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Abstract

The gauge theory/gravity correspondence encompasses a variety of different specific
dualities. We study examples of both Super Yang-Mills/type IIB string theory and
Super Chern-Simons-matter/type ITA string theory dualities. We focus on the recent

ABJM correspondence as an example of the latter.

We conduct a detailed investigation into the properties of D-branes and their operator
duals. The D2-brane dual giant graviton on AdS, x CP? is initially studied: we calculate
its spectrum of small fluctuations and consider open string excitations in both the short

pp-wave and long semiclassical string limits.

We extend Mikhailov’s holomorphic curve construction to build a giant graviton on
AdSs x TYL. This is a non-spherical D3-brane configuration, which factorizes at maxi-
mal size into two dibaryons on the base manifold T*!. We present a fluctuation analysis
and also consider attaching open strings to the giant’s worldvolume. We finally propose
an ansatz for the D4-brane giant graviton on AdS, x CP*, which is embedded in the

complex projective space.

The maximal D4-brane giant factorizes into two CP? dibaryons. A comparison is made
between the spectrum of small fluctuations about one such CP? dibaryon and the
conformal dimensions of BPS excitations of the dual determinant operator in ABJM

theory.

We conclude with a study of the thermal properties of an ensemble of pp-wave strings
under a Lunin-Maldacena deformation. We investigate the possibility that the Hage-
dorn temperature - dual to the temperature of the confinement/deconfinement tran-
sition in planar SYM theory - may be a universal quantity, at least under a partial

breaking of supersymmetry.
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Introduction

Over the last decade, a substantial body of evidence has emerged that various string
theories on anti-de Sitter (AdS) spacetimes are dual to conformal field theories (CFTs)
in flat space. Somehow it seems that the degrees of freedom encoded in the gauge theo-
ries (albeit mainly superconformal theories, unlike those observed in nature) rearrange
themselves into stringy degrees of freedom in the strong coupling regime. This sur-
prising phenomenon points to a fundamental link between gravity and modern particle

physics, which is, as yet, improperly understood.

The original idea is owing to t'Hooft [1]: U(N) gauge theories, with N large, admit
a % perturbative expansion in which the Feynman diagrams are organized in terms
of the genus of the surface upon which they are drawn (to leading order, only planar
diagrams survive). This resembles the genus expansion in gs of an interacting string.
The effective coupling constant at large N - associated with a loop expansion - is the
't Hooft coupling A = ¢?N, where ¢ is the original coupling constant in the gauge

theory. It is also possible [2] to extend the 't Hooft limit to include U(N) x U(N)

1

gauge theories, with the perturbative expansion in .

In 1997, Maldacena [3] proposed a concrete example of a gauge theory/gravity duality.
This AdS/CFT correspondence links A/ = 4 Super Yang-Mills (SYM) theory with type
IIB string theory on AdSs x S®. Various other AdS;/CFT, correspondences between
4-dimensional CFTs and type IIB string theories on AdSy,; spacetimes were later
suggested [4] - [8]. Being strong/weak coupling dualities, these are difficult to test, but
allow for the possibility of solving otherwise intractable problems by mapping them
onto the appropriate dual. For example, applications include the computation of gluon
scattering amplitudes in N/ = 4 SYM theory at strong coupling [9], a conjectured
universal lower bound on the shear-viscosity to entropy density ratio of the strongly
coupled quark-gluon plasma [10] and a dual description of condensed matter systems
in the vicinity of a quantum critical point [11]. Despite differing in specific details,

however, these AdS;/CFT, dualities are of the same general form.



There was widespread interest and, indeed, much excitement when, in 2008, Aharony,
Bergman, Jafferis and Maldacena (ABJM) proposed a very different example of an
AdS,/CFTj correspondence [2] between an N' = 6 Super Chern-Simons (SCS)-matter
theory and M-theory on AdSyx S7/Zy, which becomes type IIA string theory on AdSy x
CP? upon compactification. Not only does this provide us with a new, interesting SCS-
matter/type ITA string theory duality, but for the first time directly links a CF'T with
an M-theory. It might therefore prove feasible to study non-perturbative membranes

from a gauge theoretic perspective.

Let us consider a generic AdS,.;/CFTy correspondence. The CFT in the Euclidean
space R? (after a Wick rotation) can be reformulated as a CFT on the boundary
S x R of the AdS4.; spacetime® [12]. The radial coordinate in R? is set to r = €7,

so that the metric on R can be written as follows:
ds%d = dr® + TZdQ?l_l = 27 (d7'2 + d93—1) ,

which, up to the conformal factor %7, is the metric on S9! x R. Notice that dilatations
r — e“r become time translations 7 — 7+, so that scaling dimensions are mapped to
energies. Correlators (OI Os) of local operators in the original CFT,; become overlaps
(O1]0,) of physical states at spatial infinity by the operator-state correspondence.
The AdS,.1/CFT, duality allows us to associate physical states in the CET on the
boundary S?~! x R with string states in the bulk AdS;.; spacetime. The following
dictionary should therefore exist between the original CFT,; and the string theory on
an AdSg,1 spacetime: local operators are dual to string states in such a way that
anomalous dimensions map to string excitation energies. Moreover, these operators
carry R-charge under global supersymmetry transformations, which maps to the string

angular momentum in the compact space.

More recently, it has become apparent that organizing these operators according to
their R-charge? allows us to distinguish, in the gauge theory, between gravitons [14],
strings [15], membranes [16] - [19] and even whole new geometries [14, 20]. A suitable
operator basis for single particle states in the CFT must be orthogonal with respect
to the two-point correlation function. When the R-charge J <« N, a single trace
operator basis will suffice - the correlators involve terms of O (%), which are suppressed.
However, when the R-charge becomes comparable with the rank of the gauge group, a
calculation of the two-point correlation function involves combinatoric factors of O(N),
1

canceling the 5 suppression. A new operator basis must then be constructed - this

takes the form of Schur polynomials of fields [17]. Therefore, to summarize, single trace

!The spacetime takes the form AdSy;1 x X~¢, but the specifics of the compact space X?~¢ are

unnecessary here.
2For a recent concise review, see [13].



operators with R-charge of O(1) and O(y/N) map to gravitons and strings respectively,
while Schur polynomial operators with R-charge of O(N) and O(N?) are associated

with membranes and geometries.

An investigation of the string degrees of freedom from the perspective of the dual gauge
theory therefore involves a study of single trace operators. Minahan and Zarembo no-
ticed [21] that a single trace operator composed of scalar fields in A" =4 SYM theory
can be mapped to an integrable SO(6) spin chain with nearest-neighbour interactions.
The one-loop matrix of anomalous dimensions is associated with the spin chain Hamil-
tonian. This result was extended to include other sectors of the gauge theory [22].
Similarly, single trace operators composed of scalar fields in N/ = 6 SCS-matter theory
can be mapped to an integrable SU(4) spin chain [23]. This spin chain technology
greatly simplifies computations in the CF'T, as well as providing insight into the inte-

grable structures contained therein.

Shortly after the original Maldacena conjecture, the quantum numbers of %—BPS oper-
ators, the dimensions of which are protected by supersymmetry, were matched to those
of type IIB supergravity states [24]. Berenstein, Maldacena and Nastase (BMN) then
studied a class of ‘near-BPS’ operators [15], which can be mapped to long spin chains
with relatively few excitations. It turns out that the effective coupling A= % in this
sector of the gauge theory depends also on the length J of the operator (in this case,
equal to its R-charge). The BMN double scaling limit A, J — oo, with A= % <1
held fixed, allowed [15] to circumvent the strong/weak coupling problem and match the
anomalous dimensions of near-BPS operators with the excitation energies of type 1B
closed pp-wave strings. This proved a major success for the AdS/CFT correspondence.
In addition, Hofman and Maldacena constructed long ‘giant magnon’ string configu-
rations dual to magnon excitations of the A" =4 SYM spin chain [25]. The near-flat
space limit of [26] interpolates between the pp-wave and giant magnon sectors of type
IIB string theory on AdSs x S°. Type IIB string theory on AdS; x T!! has also been
extensively studied: the associated pp-wave [27, 28] and near-flat space [29] geometries

were obtained, and giant magnons constructed [30].

Recent studies [31] - [38] of the closed string sector of type ITA string theory on AdSy x
CP? suggest that the ABJM duality is somewhat more subtle. It is possible to take
a Penrose limit about a null geodesic in the AdS, x CP? spacetime and study closed
strings on the resulting pp-wave background. The pp-wave string excitation energies
were compared with the anomalous dimensions of long near-BPS operators [31, 32],
but a mismatch was found. Long semiclassical strings and giant magnons were also
investigated [34] - [36], together with strings on the near-flat space geometry [37]. These
results seem to indicate that BMN scaling is violated in ABJM theory: long near-BPS



operators scale like 55 f(A), where f(A) ~ A when A > 1 (the string theory is weakly
coupled) and f(A) ~ A? when A < 1 (the perturbative regime of the gauge theory).

This discussion would be incomplete without some mention of the open string sectors
of the type IIB and type IIA string theories. In studying open string configurations, an
understanding of D-branes is vital - these are non-perturbative dynamic membranes
embedded in the background spacetime. Open string excitations of dual and sphere
D3-brane giant gravitons on AdS5 x S° were considered in [39] - [41]. The dual N' =4
SYM operators involve words attached to Schur polynomials. In the BMN limit, the
anomalous dimensions of these words were shown to match the open pp-wave string
excitation energies. The open string sector of AdS; x CP? remains largely unexplored,
partly due to our current lack of knowledge concerning D-brane configurations on this

background, as well as the more complex nature of the SCS-matter open spin chain.

In seeking to better understand the manner in which the gauge theory degrees of
freedom are encoded in the string theory, it is crucial to investigate the gauge the-

ory/gravity correspondence in as many different laboratories as possible. Towards this
end, we study applications of both AdS;/CFT, and AdS,;/CFTj3 dualities.



Overview of thesis

This thesis is organized in parts, which contain related chapters, as outlined below:

Part I contains introductory information concerning the SYM /type IIB string theory
and SCS-matter/type IIA string theory dualities. In chapter 1, we discuss both the
original Maldacena conjecture, as well as the correspondence suggested by Klebanov
and Witten between an N' = 1 SYM theory and type IIB string theory on AdSs x Th!.
The new ABJM duality is described in chapter 2.

Part II involves an investigation of the properties of D-branes and giant gravitons, as
well as their gauge theory counterparts. This is the primary focus of this thesis and
several new results are presented in chapters 3, 4 and 5 relating to giant gravitons
and dibaryons in type IIB string theory on AdSs; x T'! and type IIA string theory on
AdS, x CP?.

Marginal deformations of N'= 4 SYM theory are discussed in part III. In the special
case of a y-deformation, we describe the construction of the gravitational dual - type
IIB string theory on a Lunin-Maldacena background. In chapter 6, we study the ther-
modynamics of an ensemble of pp-waves strings on the Lunin-Maldacena background,
with a view towards establishing whether the Hagedorn temperature is a universal

quantity, invariant across a class of type IIB string theories on AdS;5 spacetimes.

A summary of results, together with concluding remarks, are presented in part IV. We
discuss extensions of this work and describe various avenues for future research in the

field of gauge theory/gravity duality.
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Chapter 1

Super Yang-Mills/type IIB string

theories

Type IIB string theory is an N/ = 2 supersymmetric chiral' theory in 10 dimensions.
Its associated supergravity theory - involving the low energy limit o/ — 0, in which
the string tension becomes large and only massless modes survive - is type IIB 10D
supergravity. Here the bosonic degrees of freedom are the metric g, dilaton ¢ and 2-
form Neveu-Schwarz (NS) B-field by, as well as the even dimensional Ramond-Ramond
(RR) potential forms ¢y, ¢3 and ¢4, which couple to odd dimensional branes. The
fermionic field content consists of a Weyl gravitino ¢, , and dilatino A, [42]. We often
speak of string theories on fixed background spacetimes (at low energies, backreaction
may be neglected). These can be thought of as coherent states of a large number of
gravitons, dilatons, etc. The fixed background fields G, ®, B and C,, (together with
vanishing fermionic superpartners, for bosonic solutions) must hence solve the type I1B

10D supergravity equations of motion.

Let us now consider two possible low energy descriptions of N coincident D3-branes in

type IIB string theory on some, as yet unspecified, background spacetime [3, 43]:

The lowest energy, massless modes of open strings ending on these D3-branes are
described by a 4-dimensional non-abelian SYM theory with an SU(N) gauge group?.
Scalar fields describe the six transverse coordinates, while the gauge fields correspond

to the four worldvolume degrees of freedom. There are also spinor fields, which descend

'In the Green-Schwarz formalism, each fermionic field consists of two 16-component Weyl-Majorana
spinor coordinates with the same chirality, which can be combined into a single 32-component Weyl

spinor.
2The gauge group is actually U(N) = SU(N) x U(1), but the U(1) subgroup decouples.
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from the spinor coordinates in the bulk string theory.

The D3-branes are massive objects, which deform the geometry around them. A type
IIB superstring in the vicinity of the membranes propagates on the near-horizon space-
time, which takes the form AdS; x X5, with X® some 5-dimensional compact space.
From the point of view of an observer at infinity, all the string modes are gravitationally

redshifted to low energies, yielding the full type IIB string theory on AdSs x X®.

Since these are dual descriptions of the same system, we obtain various AdSs;/CFTy
correspondences between 4-dimensional SYM theories and type I1B string theory on

AdSs x X5 spacetimes. We shall focus on two examples:

N coincident D3-branes in 10-dimensional Minkowski spacetime My: This
yields the original AdS/CFT correspondence [3] (or Maldacena conjecture) be-
tween N/ = 4 SYM theory, with an SU(N) gauge group, and type IIB string
theory on AdSs x S°.

N coincident D3-branes in M, x C at the conic singularity of C in C*: The
duality which arises is between an N/ = 1 SYM theory (known as Klebanov-
Witten theory [4]) with an SU(N) x SU(N) gauge group, and type IIB string
theory on AdSs; x TH!,

We shall discuss both sides of these conjectured gauge theory/gravity correspondences,

as well as the dictionary between them.

1.1 The Maldacena conjecture

1.1.1 N =4 Super Yang-Mills theory

N =4 SYM theory is a maximally supersymmetric 4-dimensional field theory with an
SU(N) gauge group. It was originally constructed [44] from a 10-dimensional ' = 1
SYM theory containing a single gauge superfield (composed of a gauge field and a
Weyl-Majorana spinor). Dimensional reduction then yields the N' = 4 gauge multiplet?
(A, X%, ¢") consisting of the gauge field A, four 4-component Majorana spinors y2
and six real scalar fields ¢*. These fields all transform in the adjoint representation of
SU(N), and have conformal dimensions [A,] = [¢*] =1 and [x2] = 3.

3The scalar fields ¢* are the additional components of the original gauge field corresponding to the
six extra dimensions, which are reduced. The original Weyl-Majorana spinor can be written in terms

of the four Majorana spinors x&.
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The N =4 SYM action takes the form [43, 45]

S = zi d'z tr {_EFWF’“’ — EZDugka“qbk + E Z [qu, qbkf + fermions},
Iym 4 24 4 -
(1.1)
with field strength F,, = d,A, — 0,A, +i[A,, A,]. Here D,¢* = 9,¢" + i [Aua ¢k] s
the covariant derivative and gy is the Yang-Mills coupling constant. There is also an

instanton term proportional to the topological charge [43].

Let us define the complex scalar fields
X = ¢' +ig?, Y = ¢ + it and 7 = ¢° +i¢". (1.2)
When written in N' = 1 superspace, N' = 4 SYM theory contains a gauge superfield V

and three chiral superfields X', ) and Z associated with the above scalar fields. The
superpotential is then given by [43]

W =1Lgwmtr (XYZ - XZY). (1.3)

There is an SU(4) = SO(6) R-symmetry group and an SO(2,4) group of conformal
transformations (consisting of translations, Lorentz transformations, scalings and spe-
cial conformal transformations). This conformal symmetry remains unbroken at the
quantum level. Due to its maximally supersymmetric nature, N' = 4 SYM theory is
finite - the renormalization group [-functions, which describe the dependence of the

coupling gyy on the mass scale, vanish identically [43, 46].

Gauge invariant single trace operators can be constructed by tracing over the SU(N)
gauge group indices of a product of N' = 4 SYM scalar fields. For example, the
chiral primary? single trace operators, which belong to shortened %—BPS multiplets of
operators, are given by

Onzin = str (¢ ¢ ... ¢™), (1.4)
which denotes a symmetrized trace over n scalar fields. The dimensions of these chiral

primaries are protected from quantum corrections by supersymmetry [42, 43].

1.1.2 Type IIB string theory on AdS; x S°

A maximally supersymmetric solution of the type IIB 10D supergravity equations of

motion is AdS; x S° [43, 47]. The background metric is given by
ds* = R* {dsiag, + dsz } (1.5)

4The primary field/operator in a multiplet has the lowest dimension and is annihilated by all the
supercharges. It can be used to build up the other descendent fields/operators by acting with the

conjugate supercharges [42].
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where R is the radius of the anti-de Sitter and 5-sphere spaces, with individual metrics
dr?

(1+72)

dsis = df; + cos® 0y d; + sin® 0; (d63 + cos® O, dgs + sin® 0, d¢3) . (1.7)

dsies, = — (1+7%) dt* + + 7% (dof 4 cos® ar dB} +sin* a1 dB3)  (1.6)

Note that there is a 3-sphere embedded in both S* and AdSs. The dilaton ® vanishes,
together with the B-field By. The only non-trivial field strength is the self-dual 5-form
Fs = F + «F = dCy, with

F = 4R*vol(S®) = 4R* cosf, sin® 0, cos Oy sin Oy df; A dby A dpy A dgy A dps.  (1.8)

1.1.3 Dictionary

The original gauge theory/gravity correspondence between the N = 4 SYM theory and
type IIB string theory on AdS; x S° is a strong/weak coupling duality. The 't Hooft
coupling in the gauge theory is related® to the radii of the AdSs; and S° spaces [3, 43]:

A= giyN = R (1.9)

A strongly (weakly) coupled SYM theory corresponds to small (large) spacetime cur-
vature. When the string length is small by comparison to the size of the space in
which it lives, the gauge theory is strongly coupled. On the other hand, allowing for
perturbative expansions in A in the SYM theory takes us far from the supergravity

regime of the type IIB string theory.

In Maldacena’s D3-brane construction [3], the number of coincident branes simply
corresponds to the rank N of the SYM gauge group. Now, each D3-brane carries one
unit of charge with respect to the 4-form potential Cy, so N must be related to the
flux of the 5-form field strength F5 = dC} through the 5-sphere as follows [42]:

1 R
N=——— Fy=—. 1.1
(2m)4 /35 * T Ar (1.10)

Isometries in AdSs x S® correspond to superconformal symmetries in the gauge theory.
The SO(2,4) group of AdSs isometries matches the conformal group, whereas the
SO(6) rotational symmetry of S° is associated with the R-symmetry. The three U(1)
charges of this SU(4)% are dual to the angular momenta J; = —i -2- on the 5-sphere

96
[42, 43].

5Here we make use of units in which o = 1.
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1.2 The Klebanov-Witten duality

1.2.1 Klebanov-Witten theory

We begin by considering an N/ = 1 SYM theory in 4-dimensions containing two gauge
superfields, and two sets of two left-handed chiral superfields A4; and B; in the (N, N)
and (N, N) bifundamental representations of the SU(N) x SU(N) gauge group re-
spectively. Flowing to the IR fixed point, we then perturb by the non-renormalizable
marginal superpotential

W = XV tr (ABLA;B)) . (1.11)
This is Klebanov-Witten theory [4]. There is an SU(2)4 x SU(2)p symmetry group
- with one SU(2) acting on the A;’s and the other on the B;’s - as well as a U(1)
R-symmetry group under which the chiral superfields have R-charge %
field components of these chiral multiplets have conformal dimension [A;] = [B;] =

The scalar

3
4

and carry baryon number 1 and —1 with respect to the global U(1) symmetry group.

Single trace operators in Klebanov-Witten theory must be constructed from composite
fields with gauge group indices in only one SU(N). The primary single trace operators,
with the lowest dimensions for a given R-charge, involve the composite scalar fields

A;B;. Symmetrizing over the i and j indices separately, we obtain [4, 48]
Oiri2--in, J1j2--dn — oty { (AilBji) (Aisz2) o (AinBjn>} ’ (1.12)

which are primary single trace operators, protected by supersymmetry, with vanishing

anomalous dimensions.

1.2.2 Type IIB string theory on AdS; x T!!

Another solution of type IIB 10D supergravity is AdSs x T'!, where T!! is the base

manifold of a cone in C* [4, 48]. The background metric is given by
ds® = R* {ds}qgs, + i}, (1.13)

with R the radius of the anti-de Sitter and T'! spaces. The dilaton ® and B-field B,
are again zero, and the self-dual 5-form F5 = F + xF = dC) is the only non-vanishing

field strength, where now

F = 4R4 VOl(Tl’l) = 2i7 R4 sin 91 sin 92 d@l VAN dQQ VAN dw A dgbl N dgbg (114)
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This AdSs x TY! background solution preserves %L of the supersymmetries [27] of the

type 1IB supergravity effective action®.

The base manifold T!

The cone C, which is embedded in C*, is described by the four complex coordinates z*

satisfying z'22 = 232%. These may be parameterized as follows [49]:

3 . . Y 3 1.
2t = r; sin %1 sin %2 ez (V—d1—¢2) 2% = TG cos %1 cos %2 ez (¥+o1t92)

23 — T§ COoS %1 sin %2 e%i(¢+¢>1*¢2) 24 — TC% sin %1 CcoS %2 e%i(d}*d)ﬂr@) (115)
in terms of the overall radius r¢, and angles 6; € [0, 7], ¢; € [0,27] and ¢ € [0,4x]. The

base manifold T!! is obtained by setting r¢ to a constant, chosen to be unity.

Remarkably, it is possible to construct [49] a Kéhler, Ricci-flat metric on C, corre-

sponding to the Kahler potential F(r3) = r3, which is given by
dsg = drg + 1% dsiis, (1.16)
where the metric on the base manifold T*! takes the form

dspis = L[d + cosO1dgy + cos Oadgs)” + L (67 + sin® 01d¢]) + L (dB3 + sin® 02d3) .
(1.17)

This describes a % manifold - the U(1) identifies the coordinates 1); = by = %qp
in each of the SU(2) spaces parameterized by the Euler angles (6;, ¢;, ¥;). Alternatively,
we may view Th! as two 2-spheres (6;, ¢;) and an additional non-trivial U(1) fibre
parameterized by 1. In these coordinates, the volume element is given by

vol(TH) = —Losin @) sin 6y dfy A dfy A dip A dgy A doy (1.18)

108

and, integrating, we find that 27 is the volume of T*!.

1.2.3 Dictionary

Due to the non-renormalizability of the A/ = 1 SYM theory, less can be said about
this example of an AdS5;/CFT, correspondence, which links Klebanov-Witten theory
and type IIB string theory on AdSs x T'!. The rank N of the SU(N) x SU(N) gauge

68 of the 32 components in the Weyl gravitino spinor remain invariant under supersymmetry

transformations.
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group is related to the flux of the 5-form field strength through T!! [48]:

1 AR*
N = Fr = —. 1.1
(2m) /T Y (1.19)

The group SO(2,4) of AdS;5 isometries again matches the conformal group. The isom-
etry group of Th! is SO(3) x SO(3) x U(1), which corresponds to the SU(2) x SU(2) x
U(1)g symmetry group of Klebanov-Witten theory [4, 48]. The R-charge of an opera-
tor in Klebanov-Witten theory is associated with the angular momentum J = —21¢ %

of the dual type IIB string state along the fibre direction.
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Chapter 2

Super Chern-Simons-matter/type
ITA string theories

Type IIA string theory is an N = 2 supersymmetric non-chiral' theory in 10 dimensions
related by a T-duality transformation to type IIB string theory. M-theory is the strong
coupling limit of type ITA string theory and contains no strings, but rather M2- and M5-
branes in 11 dimensions. Due to the higher dimensional nature of their worldvolume
spaces, these M-branes - the fundamental objects in M-theory - cannot be quantized
perturbatively, and hence far less is known about M-theory than about any of the five

consistent superstring theories.

