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Abstract

The gauge theory/gravity correspondence encompasses a variety of different specific

dualities. We study examples of both Super Yang-Mills/type IIB string theory and

Super Chern-Simons-matter/type IIA string theory dualities. We focus on the recent

ABJM correspondence as an example of the latter.

We conduct a detailed investigation into the properties of D-branes and their operator

duals. The D2-brane dual giant graviton on AdS4×CP3 is initially studied: we calculate

its spectrum of small fluctuations and consider open string excitations in both the short

pp-wave and long semiclassical string limits.

We extend Mikhailov’s holomorphic curve construction to build a giant graviton on

AdS5 × T1,1. This is a non-spherical D3-brane configuration, which factorizes at maxi-

mal size into two dibaryons on the base manifold T1,1. We present a fluctuation analysis

and also consider attaching open strings to the giant’s worldvolume. We finally propose

an ansatz for the D4-brane giant graviton on AdS4 × CP3, which is embedded in the

complex projective space.

The maximal D4-brane giant factorizes into two CP2 dibaryons. A comparison is made

between the spectrum of small fluctuations about one such CP2 dibaryon and the

conformal dimensions of BPS excitations of the dual determinant operator in ABJM

theory.

We conclude with a study of the thermal properties of an ensemble of pp-wave strings

under a Lunin-Maldacena deformation. We investigate the possibility that the Hage-

dorn temperature - dual to the temperature of the confinement/deconfinement tran-

sition in planar SYM theory - may be a universal quantity, at least under a partial

breaking of supersymmetry.
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Introduction

Over the last decade, a substantial body of evidence has emerged that various string

theories on anti-de Sitter (AdS) spacetimes are dual to conformal field theories (CFTs)

in flat space. Somehow it seems that the degrees of freedom encoded in the gauge theo-

ries (albeit mainly superconformal theories, unlike those observed in nature) rearrange

themselves into stringy degrees of freedom in the strong coupling regime. This sur-

prising phenomenon points to a fundamental link between gravity and modern particle

physics, which is, as yet, improperly understood.

The original idea is owing to t’Hooft [1]: U(N) gauge theories, with N large, admit

a 1
N

perturbative expansion in which the Feynman diagrams are organized in terms

of the genus of the surface upon which they are drawn (to leading order, only planar

diagrams survive). This resembles the genus expansion in gs of an interacting string.

The effective coupling constant at large N - associated with a loop expansion - is the

’t Hooft coupling λ ≡ g2N , where g is the original coupling constant in the gauge

theory. It is also possible [2] to extend the ’t Hooft limit to include U(N) × U(N)

gauge theories, with the perturbative expansion in 1
N2 .

In 1997, Maldacena [3] proposed a concrete example of a gauge theory/gravity duality.

This AdS/CFT correspondence links N = 4 Super Yang-Mills (SYM) theory with type

IIB string theory on AdS5 × S5. Various other AdS5/CFT4 correspondences between

4-dimensional CFTs and type IIB string theories on AdSd+1 spacetimes were later

suggested [4] - [8]. Being strong/weak coupling dualities, these are difficult to test, but

allow for the possibility of solving otherwise intractable problems by mapping them

onto the appropriate dual. For example, applications include the computation of gluon

scattering amplitudes in N = 4 SYM theory at strong coupling [9], a conjectured

universal lower bound on the shear-viscosity to entropy density ratio of the strongly

coupled quark-gluon plasma [10] and a dual description of condensed matter systems

in the vicinity of a quantum critical point [11]. Despite differing in specific details,

however, these AdS5/CFT4 dualities are of the same general form.
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There was widespread interest and, indeed, much excitement when, in 2008, Aharony,

Bergman, Jafferis and Maldacena (ABJM) proposed a very different example of an

AdS4/CFT3 correspondence [2] between an N = 6 Super Chern-Simons (SCS)-matter

theory and M-theory on AdS4×S7/Zk, which becomes type IIA string theory on AdS4×
CP3 upon compactification. Not only does this provide us with a new, interesting SCS-

matter/type IIA string theory duality, but for the first time directly links a CFT with

an M-theory. It might therefore prove feasible to study non-perturbative membranes

from a gauge theoretic perspective.

Let us consider a generic AdSd+1/CFTd correspondence. The CFT in the Euclidean

space Rd (after a Wick rotation) can be reformulated as a CFT on the boundary

Sd−1 × R of the AdSd+1 spacetime1 [12]. The radial coordinate in Rd is set to r ≡ eτ ,

so that the metric on Rd can be written as follows:

ds2
Rd = dr2 + r2dΩ2

d−1 = e2τ
(
dτ 2 + dΩ2

d−1

)
,

which, up to the conformal factor e2τ , is the metric on Sd−1×R. Notice that dilatations

r → eα r become time translations τ → τ+α, so that scaling dimensions are mapped to

energies. Correlators 〈O†1O2〉 of local operators in the original CFTd become overlaps

〈O1|O2〉 of physical states at spatial infinity by the operator-state correspondence.

The AdSd+1/CFTd duality allows us to associate physical states in the CFT on the

boundary Sd−1 × R with string states in the bulk AdSd+1 spacetime. The following

dictionary should therefore exist between the original CFTd and the string theory on

an AdSd+1 spacetime: local operators are dual to string states in such a way that

anomalous dimensions map to string excitation energies. Moreover, these operators

carry R-charge under global supersymmetry transformations, which maps to the string

angular momentum in the compact space.

More recently, it has become apparent that organizing these operators according to

their R-charge2 allows us to distinguish, in the gauge theory, between gravitons [14],

strings [15], membranes [16] - [19] and even whole new geometries [14, 20]. A suitable

operator basis for single particle states in the CFT must be orthogonal with respect

to the two-point correlation function. When the R-charge J � N , a single trace

operator basis will suffice - the correlators involve terms of O
(

1
N

)
, which are suppressed.

However, when the R-charge becomes comparable with the rank of the gauge group, a

calculation of the two-point correlation function involves combinatoric factors of O(N),

canceling the 1
N

suppression. A new operator basis must then be constructed - this

takes the form of Schur polynomials of fields [17]. Therefore, to summarize, single trace

1The spacetime takes the form AdSd+1 × X9−d, but the specifics of the compact space X9−d are
unnecessary here.

2For a recent concise review, see [13].



4

operators withR-charge of O(1) and O(
√
N) map to gravitons and strings respectively,

while Schur polynomial operators with R-charge of O(N) and O(N2) are associated

with membranes and geometries.

An investigation of the string degrees of freedom from the perspective of the dual gauge

theory therefore involves a study of single trace operators. Minahan and Zarembo no-

ticed [21] that a single trace operator composed of scalar fields in N = 4 SYM theory

can be mapped to an integrable SO(6) spin chain with nearest-neighbour interactions.

The one-loop matrix of anomalous dimensions is associated with the spin chain Hamil-

tonian. This result was extended to include other sectors of the gauge theory [22].

Similarly, single trace operators composed of scalar fields in N = 6 SCS-matter theory

can be mapped to an integrable SU(4) spin chain [23]. This spin chain technology

greatly simplifies computations in the CFT, as well as providing insight into the inte-

grable structures contained therein.

Shortly after the original Maldacena conjecture, the quantum numbers of 1
2
-BPS oper-

ators, the dimensions of which are protected by supersymmetry, were matched to those

of type IIB supergravity states [24]. Berenstein, Maldacena and Nastase (BMN) then

studied a class of ‘near-BPS’ operators [15], which can be mapped to long spin chains

with relatively few excitations. It turns out that the effective coupling λ̃ = λ
J2 in this

sector of the gauge theory depends also on the length J of the operator (in this case,

equal to its R-charge). The BMN double scaling limit λ, J → ∞, with λ̃ = λ
J2 � 1

held fixed, allowed [15] to circumvent the strong/weak coupling problem and match the

anomalous dimensions of near-BPS operators with the excitation energies of type IIB

closed pp-wave strings. This proved a major success for the AdS/CFT correspondence.

In addition, Hofman and Maldacena constructed long ‘giant magnon’ string configu-

rations dual to magnon excitations of the N = 4 SYM spin chain [25]. The near-flat

space limit of [26] interpolates between the pp-wave and giant magnon sectors of type

IIB string theory on AdS5 × S5. Type IIB string theory on AdS5 × T1,1 has also been

extensively studied: the associated pp-wave [27, 28] and near-flat space [29] geometries

were obtained, and giant magnons constructed [30].

Recent studies [31] - [38] of the closed string sector of type IIA string theory on AdS4×
CP3 suggest that the ABJM duality is somewhat more subtle. It is possible to take

a Penrose limit about a null geodesic in the AdS4 × CP3 spacetime and study closed

strings on the resulting pp-wave background. The pp-wave string excitation energies

were compared with the anomalous dimensions of long near-BPS operators [31, 32],

but a mismatch was found. Long semiclassical strings and giant magnons were also

investigated [34] - [36], together with strings on the near-flat space geometry [37]. These

results seem to indicate that BMN scaling is violated in ABJM theory: long near-BPS
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operators scale like 1
J2 f(λ), where f(λ) ∼ λ when λ � 1 (the string theory is weakly

coupled) and f(λ) ∼ λ2 when λ� 1 (the perturbative regime of the gauge theory).

This discussion would be incomplete without some mention of the open string sectors

of the type IIB and type IIA string theories. In studying open string configurations, an

understanding of D-branes is vital - these are non-perturbative dynamic membranes

embedded in the background spacetime. Open string excitations of dual and sphere

D3-brane giant gravitons on AdS5 × S5 were considered in [39] - [41]. The dual N = 4

SYM operators involve words attached to Schur polynomials. In the BMN limit, the

anomalous dimensions of these words were shown to match the open pp-wave string

excitation energies. The open string sector of AdS4×CP3 remains largely unexplored,

partly due to our current lack of knowledge concerning D-brane configurations on this

background, as well as the more complex nature of the SCS-matter open spin chain.

In seeking to better understand the manner in which the gauge theory degrees of

freedom are encoded in the string theory, it is crucial to investigate the gauge the-

ory/gravity correspondence in as many different laboratories as possible. Towards this

end, we study applications of both AdS5/CFT4 and AdS4/CFT3 dualities.
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Overview of thesis

This thesis is organized in parts, which contain related chapters, as outlined below:

Part I contains introductory information concerning the SYM/type IIB string theory

and SCS-matter/type IIA string theory dualities. In chapter 1, we discuss both the

original Maldacena conjecture, as well as the correspondence suggested by Klebanov

and Witten between an N = 1 SYM theory and type IIB string theory on AdS5 × T1,1.

The new ABJM duality is described in chapter 2.

Part II involves an investigation of the properties of D-branes and giant gravitons, as

well as their gauge theory counterparts. This is the primary focus of this thesis and

several new results are presented in chapters 3, 4 and 5 relating to giant gravitons

and dibaryons in type IIB string theory on AdS5 × T1,1 and type IIA string theory on

AdS4 × CP3.

Marginal deformations of N = 4 SYM theory are discussed in part III. In the special

case of a γ-deformation, we describe the construction of the gravitational dual - type

IIB string theory on a Lunin-Maldacena background. In chapter 6, we study the ther-

modynamics of an ensemble of pp-waves strings on the Lunin-Maldacena background,

with a view towards establishing whether the Hagedorn temperature is a universal

quantity, invariant across a class of type IIB string theories on AdS5 spacetimes.

A summary of results, together with concluding remarks, are presented in part IV. We

discuss extensions of this work and describe various avenues for future research in the

field of gauge theory/gravity duality.
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Chapter 1

Super Yang-Mills/type IIB string

theories

Type IIB string theory is an N = 2 supersymmetric chiral1 theory in 10 dimensions.

Its associated supergravity theory - involving the low energy limit α′ → 0, in which

the string tension becomes large and only massless modes survive - is type IIB 10D

supergravity. Here the bosonic degrees of freedom are the metric gµν , dilaton φ and 2-

form Neveu-Schwarz (NS) B-field b2, as well as the even dimensional Ramond-Ramond

(RR) potential forms c0, c2 and c4, which couple to odd dimensional branes. The

fermionic field content consists of a Weyl gravitino ψµ,α and dilatino λα [42]. We often

speak of string theories on fixed background spacetimes (at low energies, backreaction

may be neglected). These can be thought of as coherent states of a large number of

gravitons, dilatons, etc. The fixed background fields G, Φ, B and Cn (together with

vanishing fermionic superpartners, for bosonic solutions) must hence solve the type IIB

10D supergravity equations of motion.

Let us now consider two possible low energy descriptions of N coincident D3-branes in

type IIB string theory on some, as yet unspecified, background spacetime [3, 43]:

The lowest energy, massless modes of open strings ending on these D3-branes are

described by a 4-dimensional non-abelian SYM theory with an SU(N) gauge group2.

Scalar fields describe the six transverse coordinates, while the gauge fields correspond

to the four worldvolume degrees of freedom. There are also spinor fields, which descend

1In the Green-Schwarz formalism, each fermionic field consists of two 16-component Weyl-Majorana
spinor coordinates with the same chirality, which can be combined into a single 32-component Weyl
spinor.

2The gauge group is actually U(N) = SU(N)× U(1), but the U(1) subgroup decouples.
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from the spinor coordinates in the bulk string theory.

The D3-branes are massive objects, which deform the geometry around them. A type

IIB superstring in the vicinity of the membranes propagates on the near-horizon space-

time, which takes the form AdS5 × X5, with X5 some 5-dimensional compact space.

From the point of view of an observer at infinity, all the string modes are gravitationally

redshifted to low energies, yielding the full type IIB string theory on AdS5 × X5.

Since these are dual descriptions of the same system, we obtain various AdS5/CFT4

correspondences between 4-dimensional SYM theories and type IIB string theory on

AdS5 × X5 spacetimes. We shall focus on two examples:

N coincident D3-branes in 10-dimensional Minkowski spacetime M10: This

yields the original AdS/CFT correspondence [3] (or Maldacena conjecture) be-

tween N = 4 SYM theory, with an SU(N) gauge group, and type IIB string

theory on AdS5 × S5.

N coincident D3-branes in M4 × C at the conic singularity of C in C4: The

duality which arises is between an N = 1 SYM theory (known as Klebanov-

Witten theory [4]) with an SU(N) × SU(N) gauge group, and type IIB string

theory on AdS5 × T1,1.

We shall discuss both sides of these conjectured gauge theory/gravity correspondences,

as well as the dictionary between them.

1.1 The Maldacena conjecture

1.1.1 N = 4 Super Yang-Mills theory

N = 4 SYM theory is a maximally supersymmetric 4-dimensional field theory with an

SU(N) gauge group. It was originally constructed [44] from a 10-dimensional N = 1

SYM theory containing a single gauge superfield (composed of a gauge field and a

Weyl-Majorana spinor). Dimensional reduction then yields the N = 4 gauge multiplet3

(Aµ, χ
a
α, φ

k) consisting of the gauge field Aµ, four 4-component Majorana spinors χaα

and six real scalar fields φk. These fields all transform in the adjoint representation of

SU(N), and have conformal dimensions [Aµ] = [φk] = 1 and [χaα] = 3
2
.

3The scalar fields φk are the additional components of the original gauge field corresponding to the
six extra dimensions, which are reduced. The original Weyl-Majorana spinor can be written in terms
of the four Majorana spinors χaα.
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The N = 4 SYM action takes the form [43, 45]

S =
2

g2
YM

∫
d4x tr

{
−1

4
FµνF

µν − 1

2

∑
k

Dµφ
kDµφk +

1

4

∑
j,k

[
φj, φk

]2
+ fermions

}
,

(1.1)

with field strength Fµν ≡ ∂µAν − ∂νAµ + i [Aµ, Aν ]. Here Dµφ
k ≡ ∂µφ

k + i
[
Aµ, φ

k
]

is

the covariant derivative and gYM is the Yang-Mills coupling constant. There is also an

instanton term proportional to the topological charge [43].

Let us define the complex scalar fields

X ≡ φ1 + iφ2, Y ≡ φ3 + iφ4 and Z ≡ φ5 + iφ6. (1.2)

When written in N = 1 superspace, N = 4 SYM theory contains a gauge superfield V
and three chiral superfields X , Y and Z associated with the above scalar fields. The

superpotential is then given by [43]

W = 1
2
gYM tr (XYZ − XZY) . (1.3)

There is an SU(4) ∼= SO(6) R-symmetry group and an SO(2, 4) group of conformal

transformations (consisting of translations, Lorentz transformations, scalings and spe-

cial conformal transformations). This conformal symmetry remains unbroken at the

quantum level. Due to its maximally supersymmetric nature, N = 4 SYM theory is

finite - the renormalization group β-functions, which describe the dependence of the

coupling gYM on the mass scale, vanish identically [43, 46].

Gauge invariant single trace operators can be constructed by tracing over the SU(N)

gauge group indices of a product of N = 4 SYM scalar fields. For example, the

chiral primary4 single trace operators, which belong to shortened 1
2
-BPS multiplets of

operators, are given by

Oi1i2...in = str
(
φi1φi2 . . . φin

)
, (1.4)

which denotes a symmetrized trace over n scalar fields. The dimensions of these chiral

primaries are protected from quantum corrections by supersymmetry [42, 43].

1.1.2 Type IIB string theory on AdS5× S5

A maximally supersymmetric solution of the type IIB 10D supergravity equations of

motion is AdS5 × S5 [43, 47]. The background metric is given by

ds2 = R2
{
ds2

AdS5
+ ds2

S5

}
, (1.5)

4The primary field/operator in a multiplet has the lowest dimension and is annihilated by all the
supercharges. It can be used to build up the other descendent fields/operators by acting with the
conjugate supercharges [42].
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where R is the radius of the anti-de Sitter and 5-sphere spaces, with individual metrics

ds2
AdS5

= −
(
1 + r2

)
dt2 +

dr2

(1 + r2)
+ r2

(
dα2

1 + cos2 α1 dβ
2
1 + sin2 α1 dβ

2
2

)
(1.6)

ds2
S5 = dθ2

1 + cos2 θ1 dφ
2
1 + sin2 θ1

(
dθ2

2 + cos2 θ2 dφ
2
2 + sin2 θ2 dφ

2
3

)
. (1.7)

Note that there is a 3-sphere embedded in both S5 and AdS5. The dilaton Φ vanishes,

together with the B-field B2. The only non-trivial field strength is the self-dual 5-form

F5 = F + ∗F = dC4, with

F ≡ 4R4 vol(S5) = 4R4 cos θ1 sin3 θ1 cos θ2 sin θ2 dθ1 ∧ dθ2 ∧ dφ1 ∧ dφ2 ∧ dφ3. (1.8)

1.1.3 Dictionary

The original gauge theory/gravity correspondence between the N = 4 SYM theory and

type IIB string theory on AdS5 × S5 is a strong/weak coupling duality. The ’t Hooft

coupling in the gauge theory is related5 to the radii of the AdS5 and S5 spaces [3, 43]:

λ ≡ g2
YMN = R4. (1.9)

A strongly (weakly) coupled SYM theory corresponds to small (large) spacetime cur-

vature. When the string length is small by comparison to the size of the space in

which it lives, the gauge theory is strongly coupled. On the other hand, allowing for

perturbative expansions in λ in the SYM theory takes us far from the supergravity

regime of the type IIB string theory.

In Maldacena’s D3-brane construction [3], the number of coincident branes simply

corresponds to the rank N of the SYM gauge group. Now, each D3-brane carries one

unit of charge with respect to the 4-form potential C4, so N must be related to the

flux of the 5-form field strength F5 = dC4 through the 5-sphere as follows [42]:

N =
1

(2π)4

∫
S5

F5 =
R4

4π
. (1.10)

Isometries in AdS5 × S5 correspond to superconformal symmetries in the gauge theory.

The SO(2, 4) group of AdS5 isometries matches the conformal group, whereas the

SO(6) rotational symmetry of S5 is associated with the R-symmetry. The three U(1)

charges of this SU(4)R are dual to the angular momenta Ji ≡ −i ∂
∂φi

on the 5-sphere

[42, 43].

5Here we make use of units in which α′ = 1.
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1.2 The Klebanov-Witten duality

1.2.1 Klebanov-Witten theory

We begin by considering an N = 1 SYM theory in 4-dimensions containing two gauge

superfields, and two sets of two left-handed chiral superfields Ai and Bi in the (N, N̄)

and (N̄ ,N) bifundamental representations of the SU(N) × SU(N) gauge group re-

spectively. Flowing to the IR fixed point, we then perturb by the non-renormalizable

marginal superpotential

W = 1
2
λ εijεkl tr (AiBkAjBl) . (1.11)

This is Klebanov-Witten theory [4]. There is an SU(2)A × SU(2)B symmetry group

- with one SU(2) acting on the Ai’s and the other on the Bi’s - as well as a U(1)

R-symmetry group under which the chiral superfields have R-charge 1
2
. The scalar

field components of these chiral multiplets have conformal dimension [Ai] = [Bi] = 3
4
,

and carry baryon number 1 and −1 with respect to the global U(1) symmetry group.

Single trace operators in Klebanov-Witten theory must be constructed from composite

fields with gauge group indices in only one SU(N). The primary single trace operators,

with the lowest dimensions for a given R-charge, involve the composite scalar fields

AiBj. Symmetrizing over the i and j indices separately, we obtain [4, 48]

Oi1i2...in, j1j2...jn = str
{(
Ai1Bj1

) (
Ai2Bj2

)
. . .
(
AinBjn

)}
, (1.12)

which are primary single trace operators, protected by supersymmetry, with vanishing

anomalous dimensions.

1.2.2 Type IIB string theory on AdS5×T1,1

Another solution of type IIB 10D supergravity is AdS5 × T1,1, where T1,1 is the base

manifold of a cone in C4 [4, 48]. The background metric is given by

ds2 = R2
{
ds2

AdS5
+ ds2

T1,1

}
, (1.13)

with R the radius of the anti-de Sitter and T1,1 spaces. The dilaton Φ and B-field B2

are again zero, and the self-dual 5-form F5 = F + ∗F = dC4 is the only non-vanishing

field strength, where now

F ≡ 4R4 vol(T1,1) = 1
27
R4 sin θ1 sin θ2 dθ1 ∧ dθ2 ∧ dψ ∧ dφ1 ∧ dφ2. (1.14)
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This AdS5 × T1,1 background solution preserves 1
4

of the supersymmetries [27] of the

type IIB supergravity effective action6.

The base manifold T1,1

The cone C, which is embedded in C4, is described by the four complex coordinates zA

satisfying z1z2 = z3z4. These may be parameterized as follows [49]:

z1 = r
3
2
C sin θ1

2
sin θ2

2
e

1
2
i(ψ−φ1−φ2) z2 = r

3
2
C cos θ1

2
cos θ2

2
e

1
2
i(ψ+φ1+φ2)

z3 = r
3
2
C cos θ1

2
sin θ2

2
e

1
2
i(ψ+φ1−φ2) z4 = r

3
2
C sin θ1

2
cos θ2

2
e

1
2
i(ψ−φ1+φ2) (1.15)

in terms of the overall radius rC, and angles θi ε [0, π], φi ε [0, 2π] and ψ ε [0, 4π]. The

base manifold T1,1 is obtained by setting rC to a constant, chosen to be unity.

Remarkably, it is possible to construct [49] a Kähler, Ricci-flat metric on C, corre-

sponding to the Kähler potential F(r2
C) = r2

C, which is given by

ds2
C = dr2

C + r2
C ds

2
T 1,1 , (1.16)

where the metric on the base manifold T1,1 takes the form

ds2
T1,1 = 1

9
[dψ + cos θ1dφ1 + cos θ2dφ2]2 + 1

6

(
dθ2

1 + sin2 θ1dφ
2
1

)
+ 1

6

(
dθ2

2 + sin2 θ2dφ
2
2

)
.

(1.17)

This describes a SU(2)×SU(2)
U(1)

manifold - the U(1) identifies the coordinates ψ1 ≡ ψ2 ≡ 1
2
ψ

in each of the SU(2) spaces parameterized by the Euler angles (θi, φi, ψi). Alternatively,

we may view T1,1 as two 2-spheres (θi, φi) and an additional non-trivial U(1) fibre

parameterized by ψ. In these coordinates, the volume element is given by

vol(T1,1) = 1
108

sin θ1 sin θ2 dθ1 ∧ dθ2 ∧ dψ ∧ dφ1 ∧ dφ2 (1.18)

and, integrating, we find that 16
27
π3 is the volume of T1,1.

1.2.3 Dictionary

Due to the non-renormalizability of the N = 1 SYM theory, less can be said about

this example of an AdS5/CFT4 correspondence, which links Klebanov-Witten theory

and type IIB string theory on AdS5 × T1,1. The rank N of the SU(N)×SU(N) gauge

68 of the 32 components in the Weyl gravitino spinor remain invariant under supersymmetry
transformations.
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group is related to the flux of the 5-form field strength through T1,1 [48]:

N =
1

(2π)4

∫
T 1,1

F5 =
4R4

27π
. (1.19)

The group SO(2, 4) of AdS5 isometries again matches the conformal group. The isom-

etry group of T1,1 is SO(3)×SO(3)×U(1), which corresponds to the SU(2)×SU(2)×
U(1)R symmetry group of Klebanov-Witten theory [4, 48]. The R-charge of an opera-

tor in Klebanov-Witten theory is associated with the angular momentum J ≡ −2i ∂
∂ψ

of the dual type IIB string state along the fibre direction.
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Chapter 2

Super Chern-Simons-matter/type

IIA string theories

Type IIA string theory is anN = 2 supersymmetric non-chiral1 theory in 10 dimensions

related by a T-duality transformation to type IIB string theory. M-theory is the strong

coupling limit of type IIA string theory and contains no strings, but rather M2- and M5-

branes in 11 dimensions. Due to the higher dimensional nature of their worldvolume

spaces, these M-branes - the fundamental objects in M-theory - cannot be quantized

perturbatively, and hence far less is known about M-theory than about any of the five

consistent superstring theories.

The effective field theory, which describes only the massless modes, associated with

M-theory is maximally supersymmetric N = 8 11D supergravity. The field content

consists of the metric gµν , the 3-form potential a3 (coupling electrically to M2-branes

and magnetically to M5-branes) and the Majorana spinor ψµ,α. Type IIA 10D super-

gravity can be obtained from 11D supergravity via dimensional reduction. The bosonic

sector contains the metric gµν , dilaton φ and 2-form NS B-field b2, as well as the odd

dimensional RR potential forms c1 and c3, which couple to even dimensional branes.

The fermionic degrees of freedom consist of a gravitino ψµ,α and dilatino λα [42, 47, 50].

Until recently, the worldvolume theory ofN coincident M2-branes, even in flat Minkowski

spacetime, was unknown. A maximally supersymmetric2 N = 8 gauge theory in

1A fermionic field consists of two 16-component Weyl-Majorana spinor coordinates with opposite
chirality, so the combined 32-component spinor is not Weyl.

216 supersymmetries - half the 32 supersymmetries of the original N = 8 11D supergravity back-
ground solution - should be preserved by the M2-branes, i.e. there should be eight 2-component spinor
coordinates in 3 dimensions.
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3 dimensions was expected. It should contain eight scalar fields (corresponding to

the transverse directions) transforming under the SO(8) R-symmetry group. Bagger,

Lambert and (independently) Gustavsson (BLG) constructed [51] a 3-algebra Super

Chern-Simons (SCS)-matter theory with matter in the bifundamental representation

of the SU(2)k×SU(2)−k gauge group, and opposite level numbers k and −k. The spe-

cial case k = 2 yields the worldvolume theory of two M2-branes at a R8/Z2 singularity.

Aharony, Bergman, Jafferis and Maldacena (ABJM) were able [2] to extend this con-

struction to the worldvolume theory of N coincident M2-branes at a C4/Zk singularity

- an N = 6 SCS-matter theory with matter in the bifundamental representation of the

U(N)k × U(N)−k gauge group (known as ABJM theory).

The near-horizon geometry of N coincident M2-branes placed at the tip of the cone

in M3 × C4/Zk is the orbifold AdS4 × S7/Zk. Identifying the worldvolume theory of

these M2-branes with M-theory in the near-horizon geometry, ABJM postulated [2]:

The M-theoretic version of an AdS4/CFT3 correspondence: N = 6 SCS-

matter theory with a U(N)k × U(N)−k gauge group (with k � N
1
5 ) is dual to

M-theory on AdS4 × S7/Zk.

