, it can be
obtained by

ρ =

⎝

⎜
⎛

1 − ଵ
ଶ

λ 0
0

0 ଵ
ଶ

λ
0 0

0
ଵ
ଶ

λ       0
0 0
0 ଵ

ଶ
λ⎠

⎟
⎞

. (9)
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According to Theorem 1, because the eigenvalues of ,ߩ 1 − ଵ
ଶ

,ߣ ଵ
ଶ

,ߣ 0, 0, in which the eigenvector

corresponding to the characteristic single root ଵ
ଶ

ߣ is ቀ ఒ
ଶ(ଵିఒ) , 0,0,1ቁ

்
, normalization can only be an

entangled pure state, so ρ is a quantum correlation state. This example can also be judged by using the
commutativity of operator families with the help of theorem 2.2.6 in [1].

3. Quantum states and quantum unitary gate
Generally speaking, two different quantum states correspond to an ensemble composed of different
eigenvectors. Unless these two quantum States are commutative, they can be diagonalized under the
same ensemble. So, how does the correlation of quantum States evolve under different standard
orthogonal bases?

Theorem 2 For the quantum system ℋ஺஻, given the standard orthogonal basis {݁௜} and { ௜݂} and the
probability density ,… ,i=1, 2 ,{௜݌} ݀஺ ݀஻, two quantum states are

ρ = ∑ p୧
ୢఽୢా
୧ୀଵ |e୧⟩⟨e୧|, σ = ∑ p୧

ୢఽୢా
୧ୀଵ |f୧⟩⟨f୧|. (10)

There is a unitary matrix U, which makes ߪ = ற. When the standard orthogonal basisܷߩܷ { ௜݂} is
divisible, the unitary matrix U evolves the quantum state into a classical correlation state. When the
standard orthogonal basis { ௜݂} has an entangled state ห ௜݂బൿ, and when ݅଴ ≠ ௜݌௜బஷ݌ ,݅ ≠ 0, the unitary
matrix u evolves the quantum state into a quantum correlation state.

Proof Because the transition matrix between orthogonal bases of different standards is a unitary
matrix, there exists a unitary matrix U, which makes | ௜݂⟩ = ܷ|݁௜⟩, i = 1, 2, … , ݀஺ ݀஻ , thus further
satisfying ߪ  = றܷߩܷ . Theorem 1 shows that the ensemble of quantum states depends on image
states { ௜݂}. When { ௜݂} is divisible, the quantum state σ is a classical correlation state; when { ௜݂} has an
entangled state ห ௜݂బൿ, and when ݅଴ ≠ ݅, ௜݌௜బஷ݌ ≠ 0. The theorem is proved.

Example 3 For two-dimensional quantum systems ℋ஺ and ℋ஻ , and composite system ℋ஺஻ , we
consider single quantum bit gates Pauli-X gate and Hadamard-gate H as shown in Figure 1, in which

X = ቀ0 1
1 0ቁ,H = ଵ

√ଶ
ቀ1 1

1 −1ቁ. (11)

Figure 1. Single quantum bit gates: Pauli-X gate and Hardamard- gate.

Using the Pauli-X gate, we can get the controlled NOT-gate CNOT gate X as shown in Figure 2 in
the double quantum bit gate, and its quantum circuit and matrix are shown as follows.

CNOTܺ = ቌ
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

ቍ.

It  maps  base  1: |00⟩, |01⟩, |10⟩, |11⟩ into base 2: |00⟩, |01⟩, |11⟩, |10⟩ . Thus, the classical
correlation state diag ,ଵ݌) ,ଶ݌ ,ଷ݌ (ସ݌ under base 1 is mapped to the classical correlation state
diag(݌ଵ, ,ଶ݌ ,ସ݌ (ଷ݌ under base 2.

For base 1 |00⟩, |01⟩, |11⟩, |10⟩, Standard orthogonal basis formed by mapping to Bell state, basis 2
ଵ

√ଶ
(|00⟩ + |11⟩), ଵ

√ଶ
(|01⟩ + |10⟩), ଵ

√ଶ
(|01⟩ − |10⟩), ଵ

√ଶ
(|00⟩ − |11⟩). (12)
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The transition matrix is

U = ଵ
√ଶ

ቌ
1 0
0 1

  0   1
   1   0

0 1
1 0

  −1 0
     0 −1

ቍ. (13)

Furthermore, by combining the quantum circuits that generate bell states, we can get the quantum
gate U as shown in Figure 3, in which the classical correlated states and quantum correlated states
evolve mutually.

Figure 2. Controlled NOT gate and evolution of ground state under double qubits.

Figure 3. Quantum circuit of Bell state generation.

4. Conclusion
In a word, in the multiphoton composite system, not only quantum correlated states can be prepared,
but also quantum classical correlated states can be prepared. The classical correlation state can be
constructed by using the separable standard orthogonal basis, and the quantum correlation state can be
constructed by using the standard orthogonal basis if there is an entangled pure state. It can be seen
that quantum correlation is closely related to the multiplicity of eigenvalues and the separability of
eigenvectors. The quantum state constructed by a probability distribution and one-rank projection
orthogonal operator family is easy to control, and the evolution of the quantum state can be further
discussed by using the quantum unitary gate.
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