The effective field theory, which describes only the massless modes, associated with
M-theory is maximally supersymmetric N' = 8 11D supergravity. The field content
consists of the metric g, the 3-form potential as (coupling electrically to M2-branes
and magnetically to M5-branes) and the Majorana spinor ¢, ,. Type IIA 10D super-
gravity can be obtained from 11D supergravity via dimensional reduction. The bosonic
sector contains the metric g, dilaton ¢ and 2-form NS B-field by, as well as the odd
dimensional RR potential forms ¢; and c¢3, which couple to even dimensional branes.

The fermionic degrees of freedom consist of a gravitino ¢, , and dilatino A, [42, 47, 50].

Until recently, the worldvolume theory of N coincident M2-branes, even in flat Minkowski

spacetime, was unknown. A maximally supersymmetric? N' = 8 gauge theory in

LA fermionic field consists of two 16-component Weyl-Majorana spinor coordinates with opposite

chirality, so the combined 32-component spinor is not Weyl.
216 supersymmetries - half the 32 supersymmetries of the original N' = 8 11D supergravity back-

ground solution - should be preserved by the M2-branes, i.e. there should be eight 2-component spinor

coordinates in 3 dimensions.
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3 dimensions was expected. It should contain eight scalar fields (corresponding to
the transverse directions) transforming under the SO(8) R-symmetry group. Bagger,
Lambert and (independently) Gustavsson (BLG) constructed [51] a 3-algebra Super
Chern-Simons (SCS)-matter theory with matter in the bifundamental representation
of the SU(2), x SU(2)_ gauge group, and opposite level numbers k and —k. The spe-
cial case k = 2 yields the worldvolume theory of two M2-branes at a R®/Z, singularity.
Aharony, Bergman, Jafferis and Maldacena (ABJM) were able [2] to extend this con-
struction to the worldvolume theory of N coincident M2-branes at a C*/Z;, singularity
- an N = 6 SCS-matter theory with matter in the bifundamental representation of the
U(N), x U(N)_ gauge group (known as ABJM theory).

The near-horizon geometry of N coincident M2-branes placed at the tip of the cone
in M3 x C*/Z,, is the orbifold AdSy x S7/Zy. Identifying the worldvolume theory of
these M2-branes with M-theory in the near-horizon geometry, ABJM postulated [2]:

The M-theoretic version of an AdS,/CFT; correspondence: N =6 SCS-
matter theory with a U(N); x U(N)_, gauge group (with k < N3) is dual to
M-theory on AdSy x S7/Z.

It is also possible to compactify M-theory on AdS; x S to type IIA string theory
on AdS; x CP?. (This is equivalent to taking the large k limit of M-theory on
AdS, x S7/Zy.) The duality can therefore be reformulated as follows [2]:

The string-theoretic version of an AdS,/CFT; correspondence: N =6 SCS-
matter theory with a U(N)j, x U(N)_;, gauge group (with N5 < k < N) is dual
to type IIA string theory on AdS, x CP?.

The M-theoretic version of this duality is the first gauge theory/gravity correspondence
involving M-theory and we might therefore hope to gain insight into non-perturbative
features, which are otherwise inaccessible. However, we shall concentrate on the second
version of this AdS;/CFTj3 correspondence, involving type ITA string theory, since all
the technology developed to study AdSs;/CFT, correspondences becomes applicable.

2.1 ABJM theory

ABJM theory is an N/ = 6 SCS-matter theory in 3 dimensions with a U(N), x U(N)_y
gauge group, and opposite level numbers k and —k. Aside from the gauge fields® A, and

3All the other fields in the gauge multiplets are auxiliary [52].
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A,, there are two sets of two chiral multiplets (A;, ) and (B;, 2, corresponding
to the chiral superfields A; and B; in N' = 2 superspace, which transform in the
(N, N) and (N, N) bifundamental representations respectively. The scalar fields have
conformal dimension [A;] = [B;] = 3, whereas [A,] = [A,] = [04] = [Bi] =1 for the
gauge and 2-component spinor fields [2, 52].

These scalar fields? can be arranged into the multiplet Y¢ = (A;, As, B}L ,Bg), with
hermitian conjugate Y, = (A, A}, B;, B,), in terms of which the N = 6 SCS-matter

action can be written as [52, 23]

k 2 S 2
S= - APz tr {gw (A#E)VAA + gZAHAVAA — A,0,A, — éAMAI,AA)
1 1
+DIYIDry e + EY“YJY”YJYCYCT + EY@}@*Y*’}QTYCY;

1 1
—§Y“YaTYbYCTYCYbT + 5YaY,jYCY;Y”YJ + fermions} ,(2.1)

where the covariant derivatives are defined to be D, Y* =0,Y* +1iA4,Y* — iY“AM and

DiY} =0,Y] —iAY} +iY]A,. There are no kinetic terms associated with the gauge

fields - they are dynamic degrees of freedom only by virtue of their coupling to matter.
When written in N/ = 2 superspace [52], the ABJM superpotential takes the form
27 ij Kl
W= - e tr (A;B; ArB)) , (2.2)

which exhibits an explicit SU(2)4 x SU(2)p R-symmetry - the two SU(2)’s act on
the doublets (A;, A2) and (B, By) respectively. There is also an additional SU(2)z
symmetry, under which (A, B}) and (A,, B)) transform as doublets, which enhances
the symmetry group to SU(4)r - the multiplet Y* transforms in the fundamental

representation. The scalar fields A; and B; carry baryon number 1 and —1 respectively.
The conformal group is SO(2, 3).

Single trace operators in ABJM theory must be built out of composite N' = 6 SCS-
matter fields with gauge group indices in one U(N). Primary single trace operators

are constructed from Y“YbT. For example, restricting to the chiral primaries [23],
Ouean bt — e {(yeryf) (veyl) . (vey )} (2.3)

where we symmetrize over the a and b indices separately. The dimensions of these

chiral primary single trace operators are protected by supersymmetry.

4The associated chiral and anti-chiral multiplets can be written as (Y¢,42) and (Y,[,1%) as in [23].



CHAPTER 2. SCS-MATTER/TYPE ITA STRING THEORIES 17

2.2 M-theory on AdS, x S"/Z;

A maximally supersymmetric solution of 11D supergravity is AdS, x S” [47]. The

background metric is given by
ds®> = R? {dsias, +4dsi}, (2.4)

with R and 2R the radii of the anti-de Sitter and 7-sphere spaces respectively. The

metrics of these subspaces take the form

dr?

(1+72)
ds?; = do? + cos® g dF? 2.6
S 1 1

+ sin? oy {dag + cos? ap df3 + sin? ay (dozg + cos? g dﬁg +sin? ag dﬁi) } ,

dsiqs, = — (L+7%) dt* + + 72 (d6? + sin? 0 d?) (2.5)

where the embedded 2-sphere and 5-sphere are clearly visible. The 4-form field strength
F4 = dAg is

Fy = —3R%vol(AdSy) = —3R3r?sin 6 dt A dr A dO A de. (2.7)

This is Hodge dual to the 7-form field strength F; = xF; = dAg, which may be

calculated to be

Fr = 3(128)R% vol(S7) (2.8)

= 384 R% cos a; sin® ay cos as sin® am cos ag sin as dag A das A das A doy A das.

Hopf fibration of S” over CP?

The complex coordinates z# in C*, which are confined to S” by setting the overall

magnitude to one, can be parameterized as follows:

z' = cos ( sin %1 eilvtiv-301) 2? = cos ( cos %1 eilutivizen)

z* =sin(sin 2 eilv=iv+302) 2* =sinCcos 2 ¢ilv=iv-392) (2.9)

with radial coordinates ¢ € [0, 7] and 6; € [0, 7], and angular coordinates y, ¢; € [0, 27]

and 1 € [0, 47|, with y the total phase.

In terms of these coordinates, the metric of the 7-sphere becomes

dsir = (dy + w)? + dsgps., (2.10)
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where the Fubini-Study metric of the complex projective space CP? and the 1-form

field w are given by

ds?cps =d¢* + }1 cos? ¢ sin ¢ [di) + cos 01d¢p; + cos 92d¢2]2
+1cos® ¢ (d} + sin® 01d¢T) + 1sin® ¢ (df3 + sin® Oodgs)  (2.11)

w = §cos (20)dy + 5 cos?  cos f1dgy — 5 sin?  cos Gadeps, (2.12)

which is twice the Kahler form on CP?. Here we have written the metric of the 7-sphere
S7 as a Hopf fibration of a circle S' over the complex projective space CP?. The volume
element on the 7-sphere is vol(S7) = dy A vol(CP?), with

VOl(CP?) = L cos® ¢ sin® C sin 0y sin Oy dC A dfy Adfy Adp Ady Adgy — (2.13)

and, integrating, we find that the volume of the 7-sphere is %4, while that of the complex

i

6

projective space is

The metric of S” can be written as a Hopf fibration over the complex projective space
CP? (as described above). The orbifold S7/Z, is obtained by identifying the total phase
(which is the fibre) y ~ y + 27” up to an angle of 27”, with k& some positive integer. This
effectively shrinks this circle by a factor of +. We can then rewrite the metric (2.10) in

terms of the new coordinate § = ky € [0, 27).

Hence, we deduce that another solution of 11D supergravity is AdS, x S”/Z, with the
background metric [2, 53]

ds® = B2 {dsids4 + 4ds2s /Zk} , (2.14)
where the metric of the orbifold S”/Z;, is given by

dsd 5, = 72 (dJ + kw)? + dsgps. (2.15)

The 4-form field strength (2.7) is now dual to the 7-form field strength
Fy = «Fy = 3(128) R vol(S7/Zy,) = 3(128)R° 1 vol(S") (2.16)
= 121" % cos® ¢ sin® ¢ sin 6 sin 6y dy A dC A dfy A dfs A dip A dpy A deps.
Note that the volume of the compact space has been reduced by a factor of %, as

expected. The orbifolding to AdS, x S7/Z; breaks % of the supersymmetries [53] of

the maximally supersymmetric [54] AdS,; x S” background®.

524 of the 32 components in the gravitino remain invariant under supersymmetry transformations

after the orbifolding.
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2.3 Type IIA string theory on AdS, x CP?

AdS, x CP? is a solution of type IIA 10D supergravity and can be obtained [55] via
a Kaluza-Klein dimensional reduction from AdS, x S”. This can be thought of as the
large k limit of AdS, x S7/Z; in which the circle described by the total phase y shrinks

to zero size.

Kaluza-Klein reduction of 11D supergravity to type IIA 10D supergravity

Consider a bosonic solution of 11D supergravity with a metric and 4-form field strength,

which can be written in the form
2 4
ds? = e 3%ds* + e3® [dy + Ay (z)]? (2.17)

and Fy = dAs, with As(z,y) = As(z) + Ay(z) A dy, (2.18)

where y parameterizes the circle upon which we reduce and the z* denote the other ten
coordinates. There exists a bosonic solution of type ITA 10D supergravity with metric
ds?, dilaton ®, B-field By = dA,, and 2-form and 4-form field strengths Fy = dA; and
Fy = dAs + Ay A dA; [55].

We can apply the above Kaluza-Klein prescription to the metric (2.4) and 4-form field
strength (2.7) of AdS, x S7, with S7 written as the Hopf fibration (2.10) over CP?.
Redefining R? = 1R%, we obtain an AdS; x CP? background [2, 53], which has the
metric

ds® = R* {ds}as, + 4dsips } - (2.19)

The dilaton ® satisfies e?® = %2, while the B-field Bs still vanishes. The 2-form field
strength Fy, = dC and 4-form field strength F, = dC3 are given by

Fy = =3k {sin (2¢) d¢ A (dp + cos O1dey + cos Oads)
+ cos? ¢ sin 6y dby A dgy — sin® € sin 6y dfs A dng} (2.20)

Fy = —2kR*vol(AdSy) = —3kR*r*sin6 dt A dr A df A dep, (2.21)

with Hodge duals Fg = xF; and Fg = *F5. In particular, the 6-form field strength can
be determined to be
Fs = 2(64)kR* vol(CP?)
= 3kR* cos® ( sin® (sin @, sin Oy dC A dOy A dfs A dip A dpy A deps. (2.22)
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2.4 Dictionary

Both versions of the ABJM gauge theory/gravity correspondence are strong/weak cou-
pling dualities. The M-theoretic version, which links A" = 6 SCS-matter theory with
M-theory on AdSy x S7, relates the 't Hooft coupling to the radius R as follows [2]:

N 2 RS
where the rank N of the U(N) x U(N) gauge group may be determined from the flux
of the 7-form field strength F% through the orbifold S7/Z; to be

1 2 RS
N = 6/ Fr = — R— (2.24)
(277) S7 )7y ™ k

In the string theoretic version of the ABJM duality, involving NV = 6 SCS-matter
theory and type IIA string theory on AdS, x CP?, the 't Hooft coupling can be written
as [2, 53]

A

N R
ko 2n?
The rank N of the gauge group is related to the flux of the 6-form field strength Fj

A

(2.25)

through the complex projective space CP? via

1 4
N = _/ = (2.26)
(2m) Jops 272
Notice that the radius of the circle in S7/Z, upon which we perform the orbifolding,
is given by
1
R w2 N\*®
g I 2.2
k ( 2 k5) (227)

This becomes small when k < N3 - the regime in which the compactified type ITA
string theory on AdS, x CP? is the valid gravitational description. M-theory on
AdS, x S7/Z; is the gravitational dual of ABJM theory when N5 < k < N [2].

Isometries in AdS; x CP? (and AdS, x S7/Z;) match superconformal symmetries in
ABJM theory. The group of AdS, isometries/conformal transformations is SO(2,3),
while the SU(4) R-symmetry group maps to the group of rotations on the compact
space. The R-charge of a local ABJM operator therefore corresponds to the angular
momentum of the dual type ITA string state in CP?. The U(1) charges of the SU(4)%
are given by [31]

J=—1 (% + %) , Jo = —i (% + %) and Js = —2i % (2.28)
Here J; and J; are associated with motion on each of the 2-spheres, and J3 with motion
along the (shifted) fibre direction.
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Introduction:

D-branes and giant gravitons

A Dp-brane is a (p+1)-dimensional hypersurface in d dimensions, which describes the
end-points of open strings. These membranes are themselves dynamical objects, mov-
ing under the influence of the background spacetime. The open string modes are
described by a supersymmetric U(1) gauge theory on the worldvolume of the Dp-
brane, which contains a gauge field A, and d — p — 1 scalar fields X* (corresponding to
the transverse coordinates), as well as fermionic superpartners. The Dp-brane action
Spp = Sppr1 + Swz consists of the following Dirac-Born-Infeld (DBI) and Wess-Zumino
(WZ) terms [56]:

SDBI = —Tp/ dp+10. 67(13 \/— det (P [G + B]ab —+ 27TFab)
b

Swz = :|:Tp/ (ZP [Cl]) A 6271'F+7’[B]7
AN

with tension 7, = ﬁ and worldvolume field strength F© = dA. Here P denotes
the pullback to the worldvolume 3, described by the coordinates o%. A Dp-brane is
therefore naturally charged under the RR (p+1)-form potential Cy, 41 [57], but may also

couple to the lower dimensional RR potentials C}, with [ < p.

A non-abelian extension of the Dp-brane action to describe a system of NV coincident
Dp-branes was proposed by Myers [58]. The gauge symmetry is augmented from U (1)¥
to U(N), with the scalar fields in the adjoint representation. One significant finding
was that the non-abelian WZ action involves a coupling to RR potentials C;, with
[ > p. It was hence shown that DO-branes in an external 4-form field are polarized
and expand into a non-commutative or ‘fuzzy’ 2-sphere, which can be interpreted as a
(D2,D0)-brane bound state (known as the ‘Myers effect’). This system can alternatively
be viewed as a single spherical D2-brane with a non-trivial worldvolume gauge field.
McGreevy, Susskind and Toumbas [59] constructed a similar D2-brane, the extension

of which is supported, not by worldvolume flux, but by its angular momentum in the
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compact space - the coupling of the D2-brane to the 4-form field strength produces
a Lorentz-like force that balances the brane tension. These (classically) stable D2-
brane configurations were dubbed ‘giant gravitons’. D3-brane giants in type IIB string
theory on AdSs x S°, and M2-brane and M5-brane giants in M-theory on AdS; x S”
were studied in [54]. These were shown to be %—BPS objects, preserving half the

supersymmetries of the maximally supersymmetric background spacetimes.

In N = 4 SYM theory, giant gravitons on AdSs x S° are dual to operators with R-
charge of O(N), constructed as a Schur polynomial of the complex scalar fields X, Y
and Z. For example, restricting to the single matrix (Z) model [16] - [18]:

xr(Z) = % Z; Xr(0) 2t 22T
Here o is an element of the permutation group S,, with character yg(o), in the rep-
resentation R. Each such Schur polynomial has conformal dimension A equal to its
R-charge n and is labeled by a Young diagram with n boxes [19]. Not only do these
gauge invariant Schur polynomials diagonalize the free two-point correlation function,
thereby providing a suitable basis for the %—BPS sector of N'= 4 SYM theory, but they
also realize quite explicitly some of the characteristic properties of the dual D-branes.
For example, depending on which 3-cycle is wrapped by the D3-brane, giant gravitons
on AdS; x S° come in two flavours: AdS and sphere giants [54, 60]. These correspond
to Schur polynomials in the totally symmetric and totally antisymmetric representa-

tions respectively. The latter can be written equivalently as the subdeterminant [16]

1

_ B1..Bnont1...an aq Qn
On - o Eal...ananJrl...aN € Zﬁl cee Zﬁn .

Notice the upper bound n < N on the R-charge - an interpretation [59] of this so-called
‘stringy exclusion principle’ [61] is that the size of the sphere giant (which depends on

its angular momentum J) is limited by the radius of the 5-sphere.

Open string excitations of giant gravitons on AdSs x S° were studied in [39] - [41].
These are dual to ‘words’ (built out of both Z’s and other SYM fields) attached to the
Schur polynomial operator. The combinatorics of attaching such words encodes the
Gauss law constraint satisfied by the spherical D3-brane [62]. A comparison between
open string excitation energies and the anomalous dimensions of attached words is

assisted by a map from any such word to an open spin chain [39].

Prior to this work, much less was known about giant gravitons on AdSs x Th!. Al-
though Mikhailov proposed an ansatz [63], in terms of holomorphic curves on the cone,
for D3-branes embedded in T'!, these configurations were otherwise unstudied. In

Klebanov-Witten theory, operators dual to giant gravitons are Schur polynomials of
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composite scalar fields A;B;. For example, one such %—BPS operator xgr(A;By), with
3
2
bination A;B;. This has at least one interesting consequence when R is completely

conformal dimension A = sn and R-charge n, is obtained by replacing Z with the com-
antisymmetric: at maximum size n = N, the subdeterminant operator O, (A;B;) fac-

torizes into the product of two determinant operators:

O, (A1 By) AN (A @O (B (B, Y

= ﬁ €aq...an ( "

= det Al det Bl.

These dibaryon operators det A; and det By are dual to topologically stable D3-branes
wrapped on non-contractible 3-cycles in T"! [64] - [66]. Among other things, we would

like to know how the transition from the giant graviton to two dibaryons happens.

The open string sector of type ITA string theory on AdS, x CP?, which encodes all the
information about D-branes and their dynamics, has not been much studied. What
we do know about open strings on this background reveals a remarkably rich structure
[53], [67] - [69], including new spinning M2-brane solutions and giant tori. This last
configuration is particularly interesting, since the operator dual to this torus should
reproduce not only Gauss’ law for a compact object, but also its non-zero genus. This
would be a decidedly non-trivial test of the idea that topology is an emergent property

in the gauge theory. Initial steps towards developing this idea have been taken [69, 70].

There should be D4-brane giant gravitons on AdS; x CP*, which wrap non-trivial 4-
cycles in the complex projective space, as well as the ‘dual’ spherical D2-brane giants
[53] in the anti-de Sitter space. These descend from the M5-brane and M2-brane
giant gravitons on AdS, x S”, which were described by [54], upon compactification.
The operators in ABJM theory dual to giant gravitons are structurally identical to
those in Klebanov-Witten theory. Again choosing the composite scalar field A By, the
Schur polynomial xg(A;Bj), with conformal dimension A the same as its R-charge
n, describes a D2- and D4-brane giant graviton, when R is totally symmetric and
totally antisymmetric respectively. The latter, being equivalent to the subdeterminant
O, (A1 By), again factorizes at maximum size into two dibaryons det A; and det Bj.
These should be dual to topologically stable D4-branes wrapped on non-contractible
CP? cycles in CP.

This part involves an extensive study of D-branes, mainly giant gravitons, in type I1B
string theory on AdSs; x T™!' and type IIA string theory on AdS, x CP?. In chapter 3,
we begin by investigating the dual giant graviton on AdS; x CP? constructed in [53].
Chapter 4 involves a review of [66] concerning dibaryons on AdSs x T, together with
an investigation of the spectrum of CP? dibaryons on AdS, x CP?. A detailed study

of a D3-brane giant graviton on AdSs x T'!, obtained using Mikhailov’s holomorphic
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curve construction [63], is presented in chapter 5 and we adapt this ansatz to describe

a similar D4-brane giant graviton on AdS, x CP?.
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Chapter 3

Dual giant gravitons

We shall now focus on the dual giant graviton on AdS; x CP?. A review of its con-
struction by [53] is presented. We perturb about this D2-brane solution - taking into
account, both scalar and worldvolume fluctuations - and solve for its spectrum of small
fluctuations. Open string excitations are then considered. We attach short open strings
to the worldvolume of the dual giant and compute the bosonic spectrum in a pp-wave
limit. We also write down the Polyakov action for fast moving semiclassical long strings,
which should correspond to the Landau-Lifshitz action of an open ABJM spin chain
(mapped from long words attached to the ABJM Schur polynomial operator).

3.1 Dual giant gravitons on AdS, x CP*

Our construction of the dual giant graviton closely follows that of [53]. This dual giant
on AdS, x CP? is a D2-brane wrapping an S? C AdS, with angular momentum in CP?.
It is dual to the Schur polynomial yg(A;B;) in the totally symmetric representation

of the permutation group.

3.1.1 Ansatz for the dual giant graviton

Type IIA string theory on AdS, x CP? is described in section 2.3. In order to simplify

the dual giant graviton ansatz, it is convenient to make the coordinate change

X=35(W—¢1— o), Y1 =1 and P2 = Ga, (3.1)
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thereby shifting the fibre direction (visible in the metric (2.11) of the complex projective
space). The AdS; x CP? background metric (2.19) is now given by

d 2
R2ds? = — (1+12) di? + ﬁ + 72 (6 + sin® 0 dy?)
+4d¢% +4cos® (sin® ¢ (dX + cos? 92—1 dp; + cos® %2 dgpg)Q
+ cos® ¢ (d67 + sin® 6 dy?) + sin® ¢ (df3 + sin® 6, dy3) (3.2)
while the constant dilaton ® satisfies e2® = %2. The 2-form field strength Fy = dC',
shown in (2.20), becomes
Fy = —k {sin (2¢) d¢ A (dx 4 cos® & dipy + cos® 2 dips)
—I—% cos? (sin @y dby A doy — % sin? ¢ sin 0y dfy A dg@} (3.3)

and corresponds to a 1-form potential

C, = %k {cos (2() (dx + cos? %1 dp; + cos? %2 d@g) + %cos 0, dpi — %cos 0, d(pg} .
(3.4)
The 4-form field strength (2.22) can be written as F, = dCs5, with 3-form potential

Cs = LER*sinf dt A d A dp. (3.5)

— 2

Let us consider a D2-brane, with worldvolume coordinates o = (t, 0, ¢), which wraps
the 2-sphere (6, ¢) with constant radius r in AdS,. It moves along the circle parame-
terized by x(t), which is situated at ¢ = 7 and 6; = 0 = 7 (the south pole of each of
the 2-spheres - set to the same size - in the complex projective space). We shall also

assume that the worldvolume field strength F' = dA vanishes.

3.1.2 D2-brane action

A D2-brane is described by the action

Spa = —Tg/dsa e~ ®\/—det (P[] +27TF)+T2/73[03}+27TT2/7>[01]AF, (3.6)

with tension Ty = ﬁ Here P denotes the pullback to the worldvolume . The dual

giant graviton ansatz allows us to simplify this action:

kR? 2 - 3
Spy = ——— [ dt {7" \/1+7°2—X2—r}. (3.7)

2

Now, the conserved momentum P, conjugate to x satisfies

27 r? x
= —— P =—— 3.8
p ]{,’RQ X m? ( )
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from which it follows that y = wpt is a solution to the equation of motion. The
Hamiltonian H = P x — L is easily computed to be
_ kR?