It is also possible to compactify M-theory on AdS4 × S7 to type IIA string theory

on AdS4 × CP3. (This is equivalent to taking the large k limit of M-theory on

AdS4 × S7/Zk.) The duality can therefore be reformulated as follows [2]:

The string-theoretic version of an AdS4/CFT3 correspondence: N = 6 SCS-

matter theory with a U(N)k×U(N)−k gauge group (with N
1
5 � k � N) is dual

to type IIA string theory on AdS4 × CP3.

The M-theoretic version of this duality is the first gauge theory/gravity correspondence

involving M-theory and we might therefore hope to gain insight into non-perturbative

features, which are otherwise inaccessible. However, we shall concentrate on the second

version of this AdS4/CFT3 correspondence, involving type IIA string theory, since all

the technology developed to study AdS5/CFT4 correspondences becomes applicable.

2.1 ABJM theory

ABJM theory is an N = 6 SCS-matter theory in 3 dimensions with a U(N)k×U(N)−k

gauge group, and opposite level numbers k and−k. Aside from the gauge fields3 Aµ and

3All the other fields in the gauge multiplets are auxiliary [52].
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Âµ, there are two sets of two chiral multiplets (Ai, ψ
Ai
α ) and (Bi, ψ

Bi
α ), corresponding

to the chiral superfields Ai and Bi in N = 2 superspace, which transform in the

(N, N̄) and (N̄ ,N) bifundamental representations respectively. The scalar fields have

conformal dimension [Ai] = [Bi] = 1
2
, whereas [Aµ] = [Âµ] = [ψAiα ] = [ψBiα ] = 1 for the

gauge and 2-component spinor fields [2, 52].

These scalar fields4 can be arranged into the multiplet Y a = (A1, A2, B
†
1, B

†
2), with

hermitian conjugate Y †a = (A†1, A
†
2, B1, B2), in terms of which the N = 6 SCS-matter

action can be written as [52, 23]

S =
k

4π

∫
d3x tr

{
εµνλ

(
Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)
+D†µY

†
aD

µY a +
1

12
Y aY †a Y

bY †b Y
cY †c +

1

12
Y aY †b Y

bY †c Y
cY †a

−1

2
Y aY †a Y

bY †c Y
cY †b +

1

3
Y aY †b Y

cY †a Y
bY †c + fermions

}
, (2.1)

where the covariant derivatives are defined to be DµY
a ≡ ∂µY

a + iAµY
a − iY aÂµ and

D†µY
†
a ≡ ∂µY

†
a − iAµY †a + iY †a Âµ. There are no kinetic terms associated with the gauge

fields - they are dynamic degrees of freedom only by virtue of their coupling to matter.

When written in N = 2 superspace [52], the ABJM superpotential takes the form

W =
2π

k
εijεkl tr (AiBjAkBl) , (2.2)

which exhibits an explicit SU(2)A × SU(2)B R-symmetry - the two SU(2)’s act on

the doublets (A1, A2) and (B1, B2) respectively. There is also an additional SU(2)R

symmetry, under which (A1, B
†
1) and (A2, B

†
2) transform as doublets, which enhances

the symmetry group to SU(4)R - the multiplet Y a transforms in the fundamental

representation. The scalar fields Ai and Bi carry baryon number 1 and −1 respectively.

The conformal group is SO(2, 3).

Single trace operators in ABJM theory must be built out of composite N = 6 SCS-

matter fields with gauge group indices in one U(N). Primary single trace operators

are constructed from Y aY †b . For example, restricting to the chiral primaries [23],

Oa1a2...an, b1b2...bn = str
{(
Y a1Y †b1

)(
Y a2Y †b2

)
. . .
(
Y anY †bn

)}
, (2.3)

where we symmetrize over the a and b indices separately. The dimensions of these

chiral primary single trace operators are protected by supersymmetry.

4The associated chiral and anti-chiral multiplets can be written as (Y a, ψaα) and (Y †a , ψ̄
α̇
a ) as in [23].
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2.2 M-theory on AdS4×S7/Zk

A maximally supersymmetric solution of 11D supergravity is AdS4 × S7 [47]. The

background metric is given by

ds2 = R̃2
{
ds2

AdS4
+ 4ds2

S7

}
, (2.4)

with R̃ and 2R̃ the radii of the anti-de Sitter and 7-sphere spaces respectively. The

metrics of these subspaces take the form

ds2
AdS4

= −
(
1 + r2

)
dt2 +

dr2

(1 + r2)
+ r2

(
dθ2 + sin2 θ dϕ2

)
(2.5)

ds2
S7 = dα2

1 + cos2 α1 dβ
2
1 (2.6)

+ sin2 α1

{
dα2

2 + cos2 α2 dβ
2
2 + sin2 α2

(
dα2

3 + cos2 α3 dβ
2
3 + sin2 α3 dβ

2
4

)}
,

where the embedded 2-sphere and 5-sphere are clearly visible. The 4-form field strength

F4 = dA3 is

F4 = −3R̃3 vol(AdS4) = −3R̃3r2 sin θ dt ∧ dr ∧ dθ ∧ dϕ. (2.7)

This is Hodge dual to the 7-form field strength F7 = ∗F4 = dA6, which may be

calculated to be

F7 = 3(128)R̃6 vol(S7) (2.8)

= 384 R̃6 cosα1 sin5 α1 cosα2 sin3 α2 cosα3 sinα3 dα1 ∧ dα2 ∧ dα3 ∧ dα4 ∧ dα5.

Hopf fibration of S7 over CP3

The complex coordinates zA in C4, which are confined to S7 by setting the overall

magnitude to one, can be parameterized as follows:

z1 = cos ζ sin θ1
2
ei(y+ 1

4
ψ− 1

2
φ1) z2 = cos ζ cos θ1

2
ei(y+ 1

4
ψ+ 1

2
φ1)

z3 = sin ζ sin θ2
2
ei(y−

1
4
ψ+ 1

2
φ2) z4 = sin ζ cos θ2

2
ei(y−

1
4
ψ− 1

2
φ2) (2.9)

with radial coordinates ζ ε [0, π
2
] and θi ε [0, π], and angular coordinates y, φi ε [0, 2π]

and ψ ε [0, 4π], with y the total phase.

In terms of these coordinates, the metric of the 7-sphere becomes

ds2
S7 = (dy + ω)2 + ds2

CP3 , (2.10)
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where the Fubini-Study metric of the complex projective space CP3 and the 1-form

field ω are given by

ds2
CP3 = dζ2 + 1

4
cos2 ζ sin2 ζ [dψ + cos θ1dφ1 + cos θ2dφ2]2

+1
4

cos2 ζ
(
dθ2

1 + sin2 θ1dφ
2
1

)
+ 1

4
sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)
(2.11)

ω = 1
4

cos (2ζ)dψ + 1
2

cos2 ζ cos θ1dφ1 − 1
2

sin2 ζ cos θ2dφ2, (2.12)

which is twice the Kähler form on CP3. Here we have written the metric of the 7-sphere

S7 as a Hopf fibration of a circle S1 over the complex projective space CP3. The volume

element on the 7-sphere is vol(S7) = dy ∧ vol(CP3), with

vol(CP3) = 1
32

cos3 ζ sin3 ζ sin θ1 sin θ2 dζ ∧ dθ1 ∧ dθ2 ∧ dψ ∧ dφ1 ∧ dφ2 (2.13)

and, integrating, we find that the volume of the 7-sphere is π4

3
, while that of the complex

projective space is π3

6
.

The metric of S7 can be written as a Hopf fibration over the complex projective space

CP3 (as described above). The orbifold S7/Zk is obtained by identifying the total phase

(which is the fibre) y ∼ y+ 2π
k

up to an angle of 2π
k

, with k some positive integer. This

effectively shrinks this circle by a factor of 1
k
. We can then rewrite the metric (2.10) in

terms of the new coordinate ỹ ≡ ky ε [0, 2π).

Hence, we deduce that another solution of 11D supergravity is AdS4 × S7/Zk, with the

background metric [2, 53]

ds2 = R̃2
{
ds2

AdS4
+ 4ds2

S7/Zk

}
, (2.14)

where the metric of the orbifold S7/Zk is given by

ds2
S7/Zk = 1

k2 (dỹ + kω)2 + ds2
CP3 . (2.15)

The 4-form field strength (2.7) is now dual to the 7-form field strength

F7 = ∗F4 = 3(128)R̃6 vol(S7/Zk) = 3(128)R̃6 1
k

vol(S7) (2.16)

= 12R̃6 1
k

cos3 ζ sin3 ζ sin θ1 sin θ2 dy ∧ dζ ∧ dθ1 ∧ dθ2 ∧ dψ ∧ dφ1 ∧ dφ2.

Note that the volume of the compact space has been reduced by a factor of 1
k
, as

expected. The orbifolding to AdS4 × S7/Zk breaks 1
4

of the supersymmetries [53] of

the maximally supersymmetric [54] AdS4 × S7 background5.

524 of the 32 components in the gravitino remain invariant under supersymmetry transformations
after the orbifolding.
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2.3 Type IIA string theory on AdS4 × CP3

AdS4 × CP3 is a solution of type IIA 10D supergravity and can be obtained [55] via

a Kaluza-Klein dimensional reduction from AdS4 × S7. This can be thought of as the

large k limit of AdS4 × S7/Zk in which the circle described by the total phase y shrinks

to zero size.

Kaluza-Klein reduction of 11D supergravity to type IIA 10D supergravity

Consider a bosonic solution of 11D supergravity with a metric and 4-form field strength,

which can be written in the form

dŝ2 = e−
2
3

Φds2 + e
4
3

Φ [dy + A1(x)]2 (2.17)

and F̂4 = dÂ3, with Â3(x, y) = A3(x) + A2(x) ∧ dy, (2.18)

where y parameterizes the circle upon which we reduce and the xµ denote the other ten

coordinates. There exists a bosonic solution of type IIA 10D supergravity with metric

ds2, dilaton Φ, B-field B2 = dA2, and 2-form and 4-form field strengths F2 = dA1 and

F4 = dA3 + A1 ∧ dA2 [55].

We can apply the above Kaluza-Klein prescription to the metric (2.4) and 4-form field

strength (2.7) of AdS4 × S7, with S7 written as the Hopf fibration (2.10) over CP3.

Redefining R2 = 1
k
R̃3, we obtain an AdS4 × CP3 background [2, 53], which has the

metric

ds2 = R2
{
ds2

AdS4
+ 4ds2

CP3

}
. (2.19)

The dilaton Φ satisfies e2Φ = 4R2

k2 , while the B-field B2 still vanishes. The 2-form field

strength F2 = dC1 and 4-form field strength F4 = dC3 are given by

F2 = −1
2
k {sin (2ζ) dζ ∧ (dψ + cos θ1dφ1 + cos θ2dφ2)

+ cos2 ζ sin θ1 dθ1 ∧ dφ1 − sin2 ζ sin θ2 dθ2 ∧ dφ2

}
(2.20)

F4 = −3
2
kR2 vol(AdS4) = −3

2
kR2r2 sin θ dt ∧ dr ∧ dθ ∧ dϕ, (2.21)

with Hodge duals F6 = ∗F4 and F8 = ∗F2. In particular, the 6-form field strength can

be determined to be

F6 = 3
2
(64)kR4 vol(CP3)

= 3kR4 cos3 ζ sin3 ζ sin θ1 sin θ2 dζ ∧ dθ1 ∧ dθ2 ∧ dψ ∧ dφ1 ∧ dφ2. (2.22)
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2.4 Dictionary

Both versions of the ABJM gauge theory/gravity correspondence are strong/weak cou-

pling dualities. The M-theoretic version, which links N = 6 SCS-matter theory with

M-theory on AdS4 × S7, relates the ’t Hooft coupling to the radius R̃ as follows [2]:

λ ≡ N

k
=

2

π2

R̃6

k2
, (2.23)

where the rank N of the U(N)× U(N) gauge group may be determined from the flux

of the 7-form field strength F7 through the orbifold S7/Zk to be

N =
1

(2π)6

∫
S7/Zk

F7 =
2

π2

R̃6

k
. (2.24)

In the string theoretic version of the ABJM duality, involving N = 6 SCS-matter

theory and type IIA string theory on AdS4×CP3, the ’t Hooft coupling can be written

as [2, 53]

λ ≡ N

k
=

R4

2π2
. (2.25)

The rank N of the gauge group is related to the flux of the 6-form field strength F6

through the complex projective space CP3 via

N =
1

(2π)5

∫
CP3

F6 =
kR4

2π2
. (2.26)

Notice that the radius of the circle in S7/Zk, upon which we perform the orbifolding,

is given by

R

k
=

(
π2

2

N

k5

) 1
6

. (2.27)

This becomes small when k � N
1
5 - the regime in which the compactified type IIA

string theory on AdS4 × CP3 is the valid gravitational description. M-theory on

AdS4 × S7/Zk is the gravitational dual of ABJM theory when N
1
5 � k � N [2].

Isometries in AdS4 × CP3 (and AdS4 × S7/Zk) match superconformal symmetries in

ABJM theory. The group of AdS4 isometries/conformal transformations is SO(2, 3),

while the SU(4) R-symmetry group maps to the group of rotations on the compact

space. The R-charge of a local ABJM operator therefore corresponds to the angular

momentum of the dual type IIA string state in CP3. The U(1) charges of the SU(4)R

are given by [31]

J1 ≡ −i
(

∂

∂φ1

+
∂

∂ψ

)
, J2 ≡ −i

(
∂

∂φ1

+
∂

∂ψ

)
and J3 ≡ −2i

∂

∂ψ
. (2.28)

Here J1 and J2 are associated with motion on each of the 2-spheres, and J3 with motion

along the (shifted) fibre direction.
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Part II

D-branes and Giant Gravitons
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Introduction:

D-branes and giant gravitons

A Dp-brane is a (p+1)-dimensional hypersurface in d dimensions, which describes the

end-points of open strings. These membranes are themselves dynamical objects, mov-

ing under the influence of the background spacetime. The open string modes are

described by a supersymmetric U(1) gauge theory on the worldvolume of the Dp-

brane, which contains a gauge field Aa and d− p− 1 scalar fields X i (corresponding to

the transverse coordinates), as well as fermionic superpartners. The Dp-brane action

SDp = SDBI +SWZ consists of the following Dirac-Born-Infeld (DBI) and Wess-Zumino

(WZ) terms [56]:

SDBI = −Tp
∫

Σ

dp+1σ e−Φ
√
− det (P [G+B]ab + 2πFab)

SWZ = ±Tp
∫

Σ

(∑
l

P [Cl]

)
∧ e2πF+P[B],

with tension Tp = 1
(2π)p

and worldvolume field strength F = dA. Here P denotes

the pullback to the worldvolume Σ, described by the coordinates σa. A Dp-brane is

therefore naturally charged under the RR (p+1)-form potential Cp+1 [57], but may also

couple to the lower dimensional RR potentials Cl, with l < p.

A non-abelian extension of the Dp-brane action to describe a system of N coincident

Dp-branes was proposed by Myers [58]. The gauge symmetry is augmented from U(1)N

to U(N), with the scalar fields in the adjoint representation. One significant finding

was that the non-abelian WZ action involves a coupling to RR potentials Cl, with

l > p. It was hence shown that D0-branes in an external 4-form field are polarized

and expand into a non-commutative or ‘fuzzy’ 2-sphere, which can be interpreted as a

(D2,D0)-brane bound state (known as the ‘Myers effect’). This system can alternatively

be viewed as a single spherical D2-brane with a non-trivial worldvolume gauge field.

McGreevy, Susskind and Toumbas [59] constructed a similar D2-brane, the extension

of which is supported, not by worldvolume flux, but by its angular momentum in the



23

compact space - the coupling of the D2-brane to the 4-form field strength produces

a Lorentz-like force that balances the brane tension. These (classically) stable D2-

brane configurations were dubbed ‘giant gravitons’. D3-brane giants in type IIB string

theory on AdS5 × S5, and M2-brane and M5-brane giants in M-theory on AdS4 × S7

were studied in [54]. These were shown to be 1
2
-BPS objects, preserving half the

supersymmetries of the maximally supersymmetric background spacetimes.

In N = 4 SYM theory, giant gravitons on AdS5 × S5 are dual to operators with R-

charge of O(N), constructed as a Schur polynomial of the complex scalar fields X, Y

and Z. For example, restricting to the single matrix (Z) model [16] - [18]:

χR(Z) =
1

n!

∑
σ ε Sn

χR(σ) Zi1
iσ(1)

Zi2
iσ(2)

. . . Zin
iσ(n)

.

Here σ is an element of the permutation group Sn, with character χR(σ), in the rep-

resentation R. Each such Schur polynomial has conformal dimension ∆ equal to its

R-charge n and is labeled by a Young diagram with n boxes [19]. Not only do these

gauge invariant Schur polynomials diagonalize the free two-point correlation function,

thereby providing a suitable basis for the 1
2
-BPS sector of N = 4 SYM theory, but they

also realize quite explicitly some of the characteristic properties of the dual D-branes.

For example, depending on which 3-cycle is wrapped by the D3-brane, giant gravitons

on AdS5 × S5 come in two flavours: AdS and sphere giants [54, 60]. These correspond

to Schur polynomials in the totally symmetric and totally antisymmetric representa-

tions respectively. The latter can be written equivalently as the subdeterminant [16]

On =
1

n!
εα1...αnαn+1...αN ε

β1...βnαn+1...αN Zα1
β1
. . . Zαn

βn
.

Notice the upper bound n ≤ N on theR-charge - an interpretation [59] of this so-called

‘stringy exclusion principle’ [61] is that the size of the sphere giant (which depends on

its angular momentum J) is limited by the radius of the 5-sphere.

Open string excitations of giant gravitons on AdS5 × S5 were studied in [39] - [41].

These are dual to ‘words’ (built out of both Z’s and other SYM fields) attached to the

Schur polynomial operator. The combinatorics of attaching such words encodes the

Gauss law constraint satisfied by the spherical D3-brane [62]. A comparison between

open string excitation energies and the anomalous dimensions of attached words is

assisted by a map from any such word to an open spin chain [39].

Prior to this work, much less was known about giant gravitons on AdS5 × T1,1. Al-

though Mikhailov proposed an ansatz [63], in terms of holomorphic curves on the cone,

for D3-branes embedded in T1,1, these configurations were otherwise unstudied. In

Klebanov-Witten theory, operators dual to giant gravitons are Schur polynomials of
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composite scalar fields AiBj. For example, one such 1
2
-BPS operator χR(A1B1), with

conformal dimension ∆ = 3
2
n andR-charge n, is obtained by replacing Z with the com-

bination A1B1. This has at least one interesting consequence when R is completely

antisymmetric: at maximum size n = N , the subdeterminant operator On(A1B1) fac-

torizes into the product of two determinant operators:

On (A1B1) =
1

N !
εα1...αN (A1)α1

γ1
. . . (A1)αNγN εβ1...βN (B1) γ1

α1
. . . (B1) γN

αN

= detA1 detB1.

These dibaryon operators detA1 and detB1 are dual to topologically stable D3-branes

wrapped on non-contractible 3-cycles in T1,1 [64] - [66]. Among other things, we would

like to know how the transition from the giant graviton to two dibaryons happens.

The open string sector of type IIA string theory on AdS4×CP3, which encodes all the

information about D-branes and their dynamics, has not been much studied. What

we do know about open strings on this background reveals a remarkably rich structure

[53], [67] - [69], including new spinning M2-brane solutions and giant tori. This last

configuration is particularly interesting, since the operator dual to this torus should

reproduce not only Gauss’ law for a compact object, but also its non-zero genus. This

would be a decidedly non-trivial test of the idea that topology is an emergent property

in the gauge theory. Initial steps towards developing this idea have been taken [69, 70].

There should be D4-brane giant gravitons on AdS4 × CP3, which wrap non-trivial 4-

cycles in the complex projective space, as well as the ‘dual’ spherical D2-brane giants

[53] in the anti-de Sitter space. These descend from the M5-brane and M2-brane

giant gravitons on AdS4 × S7, which were described by [54], upon compactification.

The operators in ABJM theory dual to giant gravitons are structurally identical to

those in Klebanov-Witten theory. Again choosing the composite scalar field A1B1, the

Schur polynomial χR(A1B1), with conformal dimension ∆ the same as its R-charge

n, describes a D2- and D4-brane giant graviton, when R is totally symmetric and

totally antisymmetric respectively. The latter, being equivalent to the subdeterminant

On(A1B1), again factorizes at maximum size into two dibaryons detA1 and detB1.

These should be dual to topologically stable D4-branes wrapped on non-contractible

CP2 cycles in CP3.

This part involves an extensive study of D-branes, mainly giant gravitons, in type IIB

string theory on AdS5 × T1,1 and type IIA string theory on AdS4×CP3. In chapter 3,

we begin by investigating the dual giant graviton on AdS4 × CP3 constructed in [53].

Chapter 4 involves a review of [66] concerning dibaryons on AdS5 × T1,1, together with

an investigation of the spectrum of CP2 dibaryons on AdS4 × CP3. A detailed study

of a D3-brane giant graviton on AdS5 × T1,1, obtained using Mikhailov’s holomorphic
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curve construction [63], is presented in chapter 5 and we adapt this ansatz to describe

a similar D4-brane giant graviton on AdS4 × CP3.
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Chapter 3

Dual giant gravitons

We shall now focus on the dual giant graviton on AdS4 × CP3. A review of its con-

struction by [53] is presented. We perturb about this D2-brane solution - taking into

account both scalar and worldvolume fluctuations - and solve for its spectrum of small

fluctuations. Open string excitations are then considered. We attach short open strings

to the worldvolume of the dual giant and compute the bosonic spectrum in a pp-wave

limit. We also write down the Polyakov action for fast moving semiclassical long strings,

which should correspond to the Landau-Lifshitz action of an open ABJM spin chain

(mapped from long words attached to the ABJM Schur polynomial operator).

3.1 Dual giant gravitons on AdS4 × CP3

Our construction of the dual giant graviton closely follows that of [53]. This dual giant

on AdS4×CP3 is a D2-brane wrapping an S2 ⊂ AdS4 with angular momentum in CP3.

It is dual to the Schur polynomial χR(A1B1) in the totally symmetric representation

of the permutation group.

3.1.1 Ansatz for the dual giant graviton

Type IIA string theory on AdS4×CP3 is described in section 2.3. In order to simplify

the dual giant graviton ansatz, it is convenient to make the coordinate change

χ ≡ 1
2

(ψ − φ1 − φ2) , ϕ1 ≡ φ1 and ϕ2 ≡ φ2, (3.1)
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thereby shifting the fibre direction (visible in the metric (2.11) of the complex projective

space). The AdS4 × CP3 background metric (2.19) is now given by

R−2ds2 = −
(
1 + r2

)
dt2 +

dr2

(1 + r2)
+ r2

(
dθ2 + sin2 θ dϕ2

)
+ 4 dζ2 + 4 cos2 ζ sin2 ζ

(
dχ+ cos2 θ1

2
dϕ1 + cos2 θ2

2
dϕ2

)2

+ cos2 ζ
(
dθ2

1 + sin2 θ1 dϕ
2
1

)
+ sin2 ζ

(
dθ2

2 + sin2 θ2 dϕ
2
2

)
, (3.2)

while the constant dilaton Φ satisfies e2Φ = 4R2

k2 . The 2-form field strength F2 = dC1,

shown in (2.20), becomes

F2 = −k
{

sin (2ζ) dζ ∧
(
dχ+ cos2 θ1

2
dϕ1 + cos2 θ2

2
dϕ2

)
+1

2
cos2 ζ sin θ1 dθ1 ∧ dϕ1 − 1

2
sin2 ζ sin θ2 dθ2 ∧ dϕ2

}
(3.3)

and corresponds to a 1-form potential

C1 = 1
2
k
{

cos (2ζ)
(
dχ+ cos2 θ1

2
dϕ1 + cos2 θ2

2
dϕ2

)
+ 1

2
cos θ1 dϕ1 − 1

2
cos θ2 dϕ2

}
.

(3.4)

The 4-form field strength (2.22) can be written as F4 = dC3, with 3-form potential

C3 = 1
2
kR2r3 sin θ dt ∧ dθ ∧ dϕ. (3.5)

Let us consider a D2-brane, with worldvolume coordinates σa = (t, θ, ϕ), which wraps

the 2-sphere (θ, ϕ) with constant radius r in AdS4. It moves along the circle parame-

terized by χ(t), which is situated at ζ = π
4

and θ1 = θ2 = π (the south pole of each of

the 2-spheres - set to the same size - in the complex projective space). We shall also

assume that the worldvolume field strength F = dA vanishes.

3.1.2 D2-brane action

A D2-brane is described by the action

SD2 = −T2

∫
Σ

d3σ e−Φ
√
− det (P [g] + 2πF ) +T2

∫
Σ

P [C3] + 2πT2

∫
Σ

P [C1]∧F, (3.6)

with tension T2 = 1
(2π)2

. Here P denotes the pullback to the worldvolume Σ. The dual

giant graviton ansatz allows us to simplify this action:

SD2 = −kR
2

2π

∫
dt
{
r2
√

1 + r2 − χ̇2 − r3
}
. (3.7)

Now, the conserved momentum Pχ conjugate to χ satisfies

p ≡ 2π

kR2
Pχ =

r2 χ̇√
1 + r2 − χ̇

, (3.8)
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from which it follows that χ = ω0t is a solution to the equation of motion. The

Hamiltonian H = Pχχ̇− L is easily computed to be

H =
kR2

2π

{√
1 + r2

√
r4 + p2 − r3

}
. (3.9)

This energy functional has two minima, one at r = 0 associated with the point graviton1

and the other at r = p ≡ r0 (when χ̇2 = ω2
0 = 1), and attains a maximum at r =

1
3
(4− 3p2)

1
2 − 2

3
≡ rmax in between (see figure 3.1). It is the second minimum that we

shall call the dual giant graviton configuration in AdS4×CP3. Note that its extension

to a size r0 = p in the AdS4 space is a direct result of its angular momentum in CP3 - the

dual giant carries angular momenta J1 = J2 = 0 and J3 = Pχ. This solution satisfies

the BPS bound H = Pχ, which is an indication that the dual giant is supersymmetric.

Figure 3.1: A sketch of the energy H as a function of the radius r at fixed momentum

Pχ. The dual giant graviton is energetically degenerate with the point graviton.

3.2 Fluctuation analysis

Having written down the classical brane configuration, we shall now analyze its sta-

bility. This information is encoded in the spectrum of small fluctuations about the

dual giant graviton [71] - [74]. However, it is crucial to note2 that fluctuations of the

worldvolume gauge field must also be taken into account.

1Care must be taken in setting r = 0, since (3.8) is singular when r = 0 and ω2
0 = 1. However, it

can be shown [59] - [60] that this is a sensible limit.
2We thank Kostas Skenderis for pointing this out.
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In 3 worldvolume dimensions, the analysis of the gauge field simplifies considerably

because of its Hodge duality with a massless scalar field. To see this, note that, in the

limit of small worldvolume flux, the relevant part of the action is

SA = −(2π)2 T2

∫
1
2
e−Φ dA ∧ ∗dA+ 2πT2

∫
C1 ∧ dA, (3.10)

where A is the gauge field and F = dA the associated field strength. To dualize to the

scalar field, we must first change the degree of freedom to F , while at the same time

adding a Lagrange multiplier φ in order to enforce the Bianchi identity dF = 0:

SF = −(2π)2 T2

∫
e−Φ

{
1
2
F ∧ ∗F + φ dF

}
+ 2πT2

∫
C1 ∧ F. (3.11)

Integrating out F = − ∗ (dφ+ 1
2π
eΦ C1), the dualized action is

Sφ = −(2π)2 T2

∫
d3σ e−Φ

√
− detP [g]

{
1

2
∂aφ ∂

aφ+
eΦ

2π
C1a ∂

aφ+
1

2

(
eΦ

2π

)2

C1a C
a
1

}
.

(3.12)

For the transverse fluctuations, it is convenient not only to make use of the new angular

coordinates χ, φ1 and φ2, but also to write each of two 2-spheres in CP3 in terms of

the Euclidean coordinates

u1 = sin θ1 cosϕ1 u2 = sin θ1 sinϕ1 u3 = cos θ1 (3.13)

v1 = sin θ2 cosϕ2 v2 = sin θ2 sinϕ2 v3 = cos θ2. (3.14)

Here u2
1 + u2

2 + u2
3 = 1 and v2

1 + v2
2 + v2

3 = 1, so that we can eliminate u3 and v3 in

favour of the other coordinates. The AdS4 × CP3 metric is hence given by

R−2ds2 = −
(
1 + r2

)
dt2 +

dr2

(1 + r2)
+ r2

(
dθ2 + sin2 θdϕ2

)
+ 4 dζ2 (3.15)

+ cos2 ζ

[
du2

1 + du2
2 +

(u1du1 + u2du2)2

1− (u2
1 + u2

2)

]
+ sin2 ζ

[
dv2

1 + dv2
2 +

(v1dv1 + v2dv2)2

1− (v2
1 + v2

2)

]

+ 4 cos2 ζ sin2 ζ

[
dχ+

1

2

([
1− (u2

1 + u2
2)
]1

2 − 1

)
(u1du2 − u2du1)

(u2
1 + u2

2)

−1

2

([
1− (v2

1 + v2
2)
]1

2 − 1

)
(v1dv2 − v2dv1)

(v2
1 + v2

2)

]2

.