H—ﬁ{\/1+r2\/r4+p2—r3}. (3.9)

This energy functional has two minima, one at r = 0 associated with the point graviton®
and the other at = p = 7y (when x? = w3 = 1), and attains a maximum at r =
%(4 — 3p2)% — % = I'max 10 between (see figure 3.1). It is the second minimum that we
shall call the dual giant graviton configuration in AdS,; x CP?. Note that its extension
to a size ry = p in the AdS, space is a direct result of its angular momentum in CP? - the
dual giant carries angular momenta J; = J, = 0 and J3 = P,. This solution satisfies

the BPS bound H = P,, which is an indication that the dual giant is supersymmetric.

point
graviton

dual giant
graviton
|
Il

0 Tmax To r

Figure 3.1: A sketch of the energy H as a function of the radius r at fixed momentum

P,. The dual giant graviton is energetically degenerate with the point graviton.

3.2 Fluctuation analysis

Having written down the classical brane configuration, we shall now analyze its sta-
bility. This information is encoded in the spectrum of small fluctuations about the
dual giant graviton [71] - [74]. However, it is crucial to note? that fluctuations of the

worldvolume gauge field must also be taken into account.

!Care must be taken in setting 7 = 0, since (3.8) is singular when 7 = 0 and w2 = 1. However, it

can be shown [59] - [60] that this is a sensible limit.
2We thank Kostas Skenderis for pointing this out.
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In 3 worldvolume dimensions, the analysis of the gauge field simplifies considerably
because of its Hodge duality with a massless scalar field. To see this, note that, in the

limit of small worldvolume flux, the relevant part of the action is
SA:—(27T>2 TQ/%6¢ dA/\*dA+27TT2/Cl/\dA, (310)

where A is the gauge field and F' = dA the associated field strength. To dualize to the
scalar field, we must first change the degree of freedom to F', while at the same time

adding a Lagrange multiplier ¢ in order to enforce the Bianchi identity dF = 0:
Sp = —(27)? Tg/e—q) {3 FAxF +¢dF} + 27rT2/C1 AF. (3.11)

Integrating out F' = — « (d¢ + 5= e® C), the dualized action is

1 i 1 P\ 2
S¢ = —(271')2 Tg/d30' 6_(1)\/ — det P[g] {5 8a¢ 8“¢ + S_ﬂ' Ola 3“gb + 5 <§_7T> Cla Cf}
(3.12)

For the transverse fluctuations, it is convenient not only to make use of the new angular
coordinates x, ¢ and ¢o, but also to write each of two 2-spheres in CP? in terms of

the Euclidean coordinates

uy = sin 6 cos ¢ Uy = sin 6y sin us = cos 6, (3.13)

v1 = sin 6y cos 9 vy = sin 6y sin o vg = COS bs. (3.14)

Here u? + u3 +u2 = 1 and v? + v3 4+ v3 = 1, so that we can eliminate uz and vz in
favour of the other coordinates. The AdS; x CP? metric is hence given by
dr?
1+
(uldul + UgdU2)2
1= (uf +u3)

_ 1 1 (urdug — ugduy )
+4cos2§sm2({dx+§([1—(1@"‘“3)]2_1) 1(u§—|—u§) 1

(1 syt ) e men)]

2 (v} 4 v3)

R7%ds® = — (14 r?)dt* + + 7% (d6” + sin® 0d?®) + 4 d¢® (3.15)

(vldvl + UQdU2)2

dvi + dvj
AT

+ cos® ¢ | du? + du3 + + sin? ¢

The fluctuations about the dual giant graviton - including both scalar and worldvolume

degrees of freedom - can be written as

r=ro+edr(c?) X =wot+edx(c?) ¢=75+¢ed((c")
u; = € du; (o) v; = € 0vy(a®) ¢ =R co¢g(c”),  (3.16)
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where 0% = (t,0, ) are the worldvolume coordinates and ¢ is a small parameter. We

shall expand the D2-brane action (3.6) to second order in ¢ as follows:

kR? .
Spa ~ ) o {R_gx/ — det Plg] — (r§ + 3erg 6r + 3%rg 6r?) sin 9} + S,.

(3.17)
Here we write the pullback of the metric to the worldvolume of the perturbed D2-brane
as det Plg] = —RC (b + by + €%by + ...), so that

R?’\/m%\/b_o—i—e(ljl_) - (%jb__%bbﬁ_) (3.18)

in terms of

bo

(1475 —wj) ry sin®6 (3.19)

by

2 [(2 + 3rg — 2wy T Or — worg 5)(} sin® @ (3.20)

7 [ T 5r’ +rg (1475 —wi) (Vor) } sin” ¢

(1+

[9rg + 6r0 (1+ 7§ —wj)] 0r®sin® 6 — Sworg dxor sin? @
[ T 5)( +rg (L4 75) (Véx) } sin® 0
4

+ o+ o+

[ ra ¢ + wird 8¢ + 13 o (1475 —wi) (Vdg)ﬂ sin? 6
+ §Z [ o 5“ + 7y (1+7“0 —wo) (Vou,) ] sin? 6

1 . .
+ ) Z [_Té 5“? + 73 (1 +r2 — wg) (Vévi)ﬂ sin? 6

1 ) 1 ) )
+ - 5 woro <5u15u2 5u25u1> sin? 0 + 3 woré <5015v2 - 51}251;1) sin?0, (3.21)
while the action of the scalar field becomes

i e2ry / d*c sinf { [_5¢2 + (V5¢)2] + 4wy 6009 — 4w 5C2} - 322

5=~ 1502

The gradient squared of any function f(6, ) on the 2-sphere (6, ¢), on which the dual

giant is wrapped, is defined as follows:

(V)= (0af)* + 0.1)%. (3.23)

9

Let us now organize the expansion of this D2-brane action Spy = Sy +&S; + 2S5 +. ..
in powers of €. At zeroth order, we obtain simply the D2-brane action (3.7) of the dual

giant graviton evaluated at r = ry. The first order action

2 2 _ 9,2 2 .
S = i o sin@{ (24 3ry — 2) 7o —3r2| or oo 6)(},

""‘ e —
82 V1+7r3—wh 0 V1+7r3—wi

(3.24)
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is less trivial. The second term in S; is easily recognized as a total derivative and
can be dropped. Setting wy = 1, we see that the first term also vanishes. This is an
indication that the dual giant graviton configuration, with radius ro = p and angular

velocity wy = 1, is, indeed, a solution to the equations of motion.

After integrating by parts, the second order action is given by

kR? 5 or . ) (1+72) ) , _
Sy = 1672 To/d o sinf {—(1 ) [—57“ +V (57"] + 2 ox [—5}( +V 5)(] + 26x0r

+ % Z Su; [—5{% v V25ui] n % (mm — 5u25u1)

+ % Z Sv; [—&)i n v%m} v % (&;15@ _ 5b25v1)

+46¢ [-5"4“ n v%c] + 60 {—5’@ n v%} _ 45<5¢} . (3.25)
The Laplacian on the 2-sphere

L (3.26)

©®

1
V2= s Oy (sin b 0p) +

in“ 6
is associated with the usual spherical harmonics Y}, (6, @), which satisfy the eigenvalue
equation V2V, = —I(l + 1)Y.

Varying this second order D2-brane action allows us to calculate the equations of motion
for the fluctuations (duq, dus), (dvy,dvs), (dr,dx) and (¢, d¢), which are coupled in
pairs. Defining

dxd = <5u1 + 10Uy, Ouy + i0ug, Or F HTO X, 0C £ 1 (5¢) (3.27)
these equations of motion decouple as follows:
oy + V20r +idx, = 0. (3.28)
To proceed further, we decompose the perturbations into Fourier components:

0z (t,0,p) = ZC“ it Yim (0, ¢). (3.29)

This expansion satisfies the above equations of motion when the frequencies are given
by wi- = %l or F(I+1). The spectrum of small fluctuations is entirely real (there are
no tachyonlc modes), from which we conclude that, like its D3-brane counterpart [71]

in AdS; x S°, the dual giant graviton on AdS, x CP? is perturbatively stable.

To conclude our fluctuation analysis, there are several points worth noting:

e Any dependence of the spectrum on the size of the giant would be a trace signa-

ture of the geometry that could be probed in the dual field theory. However, we
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see here that the frequencies are independent of the radius of the dual giant gravi-
ton. Physically, this can be attributed to the exact cancelation of two competing
effects: (1) blue-shifting of frequency from rising within an AdS gravitational

well, and (2) the increased wavelength on a larger worldvolume?.

e Since there are frequencies £/, the spectrum contains massless goldstone modes
from the breaking of a number of continuous symmetries. The radial part of
the SO(2,3) AdS symmetry is broken by our choice of the radius/momentum
ro = p of the dual giant graviton, leading to a goldstone mode associated with the
(07, 6x) fluctuations. There is also a broken SU(2) x SU(2) C SU(4) symmetry,
corresponding to the two 2-spheres contained in CP? - the goldstone bosons are

associated with normal modes of the (du, dug) and (dvy, dvg) fluctuations.

e Perhaps most intriguingly, there is also a massless mode which arises from the
coupling of the gauge field and the radius of the S' direction of motion (depen-
dent on the coordinate ¢). This implies the existence of giant graviton solutions
(with the same energy) involving non-trivial gauge fields. Such solutions can be
thought of as D0-brane charge dissolved in the giant worldvolume. In fact, the
infinitesimal worldvolume gauge flux associated with the zero mode fluctuation

(6¢ and d¢ constant) is given by
F=—x(d¢+ & e? C1) = —e LR?rgd¢ sinf df A dop, (3.30)

which is the flux of a Dirac monopole of charge —e %Ré( . Interestingly, such
solutions would seem to have maximum DO0-brane charge when the radius of the
S1 direction of motion shrinks to zero size. Similar solutions were found in [53],
although without CP* momentum. It would be interesting to find the relevant

charged dual giant gravitons in this case.

3.3 Open string excitations

Transverse fluctuations of D-branes are encoded in open strings attached to and moving
on the brane. In this section, we shall explicitly study these open string excitations
from the worldsheet perspective. Although a full quantum treatment of the worldsheet
sigma model is sorely lacking, several interesting and instructive limits exist. Two, in
particular, will be of interest to us: short strings and long semiclassical stings. We
shall extend the results of [40, 41] and present a systematic treatment of both these
limits for the dual giant graviton on AdS, x CP?.

3We thank Robert de Mello Koch for pointing this argument out to us.
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3.3.1 Short strings in a pp-wave geometry

To study short strings attached to the dual giant graviton, we need to take a limit in
which the size of the string is ‘amplified” with respect to the geometry that it probes.
It was argued in [40] that a good description of similar short strings attached to a
submaximal sphere giant on AdSs; x S® is of open strings attached to a flat D3-brane
on a pp-wave background. This was later extended to short open string excitations of
the AdS giant on AdSs x S° with qualitatively similar results [41]. The pp-wave limit
is particularly useful, since the string action becomes quadratic in the lightcone gauge
and consequently solvable [75, 76]. In what follows, we quantize the short string sigma
model on the pp-wave background associated with a null geodesic on the worldvolume
of the D2-brane giant graviton on AdS; x CP?® and compute its bosonic spectrum

exactly.

To take the Penrose limit, it is convenient to redefine the radial coordinate r = sinh p
in the anti-de Sitter space, so that the metric of AdS,; x CP? reads

R™ds® = — cosh? p dt* + dp® + sinh? p (d6” + sin® 0 d?)
+4.d¢* 4 4cos? (sin® ¢ (dx + cos? 62—1 dp; + cos® %2 dg02)2

+ cos® ¢ (d6 + sin® 0y dp}) + sin® ¢ (db3 + sin® 6y dp3) . (3.31)

The null geodesic

™

describes a trajectory parameterized by ¢ = u on the dual giant graviton. To construct

the pp-wave geometry associated with this null geodesic, we take the ansatz

v

t=ut ——
YT R2 cosh? 20
v tanh pg y1
= Uu — _
X R2 cosh? py R
v %
-y — 3.33
7T R cosh? o T Reosh po sinh pg (3.33)
and expand the coordinates, which are fixed on the geodesic, as follows:
Y2 T 21 ™ ) V2 T
pP=rtp 2 " Rsinh g 1 3R "TTR (3:34)

with ¢; unspecified. We can now take the Penrose limit, in which R becomes large and
we zoom in on the null geodesic. When ry = sinh pg is fixed, the radius of the dual

giant diverges like R. Therefore, as in the AdSs x S° case, this short string limit is
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effectively just a treatment of open strings attached to a flat D2-brane and propagating
on the pp-wave background

2

4 2 2
ds* = — ddudv — (Z zf) du® + Z dz? + Z dy? + Z dz?
i=1 i=1 i=1 i=1

+ dyody du + (zodzy — x1dxs) du + (r4d2s — T3d24) dut, (3.35)

where we make use of the Cartesian coordinates xo,_1 = 7 cos ¢ and xop = 1 sin ¢,
with ke {1,2}. When written in this form, there is a manifest similarity between this
pp-wave geometry and the homogenous plane wave background of [77], so that the

techniques developed there are easily adapted to this case?.

In lightcone gauge u = 2p“7, the bosonic part of the Polyakov action is

4
_ " do 1yv2 _ 1yr2 1 ‘ ‘ 1 ' ‘
S = / dr /0 o {; (357 = $7) + dm (X1 = X0 %0 ) + dm (XuXs — Xp X))
2 . . 2 .
+3° (397 - vR) wemvevi+ Y (327 - 127 + %m22?>} . (3.36)
I=1 I=1

with m = 2p“. Note that the string embedding coordinates X, associated with the

two 2-spheres, are coupled in pairs,
X+ = Xog 1 +1Xok, with  Ke {1,2}, (3.37)
as are the Y7, which descend from p and Yy,
Y. =Y +iYs. (3.38)

In the large R limit, the open string boundary conditions associated with the dual
giant graviton imply Dirichlet boundary conditions on X;, Y7 and Z,, and Neumann
boundary conditions® on the lightcone coordinates U and V, as well as Z;. Solving
the open string equations of motion - subject to the appropriate boundary conditions -
and quantizing the bosonic sector, we obtain the following expressions for the Neumann

embedding coordinate

Z\(1,0) = \/% [gg e 4 ()] em} + Zl \/wz [5; emonT 4 (eh) e] cos (no)
(3.39)

and the Dirichlet coordinates
> 4 T toaots]
X 7 — [ K¥F Wwn T K+ Wn T] 3.40
k+(T,0) nEZI \/ o a,te + (apF)'e sin (no) (3.40)

4See also [73] for a further discussion of the relation between the homogeneous plane wave and the

standard pp-wave in magnetic coordinates.
®Note that the lightcone gauge choice is consistent with Neumann boundary conditions on U.
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(1,0) Z \/:n [ﬁn e 4 (5jE)Jf “""T] sin (no) (3.41)
Zy(T,0) = Z_: \/wzn [ﬁi e~ nT 4 (éi)T e"””T} sin (no). (3.42)

Here the string frequencies are
n=Vm?4n?, O, =/im?+n? S =w,tm and @, =@, +im (3.43)
and the creation and annihilation operators satisfy the usual commutation relations

o, () ] = o=, ()] = [€5, (69)'] = 0%, for K, Le {1,2)

m ) m m) \>n

To determine the string spectrum, we express the lightcone Hamiltonian

4 2 2
1 [Tdo . . .
H, = E/ o {Z <%X12 - %X?) +) <§Yf + §Y1’2> +) (%Z? +1z77 + %mQZ?)} ,
0 I=1 I=1

) (3.45)

in the normal ordered harmonic oscillator basis as follows:
Hie = (&) &+ >0 =" |(6) e+ ( ]+Z[ +%(ﬁ;)*@:}
1
Y {ﬂ (af%) 0+ 4 O (or)! @H | (3.46)
m
Let us now relate the mass m of these short strings to parameters in the original

AdS, x CP? spacetime. In the Penrose limit, the energy and momenta, F, Jy and J,,,

of the string translate to the lightcone momenta

E+(J, +J
He=—-p,=FE— (Jx + Jcp) and —DPv = i ( X —12_ 90) =m, (3'47)
R? cosh” py
and the spatial momentum in the y; direction
1 J
= —— tanh J —— . 3.48
P R AP ( X sinh? po) ( )

To keep the lightcone Hamiltonian finite, we must require that £ = J, + J, + O(1),

whereas J, = J, + O(R) for finite p,,. Hence the original charges associated

Smh2

with the short string,

L
Jo =L, szm(uo(%)) and FE = Lcoth’py (1+0 (%)). (3.49)
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are specified (to zeroth order) by a single charge L, chosen to be the momentum J,
along the circle § = 7, parameterized by ¢, on the dual giant graviton. This gives the

inverse mass squared of the short open string excitations

1 1 R* cosh* py a0 N
m: - p (E+Jo+J,)°  2L? sinh® po (1+ 0 (F)) (3.50)
v x T Je

R4

272

A= % is fixed and small, the energy eigenvalues of the lightcone Hamiltonian can be

with t’Hooft coupling A = as discussed in section 2.4. In the limit in which

approximated as follows:

a}:l: ! 5 . n2 2 '

i+ E": Z+%i§z1+ﬁor ot with ne {1,2,...}  (3.51)
+ 2 2

BE %ﬂ:,/1+;;—Zi]w2+2”—m2 or 2”—W with ne {1,2,...}  (3.52)

K . Wn n? n? .
K — =1+ x4+ —, with n € {0,1,2,...}, (3.53)

m 2m
which can clearly be organized in powers of A, including states which are nearly mass-
less, since A< 1.

In the canonical AdSs x S background, the existence of a finite A = % scaling limit

is tied to the BMN scaling in N' = 4 SYM theory [15]. In this case, the anomalous
dimensions of near-BPS words attached to the Schur polynomial operator xr(Z) were
matched to similar open string excitation energies [40, 41]. It would be interesting to
see whether the mismatch observed [31, 32, 34] in the closed string/spin chain sector of
the ABJM duality persists for open strings by comparing the above energy spectrum

with the anomalous dimensions of the dual open SCS-matter spin chain.

3.3.2 Long semiclassical strings

Zooming back out to the full AdS, x CP? spacetime, we shall now consider long strings
ending on the dual giant graviton. Even though the string worldsheet on AdS, x CP?
is just as difficult to quantize as the usual AdSs; x S° case, we can still look at the
worldsheet action of a subspace of these string states, which facilitates comparison
with a semiclassical analysis of the ABJM spin chain. For long open strings attached
to the D2-brane giant, the analysis (at least on the gravity side) is identical to the case
of a D3-brane giant on AdSs x S°, the details of which are provided in [41].

The idea is to restrict to a string propagating on an AdSs x S' € AdS, x CP? by setting
0 =3, ¢ =7 and 0; = m. The metric of this subspace is given by

R7%ds® = — (1+7r?) dt* + - + 7% dp? + dx? (3.54)

(1+172) . ’
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The D2-brane is located at r = p and xy = ¢, leading to the appropriate Dirichlet
boundary conditions. The key to simplifying the action lies in choosing the correct
worldsheet gauge [78]. Keeping in mind an eventual comparison with the gauge theory,
we shall work in the static gauge t = 7, so that the worldsheet and spacetime energies
coincide (being dual to the anomalous dimensions of the ABJM operators). We also
choose a gauge p, = 2L, in which the momentum along the trajectory on the dual
giant graviton is constant along the string. Here L = % foﬂ do p, is dual to the spin of
the ABJM operator. This choice of gauge has a subtle interpretation in the canonical
AdSs x S° case: in deriving the spin chain from the N' = 4 SYM operator, a choice
must be made regarding the separation of the operator into ‘sites’ of the spin chain,
and choosing to spread the AdS,; momentum density evenly along the string leads to
a spin chain for which the sites are organized according to worldvolume spin (i.e. each
covariant derivative in the operator corresponds to a site in the spin chain). We expect

a similar interpretation in the AdS, x CP? case.

Let us define n = coshp = /1412 and ¢ = y — ¢, which vanishes on the dual giant
graviton. In the ‘fast motion’ limit, in which we assume that the momentum L along

the trajectory parameterized by ¢ is large, so that 0, ~ % < 1, the action reduces to

S = —L/dea { (nj— i 422 () 2 (#)°] + O (2—)} . (355)

In the AdSs x S® background, this action has been matched to the semiclassical Landau-

Lifshitz action derived in the coherent state basis of the dual sl(2) spin chain [41], and
we would expect a similar matching to occur for the analogous limit in our case, modulo
one important caveat®: the si(2) sector of ABJM theory, unlike N' = 4 SYM theory, is
not closed. Indeed, at the level of the closed string O.Sp(2,2|6) spin chain found in [23],
it was reported that operators involving the combination D,Y,'Y® mix with fermionic
operators containing zzbmwa. One interpretation of this mixing is that covariant deriva-
tive excitations do not correspond to elementary magnons on the closed string spin
chain, but should instead be thought of as bound states of fermionic magnons. It was
shown that only in the strictly infinite strong coupling limit do these excitations look
independent [79], so it is expected that, when string corrections are accounted for, they
will dissolve into fermions. Understanding this phenomenon in the open string sector

would be an interesting extension of the above analysis.

5We would like to thank the anonymous referee of 0901.0009 [hep-th] for bringing this point to

our attention.
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Chapter 4

Dibaryon spectroscopy

This chapter concerns dibaryon operators in the Klebanov-Witten and ABJM theories.
The conformal dimensions of BPS excitations of determinant operators (special cases
of dibaryons) are compared with the spectrum of small fluctuations about the dual
D3-brane and D4-brane configurations on AdS; x Th' and AdS, x CP? respectively.

4.1 Klebanov-Witten dibaryon spectroscopy

We begin by reviewing the comparison [66] of the spectrum of BPS excitations of
dibaryon operators in Klebanov-Witten theory with the spectrum of small fluctuations

about the dual D3-brane configurations in type IIB string theory on AdSs x T%!,

4.1.1 Dibaryons in Klebanov-Witten theory

Dibaryon operators in Klebanov-Witten theory are constructed as follows [65, 66]:

Dii = €y ay 10N {Df“"w ()™, . (AkN)aNﬁN} (4.1)
Dy = €X1-aN €51. B {D;ﬁk]v (Bkl)alﬁl o (BkN)afN} 7 (42)

which involve symmetric combinations of the scalar fields A, and By, and carry positive
and negative baryon number respectively. These dibaryons have conformal dimension
A= %N and R-charge %N . We focus on the special case of the determinant operators
det A; and det B;.
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Let us now replace one scalar field in the determinant operator det A; with a word
(composed of the same or other scalar fields) in the same representation of the gauge

group. First consider a word beginning or ending with an Ay; for example

Al — A1 (Bi1Aj1) e (BMA]”) (43)
= (A", B (A", | (B (307

where the indices have been explicitly shown. It was argued in [66] that there is no
BPS excitation of this form - the BPS operator with these quantum numbers is the

multiparticle state

which is dual to a graviton or closed string state in the presence of the original dibaryon.

However, it turns out [66] that words that do not begin or end in this scalar field A,
do not factorize into the product of any other states (at the level of the chiral ring).

Let us consider replacing A; as follows:
Al — AQ (B“AQ) e (BlnA2> . (45)

The new operator has conformal dimension A = %N + %n, and U(1) charges %N + %n
and in with respect to the SU(2)4 and SU(2)p global symmetry groups. For a given
n, there will exist some combination of these single particle states that is BPS and
corresponds to the lowest energy open string excitation (with angular momentum %n
on both 2-spheres) of the first dibaryon, which is dual to det A;, on AdSs x Th!.