The fluctuations about the dual giant graviton - including both scalar and worldvolume

degrees of freedom - can be written as

r = r0 + ε δr(σa) χ = ω0 t+ ε δχ(σa) ζ = π
4

+ ε δζ(σa)

ui = ε δui(σ
a) vi = ε δvi(σ

a) φ = 1
2π
R2 ε δφ(σa), (3.16)
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where σa = (t, θ, ϕ) are the worldvolume coordinates and ε is a small parameter. We

shall expand the D2-brane action (3.6) to second order in ε as follows:

SD2 ≈ −
kR2

8π2

∫
d3σ

{
R−3

√
− detP [g]−

(
r3

0 + 3εr2
0 δr + 3ε2r0 δr

2
)

sin θ
}

+ Sφ.

(3.17)

Here we write the pullback of the metric to the worldvolume of the perturbed D2-brane

as detP [g] = −R6 (b0 + εb1 + ε2b2 + . . .), so that

R−3
√
− detP [g] ≈

√
b0 + ε

(
1

2

b1√
b0

)
+ ε2

(
1

2

b2√
b0

− 1

8

b2
1

b0

√
b0

)
, (3.18)

in terms of

b0 ≡
(
1 + r2

0 − ω2
0

)
r4

0 sin2 θ (3.19)

b1 ≡ 2
[(

2 + 3r2
0 − 2ω2

0

)
r3

0 δr − ω0r
4
0

˙δχ
]

sin2 θ (3.20)

b2 ≡
1

(1 + r2
0)

[
−r4

0 δ̇r
2

+ r2
0

(
1 + r2

0 − ω2
0

)
(∇δr)2

]
sin2 θ

+
[
9r4

0 + 6r2
0

(
1 + r2

0 − ω2
0

)]
δr2 sin2 θ − 8ω0r

3
0

˙δχδr sin2 θ

+
[
−r4

0
˙δχ

2
+ r2

0

(
1 + r2

0

)
(∇δχ)2

]
sin2 θ

+ 4
[
−r4

0 δ̇ζ
2

+ ω2
0r

4
0 δζ

2 + r2
0

(
1 + r2

0 − ω2
0

)
(∇δζ)2

]
sin2 θ

+
1

2

∑
i

[
−r4

0
˙δu

2

i + r2
0

(
1 + r2

0 − ω2
0

)
(∇δui)2

]
sin2 θ

+
1

2

∑
i

[
−r4

0 δ̇v
2

i + r2
0

(
1 + r2

0 − ω2
0

)
(∇δvi)2

]
sin2 θ

+
1

2
ω0r

4
0

(
δu1

˙δu2 − δu2
˙δu1

)
sin2 θ +

1

2
ω0r

4
0

(
δv1δ̇v2 − δv2δ̇v1

)
sin2 θ, (3.21)

while the action of the scalar field becomes

Sφ = − kR2

16π2
ε2r0

∫
d3σ sin θ

{[
− ˙δφ

2
+ (∇δφ)2

]
+ 4ω0 δζ ˙δφ− 4ω2

0 δζ
2
}
. (3.22)

The gradient squared of any function f(θ, ϕ) on the 2-sphere (θ, ϕ), on which the dual

giant is wrapped, is defined as follows:

(∇f)2 ≡ (∂θf)2 +
1

sin2 θ
(∂ϕf)2 . (3.23)

Let us now organize the expansion of this D2-brane action SD2 = S0 + εS1 + ε2S2 + . . .

in powers of ε. At zeroth order, we obtain simply the D2-brane action (3.7) of the dual

giant graviton evaluated at r = r0. The first order action

S1 = −kR
2

8π2

∫
d3σ sin θ

{[
(2 + 3r2

0 − 2ω2
0) r0√

1 + r2
0 − ω2

0

− 3r2
0

]
δr − ω0r

2
0√

1 + r2
0 − ω2

0

˙δχ

}
,

(3.24)
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is less trivial. The second term in S1 is easily recognized as a total derivative and

can be dropped. Setting ω0 = 1, we see that the first term also vanishes. This is an

indication that the dual giant graviton configuration, with radius r0 = p and angular

velocity ω0 = 1, is, indeed, a solution to the equations of motion.

After integrating by parts, the second order action is given by

S2 =
kR2

16π2
r0

∫
d3σ sin θ

{
δr

(1 + r2
0)

[
−δ̈r +∇2δr

]
+

(1 + r2
0)

r2
0

δχ
[
−δ̈χ+∇2δχ

]
+ 2 ˙δχδr

+
1

2

∑
i

δui

[
− ¨δui +∇2δui

]
+

1

2

(
˙δu1δu2 − ˙δu2δu1

)
+

1

2

∑
i

δvi

[
− ¨δvi +∇2δvi

]
+

1

2

(
˙δv1δv2 − ˙δv2δv1

)
+ 4δζ

[
−δ̈ζ +∇2δζ

]
+ δφ

[
−δ̈φ+∇2δφ

]
− 4δζ ˙δφ

}
. (3.25)

The Laplacian on the 2-sphere

∇2 ≡ 1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2
ϕ (3.26)

is associated with the usual spherical harmonics Ylm(θ, ϕ), which satisfy the eigenvalue

equation ∇2Ylm = −l(l + 1)Ylm.

Varying this second order D2-brane action allows us to calculate the equations of motion

for the fluctuations (δu1, δu2), (δv1, δv2), (δr, δχ) and (δζ, δφ), which are coupled in

pairs. Defining

δxa± =
(
δu1 + iδu2, δu1 + iδu2, δr ∓ i(1+r20)

r20
δχ, δζ ± i

2
δφ
)
, (3.27)

these equations of motion decouple as follows:

−δ̈xa± +∇2δxa± ± i ˙δx
a

± = 0. (3.28)

To proceed further, we decompose the perturbations into Fourier components:

δxa±(t, θ, ϕ) =
∑
l,m

Ca
± e
−iωa±lm t Ylm(θ, ϕ). (3.29)

This expansion satisfies the above equations of motion when the frequencies are given

by ωa±lm = ±l or ∓(l+ 1). The spectrum of small fluctuations is entirely real (there are

no tachyonic modes), from which we conclude that, like its D3-brane counterpart [71]

in AdS5 × S5, the dual giant graviton on AdS4 × CP3 is perturbatively stable.

To conclude our fluctuation analysis, there are several points worth noting:

• Any dependence of the spectrum on the size of the giant would be a trace signa-

ture of the geometry that could be probed in the dual field theory. However, we
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see here that the frequencies are independent of the radius of the dual giant gravi-

ton. Physically, this can be attributed to the exact cancelation of two competing

effects: (1) blue-shifting of frequency from rising within an AdS gravitational

well, and (2) the increased wavelength on a larger worldvolume3.

• Since there are frequencies ±l, the spectrum contains massless goldstone modes

from the breaking of a number of continuous symmetries. The radial part of

the SO(2, 3) AdS symmetry is broken by our choice of the radius/momentum

r0 = p of the dual giant graviton, leading to a goldstone mode associated with the

(δr, δχ) fluctuations. There is also a broken SU(2)× SU(2) ⊂ SU(4) symmetry,

corresponding to the two 2-spheres contained in CP3 - the goldstone bosons are

associated with normal modes of the (δu1, δu2) and (δv1, δv2) fluctuations.

• Perhaps most intriguingly, there is also a massless mode which arises from the

coupling of the gauge field and the radius of the S1 direction of motion (depen-

dent on the coordinate ζ). This implies the existence of giant graviton solutions

(with the same energy) involving non-trivial gauge fields. Such solutions can be

thought of as D0-brane charge dissolved in the giant worldvolume. In fact, the

infinitesimal worldvolume gauge flux associated with the zero mode fluctuation

(δζ and δφ constant) is given by

F = − ∗
(
dφ+ 1

2π
eΦ C1

)
= −ε 1

π
R2r0δζ sin θ dθ ∧ dϕ, (3.30)

which is the flux of a Dirac monopole of charge −ε 1
π
Rδζ. Interestingly, such

solutions would seem to have maximum D0-brane charge when the radius of the

S1 direction of motion shrinks to zero size. Similar solutions were found in [53],

although without CP3 momentum. It would be interesting to find the relevant

charged dual giant gravitons in this case.

3.3 Open string excitations

Transverse fluctuations of D-branes are encoded in open strings attached to and moving

on the brane. In this section, we shall explicitly study these open string excitations

from the worldsheet perspective. Although a full quantum treatment of the worldsheet

sigma model is sorely lacking, several interesting and instructive limits exist. Two, in

particular, will be of interest to us: short strings and long semiclassical stings. We

shall extend the results of [40, 41] and present a systematic treatment of both these

limits for the dual giant graviton on AdS4 × CP3.

3We thank Robert de Mello Koch for pointing this argument out to us.
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3.3.1 Short strings in a pp-wave geometry

To study short strings attached to the dual giant graviton, we need to take a limit in

which the size of the string is ‘amplified’ with respect to the geometry that it probes.

It was argued in [40] that a good description of similar short strings attached to a

submaximal sphere giant on AdS5 × S5 is of open strings attached to a flat D3-brane

on a pp-wave background. This was later extended to short open string excitations of

the AdS giant on AdS5 × S5 with qualitatively similar results [41]. The pp-wave limit

is particularly useful, since the string action becomes quadratic in the lightcone gauge

and consequently solvable [75, 76]. In what follows, we quantize the short string sigma

model on the pp-wave background associated with a null geodesic on the worldvolume

of the D2-brane giant graviton on AdS4 × CP3 and compute its bosonic spectrum

exactly.

To take the Penrose limit, it is convenient to redefine the radial coordinate r ≡ sinh ρ

in the anti-de Sitter space, so that the metric of AdS4 × CP3 reads

R−2ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θ dϕ2

)
+ 4 dζ2 + 4 cos2 ζ sin2 ζ

(
dχ+ cos2 θ1

2
dϕ1 + cos2 θ2

2
dϕ2

)2

+ cos2 ζ
(
dθ2

1 + sin2 θ1 dϕ
2
1

)
+ sin2 ζ

(
dθ2

2 + sin2 θ2 dϕ
2
2

)
. (3.31)

The null geodesic

t = χ = ϕ = u, θ = π
2
, ρ = ρ0, ζ = π

4
and θi = π (3.32)

describes a trajectory parameterized by ϕ = u on the dual giant graviton. To construct

the pp-wave geometry associated with this null geodesic, we take the ansatz

t = u+
v

R2 cosh2 ρ0

χ = u− v

R2 cosh2 ρ0

− tanh ρ0 y1

R

ϕ = u− v

R2 cosh2 ρ0

+
y1

R cosh ρ0 sinh ρ0

(3.33)

and expand the coordinates, which are fixed on the geodesic, as follows:

ρ = ρ0 +
y2

R
θ =

π

2
+

z1

R sinh ρ0

ζ =
π

4
+

z2

2R
θi = π −

√
2 ri
R

, (3.34)

with ϕi unspecified. We can now take the Penrose limit, in which R becomes large and

we zoom in on the null geodesic. When r0 ≡ sinh ρ0 is fixed, the radius of the dual

giant diverges like R. Therefore, as in the AdS5 × S5 case, this short string limit is
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effectively just a treatment of open strings attached to a flat D2-brane and propagating

on the pp-wave background

ds2 = − 4dudv −

(
2∑
i=1

z2
i

)
du2 +

4∑
i=1

dx2
i +

2∑
i=1

dy2
i +

2∑
i=1

dz2
i

+ 4y2dy1du+ (x2dx1 − x1dx2) du+ (x4dx3 − x3dx4) du, (3.35)

where we make use of the Cartesian coordinates x2k−1 = rk cosφk and x2k = rk sinφk,

with k ε {1, 2}. When written in this form, there is a manifest similarity between this

pp-wave geometry and the homogenous plane wave background of [77], so that the

techniques developed there are easily adapted to this case4.

In lightcone gauge u = 2puτ , the bosonic part of the Polyakov action is

S =

∫
dτ

∫ π

0

dσ

2π

{
4∑
I=1

(
1
2
Ẋ2
I − 1

2
X ′2I

)
+ 1

2
m
(
X2Ẋ1 −X1Ẋ2

)
+ 1

2
m
(
X4Ẋ3 −X3Ẋ4

)
+

2∑
I=1

(
1
2
Ẏ 2
I − 1

2
Y ′2I

)
+ 2mY2Ẏ1 +

2∑
I=1

(
1
2
Ż2
I − 1

2
Z ′2I + 1

2
m2Z2

I

)}
, (3.36)

with m ≡ 2pu. Note that the string embedding coordinates XI , associated with the

two 2-spheres, are coupled in pairs,

XK± = X2K−1 ± iX2K , with K ε {1, 2} , (3.37)

as are the YI , which descend from ρ and χ,

Y± = Y1 ± iY2. (3.38)

In the large R limit, the open string boundary conditions associated with the dual

giant graviton imply Dirichlet boundary conditions on XI , YI and Z2, and Neumann

boundary conditions5 on the lightcone coordinates U and V , as well as Z1. Solving

the open string equations of motion - subject to the appropriate boundary conditions -

and quantizing the bosonic sector, we obtain the following expressions for the Neumann

embedding coordinate

Z1(τ, σ) =

√
1

m

[
ξ1

0 e
−imτ +

(
ξ1

0

)†
eimτ

]
+
∞∑
n=1

√
2

ωn

[
ξ1
n e
−iωnτ +

(
ξ1
n

)†
eiωnτ

]
cos (nσ)

(3.39)

and the Dirichlet coordinates

XK±(τ, σ) =
∞∑
n=1

√
4

ω̃n

[
αK∓n e−iω̃

∓
n τ +

(
αK±n

)†
eiω̃
±
n τ
]

sin (nσ) (3.40)

4See also [73] for a further discussion of the relation between the homogeneous plane wave and the
standard pp-wave in magnetic coordinates.

5Note that the lightcone gauge choice is consistent with Neumann boundary conditions on U .
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Y+(τ, σ) =
∞∑
n=1

√
4

ωn

[
β∓n e

−iω∓n τ +
(
β±n
)†
eiω
±
n τ
]

sin (nσ) (3.41)

Z2(τ, σ) =
∞∑
n=1

√
2

ωn

[
ξ2
n e
−iωnτ +

(
ξ2
n

)†
eiωnτ

]
sin (nσ). (3.42)

Here the string frequencies are

ωn ≡
√
m2 + n2, ω̃n ≡

√
1
4
m2 + n2, ω±n ≡ ωn ±m and ω̃±n ≡ ω̃n ± 1

2
m (3.43)

and the creation and annihilation operators satisfy the usual commutation relations[
αK+
m ,

(
αL+
n

)†]
=
[
αK−m ,

(
αL−n

)†]
=
[
ξKm ,

(
ξLn
)†]

= δKLδmn, for K,L ε {1, 2}

[
β+
m,
(
β+
n

)†]
=
[
β−m,

(
β−n
)†]

= δmn. (3.44)

To determine the string spectrum, we express the lightcone Hamiltonian

Hlc =
1

m

∫ π

0

dσ

2π

{
4∑
I=1

(
1
2
Ẋ2
I + 1

2
X ′2I

)
+

2∑
I=1

(
1
2
Ẏ 2
I + 1

2
Y ′2I

)
+

2∑
I=1

(
1
2
Ż2
I + 1

2
Z ′2I + 1

2
m2Z2

I

)}
,

(3.45)

in the normal ordered harmonic oscillator basis as follows:

Hlc =
(
ξ1

0

)†
ξ1

0 +
∞∑
n=1

ωn
m

[(
ξ1
n

)†
ξ1
n +

(
ξ2
n

)†
ξ2
n

]
+
∞∑
n=1

[
ω+
n

m

(
β+
n

)†
β+
n +

ω−n
m

(
β−n
)†
β−n

]

+
∞∑
n=1

2∑
K=1

[
ω̃+
n

m

(
αK+
n

)†
αK+
n +

ω̃−n
m

(
αK−n

)†
αK−n

]
. (3.46)

Let us now relate the mass m of these short strings to parameters in the original

AdS4 × CP3 spacetime. In the Penrose limit, the energy and momenta, E, Jχ and Jϕ,

of the string translate to the lightcone momenta

Hlc = −pu = E − (Jχ + Jϕ) and − pv =
E + (Jχ + Jϕ)

R2 cosh2 ρ0

= m, (3.47)

and the spatial momentum in the y1 direction

py1 = − 1

R
tanh ρ0

(
Jχ −

Jϕ

sinh2 ρ0

)
. (3.48)

To keep the lightcone Hamiltonian finite, we must require that E = Jχ + Jϕ + O(1),

whereas Jχ = 1
sinh2 ρ0

Jϕ + O(R) for finite py1 . Hence the original charges associated

with the short string,

Jϕ ≡ L, Jχ =
L

sinh2 ρ0

(
1 +O

(
R
L

))
and E = L coth2 ρ0

(
1 +O

(
R
L

))
. (3.49)



CHAPTER 3. DUAL GIANT GRAVITONS 36

are specified (to zeroth order) by a single charge L, chosen to be the momentum Jϕ

along the circle θ = π
2
, parameterized by ϕ, on the dual giant graviton. This gives the

inverse mass squared of the short open string excitations

1

m2
=

1

p2
v

=
R4 cosh4 ρ0

(E + Jχ + Jϕ)2 =
π2λ

2L2
sinh4 ρ0

(
1 +O

(
R
L

))
, (3.50)

with t’Hooft coupling λ = R4

2π2 , as discussed in section 2.4. In the limit in which

λ̃ ≡ λ
L2 is fixed and small, the energy eigenvalues of the lightcone Hamiltonian can be

approximated as follows:

αK±n :
ω̃±n
m

=

√
1
4

+ n2

m2 ± 1
2
≈ 1 +

n2

m2
or

n2

m2
, with n ε {1, 2, . . .} (3.51)

β±n :
ω±n
m

=

√
1 + n2

m2 ± 1 ≈ 2 +
n2

2m2
or

n2

2m2
, with n ε {1, 2, . . .} (3.52)

ξKn :
ωn
m

=

√
1 + n2

m2 ≈ 1 +
n2

2m2
, with n ε {0, 1, 2, . . .} , (3.53)

which can clearly be organized in powers of λ̃, including states which are nearly mass-

less, since λ̃� 1.

In the canonical AdS5 × S5 background, the existence of a finite λ̃ ≡ λ
L

scaling limit

is tied to the BMN scaling in N = 4 SYM theory [15]. In this case, the anomalous

dimensions of near-BPS words attached to the Schur polynomial operator χR(Z) were

matched to similar open string excitation energies [40, 41]. It would be interesting to

see whether the mismatch observed [31, 32, 34] in the closed string/spin chain sector of

the ABJM duality persists for open strings by comparing the above energy spectrum

with the anomalous dimensions of the dual open SCS-matter spin chain.

3.3.2 Long semiclassical strings

Zooming back out to the full AdS4×CP3 spacetime, we shall now consider long strings

ending on the dual giant graviton. Even though the string worldsheet on AdS4 × CP3

is just as difficult to quantize as the usual AdS5 × S5 case, we can still look at the

worldsheet action of a subspace of these string states, which facilitates comparison

with a semiclassical analysis of the ABJM spin chain. For long open strings attached

to the D2-brane giant, the analysis (at least on the gravity side) is identical to the case

of a D3-brane giant on AdS5 × S5, the details of which are provided in [41].

The idea is to restrict to a string propagating on an AdS3 × S1 ⊂ AdS4×CP3 by setting

θ = π
2
, ζ = π

4
and θi = π. The metric of this subspace is given by

R−2ds2 = −
(
1 + r2

)
dt2 +

dr2

(1 + r2)
+ r2 dϕ2 + dχ2. (3.54)
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The D2-brane is located at r = p and χ = t, leading to the appropriate Dirichlet

boundary conditions. The key to simplifying the action lies in choosing the correct

worldsheet gauge [78]. Keeping in mind an eventual comparison with the gauge theory,

we shall work in the static gauge t = τ , so that the worldsheet and spacetime energies

coincide (being dual to the anomalous dimensions of the ABJM operators). We also

choose a gauge pϕ = 2L, in which the momentum along the trajectory on the dual

giant graviton is constant along the string. Here L = 1
2π

∫ π
0
dσ pϕ is dual to the spin of

the ABJM operator. This choice of gauge has a subtle interpretation in the canonical

AdS5 × S5 case: in deriving the spin chain from the N = 4 SYM operator, a choice

must be made regarding the separation of the operator into ‘sites’ of the spin chain,

and choosing to spread the AdS4 momentum density evenly along the string leads to

a spin chain for which the sites are organized according to worldvolume spin (i.e. each

covariant derivative in the operator corresponds to a site in the spin chain). We expect

a similar interpretation in the AdS4 × CP3 case.

Let us define η ≡ cosh ρ =
√

1 + r2 and φ ≡ χ − t, which vanishes on the dual giant

graviton. In the ‘fast motion’ limit, in which we assume that the momentum L along

the trajectory parameterized by ϕ is large, so that ∂τ ∼ λ
L2 � 1, the action reduces to

S = −L
∫
dτdσ

{
φ̇

(η2 − 1)
− λ

4L2

[
(η′)

2
+ η2 (φ′)

2
]

+O
(
λ2

L4

)}
. (3.55)

In the AdS5 × S5 background, this action has been matched to the semiclassical Landau-

Lifshitz action derived in the coherent state basis of the dual sl(2) spin chain [41], and

we would expect a similar matching to occur for the analogous limit in our case, modulo

one important caveat6: the sl(2) sector of ABJM theory, unlike N = 4 SYM theory, is

not closed. Indeed, at the level of the closed string OSp(2, 2|6) spin chain found in [23],

it was reported that operators involving the combination DµY
†
a Y

b mix with fermionic

operators containing ψ̄bγµψa. One interpretation of this mixing is that covariant deriva-

tive excitations do not correspond to elementary magnons on the closed string spin

chain, but should instead be thought of as bound states of fermionic magnons. It was

shown that only in the strictly infinite strong coupling limit do these excitations look

independent [79], so it is expected that, when string corrections are accounted for, they

will dissolve into fermions. Understanding this phenomenon in the open string sector

would be an interesting extension of the above analysis.

6We would like to thank the anonymous referee of 0901.0009 [hep-th] for bringing this point to
our attention.
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Chapter 4

Dibaryon spectroscopy

This chapter concerns dibaryon operators in the Klebanov-Witten and ABJM theories.

The conformal dimensions of BPS excitations of determinant operators (special cases

of dibaryons) are compared with the spectrum of small fluctuations about the dual

D3-brane and D4-brane configurations on AdS5 × T1,1 and AdS4 × CP3 respectively.

4.1 Klebanov-Witten dibaryon spectroscopy

We begin by reviewing the comparison [66] of the spectrum of BPS excitations of

dibaryon operators in Klebanov-Witten theory with the spectrum of small fluctuations

about the dual D3-brane configurations in type IIB string theory on AdS5 × T1,1.

4.1.1 Dibaryons in Klebanov-Witten theory

Dibaryon operators in Klebanov-Witten theory are constructed as follows [65, 66]:

D1l = εα1...αN ε
β1...βN

{
Dk1...kN
l (Ak1)

α1

β1
. . . (AkN )αNβN

}
(4.1)

D2l = εα1...αN εβ1...βN

{
Dk1...kN
l (Bk1)

β1

α1
. . . (BkN ) βN

αN

}
, (4.2)

which involve symmetric combinations of the scalar fields Ak and Bk, and carry positive

and negative baryon number respectively. These dibaryons have conformal dimension

∆ = 3
4
N and R-charge 1

2
N . We focus on the special case of the determinant operators

detA1 and detB1.
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Let us now replace one scalar field in the determinant operator detA1 with a word

(composed of the same or other scalar fields) in the same representation of the gauge

group. First consider a word beginning or ending with an A1; for example

A1 → A1 (Bi1Aj1) . . . (BinAjn) (4.3)

= (A1)α γ1

[
(Bi1)

γ1
δ1

(Aj1)
δ1
γ1

]
. . .
[
(Bin) γn

δn
(Ajn)δnβ

]
,

where the indices have been explicitly shown. It was argued in [66] that there is no

BPS excitation of this form - the BPS operator with these quantum numbers is the

multiparticle state

(detA1) tr {(Bi1Aj1) . . . (BinAjn)} , (4.4)

which is dual to a graviton or closed string state in the presence of the original dibaryon.

However, it turns out [66] that words that do not begin or end in this scalar field A1

do not factorize into the product of any other states (at the level of the chiral ring).

Let us consider replacing A1 as follows:

A1 → A2 (Bi1A2) . . . (BinA2) . (4.5)

The new operator has conformal dimension ∆ = 3
4
N + 3

2
n, and U(1) charges 1

2
N + 1

2
n

and 1
2
n with respect to the SU(2)A and SU(2)B global symmetry groups. For a given

n, there will exist some combination of these single particle states that is BPS and

corresponds to the lowest energy open string excitation (with angular momentum 1
2
n

on both 2-spheres) of the first dibaryon, which is dual to detA1, on AdS5 × T1,1.

Similar results hold for the determinant operator detB1. We shall consider replacing

B1 → B2 (Ai1B2) . . . (AinB2) , (4.6)

to obtain an operator with conformal dimension ∆ = 3
4
N + 3

2
n, and U(1) charges 1

2
n

and 1
2
N+ 1

2
n with respect to the SU(2)A and SU(2)B. The BPS operator of this form is

dual to the lowest energy open string excitation of the second dibaryon on AdS5 × T1,1.

4.1.2 Dibaryons on AdS5×T1,1

We shall now construct (based on [66]) the two dibaryons, which are dual to detA1

and detB1, in type IIB string theory on AdS5 × T1,1. We calculate the spectrum of

small scalar fluctuations, with emphasis on those associated with the transverse T1,1

degrees of freedom.
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Ansätze for the dibaryons

Type IIB string theory on AdS5 × T1,1 is discussed in section 1.2.2. It is convenient [71]

to define cartesian coordinates vk to describe the spatial extent of the AdS5 spacetime

as follows:

v1 = r cosα1 cos β1 v2 = r cosα1 sin β1

v3 = r sinα1 cos β2 v4 = r sinα1 sin β2. (4.7)

The ansätze for the two dibaryons, which wrap different 2-spheres and the fibre direc-

tion in T 1,1, and are dual to the determinant operators detA1 and detB1 respectively,

are given below.

1st dibaryon (θ2 = 0) ansatz 2nd dibaryon (θ1 = 0) ansatz

vk = 0 vk = 0

θ ≡ θ2 = 0 θ ≡ θ1 = 0

ϕ(σa) ≡ φ2(σa) unspecified ϕ(σa) ≡ φ1(σa) unspecified

with worldvolume coordinates with worldvolume coordinates

σ0 ≡ τ = t σ0 ≡ τ = t

σ1 = z ≡ cos2 θ1
2

σ1 = z ≡ cos2 θ2
2

σ2 = ξ ≡ ψ + φ2 σ2 = ξ ≡ ψ + φ1

σ3 = φ ≡ φ1 σ3 = φ ≡ φ2

We also assume that the worldvolume field strength F = dA = 0, so that the world-

volume gauge field A is trivial.

In terms of the coordinates (t, vk) and (z, θ, ξ, ϕ, φ), the AdS5 × T1,1 background metric

is given by

R−2ds2 = −

(
1 +

∑
k

v2
k

)
dt2 +

∑
i,j

(
δij −

vivj
(1 +

∑
k v

2
k)

)
dvidvj +

dz2

6z (1− z)
(4.8)

+ 1
9

[dξ + (2z − 1) dφ− (1− cos θ) dϕ]2 + 2
3
z (1− z) dφ2 + 1

6

(
dθ2 + sin2 θdϕ2

)
.