Similar results hold for the determinant operator det B;. We shall consider replacing

B1 — B2 (A“ Bg) ce (AMBQ) s (46)

to obtain an operator with conformal dimension A = 3N + 2n, and U(1) charges in
and 1 N+ 1n with respect to the SU(2) 4 and SU(2)p. The BPS operator of this form is

dual to the lowest energy open string excitation of the second dibaryon on AdS; x T

4.1.2 Dibaryons on AdS; x T!!

We shall now construct (based on [66]) the two dibaryons, which are dual to det A,
and det By, in type IIB string theory on AdSs; x T*!. We calculate the spectrum of
small scalar fluctuations, with emphasis on those associated with the transverse T%!

degrees of freedom.
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Ansatze for the dibaryons

Type IIB string theory on AdSs x T"! is discussed in section 1.2.2. It is convenient [71]
to define cartesian coordinates vy to describe the spatial extent of the AdS5 spacetime

as follows:

v1 = 7 oS aq cos By Vg = T COS (v Sin 3y

v3 = 7 sin aq cos Po V4 = 7rsin a4 sin Fs. (4.7)

The ansétze for the two dibaryons, which wrap different 2-spheres and the fibre direc-
tion in TH1, and are dual to the determinant operators det A; and det B; respectively,

are given below.

1st dibaryon (6, = 0) ansatz

Vi — 0
0 = 92 =0
©(0%) = ¢o(0?) unspecified

with worldvolume coordinates

201
2

2nd dibaryon (¢, = 0) ansatz

Vi — 0
0= 91 =0
©(0%) = ¢1(0) unspecified

with worldvolume coordinates

ol=7=t
ol =z =cos* %
P ==Y+ h
0% = ¢ = ¢y

We also assume that the worldvolume field strength F' = dA = 0, so that the world-

volume gauge field A is trivial.

In terms of the coordinates (¢, vy) and (z, 60, &, ¢, @), the AdSs x T'! background metric
is given by

oy dz?
R7%ds®* = — |1 2 ) dt? ((ﬂ—L)did- —_— 4.8
s ( +zk:vk> +sz: TS ) v U]+6z(1_2) (4.8)
+%[d§+(22—1)d¢—(1—cos@)dgo]2+§z(1—z)d¢2+%(d92+sin26d<p2).

The 5-form field strength F5 = F + xF is associated with a 4-form potential Cy, which
couples to D3-branes. The only contribution relevant for branes (and small fluctuations

thereof) extended entirely in T™! is
F=—2R'sinfdf Adp Adz AdENdg, (4.9)
with the corresponding potential

C=2R" (1+cost)dp Adz AdE N do. (4.10)
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D3-brane action

A D3-brane in type IIB string theory on AdS; x T! is described by the action

Sbs = —Ts / Po /= det (Plg] + 27F) + T / PICy, (4.11)

with tension T35 = (Zi)g. The action associated with one of these dibaryons is therefore

given by

R 4
Sps = — do' <1 — = (o) p. 4.12
D3 727r3/2 o { 3 ¢(o )} ( )
The momentum conjugate to ¢ and the Hamiltonian H = P,$ — L are

44 4
P:i:N and H—R—3

= —=-N 4.13
v 2r 97 47 ( )

where we make use of the correspondence (1.19) between the rank N of the gauge group
in Klebanov-Witten theory and the flux through the base manifold T%!. Notice that
the energy %N matches the conformal dimension of either of the determinant operators
det Ay or det B;.

Fluctuation analysis

Let us consider small fluctuations about a dibaryon. It is sufficient to take into account

only scalar fluctuations, as the worldvolume fluctuations decouple. We shall specify
v = € oug(o?), 0 =¢edb(c”) and ©(0®) unspecified, (4.14)

and define dy; = §6 cos ¢ and dy; = 660 sinp. Here 0% = (¢, z,£, ¢) are the worldvolume

coordinates and ¢ is a small parameter.

The D3-brane action (4.14) may then be approximated by Spz = Sg + %55 + . . ., with

Sp the original action for the dibaryon and

4 . .
s, — _723 /E P {; (607 = duy + (Vou)?| + % > 0" + (Voy)’|

7

) ) )
—3 [5y25y1 — 5y15y2} + [0y2 (0c6y1) — 611 (0g5yg)]} (4.15)

the second order corrections. The gradient squared of any function f(z,&,¢) on the

worldvolume of the dibaryon is given by

(Vf)?=62(1—2)(0.f)° (4.16)

b o A2 (1= 2) 4 1@ + 0f) — 225 = 1) 36 @)}
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The equations of motion take the form

Svy, 4 0vy, — V2ou, = 0 (4.17)
oy, — V20ys F 4idy, =+ 6i (0:0y+) =0, (4.18)

where we define the new transverse coordinates dy = dy; +idys = 60 €™, in terms of

which the equations of motion decouple, and the Laplacian

V2 =60, {2(1 —2)0.} + 5 ’ {[22(1 — 2) + 1] 0 + 95 — 2(22 — 1)8:0, } . (4.19)

(1-2)

Expanding the fluctuations in terms of their Fourier modes

5’Uk (ta 2, ga ¢) = Z Csmne_iwgmntq)smn(za 57 ¢) (420)
~ .+
Sye(t,2,6,0) = Y Comne ™m0 (2, €, ), (4.21)

where ®,,,(2, €, @) are the eigenfunctions (A.5) of the stationary eigenvalue problem,
we obtain the following spectrum for one of the dibaryons

(Wh ) =611 +1) +3m* + 1 (4.22)

smn

(Wi, £2)° =6l(I+1)+3(mF 1) +1, (4.23)

with [ = s + max {|m/|, |n|}. Here s and n are integers, with s non-negative, and m is

an integer or half-integer.

The lowest frequency s = 0 mode, with |m| > |n|, is w™ = 3m or w™ = 3|m| for

a given m positive or negative respectively. Since m takes on integer or half-integer

3
29

dimensions of the BPS excitations of det A; and det By, which are constructed using
words of the form (4.5) and (4.6) respectively. The U(1)4 and U(1)p charges in of

these words match the spin m of the open string excitations on the first and second

values, we see that these frequencies increase in steps of £, matching the conformal

2-spheres respectively.

4.2 ABJM dibaryon spectroscopy

We shall now extend this comparison to dibaryon operators in ABJM theory. BPS
excitations of these states should map to open string excitations of the dual D4-brane
configurations in type IIA string theory on AdS, x CP?. A comparison is made at the

level of the fluctuation spectrum.
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4.2.1 Dibaryons in ABJM theory

Dibaryons in ABJM theory may naively be constructed in a similar manner as those

in Klebanov-Witten theory. The two classes of dibaryons take the form

Dll = €ay..ay 651---@\7 {Dl,m-.-aN (Yal)alﬁ1 te (YGN)Q%N} (424>
Dy = e e,y { D (V) (V)0 ) (4.25)

which carry positive and negative baryon number respectively, and have conformal
dimension A = %N . For simplicity, we shall choose to consider the representatives
det Y' = det A; and det YJ = det B;.

Let us now replace one of the scalar fields in the determinant det A; or det B; as follows:
Al — A2 (B“AQ) .. (anAQ) or Bl — BQ (Au BQ) .. (AanZ) . (426)

The new operators have conformal dimension A = %N +n, and U(1) R-charges %N —i—%n
and $n (or vice versa) under the SU(2)4 and SU(2)p subgroups respectively. They
are dual to open string excitations of the two CP? dibaryons on AdS, x CP?. Although
a general operator of this form will pick up an anomalous dimension, as was argued
in [66] for similar words attached to Klebanov-Witten dibaryons, we expect that, for
a given n, there will exist a combination that remains BPS. The dimensions of these

BPS excitations are protected and should match the lowest energy open string modes.

A significant difference between the ABJM and Klebanov-Witten theories is that, in the
first case, the gauge group is U(N) x U(N) rather than SU(N) x SU(N). Each U(N)
contains an additional local U (1) symmetry, but the current associated with the second
U(1) couples only to that of the first U(1) and is hence trivial [2]. Now, the dibaryons
(4.24) and (4.25) are charged with respect to the extra local U(1) symmetry in ABJM
theory, and are therefore not gauge invariant operators. It is, however, possible to
attach Wilson lines - exponentials of integrals over gauge fields - to the dibaryons to
make them gauge invariant. It was argued in [2] that these operators remain local and
that the Wilson lines are unobservable. This modification should therefore not effect

the conformal dimensions of the determinant operators or their BPS excitations [2, 69].

4.2.2 CP? dibaryons on AdS, x CP?

We shall now construct two CP? dibaryons, which are dual to det A; and det By, in type
ITA string theory on AdSy x CP?. The spectrum of small fluctuations is calculated. We
compare the lowest frequency modes associated with the transverse CP® coordinates

with the conformal dimensions of BPS excitations of the determinants in ABJM theory.
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Ansitze for the CP? dibaryons

Type IIA string theory on AdS, x CP? is described in section 2.3. Again, we make use

of the following cartesian coordinates to reparameterize the AdS, spacetime:

v1 = rcosf vy = rsinf cos ¢ v3 = rsinfsin . (4.27)

The dibaryons are D4-branes wrapped on the two natural CP? subspaces (¢, €, 0y, ¢;)
and (¢, &, 0s, @) of the complex projective space CP?. These are non-contractible cycles
- the D4-branes are therefore topologically stable configurations. The ansatze for the

two CP? dibaryons, which are dual to det A; and det B; respectively, are given below.

1st CP? dibaryon (6, = 0) ansatz

2nd CP? dibaryon (#, = 0) ansatz

Vi = 0
0= 92 =0
©(0") = ¢o(0®) unspecified

with worldvolume coordinates

ol=7=t

ol =z =sin’(

0? =z =cos® %
o' ==+ by
ot =¢=¢

Vi = 0
0= 01 =0
©(0%) = ¢1(0”) unspecified

with worldvolume coordinates
ol=7=t

o' =2 = cos?(

0? =z = cos® 2
P ==Y+
o' =¢ =y

The worldvolume field strength F' = dA = 0 is taken to vanish.

In terms of the coordinates (t,v;) and (z,2,0,&, 6, ), the AdS; x CP? background

metric is given by

R2ds*=— (145 02| a® + (5 _ L) dvdv;
( Xk: : sz: T+ ) ’

_|_£E(f—x_2@—|—x(l—az)[d§+(22—l)dqb—(l—COSQ)dSO]Q

+ (1 —x) [25—2_22) +4z (1 - 2) dqﬁﬂ + x [df? + sin® 0dp®] ,  (4.28)

while the field strengths!' can be written as
Fy=—ik{dz AN[d€+ (22 — 1) dp — (1 — cos 0) dy]
+2(1—2x) dzANdp+xsinb do N dy} (4.29)

INote that the ansatz for the second CP? dibaryon involves a change in orientation and the 2-
form and 6-form field strengths, as well as the associated 1-form and 5-form potentials, pick up an

additional minus sign as a result.
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F4 = —% kR2 dt N\ d’Ul N d’UQ A d’l)g (430)
Fs = —3kR*z (1 —x)sinf df Adp Adx Adz AdENde, (4.31)

with associated potentials

Cr=—3k{2(1—2)[d+ (22— 1)d¢ — (1 — cosb) dyp| — (1 + cos ) dp} (4.32)
Cy = $ kR dt A (vidvy A dvg + vadvg A dvy + vsdvy A duy) (4.33)
Cs =3kR* 7 (1 — ) (1 + cos @) do Adx Adz AdE N do. (4.34)

D4-brane action

A D4-brane on AdS, x CP? is described by the action Sps = Spgr+ Swyz, which consists
of the Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) terms

SDBI = —T4/ d50 €_¢\/— det (P[g] + 27TF) (435)
Swz = T4/ {P[C’5] + 27 P[Cs] A F + % (27)2 P[CLAF A F} . (4.36)

with tension T, = ﬁ The action for a CP? dibaryon may hence be calculated as

follows:
—k 4/d5 (1 —2){1 —6x¢p(c")} (4.37)
167 /., o z xo(a)}. .

The momentum P, conjugate to ¢ and the Hamiltonian H = P, ¢ — L are given by

SD4 =

kR* ER* 1
Here we make use of the correspondence (2.26) to express the above quantities in terms
of the rank N of the gauge group in ABJM theory. Notice that the energy of the CP?

dibaryon matches the conformal dimension %N of the associated determinant operator.

Fluctuation analysis

Let us consider small fluctuations about a CP? dibaryon. Both scalar and worldvol-
ume fluctuations will be taken into account, since it is not immediately obvious that
the latter decouple (although it turns out that they do). The ansatz for the scalar
fluctuations is

v = € dv(o?) and 0 =¢cdb(c?), (4.39)

with ¢(c®) unspecified. It is convenient to rather make use of the transverse CP?

coordinates y; = sinf cos ¢ and y, = sinfsin ¢, which vanish on the worldvolume of
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the CP? dibaryon and are perturbed as follows:
y; = € 0y;(0?), with  dy; =df0cosp and dyy = dfsin . (4.40)
The worldvolume fluctuation ansatz takes the form
2nF = e dF(0?), with  0F(c%) =d dA(c?). (4.41)

Here 0 = (t,z, z,&, ) are the worldvolume coordinates and ¢ is a small parameter.

We shall now calculate the D4-brane action, which describes these small fluctuations
about the CP* dibaryon, to second order in e. The DBI action (4.35) is

_ Lk 5 L,
with
~ L, 2 -2 2
“det Pyl ~2(1 - ) {1 +5¢ Ek [5% — v+ (Vo) ] (4.43)

+ s x Z [ 5y, (Véy;) ] 152 [6y2 (Dedy1) — o (a§592)]}

and * the Hodge star operator on the worldvolume of the CP? dibaryon. The gradient
squared of any function f(x, z, &, ) on the CPP? subspace is defined as follows:

o
z(l—x)

1 9 1 B B )
b (- 00+ s e - D@ - @]

(VI =a(1—a)(0.f)" + (0cf)? (4.44)

The WZ action takes the form?

1
1674

Sy = / {P (5] + eR? P [Cs] A OF + %52]%4 PIC1) AGF A 6F} . (4.45)
¥

where the potentials, pulled back to the worldvolume of the D4-brane, are given by
1 . .
P[Cs] = 6kR*z (1 — ) {gb - 4_152 <5y25y1 — 5y15y2> + 0(54)} dt Ndx Ndz N\ dE N do

P [Cs]
P ]

0(53)
——k (1 — ) [d€ + (22 — 1) dg] + k (Oup) do® + O(£?). (4.46)

2Note that, in this WZ action, we need to subtract off similar expressions evaluated at § = 7
(since these terms come from an integral over CP? of the corresponding field strength forms and the
0 integral runs from 7 to 0). This makes no difference to the term involving the 5-form potential,
which has been chosen to vanish when 6 = 7, but does result in an additional subtraction from the
integral over the 1-form potential. With this taken into account, the last term results only in a total

derivative in the WZ action.
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Combining the DBI and WZ terms, the D4-brane action can be approximated by
Sps = So + €25y + ..., with Sy the original action (4.37) for the CP? dibaryon and

4
52:—§£T4[2d50 (1—93){2[5% suy + (Vour) ]+x2[ oyi” + V5yz)]

k

—32 (89204 — i) + 692 (Dedn) — Oy (Dedye)] |

1k
_— F F 4.4
600 23/2 OF N %0F, (4.47)

the second order corrections. Notice that the worldvolume fluctuations decouple.

The equations of motion for v, and dy., which are the combinations dy4 = dy; +idys

of the transverse CP? fluctuations, are

vy, — V26uy, + Sy = 0, (4.48)
Sys F 3idys — V36ysr — (1 — 1) (0,0y+) £ o (Ogdys) =0, (4.49)

with the CP? Laplacian

2 _ _ _ b
Ve=0, [z (1—1x)0,] x@m—i-x(l_@ﬁg

1

1 2

Let us expand the AdS, fluctuations in terms of the complete set of chiral primaries
x; defined in (4.56). Solutions to the equations of motion (4.48) take the form

ov = Ze’iwﬁt X1 (zA, ZB) , (4.51)
!

with frequencies
(W) =1(+2)+1, (4.52)

where [ is a non-negative integer.

Laplacian and chiral primaries on CP?
The homogenous coordinates of CP? C CP? subspace take the form

=g et 2= VI—2)(1-2) ex  and 2* = V(l—x)z e 2%, (4.53)

where x, z € ]0,1], £ € ]0,47] and ¢ € [0,27]. These can be obtained (up to an overall

phase and an interchange of the z*’s) from the homogenous coordinates (2.9) of CP?.
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Following [23], we shall write down the Laplacian and chiral primaries in terms of these

homogenous coordinates of CP?. Let us first define the Laplace-Beltrami operator
LA =24 5.5~ 7B 50 (4.54)
in terms of which the Laplacian can be written as

o 0 o 0
2___ LA LB :__ A B R
v Z A { 924928 +ZAZBazAazB}

ZazA%——Z{ —+ Aaa } (4.55)

Any function on CP? can be expanded in terms of the chiral primaries
Z XA A M g, L g, (4.56)

Bz

with X ' symmetric (under interchange of any two A; or B;) and traceless. These

are eigenfunctlons of the Laplacian on CP*:

Vi =—-1(1+2)x, (4.57)

where the eigenvalues are dependent only on the length [.

It turns out, however, that the chiral primaries are not a suitable set of functions
over which to expand the transverse CP* fluctuations. We rather make use of the
eigenfunctions ®< (2,1, ¢), written down explicitly in (A.32), of modified operators
O+. The transverse fluctuations are then given by
bys = Y e It 9 (1,2,€,0), (4.58)
s,m,n

which solve the equations of motion (4.49), if the frequencies satisfy
Wi (Wh, +3)=101+3) and  w,,, (W, +3)=1(1+3)+2,  (4.59)

with [ = s + 2m, where s is an non-negative integer and m an integer or half-integer.
Here we have assumed that m is positive. The lowest frequency mode with s = 0
has w' = 2m, simply increasing in integer steps. (A similar result applies when m is
negative - the lowest frequency mode is then w™ = 2|m|). These frequencies match
the conformal dimensions of BPS excitations of the form (4.26) of the determinant
operators det A; and det B; in ABJM theory. Again the U(1)4 and U(1)p R-charges
correspond to the spin m. An interpretation of the m > n bound is simply that

these words are in the singlet highest spin state of the SU(2)4 and SU(2)p subgroups

respectively.
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Chapter 5

Giant gravitons

We shall now make use of Mikhailov’s holomorphic curve construction to build giant
gravitons in type IIB string theory on AdSs; x T!l. We analyze small fluctuations
about this D3-brane configuration, determining the spectrum explicitly for the small
submaximal and maximal giants. Open string excitations are also considered. We close

with an ansatz for a giant graviton in type IIA string theory on AdS, x CP?.

5.1 Giant gravitons on AdS; x T!!

We shall consider a giant graviton on AdSs x T'! dual to the subdeterminant operator
O, (A1 By) in Klebanov-Witten theory. This is a D3-brane, with angular momentum in
T4, wrapped on a contractible cycle in this compact space. Our construction of this

giant graviton is based on the ansatz of [63].

5.1.1 Giant graviton ansatz via a holomorphic curve

Type IIB string theory on AdSs x T!! is discussed in section 1.2.2. The base manifold
T is embedded in a cone C described by four complex coordinates z#, which satisfy
2122 = 232%. This constraint suggests that we associate these four complex directions
with the scalar fields A; and B; in Klebanov-Witten theory as follows [48]:

Zl — AlBl 22 — A2B2 Z3 — A2B1 24 — AlBg. (51)
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Let us choose the holomorphic curve on the cone C to be
Py =2 =), (5.2)

where p is a real constant. The surface of the giant graviton is the intersection of the
holomorphic curve with the base manifold T!!. For this intersection to be non-empty,
p must be confined to the unit interval, so that we may define p = /1 — o2, with

a € [0,1]. Here @ may be thought of as the ‘size’ of the giant graviton.

To introduce motion, take z4 — z4e=%® in the holomorphic function F(z4), with

©(t) an overall time-dependent phase'. Hence
F(ze W) = lemil) — /1 — 2 = 2l =V1-a2e¥l) (5.3)

where we hold the other independent coordinates fixed. There is a subtlety involved,
however, in choosing which two complex coordinates on the cone, aside from z!, to
consider as independent. These should correspond to exactly those angular directions
along which the giant graviton does not rotate. Since the dual operators are constructed
out of equal numbers of A;’s and By’s, we see that 2!, 22 and 2%/2% (or 2%/23) are the
correct independent coordinates to use. Therefore, we rotate around the %(1/} — 1 —d9)
direction, while holding %(iﬂ + ¢1 + ¢2) and ¢ — ¢o fixed.

We shall now define

X1= 3% —é1— da) (5.4)
X2 =3 (301 = 62) = 5[5 (¥ + 61+ ) + (61— 60)] (5.5)
Xs =3 (0 —¢143¢2) =3 [5 (V4 b1+ d2) — (61 — )], (5.6)
where? x; € [0, %] and x2, x3 € [0, %]. Note that x» and x5 are combinations of the
phases of our independent coordinates 22 and 2%/z%. The complex coordinates z*,
confined to the base manifold 7!, can be written as
Zl = Sin % Sin 0?2 €%ixl 2’2 = COS % CcOoS 9?2 e%i(X2+X3)
2* = cos L sin 1?0 tx2) 2t =sin % cos & eai0atxs), (5.7)

The giant graviton ansatz then translates into setting
sin L sin 2 = V1 — a2, (5.8)

and considering the angular direction of motion y1(t).

!The preferred direction of [63], induced by the embedding of T!! into the cone C, is along the
fibre ¢. This is independent of which holomorphic function is chosen to construct a particular giant
graviton and should not be confused with the direction of motion, which is the component of the

preferred direction perpendicular to the giant graviton’s surface.
2These angular coordinate ranges are not immediately obvious from the definitions (5.4) - (5.6),

but can be obtained from a consideration of the volume form.
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Point graviton (a = 0)

When o = 0, we obtain the point graviton. Here z! = e3:() and 22 = 23 = 24 = 0,

which describes the motion of a point along a circle of maximum radius.

Maximal giant graviton («a = 1)

The maximal giant graviton is obtained by setting o = 1. The polar coordinates 6,

and 0y on each of the 2-spheres decouple and we find two distinct solutions

sin 2 = or sin & = 0, (5.9)
which describes the union of the two spaces 5 = 0 or 6; = 0. These are the dibaryons of
[66] - two D3-branes wrapped on different 2-spheres and the U(1) fibre - corresponding

to the determinant operators det A; and det By respectively.

Submaximal giant graviton

We would like to understand this factorization into two dibaryons as some submaximal
giant graviton configuration in the limit as & — 1. Key in this endeavour is our choice
of worldvolume coordinates: the obvious independent angles are o and y3, but how do
we choose a radial parameter describing the giant graviton worldvolume? To obtain the
maximal giant as a limiting case, we cannot choose either 6; or 6y, as this choice would

eliminate half the maximal giant a priori. Let us rather consider the combination

u = cos & cos 2, (5.10)

which is the magnitude of the complex coordinate 22. Using the relation (5.8) between
01 and 0y on the giant graviton worldvolume, we can rewrite

u(6;) = cot &/a? — cos? &. (5.11)
Note that 6; is only defined on the interval [2 arccos av, w]. The function u(6;) vanishes
at both ends of this interval and attains a maximum value Uy, = 1 — V1 — a2 at the
polar angle ; . = 2arcsin (1 — a?)¥/4.
Now, we observe that the worldvolume of the giant graviton is a double-covering of
u. The 6 interval naturally splits into two pieces [2arccos a, 2 arcsin (1 — o?)'/4] and
[2arcsin (1 — a?)'/4, 7], which, since the u(f;) maximum occurs when 6; = 65, simply

correspond to #; < 0y and #; > 65. Leaving the second interval in terms of 6;, one
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could choose to describe the first region in terms of 6, mapping® it onto the second

interval in the analogous u(6y) diagram (see figure 5.1).

1-i-&ft—-——————————————— 7T 1-Vi—?f——————— - ——— — — =
// u(6) — /\’r(%)

0 2arccosar 2arcsin (1 — o?)!/* Q 0 Qarccosa 2aresin (1 — a?)!/4 ™

91 92

Figure 5.1: The radial coordinate u, confined to the worldvolume of the giant graviton
on which « is constant, plotted as a function of the polar angles 6, and 05 respectively.

The mapping between the u(6;) and u(6,) diagrams is shown.