The 5-form field strength F5 = F + ∗F is associated with a 4-form potential C4, which

couples to D3-branes. The only contribution relevant for branes (and small fluctuations

thereof) extended entirely in T1,1 is

F = − 2
27
R4 sin θ dθ ∧ dϕ ∧ dz ∧ dξ ∧ dφ, (4.9)

with the corresponding potential

C = 2
27
R4 (1 + cos θ) dϕ ∧ dz ∧ dξ ∧ dφ. (4.10)
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D3-brane action

A D3-brane in type IIB string theory on AdS5 × T1,1 is described by the action

SD3 = −T3

∫
Σ

d3σ
√
− det (P [g] + 2πF ) + T3

∫
Σ

P [C4] , (4.11)

with tension T3 = 1
(2π)3

. The action associated with one of these dibaryons is therefore

given by

SD3 = − R4

72π3

∫
Σ

dσ4

{
1− 4

3
ϕ̇(σa)

}
. (4.12)

The momentum conjugate to ϕ and the Hamiltonian H = Pϕϕ̇− L are

Pϕ =
4R4

27π
= N and H =

R4

9π
=

3

4
N, (4.13)

where we make use of the correspondence (1.19) between the rank N of the gauge group

in Klebanov-Witten theory and the flux through the base manifold T1,1. Notice that

the energy 3
4
N matches the conformal dimension of either of the determinant operators

detA1 or detB1.

Fluctuation analysis

Let us consider small fluctuations about a dibaryon. It is sufficient to take into account

only scalar fluctuations, as the worldvolume fluctuations decouple. We shall specify

vk = ε δvk(σ
a), θ = ε δθ(σa) and ϕ(σa) unspecified, (4.14)

and define δy1 ≡ δθ cosϕ and δy1 ≡ δθ sinϕ. Here σa = (t, z, ξ, φ) are the worldvolume

coordinates and ε is a small parameter.

The D3-brane action (4.14) may then be approximated by SD3 = S0 + ε2S2 + . . ., with

S0 the original action for the dibaryon and

S2 = − R4

72π3

∫
Σ

d4σ

{∑
k

[
δv2

k − δ̇v
2

k + (∇δvk)2
]

+
1

6

∑
i

[
− ˙δyi

2
+ (∇δyi)2

]
−2

3

[
δy2

˙δy1 − δy1
˙δy2

]
+ [δy2 (∂ξδy1)− δy1 (∂ξδy2)]

}
(4.15)

the second order corrections. The gradient squared of any function f(z, ξ, φ) on the

worldvolume of the dibaryon is given by

(∇f)2 ≡ 6z (1− z) (∂zf)2 (4.16)

+
3

2z (1− z)

{
[2z (1− z) + 1] (∂ξf)2 + (∂φf)2 − 2 (2z − 1) (∂ξf) (∂φf)

}
.
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The equations of motion take the form

δvk + δ̈vk −∇2δvk = 0 (4.17)

δ̈y± −∇2δy± ∓ 4iδ̇y± ± 6i (∂ξδy±) = 0, (4.18)

where we define the new transverse coordinates δy± ≡ δy1± iδy2 = δθ e±iϕ, in terms of

which the equations of motion decouple, and the Laplacian

∇2 ≡ 6∂z {z(1− z)∂z}+
3

2z(1− z)

{
[2z(1− z) + 1] ∂2

ξ + ∂2
φ − 2(2z − 1)∂ξ∂φ

}
. (4.19)

Expanding the fluctuations in terms of their Fourier modes

δvk(t, z, ξ, φ) =
∑
m,n,s

Csmne
−iωksmntΦsmn(z, ξ, φ) (4.20)

δy±(t, z, ξ, φ) =
∑
m,n,s

C̃smne
−iω±smntΦsmn(z, ξ, φ), (4.21)

where Φsmn(z, ξ, φ) are the eigenfunctions (A.5) of the stationary eigenvalue problem,

we obtain the following spectrum for one of the dibaryons(
ωksmn

)2
= 6l(l + 1) + 3m2 + 1 (4.22)(

ω±smn ± 2
)2

= 6l(l + 1) + 3(m∓ 1)2 + 1, (4.23)

with l = s + max {|m|, |n|}. Here s and n are integers, with s non-negative, and m is

an integer or half-integer.

The lowest frequency s = 0 mode, with |m| ≥ |n|, is ω+ = 3m or ω− = 3|m| for

a given m positive or negative respectively. Since m takes on integer or half-integer

values, we see that these frequencies increase in steps of 3
2
, matching the conformal

dimensions of the BPS excitations of detA1 and detB1, which are constructed using

words of the form (4.5) and (4.6) respectively. The U(1)A and U(1)B charges 1
2
n of

these words match the spin m of the open string excitations on the first and second

2-spheres respectively.

4.2 ABJM dibaryon spectroscopy

We shall now extend this comparison to dibaryon operators in ABJM theory. BPS

excitations of these states should map to open string excitations of the dual D4-brane

configurations in type IIA string theory on AdS4 ×CP3. A comparison is made at the

level of the fluctuation spectrum.
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4.2.1 Dibaryons in ABJM theory

Dibaryons in ABJM theory may näıvely be constructed in a similar manner as those

in Klebanov-Witten theory. The two classes of dibaryons take the form

D1l = εα1...αN ε
β1...βN

{
Dl,a1...aN (Y a1)α1

β1
. . . (Y aN )αNβN

}
(4.24)

D2l = εα1...αN εβ1...βN

{
Da1...aN
l

(
Y †a1

) β1

α1
. . .
(
Y †aN
) βN

αN

}
, (4.25)

which carry positive and negative baryon number respectively, and have conformal

dimension ∆ = 1
2
N . For simplicity, we shall choose to consider the representatives

detY 1 = detA1 and detY †3 = detB1.

Let us now replace one of the scalar fields in the determinant detA1 or detB1 as follows:

A1 → A2 (Bi1A2) . . . (BinA2) or B1 → B2 (Ai1B2) . . . (AinB2) . (4.26)

The new operators have conformal dimension ∆ = 1
2
N+n, and U(1)R-charges 1

2
N+ 1

2
n

and 1
2
n (or vice versa) under the SU(2)A and SU(2)B subgroups respectively. They

are dual to open string excitations of the two CP2 dibaryons on AdS4×CP3. Although

a general operator of this form will pick up an anomalous dimension, as was argued

in [66] for similar words attached to Klebanov-Witten dibaryons, we expect that, for

a given n, there will exist a combination that remains BPS. The dimensions of these

BPS excitations are protected and should match the lowest energy open string modes.

A significant difference between the ABJM and Klebanov-Witten theories is that, in the

first case, the gauge group is U(N)×U(N) rather than SU(N)×SU(N). Each U(N)

contains an additional local U(1) symmetry, but the current associated with the second

U(1) couples only to that of the first U(1) and is hence trivial [2]. Now, the dibaryons

(4.24) and (4.25) are charged with respect to the extra local U(1) symmetry in ABJM

theory, and are therefore not gauge invariant operators. It is, however, possible to

attach Wilson lines - exponentials of integrals over gauge fields - to the dibaryons to

make them gauge invariant. It was argued in [2] that these operators remain local and

that the Wilson lines are unobservable. This modification should therefore not effect

the conformal dimensions of the determinant operators or their BPS excitations [2, 69].

4.2.2 CP2 dibaryons on AdS4 × CP3

We shall now construct two CP2 dibaryons, which are dual to detA1 and detB1, in type

IIA string theory on AdS4×CP3. The spectrum of small fluctuations is calculated. We

compare the lowest frequency modes associated with the transverse CP3 coordinates

with the conformal dimensions of BPS excitations of the determinants in ABJM theory.
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Ansätze for the CP2 dibaryons

Type IIA string theory on AdS4×CP3 is described in section 2.3. Again, we make use

of the following cartesian coordinates to reparameterize the AdS4 spacetime:

v1 = r cos θ v2 = r sin θ cosϕ v3 = r sin θ sinϕ. (4.27)

The dibaryons are D4-branes wrapped on the two natural CP2 subspaces (ζ, ξ, θ1, φ1)

and (ζ, ξ, θ2, φ2) of the complex projective space CP3. These are non-contractible cycles

- the D4-branes are therefore topologically stable configurations. The ansätze for the

two CP2 dibaryons, which are dual to detA1 and detB1 respectively, are given below.

1st CP2 dibaryon (θ2 = 0) ansatz 2nd CP2 dibaryon (θ1 = 0) ansatz

vk = 0 vk = 0

θ ≡ θ2 = 0 θ ≡ θ1 = 0

ϕ(σa) ≡ φ2(σa) unspecified ϕ(σa) ≡ φ1(σa) unspecified

with worldvolume coordinates with worldvolume coordinates

σ0 ≡ τ = t σ0 ≡ τ = t

σ1 = x ≡ sin2 ζ σ1 = x ≡ cos2 ζ

σ2 = z ≡ cos2 θ1
2

σ2 = z ≡ cos2 θ2
2

σ3 = ξ ≡ ψ + φ2 σ3 = ξ ≡ ψ + φ1

σ4 = φ ≡ φ1 σ4 = φ ≡ φ2

The worldvolume field strength F = dA = 0 is taken to vanish.

In terms of the coordinates (t, vk) and (x, z, θ, ξ, φ, ϕ), the AdS4 × CP3 background

metric is given by

R−2ds2 = −

(
1 +

∑
k

v2
k

)
dt2 +

∑
i,j

(
δij −

vivj
(1 +

∑
k v

2
k)

)
dvidvj

+
dx2

x (1− x)
+ x (1− x) [dξ + (2z − 1) dφ− (1− cos θ) dϕ]2

+ (1− x)

[
dz2

z (1− z)
+ 4z (1− z) dφ2

]
+ x

[
dθ2 + sin2 θdϕ2

]
, (4.28)

while the field strengths1 can be written as

F2 = − 1
2
k {dx ∧ [dξ + (2z − 1) dφ− (1− cos θ) dϕ]

+ 2 (1− x) dz ∧ dφ+ x sin θ dθ ∧ dϕ} (4.29)

1Note that the ansatz for the second CP2 dibaryon involves a change in orientation and the 2-
form and 6-form field strengths, as well as the associated 1-form and 5-form potentials, pick up an
additional minus sign as a result.
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F4 = −3
2
kR2 dt ∧ dv1 ∧ dv2 ∧ dv3 (4.30)

F6 = − 3kR4 x (1− x) sin θ dθ ∧ dϕ ∧ dx ∧ dz ∧ dξ ∧ dφ, (4.31)

with associated potentials

C1 = − 1
2
k {2 (1− x) [dξ + (2z − 1) dφ− (1− cos θ) dϕ]− (1 + cos θ) dϕ} (4.32)

C3 = 1
2
kR2 dt ∧ (v1dv2 ∧ dv3 + v2dv3 ∧ dv1 + v3dv1 ∧ dv2) (4.33)

C5 = 3kR4 x (1− x) (1 + cos θ) dϕ ∧ dx ∧ dz ∧ dξ ∧ dφ. (4.34)

D4-brane action

A D4-brane on AdS4×CP3 is described by the action SD4 = SDBI +SWZ, which consists

of the Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) terms

SDBI = −T4

∫
Σ

d5σ e−Φ
√
− det (P [g] + 2πF ) (4.35)

SWZ = T4

∫
Σ

{
P [C5] + 2π P [C3] ∧ F +

1

2
(2π)2 P [C1] ∧ F ∧ F

}
, (4.36)

with tension T4 ≡ 1
(2π)4

. The action for a CP2 dibaryon may hence be calculated as

follows:

SD4 = − kR
4

16π4

∫
Σ

d5σ (1− x) {1− 6x ϕ̇(σa)} . (4.37)

The momentum Pϕ conjugate to ϕ and the Hamiltonian H = Pϕ ϕ̇− L are given by

Pϕ =
kR4

2π2
= N and H =

kR4

4π2
=

1

2
N. (4.38)

Here we make use of the correspondence (2.26) to express the above quantities in terms

of the rank N of the gauge group in ABJM theory. Notice that the energy of the CP2

dibaryon matches the conformal dimension 1
2
N of the associated determinant operator.

Fluctuation analysis

Let us consider small fluctuations about a CP2 dibaryon. Both scalar and worldvol-

ume fluctuations will be taken into account, since it is not immediately obvious that

the latter decouple (although it turns out that they do). The ansatz for the scalar

fluctuations is

vk = ε δvk(σ
a) and θ = ε δθ(σa), (4.39)

with ϕ(σa) unspecified. It is convenient to rather make use of the transverse CP3

coordinates y1 = sin θ cosϕ and y2 = sin θ sinϕ, which vanish on the worldvolume of
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the CP2 dibaryon and are perturbed as follows:

yi = ε δyi(σ
a), with δy1 = δθ cosϕ and δy2 = δθ sinϕ. (4.40)

The worldvolume fluctuation ansatz takes the form

2πF = ε δF (σa), with δF (σa) = d δA(σa). (4.41)

Here σa = (t, x, z, ξ, φ) are the worldvolume coordinates and ε is a small parameter.

We shall now calculate the D4-brane action, which describes these small fluctuations

about the CP2 dibaryon, to second order in ε. The DBI action (4.35) is

SDBI = − 1

16π4

k

2R

{∫
Σ

d5σ
√
− detP [g] +

1

2
ε2

∫
Σ

δF ∧ ∗δF
}
, (4.42)

with√
− detP [g] ≈ 2 (1− x)

{
1 +

1

2
ε2
∑
k

[
δv2

k − ˙δvk
2

+ (∇δvk)2
]

(4.43)

+
1

2
ε2x

∑
i

[
− ˙δyi

2
+ (∇δyi)2

]
+

1

2
ε2 [δy2 (∂ξδy1)− δy1 (∂ξδy2)]

}

and ∗ the Hodge star operator on the worldvolume of the CP2 dibaryon. The gradient

squared of any function f(x, z, ξ, φ) on the CP2 subspace is defined as follows:

(∇f)2 ≡ x (1− x) (∂xf)2 +
1

x (1− x)
(∂ξf)2 (4.44)

+
1

(1− x)

{
z (1− z) (∂zf)2 +

1

4z (1− z)
[(2z − 1) (∂ξf)− (∂φf)]2

}
.

The WZ action takes the form2

SWZ =
1

16π4

∫
Σ

{
P [C5] + εR2 P [C3] ∧ δF +

1

2
ε2R4 P [C1] ∧ δF ∧ δF

}
, (4.45)

where the potentials, pulled back to the worldvolume of the D4-brane, are given by

P [C5] = 6kR4x (1− x)

[
ϕ̇− 1

4
ε2
(
δy2

˙δy1 − δy1
˙δy2

)
+O(ε4)

]
dt ∧ dx ∧ dz ∧ dξ ∧ dφ

P [C3] = O(ε3)

P [C1] = −1

2
k (1− x) [dξ + (2z − 1) dφ] + k (∂aϕ) dσa +O(ε2). (4.46)

2Note that, in this WZ action, we need to subtract off similar expressions evaluated at θ = π

(since these terms come from an integral over CP3 of the corresponding field strength forms and the
θ integral runs from π to 0). This makes no difference to the term involving the 5-form potential,
which has been chosen to vanish when θ = π, but does result in an additional subtraction from the
integral over the 1-form potential. With this taken into account, the last term results only in a total
derivative in the WZ action.
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Combining the DBI and WZ terms, the D4-brane action can be approximated by

SD4 = S0 + ε2S2 + . . ., with S0 the original action (4.37) for the CP2 dibaryon and

S2 = − kR
4

32π4

∫
Σ

d5σ (1− x)

{∑
k

[
δv2

k − ˙δvk
2

+ (∇δvk)2
]

+ x
∑
i

[
− ˙δyi

2
+ (∇δyi)2

]
−3x

(
δy2

˙δy1 − δy1
˙δy2

)
+ [δy2 (∂ξδy1)− δy1 (∂ξδy2)]

}
− 1

16π4

k

2R

∫
Σ

δF ∧ ∗δF, (4.47)

the second order corrections. Notice that the worldvolume fluctuations decouple.

The equations of motion for δvk and δy±, which are the combinations δy± ≡ δy1± iδy2

of the transverse CP3 fluctuations, are

¨δvk −∇2δvk + δvk = 0, (4.48)

¨δy± ∓ 3i ˙δy± −∇2δy± − (1− x) (∂xδy±)± i

x
(∂ξδy±) = 0, (4.49)

with the CP2 Laplacian

∇2 ≡ ∂x [x (1− x) ∂x]− x ∂x +
1

x (1− x)
∂2
ξ

+
1

(1− x)

{
∂z [z (1− z) ∂z] +

1

4z (1− z)
[(2z − 1) ∂ξ − ∂φ]2

}
. (4.50)

Let us expand the AdS4 fluctuations in terms of the complete set of chiral primaries

χl defined in (4.56). Solutions to the equations of motion (4.48) take the form

δvk =
∑
l

e−iω
k
l t χl

(
zA, z̄B

)
, (4.51)

with frequencies (
ωkl
)2

= l (l + 2) + 1, (4.52)

where l is a non-negative integer.

Laplacian and chiral primaries on CP2

The homogenous coordinates of CP2 ⊂ CP3 subspace take the form

z1 = x e
1
2
iξ, z2 =

√
(1− x) (1− z) e

1
2
iφ and z3 =

√
(1− x) z e−

1
2
iφ, (4.53)

where x, z ε [0, 1], ξ ε [0, 4π] and φ ε [0, 2π]. These can be obtained (up to an overall

phase and an interchange of the zA’s) from the homogenous coordinates (2.9) of CP3.



CHAPTER 4. DIBARYON SPECTROSCOPY 48

Following [23], we shall write down the Laplacian and chiral primaries in terms of these

homogenous coordinates of CP2. Let us first define the Laplace-Beltrami operator

LAB ≡ zA
∂

∂zB
− z̄B

∂

∂z̄A
, (4.54)

in terms of which the Laplacian can be written as

∇2 ≡ −1

2

∑
A,B

LAB LBA = −1

2

∑
A,B

{
zAzB

∂

∂zA
∂

∂zB
+ z̄Az̄B

∂

∂z̄A

∂

∂z̄B

}
+
∑
A

∂

∂zA
∂

∂z̄A
− 3

2

∑
A

{
zA

∂

∂zA
+ z̄A

∂

∂z̄A

}
. (4.55)

Any function on CP2 can be expanded in terms of the chiral primaries

χl
(
zA, z̄B

)
=
∑
Ai,Bi

χB1...Bl
A1...Al

zA1 . . . zAl z̄B1 . . . z̄Bl , (4.56)

with χB1...Bl
A1...Al

symmetric (under interchange of any two Ai or Bi) and traceless. These

are eigenfunctions of the Laplacian on CP2:

∇2χl = −l (l + 2)χl, (4.57)

where the eigenvalues are dependent only on the length l.

It turns out, however, that the chiral primaries are not a suitable set of functions

over which to expand the transverse CP3 fluctuations. We rather make use of the

eigenfunctions Φ±smn(z, x, ξ, φ), written down explicitly in (A.32), of modified operators

O±. The transverse fluctuations are then given by

δy± =
∑
s,m,n

e−iω
±
smn t Φ±smn (x, z, ξ, φ) , (4.58)

which solve the equations of motion (4.49), if the frequencies satisfy

ω+
smn

(
ω+
smn + 3

)
= l (l + 3) and ω−smn

(
ω−smn + 3

)
= l (l + 3) + 2, (4.59)

with l = s + 2m, where s is an non-negative integer and m an integer or half-integer.

Here we have assumed that m is positive. The lowest frequency mode with s = 0

has ω+ = 2m, simply increasing in integer steps. (A similar result applies when m is

negative - the lowest frequency mode is then ω− = 2|m|). These frequencies match

the conformal dimensions of BPS excitations of the form (4.26) of the determinant

operators detA1 and detB1 in ABJM theory. Again the U(1)A and U(1)B R-charges

correspond to the spin m. An interpretation of the m ≥ n bound is simply that

these words are in the singlet highest spin state of the SU(2)A and SU(2)B subgroups

respectively.
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Chapter 5

Giant gravitons

We shall now make use of Mikhailov’s holomorphic curve construction to build giant

gravitons in type IIB string theory on AdS5 × T1,1. We analyze small fluctuations

about this D3-brane configuration, determining the spectrum explicitly for the small

submaximal and maximal giants. Open string excitations are also considered. We close

with an ansatz for a giant graviton in type IIA string theory on AdS4 × CP3.

5.1 Giant gravitons on AdS5×T1,1

We shall consider a giant graviton on AdS5 × T1,1 dual to the subdeterminant operator

On(A1B1) in Klebanov-Witten theory. This is a D3-brane, with angular momentum in

T1,1, wrapped on a contractible cycle in this compact space. Our construction of this

giant graviton is based on the ansatz of [63].

5.1.1 Giant graviton ansatz via a holomorphic curve

Type IIB string theory on AdS5 × T1,1 is discussed in section 1.2.2. The base manifold

T1,1 is embedded in a cone C described by four complex coordinates zA, which satisfy

z1z2 = z3z4. This constraint suggests that we associate these four complex directions

with the scalar fields Ai and Bi in Klebanov-Witten theory as follows [48]:

z1 → A1B1 z2 → A2B2 z3 → A2B1 z4 → A1B2. (5.1)
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Let us choose the holomorphic curve on the cone C to be

F (zA) = z1 = ρ, (5.2)

where ρ is a real constant. The surface of the giant graviton is the intersection of the

holomorphic curve with the base manifold T1,1. For this intersection to be non-empty,

ρ must be confined to the unit interval, so that we may define ρ ≡
√

1− α2, with

α ε [0, 1]. Here α may be thought of as the ‘size’ of the giant graviton.

To introduce motion, take zA → zAe−iϕ(t) in the holomorphic function F (zA), with

ϕ(t) an overall time-dependent phase1. Hence

F (zAe−iϕ(t)) ≡ z1e−iϕ(t) =
√

1− α2 ⇒ z1 =
√

1− α2 eiϕ(t), (5.3)

where we hold the other independent coordinates fixed. There is a subtlety involved,

however, in choosing which two complex coordinates on the cone, aside from z1, to

consider as independent. These should correspond to exactly those angular directions

along which the giant graviton does not rotate. Since the dual operators are constructed

out of equal numbers of A1’s and B1’s, we see that z1, z2 and z3/z4 (or z4/z3) are the

correct independent coordinates to use. Therefore, we rotate around the 1
2
(ψ−φ1−φ2)

direction, while holding 1
2
(ψ + φ1 + φ2) and φ1 − φ2 fixed.

We shall now define

χ1 ≡ 1
3

(ψ − φ1 − φ2) (5.4)

χ2 ≡ 1
3

(ψ + 3φ1 − φ2) = 2
3

[
1
2

(ψ + φ1 + φ2) + (φ1 − φ2)
]

(5.5)

χ3 ≡ 1
3

(ψ − φ1 + 3φ2) = 2
3

[
1
2

(ψ + φ1 + φ2)− (φ1 − φ2)
]
, (5.6)

where2 χ1 ε [0, 4π
3

] and χ2, χ3 ε [0, 8π
3

]. Note that χ2 and χ3 are combinations of the

phases of our independent coordinates z2 and z3/z4. The complex coordinates zA,

confined to the base manifold T 1,1, can be written as

z1 = sin θ1
2

sin θ2
2
e

3
2
iχ1 z2 = cos θ1

2
cos θ2

2
e

3
4
i(χ2+χ3)

z3 = cos θ1
2

sin θ2
2
e

3
4
i(χ1+χ2) z4 = sin θ1

2
cos θ2

2
e

3
4
i(χ1+χ3). (5.7)

The giant graviton ansatz then translates into setting

sin θ1
2

sin θ2
2

=
√

1− α2, (5.8)

and considering the angular direction of motion χ1(t).

1The preferred direction of [63], induced by the embedding of T1,1 into the cone C, is along the
fibre ψ. This is independent of which holomorphic function is chosen to construct a particular giant
graviton and should not be confused with the direction of motion, which is the component of the
preferred direction perpendicular to the giant graviton’s surface.

2These angular coordinate ranges are not immediately obvious from the definitions (5.4) - (5.6),
but can be obtained from a consideration of the volume form.
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Point graviton (α = 0)

When α = 0, we obtain the point graviton. Here z1 = e
3
2
iχ1(t) and z2 = z3 = z4 = 0,

which describes the motion of a point along a circle of maximum radius.

Maximal giant graviton (α = 1)

The maximal giant graviton is obtained by setting α = 1. The polar coordinates θ1

and θ2 on each of the 2-spheres decouple and we find two distinct solutions

sin θ2
2

= 0 or sin θ1
2

= 0, (5.9)

which describes the union of the two spaces θ2 = 0 or θ1 = 0. These are the dibaryons of

[66] - two D3-branes wrapped on different 2-spheres and the U(1) fibre - corresponding

to the determinant operators detA1 and detB1 respectively.

Submaximal giant graviton

We would like to understand this factorization into two dibaryons as some submaximal

giant graviton configuration in the limit as α→ 1. Key in this endeavour is our choice

of worldvolume coordinates: the obvious independent angles are χ2 and χ3, but how do

we choose a radial parameter describing the giant graviton worldvolume? To obtain the

maximal giant as a limiting case, we cannot choose either θ1 or θ2, as this choice would

eliminate half the maximal giant a priori. Let us rather consider the combination

u = cos θ1
2

cos θ2
2
, (5.10)

which is the magnitude of the complex coordinate z2. Using the relation (5.8) between

θ1 and θ2 on the giant graviton worldvolume, we can rewrite

u(θi) = cot θi
2

√
α2 − cos2 θi

2
. (5.11)

Note that θi is only defined on the interval [2 arccosα, π]. The function u(θi) vanishes

at both ends of this interval and attains a maximum value umax = 1−
√

1− α2 at the

polar angle θi,max = 2 arcsin (1− α2)1/4.

Now, we observe that the worldvolume of the giant graviton is a double-covering of

u. The θ1 interval naturally splits into two pieces [2 arccosα, 2 arcsin (1− α2)1/4] and

[2 arcsin (1− α2)1/4, π], which, since the u(θ1) maximum occurs when θ1 = θ2, simply

correspond to θ1 ≤ θ2 and θ1 ≥ θ2. Leaving the second interval in terms of θ1, one
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could choose to describe the first region in terms of θ2, mapping3 it onto the second

interval in the analogous u(θ2) diagram (see figure 5.1).

Figure 5.1: The radial coordinate u, confined to the worldvolume of the giant graviton

on which α is constant, plotted as a function of the polar angles θ1 and θ2 respectively.

The mapping between the u(θ1) and u(θ2) diagrams is shown.

The D3-brane action for the submaximal giant graviton will consist of two identical

parts, involving integrals over θ1 and θ2 respectively, which run from 2 arcsin (1− α2)1/4

to π (although we shall find it more convenient to simply double the integral over u

from 0 to 1−
√

1− α2). Note that this action still describes a single D3-brane extended

on both 2-spheres. In the limit α → 1, each of the second θi regions covers an entire

2-sphere, whilst the first completely vanishes. In this way, we recover both halves of

the maximal giant graviton.

Figure 5.2: Pictorial representation of the expansion of a point graviton, via a submaxi-

mal giant graviton intermediate state, into the maximal giant graviton on AdS5 × T1,1.

Regions identically shaded (either blue or green) are mapped onto each other by the

constraint sin θ1
2

sin θ2
2

=
√

1− α2, which describes the worldvolume of the giant gravi-

ton. The factorization of the maximal giant into two dibaryons is clearly visible.

This construction allows us to see the intermediate state - the submaximal giant gravi-

ton - between the point graviton and the maximal giant graviton. We observe the

manner in which the maximal giant factorizes - the relation between θ1 and θ2, and

3Note that there is a change in orientation under this map.
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the mapping between the different regions (shaded the same colour in figure 5.2) of the

two 2-spheres disappears.

5.1.2 Angular and radial coordinate changes

The giant graviton is situated at the center of the AdS5 spacetime (moving only in

time t). We may therefore restrict ourselves to the background R × T1,1, which has

the following metric:

R−2ds2 = −dt2 + ds2
radial + ds2

angular, (5.12)

with

ds2
radial = 1

6

{
dθ2

1 + dθ2
2

}
(5.13)

ds2
angular = 1

18

{
2 (dψ + cos θ1dφ1 + cos θ2dφ2)2 + 3 sin2 θ1dφ

2
1 + 3 sin2 θ2dφ

2
2

}
, (5.14)

describing the radial and angular parts of the metric (separated for later convenience)

associated with the magnitudes and phases of the complex coordinates zA. The giant

graviton couples to the 4-form potential with corresponding T1,1 field strength (1.14).

Angular coordinates χi

We shall now change to the angular coordinates χi, defined in (5.4) - (5.6), which most

conveniently parameterize the direction of motion and angular extension of the giant

graviton. The components of the angular metric (gχ)ij are stated in (5.19) - (5.24).