The D3-brane action for the submaximal giant graviton will consist of two identical
parts, involving integrals over 6, and 6 respectively, which run from 2 arcsin (1 — o?)/4
to m (although we shall find it more convenient to simply double the integral over u
from 0 to 1—+/1 — a2). Note that this action still describes a single D3-brane extended
on both 2-spheres. In the limit o — 1, each of the second 6; regions covers an entire
2-sphere, whilst the first completely vanishes. In this way, we recover both halves of

the maximal giant graviton.

point graviton submaximal giant graviton maximal giant graviton

& . ) )
— -~
0=0 0
by =2arcees
‘ ' o ‘ ‘
O =x P
| 2 b= b=

Figure 5.2: Pictorial representation of the expansion of a point graviton, via a submaxi-

mal giant graviton intermediate state, into the maximal giant graviton on AdSs x TH!.
Regions identically shaded (either blue or green) are mapped onto each other by the
o

constraint sin 92—1 sin 3 = v/1 — a2, which describes the worldvolume of the giant gravi-

ton. The factorization of the maximal giant into two dibaryons is clearly visible.

This construction allows us to see the intermediate state - the submaximal giant gravi-
ton - between the point graviton and the maximal giant graviton. We observe the

manner in which the maximal giant factorizes - the relation between 6; and 6., and

3Note that there is a change in orientation under this map.
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the mapping between the different regions (shaded the same colour in figure 5.2) of the

two 2-spheres disappears.

5.1.2 Angular and radial coordinate changes

The giant graviton is situated at the center of the AdSs spacetime (moving only in
time t). We may therefore restrict ourselves to the background R x T™!, which has

the following metric:

R72ds? = —dt* + ds}, g5 + Ao gutar: (5.12)

with
ds? gial = & {d92 +db3} (5.13)
dsfmgular =13 {2 dip + cos 61d¢, + cos 62d¢2) + 3sin? 61d¢® + 3sin 92d¢2} (5.14)

describing the radial and angular parts of the metric (separated for later convenience)
associated with the magnitudes and phases of the complex coordinates z#. The giant

graviton couples to the 4-form potential with corresponding T!! field strength (1.14).

Angular coordinates y;

We shall now change to the angular coordinates y;, defined in (5.4) - (5.6), which most
conveniently parameterize the direction of motion and angular extension of the giant

graviton. The components of the angular metric (gy);; are stated in (5.19) - (5.24).

The determinant of the angular metric is given by

det g, = (3—32)2 sin® 0, sin” 6. (5.15)

We shall also need to know the determinant of the angular metric restricted to the

worldvolume coordinates y, and x3:

(Cy)yy = (?%) {2 sin?0; (1 + cos 02) + 2sin? 6 (1 + cos 91) + 3sin? f, sin® 02} ,
(5.16)
which is also the cofactor of the element (gy),,. The 5-form field strength in terms of

these angular coordinates y; and the original radial coordinates 6; is given by

F5 = 1_16 R4 sin 61 sin 62 d(gl N d@g N Xm N dXQ N ng (517)
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Angular metric in the coordinates (6;, x;)

The angular metric (5.14) of the base manifold T'!, which depends on the phases x;
defined in (5.4) - (5.6), is given by

dsingular = Z (gx)ij dxl de’ (518)
,J

where the components can explicitly be written as follows:

(2 — cos by — cos 92)2 + 3sin? 0, + 3sin? (92}
(1 + cos 61)2 + 3sin? 91}

I =3 2
2
2 (1 + cos f)” + 3sin? ]
2
2
1

9Ix)22 =

(2 — cos 6y — cosbs) (14 cosb) — 3sin® 6,
(2 — cos by — cos ) (14 cosby) — 3sin® 6,
+ cosfy) (1 + cosby)

9x)12

Ixhs —

(9x)
(9x)
()33 =
(9x)
(9x)
(9x)

= Bl= 8= 8- gl gl

Ix)oz =

in terms of the radial coordinates ;.

Orthogonal radial coordinates a and v

The coordinates v and u, which are defined by

V1—a?=sin%sin% and u = cos & cos £, (5.25)

are well suited to describe the size and radial extension of the giant graviton, but turn
out to be non-orthogonal. We shall hence rather choose to describe the radial space in
terms of the orthogonal radial coordinates a and v, with the latter defined as follows:
2u
VE (5.26)
The radial metric has components g, and g, in these coordinates, which are given in
(5.32) - (5.33) below.

We can rewrite the determinant of the angular metric in terms of the orthogonal radial

coordinates o and v as follows:

9 1 2
det g, = 6l (1—0a?) ) (1 —V1- oz2112> , (5.27)

and the cofactor associated with (g,),, becomes

(), = oL (1- mf {%m (1-vVI=a??) +3(1- a2)} .
(5.28)
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The 5-form field strength is

R a(1-VI=a??)

71}\/1 — 21 — a20?
and the associated 4-form potential is given by
R* (1 —V1- a%z)z

4 v3y/1 — 02

where the F distinguishes between the intervals ; > 65 and #; < #,. Notice that we

Fs=F da N\ dv Adyxy Adxs Adyxs (5.29)

dv A\ dxy A dxs N dxs, (5.30)

have chosen a gauge in which C}y is non-singular at o = 0.

Radial metric in the coordinates (o, v)

The radial metric (5.13) can be rewritten in terms of the orthogonal radial coordinates
a and v, which parameterize the size and radial direction on the worldvolume of the

giant graviton, as follows:

dsfadial = gadOCZ + gvdvza (531)
with components
2,2
o = c° (5.32)
31— o) Vi (1 Vi_a?)
1 —+v1—a??
( ) (5.33)

= 302 (1 —v2) V1 — a20?

5.1.3 D3-brane action

As a dynamical object in type IIB string theory, this giant graviton on AdSs x T! is
described by the D3-brane action Sps = Spgr + Swz, with DBI and WZ terms

SDBI = —Tg/ d40' — detP [g] and SWZ = Tg/ P [04] s (534)
b b

where T3 = ﬁ is the tension. We shall choose 0% = (¢, v, x2, x3) to be the worldvol-

ume coordinates, with v double-covering the [0, 1] interval.

Let us consider the DBI action. The determinant of the pull-back of the metric satisfies
—R®det P [g] = Gv [(Cx>11 - X% (det gx)} ) (5'35)

and, using the expressions (5.28) - (5.27) and(5.33) for the relevant components and

determinants associated with the angular and radial parts of the metric, we obtain

_R_8(1—m)4{1+3 (1—a*)v? (1—x3}) } (5.36)

_ det — hd
et Pl 16 v5(1—12?) 41 =a?? (1 - V1-a??)
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To determine the WZ term, we require the pull-back of the 4-form potential (5.30),
which is given by

Combining the above results, we obtain the D3-brane action, which describes a giant

graviton extended and moving in R x 7!, as follows:

2R
S = dt L, 5.38
o (5.38)

with the Lagrangian

2 :
L:/1dv2(1—\/1—a2v2) . 1+§ (1—a?)v?(1—x3) (5.39)
0 v3y/1 — 02 4/1 — a?v? (1 —V1- oﬂvQ) ’

where we have integrated over y» and xs.

The conserved momentum P,, = E?TL

describes the direction of motion, is

conjugate to the angular coordinate yy, which

(1-7).

\/17a2'u2(17\/17a2v2)

0o

/1d 2(1—VI—a??)
= v
0

P, = 14 X 5.40
X v3y/1 — v? X ] (1-a2)v2(1-%32) ( )
+ Z\/1 a2v 2(1 Vi—a v2)
The Hamiltonian H = x; P, — L can be explicitly written as
(1 o' )v2
a2v2)2 [1 + 71\/1 a?0?(1-V1-a?v?)
H = / v (5.41)

\/1—1}2 \/1+ 1a2v2(1 X)

4\/1 a2v? 1 Vi— 0121)2)

These expressions describe the momentum and energy in units of 29%4. We would now
like to minimize H (v, P,) with respect to « for fixed momentum P,,. However, since
it is not immediately obvious how to invert P,,(x1) analytically, we shall first consider

certain special cases.

Maximal giant graviton (o =1)

When a = 1, it is possible to evaluate the integrals over v analytically. The Lagrangian
becomes L = x; —1 and H = P,, = 1. All dependence on x; disappears from the
Hamiltonian H and the momentum P, ,, which is now due entirely to the extension of

the D3-brane rather than to its motion along x;.
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Small submaximal giant graviton (o < 1)

Let us assume that a < 1, so that we are considering a small submaximal giant
graviton, and expand the Lagrangian in orders of «a:

043

L%;{axl—\/oﬂ%—%(l—ﬁ)}. (5.42)

Here we must be careful to allow for the possibility that 1 — x? might be small, which
is why we cannot further simplify the square root. The momentum conjugate to y; is
thus

ad §X1
le ~ ? o+ 5 23 > (543)
\/a + 5 (1 —=x1)
and the Hamiltonian is given by
[PV Gt VN (5.44)

2 .
Jer + 31
In this approximation of small «, it is possible to isolate all dependence on y; and
invert the momentum. We obtain
3 1,4)2
- (@® +3) (Po — 30%)
1 — .
[9@6+ 5 (PX1 - %O/I)Q}

(5.45)

16 2

We can write the Hamiltonian as a function of the size of the giant graviton « and its

momentum P, as follows:

H~ /202 + 1\/%046 + (Py, — %0/1)2. (5.46)

Now, it is possible to solve for the maxima and minima. When the momentum P, is
positive, this approximate energy is minimum at o = 0 and o = o, and maximum at

Q' = Qpay in between (see figure 5.3). Here we define

o= WO TP -1t o= (V@ 2R G

These minima are energetically degenerate with H(ap, P,,) ~ H(0,P,,) = P,,. The
non-trivial minimum at «ag is associated with the submaximal giant graviton. Although
the expression for the Hamiltonian is approximate, the energy of the point graviton
solution at o = 0 is exact. Furthermore, we shall later argue that the submaximal
giant graviton remains degenerate with the point graviton even when its size aq is
large. When the momentum P,, is negative, only the trivial minimum at o = 0,

corresponding to a point graviton with energy H (0, P,,) = —P,,, exists.
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point
graviton

giant
graviton

7P\\

point
graviton

Figure 5.3: A generic sketch of the approximate energy H(a, Py,), when @ < 1, as a
function of a at fixed momentum P,,. Note that the submaximal giant graviton only

exists when P, is positive and is energetically degenerate with the point graviton.

Submaximal giant graviton

It turns out that, for all values of «, the Lagrangian (5.39) vanishes when y; = 1. This

implies that H = P.

1» Which remains a minimum® and corresponds to the submaximal

giant graviton solution, described in the previous section when a < 1. The size of the

giant ag is then determined from the momentum P,, via the following relation:

3
Py, (o) =11 (o) + 1 (1-0ag) I (ag) . (5.48)
where
2 (1 JI— a2 2>2
1 — — agu
I (a2) = /0 b = (o)1= af) +o] (549)
I ( 2) /1 d 2 (1 — 1/ 1 — 05(2)1]2) a[l (Ctg) 1 (1 2) (5 50)
ag) = v = =—In(1l-ap). .
23 0 /T —02/1—aZ?  9(af) ’

Simplifying, the exact expression for the energy and momentum of a submaximal giant

graviton with size aq is

H (o) = Py, () =1 — (1 — o) {1 - iln (1- ag)] , (5.51)

which is shown in figure 5.4.

This giant graviton is a BPS configuration, energetically degenerate with the point
graviton, and exists by virtue of its motion along the y; angular direction with conju-

gate momentum P, .

4This may be deduced by expanding H — P, in the vicinity of x1 = 1 and noticing that it is

always non-negative.
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g

Figure 5.4: The energy H(ag) of the submaximal giant graviton in units of 29%4 = %N

(which is twice the energy of a dibaryon [66]) as a function of its size «.
5.2 Fluctuation analysis

For the purposes of the fluctuation analysis, it is convenient to describe AdS5 in terms

of the coordinates (t, vy ), where the cartesian coordinates vy are specified in (4.7). We

shall also define z; = cos? % in terms of which the orthogonal radial coordinates can

be written as

2./
=21+ 29— 212 and v = V22 sin 3, with e [0, g] . (5.52)

2’1—|—22

Radial metric in the coordinates z; and («a, )

The radial metric (5.13) in the alternative radial coordinates z; = cos? % is given by
1 dz=: dz3
ds? g = —{ L+ 2 } 5.53
dial 6 21(1 - Zl) 22(1 - ZQ) ( )

We may also rewrite (5.31), using v = sin /3, in terms of the alternative orthogonal

radial coordinates o and (3:
ds?adial = gadCKQ + gﬁdﬁ27 (554)

with components

a?sin? 3
3(1 - a?) \/m@ /1 —a281n25>
(1- Vi=aZsi®B)

98 = : (5.56)

3sin? By/1 — a?sin’ B

o = (5.55)
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The surface of the giant graviton is described by a = g constant, which is a shifted

hyperbola in the (z1, z3)-plane:
(1—2)(1—2)=1-ad. (5.57)

The giant graviton solution can therefore be represented more simply in the coordinates

z; (see figure 5.5 below), which shall also prove useful in our fluctuation analysis.

zp =1 maximal
giant
graviton
4

submaximal
giant graviton

7 =1
Z9
/
o
/
P
7
5 s
ol <1 7
N, “small submaximal
point / "N\ glant graviton
graviton ;

° ap <1 z1 ol 1

Figure 5.5: The giant graviton on the (21, z2)-plane: the point graviton, small sub-
maximal giant graviton (with approximate solution), submaximal giant graviton and
maximal giant graviton (two dibaryons) are indicated in the sketch. The line z; = 29

(so v = 1) separates the two regions which double-cover the v € [0, 1] interval.

We can invert these relations for z; and 2z, as follows:

1

7 = cos” & = - (1 —V1- 0421)2) (1 FV1-— v2> (5.58)
v
1

zp = cos® 2 = - (1 —Vv1-— oz21)2> (1 +V1-— 112> : (5.59)
v

where the F and 4 distinguish between the regions z; < 25 and z; > z5. Note that,
on the first covering the z; may also be expressed in terms of the alternative radial

worldvolume coordinate (:

1 1
2 = ey (1 —1/1 — a2 sin? 6) sin2§ 29 = S (1 —4/1—a?sin’ 5) cos” §,
(5.60)

on the second covering. However, this

28
2
is equivalent to taking 5 — m — (3, so both coverings may be parameterized by simply

whereas we must interchange sin2§ and cos

extending the range of 3 to [0, 7].
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5.2.1 General fluctuation analysis

Let us consider the general fluctuation ansatz
v = € dug(o?), a=ag+edalc?) and x1=t+edxi(c?), (5.61)

with worldvolume coordinates o* = (¢, 3, x2, x3). Here ag is the size of the giant

graviton, about which we are perturbing, and ¢ is a small parameter.

We shall now approximate the D3-brane action to second order in €. The components
of the metric are left in terms of @ = ap + € da (we only need to expand certain

combinations at the end of the calculation). Hence

Sps ~ 8R_7:5” dt dB dyodxs \/gg [(Ox)n — det gx} (5.62)
X { [(CX)H o det gx] |:<OX)11 6X1 + (CX)12 (8X25X1) + (Cx)lg (axa(SXl)}
1, B (Cy)y, vy, —(9s5u2 b )2 — (det gy) (6(5X1)2
! 2 ) zk: { [(Ox)n — det gx] (Odu) } (0 001) [(Ox)n — (det gx)]] } 7

where the components g, and gz of the radial metric in the alternative orthogonal
radial coordinates o and [ are given in (5.55) and (5.56). The expressions involving
the cofactors (Cy);; of the angular metric components (g, );; are both stated explicitly
in (5.64) - (5.69) and (5.71) - (5.76) in terms of the z;, which are the functions (5.60)
of a and f.

The terms involving a single € coefficient should be expanded to first order in € da. The
zeroth order terms in these expansions - corresponding to O(g) terms in the D3-brane
action - yield total derivatives, which is to be expected, since the giant graviton is a
solution to the equations of motion. The first order terms contribute addition O(&?)

terms to the D3-brane action.

The (spacetime) gradient squared on the worldvolume of the giant graviton is defined

as follows:

(951)° 1 Y B ,
9% [(Cy)y, — detgy] {00 £+ [(COn = (0] Gt (563

+ [(Cx)gg - (gx)m} (axsf)2 + 2 (Cx)12 f (Ox>f)
+2(Clys f Onaf) + 2 [(Clas + (9] Braf) @) }

(0f)" =

with f(t, 3, x2, x3) any function of the worldvolume coordinates. Here all the cofactors
(Cy)ij, and metric components (g, );; and gg, as well as the determinant det g, are now

evaluated at o = «.
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Angular metric in the coordinates (z;, x;)

The components of the angular metric (5.18), which are (5.19) - (5.24) in terms of the

radial coordinates 6;, can be written as

(9);; =2 [22— 21— 2)? + 321 (1 — 21) + 322 (1 — )] (5.64)
(9x)p = 521 (3= 21) (5.65)
(9x)s5 = 522 (3 — 22) (5.66)
(9x)12 = 521 (1421 — 229) (5.67)
(9x)15 = 522 (1 =221 + 22) (5.68)
(9x)23 = 12122 (5.69)

and the determinant is then given by
det g, = 2122 (1—21)(1—29), (5.70)

in terms of the radial coordinates z;.

We shall also require expressions for various combinations of the cofactors of this an-

gular metric as follows:

(Cy)y 64z122 (83— 21— 29 — 2129) (5.71)

(Cy) 1o = —2z2 (142 — 320 + 2129) (5.72)

(Cy)13 =2z (1 -3z + 2+ 212) (5.73)

(Cy)ge = (9x)ss = —s122 (5421 — Tzo + 2122) — 123 (5.74)

(Ci)as = ()9 = —g2122 (65— Tza + 20+ 2129) — 27 (5.75)

(Cy)os + (9x)as = g72122 (14921 + 925 — 112129) (5.76)

and

(Cy)yy —det gy = 2129 (21 + 20 — 22120) . (5.77)

5.2.2 Spectrum for the small submaximal giant graviton

In order to solve the equations of motion resulting from the second order D3-brane
action and obtain the fluctuation spectrum, we shall consider a small submaximal

giant graviton with ay < 1.
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It now becomes possible to approximate

wlm

2~ a?sin? 2 = a?(1 — 2) and 2 & o’ cos g = a’z, (5.78)

where 2 = cos2§ runs over the unit interval. The D3-brane action (5.62) to second

order in ¢ then simplifies as follows:

Raje? 3.9 [z 2
Sy =2 DTy /dtdzdxg dxs {zk: {—55% — <051}k> } (5.79)
2/ N2 2/~ N2 4 = - -
-3 (am) -2 (a&xl) 3 [35><1 - (%cixl) - (axgaxl)] 5a} ,
with 0y, = —05)(1 and 0 = a0 rescaled for convenience. The (spacetime) gradient

squared is given by

(05) =620 =2) @) = 57+ 2 0 + 5 O+ (0ud) + f (1)

1 82 s 8(1—2) 9
The equations of motion are
|j51}k - %évk =0 (581)
D16y F 30 6y + i (Dy,0y) £ i (Dyy0ys) = 0, (5.82)

where we define dy; = da £ idy,. The (rescaled) d’Alembertian on the worldvolume

of the giant graviton is

0=60.{z(1—2)0. } (5.83)
1 82 8(1—2)
_ —82 + - 5 83262 + = 5 3;3 -+ 8t8X2 + 8t8X3 — §8X28X3 -+ m@iz + Tais

We shall now expand these fluctuations as

dvr(t, 2, X2, X3) = Z ComnVsmn(t; 2, X2, X3) (5.84)
52& (tu Zy X2 X3) = Z ésmn\:[jsmn(ta 25 X25 X3)7 (585)

in terms of the eigenfunctions Wy, (¢, z, X2, x3) described in appendix A.3. Insisting
that the equations of motion must be satisfied places the following constraints on the

frequencies wgy,, (already contained in the definition (A.38) of these eigenfunctions):

(W AL m+n)] =4l (l+1)+1 (5.86)
[We o+ im+n)F1] =41 +1)+1, (5.87)

with | = s + max {§|m + n|, 3|m — n|}. Here s <0, m and n are integers.
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Notice that the above expressions are always positive, indicating that the frequencies

wF and w® are real. Hence the small submaximal giant graviton is a stable con-

smn smn
figuration. Furthermore, in this approximation oy < 1, the fluctuation spectrum is
independent of the size of the giant graviton «gy. This appears not to be true in gen-
eral, however, as we shall now observe by comparing these results with the fluctuation

spectrum of the maximal giant graviton.

5.2.3 Spectrum for the maximal giant graviton

Small fluctuations about the maximal giant graviton cannot be described by our general
ansatz (5.61) with oy = 1. We must now require

sin? 2 sin® 2 =(1—2)(1—2)=1-a"=p° (5.88)
to be of O (£%). Hence we shall modify our ansatz as follows:

v = € 0vg(c®) and p=-¢edp(c?), (5.89)

with worldvolume coordinates o = (¢, z, £, ¢) covering both halves of the maximal giant

graviton (dibaryons) on which ¢;(c®) and ¢(0®) respectively remain unspecified.

The fluctuations of the AdS5 coordinates are simply the sum of these fluctuation about

each dibaryon:

ovg = Z e~ wsmnt {Céirznq)smn(Zly U+ ¢, ¢1) + CL) (22,9 + 1, ¢2)},  (5.90)

s,m,n

where ®,,,, are the eigenfunctions (A.5) of the Laplacian on a dibaryon and the frequen-
cies satisfy (4.22). We must impose the condition Cln = C&, for the fluctuations

which do not vanish at z; = 29 = 1 to match up.

Now, the fluctuations of the radial T%! coordinate p can be written as

op =51~ 22)% 001(t, 20,0 4+ 1, ) + 5 (1 — Zl)% 00a(t, 21,0 + b2, é1). (5.91)

However, we must allow, not only for the usual 60 fluctuations of the dibaryon, but
also for the possibility that 06 diverges like (1 — z)72 as 2z goes to 1 (see appendix A.1
for details). These yield non-vanishing, but finite, contributions to dp at 23 = 25 = 1
(which must match). These additional fluctuations correspond to open strings stretched

between the two halves of the maximal giant graviton.
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The fluctuations 5y( ) = 60, e and 5y( ) = 60, e¥i1 of the T!! coordinates trans-
verse to the different dibaryons, which both contribute to dp, are then

Z cw o iwhnnt B (21,1 + b, 1) + Z Cmod(1) it t@?£2(21,¢+¢2,¢1)

s,m,n 1,

n=m=1
(5.92)
=D OB, e B (20,0 4y, G0) + Y Cled®) T QA () 4+, ),
ST e
(5.93)
where @‘;;22 are the modified eigenfunctions (A.11) and we impose the matching condi-
tion Chea® — ¢med®  The frequencies wt, = of the original contributions still satisfy

(4.23), while the modified frequencies wm°%+ satisfy an identical condition, but with
[m°d = s+ 1(Jm+n|—1). Since these are non-negative integers (the unmodified { values
could be integer or half-integer), the spectrum of the maximal giant graviton is entirely
contained within the original spectrum of the separate dibaryons. The frequencies are

therefore still real, indicating stability.

5.3 Open strings excitations

We shall now turn our attention to open string excitations of the submaximal giant
graviton. Since a full quantum description of strings in AdSs x T*! remains unknown,
we shall consider a simplifying limit [40]: short open strings moving on the pp-wave
geometry associated with a null geodesic on the worldvolume of the giant graviton.
(Note that different null geodesics produce distinct results, due to the non-spherical

nature of the submaximal giant, and we shall discuss two possibilities.)

5.3.1 Short pp-wave strings: the null geodesic t = y1 = x2a = u

Let us consider the null geodesic

t=x1=x2=u, v, = 0, o= ay and v=20 (5.94)

on the worldvolume of the submaximal giant graviton with size ay. We observe that

0, = 2arccos o and 0y = 7w then specifies the trajectory on the two 2-spheres.
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To construct the pp-wave background, we choose the ansatz

T
t_u—i_% vk:Ek

' R V3.,1-a R R

_ s\/§(2—ao> n _ V63
Xo=U— &5+ V= ——=
aO\/l—aOR o R

4

Xs =3 (5.95)

which corresponds to setting

0, = 2arccos ag — V6 % and 0y =7 — 6 %, (5.96)

with §; = g cosx and g, = ysin y. Now, taking the Penrose limit, in which R becomes

large and we zoom in on this null geodesic, we obtain the pp-wave metric
4 15 2 4 2 2
2 _ _ 2 19 ) 2 2 2 )
ds® = —4dud§ {ka + 16 Zyi } du” + dek + Zdyi + Zdyi
k=1 =1 k=1 =1 i=1
+ dyodyrdu + 1 (§1d7> — §odf) du, (5.97)
which has a flat direction y;. In this limit, the 5-form field strength becomes constant:

Fs = 4du A dxy A\ dxg A dxg A\ dxy + 8du A dyy A dys A diy A dijs. (5.98)

In the lightcone gauge u = 2p“7, the bosonic part of the Polyakov action for open

strings moving in this pp-wave geometry is

do | < . 2 -
S:/”/%{Z(%X?(—W;a - k) + 3 (7 - 3 (0)7) + 2mvads
K=1 I=1
2 ~ ~ ~ A~ ~ A
+y (gyﬁ _1 (YI) = —m2Y2> +im (¥, - 1311 } . (5.99)
I=1

with m = 2p“. Notice that the equations of motion for each pair of embedding coordi-

nates Y7 and Y7 decouple, if we define
- 1 /-~ .
Vo= s(iEdy)  ad Vas s (Y1 + m) . (5.100)

The assumption that the open pp-wave string ends on the submaximal giant graviton
(which becomes a flat D3-brane in the large R limit) implies that the Xy and Y;
satisfy Dirichlet boundary conditions, whereas the Y; must obey Neumann boundary

conditions. Quantizing the open string embedding coordinates, we then obtain

= /2 , ,
Xk (1,0) = E o {afe"w” + (osz)Jr e“"”} sin (no) (5.101)
n=1 n
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Yy (1,0) = Z \/ 5 {5,?6_"“”?7 + (ﬁf)T e"“”%} sin (no) (5.102)
n=1 n
Y, (r,0) = % {BfewoiT + (B,T)Tei@(ff} + Z \/ 5 {Bﬁei@% + (B,T) Te"‘ﬁT} cos (no),
n=1 n
(5.103)

where we define w® = w,, £ m and OF = w, + }lm in terms of w,, = vVm? +n?. The

creation and annihilation operators satisfy the following commutation relations:
~ ~ AT
[Ozfl’ (a{%)T] = §Kik25 0 and [ i (ﬁli)T] — { - (5;:) } = 0,1, (5.104)

with all others zero. The lightcone Hamiltonian H;. = %H is quadratic in the em-
bedding coordinates, and can be written in terms of these (normal ordered) harmonic

oscillators:

oo 4 00 + _
Ho= Y03 2 (o) ol + {2 (5 55+ 2 (50)' |
n=1

n=1 K:lE
+§{%(ﬁi)1~:+%(~;)%}. (5.105)

Let us now consider the interpretation of these results: The momentum associated with

lightcone time

1
pe = = (E+Jyy +Jy,) =—m (5.106)

should be non-vanishing in the large R limit. Also, we choose the lightcone Hamiltonian
He=—pu=E—Jy — Jy, (5.107)

and the momenta

21 [-a2J 2—a2)J 4
pyl — \/;_[ C(O X1 +( aU) XQ] and px _ _ng’ (5108)

R apy/1 — o

to remain finite. Hence we observe that

E=2L+0(R), J,=302-a})L+O(R) and J,=0(1), (5.109)

4

where L is defined through
Jo = 3a3L (5.110)
and must be of O(R?). This leads to an inverse mass squared

1 R n
L= (o). (.11
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The energy eigenvalues of the lightcone Hamiltonian, in the limit # < 1, become

Wy, / n2 n? .
+ 2 2 2
L owE [on _ n n :
I = 1+ ) +1~2+ 53 O 55 with ne {1,2,...} (5.113)
~E 2 2 2
L Wy n I 3 n ) n .
G E_Hl—'_ﬁj:ZNZ—'—w or é_l+2_m27 with n e {0,1,2,...}.(5.114)

In other examples of gauge theory/gravity dualities (with renormalizable CFTs), this
would be related to the BMN scaling limit [15] of the corresponding operators.

In the Klebanov-Witten theory, these open string excitations correspond to words
attached to the subdeterminant operator O, (A;B;). The above results can be linked

to the number of different types of composite fields in these words. Let us define

6= 3x — AB (5.115)
$2 =3 (x2+ x3) — AyBy (5.116)
d3=3 (x1+ x2) —  AyB, (5.117)

whereas <54 = % (x1+x3) = <Z~51 + (;32 — ég — A1 B> is not independent. The associated

angular momenta are then
J;, =(1—a)L+O(R), J;=0(R) and J; =a2L+O(R), (5.118)

so our word is made up of a large number of A;B; and A,B; composite scalar fields®
and comparatively few of the combinations A;Bs; and As;B,. Note that L may be

defined as the total number of composite scalar fields in the word.

5.3.2 Short pp-wave strings: the null geodesic t = xy; = xy. =u

We shall now consider the null geodesic®

I
—_

= X1 = X+ = U, Vg = 07 a = Qy, v and X-= Oa (5119)

=1 2)1/4

with x4+ = 5 (x2 + x3). Here also 6, = 6, = 2arcsin (1 — of = 6y and we notice

that this setup is symmetric under interchange of the 2-sphere coordinates.

5The open string boundary conditions require some A;B; composite scalar fields, but, since the

number of these only goes to zero when the giant graviton becomes point-like, there is no inconsistency.
6Note that the choice v = 1 is not necessary to obtain a null geodesic, but is required for the

associated pp-wave background to be consistent.
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The ansatz for the pp-wave background is then given by
£

t:u—i—ﬁ Vg =

e JL _ v o 2\3/4 o . 2y2
Al e i

&
R 0
X:u_g L-ad)” w3 V1-ah ()
* R? /— 2
2

Xo = — : (5.120)
V31— a) 1—¢Taa i

X1 =Uu—

which corresponds to choosing

0, = b, \/§(R+R) and 0y =0, \/§(R R). (5.121)

Again, we take the large R Penrose limit to obtain the pp-wave geometry

4 4 2 2
ds? = — ddud¢ — <Z xz> du® + ) da+ Y dyl + > d} + dyadyrdu + 4Gaddu,

k=1 k=1 i=1 i=1
(5.122)
with flat directions y; and g;. The 5-form field strength becomes
F5 = 4du N dJ?l VAN dl‘g VAN dl’g A dl’4 — 4du N dy1 VAN dyg VAN dg]l A dgg (5123)

The bosonic part of the Polyakov action for open strings in the lightcone gauge is

d 4 . 2 . .
s= [ [ {KZ (%% = 3 060" = i) + 3 (397~ 3 07)%) + 2%
2 ) .
+3 (%f/l L (%) ) + 2m§'2f/1} , (5.124)
I=1

for this pp-wave geometry. The Xg and Y; are subject to Dirichlet boundary condi-

tions, while the Y; satisfy Neumann boundary conditions. Quantizing the open string,
we obtain the embedding coordinates

Xk (1,0) = \/w7 {aKe WnT 4 (aff)T ei“"T} sin (no) (5.125)
> 2 _ It ok )
Yi(r,0)= Z \/: {ﬁ¥ T +(87) 67’“’”} sin (no) (5.126)
Y. (1,0) = 1m { FFe 0T 4 (B(?)T ei“’SET} + Z \/wz {B,Te_““ <6i> “""T} cos (no),
n=1 n

(5.127)
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which, as before, satisfy the usual commutation relations (5.104). The lightcone Hamil-

tonian, in terms of the (normal ordered) creation and annihilation operators, is then

KyTaK +g{”+ (B 85+ (@:)*@:}

m

(~$)T~Z+%<~;>Tﬁg}. (5.128)

3
Il
—_
II
—

We can interpret the above results as follows:

péz—%(E—i-J +Jy ) =-m (5.129)

may not vanish, whereas

pu=—E+J, +J, =—H, (5.130)
L], 21
Y1 \/§R (1,0%)1/4\/17\/@ Z1

must remain finite. Hence

3 3
E=JL+O(R), Jy=35\1-0L+O0(R) and J_=O(R), (5131)

3
Jx+55(1—1/1—a3> L, (5.132)

which is of O(RZ) As before, the inverse mass squared is given by (5.111). In the limit

where we define

in which 2 < 1, the energy eigenvalues of the lightcone Hamiltonian become

af . En 1+—2%1—|— "’ with ne {1,2,...} (5.133)

b - 5 52 2, :
wT 2 2 n2

B SR o1+ SEla24 o o oo with ne{l,2..) (5134)

~ wT 2 2 n2

B Sho g1+ Sla24 o or o with ne {0,1,2,.. ). (5.135)

We can, again, link these results to the number of composite scalar fields in the word

attached to the subdeterminant operator O, (A;B;). In this case

(5.136)
with L the total number of composite scalar fields. There are now a large number of

the combinations A;B; and A, B, in this word.
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5.4 Giant gravitons on AdS, x CP*

We finally propose an ansatz for the D4-brane giant graviton on AdS,; x CP?, which
is dual to the subdeterminant operator O,,(A;B;) in ABJM theory and factorizes into

two CP? dibaryons at maximal size.

We may associate the four homogeneous coordinates of the complex projective space
CP? with the ABJM scalar fields Ay, Ay, By and B, in the multiplet Y. Hence

2175 = Lsin (2¢) sin & sin & 3101702 A, B, (5.137)
20% = 2sin (2¢) cos & cos £ e 2irérter)  _, 4,B, (5.138)
20%3 = 2sin (2¢) cos L sin 2 e exil¥tor=d2)  __, A,B (5.139)
21z = 2sin (2¢)sin % cos & e y-—ditda) A B, (5.140)

Aside from the additional factor of $ sin (2¢), these coordinates bear an obvious resem-

blance to the parametrization (1.15) of the base manifold T! .

Our ansatz for the giant graviton on AdS, x CP? then takes the form
sin (2¢) sin & sin 2 = v1 — a2, (5.141)

where the constant « € [0, 1] describes the size of the giant. Motion is along the angular
direction xy = %(w — ¢1 — ¢2), as in the case of the D2-brane dual giant graviton
of chapter 3. This is the same as the direction of motion of the giant graviton on
AdSs x TH! up to a constant multiple, which we have included to account for the

difference in conformal dimensions between the scalar fields in the Klebanov-Witten
and ABJM theories.
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Conclusion:

D-branes and giant gravitons

In this part, we catalogued some features of the giant graviton phenomenon in type
IIA string theory on AdS, x CP? and type IIB string theory on AdS; x T'!. We also
studied D-brane configurations dual to dibaryons - these may be thought of as half of

a maximal giant graviton.

In chapter 3, we focused on the D2-brane dual giant graviton on AdS,; x CP? and its
excitations. We found that, just as for the canonical case of the D3-brane dual giant
on AdS; x S° [71], all the fluctuation modes have real, positive frequencies squared
that are manifestly independent of its size. The absence of any tachyonic modes in
the spectrum again means that there are no perturbative instabilities. A particularly
interesting aspect of the fluctuation spectrum is the existence of a coupling between
the worldvolume gauge field and transverse fluctuations of the brane - this differs from
the usual result. Similar couplings were found in [74], but here the coupling results in
a massless goldstone mode, indicating the existence of a new type of D2-brane with

both momentum and DO0-brane charge.

Motivated by the remarkable insights yielded by similar studies [19, 40, 41] of giant
gravitons on AdSs x S, we presented an analysis of open strings attached to the D2-
brane giant in the limit of short pp-wave and long semiclassical strings. In the first case,
we confirmed that the families of null geodesics on the worldvolume of the giant, which
were found in [40, 41] for canonical D3-brane giants, once more exist for the dual giant
graviton on AdSs x CP?. Consequently, we were able to take a Penrose limit about
one such geodesic and quantize short open strings on the pp-wave background. Our
findings are in agreement with the reported D3-brane results: the spectral structure
of these open string excitations has a A = % perturbative expansion for large angular
momentum L. In the dual ABJM theory, this suggests a potential simplification in
the BMN or thermodynamic limit of the open spin chain. However, evidence from the

closed string sector implies a breaking of BMN scaling [31, 32, 34]. To study long open
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strings attached to the dual giant graviton, we took a semiclassical limit and computed
the leading order Polyakov action. We found complete agreement with similar results

[41] for the more familiar D3-brane giant.

Although these similarities between the dual D3-brane giant and its D2-brane coun-

terpart might seem mundane, it is worth remembering two important points:

e The 3-dimensional N’ = 6 SCS-matter theory conjectured to be dual to type ITA
string theory on AdS,; x CP? is decidedly different from A = 4 SYM theory in
field content, number of supersymmetries and degrees of freedom. This precise

agreement was therefore by no means clear a priori.

e The D2-brane studied in this note is a descendent of an M2-brane upon com-
pactification to the type ITA string theory. It would seem that the dynamics
of the dual giant graviton encodes, in a non-trivial way, membrane dynamics in
M-theory. The similarity between the D2-brane and D3-brane dual giants would

therefore appear even more remarkable.

These open string excitations of the dual giant graviton on AdS, x CP? are dual to words
attached to the Schur polynomial y (A1 B;) in the totally symmetric representation. A
map to an open spin chain with boundaries is possible. The most concrete extension of
this work would be to match the spectrum of open string excitations with the anomalous
dimensions of the dual operators in ABJM theory - interpreted as the energy eigenvalues

of the spin chain Hamiltonian.

A study of dibaryons on AdS; x T'! and AdS, x CP* was presented in chapter 4. The
comparison of [66] between the spectra of BPS excitations of determinant operators in
Klebanov-Witten theory and open string excitations of the dual D3-brane configura-
tions in type IIB string theory on AdSs x TY! was extended to the ABJM /type ITA
string theory duality. The CP? dibaryons - D4-branes wrapped on CP? subspaces of
the compact CP? space - were constructed, together with their spectrum of small fluc-
tuations. The lowest frequency modes associated with the transverse CP? directions
were shown to match the conformal dimensions of the ABJM determinant operators
det A; and det By. A slight complication, in this case, is that Wilson lines must be
appended to the usual dibaryons to ensure that they are gauge invariant physically
meaningful states. However, this alteration does not effect the conformal dimensions
of BPS excitations. Although the existence of such BPS configurations is all that is
necessary for the above comparison, it would be interesting to determine the complete

set of quantum numbers which describe these states.

In chapter 5, we translated Mikhailov’s elegant construction [63] of giant gravitons
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in terms of holomorphic curves into the more familiar DBI construction for giants on
AdSs x THL. This solution is dual to the subdeterminant operator O, (A;B;). Its
factorization, at maximal size oy = 1, into the two dibaryons of [66], described in
chapter 4 and dual to the determinant operators det A; and det B;, may be thought

of as the disappearance of the map between the polar coordinates of the two 2-spheres
02

2 = y/1—0of in the

definition of the giant graviton and may be visualized by colouring its worldvolume.

embedded in TUV!. This results from the constraint sin%sin

The D3-brane then independently wraps both 2-spheres.

We also presented an analysis of small fluctuations about this giant graviton. The
spectrum was calculated in two special cases: the small submaximal giant graviton
with oy < 1 and the maximal giant graviton. The latter turns out to be the same as
the spectrum [66] obtained for separate dibaryons, even taking into account excitations
between the two halves of the maximal giant. A comparison between these results
indicates that the frequencies are dependent on the size of the giant graviton”. This is
a curious new phenomenon never before observed - probably because all the previous
giant gravitons have been spherical or nearly spherical configurations. The reason that
the fluctuation spectrum is independent of the size of the giant is quite clear in the
AdS; x S° case (and for our D2-brane dual giant of chapter 3) - when the brane’s radius
is increased, the blueshift of the geometry exactly cancels the increase in wavelength
of the modes. We do not yet understand the physics behind the spectrum of the giant

graviton on AdSs x T,

We completed this study by attaching open strings to this giant graviton. We were able
to quantize short open strings in pp-wave geometries associated with two distinct world-
volume null geodesics and obtain their energy spectra. These open strings ending on
the giant graviton should correspond to certain words (composed of combinations A; B,
of scalar fields in Klebanov-Witten theory) with R-charge of O(v/N) attached to the
subdeterminant operator O,,(A; By). However, the non-renormalizability of Klebanov-
Witten theory makes a comparison of the anomalous dimensions of these near-BPS

operators with the corresponding energies problematic.

We close the chapter with an ansatz for the D4-brane giant graviton on AdS, x CP?,
which is dual to the subdeterminant operator O, (A;B;) in ABJM theory. We make
use of the similarity between T'' and CP?, but find that we must take into account
the additional radial coordinate ¢ in the complex projective space CP, which yields the
extra worldvolume degree of freedom required by the D4-brane. The identical structure
of the operators in the Klebanov-Witten and ABJM theories leads us to believe that

"This is not true for the approximate spectrum of the small submaximal giant graviton, when taken

on its own.
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the factorization of the D4-brane maximal giant graviton on AdS, x CP? into two
CP? dibaryons should take place in a qualitatively similar way. ABJM theory has the
same superpotential as Klebanov-Witten theory, but, since it is a 3-dimensional CF'T,
is renormalizable. Consequently, it should now be possible to match the energies of
open string excitations to the anomalous dimensions of near-BPS ABJM operators.

We leave this as a topic for future research.
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Introduction:

marginal deformations

As a long-term goal, it is hoped that the AdS/CFT correspondence will eventually lead
to a complete understanding of Quantum Chromodynamics (QCD) - a non-conformal,
non-abelian Yang-Mills theory with finite N. It is therefore crucial to identify, among
the plethora of remarkable results for N' =4 SYM theory, which are a consequence of
the large amounts of symmetry and which are truly universal. With this in mind, we
investigate the possibility that the Hagedorn temperature in type IIB string theory on
AdSs x S° - related to the temperature of the confinement/deconfinement transition
in planar N' = 4 SYM theory [80] - is a universal property under N' = 1 marginal
deformations of the N =4 SYM superpotential.

A direct computation of the Hagedorn temperature (as well as the behaviour of strings
near the Hagedorn point) is hampered by the need for an explicit, quantized string
spectrum - something lacking for the type IIB superstring on AdSs; x S®. Most of the
literature is therefore restricted to flat backgrounds or toroidal compactifications (see,
for example, [81]). Fortunately, there is another entirely non-trivial arena in which
both sides of the AdS/CFT correspondence are explicitly known and the string theory
is exactly soluble: type IIB string theory on the maximally supersymmetric pp-wave
background [75], obtained from AdSs; x S° by applying a suitable Penrose limit, and
N =4 SYM theory in the BMN double scaling limit of [15]. The study of thermal
strings on this background [82] proved extremely fruitful, demonstrating the existence
of a Hagedorn temperature (and the accompanying exponential growth of states), which
is an indication of a phase transition rather than a limiting temperature [82, 83]. This
would seem to mesh neatly with the confinement/deconfinement transition observed
in planar N' = 4 SYM theory, except for the fact that, in the BMN limit, only a
subset of states survive - the near-BPS states, the anomalous dimensions of which are

systematically close to those of the chiral primaries.

The problem is one of the compatibility of regimes: where we are finally able to com-
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pute the exact string spectrum and Hagedorn temperature on the gravity side of the
duality, there are an insufficient number of states left in the gauge theory to account for
the required exponential growth. Circumventing this difficulty is non-trivial and was
only recently accomplished [84] by identifying a different decoupling limit of ' = 4
SYM theory, in which the physics is captured by a ferromagnetic XXX% Heisenberg
spin chain. The Hagedorn temperature was then computed from well-known thermo-
dynamic properties of the spin chain and matches excellently with the string theory

result.

We are interested in the Hagedorn behaviour of pp-wave strings on the Lunin-Maldacena
background. The dual gauge theory is y-deformed N' = 1 SYM theory - the supersym-

metry has been partially broken by a marginal deformation as explained below:

A marginal deformation of a superconformal field theory is constructed by adding an
exactly marginal operator to the superpotential to generate a continuous set of new
fixed points. Leigh and Strassler [85] found an A = 1 marginal deformation of N' =4
SYM theory with the superpotential

W =1 tr {hy (XVZ) + hy (XZV) + hy (XP + VP + Z%)}

depending on three parameters h; and invariant under a Zsz discrete symmetry trans-
formation X — ), Y — Z and Z — X. The fixed line hy = —hy = gym and hg =0
yields the original N'= 4 SYM theory.

The special class of deformations for which hy = gynm €™, ho = —gyme " and hs = 0,
with # some complex parameter, are known as [J-deformations. The superpotential
then takes the form

W =1gwmtr {e™(XYZ)—e ™ (XZ2Y)}
and is invariant under two global U(1) symmetry transformations as follows:

Ul)y: X— e Y — ey Y e 2 Z
Ut Xoefmy  yoemy  yoemz

Therefore f-deformed N =1 SYM theory has a global U(1) x U(1) x U(1)z symmetry

group. We shall focus on 3 = « real, which are known as ~y-deformations.

In 2005, Lunin and Maldacena [7] were able to construct a gravitation dual of N' =1
(B-deformed SYM theory - type IIB string theory on a Lunin-Maldacena background.
Again, let us choose 3 = 7 to be real. The background spacetime is then AdSs5 x Sg,

where the 5-sphere space has undergone a y-deformation.
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They reasoned as follows: The two remaining U(1) symmetries correspond to isometries
©1 — 1+ ag and w3 — o + ay on the special torus (1, @), where these angular

coordinates are the combinations

01 =3 (o1 + ¢2 — 263) and P2 = 5 (=201 + ¢2 + ¢3) |

of the original phases ¢; on the 5-sphere space (1.7). These symmetries should be
preserved after the y-deformation. Let us define the parameter 7 = Bis + 4,/g, which
depends on the volume of the (¢, p2) torus, as well as the component on the NS B-
field associated with these angular directions. Lunin and Maldacena found a suitable
v-deformation of the AdSs x S® background by taking

-
- ~ Y
IT+y7

T where 4 = R%*y

relates to the deformation parameter v in the dual gauge theory. An alternative con-
struction due to [8] involves a TsT transformation on the torus (¢1,¢2), with a shift

dependent on 4.

Type IIB string theory on a Lunin-Maldacena AdSs x SE’Y background has the metric

ds* = R? {— cosh? pdt? + dp? + sinh? p (d&2 + cos® aud 3} + sin? &dﬁ%)
+ d@f + G cos? 0, dqb% + sin? 6, (d@2 + G cos? 0, dgbg + G'sin® 0, dgb%)
+4% G cos? asin® a cos® @ sin? 0 (dg, + dpy + dqbg)z} ,

with r» = sinh p the AdS; radial coordinate. Here
G l=1+4 (0052 0, sin? 6 cos? Oy + cos? 0, sin? 6; sin® Oy + sin® 6 cos? 65 sin® 62) )
The v-deformation turns on an NS B-field

By = ’AYR2G {COS2 01 sin? 01 cos? o dopy A dopy + cos? th sin® 01 sin® 02 dps A den
+ sin* 6; cos® G sin® b deps A dop3 }

while the 3-form and 5-form field strengths are given by

Fy = —44R%e™ cos? 0 sin® 0 cos 0y sin B dfy A ds A (déy + dea + dos)

Fy = 4R*e~ %o {cosh psinh3 pcosaysinay dt Adp A day N dag A dag
+ G cos 0; sin® 0y cos Oy sin by dby A dfs A doy A dey A d¢3} ,

with a dilaton ®, which satisfies €2® = G e?®0. Here @, is the constant dilaton in the
original AdSs x S® background - usually this is chosen to vanish. More generally, the
AdS/CFT dictionary, discussed in section 1.1.3, can be modified so that A = R* and
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R* = 4mwg,N, with g, = e*° the string coupling. Since strings - the objects of interest
in this part - couple only to the background geometry and the B-field, we can, and

will, ignore the RR-sector in what follows.

This AdSs5 x Sg Lunin-Maldacena background supports two classes of BPS pp-wave
geometries, distinguished by the choice of null geodesics about which the Penrose limit
is taken. Type IIB string theory on both pp-wave backgrounds has been studied in
some detail with somewhat remarkable results. Taking the Penrose limit about any one
of the (J,0,0), (0,J,0) and (0,0, J) single charge null geodesics yields a conventional
pp-wave background on which the string spectrum exhibits a J-dependence [86]. The
second class of BPS geometries, obtained by taking a Penrose limit about the null
geodesic (J, J, J), is a set of homogenous plane waves whose metric lies in a different
diffeomorphism class from that of the former [77]. Intriguingly, in this case, the string
spectrum is independent of the deformation parameter - a result verified to one-loop
from the spectrum of anomalous dimensions of near-BPS operators in the dual gauge
theory [87, 88].