The determinant of the angular metric is given by

det gχ =
(

3
32

)2
sin2 θ1 sin2 θ2. (5.15)

We shall also need to know the determinant of the angular metric restricted to the

worldvolume coordinates χ2 and χ3:

(Cχ)11 = 3
(

1
32

)2 {
2 sin2 θ1 (1 + cos θ2)2 + 2 sin2 θ2 (1 + cos θ1)2 + 3 sin2 θ1 sin2 θ2

}
,

(5.16)

which is also the cofactor of the element (gχ)11. The 5-form field strength in terms of

these angular coordinates χi and the original radial coordinates θi is given by

F5 = 1
16
R4 sin θ1 sin θ2 dθ1 ∧ dθ2 ∧ dχ1 ∧ dχ2 ∧ dχ3. (5.17)
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Angular metric in the coordinates (θi, χi)

The angular metric (5.14) of the base manifold T1,1, which depends on the phases χi

defined in (5.4) - (5.6), is given by

ds2
angular =

∑
i,j

(gχ)ij dχi dχj, (5.18)

where the components can explicitly be written as follows:

(gχ)11 = 1
32

[
2 (2− cos θ1 − cos θ2)2 + 3 sin2 θ1 + 3 sin2 θ2

]
(5.19)

(gχ)22 = 1
32

[
2 (1 + cos θ1)2 + 3 sin2 θ1

]
(5.20)

(gχ)33 = 1
32

[
2 (1 + cos θ2)2 + 3 sin2 θ2

]
(5.21)

(gχ)12 = 1
32

[
2 (2− cos θ1 − cos θ2) (1 + cos θ1)− 3 sin2 θ1

]
(5.22)

(gχ)13 = 1
32

[
2 (2− cos θ1 − cos θ2) (1 + cos θ2)− 3 sin2 θ2

]
(5.23)

(gχ)23 = 1
16

(1 + cos θ1) (1 + cos θ2) (5.24)

in terms of the radial coordinates θi.

Orthogonal radial coordinates α and v

The coordinates α and u, which are defined by

√
1− α2 ≡ sin θ1

2
sin θ2

2
and u ≡ cos θ1

2
cos θ2

2
, (5.25)

are well suited to describe the size and radial extension of the giant graviton, but turn

out to be non-orthogonal. We shall hence rather choose to describe the radial space in

terms of the orthogonal radial coordinates α and v, with the latter defined as follows:

v ≡ 2u

α2 + u2
. (5.26)

The radial metric has components gα and gv in these coordinates, which are given in

(5.32) - (5.33) below.

We can rewrite the determinant of the angular metric in terms of the orthogonal radial

coordinates α and v as follows:

det gχ =
9

64

(
1− α2

) 1

v2

(
1−
√

1− α2v2
)2

, (5.27)

and the cofactor associated with (gχ)11 becomes

(Cχ)11 =
3

64

1

v2

(
1−
√

1− α2v2
)2
{

4

v2

√
1− α2v2

(
1−
√

1− α2v2
)

+ 3
(
1− α2

)}
.

(5.28)
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The 5-form field strength is

F5 = ∓R
4

2

α
(
1−
√

1− α2v2
)

v
√

1− v2
√

1− α2v2
dα ∧ dv ∧ dχ1 ∧ dχ2 ∧ dχ3 (5.29)

and the associated 4-form potential is given by

C4 = ∓R
4

4

(
1−
√

1− α2v2
)2

v3
√

1− v2
dv ∧ dχ1 ∧ dχ2 ∧ dχ3, (5.30)

where the ∓ distinguishes between the intervals θ1 ≥ θ2 and θ1 ≤ θ2. Notice that we

have chosen a gauge in which C4 is non-singular at α = 0.

Radial metric in the coordinates (α, v)

The radial metric (5.13) can be rewritten in terms of the orthogonal radial coordinates

α and v, which parameterize the size and radial direction on the worldvolume of the

giant graviton, as follows:

ds2
radial = gαdα

2 + gvdv
2, (5.31)

with components

gα =
α2v2

3 (1− α2)
√

1− α2v2
(
1−
√

1− α2v2
) (5.32)

gv =

(
1−
√

1− α2v2
)

3v2 (1− v2)
√

1− α2v2
. (5.33)

5.1.3 D3-brane action

As a dynamical object in type IIB string theory, this giant graviton on AdS5 × T1,1 is

described by the D3-brane action SD3 = SDBI + SWZ, with DBI and WZ terms

SDBI = −T3

∫
Σ

d4σ
√
− detP [g] and SWZ = T3

∫
Σ

P [C4] , (5.34)

where T3 = 1
(2π)3

is the tension. We shall choose σa = (t, v, χ2, χ3) to be the worldvol-

ume coordinates, with v double-covering the [0, 1] interval.

Let us consider the DBI action. The determinant of the pull-back of the metric satisfies

−R−8 detP [g] = gv
[
(Cχ)11 − χ̇

2
1 (det gχ)

]
, (5.35)

and, using the expressions (5.28) - (5.27) and(5.33) for the relevant components and

determinants associated with the angular and radial parts of the metric, we obtain

− detP [g] =
R8

16

(
1−
√

1− α2v2
)4

v6 (1− v2)

{
1 +

3

4

(1− α2) v2 (1− χ̇2
1)√

1− α2v2
(
1−
√

1− α2v2
)} . (5.36)
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To determine the WZ term, we require the pull-back of the 4-form potential (5.30),

which is given by

P [C4] =
R4

4

(
1−
√

1− α2v2
)2

v3
√

1− v2
χ̇1 dt ∧ dv ∧ dχ2 ∧ dχ3. (5.37)

Combining the above results, we obtain the D3-brane action, which describes a giant

graviton extended and moving in R× T 1,1, as follows:

S =
2R4

9π

∫
dt L, (5.38)

with the Lagrangian

L =

∫ 1

0

dv
2
(
1−
√

1− α2v2
)2

v3
√

1− v2

{
χ̇1 −

√
1 +

3

4

(1− α2) v2 (1− χ̇2
1)√

1− α2v2
(
1−
√

1− α2v2
)} , (5.39)

where we have integrated over χ2 and χ3.

The conserved momentum Pχ1 ≡ ∂L
∂χ̇1

conjugate to the angular coordinate χ1, which

describes the direction of motion, is

Pχ1 =

∫ 1

0

dv
2
(
1−
√

1− α2v2
)2

v3
√

1− v2

1 + χ̇1

3
4

(1−α2)v2
√

1−α2v2(1−
√

1−α2v2)√
1 + 3

4

(1−α2)v2(1−χ̇2
1)√

1−α2v2(1−
√

1−α2v2)

 . (5.40)

The Hamiltonian H = χ̇1Pχ1 − L can be explicitly written as

H =

∫ 1

0

dv
2
(
1−
√

1− α2v2
)2

v3
√

1− v2

[
1 + 3

4

(1−α2)v2
√

1−α2v2(1−
√

1−α2v2)

]
√

1 + 3
4

(1−α2)v2(1−χ̇2
1)√

1−α2v2(1−
√

1−α2v2)

. (5.41)

These expressions describe the momentum and energy in units of 2R4

9π
. We would now

like to minimize H(α, Pχ1) with respect to α for fixed momentum Pχ1 . However, since

it is not immediately obvious how to invert Pχ1(χ̇1) analytically, we shall first consider

certain special cases.

Maximal giant graviton (α = 1)

When α = 1, it is possible to evaluate the integrals over v analytically. The Lagrangian

becomes L = χ̇1 − 1 and H = Pχ1 = 1. All dependence on χ̇1 disappears from the

Hamiltonian H and the momentum Pχ1 , which is now due entirely to the extension of

the D3-brane rather than to its motion along χ1.



CHAPTER 5. GIANT GRAVITONS 57

Small submaximal giant graviton (α� 1)

Let us assume that α � 1, so that we are considering a small submaximal giant

graviton, and expand the Lagrangian in orders of α:

L ≈ α3

2

{
αχ̇1 −

√
α2 + 3

2
(1− χ̇2

1)

}
. (5.42)

Here we must be careful to allow for the possibility that 1− χ̇2
1 might be small, which

is why we cannot further simplify the square root. The momentum conjugate to χ1 is

thus

Pχ1 ≈
α3

2

α +
3
2
χ̇1√

α2 + 3
2

(1− χ̇2
1)

 (5.43)

and the Hamiltonian is given by

H ≈ α3

2

(
α2 + 3

2

)√
α2 + 3

2
(1− χ̇2

1)
. (5.44)

In this approximation of small α, it is possible to isolate all dependence on χ̇1 and

invert the momentum. We obtain

χ̇2
1 =

(
α2 + 3

2

) (
Pχ1 − 1

2
α4
)2[

9
16
α6 + 3

2

(
Pχ1 − 1

2
α4
)2
] . (5.45)

We can write the Hamiltonian as a function of the size of the giant graviton α and its

momentum Pχ1 as follows:

H ≈
√

2
3
α2 + 1

√
3
8
α6 +

(
Pχ1 − 1

2
α4
)2
. (5.46)

Now, it is possible to solve for the maxima and minima. When the momentum Pχ1 is

positive, this approximate energy is minimum at α = 0 and α = α0, and maximum at

α = αmax in between (see figure 5.3). Here we define

α0 ≡
√√(

3
4

)2
+ 2Pχ1 − 3

4
and αmax ≡

√√(
9
20

)2
+ 2

5
Pχ1 − 9

20
. (5.47)

These minima are energetically degenerate with H(α0, Pχ1) ≈ H(0, Pχ1) = Pχ1 . The

non-trivial minimum at α0 is associated with the submaximal giant graviton. Although

the expression for the Hamiltonian is approximate, the energy of the point graviton

solution at α = 0 is exact. Furthermore, we shall later argue that the submaximal

giant graviton remains degenerate with the point graviton even when its size α0 is

large. When the momentum Pχ1 is negative, only the trivial minimum at α = 0,

corresponding to a point graviton with energy H(0, Pχ1) = −Pχ1 , exists.
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Figure 5.3: A generic sketch of the approximate energy H(α, Pχ1), when α � 1, as a

function of α at fixed momentum Pχ1 . Note that the submaximal giant graviton only

exists when Pχ1 is positive and is energetically degenerate with the point graviton.

Submaximal giant graviton

It turns out that, for all values of α, the Lagrangian (5.39) vanishes when χ̇1 = 1. This

implies that H = Pχ1 , which remains a minimum4 and corresponds to the submaximal

giant graviton solution, described in the previous section when α� 1. The size of the

giant α0 is then determined from the momentum Pχ1 via the following relation:

Pχ1 (α0) = I1

(
α2

0

)
+

3

4

(
1− α2

0

)
I2

(
α2

0

)
, (5.48)

where

I1

(
α2

0

)
≡
∫ 1

0

dv
2
(

1−
√

1− α2
0v

2
)2

v3
√

1− v2
=
(
1− α2

0

)
ln
(
1− α2

0

)
+ α2

0 (5.49)

I2

(
α2

0

)
≡
∫ 1

0

dv
2
(

1−
√

1− α2
0v

2
)

v
√

1− v2
√

1− α2
0v

2
=
∂I1 (α2

0)

∂ (α2
0)

= − ln
(
1− α2

0

)
. (5.50)

Simplifying, the exact expression for the energy and momentum of a submaximal giant

graviton with size α0 is

H (α0) = Pχ1 (α0) = 1−
(
1− α2

0

) [
1− 1

4
ln
(
1− α2

0

)]
, (5.51)

which is shown in figure 5.4.

This giant graviton is a BPS configuration, energetically degenerate with the point

graviton, and exists by virtue of its motion along the χ1 angular direction with conju-

gate momentum Pχ1 .

4This may be deduced by expanding H − Pχ1 in the vicinity of χ̇1 = 1 and noticing that it is
always non-negative.
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Figure 5.4: The energy H(α0) of the submaximal giant graviton in units of 2R4

9π
= 3

2
N

(which is twice the energy of a dibaryon [66]) as a function of its size α0.

5.2 Fluctuation analysis

For the purposes of the fluctuation analysis, it is convenient to describe AdS5 in terms

of the coordinates (t, vk), where the cartesian coordinates vk are specified in (4.7). We

shall also define zi ≡ cos2 θi
2

in terms of which the orthogonal radial coordinates can

be written as

α =
√
z1 + z2 − z1z2 and v =

2
√
z1z2

z1 + z2

≡ sin β, with β ε
[
0, π

2

]
. (5.52)

Radial metric in the coordinates zi and (α, β)

The radial metric (5.13) in the alternative radial coordinates zi ≡ cos2 θi
2

is given by

ds2
radial =

1

6

{
dz2

1

z1(1− z1)
+

dz2
2

z2(1− z2)

}
. (5.53)

We may also rewrite (5.31), using v ≡ sin β, in terms of the alternative orthogonal

radial coordinates α and β:

ds2
radial = gαdα

2 + gβdβ
2, (5.54)

with components

gα =
α2 sin2 β

3 (1− α2)
√

1− α2 sin2 β
(

1−
√

1− α2 sin2 β
) (5.55)

gβ =

(
1−

√
1− α2 sin2 β

)
3 sin2 β

√
1− α2 sin2 β

. (5.56)
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The surface of the giant graviton is described by α = α0 constant, which is a shifted

hyperbola in the (z1, z2)-plane:

(1− z1) (1− z2) = 1− α2
0. (5.57)

The giant graviton solution can therefore be represented more simply in the coordinates

zi (see figure 5.5 below), which shall also prove useful in our fluctuation analysis.

Figure 5.5: The giant graviton on the (z1, z2)-plane: the point graviton, small sub-

maximal giant graviton (with approximate solution), submaximal giant graviton and

maximal giant graviton (two dibaryons) are indicated in the sketch. The line z1 = z2

(so v = 1) separates the two regions which double-cover the v ε [0, 1] interval.

We can invert these relations for z1 and z2 as follows:

z1 ≡ cos2 θ1
2

=
1

v2

(
1−
√

1− α2v2
)(

1∓
√

1− v2
)

(5.58)

z2 ≡ cos2 θ2
2

=
1

v2

(
1−
√

1− α2v2
)(

1±
√

1− v2
)
, (5.59)

where the ∓ and ± distinguish between the regions z1 ≤ z2 and z1 ≥ z2. Note that,

on the first covering the zi may also be expressed in terms of the alternative radial

worldvolume coordinate β:

z1 =
1

sin2 β

(
1−

√
1− α2 sin2 β

)
sin2 β

2
z2 =

1

sin2 β

(
1−

√
1− α2 sin2 β

)
cos2 β

2
,

(5.60)

whereas we must interchange sin2 β
2

and cos2 β
2

on the second covering. However, this

is equivalent to taking β → π − β, so both coverings may be parameterized by simply

extending the range of β to [0, π].
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5.2.1 General fluctuation analysis

Let us consider the general fluctuation ansatz

vk = ε δvk(σ
a), α = α0 + ε δα(σa) and χ1 = t+ ε δχ1(σa), (5.61)

with worldvolume coordinates σa = (t, β, χ2, χ3). Here α0 is the size of the giant

graviton, about which we are perturbing, and ε is a small parameter.

We shall now approximate the D3-brane action to second order in ε. The components

of the metric are left in terms of α = α0 + ε δα (we only need to expand certain

combinations at the end of the calculation). Hence

SD3 ≈
R4

8π3

∫
dtdβ dχ2 dχ3

√
gβ
[
(Cχ)11 − det gχ

]
(5.62)

×

{
ε[

(Cχ)11 − det gχ
] [(Cχ)11

˙δχ1 + (Cχ)12 (∂χ2δχ1) + (Cχ)13 (∂χ3δχ1)
]

+
1

2
ε2

[∑
k

{
−

(Cχ)11 δv
2
k[

(Cχ)11 − det gχ
] − (∂ δvk)

2

}
− gα (∂ δα)2 − (det gχ) (∂ δχ1)2[

(Cχ)11 − (det gχ)
]]} ,

where the components gα and gβ of the radial metric in the alternative orthogonal

radial coordinates α and β are given in (5.55) and (5.56). The expressions involving

the cofactors (Cχ)ij of the angular metric components (gχ)ij are both stated explicitly

in (5.64) - (5.69) and (5.71) - (5.76) in terms of the zi, which are the functions (5.60)

of α and β.

The terms involving a single ε coefficient should be expanded to first order in εδα. The

zeroth order terms in these expansions - corresponding to O(ε) terms in the D3-brane

action - yield total derivatives, which is to be expected, since the giant graviton is a

solution to the equations of motion. The first order terms contribute addition O(ε2)

terms to the D3-brane action.

The (spacetime) gradient squared on the worldvolume of the giant graviton is defined

as follows:

(∂f)2 ≡ (∂βf)2

gβ
− 1[

(Cχ)11 − det gχ
] {(Cχ)11 ḟ

2 +
[
(Cχ)22 − (gχ)33

]
(∂χ2f)2 (5.63)

+
[
(Cχ)33 − (gχ)22

]
(∂χ3f)2 + 2 (Cχ)12 ḟ (∂χ2f)

+ 2 (Cχ)13 ḟ (∂χ3f) + 2
[
(Cχ)23 + (gχ)23

]
(∂χ2f) (∂χ3f)

}
,

with f(t, β, χ2, χ3) any function of the worldvolume coordinates. Here all the cofactors

(Cχ)ij, and metric components (gχ)ij and gβ, as well as the determinant det gχ are now

evaluated at α = α0.
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Angular metric in the coordinates (zi, χi)

The components of the angular metric (5.18), which are (5.19) - (5.24) in terms of the

radial coordinates θi, can be written as

(gχ)11 = 1
8

[
2 (2− z1 − z2)2 + 3z1 (1− z1) + 3z2 (1− z2)

]
(5.64)

(gχ)22 = 1
8
z1 (3− z1) (5.65)

(gχ)33 = 1
8
z2 (3− z2) (5.66)

(gχ)12 = 1
8
z1 (1 + z1 − 2z2) (5.67)

(gχ)13 = 1
8
z2 (1− 2z1 + z2) (5.68)

(gχ)23 = 1
4
z1z2 (5.69)

and the determinant is then given by

det gχ = 9
64
z1z2 (1− z1) (1− z2) , (5.70)

in terms of the radial coordinates zi.

We shall also require expressions for various combinations of the cofactors of this an-

gular metric as follows:

(Cχ)11 = 3
64
z1z2 (3− z1 − z2 − z1z2) (5.71)

(Cχ)12 = − 3
64
z1z2 (1 + z1 − 3z2 + z1z2) (5.72)

(Cχ)13 = − 3
64
z1z2 (1− 3z1 + z2 + z1z2) (5.73)

(Cχ)22 − (gχ)33 = − 3
64
z1z2 (5 + z1 − 7z2 + z1z2)− 1

4
z2

2 (5.74)

(Cχ)33 − (gχ)22 = − 3
64
z1z2 (5− 7z2 + z2 + z1z2)− 1

4
z2

1 (5.75)

(Cχ)23 + (gχ)23 = 1
64
z1z2 (1 + 9z1 + 9z2 − 11z1z2) (5.76)

and

(Cχ)11 − det gχ = 3
32
z1z2 (z1 + z2 − 2z1z2) . (5.77)

5.2.2 Spectrum for the small submaximal giant graviton

In order to solve the equations of motion resulting from the second order D3-brane

action and obtain the fluctuation spectrum, we shall consider a small submaximal

giant graviton with α0 � 1.
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It now becomes possible to approximate

z1 ≈ α2 sin2 β
2

= α2(1− z) and z2 ≈ α2 cos2 β
2

= α2z, (5.78)

where z ≡ cos2 β
2

runs over the unit interval. The D3-brane action (5.62) to second

order in ε then simplifies as follows:

S2 ≈
R4α2

0 ε
2

128π3

∫
dtdz dχ2 dχ3

{∑
k

[
−3

2
δv2

k −
(
∂̃ δvk

)2
]

(5.79)

−2

3

(
∂̃ δα

)2

− 2

3

(
∂̃ δ̃χ1

)2

+
4

3

[
3 ˙̃δχ1 −

(
∂χ2 δ̃χ1

)
−
(
∂χ3 δ̃χ1

)]
δα

}
,

with δ̃χ1 ≡ 1
α0
δχ1 and ∂̃ ≡ α0 ∂ rescaled for convenience. The (spacetime) gradient

squared is given by(
∂̃f
)2

≡ 6z(1− z) (∂zf)2 − 3

2
ḟ 2 +

5

2
(∂χ2f)2 +

5

2
(∂χ3f)2 + ḟ (∂χ2f) + ḟ (∂χ3f)

−1

3
(∂χ2f) (∂χ3f) +

8z

3 (1− z)
(∂χ2f)2 +

8 (1− z)

3z
(∂χ3f)2 . (5.80)

The equations of motion are

�̃δvk − 3
2
δvk = 0 (5.81)

�̃δy± ∓ 3i ˙δy± ± i (∂χ2δy±)± i (∂χ3δy±) = 0, (5.82)

where we define δy± ≡ δα ± iδ̃χ1. The (rescaled) d’Alembertian on the worldvolume

of the giant graviton is

�̃ ≡ 6∂z {z (1− z) ∂z} (5.83)

− 3

2
∂2
t +

5

2
∂2
χ2

+
5

2
∂2
χ3

+ ∂t∂χ2 + ∂t∂χ3 −
1

3
∂χ2∂χ3 +

8z

3 (1− z)
∂2
χ2

+
8 (1− z)

3z
∂2
χ3
.

We shall now expand these fluctuations as

δvk(t, z, χ2, χ3) =
∑
m,n,s

CsmnΨsmn(t, z, χ2, χ3) (5.84)

δy±(t, z, χ2, χ3) =
∑
m,n,s

C̃smnΨsmn(t, z, χ2, χ3), (5.85)

in terms of the eigenfunctions Ψsmn(t, z, χ2, χ3) described in appendix A.3. Insisting

that the equations of motion must be satisfied places the following constraints on the

frequencies ωsmn (already contained in the definition (A.38) of these eigenfunctions):[
ωksmn + 1

4
(m+ n)

]2
= 4l (l + 1) + 1 (5.86)[

ω±smn + 1
4

(m+ n)∓ 1
]2

= 4l (l + 1) + 1, (5.87)

with l ≡ s+ max
{

1
2
|m+ n|, 1

2
|m− n|

}
. Here s ≤ 0, m and n are integers.
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Notice that the above expressions are always positive, indicating that the frequencies

ωksmn and ω±smn are real. Hence the small submaximal giant graviton is a stable con-

figuration. Furthermore, in this approximation α0 � 1, the fluctuation spectrum is

independent of the size of the giant graviton α0. This appears not to be true in gen-

eral, however, as we shall now observe by comparing these results with the fluctuation

spectrum of the maximal giant graviton.

5.2.3 Spectrum for the maximal giant graviton

Small fluctuations about the maximal giant graviton cannot be described by our general

ansatz (5.61) with α0 = 1. We must now require

sin2 θ1
2

sin2 θ2
2

= (1− z1)(1− z2) = 1− α2 = ρ2 (5.88)

to be of O (ε2). Hence we shall modify our ansatz as follows:

vk = ε δvk(σ
a) and ρ = ε δρ(σa), (5.89)

with worldvolume coordinates σ = (t, z, ξ, φ) covering both halves of the maximal giant

graviton (dibaryons) on which φ1(σa) and φ2(σa) respectively remain unspecified.

The fluctuations of the AdS5 coordinates are simply the sum of these fluctuation about

each dibaryon:

δvk =
∑
s,m,n

e−iω
k
smnt

{
C(1)
smnΦsmn(z1, ψ + φ2, φ1) + C(2)

smnΦsmn(z2, ψ + φ1, φ2)
}
, (5.90)

where Φsmn are the eigenfunctions (A.5) of the Laplacian on a dibaryon and the frequen-

cies satisfy (4.22). We must impose the condition C
(1)
smm = C

(2)
smm for the fluctuations

which do not vanish at z1 = z2 = 1 to match up.

Now, the fluctuations of the radial T1,1 coordinate ρ can be written as

δρ = 1
2

(1− z2)
1
2 δθ1(t, z2, ψ + φ1, φ2) + 1

2
(1− z1)

1
2 δθ2(t, z1, ψ + φ2, φ1). (5.91)

However, we must allow, not only for the usual δθ fluctuations of the dibaryon, but

also for the possibility that δθ diverges like (1− z)−
1
2 as z goes to 1 (see appendix A.1

for details). These yield non-vanishing, but finite, contributions to δρ at z1 = z2 = 1

(which must match). These additional fluctuations correspond to open strings stretched

between the two halves of the maximal giant graviton.
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The fluctuations δy
(1)
± ≡ δθ2 e

±iφ2 and δy
(2)
± ≡ δθ1 e

±iφ1 of the T1,1 coordinates trans-

verse to the different dibaryons, which both contribute to δρ, are then

δy
(1)
± =

∑
s,m,n

C̃(1)
smn e

−iω±smnt Φsmn(z1, ψ + φ2, φ1) +
∑
s,m,
n=m±1

C̃mod(1)
smn e−iω

mod,±
smn t Φmod

smn(z1, ψ + φ2, φ1)

(5.92)

δy
(2)
± =

∑
s,m,n

C̃(2)
smn e

−iω±smnt Φsmn(z2, ψ + φ1, φ2) +
∑
s,m,
n=m±1

C̃mod(2)
smn e−iω

mod,±
smn t Φmod

smn(z2, ψ + φ1, φ2),

(5.93)

where Φmod
smn are the modified eigenfunctions (A.11) and we impose the matching condi-

tion C̃
mod(1)
smn = C̃

mod(2)
smn . The frequencies ω±smn of the original contributions still satisfy

(4.23), while the modified frequencies ωmod,±
smn satisfy an identical condition, but with

lmod = s+ 1
2
(|m+n|−1). Since these are non-negative integers (the unmodified l values

could be integer or half-integer), the spectrum of the maximal giant graviton is entirely

contained within the original spectrum of the separate dibaryons. The frequencies are

therefore still real, indicating stability.

5.3 Open strings excitations

We shall now turn our attention to open string excitations of the submaximal giant

graviton. Since a full quantum description of strings in AdS5 × T1,1 remains unknown,

we shall consider a simplifying limit [40]: short open strings moving on the pp-wave

geometry associated with a null geodesic on the worldvolume of the giant graviton.

(Note that different null geodesics produce distinct results, due to the non-spherical

nature of the submaximal giant, and we shall discuss two possibilities.)