In this part, we investigate the Hagedorn behaviour of y-deformed pp-wave strings and
calculate the Hagedorn temperature, which is again associated with a phase transition.
We discuss matching these results with the dual N'=1 SYM theory.
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Chapter 6

Hagedorn behaviour of y-deformed

pp-wave strings

We begin this chapter with a detailed review of the construction [82] of the single
string and multi-string partition functions for a canonical ensemble of type IIB strings
on the undeformed maximally supersymmetric pp-wave background. We discuss the
associated Hagedorn behaviour. With this foundation in place, we describe the two
classes of Lunin-Maldacena BPS pp-wave geometries. Restricting our attention to the
(J,0,0) case, the y-deformed multi-string partition function and Hagedorn tempera-
ture are derived. We discuss, using the prescription of [84], matching the tempera-
tures of the Hagedorn transition of Lunin-Maldacena pp-wave strings and the confine-

ment /deconfinement transition in the y-deformed A= 1 SYM theory.

6.1 Thermodynamics of pp-wave strings

In this section, we present a detailed review of the thermodynamics of strings moving

on a maximally supersymmetric pp-wave background, closely following [82].

Let us consider the (J,0,0) null geodesic on AdSs x S°, which is described by
t=¢1 = pxt and p=0,=0, (6.1)

where we have set r = sinh p for convenience. Substituting the ansatz

T

21 R?

T

21 R?

t=pzt + ¢ = pxt +
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into the metric (1.5), we take the large R Penrose limit in which we zoom in on this

null geodesic. We make use of the cartesian coordinates

1 = T cos O cos ¢g Lo = T C0S By sin ¢y

23 = x sin 6y cos ¢3 24 = xsin Oy sin @3 (6.3)
and

X5 = 1y cos aq cos [ T = Yy CoS u sin 3y

Ty = ysin aq cos [y g = ysin g sin Gy (6.4)

associated with the two 3-spheres (02, ¢2, ¢3) and (a1, B, 52), with radii sinf, ~ 3
and sinh p =~ £, which are embedded in S5 and AdSs respectively. The metric of the
maximally supersymmetric pp-wave background is given by

8 8

ds* = —2dxdr™ — 1 Z (xz)2 (d$+)2 + Z (dxi)z. (6.5)

=1 =1

Here z*

are the lightcone directions and the z* describe eight transverse directions.
Note that pp-wave geometries associated with similar null geodesics in AdSs x S°,
which are parameterized by different angular coordinates, are equivalent up to lightcone

time-dependent coordinate transformations.

Among the numerous symmetries contained in this metric are an SO(8) rotational
symmetry in the transverse coordinates (broken to SO(4) x SU(4) by the 5-form field
strength), 16 boost-like symmetries in (z°, 2~ )-planes and two translational isometries
in the lightcone * directions - these are essential for the construction of the single

pp-wave string partition function.

6.1.1 Single string partition function

The partition function describing a single pp-wave string (in the canonical ensemble)
moving in a heat bath at temperature 7" can be constructed using a combination of

the two translational isometries:
Z1(a,b) = try (e®+ 1) (6.6)

Here py ~ —i0, while the two variables a and b determine the heat bath temperature
T, which satisfies

8
T2 =ab+ a*u? Z (331)2 (6.7)
i=1
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We shall now consider a pp-wave string in the lightcone gauge X+ (7, 0) = 2p™ 7. Setting
m = 2up™, the lightcone Hamiltonian H;, = —p, = p~ is given by

Hk:%[wo(N§+N{)+an(Nf+N5+Nf+N5) (6.8)
n=1

where w, = sign(n)yv/n? +m?, and N2 and Nf’F are the right- and left-moving
number operators describing the eight bosonic and eight fermionic modes. (The right-
and left-moving zero modes have been identified.) The zero point energy cancels out

due to supersymmetry. The level-matching constraint
P:Zn(N5+N,f‘—N5_N5):o, (6.9)
n=1
which arises as a result of worldsheet translation invariance, must also be satisfied [76].

The single string partition function may now be written in the form

(a,b, @) / dp™ /; dri e " 2z, (7'1, #; m = 2up+) , (6.10)

727TTQH+27T’L'T1’P) ) (611)

with
Zlc(Tlu T2, m) = tI'stan:es (6
The trace runs over all the eigenstates of the worldsheet Hamiltonian H = 2p™ H;, and

the level-matching constraint is imposed using the delta function, which arises from

the integral over 7.

Finally, it is known that this single string partition function may be written in terms
of building blocks ©, 5. More specifically, we find that?

4
21e(T1, T, M) = %] (6.12)
with?
O (T, Taym) = eATT2Em) ﬁ (1- 6727”'2|wn+5\+27ri7'1(n+5)+27ria)
T x (1- €—2mg|wn_5\+2mn(n—5)—2ma> ‘ (6.13)

Here E5(m) is the casimir energy of a complex boson of mass m with boundary con-
ditions ¢(o + 2, 7) = > ¢ (o, 7) [89]. This casimir energy cancels out of the relevant

ratio due to supersymmetry.

!The numerator and denominator of this ratio of building blocks describe the contributions from

the fermionic and bosonic modes respectively.
2The two terms in the product describe two fields, which are complex conjugates, while the left-

and right-moving modes are captured by negative and positive values of n respectively.
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6.1.2 Multi-string partition function

The multi-string partition function, which describes an ideal gas of pp-wave strings,
can be written in terms of the single string partition function of the bosonic modes

(ZB) and fermionic modes (Z{) as follows:

InZ(a,b, pn) Z {ZP (ar,br,p) — (=1)" Z{ (ar,br, 1) } . (6.14)

For the superstring, these partition functions for the two modes differ only by a finite
number - the number of bosonic minus fermionic zero modes. This gives a small,
constant contribution to the free energy, which, at high temperatures, will be negligible
[82, 90, 91]. Thus

o0

1
InZ(a,b,pn) = Z — Zy(ar,br, p). (6.15)

r=1
r odd

Substituting (6.10) and (6.12) into the above expression, and changing the variable of

integration from p* to 7, = yo—s:

InZ(a,b,u) = /dﬁ/
% 7—2 rl

r odd

e A2, 6.16
@0,0(71; ﬂ) ( )

725 21Ty

4
ar
@1 (7'1,7'2,—2;;7_2)] _ abr?

which is proportional to the Helmholtz free energy.

6.1.3 Hagedorn behaviour

We intend to investigate the Hagedorn behaviour of this gas of pp-wave strings and
so, following [82], we begin by searching for an exponential divergence of the density
of states. Towards this end, let us consider the building blocks ©, 5 in the high energy
limit p* — oo (or 7, — 0), with i = mm, = 5= held fixed. The definition (6.13) gives

In Oy (71, T2, £ ) = 4nTy B ( ) + Z In (1 — 672”2|W”+5|+2””("+5)+2”ia) + c.c.

(6.17)
and, setting xr = 2 (n +0) and 6 = 7L, we see that Az = ZAn — dz in the high
energy limit and z becomes a continuous variable over which we can integrate. Hence,
since Ty|wnis| = fiv/1 + 22, we obtain

~ o
- o o~ 5 L .
InO,s(m,m, £) — — dr In (1 — e 2rAvitasfomifbetamia) 4 ¢ o
, 112y 7
—0o0

= —%@2@ [f (11,0, a) + c.c.]. (6.18)



CHAPTER 6. HAGEDORN BEHAVIOUR 85

Expanding out the logarithm,

f(/],@,a) 1+ 92/ dx Z 727r/1\/1+m2+27riﬁ9:)3+2m'la + cc.

=2V1+ 62 Z
=1
= Z Te el [¢ (2mul/1 + 62) + c.c. (6.19)

NI}—\

zmla/ dp e~ 2mlaVi+a? oo (2wlpdz) + c.c.

where K;(x) is a modified Bessel function of the second kind [92], which is a real

positive monotonically decreasing function tending to zero quickly as x — oo.

Now, noticing that f(fi,0,«) = f(fi,0, ) when a = 0 or a = 3, we may simplify

_ _ 20 5 -
ln@%,o(ﬁ, T2, %) —In @0,0(7'1, T2, %) - _m [f(,u’ 0, %) — f(i, 0, 0)} (6.20)

Ky (2nlpV'1 + 62
m@; (2l )

! odd
Thus the high energy behaviour of the multi-string partition function, in the limit as

9 — 0, is given by

4 ~— dT2 +272
InZ(a,b, 1) — E;/o / (6.21)

r odd

[e.e]

abr 16par 1 1
. S K ( IrV/1 92> ,
e Y ; 7 160 (palrv/T+

! odd
where we have changed the integral over 7 into an integral over 6 = :—;

2

X exp

We now wish to determine for which temperatures (values of @ and b) this parti-
tion function converges. Only the r = 1 term need be considered®. The conver-
gent/divergent nature of the integral over 7, depends critically on the sign of the

expression in the exponential. The integral converges if

64&/L 5
<
ab < m E K1 (ualvl +40 ) 64ap E K1 (nal) = By, (6.22)

l odd l odd
for all 6. This critical point ab = Py corresponds to the Hagedorn temperature T},
which is defined by

8 o
T1§2 = By + a2i? Z (xz)Z Z

i=1

<\.|)_|

1(nal) + a*p Z (6.23)

3The modified Bessel function K is monotonically decreasing, so that all the 7 > 1 terms are much
smaller (exponentially so) than the r = 1 term. Therefore, if the r = 1 term converges, then all the

other terms are also convergent.
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The nature of the partition function at ab = Sy was considered in [83] and is related
to the behaviour of thermodynamic quantities as they approach the critical point.
A phase transition requires a finite free energy, although derived quantities, such as
internal energy (E = —(InZ)’) or specific heat (C' = $?(In Z)") may diverge. The
hallmark of a limiting temperature, on the other hand, is a free energy which blows up
near fy. However, even in this case, it has been argued [93] that string interactions can
turn this into a first order transition, with a critical temperature below the Hagedorn
temperature. In the high energy limit 7, — 0, the integral over 6 is dominated by
the saddle point at 8 = 0, with e=<?/™ fuctuations (¢ being a relatively unimportant
constant). Integrating over these fluctuations will produce a factor of \/75. After

performing the integral over 75, the free energy and multi-string partition function go
like

BF = —InZ(a,b,u) x /3> — 3% + regular, with (% = ab, (6.24)

which remains finite at 3 = (g, signaling a phase transition.

6.2 The deformation

There are two classes of BPS ~-deformations of this maximally supersymmetric pp-
wave background, both arrived at by taking a Penrose limit about the appropriate null
geodesic in the AdS; x Si)y Lunin-Maldacena background. We shall extend the above

analysis to strings moving on these vy-deformed pp-wave backgrounds.

6.2.1 The pp-wave limit about a single-charge null geodesic

The first y-deformed pp-wave geometry arises from taking a Penrose limit about the
(J,0,0) null geodesic - we substitute the ansatz (6.2) into the AdS; x S? metric and

scale R — oco. The resulting background fields in the NS sector are

4 8 8

ds% = —2dztde™ — p® | (1+4°) Z (ZBZ)2 + Z (a:l)2 (da:+)2 + Z (dﬂ)Q (6.25)
i=1 i=5 i=1

By = vy (xldﬁ' Adz® — pidet Ada' + 2Pdat A dat — 2tdat A dx?’) , (6.26)

with a constant dilaton & = ®,.

The transverse coordinates in the original pp-wave background are naturally split into

two sets of four coordinates (z1,z9, x3,24) and (x5, z6, x7,23) by the self-dual 5-form
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field strength. The effect of the deformation is to alter the effective string mass for
oscillations in the first set of transverse directions, consequently breaking the SO(8)
degeneracy of the oscillation spectrum. Quantization of the closed string sigma model

on this background yields the following oscillation spectrum:

wi = sign(n)\/m2 + (n+4m)* and wy, = sign(n)vm? + n?, (6.27)

for the first and second sets of transverse coordinates respectively. Here m = 2up™ and

the & indicates the spin in the (2!, 2?) and (23, 2*)-planes.

6.2.2 A homogeneous plane wave limit

Let us now focus on an inequivalent v-deformed pp-wave background associated with

the (J, J, J) null geodesic, which is parameterized by
t=pa®  and =16+ o+ bs) = —pat, (6.28)
with the further specification that

0, = 0,0 = cos™* (\%) : Oy = and  p= 1 =py=0. (6.29)

13

Here ¢; and ¢y are the two angular directions used in the construction [7] of the
Lunin-Maldacena background (associated with the two U(1) symmetries) and v is

proportional to the total phase. Close to this null geodesic

- - ~3 ~4
x Y x T T
pa’ + R P=7 Y =—pxT + R =7 P2 =5
x? T 2 !
01 =6 — — Oy = — - —. 6.30
1 0 2= + 3R ( )
We shall now redefine
2 1 3
3 ~3 ~4 4 ~4
S P — - d == 6.31
x G519 (x +2$) an x 2(3_1_&2)1:, (6.31)
and take the R — oo scaling limit. The resulting pp-wave geometry is described by
the metric
452 2 8 8
2 _ + 7 2 )2 )2 +)2 i\ 2
ds® = =2dx"dx™ — p (3+’?2);( ) +Zz:;(:v)](d:£) —I—;(dx)
44/3
+ AV (z'da® + 2*dx*) da™. (6.32)

Nerse

The remaining fields in the NS sector of this type IIB multiplet are

914
dz3 A dx* + il

il L/
V3 Ve

By = dzt A (2'da — 2°da®) (6.33)
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1
W —— e 6.34
RO 039

Additionally, this background supports non-vanishing RR 2-form and 4-form field
strengths which, while they result in rather sophisticated D-brane dynamics [73], are

irrelevant for our analysis.

Closed strings in this background, their supersymmetries and dual gauge theory oper-

ators, were first studied in [87, 88]. It was noticed that a change of coordinates

xrT —x + (z'2® + 2%2%) (6.35)

3
(3+4%)

brings the (J, J, J) pp-wave metric into the homogenous plane wave form [77]

ds®* = —2dxtdx~ +Zk2]xx] dx 19 wax doldz* +Z dx , (6.36)

i,j=1 i,j=1

where the matrices k;; and f;; are given by

klj_udlag[(3+v)%001111] (6.37)
[0 10000 0]
0 010000
1 0 000000
342 0 =1 00000 0
fij = _ (6.38)
B+4) 1 0 0 000000
0 0 000000
0 0 000000
0 0 00000 0|

Remarkably, even though the background and associated string equations of motion

depend on ¥ in a fairly non-trivial way, the quantum closed string spectrum
wp =14+ V14 4n2, (6.39)

determined by the frequency base ansatz of [77] for strings on homogeneous plane waves,
exhibits no dependence on the deformation parameter [87, 88]. Consequently, we expect
that the high temperature behaviour of an ensemble of strings on this particular ~-
deformation of the maximally symmetric pp-wave background should be identical to
that of homogeneous plane wave strings (see for example [91]). While the Hagedorn
behaviour of strings on this particular class of homogeneous plane waves (i.e. non-
trivial k;; and f;;) has not yet, to the best of our knowledge, been studied, it is clear

that it will be independent of the deformation.
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6.2.3 ~y-deformed (J,0,0) Hagedorn temperature

Returning again to the (J,0,0) Penrose limit of AdS5 x Sg, we shall now construct the
partition function for an ideal gas of strings on this y-deformed pp-wave background. In
computing the partition function, much of the analysis is identical to the undeformed
case. The difference comes from the modified string spectrum - there are four real
oscillators with |w,| = v/m? + n2, and two each with |w¥| = \/m2 + (n & 4m)2. This

does, in fact, lead to a partition function with non-trivial 4-dependence. Remarkably

though, we shall see that, in the high temperature limit (7 — 0), this difference

disappears and the actual Hagedorn temperature itself is undeformed.

At the level of the building blocks, the effect of the ~-deformation is to change two of
the O, into

0o
+ B + . 4
9255(7-17 T2, m) = 647I'T2E5 (m) | | (1 —e 27r7‘2|wn+5\+2m‘rl(n+6)+2ﬂza>

n=—oo

% (1 . 6—271’72\@.13:_5\+27ri’r1(n—6)—27ria> ) (640)

The exact form of the energy Edi(m) is unimportant in our present discussion (as long
as it is still independent of «), since it cancels out of the relevant ratio of building

blocks due to the residual supersymmetry.

The y-deformed (., 0,0) multi-string partition function can now be written as follows:

! s 2 101\ /07

a 3 > dr ab? O1, 10 1o
o) =i [ | G 2 (@) (@30)<@§o>’

Y r=1 ’ ) )

r odd
(6.41)

where each O is an implicit function ©, s (7’1, To, %)

Following the steps in section 2, it is not hard to show that, in the high-energy limit,

the deformed oscillators lead to the replacement of the function f in (6.19) with
o 627ril(a$’yﬂ9)
FE,0) =2 ) K (zmzm n 92) =7 (zmz\ﬂ Y0 aT we) .
I=1
(6.42)

In contrast to the undeformed case, we must now set f (z,a F Yaf) = f (v, o & Afib),

fora =0or a= % Consequently,
21 ~ N .
6], — 0| — ——= [4f (7,0,3) + 171 (7.0,3) + 37 (i0.%)  (6.43)
_%f (/17 (97 O) - if—’iy- (/]7 67 O) - 411 z (/17 97 O)}

4 1
_ 3 7 [+ cos (2l K (2nljiv/1 + 62),
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where these building blocks are now the functions In @; 5 (7'1, To, T%) and the divergent

part of the partition function (dominated by high energy modes) becomes

In 2" (a,b, p) — = Z/ dTQ/ (6.44)

r odd

oo

abr Spar 1 1 R
_ o 103)] K ( Irv/1 92>
Irairs + e V1T ; i [1 4+ cos (parlfy)] K; ( palrv/'1 +

l odd

2

X exp

Despite these changes to the partition function, when we evaluate its high energy
behaviour, the 6 integral is dominated by a gaussian which picks out § = 0. All the
4-dependence then vanishes. The behaviour of the free energy? is still given by (6.24),
so that the Hagedorn temperature (6.23) once more describes a phase transition. To
summarize: a key feature of this computation is that, in the high temperature limit,
we find a continuum of states for which = = (n + ¢)/f is effectively continuous. The
spacetime deformation is visible in the partition function only in that this continuous
variable is changed from * — x F 4. Since the Hagedorn temperature is given by
the density of states p(w) = (dw(n)/dn)™", it must remain unaltered, even though
the spectrum of strings and the partition function on this background depend rather

non-trivially on 4.

6.3 Matching the v-deformed gauge/string theories

A direct comparison between the thermodynamic properties of pp-wave strings (de-
formed or otherwise) and the corresponding SYM operators is non-trivial, largely be-
cause the pp-wave background is constructed by taking a Penrose limit in which the
radius R, and hence also the t'Hooft coupling A = R*, becomes large. More precisely,
the correspondence identifies the lightcone momenta p* of pp-wave strings with the

conformal dimension A and U(1) R-charge J of SYM operators via

2p* A+
—=A-J and 2up” = ——, 6.45
Iz : VA (645)

so that, in the A, N — oo limit with p* finite, the only states which survive are
those with conformal dimension and R-charge that scale like v/ N. These are precisely
the gauge theory states conjectured to be dual to pp-wave strings [15]. The problem

with matching the Hagedorn/deconfinement temperature of the gauge theory to the

4In evaluating the gaussian, only the width changes - this affects the proportionality constant for

F, but not the location of the singularity.
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Hagedorn temperature of the string theory is now evident: BMN states form only
a small subset of the set of all possible states in the SYM theory and, at small 't
Hooft coupling, all these states should be taken into account. Including only the BMN
sector results in an apparent gross mismatch with a state counting on the string theory
side - here the number of states grows exponentially as the Hagedorn temperature is

approached.

6.3.1 A novel decoupling limit

It was suggested in the series of works [84] that this problem may be (at least par-
tially) resolved by a new decoupling limit of the AdS/CFT correspondence. In the
gauge theory, this decoupling takes place at low temperatures and near-critical chem-
ical potentials, while, in the string theory, we take the large p limit of a particular
pp-wave background with a flat direction. We shall now summarize the main results

in this argument.

The N = 4 SYM partition function is a sum over all multi-trace operators constructed

from scalars, spinors and covariant derivatives:

3
—BD+B Y. RiQ;
) | (6.46)

Z(6,€;) = tr (e i=

where D is the dilatation operator and (); are the three chemical potentials associated
with the R-charges J;. Let us choose (€21,Q9,Q3) = (©,0,0), with ¢ = 1 — Q. The
Harmark-Orselli limit [84] then sends T', A\, ¢ — 0, while keeping T = % (or f=e B)
and \ = % fixed. Most of the N' = 4 SYM states decouple - only those with bare
dimension equal to their R-charge survive - and the system reduces to one of thermal

quantum mechanics, with the partition function
Z(B) = tr [e—ﬁwwwﬂ] . (6.47)

Here Dy and D, are the tree and one-loop contributions to the dilatation operator. This
decoupling limit leaves behind the well-known SU(2) sector in which only two scalar
fields, Z and X, contribute to multi-trace operators. In the planar limit N — oo, the
single trace operators dominate and Dy maps to the Hamiltonian of a spin-% XXX-

Heisenberg spin chain. The partition function is then given by [84]

23 =exp |33 e M 2N (6.48)

n=1 [=1

where ZX¥*X denotes the partition function of a ferromagnetic spin chain of length .
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Key to matching this prescription in the dual string theory is to choose a pp-wave
background with a flat direction (or spatial isometry). One such is associated with the
(J, J,0) null geodesic, which is described by

t=¢"=5(p1+¢o) =pa™, =3 G=F and p=¢ =;(¢1—¢2) =0
(6.49)
Expanding about this null geodesic, we take the ansatz
_ - 1
x Yy x .
me TSR =R W =R
2
T X T
0 ==+ —= Oy =—+ — .
TR TIT R (6.50)

with 2° = zcos ¢3 and z* = wsin ¢z, and (2°, 2%, 27, 2%) the usual transverse coordi-

nates (6.4). The scaling R — oo produces the (J, J,0) pp-wave background

8 8
ds* = —2dxTdx™ + Z (dxi)2 — 2 Z (.rl)2 (daz+)2 — 4px®detdeT (6.51)

=1 =3

Although this background is related to the (J,0,0) one by a lightcone time-dependent

coordinate rotation
7! cos(px™) —sin(ux™) x!
HE | o

sin(pz™)  cos(uz™) x

in the (z', z%)-plane, the physics is rather different. In particular, there is one vacuum
state for each value of the momentum along the flat direction z'. A modified Penrose
limit was considered in [84], in which R — oo with R* = £ but A = R* still remains
small. When ¢ — 0, with

r Hc ~ s
fi = /e, H, = =5, Go=% and  p* (6.53)
€

all held fixed, the pp-wave spectrum - and consequently the Hagedorn behaviour -

exactly matches the weakly coupled gauge theory.

At this point, everything we have said so far applies specifically to maximally super-
symmetric N' = 4 SYM theory. How then is this matching prescription affected by
a systematic deformation - such as the N' = 1 y-deformation - away from maximal
supersymmetry? The ~y-deformed superpotential can be resummed as a Moyal-like
x-product deformation

XY = ¢m(QuQ3-0%Q}) yy (6.54)
and similarly for the other superfields, where (Q%,Q%), (@3, Q%) and (Q%, Q%) are
the charges of X, ) and Z under the U(1); x U(1)s global symmetry [7]. Consequently,

not only is the Feynman diagram structure (at the planar level) unchanged by the ~-

deformation, but, since this deformation preserves the three Cartan generators of the
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SO(6) R-symmetry, any closed subset of single trace operators remains closed under
renormalization group flow. Specifically, this is true of the SU(2) and SU(3) sectors®

consisting of single trace operators built out of two and three complex scalar fields.

Like its undeformed counterpart, the dilatation operator of v-deformed N' =1 SYM
theory can be represented as the Hamiltonian of a spin chain acting on a spin-chain
Hilbert space’. Under the y-deformation, since the commutators [X,Y] — [X,Y] =
™ XY — e ™Y X, interchanging any two differently charged fields in the single trace
operator tr (X JlYJQ) comes with a y-dependent phase. At the level of the spin-chain
Hamiltonian, this deformation can be realized [94, 95] by either a parity-preserving
ferromagnetic XXZ-spin chain with y-twisted boundary conditions or as the following

XXZ-spin chain with broken parity and periodic boundary conditions:
P
H, = (i) ; {L @@Ly — (0] ® 0y + 0} @ 0,y + 0] ®07,)

+[1 - cos (2m7)] (07 ® oy + o @ )
+sin (2m7) (of ® o, — 0} @ 0}) } - (6.55)

Either way, the resulting spin chain lends itself to a Bethe ansatz-type solution [94]
from which the energy spectrum may be extracted and, following [84], the Hagedorn
temperature determined. In principle then, we should be able to match the temperature
of the Hagedorn transition in the gauge theory with the Hagedorn temperature of the
dual string theory. Or should we?

The problem is that the SU(2)., gauge sector - the first non-trivial sector in which
the matching prescription works - corresponds to the y-deformed pp-wave background

associated with the (J, J,0) null geodesic, which is now parameterized by

by = % (¢ + ¢2) = pa™ and ¢r = % 4442 pat, (6.56)
where we also set
0 = 3 b2 = I and p=0¢-= % (¢1 — ¢2) = 0. (6.57)

We hence choose the modified ansatz

- 1
T Y - T oz
t: + - 2 +:l 4 2 +_ _
px +2uR2 P=7 o7 =3VA+7Y (um 2uR2> o =7
2
T x T X
0, = —+ — Oy = — + —. .
1 2+R b 4+R (658)

®Since the U(1) sector of the theory is spanned by single trace operators constructed from just
one of the complex SYM scalars, it is a straightforward consequence of the holomorphicity of these

operators that this sector remains unaffected by the deformation.
SFor the sake of definiteness and to facilitate a comparison with the (undeformed) Hagedorn/phase

transition analysis of [84], we shall restrict ourselves to the SU(2), sector of the N =1 SYM theory

and content ourselves with comments on the U(1), and SU(3), sectors at the end of this section.
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and take the large R Penrose limit. The metric which describes this v-deformed (.J, J, 0)

pp-wave geometry takes the form
TN L i A L TR e )
“112 @) +(—z:§7— > (@) + ) (@) (d=")
8 022
+ Z (dmi)2 N 7

P VA+Y

Notice the flat direction z!. Like the (J,.J,J) case, this pp-wave is rotationally dis-

ds? = —2dxTda™ — i?

p(2dat — 2tda®) . (6.59)

connected from the y-deformed (J,0,0) pp-wave. In fact, the situation here is slightly
worse - although the Penrose limit is well-defined at the level of the metric, this ~-
deformed (., J,0) pp-wave background is actually non-BPS. The first manifestation of
this fact arises when we try to apply the Penrose limit to the NS B-field. We find that,
to leading order,

By = 14uR da' A dxt, (6.60)

which diverges. The consequences are clear: if any comparison with the SU(2) sector of
v-deformed N/ = 1 SYM theory is to be made, another way must be found which does
not involve a direct comparison with the Hagedorn temperature of strings propagating
on the vy-deformed (J, J,0) pp-wave background. To date, we have not managed to do
so, but, given the success of the program advanced in [84], it would be disappointing

indeed if this were not possible for the AN/ = 1 theory!

6.3.2 Decoupling the U(1), sector/y-deformed (J,0,0) pp-wave

To conclude this section, we make a few brief comments about the U(1) sector of -
deformed N' = 1 SYM theory. The partition function takes the form (6.46), but now
involves the y-deformed dilatation operator D7. At weak ’t Hooft coupling A < 1,
this becomes D7 = Dy 4+ ADJ to linear order in . The 7-deformation affects only
interactions, so Dy yields simply the bare scaling dimension. The (/,0,0) decoupling
limit corresponds to the choice (£21,€,€Q3) = (£2,0,0) of chemical potentials, with
e =1-—0Q — 0, while we hold fixed 3 = €8 and \ = % This results in small

temperatures and couplings. The partition function is then given by
Z(B)==tr[e‘30%+iD3q , (6.61)
where the trace now runs over only those multi-trace operators with Dy = J;.

The only surviving states in the Hilbert space are built out of a Fock space of single
trace operators of the form tr (@f) Clearly holomorphic, these single trace %-BPS

operators are protected by supersymmetry and therefore vanish under the action of D]
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(as well as all higher order terms). Hence, for single trace operators, the y-deformed

partition function in the (J;0,0) decoupling limit is given by

Zl(é):tr< ) Ze - (6.62)

1—€_ﬂ

which is obviously independent of the deformation parameter ~.

To complete the study, we still need to show that the matching prescription of [84] goes
through for the ~y-deformed string theory on a (J,0,0) pp-wave background. Taking
the modified Penrose limit R — oo, with R* = eR* fixed and small, results in a v-
deformed pp-wave metric identical to (6.5) up to an overall factor of \/e. Here again
(6.53) are held fixed as ¢ — 0, so that the mass parameter becomes large. We can
deduce the rescaled spectrum for strings polarized in the two sets of four transverse

directions as follows:

1 1
wi == sign(n)\/ﬁz2 + (Ven+4m)?2  and  w, = - sign(n)Vm?2 +en?, (6.63)
€ €
with m = m./e fixed. Notice that all these modes go like % as € — 0. Thus, using an
argument similar to that of [84], we conclude that it is not possible to excite any of
the transverse modes in the decoupling limit, as they correspond to states of infinite

energy.

The ~-deformed single string partition function in this (.J,0,0) decoupling limit must

hence be simply a function of the lightcone momentum p™:

Zy(b) = /0 dp* e " :%. (6.64)

This results in an expression

b=1—e", with 3 = €8, (6.65)

for the variable b as a function of the inverse temperature [3.
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Conclusion:

marginal deformations

The suggestion that the Hagedorn temperature of strings on a particular background
may be invariant under a systematic breaking of supersymmetry (and possibly even
conformal symmetry) is intriguing. As far as we are aware, the first study of the
universality of the Hagedorn behaviour of strings on pp-wave geometries was carried
out in [96]. There it was demonstrated that the Hagedorn temperature of pp-wave
strings on a Lunin-Maldacena deformation of the Maldacena-Nunez background [6] is
independent of 4. However, this is only a necessary condition for universality, which
requires to be supplemented by additional arguments. In this part, we have pursued
the line of reasoning initiated in [96]. The Hagedorn temperature of pp-wave strings
on the AdS;5 x SE’Y Lunin-Maldacena background was found to be independent of the
deformation parameter, despite the complicated §-dependence (at least for the (J,0,0)

case) of the multi-string partition function.

On the gauge theory side, utilizing technology developed in [84], we explored the pos-
sibility of matching this Hagedorn temperature with that of the confinement/ decon-
finement transition in planar y-deformed N' = 1 SYM theory - with limited success.
The U(1) sector, composed of holomorphic %—BPS operators is unchanged by the de-
formation, so the matching of the Hagedorn behaviour goes through unaffected. The
SU(2) sector, on the other hand, is far from trivial. Under the A/ = 1 marginal de-
formation, the XXX Heisenberg spin chain associated with single trace operators in
this sector is mapped to an XXZ spin chain, the Hamiltonian of which may be diag-
onalized by an appropriate Bethe ansatz. Even though the temperature of the con-
finement /deconfinement transition may then be computed, we argue that no matching
with the string theory is possible - at least not using the prescription of [84] - as the
corresponding y-deformed (.J, J,0) pp-wave geometry is ill-defined.

It is clear that this study of the thermal properties of strings on ~-deformed pp-wave

backgrounds has generated a number of possible lines of enquiry:
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e The matching prescription of [84] might be adapted to the y-deformed (J, J, J)
pp-wave background. The Hagedorn temperature could then be compared with
the temperature of the confinement/deconfinement transition in the PSU(2|3)
sector of the gauge theory. Since the completion of this work, substantial progress
has been made in this direction: [97] were able to apply the matching prescription
to several different sectors of N' =4 SYM theory. In particular, the PSU(2|3)
sector is associated with a modified Penrose limit which results in a pp-wave
background with two isometries. It should now be possible to extend this analysis
to y-deformed N' =1 SYM theory.

e While our focus has been on 7-deformations of AdSs; x S°, which affect only the
5-sphere space, it should be noted that a number of other deformations exist.
In addition to the complex f-deformations [7] and the 3-parameter family of ;-
deformations of [8, 95|, the TsT transformation of [8] has also been applied to
the global toroidal isometries of the AdSs spacetime [98]. Tt would be interesting
to examine the Hagedorn behaviour of pp-wave strings on these backgrounds for

signs of universality.

Gaining insight into the nature of gauge theories at strong coupling is particularly
important, at this current point in time, given our proximity to the release of LHC
results. It is to be hoped that studying quantities which are universal across a large class
of such theories (with gravity duals) may allow us to make some tentative predictions

as to the behaviour of the strongly coupled quark-gluon plasma.
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Conclusion

Applications of the gauge theory/gravity correspondence are varied and diverse. Rather
than confining our attention to one aspect of a particular duality, we chose to consider
two broad topics involving several different AdS/CFT correspondences - both of the
original SYM /type IIB string theory, as well as the more recent SCS-matter/type ITA

string theory variety.

The primary focus of this thesis is on D-branes, their open string excitations and
(to a lesser extent) the dual local operators. Although we began with the intention
of studying giant gravitons in type IIA string theory on AdS; x CP? - and, indeed,
conducted a preliminary investigation of the spherical D2-brane dual giant - we found
it best, in the end, to take a more scenic route. The D4-brane giant graviton, embedded
in the complex projective space, is a highly non-trivial object, quite unlike the usual
spherical configurations. However, the existence of a known ansatz [63] for a similar
D3-brane giant in type IIB string theory on AdSs x T'! suggested that an explicit
construction of this non-spherical object might not only prove profitable, but also lend

itself to an extension to the D4-brane giant graviton on AdS, x CP?

The nature of the maximal D4-brane giant graviton was initially more apparent. The
subdeterminant operator in ABJM theory factorizes, at maximum size, into the prod-
uct of two determinants (a special case of dibaryon operators). The maximal giant
should therefore comprise the union of two CP? dibaryons - D4-branes wrapped on
different non-contractible CPP? cycles in CP?. With reference to a similar analysis [66]
of dibaryons on AdSs; x T, we matched the spectrum of small fluctuations about a
CP? dibaryon (particularly, those associated with the transverse CP? directions) with

the conformal dimensions of BPS excitations of the ABJM determinant operators.

The D3-brane giant graviton on AdSs; x T!! turned out to be exceedingly interesting
in its own right. The construction involves a map between the two 2-spheres embedded
in TY!, which disappears at maximal size - this is related to the factorization of the

dual subdeterminant operator in Klebanov-Witten theory into two dibaryons. In fact,
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here what we are really viewing, from the gravitation perspective, is an indication of
the bifundamental nature of the gauge group. The fluctuation spectrum of the giant
graviton on AdSs x Th! was shown to be dependent on its size. This phenomenon
is most unusual and probably relates to the fact that this configuration is far from
spherical. Our study of the D3-brane giant graviton was extensive, but we were also
able to conclude with an ansatz - thus far unverified - for the D4-brane giant graviton
on AdS, x CP°.

These results clearly suggest a wide range of possibilities for future research. An inves-
tigation of the open string excitations of the D4-brane giant graviton on AdS, x CP?
would be a fascinating enterprize. It should prove possible to match the open string
excitation energies to the anomalous dimensions of words attached to the ABJM sub-
determinant operator, which map to alternating open spin chains with fixed boundary
conditions. It might even be possible to find an interpretation in the gauge theory for
the dependence on size (which we expect to also observe for the D4-brane giant) of the

spectrum of small fluctuations.

The second topic chosen for consideration involves a study of the thermal properties
of an ensemble of closed strings. We tested the conjecture, initially motivated in [96],
that the Hagedorn temperature is a universal quantity - this was verified for pp-wave
strings on AdSs x S° under a Lunin-Maldacena deformation. We discussed matching
this temperature with that of the confinement/deconfinement transition in the dual
gauge theory, which is an N' = 1 marginal vy-deformation of N' = 4 SYM theory.
However, our results were unfortunately limited to the U(1) sector, since the SU(2)
decoupling limit of [84], on the gravity side, does not admit a generalization to the
~v-deformed case. Further studies of universal quantities might prove useful in gaining
insight into generic properties of strongly coupled gauge theories. For example, this
might lead to a better understanding of the strongly coupled quark-gluon plasma, which

we expect to observe at the LHC, as well as the phase of matter inside neutron stars.

Recently, the AdS/CFT correspondence has been applied to a wider and wider range of
systems. There has been much interest, in the last few years, in using this approach to
study condensed matter physics - in the vicinity of a quantum critical point, conformal
invariance is restored and the field theory lends itself to a dual gravitational description.
AdS/CFT then offers a novel interpretation of a number of phenomena [11]. A partial
understanding of the dictionary between both sides of the correspondence has also
offered great insight into the fundamental nature of spacetime itself - this appears to
be an emergent property encoded in the N? degrees of freedom of the matrices in the
dual gauge theory. The notion of an emergent spacetime [13] is a fascinating subject,

which will undoubtedly receive much attention in the future.
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Appendix A

Eigenvalue problems

This appendix contains the solutions of a number of eigenvalue problems (EVPs) asso-
ciated with small fluctuations about dibaryons on AdS; x TH! and AdS, x CP?, as well
as giant gravitons on AdSs x T!. They involve hypergeometric differential equations

and are similar to problems discussed in [66, 99].

A.1 Stationary EVPs for a dibaryon and maximal

giant graviton

We shall first consider (based on [66]) the stationary EVP V2® = —FE®, with V2 the
Laplacian (4.19) on the spatial extension of a dibaryon on AdS; x T"!. We then turn
our attention to the maximal giant graviton, consisting of two dibaryons, which has
fluctuations described in section 5.2.3. Here additional singular solutions of the original

problem must be included.

A.1.1 Standard EVP for a dibaryon

Let us look for solutions of the form
B(z,6,0) = f(2) €M e, with f(z) = 22 (1= 22y (A
We find that h(z) must satisfy the hypergeometric differential equation

z(1—2)0*h(2) + [(Jm+n| +1) — (|m +n| 4+ |m — n| +2) 2] 0.h(z)
—{3Im® — 0’| + §|m +n| + §|lm — n| + 3(2m* + n*) — tE} h(z) = 0, (A.2)
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which has solutions h(z) = F(a, b, ¢; z). This hypergeometric function is dependent on

the parameters

a,b %(|m+n|+%|m—n|+1)j:\/%E—%mQ—i-i and c¢=|m+n|+1, (A.3)

where a and b are associated with different signs in the +. For regularity at z = 1,

either a or b must be a negative integer, so that

%(|m—|—n|—|—%|m—n|—|—1)—\/%E—%m2+iz—s, with s € {0,1,2,...}.

(A.4)
Hence the eigenfunctions of the Laplacian can be written as follows:
B2, €, 0) = 22mHnl (1 — )zl () gime ging (A.5)
which correspond to the eigenvalues
Egpn = 61(1 + 1) + 3m?, with [ = s+ max {|m|,|n|}. (A.6)

Here s > 0 and n are integers, and m is an integer or half-integer. The hypergeometric
functions Fy,(2) = F(a,b,c; z) previously described are dependent on s, m and n

through the parameters a, b and c.

A.1.2 EVP for the maximal giant graviton

We shall now look for additional solutions, which behave like ® ~ (1 — z)_% as z — 1.
These are physically meaningful non-singular contributions when both halves of the

maximal giant graviton are taken into account. Setting
f(z) = z2m (1 — 2)72 w(z), with n=m=+1, (A.7)
we obtain the following hypergeometric differential equation:

(1= 2)02h(z) + (Im +n|+1) (1 — 2) 0.h(z) — {1 + 5(2m* + n®) — tE} h(z) = 0.

The solutions h(z) = F(a, b, c; z) depend on the parameters

a,bz%|m—i—n|j:\/%E—%m?—k}l and c¢=|m+n|+1, (A.9)

where, for a or b to be a negative integer,

%|m—|—n|—\/%E—%m2+i:—s, with se {0,1,2,...}. (A.10)
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The modified eigenfunctions of the Laplacian, which are additional eigenfunctions with

this particular behaviour at z = 1, therefore take the form

Ol (2,6, 0) = 23 (1 — 2) 72 Fmod(z) ™€ e, (A.11)

smn smn

with associated eigenvalues

smn

Emod — gymed(pmed 4 1) 4 3m?, where ™Y =s+1(lm+n/—-1). (A12)

The hypergeometric function F™°4(2) = F(a,b,c; z) depends on s > 0, n = m 4 1 and

smn

m, now all integers.

A.2 Stationary EVPs for a CP? dibaryon

The standard stationary EVP V2® = —E® on the complex projective space CP? can
be solved using the chiral primaries (4.56) with eigenvalues (4.57). However, we shall
rather describe the CP? subspace using the coordinates (z,z, £, ¢), in terms of which
the Laplacian can be written as (4.50), and look for separable solutions. This method
is then applied to the modified EVP OL® = —E®, where we define

o Ev2+(1—x)aﬁ%a£, (A.13)

which is associated with transverse CP? fluctuations.

A.2.1 Standard EVP

Let us consider a separable solution of the form

O(z,2,60) = [(2)g(z) €™ ™, (A.14)

with! |m| > |n|. We must now solve two related EVPs associated with g(z) and f(x),

the first of which is given by

(m+n)?(1—-2  (m—-n)® =z (n? —m?)
1— — _ —
0.2 (1 - 2) (9.9)) { P e T =0
(A.15)
with A some constant eigenvalue. Setting
g(z) = 22 (1= 2 (), (A.16)

IFunctions in CP? are built out of equal numbers of z’s and z’s - an excess of z!’s must be accounted

for by no more Zz or z3’s (and similarly for an excess of z;’s).
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we obtain the hypergeometric differential equation
2(1—2)0%h + [(jm +n|+1) = (Jm +n| + |m —n| +2) 2] 0.h
— {%|m2 —n?|+ Hm+n|+3m—n|+1 (m2 - n2) — A} hy =0. (A.17)

Solutions take the form of hypergeometric functions hq(z) = F'(ay, by, ¢1; 2), which are

dependent on the parameters

ar,bi =3 m+n|+3m—nl+i+\/A+m?+1 and o =m+n[+1, (A18)

where a; and b; are associated with different signs in the +. For regularity at z = 1,

either a; or b; should be a negative integer. Hence

Sm+n|+im—n|+5—\/A+m?+1=-s, with s,¢{0,1,2, ...}, (A.19)

so that A = k (k + 1) — m?, where we define k = s; + |m).

The second EVP then becomes

ax[m—x)(amf)]—x(amf)—{mmx_@ n k(k+1)$+m2+k(k+1)—E}f:O.

(1—x)
(A.20)
We shall now take
fla) = 2™ (1= 2)" ho(a), (A.21)
where ho(z) satisfies the hypergeometric differential equation
z (1 — 1) 0hy + [(2lm| + 1) — (2|m| + 2k + 3) 2] O, hy
—{2(Im|k + |m|) + k(k+1)+m* — E} hy = 0. (A.22)
The solutions he(z) = F/(ag, be, c2; ) are hypergeometric functions dependent on the
parameters
as,bo=|m|+k+1£VE+1 and co = 2|m| + 1, (A.23)

where F =1 (I +2), with [ = so+k+|m| and s9 € {0, 1, 2, ...}, for regularity at = = 1.

Hence the eigenfunctions of the CP? Laplacian are

Do (2,2, €, 0) = 2310 (1 — 22l ghol (1 gyt pe () B () € e,
(A.24)

which correspond to the eigenvalues
E=1(+2), with [ = s+ 2|m|. (A.25)

Here s = s; + so > 0 and n are integers, and m is an integer or half-integer. The
hypergeometric functions F7,, (2) = F(ay,bi,c1;2) and F2 () = F(ag, by, co5x)

depend on s;, n and m through the parameters a;, b; and ¢;. These eigenvalues are in

agreement with (4.57).
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A.2.2 DModified EVP

We shall now look for separable solutions (A.14) to the modified EVP. Notice that
taking m — —m implies that O, P — O1®. It is therefore sufficient to consider m
positive, bearing in mind that the m negative solutions can then constructed by simply

interchanging the eigenfunctions ®* and ®~.
The resolution of the first EVP for g(z) remains unaltered. The second EVP becomes

O [x(l—x) (arf)] +<1 —2%) (aac )
_{m(mil)(l—x)+ (k+1)x
x (1—2x)

(A.26)
(mil)+k;(k+1)—E}f:O.

We must now distinguish between the & signs. We shall take
fl@)y=a" 1 —2)" hf(z) and f(z)=a"""(1-2)" hy(2), (A.27)
respectively. The hypergeometric differential equation for hj () is given by
x(1—2)02hd +[(2lm| +2) — (2|m| + 2k + 4) 2] 0,hF
—{2(Imlk +|m|+k)+m(m+1)+k(k+1)— E}hj =0, (A.28)

which has solutions hi (z) = F(a3,bs, ci; ) dependent on the parameters

af, by =ml+k+3+\/E+?2 and cf =2|m|+ 2. (A.29)
Here £ =1 (14 3), with [ = so+k+ |m| and sy € {0, 1, 2, ...}, for regularity at = 1.
Similarly, the hypergeometric differential equation for h; (z) takes the form
z (1 —x)0%hy + [2|m| — (2|m| + 2k + 2) 2] 9,h;
—{2(mlk+m|—-1)+m(m—-1)+k(k+1)—E}hy; =0 (A.30)

and has solutions h, (z) = F(ay, by, ¢y ;) depending on

aj, by =ml+k+i+4/E+?2 and ¢ =2|m|, (A.31)

with £ =1 (1 + 3) + 2 and [ defined as before.

The eigenfunctions of the modified operator O can therefore be written as follows:

1

Lim+n Lim—n m s1t+|m z T imé _in
CI);‘:mn ($,Z,§,¢)222‘ * |(1_Z)2| | ‘ = Q:t (1_ ) ! |F51mn( )Fsmfrtzn( )6 56 ¢7
(A.32)

and are associated with the eigenvalues

Ef =1(1+3) and E_  =1(1+3)+2, with [=s+2m| (A.33)

smn
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Here s = s;+s9 > 0 and n are integers, and m is a positive integer or half-integer. The
hypergeometric functions F7,,, (z) = F(ai,bi,c132) and F2E (2) = F(ay, by, ¢y 1)

were previously described. Interchanging ®F ~and @

smn smn?

together with the associated

eigenvalues £F and E_ . gives the m negative solutions?.

smn smn)

A.3 EVP for the small submaximal giant graviton

Let us consider the EVP W = — AW, with [J the (rescaled) d’Alembertian (5.83) on

the worldvolume of the small submaximal giant graviton.

If we take an ansatz
U(t, 2, X, X3) = f(2) €0 ™ e with f(2) = 237 (1 - 2)2 ™ R(2), (A.34)
then the problem reduces to solving the hypergeometric differential equation

2(1=2) 22h(2) + [(In] + 1) = (Im]| + |n| + 2)] 0.h(2)
1 {2 (jmn| + |m| + |n]) +m? +n2 = [w+ L (m+n)]* - gA} h(z) =0. (A.35)

Solutions h(z) = F(a,b,c; z) are hypergeometric functions dependent on the following

parameters:

a,bz%(!m\+|n|+1)$\/%)\—%}l[w—l—%(m—l—n)F—l—i and c¢=|n|+1, (A.36)

where, for regularity at z = 1, either a or b must be a negative integer. Hence

%(!m|+|n|+1)—\/%)\+}L[w+}1(m+n)]2+}lz—s, with s e {0,1,2,...}.
(A.37)

The eigenfunctions of the (rescaled) d’Alembertian are therefore given by
U (t, 2, X2, v3) = 22" (1 — z)%‘m‘ Fomn(2) €70 e3imx2 oiinxs (A.38)
and correspond to the eigenvalues

Asmn(W) =611+ 1) — 2 [w+ T(m + n)]2 , with = s+max{i|m+n| im—n|}.
(A.39)
The hypergeometric functions Fy,,(2) = F(a,b,c;z) are dependent on the integers

s > 0, m and n through the parameters a, b and c.

2Note that we have continued to use |m| in the ®* eigenfunctions, despite the fact that m is

positive, so as to allow for this generalization to the m negative case.
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