5.3.1 Short pp-wave strings: the null geodesic t = χ1 = χ2 ≡ u

Let us consider the null geodesic

t = χ1 = χ2 = u, vk = 0, α = α0 and v = 0 (5.94)

on the worldvolume of the submaximal giant graviton with size α0. We observe that

θ1 = 2 arccosα0 and θ2 = π then specifies the trajectory on the two 2-spheres.
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To construct the pp-wave background, we choose the ansatz

t = u+
ξ

R2
vk =

xk
R

χ1 = u− ξ

R2
−
√

2

3

α0√
1− α2

0

y1

R
α = α0 +

√
3

2

√
1− α2

0

y2

R

χ2 = u− ξ

R2
+

√
2

3

(2− α2
0)

α0

√
1− α2

0

y1

R
v =

√
6

α0

ỹ

R

χ3 =
4

3
χ, (5.95)

which corresponds to setting

θ1 = 2 arccosα0 −
√

6
y2

R
and θ2 = π −

√
6
ỹ

R
, (5.96)

with ỹ1 = ỹ cosχ and ỹ2 = ỹ sinχ. Now, taking the Penrose limit, in which R becomes

large and we zoom in on this null geodesic, we obtain the pp-wave metric

ds2 = − 4dudξ −

{
4∑

k=1

x2
k +

15

16

2∑
i=1

ỹ2
i

}
du2 +

4∑
k=1

dx2
k +

2∑
i=1

dy2
i +

2∑
i=1

dỹ2
i

+ 4y2dy1du+ 1
2

(ỹ1dỹ2 − ỹ2dỹ1) du, (5.97)

which has a flat direction y1. In this limit, the 5-form field strength becomes constant:

F5 = 4du ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 + 8du ∧ dy1 ∧ dy2 ∧ dỹ1 ∧ dỹ2. (5.98)

In the lightcone gauge u = 2puτ , the bosonic part of the Polyakov action for open

strings moving in this pp-wave geometry is

S =

∫
dτ

∫
dσ

2π

{
4∑

K=1

(
1
2
Ẋ2
K − 1

2
(X ′K)

2 − 1
2
m2X2

K

)
+

2∑
I=1

(
1
2
Ẏ 2
I − 1

2
(Y ′I )

2
)

+ 2mY2Ẏ1

+
2∑
I=1

(
1
2

˙̃Y 2
I − 1

2

(
Ỹ ′I

)2

− 15
32
m2Ỹ 2

I

)
+ 1

4
m
(
Ỹ1

˙̃Y2 − Ỹ2
˙̃Y1

)}
, (5.99)

with m ≡ 2pu. Notice that the equations of motion for each pair of embedding coordi-

nates YI and ỸI decouple, if we define

Y± ≡
1√
2

(Y1 ± iY2) and Ỹ± ≡
1√
2

(
Ỹ1 ± iỸ2

)
. (5.100)

The assumption that the open pp-wave string ends on the submaximal giant graviton

(which becomes a flat D3-brane in the large R limit) implies that the XK and YI

satisfy Dirichlet boundary conditions, whereas the ỸI must obey Neumann boundary

conditions. Quantizing the open string embedding coordinates, we then obtain

XK (τ, σ) =
∞∑
n=1

√
2

ωn

{
αKn e

−iωnτ +
(
αKn
)†
eiωnτ

}
sin (nσ) (5.101)
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Y± (τ, σ) =
∞∑
n=1

√
2

ωn

{
β∓n e

−iω∓n τ +
(
β±n
)†
eiω
±
n τ
}

sin (nσ) (5.102)

Ỹ± (τ, σ) =
1√
m

{
β̃±n e

−iω̃±0 τ +
(
β̃∓n

)†
eiω̃
∓
0 τ

}
+
∞∑
n=1

√
2

ωn

{
β̃±n e

−iω̃±n τ +
(
β̃∓n

)†
eiω̃
∓
n τ

}
cos (nσ),

(5.103)

where we define ω±n ≡ ωn ±m and ω̃±n ≡ ωn ± 1
4
m in terms of ωn ≡

√
m2 + n2. The

creation and annihilation operators satisfy the following commutation relations:[
αK1
n ,
(
αK2
l

)†]
= δK1K2δnl and

[
β±n ,

(
β±l
)†]

=

[
β̃±n ,

(
β̃±l

)†]
= δnl, (5.104)

with all others zero. The lightcone Hamiltonian Hlc = 1
m
H is quadratic in the em-

bedding coordinates, and can be written in terms of these (normal ordered) harmonic

oscillators:

Hlc =
∞∑
n=1

4∑
K=1

ωn
m

(
αKn
)†
αKn +

∞∑
n=1

{
ω+
n

m

(
β+
n

)†
β+
n +

ω−n
m

(
β−n
)†
β−n

}
+
∞∑
n=0

{
ω̃+
n

m

(
β̃+
n

)†
β̃+
n +

ω̃−n
m

(
β̃−n

)†
β̃−n

}
. (5.105)

Let us now consider the interpretation of these results: The momentum associated with

lightcone time

pξ = − 1

R2
(E + Jχ1 + Jχ2) = −m (5.106)

should be non-vanishing in the large R limit. Also, we choose the lightcone Hamiltonian

Hlc = −pu = E − Jχ1 − Jχ2 , (5.107)

and the momenta

py1 =

√
2

3

1

R

[−α2
0Jχ1 + (2− α2

0) Jχ2 ]

α0

√
1− α2

0

and pχ =
4

3
Jχ3 , (5.108)

to remain finite. Hence we observe that

E = 3
2
L+O(R), Jχ1 = 3

4

(
2− α2

0

)
L+O(R) and Jχ3 = O(1), (5.109)

where L is defined through

Jχ2 ≡ 3
4
α2

0L (5.110)

and must be of O(R2). This leads to an inverse mass squared

1

m2
=

R4

9L2

(
1 +O

(
R
L

))
. (5.111)
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The energy eigenvalues of the lightcone Hamiltonian, in the limit 1
m2 � 1, become

αKn :
ωn
m

=

√
1 +

n2

m2
≈ 1 +

n2

2m2
, with n ε {1, 2, . . .} (5.112)

β±n :
ω±n
m

=

√
1 +

n2

m2
± 1 ≈ 2 +

n2

2m2
or

n2

2m2
, with n ε {1, 2, . . .} (5.113)

β̃±n :
ω̃±n
m

=

√
1 +

n2

m2
± 1

4
≈ 3

4
+

n2

2m2
or

5

4
+

n2

2m2
, with n ε {0, 1, 2, . . .} . (5.114)

In other examples of gauge theory/gravity dualities (with renormalizable CFTs), this

would be related to the BMN scaling limit [15] of the corresponding operators.

In the Klebanov-Witten theory, these open string excitations correspond to words

attached to the subdeterminant operator On(A1B1). The above results can be linked

to the number of different types of composite fields in these words. Let us define

φ̃1 ≡ 3
2
χ1 → A1B1 (5.115)

φ̃2 ≡ 3
4

(χ2 + χ3) → A2B2 (5.116)

φ̃3 ≡ 3
4

(χ1 + χ2) → A2B1, (5.117)

whereas φ̃4 ≡ 3
4

(χ1 + χ3) = φ̃1 + φ̃2 − φ̃3 → A1B2 is not independent. The associated

angular momenta are then

Jφ̃1
=
(
1− α2

0

)
L+O(R), Jφ̃2

= O(R) and Jφ̃3
= α2

0L+O(R), (5.118)

so our word is made up of a large number of A1B1 and A2B1 composite scalar fields5

and comparatively few of the combinations A1B2 and A2B2. Note that L may be

defined as the total number of composite scalar fields in the word.

5.3.2 Short pp-wave strings: the null geodesic t = χ1 = χ+ ≡ u

We shall now consider the null geodesic6

t = χ1 = χ+ = u, vk = 0, α = α0, v = 1 and χ− = 0, (5.119)

with χ± ≡ 1
2

(χ2 + χ3). Here also θ1 = θ2 = 2 arcsin (1− α2
0)

1/4 ≡ θ0 and we notice

that this setup is symmetric under interchange of the 2-sphere coordinates.

5The open string boundary conditions require some A2B1 composite scalar fields, but, since the
number of these only goes to zero when the giant graviton becomes point-like, there is no inconsistency.

6Note that the choice v = 1 is not necessary to obtain a null geodesic, but is required for the
associated pp-wave background to be consistent.
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The ansatz for the pp-wave background is then given by

t = u+
ξ

R2
vk =

xk
R

χ1 = u− ξ

R2
− 2√

3

√
1−

√
1− α2

0

(1− α2
0)

1/4

y1

R
α = α0 +

√
3

α0

(
1− α2

0

)3/4

√
1−

√
1− α2

0

y2

R

χ+ = u− ξ

R2
+

2√
3

(1− α2
0)

1/4√
1−

√
1− α2

0

y1

R
v = 1− 3

2

√
1− α2

0(
1−

√
1− α2

0

) (
ỹ2

R

)2

χ− =
2√
3

1

(1− α2
0)

1/4
√

1−
√

1− α2
0

ỹ1

R
, (5.120)

which corresponds to choosing

θ1 = θ0 −
√

3

(
y2

R
+
ỹ2

R

)
and θ2 = θ0 −

√
3

(
y2

R
− ỹ2

R

)
. (5.121)

Again, we take the large R Penrose limit to obtain the pp-wave geometry

ds2 = − 4dudξ −

(
4∑

k=1

x2
k

)
du2 +

4∑
k=1

dx2
k +

2∑
i=1

dy2
i +

2∑
i=1

dỹ2
i + 4y2dy1du+ 4ỹ2dỹ1du,

(5.122)

with flat directions y1 and ỹ1. The 5-form field strength becomes

F5 = 4du ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 − 4du ∧ dy1 ∧ dy2 ∧ dỹ1 ∧ dỹ2. (5.123)

The bosonic part of the Polyakov action for open strings in the lightcone gauge is

S =

∫
dτ

∫
dσ

2π

{
4∑

K=1

(
1
2
Ẋ2
K − 1

2
(X ′K)

2 − 1
2
m2X2

K

)
+

2∑
I=1

(
1
2
Ẏ 2
I − 1

2
(Y ′I )

2
)

+ 2mY2Ẏ1

+
2∑
I=1

(
1
2

˙̃Y 2
I − 1

2

(
Ỹ ′I

)2
)

+ 2mỸ2
˙̃Y1

}
, (5.124)

for this pp-wave geometry. The XK and YI are subject to Dirichlet boundary condi-

tions, while the ỸI satisfy Neumann boundary conditions. Quantizing the open string,

we obtain the embedding coordinates

XK (τ, σ) =
∞∑
n=1

√
2

ωn

{
αKn e

−iωnτ +
(
αKn
)†
eiωnτ

}
sin (nσ) (5.125)

Y± (τ, σ) =
∞∑
n=1

√
2

ωn

{
β∓n e

−iω∓n τ +
(
β±n
)†
eiω
±
n τ
}

sin (nσ) (5.126)

Ỹ± (τ, σ) =
1√
m

{
β̃∓0 e

−iω∓0 τ +
(
β̃±0

)†
eiω
±
0 τ

}
+
∞∑
n=1

√
2

ωn

{
β̃∓n e

−iω∓n τ +
(
β̃±n

)†
eiω
±
n τ

}
cos (nσ),

(5.127)
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which, as before, satisfy the usual commutation relations (5.104). The lightcone Hamil-

tonian, in terms of the (normal ordered) creation and annihilation operators, is then

Hlc =
∞∑
n=1

4∑
K=1

ωn
m

(
αKn
)†
αKn +

∞∑
n=1

{
ω+
n

m

(
β+
n

)†
β+
n +

ω−n
m

(
β−n
)†
β−n

}
+
∞∑
n=0

{
ω+
n

m

(
β̃+
n

)†
β̃+
n +

ω−n
m

(
β̃−n

)†
β̃−n

}
. (5.128)

We can interpret the above results as follows:

pξ = − 1

R2

(
E + Jχ1 + Jχ+

)
= −m (5.129)

may not vanish, whereas

pu = −E + Jχ1 + Jχ+ = −Hlc, (5.130)

py1 =
2√
3

1

R

[
−
(

1−
√

1−α2
0

)
Jχ1+
√

1−α2
0Jχ+

]
(1−α2

0)1/4
√

1−
√

1−α2
0

and pz1 =
2√
3

1

R

Jχ−

(1−α2
0)1/4

√
1−
√

1−α2
0

must remain finite. Hence

E =
3

2
L+O(R), Jχ1 =

3

2

√
1− α2

0 L+O(R) and Jχ− = O(R), (5.131)

where we define

Jχ+ ≡
3

2

(
1−

√
1− α2

0

)
L, (5.132)

which is of O(R2). As before, the inverse mass squared is given by (5.111). In the limit

in which 1
m2 � 1, the energy eigenvalues of the lightcone Hamiltonian become

αKn :
ωn
m

=

√
1 +

n2

m2
≈ 1 +

n2

2m2
, with n ε {1, 2, . . .} (5.133)

β±n :
ω±n
m

=

√
1 +

n2

m2
± 1 ≈ 2 +

n2

2m2
or

n2

2m2
, with n ε {1, 2, . . .} (5.134)

β̃±n :
ω±n
m

=

√
1 +

n2

m2
± 1 ≈ 2 +

n2

2m2
or

n2

2m2
, with n ε {0, 1, 2, . . .} . (5.135)

We can, again, link these results to the number of composite scalar fields in the word

attached to the subdeterminant operator On(A1B1). In this case

Jφ̃1
=
√

1− α2
0L+O(R), Jφ̃2

=

(
1−

√
1− α2

0

)
L+O(R) and Jφ̃3

= O(R),

(5.136)

with L the total number of composite scalar fields. There are now a large number of

the combinations A1B1 and A2B2 in this word.
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5.4 Giant gravitons on AdS4 × CP3

We finally propose an ansatz for the D4-brane giant graviton on AdS4 × CP3, which

is dual to the subdeterminant operator On(A1B1) in ABJM theory and factorizes into

two CP2 dibaryons at maximal size.

We may associate the four homogeneous coordinates of the complex projective space

CP3 with the ABJM scalar fields A1, A2, B̄1 and B̄2 in the multiplet Y a. Hence

z1z̄3 = 1
2

sin (2ζ) sin θ1
2

sin θ2
2
e

1
2
i(ψ−φ1−φ2) −→ A1B1 (5.137)

z2z̄4 = 1
2

sin (2ζ) cos θ1
2

cos θ2
2
e

1
2
i(ψ+φ1+φ2) −→ A2B2 (5.138)

z2z̄3 = 1
2

sin (2ζ) cos θ1
2

sin θ2
2
e

1
2
i(ψ+φ1−φ2) −→ A2B1 (5.139)

z1z̄4 = 1
2

sin (2ζ) sin θ1
2

cos θ2
2
e

1
2
i(ψ−φ1+φ2) −→ A1B2. (5.140)

Aside from the additional factor of 1
2

sin (2ζ), these coordinates bear an obvious resem-

blance to the parametrization (1.15) of the base manifold T1,1 .

Our ansatz for the giant graviton on AdS4 × CP3 then takes the form

sin (2ζ) sin θ1
2

sin θ2
2

=
√

1− α2, (5.141)

where the constant α ε [0, 1] describes the size of the giant. Motion is along the angular

direction χ ≡ 1
2

(ψ − φ1 − φ2), as in the case of the D2-brane dual giant graviton

of chapter 3. This is the same as the direction of motion of the giant graviton on

AdS5 × T1,1, up to a constant multiple, which we have included to account for the

difference in conformal dimensions between the scalar fields in the Klebanov-Witten

and ABJM theories.
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Conclusion:

D-branes and giant gravitons

In this part, we catalogued some features of the giant graviton phenomenon in type

IIA string theory on AdS4 × CP3 and type IIB string theory on AdS5 × T1,1. We also

studied D-brane configurations dual to dibaryons - these may be thought of as half of

a maximal giant graviton.

In chapter 3, we focused on the D2-brane dual giant graviton on AdS4 × CP3 and its

excitations. We found that, just as for the canonical case of the D3-brane dual giant

on AdS5 × S5 [71], all the fluctuation modes have real, positive frequencies squared

that are manifestly independent of its size. The absence of any tachyonic modes in

the spectrum again means that there are no perturbative instabilities. A particularly

interesting aspect of the fluctuation spectrum is the existence of a coupling between

the worldvolume gauge field and transverse fluctuations of the brane - this differs from

the usual result. Similar couplings were found in [74], but here the coupling results in

a massless goldstone mode, indicating the existence of a new type of D2-brane with

both momentum and D0-brane charge.

Motivated by the remarkable insights yielded by similar studies [19, 40, 41] of giant

gravitons on AdS5 × S5, we presented an analysis of open strings attached to the D2-

brane giant in the limit of short pp-wave and long semiclassical strings. In the first case,

we confirmed that the families of null geodesics on the worldvolume of the giant, which

were found in [40, 41] for canonical D3-brane giants, once more exist for the dual giant

graviton on AdS4 × CP3. Consequently, we were able to take a Penrose limit about

one such geodesic and quantize short open strings on the pp-wave background. Our

findings are in agreement with the reported D3-brane results: the spectral structure

of these open string excitations has a λ̃ = λ
L2 perturbative expansion for large angular

momentum L. In the dual ABJM theory, this suggests a potential simplification in

the BMN or thermodynamic limit of the open spin chain. However, evidence from the

closed string sector implies a breaking of BMN scaling [31, 32, 34]. To study long open
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strings attached to the dual giant graviton, we took a semiclassical limit and computed

the leading order Polyakov action. We found complete agreement with similar results

[41] for the more familiar D3-brane giant.

Although these similarities between the dual D3-brane giant and its D2-brane coun-

terpart might seem mundane, it is worth remembering two important points:

• The 3-dimensional N = 6 SCS-matter theory conjectured to be dual to type IIA

string theory on AdS4 × CP3 is decidedly different from N = 4 SYM theory in

field content, number of supersymmetries and degrees of freedom. This precise

agreement was therefore by no means clear a priori.

• The D2-brane studied in this note is a descendent of an M2-brane upon com-

pactification to the type IIA string theory. It would seem that the dynamics

of the dual giant graviton encodes, in a non-trivial way, membrane dynamics in

M-theory. The similarity between the D2-brane and D3-brane dual giants would

therefore appear even more remarkable.

These open string excitations of the dual giant graviton on AdS4×CP3 are dual to words

attached to the Schur polynomial χR(A1B1) in the totally symmetric representation. A

map to an open spin chain with boundaries is possible. The most concrete extension of

this work would be to match the spectrum of open string excitations with the anomalous

dimensions of the dual operators in ABJM theory - interpreted as the energy eigenvalues

of the spin chain Hamiltonian.

A study of dibaryons on AdS5 × T1,1 and AdS4×CP3 was presented in chapter 4. The

comparison of [66] between the spectra of BPS excitations of determinant operators in

Klebanov-Witten theory and open string excitations of the dual D3-brane configura-

tions in type IIB string theory on AdS5 × T1,1 was extended to the ABJM/type IIA

string theory duality. The CP2 dibaryons - D4-branes wrapped on CP2 subspaces of

the compact CP3 space - were constructed, together with their spectrum of small fluc-

tuations. The lowest frequency modes associated with the transverse CP3 directions

were shown to match the conformal dimensions of the ABJM determinant operators

detA1 and detB1. A slight complication, in this case, is that Wilson lines must be

appended to the usual dibaryons to ensure that they are gauge invariant physically

meaningful states. However, this alteration does not effect the conformal dimensions

of BPS excitations. Although the existence of such BPS configurations is all that is

necessary for the above comparison, it would be interesting to determine the complete

set of quantum numbers which describe these states.

In chapter 5, we translated Mikhailov’s elegant construction [63] of giant gravitons
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in terms of holomorphic curves into the more familiar DBI construction for giants on

AdS5 × T1,1. This solution is dual to the subdeterminant operator On(A1B1). Its

factorization, at maximal size α0 = 1, into the two dibaryons of [66], described in

chapter 4 and dual to the determinant operators detA1 and detB1, may be thought

of as the disappearance of the map between the polar coordinates of the two 2-spheres

embedded in T1,1. This results from the constraint sin θ1
2

sin θ2
2

=
√

1− α2
0 in the

definition of the giant graviton and may be visualized by colouring its worldvolume.

The D3-brane then independently wraps both 2-spheres.

We also presented an analysis of small fluctuations about this giant graviton. The

spectrum was calculated in two special cases: the small submaximal giant graviton

with α0 � 1 and the maximal giant graviton. The latter turns out to be the same as

the spectrum [66] obtained for separate dibaryons, even taking into account excitations

between the two halves of the maximal giant. A comparison between these results

indicates that the frequencies are dependent on the size of the giant graviton7. This is

a curious new phenomenon never before observed - probably because all the previous

giant gravitons have been spherical or nearly spherical configurations. The reason that

the fluctuation spectrum is independent of the size of the giant is quite clear in the

AdS5 × S5 case (and for our D2-brane dual giant of chapter 3) - when the brane’s radius

is increased, the blueshift of the geometry exactly cancels the increase in wavelength

of the modes. We do not yet understand the physics behind the spectrum of the giant

graviton on AdS5 × T1,1.

We completed this study by attaching open strings to this giant graviton. We were able

to quantize short open strings in pp-wave geometries associated with two distinct world-

volume null geodesics and obtain their energy spectra. These open strings ending on

the giant graviton should correspond to certain words (composed of combinations AiBj

of scalar fields in Klebanov-Witten theory) with R-charge of O(
√
N) attached to the

subdeterminant operator On(A1B1). However, the non-renormalizability of Klebanov-

Witten theory makes a comparison of the anomalous dimensions of these near-BPS

operators with the corresponding energies problematic.

We close the chapter with an ansatz for the D4-brane giant graviton on AdS4 × CP3,

which is dual to the subdeterminant operator On(A1B1) in ABJM theory. We make

use of the similarity between T1,1 and CP3, but find that we must take into account

the additional radial coordinate ζ in the complex projective space CP, which yields the

extra worldvolume degree of freedom required by the D4-brane. The identical structure

of the operators in the Klebanov-Witten and ABJM theories leads us to believe that

7This is not true for the approximate spectrum of the small submaximal giant graviton, when taken
on its own.
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the factorization of the D4-brane maximal giant graviton on AdS4 × CP3 into two

CP2 dibaryons should take place in a qualitatively similar way. ABJM theory has the

same superpotential as Klebanov-Witten theory, but, since it is a 3-dimensional CFT,

is renormalizable. Consequently, it should now be possible to match the energies of

open string excitations to the anomalous dimensions of near-BPS ABJM operators.

We leave this as a topic for future research.
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Part III

Marginal Deformations
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Introduction:

marginal deformations

As a long-term goal, it is hoped that the AdS/CFT correspondence will eventually lead

to a complete understanding of Quantum Chromodynamics (QCD) - a non-conformal,

non-abelian Yang-Mills theory with finite N . It is therefore crucial to identify, among

the plethora of remarkable results for N = 4 SYM theory, which are a consequence of

the large amounts of symmetry and which are truly universal. With this in mind, we

investigate the possibility that the Hagedorn temperature in type IIB string theory on

AdS5 × S5 - related to the temperature of the confinement/deconfinement transition

in planar N = 4 SYM theory [80] - is a universal property under N = 1 marginal

deformations of the N = 4 SYM superpotential.

A direct computation of the Hagedorn temperature (as well as the behaviour of strings

near the Hagedorn point) is hampered by the need for an explicit, quantized string

spectrum - something lacking for the type IIB superstring on AdS5 × S5. Most of the

literature is therefore restricted to flat backgrounds or toroidal compactifications (see,

for example, [81]). Fortunately, there is another entirely non-trivial arena in which

both sides of the AdS/CFT correspondence are explicitly known and the string theory

is exactly soluble: type IIB string theory on the maximally supersymmetric pp-wave

background [75], obtained from AdS5 × S5 by applying a suitable Penrose limit, and

N = 4 SYM theory in the BMN double scaling limit of [15]. The study of thermal

strings on this background [82] proved extremely fruitful, demonstrating the existence

of a Hagedorn temperature (and the accompanying exponential growth of states), which

is an indication of a phase transition rather than a limiting temperature [82, 83]. This

would seem to mesh neatly with the confinement/deconfinement transition observed

in planar N = 4 SYM theory, except for the fact that, in the BMN limit, only a

subset of states survive - the near-BPS states, the anomalous dimensions of which are

systematically close to those of the chiral primaries.

The problem is one of the compatibility of regimes: where we are finally able to com-
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pute the exact string spectrum and Hagedorn temperature on the gravity side of the

duality, there are an insufficient number of states left in the gauge theory to account for

the required exponential growth. Circumventing this difficulty is non-trivial and was

only recently accomplished [84] by identifying a different decoupling limit of N = 4

SYM theory, in which the physics is captured by a ferromagnetic XXX 1
2

Heisenberg

spin chain. The Hagedorn temperature was then computed from well-known thermo-

dynamic properties of the spin chain and matches excellently with the string theory

result.

We are interested in the Hagedorn behaviour of pp-wave strings on the Lunin-Maldacena

background. The dual gauge theory is γ-deformed N = 1 SYM theory - the supersym-

metry has been partially broken by a marginal deformation as explained below:

A marginal deformation of a superconformal field theory is constructed by adding an

exactly marginal operator to the superpotential to generate a continuous set of new

fixed points. Leigh and Strassler [85] found an N = 1 marginal deformation of N = 4

SYM theory with the superpotential

W = 1
2

tr
{
h1 (XYZ) + h2 (XZY) + h3

(
X 3 + Y3 + Z3

)}
,

depending on three parameters hi and invariant under a Z3 discrete symmetry trans-

formation X → Y , Y → Z and Z → X . The fixed line h1 = −h2 = gYM and h3 = 0

yields the original N = 4 SYM theory.

The special class of deformations for which h1 = gYM e
iπβ, h2 = −gYM e

−iπβ and h3 = 0,

with β some complex parameter, are known as β-deformations. The superpotential

then takes the form

W = 1
2
gYM tr

{
eiπβ (XYZ)− e−iπβ (XZY)

}
and is invariant under two global U(1) symmetry transformations as follows:

U(1)1 : X → eiα1X Y → eiα1 Y Y → e−2iα1Z

U(1)2 : X → e−2iα2X Y → eiα2 Y Y → eiα2Z.

Therefore β-deformed N = 1 SYM theory has a global U(1)×U(1)×U(1)R symmetry

group. We shall focus on β ≡ γ real, which are known as γ-deformations.

In 2005, Lunin and Maldacena [7] were able to construct a gravitation dual of N = 1

β-deformed SYM theory - type IIB string theory on a Lunin-Maldacena background.

Again, let us choose β ≡ γ to be real. The background spacetime is then AdS5 × S5
γ ,

where the 5-sphere space has undergone a γ-deformation.
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They reasoned as follows: The two remaining U(1) symmetries correspond to isometries

ϕ1 → ϕ1 + α1 and ϕ2 → ϕ2 + α2 on the special torus (ϕ1, ϕ2), where these angular

coordinates are the combinations

ϕ1 = 1
3

(φ1 + φ2 − 2φ3) and ϕ2 = 1
3

(−2φ1 + φ2 + φ3) ,

of the original phases φi on the 5-sphere space (1.7). These symmetries should be

preserved after the γ-deformation. Let us define the parameter τ = B12 + i
√
g, which

depends on the volume of the (ϕ1, ϕ2) torus, as well as the component on the NS B-

field associated with these angular directions. Lunin and Maldacena found a suitable

γ-deformation of the AdS5 × S5 background by taking

τ → τ

1 + γ̂ τ
, where γ̂ = R2 γ

relates to the deformation parameter γ in the dual gauge theory. An alternative con-

struction due to [8] involves a TsT transformation on the torus (ϕ1, ϕ2), with a shift

dependent on γ̂.

Type IIB string theory on a Lunin-Maldacena AdS5 × S5
γ background has the metric

ds2 = R2
{
− cosh2 ρdt2 + dρ2 + sinh2 ρ

(
dα2 + cos2 αdβ2

1 + sin2 αdβ2
2

)
+dθ2

1 +G cos2 θ1 dφ
2
1 + sin2 θ1

(
dθ2 + G cos2 θ1 dφ

2
2 +G sin2 θ2 dφ

2
3

)
+ γ̂2G cos2 α sin4 α cos2 θ sin2 θ (dφ1 + dφ2 + dφ3)2} ,

with r = sinh ρ the AdS5 radial coordinate. Here

G−1 ≡ 1 + γ̂2
(
cos2 θ1 sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ1 sin2 θ2 + sin4 θ1 cos2 θ2 sin2 θ2

)
.

The γ-deformation turns on an NS B-field

B2 = γ̂ R2G
{

cos2 θ1 sin2 θ1 cos2 θ2 dφ1 ∧ dφ2 + cos2 θ1 sin2 θ1 sin2 θ2 dφ3 ∧ dφ1

+ sin4 θ1 cos2 θ2 sin2 θ2 dφ2 ∧ dφ3

}
,

while the 3-form and 5-form field strengths are given by

F3 = −4γ̂R2e−Φ0 cos2 θ1 sin3 θ1 cos θ2 sin θ2 dθ1 ∧ dθ2 ∧ (dφ1 + dφ2 + dφ3)

F5 = 4R4e−Φ0
{

cosh ρ sinh3 ρ cosα1 sinα1 dt ∧ dρ ∧ dα1 ∧ dα2 ∧ dα3

+G cos θ1 sin3 θ1 cos θ2 sin θ2 dθ1 ∧ dθ2 ∧ dφ1 ∧ dφ2 ∧ dφ3

}
,

with a dilaton Φ, which satisfies e2Φ = Ge2Φ0 . Here Φ0 is the constant dilaton in the

original AdS5 × S5 background - usually this is chosen to vanish. More generally, the

AdS/CFT dictionary, discussed in section 1.1.3, can be modified so that λ = R4 and
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R4 = 4πgsN , with gs = eΦ0 the string coupling. Since strings - the objects of interest

in this part - couple only to the background geometry and the B-field, we can, and

will, ignore the RR-sector in what follows.

This AdS5 × S5
γ Lunin-Maldacena background supports two classes of BPS pp-wave

geometries, distinguished by the choice of null geodesics about which the Penrose limit

is taken. Type IIB string theory on both pp-wave backgrounds has been studied in

some detail with somewhat remarkable results. Taking the Penrose limit about any one

of the (J, 0, 0), (0, J, 0) and (0, 0, J) single charge null geodesics yields a conventional

pp-wave background on which the string spectrum exhibits a γ̂-dependence [86]. The

second class of BPS geometries, obtained by taking a Penrose limit about the null

geodesic (J, J, J), is a set of homogenous plane waves whose metric lies in a different

diffeomorphism class from that of the former [77]. Intriguingly, in this case, the string

spectrum is independent of the deformation parameter - a result verified to one-loop

from the spectrum of anomalous dimensions of near-BPS operators in the dual gauge

theory [87, 88].

In this part, we investigate the Hagedorn behaviour of γ-deformed pp-wave strings and

calculate the Hagedorn temperature, which is again associated with a phase transition.

We discuss matching these results with the dual N = 1 SYM theory.
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Chapter 6

Hagedorn behaviour of γ-deformed

pp-wave strings

We begin this chapter with a detailed review of the construction [82] of the single

string and multi-string partition functions for a canonical ensemble of type IIB strings

on the undeformed maximally supersymmetric pp-wave background. We discuss the

associated Hagedorn behaviour. With this foundation in place, we describe the two

classes of Lunin-Maldacena BPS pp-wave geometries. Restricting our attention to the

(J, 0, 0) case, the γ-deformed multi-string partition function and Hagedorn tempera-

ture are derived. We discuss, using the prescription of [84], matching the tempera-

tures of the Hagedorn transition of Lunin-Maldacena pp-wave strings and the confine-

ment/deconfinement transition in the γ-deformed N = 1 SYM theory.

6.1 Thermodynamics of pp-wave strings

In this section, we present a detailed review of the thermodynamics of strings moving

on a maximally supersymmetric pp-wave background, closely following [82].

Let us consider the (J, 0, 0) null geodesic on AdS5 × S5, which is described by

t = φ1 = µx+ and ρ = θ1 = 0, (6.1)

where we have set r = sinh ρ for convenience. Substituting the ansatz

t = µx+ +
x−

2µR2
φ1 = µx+ +

x−

2µR2
θ1 =

x

R
ρ =

y

R
(6.2)
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into the metric (1.5), we take the large R Penrose limit in which we zoom in on this

null geodesic. We make use of the cartesian coordinates

x1 ≡ x cos θ2 cosφ2 x2 ≡ x cos θ2 sinφ2

x3 ≡ x sin θ2 cosφ3 x4 ≡ x sin θ2 sinφ3 (6.3)

and

x5 ≡ y cosα1 cos β1 x6 ≡ y cosα1 sin β1

x7 ≡ y sinα1 cos β2 x8 ≡ y sinα1 sin β2 (6.4)

associated with the two 3-spheres (θ2, φ2, φ3) and (α1, β1, β2), with radii sin θ1 ≈ x
R

and sinh ρ ≈ y
R

, which are embedded in S5 and AdS5 respectively. The metric of the

maximally supersymmetric pp-wave background is given by

ds2 = −2dx+dx− − µ2

8∑
i=1

(
xi
)2 (

dx+
)2

+
8∑
i=1

(
dxi
)2
. (6.5)

Here x± are the lightcone directions and the xi describe eight transverse directions.

Note that pp-wave geometries associated with similar null geodesics in AdS5 × S5,

which are parameterized by different angular coordinates, are equivalent up to lightcone

time-dependent coordinate transformations.

Among the numerous symmetries contained in this metric are an SO(8) rotational

symmetry in the transverse coordinates (broken to SO(4)× SU(4) by the 5-form field

strength), 16 boost-like symmetries in (xi, x−)-planes and two translational isometries

in the lightcone x± directions - these are essential for the construction of the single

pp-wave string partition function.

6.1.1 Single string partition function

The partition function describing a single pp-wave string (in the canonical ensemble)

moving in a heat bath at temperature T can be constructed using a combination of

the two translational isometries:

Z1(a, b) = trH
(
eap+ + bp−

)
. (6.6)

Here p± ∼ −i∂±, while the two variables a and b determine the heat bath temperature

T , which satisfies

T−2 = ab+ a2µ2

8∑
i=1

(
xi
)2
. (6.7)
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We shall now consider a pp-wave string in the lightcone gaugeX+(τ, σ) = 2p+τ . Setting

m ≡ 2µp+, the lightcone Hamiltonian Hlc = −p+ = p− is given by

Hlc =
µ

m

[
ω0

(
NB

0 +NF
0

)
+
∞∑
n=1

ωn

(
NB
n +NF

n + ÑB
n + ÑF

n

)]
, (6.8)

where ωn ≡ sign(n)
√
n2 +m2, and NB,F

n and ÑB,F
n are the right- and left-moving

number operators describing the eight bosonic and eight fermionic modes. (The right-

and left-moving zero modes have been identified.) The zero point energy cancels out

due to supersymmetry. The level-matching constraint

P =
∞∑
n=1

n
(
NB
n +NF

n − ÑB
n − ÑF

n

)
= 0, (6.9)

which arises as a result of worldsheet translation invariance, must also be satisfied [76].

The single string partition function may now be written in the form

Z1(a, b, µ) =

∫ ∞
0

dp+

∫ + 1
2

− 1
2

dτ1 e
−bp+ zlc

(
τ1,

a

4πp+
; m ≡ 2µp+

)
, (6.10)

with

zlc(τ1, τ2,m) ≡ trstates

(
e−2πτ2H+2πiτ1P

)
. (6.11)

The trace runs over all the eigenstates of the worldsheet Hamiltonian H = 2p+Hlc and

the level-matching constraint is imposed using the delta function, which arises from

the integral over τ1.

Finally, it is known that this single string partition function may be written in terms

of building blocks Θα,δ. More specifically, we find that1

zlc(τ1, τ2,m) =

[
Θ 1

2
,0(τ1, τ2,m)

Θ0,0(τ1, τ2,m)

]4

, (6.12)

with2

Θα,δ(τ1, τ2,m) ≡ e4πτ2Eδ(m)

∞∏
n=−∞

(
1− e−2πτ2|ωn+δ|+2πiτ1(n+δ)+2πiα

)
×
(
1− e−2πτ2|ωn−δ|+2πiτ1(n−δ)−2πiα

)
. (6.13)

Here Eδ(m) is the casimir energy of a complex boson of mass m with boundary con-

ditions φ(σ+ 2π, τ) = e2πiδφ(σ, τ) [89]. This casimir energy cancels out of the relevant

ratio due to supersymmetry.

1The numerator and denominator of this ratio of building blocks describe the contributions from
the fermionic and bosonic modes respectively.

2The two terms in the product describe two fields, which are complex conjugates, while the left-
and right-moving modes are captured by negative and positive values of n respectively.
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6.1.2 Multi-string partition function

The multi-string partition function, which describes an ideal gas of pp-wave strings,

can be written in terms of the single string partition function of the bosonic modes

(ZB
1 ) and fermionic modes (ZF

1 ) as follows:

lnZ(a, b, µ) =
∞∑
r=1

1

r

{
ZB

1 (ar, br, µ)− (−1)rZF
1 (ar, br, µ)

}
. (6.14)

For the superstring, these partition functions for the two modes differ only by a finite

number - the number of bosonic minus fermionic zero modes. This gives a small,

constant contribution to the free energy, which, at high temperatures, will be negligible

[82, 90, 91]. Thus

lnZ(a, b, µ) =
∞∑

r=1
r odd

1

r
Z1(ar, br, µ). (6.15)

Substituting (6.10) and (6.12) into the above expression, and changing the variable of

integration from p+ to τ2 = ar
4πp+

now yields

lnZ(a, b, µ) =
a

4π

∫ 1
2

− 1
2

dτ1

∫ ∞
0

dτ2

(τ2)2

∞∑
r=1
r odd

[
Θ 1

2
,0(τ1, τ2,

µar
2πτ2

)

Θ0,0(τ1, τ2,
µar
2πτ2

)

]4

e
− abr

2

4πτ2 , (6.16)

which is proportional to the Helmholtz free energy.

6.1.3 Hagedorn behaviour

We intend to investigate the Hagedorn behaviour of this gas of pp-wave strings and

so, following [82], we begin by searching for an exponential divergence of the density

of states. Towards this end, let us consider the building blocks Θα,δ in the high energy

limit p+ →∞ (or τ2 → 0), with µ̃ = mτ2 = µar
2π

held fixed. The definition (6.13) gives

ln Θα,δ(τ1, τ2,
µ̃
τ2

) = 4πτ2Eδ

(
µ̃
τ2

)
+

∞∑
n=−∞

ln
(
1− e−2πτ2|ωn+δ|+2πiτ1(n+δ)+2πiα

)
+ c.c.

(6.17)

and, setting x ≡ τ2
µ̃

(n+ δ) and θ ≡ τ1
τ2

, we see that ∆x = τ2
µ̃

∆n → dx in the high

energy limit and x becomes a continuous variable over which we can integrate. Hence,

since τ2|ωn+δ| = µ̃
√

1 + x2, we obtain

ln Θα,δ(τ1, τ2,
µ̃
τ2

) −→ µ̃

τ2

∫ ∞
−∞

dx ln
(

1− e−2πµ̃
√

1+x2+2πiµ̃θx+2πiα
)

+ c.c.

≡ − µ̃√
1 + θ2 τ2

[f (µ̃, θ, α) + c.c.] . (6.18)
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Expanding out the logarithm,

f(µ̃, θ, α) =
√

1 + θ2

∫ ∞
−∞

dx
∞∑
l=1

1

l
e−2πµ̃

√
1+x2+2πiµ̃θx+2πilα + c.c.

= 2
√

1 + θ2

∞∑
l=1

1

l
e2πilα

∫ ∞
0

dx e−2πlµ̃
√

1+x2
cos (2πlµ̃θx) + c.c.

= 2
∞∑
l=1

1

l
e2πilα K1(2πµ̃l

√
1 + θ2) + c.c. (6.19)

where K1(x) is a modified Bessel function of the second kind [92], which is a real

positive monotonically decreasing function tending to zero quickly as x→∞.

Now, noticing that f̄(µ̃, θ, α) = f(µ̃, θ, α) when α = 0 or α = 1
2
, we may simplify

ln Θ 1
2
,0(τ1, τ2,

µ̃
τ2

)− ln Θ0,0(τ1, τ2,
µ̃
τ2

) −→ − 2µ̃√
1 + θ2τ2

[
f(µ̃, θ, 1

2
)− f(µ̃, θ, 0)

]
(6.20)

=
8µ̃√

1 + θ2τ2

∞∑
l=1
l odd

1

l
K1(2πlµ̃

√
1 + θ2).

Thus the high energy behaviour of the multi-string partition function, in the limit as

τ2 → 0, is given by

lnZ(a, b, µ) −→ a

4π

∞∑
r=1
r odd

∫ ∞
0

dτ2

τ2

∫ + 1
2τ2

− 1
2τ2

dθ (6.21)

× exp

−abr2

4πτ2

+
16µar

πτ2

1√
1 + θ2

 ∞∑
l=1
l odd

1

l
K1

(
µalr
√

1 + θ2
) ,

where we have changed the integral over τ1 into an integral over θ = τ1
τ2

.

We now wish to determine for which temperatures (values of a and b) this parti-

tion function converges. Only the r = 1 term need be considered3. The conver-

gent/divergent nature of the integral over τ2 depends critically on the sign of the

expression in the exponential. The integral converges if

ab <
64aµ√
1 + θ2

∞∑
l=1
l odd

1

l
K1

(
µal
√

1 + θ2
)
≤ 64aµ

∞∑
l=1
l odd

1

l
K1 (µal) ≡ βH , (6.22)

for all θ. This critical point ab = βH corresponds to the Hagedorn temperature TH ,

which is defined by

T−2
H = βH + a2µ2

8∑
i=1

(
xi
)2

= 64µa
∞∑
l=1

1

l
K1(µal) + a2µ2

8∑
i=1

(
xi
)2
. (6.23)

3The modified Bessel function K1 is monotonically decreasing, so that all the r > 1 terms are much
smaller (exponentially so) than the r = 1 term. Therefore, if the r = 1 term converges, then all the
other terms are also convergent.
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The nature of the partition function at ab = βH was considered in [83] and is related

to the behaviour of thermodynamic quantities as they approach the critical point.

A phase transition requires a finite free energy, although derived quantities, such as

internal energy (E = −(lnZ)′) or specific heat (C = β2(lnZ)′′) may diverge. The

hallmark of a limiting temperature, on the other hand, is a free energy which blows up

near βH . However, even in this case, it has been argued [93] that string interactions can

turn this into a first order transition, with a critical temperature below the Hagedorn

temperature. In the high energy limit τ2 → 0, the integral over θ is dominated by

the saddle point at θ = 0, with e−c θ
2/τ2 fluctuations (c being a relatively unimportant

constant). Integrating over these fluctuations will produce a factor of
√
τ2. After

performing the integral over τ2, the free energy and multi-string partition function go

like

βF = − lnZ(a, b, µ) ∝
√
β2 − β2

H + regular, with β2 = ab, (6.24)

which remains finite at β = βH , signaling a phase transition.

6.2 The deformation

There are two classes of BPS γ-deformations of this maximally supersymmetric pp-

wave background, both arrived at by taking a Penrose limit about the appropriate null

geodesic in the AdS5 × S5
γ Lunin-Maldacena background. We shall extend the above

analysis to strings moving on these γ-deformed pp-wave backgrounds.

6.2.1 The pp-wave limit about a single-charge null geodesic

The first γ-deformed pp-wave geometry arises from taking a Penrose limit about the

(J, 0, 0) null geodesic - we substitute the ansatz (6.2) into the AdS5 × S5
γ metric and

scale R→∞. The resulting background fields in the NS sector are

ds2
γ = −2dx+dx− − µ2

[(
1 + γ̂2

) 4∑
i=1

(
xi
)2

+
8∑
i=5

(
xi
)2

] (
dx+

)2
+

8∑
i=1

(
dxi
)2

(6.25)

B2 = µγ̂
(
x1dx+ ∧ dx2 − x2dx+ ∧ dx1 + x3dx+ ∧ dx4 − x4dx+ ∧ dx3

)
, (6.26)

with a constant dilaton Φ = Φ0.

The transverse coordinates in the original pp-wave background are naturally split into

two sets of four coordinates (x1, x2, x3, x4) and (x5, x6, x7, x8) by the self-dual 5-form



CHAPTER 6. HAGEDORN BEHAVIOUR 87

field strength. The effect of the deformation is to alter the effective string mass for

oscillations in the first set of transverse directions, consequently breaking the SO(8)

degeneracy of the oscillation spectrum. Quantization of the closed string sigma model

on this background yields the following oscillation spectrum:

ω±n ≡ sign(n)

√
m2 + (n± γ̂ m)2 and ωn ≡ sign(n)

√
m2 + n2, (6.27)

for the first and second sets of transverse coordinates respectively. Here m ≡ 2µp+ and

the ± indicates the spin in the (x1, x2) and (x3, x4)-planes.

6.2.2 A homogeneous plane wave limit

Let us now focus on an inequivalent γ-deformed pp-wave background associated with

the (J, J, J) null geodesic, which is parameterized by

t = µx+ and ψ ≡ 1
3

(φ1 + φ2 + φ3) = −µx+, (6.28)

with the further specification that

θ1 = θ10 ≡ cos−1
(

1√
3

)
, θ2 = π

4
and ρ = ϕ1 = ϕ2 = 0. (6.29)

Here ϕ1 and ϕ2 are the two angular directions used in the construction [7] of the

Lunin-Maldacena background (associated with the two U(1) symmetries) and ψ is

proportional to the total phase. Close to this null geodesic

t = µx+ +
x−

2µR
ρ =

y

R
ψ = −µx+ +

x−

2µR
ϕ1 =

x̃3

R
ϕ2 =

x̃4

R

θ1 = θ10 −
x2

R
θ2 =

π

4
+

√
2

3

x1

R
. (6.30)

We shall now redefine

x3 =

√
2

(3 + γ̂2)

(
x̃3 +

1

2
x̃4

)
and x4 =

√
3

2 (3 + γ̂2)
x̃4, (6.31)

and take the R → ∞ scaling limit. The resulting pp-wave geometry is described by

the metric

ds2 = −2dx+dx− − µ2

[
4γ̂2

(3 + γ̂2)

2∑
i=1

(
xi
)2

+
8∑
i=5

(
xi
)2

] (
dx+

)2
+

8∑
i=1

(
dxi
)2

+
4
√

3µ√
3 + γ̂2

(
x1dx3 + x2dx4

)
dx+. (6.32)

The remaining fields in the NS sector of this type IIB multiplet are

B2 =
γ̂√
3
dx3 ∧ dx4 +

2µγ̂√
3 + γ̂2

dx+ ∧
(
x1dx4 − x2dx3

)
(6.33)
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e2Φ =
1

(1 + γ̂2)
e2Φ0 . (6.34)

Additionally, this background supports non-vanishing RR 2-form and 4-form field

strengths which, while they result in rather sophisticated D-brane dynamics [73], are

irrelevant for our analysis.

Closed strings in this background, their supersymmetries and dual gauge theory oper-

ators, were first studied in [87, 88]. It was noticed that a change of coordinates

x− −→ x− +

√
3

(3 + γ̂2)

(
x1x3 + x2x4

)
, (6.35)

brings the (J, J, J) pp-wave metric into the homogenous plane wave form [77]

ds2 = −2dx+dx− +
8∑

i,j=1

kij x
ixj
(
dx+

)2
+ 2

8∑
i,j=1

fij x
i dxjdx+ +

8∑
i=1

(
dxi
)2
, (6.36)

where the matrices kij and fij are given by

kij = µ2 diag
[

4γ̂2

(3+γ̂2)
4γ̂2

(3+γ̂2)
0 0 1 1 1 1

]
(6.37)

fij =

√
3µ2

(3 + γ̂2)



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


. (6.38)

Remarkably, even though the background and associated string equations of motion

depend on γ̂ in a fairly non-trivial way, the quantum closed string spectrum

ωn = 1±
√

1 + 4n2, (6.39)

determined by the frequency base ansatz of [77] for strings on homogeneous plane waves,

exhibits no dependence on the deformation parameter [87, 88]. Consequently, we expect

that the high temperature behaviour of an ensemble of strings on this particular γ-

deformation of the maximally symmetric pp-wave background should be identical to

that of homogeneous plane wave strings (see for example [91]). While the Hagedorn

behaviour of strings on this particular class of homogeneous plane waves (i.e. non-

trivial kij and fij) has not yet, to the best of our knowledge, been studied, it is clear

that it will be independent of the deformation.
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6.2.3 γ-deformed (J, 0, 0) Hagedorn temperature

Returning again to the (J, 0, 0) Penrose limit of AdS5 × S5
γ, we shall now construct the

partition function for an ideal gas of strings on this γ-deformed pp-wave background. In

computing the partition function, much of the analysis is identical to the undeformed

case. The difference comes from the modified string spectrum - there are four real

oscillators with |ωn| =
√
m2 + n2, and two each with |ω±n | =

√
m2 + (n± γ̂m)2. This

does, in fact, lead to a partition function with non-trivial γ̂-dependence. Remarkably

though, we shall see that, in the high temperature limit (τ2 → 0), this difference

disappears and the actual Hagedorn temperature itself is undeformed.

At the level of the building blocks, the effect of the γ-deformation is to change two of

the Θα,δ into

Θ±α,δ(τ1, τ2,m) ≡ e4πτ2E
±
δ (m)

∞∏
n=−∞

(
1− e−2πτ2|ω±n+δ|+2πiτ1(n+δ)+2πiα

)
×
(

1− e−2πτ2|ω±n−δ|+2πiτ1(n−δ)−2πiα
)
. (6.40)

The exact form of the energy E±δ (m) is unimportant in our present discussion (as long

as it is still independent of α), since it cancels out of the relevant ratio of building

blocks due to the residual supersymmetry.

The γ-deformed (J, 0, 0) multi-string partition function can now be written as follows:

lnZγ(a, b, µ) =
a

4πα′

∫ 1
2

− 1
2

dτ1

∫ ∞
0

dτ2

(τ2)2

∞∑
r=1
r odd

e
− abr2

4πα′τ2

(
Θ 1

2
,0

Θ0,0

)2(Θ+
1
2
,0

Θ+
0,0

)(
Θ−1

2
,0

Θ−0,0

)
,

(6.41)

where each Θ is an implicit function Θα,δ

(
τ1, τ2,

µar
2πτ2

)
.

Following the steps in section 2, it is not hard to show that, in the high-energy limit,

the deformed oscillators lead to the replacement of the function f in (6.19) with

f±γ (µ̃, θ, α) = 2
∞∑
l=1

e2πil(α∓γ̂µ̃θ)

l
K1

(
2πµ̃l
√

1 + θ2
)
≡ f

(
2πµ̃l
√

1 + θ2, α∓ γ̂µ̃θ
)
.

(6.42)

In contrast to the undeformed case, we must now set f̄ (x, α∓ γ̂µ̃θ) = f (x, α± γ̂µ̃θ),
for α = 0 or α = 1

2
. Consequently,[

ln Θγ
1
2
,0
− ln Θγ

0,0

]
−→ − 2µ̃√

1 + θ2τ2

[
1
2
f
(
µ̃, θ, 1

2

)
+ 1

4
fγ+
(
µ̃, θ, 1

2

)
+ 1

4
fγ−
(
µ̃, θ, 1

2

)
(6.43)

−1
2
f (µ̃, θ, 0)− 1

4
fγ+ (µ̃, θ, 0)− 1

4
fγ− (µ̃, θ, 0)

]
= − 4µ̃√

1 + θ2τ2

∞∑
l=1
l odd

1

l
[1 + cos (2πlγ̂µ̃θ)]K1(2πlµ̃

√
1 + θ2),
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where these building blocks are now the functions ln Θγ
α,δ

(
τ1, τ2,

µ̃
τ2

)
and the divergent

part of the partition function (dominated by high energy modes) becomes

lnZγ(a, b, µ) −→ a

4π

∞∑
r=1
r odd

∫ ∞
0

dτ2

τ2

∫ + 1
2τ2

− 1
2τ2

dθ (6.44)

× exp

− abr2

4πα′τ2

+
8µar

πτ2

1√
1 + θ2

 ∞∑
l=1
l odd

1

l
[1 + cos (µarlθγ̂)]K1

(
µalr
√

1 + θ2
) .

Despite these changes to the partition function, when we evaluate its high energy

behaviour, the θ integral is dominated by a gaussian which picks out θ = 0. All the

γ̂-dependence then vanishes. The behaviour of the free energy4 is still given by (6.24),

so that the Hagedorn temperature (6.23) once more describes a phase transition. To

summarize: a key feature of this computation is that, in the high temperature limit,

we find a continuum of states for which x ≡ (n + δ)/µ̃ is effectively continuous. The

spacetime deformation is visible in the partition function only in that this continuous

variable is changed from x → x ∓ γ̂. Since the Hagedorn temperature is given by

the density of states ρ(w) = (dw(n)/dn)−1, it must remain unaltered, even though

the spectrum of strings and the partition function on this background depend rather

non-trivially on γ̂.

6.3 Matching the γ-deformed gauge/string theories

A direct comparison between the thermodynamic properties of pp-wave strings (de-

formed or otherwise) and the corresponding SYM operators is non-trivial, largely be-

cause the pp-wave background is constructed by taking a Penrose limit in which the

radius R, and hence also the t’Hooft coupling λ = R4, becomes large. More precisely,

the correspondence identifies the lightcone momenta p± of pp-wave strings with the

conformal dimension ∆ and U(1) R-charge J of SYM operators via

2p+

µ
= ∆− J and 2µp− =

∆ + J√
λ

, (6.45)

so that, in the λ, N → ∞ limit with p± finite, the only states which survive are

those with conformal dimension and R-charge that scale like
√
N . These are precisely

the gauge theory states conjectured to be dual to pp-wave strings [15]. The problem

with matching the Hagedorn/deconfinement temperature of the gauge theory to the

4In evaluating the gaussian, only the width changes - this affects the proportionality constant for
F , but not the location of the singularity.
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Hagedorn temperature of the string theory is now evident: BMN states form only

a small subset of the set of all possible states in the SYM theory and, at small ’t

Hooft coupling, all these states should be taken into account. Including only the BMN

sector results in an apparent gross mismatch with a state counting on the string theory

side - here the number of states grows exponentially as the Hagedorn temperature is

approached.

6.3.1 A novel decoupling limit

It was suggested in the series of works [84] that this problem may be (at least par-

tially) resolved by a new decoupling limit of the AdS/CFT correspondence. In the

gauge theory, this decoupling takes place at low temperatures and near-critical chem-

ical potentials, while, in the string theory, we take the large µ limit of a particular

pp-wave background with a flat direction. We shall now summarize the main results

in this argument.

The N = 4 SYM partition function is a sum over all multi-trace operators constructed

from scalars, spinors and covariant derivatives:

Z(β,Ωi) = tr

(
e
−βD+β

3∑
i=1

RiΩi

)
, (6.46)

where D is the dilatation operator and Ωi are the three chemical potentials associated

with the R-charges Ji. Let us choose (Ω1,Ω2,Ω3) = (Ω, 0, 0), with ε ≡ 1 − Ω. The

Harmark-Orselli limit [84] then sends T , λ, ε → 0, while keeping T̃ = T
ε

(or β̃ ≡ εβ)

and λ̃ = λ
ε

fixed. Most of the N = 4 SYM states decouple - only those with bare

dimension equal to their R-charge survive - and the system reduces to one of thermal

quantum mechanics, with the partition function

Z(β̃) = tr
[
e−β̃(D0+λ̃D2)

]
. (6.47)

Here D0 and D2 are the tree and one-loop contributions to the dilatation operator. This

decoupling limit leaves behind the well-known SU(2) sector in which only two scalar

fields, Z and X, contribute to multi-trace operators. In the planar limit N →∞, the

single trace operators dominate and D2 maps to the Hamiltonian of a spin-1
2

XXX-

Heisenberg spin chain. The partition function is then given by [84]

Z(β̃) = exp

[
∞∑
n=1

∞∑
l=1

1

n
e−β̃l ZXXX

l (nβ̃)

]
, (6.48)

where ZXXX
l denotes the partition function of a ferromagnetic spin chain of length l.
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Key to matching this prescription in the dual string theory is to choose a pp-wave

background with a flat direction (or spatial isometry). One such is associated with the

(J, J, 0) null geodesic, which is described by

t = φ+ ≡ 1
2

(φ1 + φ2) = µx+, θ1 = π
2
, θ2 = π

4
and ρ = φ− ≡ 1

2
(φ1 − φ2) = 0.

(6.49)

Expanding about this null geodesic, we take the ansatz

t = µx+ +
x−

2µR2
ρ =

y

R
φ+ = µx+ − x−

2µR2
φ− =

x1

R

θ1 =
π

2
+
x

R
, θ2 =

π

4
+
x2

R
, (6.50)

with x3 = x cosφ3 and x4 = x sinφ3, and (x5, x6, x7, x8) the usual transverse coordi-

nates (6.4). The scaling R→∞ produces the (J, J, 0) pp-wave background

ds2 = −2dx+dx− +
8∑
i=1

(
dxi
)2 − µ2

8∑
i=3

(
xi
)2 (

dx+
)2 − 4µx2 dx1dx+. (6.51)

Although this background is related to the (J, 0, 0) one by a lightcone time-dependent

coordinate rotation [
x̃1

x̃2

]
=

[
cos(µx+) − sin(µx+)

sin(µx+) cos(µx+)

][
x1

x2

]
(6.52)

in the (x1, x2)-plane, the physics is rather different. In particular, there is one vacuum

state for each value of the momentum along the flat direction x1. A modified Penrose

limit was considered in [84], in which R̃→∞ with R̃4 ≡ R4

ε
, but λ = R4 still remains

small. When ε→ 0, with

µ̃ ≡ µ
√
ε, H̃lc ≡

Hlc

ε
, g̃s ≡

gs
ε

and p+ (6.53)

all held fixed, the pp-wave spectrum - and consequently the Hagedorn behaviour -

exactly matches the weakly coupled gauge theory.

At this point, everything we have said so far applies specifically to maximally super-

symmetric N = 4 SYM theory. How then is this matching prescription affected by

a systematic deformation - such as the N = 1 γ-deformation - away from maximal

supersymmetry? The γ-deformed superpotential can be resummed as a Moyal-like

∗-product deformation

X ∗ Y = eiπγ(Q
1
XQ

2
Y−Q

2
XQ

1
Y)XY (6.54)

and similarly for the other superfields, where (Q1
X , Q

2
X ),

(
Q1
Y , Q

2
Y
)

and (Q1
Z , Q

2
Z) are

the charges of X , Y and Z under the U(1)1×U(1)2 global symmetry [7]. Consequently,

not only is the Feynman diagram structure (at the planar level) unchanged by the γ-

deformation, but, since this deformation preserves the three Cartan generators of the
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SO(6) R-symmetry, any closed subset of single trace operators remains closed under

renormalization group flow. Specifically, this is true of the SU(2) and SU(3) sectors5

consisting of single trace operators built out of two and three complex scalar fields.

Like its undeformed counterpart, the dilatation operator of γ-deformed N = 1 SYM

theory can be represented as the Hamiltonian of a spin chain acting on a spin-chain

Hilbert space6. Under the γ-deformation, since the commutators [X, Y ] → [X, Y ]γ ≡
eiπγXY − e−iπγY X, interchanging any two differently charged fields in the single trace

operator tr
(
XJ1Y J2

)
comes with a γ-dependent phase. At the level of the spin-chain

Hamiltonian, this deformation can be realized [94, 95] by either a parity-preserving

ferromagnetic XXZ-spin chain with γ-twisted boundary conditions or as the following

XXZ-spin chain with broken parity and periodic boundary conditions:

Hγ =
λ

(4π)2

J∑
l=1

{
Il ⊗ Il+1 −

(
σxl ⊗ σxl+1 + σyl ⊗ σ

y
l+1 + σzl ⊗ σzl+1

)
+ [1− cos (2πγ)]

(
σxl ⊗ σxl+1 + σyl ⊗ σ

y
l+1

)
+ sin (2πγ)

(
σxl ⊗ σ

y
l+1 − σ

y
l ⊗ σ

x
l+1

)}
. (6.55)

Either way, the resulting spin chain lends itself to a Bethe ansatz-type solution [94]

from which the energy spectrum may be extracted and, following [84], the Hagedorn

temperature determined. In principle then, we should be able to match the temperature

of the Hagedorn transition in the gauge theory with the Hagedorn temperature of the

dual string theory. Or should we?

The problem is that the SU(2)γ gauge sector - the first non-trivial sector in which

the matching prescription works - corresponds to the γ-deformed pp-wave background

associated with the (J, J, 0) null geodesic, which is now parameterized by

φ+ ≡ 1
2

(φ1 + φ2) = µx+ and φ+ = 1
2

√
4 + γ̂2 µx+, (6.56)

where we also set

θ1 = π
2
, θ2 = π

4
and ρ = φ− ≡ 1

2
(φ1 − φ2) = 0. (6.57)

We hence choose the modified ansatz

t = µx+ +
x−

2µR2
ρ =

y

R
φ+ = 1

2

√
4 + γ̂2

(
µx+ − x−

2µR2

)
φ− =

x1

R

θ1 =
π

2
+
x

R
θ2 =

π

4
+
x2

R
. (6.58)

5Since the U(1) sector of the theory is spanned by single trace operators constructed from just
one of the complex SYM scalars, it is a straightforward consequence of the holomorphicity of these
operators that this sector remains unaffected by the deformation.

6For the sake of definiteness and to facilitate a comparison with the (undeformed) Hagedorn/phase
transition analysis of [84], we shall restrict ourselves to the SU(2)γ sector of the N = 1 SYM theory
and content ourselves with comments on the U(1)γ and SU(3)γ sectors at the end of this section.
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and take the large R Penrose limit. The metric which describes this γ-deformed (J, J, 0)

pp-wave geometry takes the form

ds2 = −2dx+dx− − µ2

[
− 4γ̂2

4 + γ̂2

(
x2
)2

+

(
4− γ̂2 − γ̂4

4 + γ̂2

) 4∑
i=3

(
xi
)2

+
8∑
i=5

(
xi
)2

] (
dx+

)2

+
8∑
i=1

(
dxi
)2 − 4µx2 dx1dx+ +

2γ̂2√
4 + γ̂2

µ
(
x3dx4 − x4dx3

)
. (6.59)

Notice the flat direction x1. Like the (J, J, J) case, this pp-wave is rotationally dis-

connected from the γ-deformed (J, 0, 0) pp-wave. In fact, the situation here is slightly

worse - although the Penrose limit is well-defined at the level of the metric, this γ-

deformed (J, J, 0) pp-wave background is actually non-BPS. The first manifestation of

this fact arises when we try to apply the Penrose limit to the NS B-field. We find that,

to leading order,

B2 = 1
2
γ̂µR dx1 ∧ dx+, (6.60)

which diverges. The consequences are clear: if any comparison with the SU(2) sector of

γ-deformed N = 1 SYM theory is to be made, another way must be found which does

not involve a direct comparison with the Hagedorn temperature of strings propagating

on the γ-deformed (J, J, 0) pp-wave background. To date, we have not managed to do

so, but, given the success of the program advanced in [84], it would be disappointing

indeed if this were not possible for the N = 1 theory!

6.3.2 Decoupling the U(1)γ sector/γ-deformed (J, 0, 0) pp-wave

To conclude this section, we make a few brief comments about the U(1) sector of γ-

deformed N = 1 SYM theory. The partition function takes the form (6.46), but now

involves the γ-deformed dilatation operator Dγ. At weak ’t Hooft coupling λ � 1,

this becomes Dγ = D0 + λDγ
2 to linear order in λ. The γ-deformation affects only

interactions, so D0 yields simply the bare scaling dimension. The (J, 0, 0) decoupling

limit corresponds to the choice (Ω1,Ω2,Ω3) = (Ω, 0, 0) of chemical potentials, with

ε ≡ 1 − Ω → 0, while we hold fixed β̃ ≡ εβ and λ̃ ≡ λ
ε
. This results in small

temperatures and couplings. The partition function is then given by

Z(β̃) = tr
[
e−β̃(D0+λ̃Dγ2)

]
, (6.61)

where the trace now runs over only those multi-trace operators with D0 = J1.

The only surviving states in the Hilbert space are built out of a Fock space of single

trace operators of the form tr
(
ΦL

1

)
. Clearly holomorphic, these single trace 1

2
-BPS

operators are protected by supersymmetry and therefore vanish under the action of Dγ
2
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(as well as all higher order terms). Hence, for single trace operators, the γ-deformed

partition function in the (J, 0, 0) decoupling limit is given by

Z1(β̃) = tr
(
e−β̃J

)
=
∞∑
J=1

e−β̃J =
1

1− e−β̃
, (6.62)

which is obviously independent of the deformation parameter γ.

To complete the study, we still need to show that the matching prescription of [84] goes

through for the γ-deformed string theory on a (J, 0, 0) pp-wave background. Taking

the modified Penrose limit R̃ → ∞, with R4 ≡ ε R̃4 fixed and small, results in a γ-

deformed pp-wave metric identical to (6.5) up to an overall factor of
√
ε. Here again

(6.53) are held fixed as ε → 0, so that the mass parameter becomes large. We can

deduce the rescaled spectrum for strings polarized in the two sets of four transverse

directions as follows:

ω±n =
1

ε
sign(n)

√
m̃2 + (

√
εn± γ̂m̃)2 and ωn =

1

ε
sign(n)

√
m̃2 + εn2, (6.63)

with m̃ ≡ m
√
ε fixed. Notice that all these modes go like 1

ε
as ε → 0. Thus, using an

argument similar to that of [84], we conclude that it is not possible to excite any of

the transverse modes in the decoupling limit, as they correspond to states of infinite

energy.

The γ-deformed single string partition function in this (J, 0, 0) decoupling limit must

hence be simply a function of the lightcone momentum p+:

Z1(b) =

∫ ∞
0

dp+ e−bp
+

=
1

b
. (6.64)

This results in an expression

b = 1− e−β̃, with β̃ ≡ εβ, (6.65)

for the variable b as a function of the inverse temperature β.
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Conclusion:

marginal deformations

The suggestion that the Hagedorn temperature of strings on a particular background

may be invariant under a systematic breaking of supersymmetry (and possibly even

conformal symmetry) is intriguing. As far as we are aware, the first study of the

universality of the Hagedorn behaviour of strings on pp-wave geometries was carried

out in [96]. There it was demonstrated that the Hagedorn temperature of pp-wave

strings on a Lunin-Maldacena deformation of the Maldacena-Nuñez background [6] is

independent of γ̂. However, this is only a necessary condition for universality, which

requires to be supplemented by additional arguments. In this part, we have pursued

the line of reasoning initiated in [96]. The Hagedorn temperature of pp-wave strings

on the AdS5 × S5
γ Lunin-Maldacena background was found to be independent of the

deformation parameter, despite the complicated γ̂-dependence (at least for the (J, 0, 0)

case) of the multi-string partition function.

On the gauge theory side, utilizing technology developed in [84], we explored the pos-

sibility of matching this Hagedorn temperature with that of the confinement/ decon-

finement transition in planar γ-deformed N = 1 SYM theory - with limited success.

The U(1) sector, composed of holomorphic 1
2
-BPS operators is unchanged by the de-

formation, so the matching of the Hagedorn behaviour goes through unaffected. The

SU(2) sector, on the other hand, is far from trivial. Under the N = 1 marginal de-

formation, the XXX Heisenberg spin chain associated with single trace operators in

this sector is mapped to an XXZ spin chain, the Hamiltonian of which may be diag-

onalized by an appropriate Bethe ansatz. Even though the temperature of the con-

finement/deconfinement transition may then be computed, we argue that no matching

with the string theory is possible - at least not using the prescription of [84] - as the

corresponding γ-deformed (J, J, 0) pp-wave geometry is ill-defined.

It is clear that this study of the thermal properties of strings on γ-deformed pp-wave

backgrounds has generated a number of possible lines of enquiry:
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• The matching prescription of [84] might be adapted to the γ-deformed (J, J, J)

pp-wave background. The Hagedorn temperature could then be compared with

the temperature of the confinement/deconfinement transition in the PSU(2|3)

sector of the gauge theory. Since the completion of this work, substantial progress

has been made in this direction: [97] were able to apply the matching prescription

to several different sectors of N = 4 SYM theory. In particular, the PSU(2|3)

sector is associated with a modified Penrose limit which results in a pp-wave

background with two isometries. It should now be possible to extend this analysis

to γ-deformed N = 1 SYM theory.

• While our focus has been on γ-deformations of AdS5 × S5, which affect only the

5-sphere space, it should be noted that a number of other deformations exist.

In addition to the complex β-deformations [7] and the 3-parameter family of γi-

deformations of [8, 95], the TsT transformation of [8] has also been applied to

the global toroidal isometries of the AdS5 spacetime [98]. It would be interesting

to examine the Hagedorn behaviour of pp-wave strings on these backgrounds for

signs of universality.

Gaining insight into the nature of gauge theories at strong coupling is particularly

important, at this current point in time, given our proximity to the release of LHC

results. It is to be hoped that studying quantities which are universal across a large class

of such theories (with gravity duals) may allow us to make some tentative predictions

as to the behaviour of the strongly coupled quark-gluon plasma.
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Part IV

Summary and Conclusion
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Conclusion

Applications of the gauge theory/gravity correspondence are varied and diverse. Rather

than confining our attention to one aspect of a particular duality, we chose to consider

two broad topics involving several different AdS/CFT correspondences - both of the

original SYM/type IIB string theory, as well as the more recent SCS-matter/type IIA

string theory variety.

The primary focus of this thesis is on D-branes, their open string excitations and

(to a lesser extent) the dual local operators. Although we began with the intention

of studying giant gravitons in type IIA string theory on AdS4 × CP3 - and, indeed,

conducted a preliminary investigation of the spherical D2-brane dual giant - we found

it best, in the end, to take a more scenic route. The D4-brane giant graviton, embedded

in the complex projective space, is a highly non-trivial object, quite unlike the usual

spherical configurations. However, the existence of a known ansatz [63] for a similar

D3-brane giant in type IIB string theory on AdS5 × T1,1 suggested that an explicit

construction of this non-spherical object might not only prove profitable, but also lend

itself to an extension to the D4-brane giant graviton on AdS4 × CP3.

The nature of the maximal D4-brane giant graviton was initially more apparent. The

subdeterminant operator in ABJM theory factorizes, at maximum size, into the prod-

uct of two determinants (a special case of dibaryon operators). The maximal giant

should therefore comprise the union of two CP2 dibaryons - D4-branes wrapped on

different non-contractible CP2 cycles in CP3. With reference to a similar analysis [66]

of dibaryons on AdS5 × T1,1, we matched the spectrum of small fluctuations about a

CP2 dibaryon (particularly, those associated with the transverse CP3 directions) with

the conformal dimensions of BPS excitations of the ABJM determinant operators.

The D3-brane giant graviton on AdS5 × T1,1 turned out to be exceedingly interesting

in its own right. The construction involves a map between the two 2-spheres embedded

in T1,1, which disappears at maximal size - this is related to the factorization of the

dual subdeterminant operator in Klebanov-Witten theory into two dibaryons. In fact,



100

here what we are really viewing, from the gravitation perspective, is an indication of

the bifundamental nature of the gauge group. The fluctuation spectrum of the giant

graviton on AdS5 × T1,1 was shown to be dependent on its size. This phenomenon

is most unusual and probably relates to the fact that this configuration is far from

spherical. Our study of the D3-brane giant graviton was extensive, but we were also

able to conclude with an ansatz - thus far unverified - for the D4-brane giant graviton

on AdS4 × CP3.

These results clearly suggest a wide range of possibilities for future research. An inves-

tigation of the open string excitations of the D4-brane giant graviton on AdS4 × CP3

would be a fascinating enterprize. It should prove possible to match the open string

excitation energies to the anomalous dimensions of words attached to the ABJM sub-

determinant operator, which map to alternating open spin chains with fixed boundary

conditions. It might even be possible to find an interpretation in the gauge theory for

the dependence on size (which we expect to also observe for the D4-brane giant) of the

spectrum of small fluctuations.

The second topic chosen for consideration involves a study of the thermal properties

of an ensemble of closed strings. We tested the conjecture, initially motivated in [96],

that the Hagedorn temperature is a universal quantity - this was verified for pp-wave

strings on AdS5 × S5 under a Lunin-Maldacena deformation. We discussed matching

this temperature with that of the confinement/deconfinement transition in the dual

gauge theory, which is an N = 1 marginal γ-deformation of N = 4 SYM theory.

However, our results were unfortunately limited to the U(1) sector, since the SU(2)

decoupling limit of [84], on the gravity side, does not admit a generalization to the

γ-deformed case. Further studies of universal quantities might prove useful in gaining

insight into generic properties of strongly coupled gauge theories. For example, this

might lead to a better understanding of the strongly coupled quark-gluon plasma, which

we expect to observe at the LHC, as well as the phase of matter inside neutron stars.

Recently, the AdS/CFT correspondence has been applied to a wider and wider range of

systems. There has been much interest, in the last few years, in using this approach to

study condensed matter physics - in the vicinity of a quantum critical point, conformal

invariance is restored and the field theory lends itself to a dual gravitational description.

AdS/CFT then offers a novel interpretation of a number of phenomena [11]. A partial

understanding of the dictionary between both sides of the correspondence has also

offered great insight into the fundamental nature of spacetime itself - this appears to

be an emergent property encoded in the N2 degrees of freedom of the matrices in the

dual gauge theory. The notion of an emergent spacetime [13] is a fascinating subject,

which will undoubtedly receive much attention in the future.
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Part V

Appendices
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Appendix A

Eigenvalue problems

This appendix contains the solutions of a number of eigenvalue problems (EVPs) asso-

ciated with small fluctuations about dibaryons on AdS5 × T1,1 and AdS4×CP3, as well

as giant gravitons on AdS5 × T1,1. They involve hypergeometric differential equations

and are similar to problems discussed in [66, 99].

A.1 Stationary EVPs for a dibaryon and maximal

giant graviton

We shall first consider (based on [66]) the stationary EVP ∇2Φ = −EΦ, with ∇2 the

Laplacian (4.19) on the spatial extension of a dibaryon on AdS5 × T1,1. We then turn

our attention to the maximal giant graviton, consisting of two dibaryons, which has

fluctuations described in section 5.2.3. Here additional singular solutions of the original

problem must be included.

A.1.1 Standard EVP for a dibaryon

Let us look for solutions of the form

Φ(z, ξ, φ) = f(z) eimξ einφ, with f(z) = z
1
2
|m+n| (1− z)

1
2
|m−n| h(z). (A.1)

We find that h(z) must satisfy the hypergeometric differential equation

z (1− z) ∂2
zh(z) + [(|m+ n|+ 1)− (|m+ n|+ |m− n|+ 2) z] ∂zh(z)

−
{

1
2
|m2 − n2|+ 1

2
|m+ n|+ 1

2
|m− n|+ 1

2
(2m2 + n2)− 1

6
E
}
h(z) = 0, (A.2)
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which has solutions h(z) = F (a, b, c; z). This hypergeometric function is dependent on

the parameters

a, b ≡ 1
2

(
|m+ n|+ 1

2
|m− n|+ 1

)
±
√

1
6
E − 1

2
m2 + 1

4
and c ≡ |m+ n|+ 1, (A.3)

where a and b are associated with different signs in the ±. For regularity at z = 1,

either a or b must be a negative integer, so that

1
2

(
|m+ n|+ 1

2
|m− n|+ 1

)
−
√

1
6
E − 1

2
m2 + 1

4
≡ −s, with s ε {0, 1, 2, . . .} .

(A.4)

Hence the eigenfunctions of the Laplacian can be written as follows:

Φsmn(z, ξ, φ) = z
1
2
|m+n| (1− z)

1
2
|m−n| Fsmn(z) eimξ einφ, (A.5)

which correspond to the eigenvalues

Esmn = 6l(l + 1) + 3m2, with l ≡ s+ max {|m|, |n|}. (A.6)

Here s ≥ 0 and n are integers, and m is an integer or half-integer. The hypergeometric

functions Fsmn(z) ≡ F (a, b, c; z) previously described are dependent on s, m and n

through the parameters a, b and c.

A.1.2 EVP for the maximal giant graviton

We shall now look for additional solutions, which behave like Φ ∼ (1− z)−
1
2 as z → 1.

These are physically meaningful non-singular contributions when both halves of the

maximal giant graviton are taken into account. Setting

f(z) = z
1
2
|m+n|(1− z)−

1
2 h(z), with n = m± 1, (A.7)

we obtain the following hypergeometric differential equation:

z (1− z) ∂2
zh(z) + (|m+ n|+ 1) (1− z) ∂zh(z)−

{
−1

2
+ 1

2
(2m2 + n2)− 1

6
E
}
h(z) = 0.

(A.8)

The solutions h(z) = F (a, b, c; z) depend on the parameters

a, b ≡ 1
2
|m+ n| ±

√
1
6
E − 1

2
m2 + 1

4
and c ≡ |m+ n|+ 1, (A.9)

where, for a or b to be a negative integer,

1
2
|m+ n| −

√
1
6
E − 1

2
m2 + 1

4
= −s, with s ε {0, 1, 2, . . .} . (A.10)
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The modified eigenfunctions of the Laplacian, which are additional eigenfunctions with

this particular behaviour at z = 1, therefore take the form

Φmod
smn(z, ξ, φ) = z

1
2
|m+n| (1− z)−

1
2 Fmod

smn (z) eimξ einφ, (A.11)

with associated eigenvalues

Emod
smn = 6lmod(lmod + 1) + 3m2, where lmod ≡ s+ 1

2
(|m+ n| − 1) . (A.12)

The hypergeometric function Fmod
smn (z) ≡ F (a, b, c; z) depends on s ≥ 0, n = m± 1 and

m, now all integers.

A.2 Stationary EVPs for a CP2 dibaryon

The standard stationary EVP ∇2Φ = −EΦ on the complex projective space CP2 can

be solved using the chiral primaries (4.56) with eigenvalues (4.57). However, we shall

rather describe the CP2 subspace using the coordinates (x, z, ξ, φ), in terms of which

the Laplacian can be written as (4.50), and look for separable solutions. This method

is then applied to the modified EVP O±Φ = −EΦ, where we define

O± ≡ ∇2 + (1− x) ∂x ∓
i

x
∂ξ, (A.13)

which is associated with transverse CP3 fluctuations.

A.2.1 Standard EVP

Let us consider a separable solution of the form

Φ(x, z, ξ, φ) = f(z)g(z) eimξ einφ, (A.14)

with1 |m| ≥ |n|. We must now solve two related EVPs associated with g(z) and f(x),

the first of which is given by

∂z [z (1− z) (∂zg)]−

{
(m+ n)2

4

(1− z)

z
+

(m− n)2

4

z

(1− z)
+

(n2 −m2)

2
− λ

}
g = 0,

(A.15)

with λ some constant eigenvalue. Setting

g(z) = z
1
2
|m+n| (1− z)

1
2
|m−n| h1(z), (A.16)

1Functions in CP2 are built out of equal numbers of z’s and z̄’s - an excess of z1’s must be accounted
for by no more z̄2 or z̄3’s (and similarly for an excess of z̄1’s).
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we obtain the hypergeometric differential equation

z (1− z) ∂2
zh1 + [(|m+ n|+ 1)− (|m+ n|+ |m− n|+ 2) z] ∂zh1

−
{

1
2
|m2 − n2|+ 1

2
|m+ n|+ 1

2
|m− n|+ 1

2

(
m2 − n2

)
− λ
}
h1 = 0. (A.17)

Solutions take the form of hypergeometric functions h1(z) = F (a1, b1, c1; z), which are

dependent on the parameters

a1, b1 ≡ 1
2
|m+ n|+ 1

2
|m− n|+ 1

2
±
√
λ+m2 + 1

4
and c1 ≡ |m+ n|+ 1, (A.18)

where a1 and b1 are associated with different signs in the ±. For regularity at z = 1,

either a1 or b1 should be a negative integer. Hence

1
2
|m+ n|+ 1

2
|m− n|+ 1

2
−
√
λ+m2 + 1

4
= −s1, with s1 ε {0, 1, 2, . . .} , (A.19)

so that λ = k (k + 1)−m2, where we define k ≡ s1 + |m|.

The second EVP then becomes

∂x [x (1− x) (∂xf)]−x (∂xf)−
{
m2 (1− x)

x
+
k (k + 1)x

(1− x)
+m2 + k (k + 1)− E

}
f = 0.

(A.20)

We shall now take

f(x) = x|m| (1− x)k h2(x), (A.21)

where h2(x) satisfies the hypergeometric differential equation

x (1− x) ∂2
xh2 + [(2|m|+ 1)− (2|m|+ 2k + 3)x] ∂xh2

−
{

2 (|m|k + |m|) + k (k + 1) +m2 − E
}
h2 = 0. (A.22)

The solutions h2(x) = F (a2, b2, c2;x) are hypergeometric functions dependent on the

parameters

a2, b2 = |m|+ k + 1±
√
E + 1 and c2 = 2|m|+ 1, (A.23)

where E = l (l + 2), with l ≡ s2 +k+ |m| and s2 ε {0, 1, 2, . . .}, for regularity at x = 1.

Hence the eigenfunctions of the CP2 Laplacian are

Φsmn (x, z, ξ, φ) = z
1
2
|m+n| (1− z)

1
2
|m−n| x|m| (1− x)s1+|m| F z

s1mn
(z) F x

s2mn
(x) eimξ einφ,

(A.24)

which correspond to the eigenvalues

E = l (l + 2) , with l = s+ 2|m|. (A.25)

Here s = s1 + s2 ≥ 0 and n are integers, and m is an integer or half-integer. The

hypergeometric functions F z
s1mn

(z) = F (a1, b1, c1; z) and F x
s2mn

(x) = F (a2, b2, c2;x)

depend on si, n and m through the parameters ai, bi and ci. These eigenvalues are in

agreement with (4.57).
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A.2.2 Modified EVP

We shall now look for separable solutions (A.14) to the modified EVP. Notice that

taking m → −m implies that O±Φ → O∓Φ. It is therefore sufficient to consider m

positive, bearing in mind that the m negative solutions can then constructed by simply

interchanging the eigenfunctions Φ+ and Φ−.

The resolution of the first EVP for g(z) remains unaltered. The second EVP becomes

∂x [x (1− x) (∂xf)] + (1− 2x) (∂xf) (A.26)

−
{
m (m± 1) (1− x)

x
+
k (k + 1)x

(1− x)
+m (m± 1) + k (k + 1)− E

}
f = 0.

We must now distinguish between the ± signs. We shall take

f(x) = x|m| (1− x)k h+
2 (x) and f(x) = x|m|−1 (1− x)k h−2 (x), (A.27)

respectively. The hypergeometric differential equation for h+
2 (x) is given by

x (1− x) ∂2
xh

+
2 + [(2|m|+ 2)− (2|m|+ 2k + 4)x] ∂xh

+
2

−{2 (|m|k + |m|+ k) +m (m+ 1) + k (k + 1)− E}h+
2 = 0, (A.28)

which has solutions h+
2 (x) = F (a+

2 , b
+
2 , c

+
2 ;x) dependent on the parameters

a+
1 , b

+
2 ≡ |m|+ k + 3

2
±
√
E + 9

4
and c+

1 ≡ 2|m|+ 2. (A.29)

Here E = l (l + 3), with l ≡ s2 + k+ |m| and s2 ε {0, 1, 2, . . .}, for regularity at x = 1.

Similarly, the hypergeometric differential equation for h−2 (x) takes the form

x (1− x) ∂2
xh
−
2 + [2|m| − (2|m|+ 2k + 2)x] ∂xh

−
2

−{2 (|m|k + |m| − 1) +m (m− 1) + k (k + 1)− E}h−2 = 0 (A.30)

and has solutions h−2 (x) = F (a−2 , b
−
2 , c

−
2 ;x) depending on

a−1 , b
−
2 ≡ |m|+ k + 1

2
±
√
E + 9

4
and c−1 ≡ 2|m|, (A.31)

with E = l (l + 3) + 2 and l defined as before.

The eigenfunctions of the modified operator O± can therefore be written as follows:

Φ±smn (x, z, ξ, φ) = z
1
2
|m+n| (1− z)

1
2
|m−n| x|m|−

1
2
± 1

2 (1− x)s1+|m|F z
s1mn

(z)F x±
s2mn

(x)eimξ einφ,

(A.32)

and are associated with the eigenvalues

E+
smn = l (l + 3) and E−smn = l (l + 3) + 2, with l ≡ s+ 2|m|. (A.33)
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Here s = s1 +s2 ≥ 0 and n are integers, and m is a positive integer or half-integer. The

hypergeometric functions F z
s1mn

(z) = F (a1, b1, c1; z) and F x±
s2mn

(z) = F (a±2 , b
±
2 , c

±
2 ;x)

were previously described. Interchanging Φ+
smn and Φ−smn, together with the associated

eigenvalues E+
smn and E−smn, gives the m negative solutions2.

A.3 EVP for the small submaximal giant graviton

Let us consider the EVP �̃Ψ = −λΨ, with �̃ the (rescaled) d’Alembertian (5.83) on

the worldvolume of the small submaximal giant graviton.

If we take an ansatz

Ψ(t, z, χ2, χ3) ≡ f(z) e−iωt e
3
4
imχ2 e

3
4
inχ3 , with f(z) ≡ z

1
2
|n| (1− z)

1
2
|m| h(z), (A.34)

then the problem reduces to solving the hypergeometric differential equation

z (1− z) ∂2
zh(z) + [(|n|+ 1)− (|m|+ |n|+ 2)] ∂zh(z)

−1
4

{
2 (|mn|+ |m|+ |n|) +m2 + n2 −

[
ω + 1

4
(m+ n)

]2 − 2
3
λ
}
h(z) = 0. (A.35)

Solutions h(z) = F (a, b, c; z) are hypergeometric functions dependent on the following

parameters:

a, b ≡ 1
2

(|m|+ |n|+ 1)∓
√

1
6
λ+ 1

4

[
ω + 1

4
(m+ n)

]2
+ 1

4
and c ≡ |n|+ 1, (A.36)

where, for regularity at z = 1, either a or b must be a negative integer. Hence

1
2

(|m|+ |n|+ 1)−
√

1
6
λ+ 1

4

[
ω + 1

4
(m+ n)

]2
+ 1

4
≡ −s, with s ε {0, 1, 2, . . .} .

(A.37)

The eigenfunctions of the (rescaled) d’Alembertian are therefore given by

Ψsmn(t, z, χ2, χ3) ≡ z
1
2
|n| (1− z)

1
2
|m| Fsmn(z)e−iωt e

3
4
imχ2 e

3
4
inχ3 (A.38)

and correspond to the eigenvalues

λsmn(ω) = 6l(l + 1)− 3
2

[
ω + 1

4
(m+ n)

]2
, with l ≡ s+ max

{
1
2
|m+ n|, 1

2
|m− n|

}
.

(A.39)

The hypergeometric functions Fsmn(z) ≡ F (a, b, c; z) are dependent on the integers

s ≥ 0, m and n through the parameters a, b and c.

2Note that we have continued to use |m| in the Φ± eigenfunctions, despite the fact that m is
positive, so as to allow for this generalization to the m negative case.
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