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P H Y S I C S

Tensor networks enable the calculation of turbulence 
probability distributions
Nikita Gourianov1,2*, Peyman Givi1, Dieter Jaksch2,3, Stephen B. Pope4

Predicting the dynamics of turbulent fluids has been an elusive goal for centuries. Even with modern computers, 
anything beyond the simplest turbulent flows is too chaotic and multiscaled to be directly simulatable. An alterna-
tive is to treat turbulence probabilistically, viewing flow properties as random variables distributed according to 
joint probability density functions (PDFs). Such PDFs are neither chaotic nor multiscale, yet remain challenging to 
simulate due to their high dimensionality. Here, we overcome the dimensionality problem by encoding turbu-
lence PDFs as highly compressed “tensor networks” (TNs). This enables single CPU core simulations that would 
otherwise be impractical even with supercomputers: for a 5 + 1 dimensional PDF of a chemically reactive turbu-
lent flow, we achieve reductions in memory and computational costs by factors of 

(

10
6
)

 and 
(

10
3
)

, respec-
tively, compared to standard finite-difference algorithms. A future path is opened toward something heretofore 
thought infeasible: directly simulating high-dimensional PDFs of both turbulent flows and other chaotic systems 
that can usefully be described probabilistically.

INTRODUCTION
Despite the simple and deterministic physical laws governing it, tur-
bulence remains an inherently complex and chaotic phenomenon. It is 
characterized by large numbers of eddies interacting in intricate and 
nonlinear ways across wide ranges of spatial and temporal scales, lead-
ing to the emergence of chaos. Making matters worse, practically 
important turbulent flows (e.g., fuel-oxidizer mixtures in combustion) 
often involve multiple chemically reacting species, which introduces 
additional nonlinearities and scales. The presence of chaos prohibits 
predicting the exact dynamics of turbulent flow fields over long peri-
ods of time, while the multiscaled nature of the flow fields makes their 
simulation immensely expensive due to the need to solve sets of cou-
pled partial differential equations (PDEs) on very fine grids.

However, for practical applications it is rarely necessary to know 
the precise state of a turbulent flow field at every point in space-time. 
Rather, one is typically more interested in far slower-varying statisti-
cal quantities where the fluctuations are averaged out (such as the lift 
and drag of an aeroplane or the rate of product formation in a chem-
ical process). In the statistical description of turbulence, variables 
like velocities U, chemical mass-fractions Φα, temperatures, etc., are 
treated as random variables (RVs) distributed according to some 
one-point, one-time joint probability density function (PDF) (1)

across space x and time t, with u,φ1 being sample-space variables 
corresponding to U,Φ1. The trajectory of f  completely describes the 
one-point, one-time statistics of the flow dynamics (2), which are the 
central quantities of interest in practical engineering calculations.

The time evolution of f  is modeled by Fokker-Planck PDEs that 
are straightforward to derive (3–5) but hard to solve. If f  is d-
dimensional, assigning M points for each dimension results in a total 
of Md gridpoints. Given that d can be as high as 

(

103
)

 in realistic 

flows (6, 7), direct schemes like finite differences (FDs) or volumes 
were long ago dismissed as computationally infeasible (8) due to 
their seemingly exponential cost in d. This spurred the creation of 
indirect Monte Carlo (MC) algorithms for probabilistic turbulence 
simulations (8). These schemes have proven highly successful, enabling 
advanced turbulent combustion simulations involving thousands of 
CPU cores (9, 10). However, the randomness and slow convergence 
characterizing MC methods can be avoided by directly solving the 
underlying Fokker-Planck equations.

It is not just probabilistic turbulence calculations that are hin-
dered by the curse of dimensionality: quantum many-body systems 
are described by states whose sizes also grow exponentially (in the 
number of particles). However, physically relevant quantum states 
are known to be highly structured (11). Such structure can be ex-
ploited to compress the states into approximate, but highly accurate, 
polynomially large representations known as tensor networks (TNs). 
TN algorithms allow efficiently evolving these states and analyzing 
their physical properties without ever leaving the compressed TN 
representation (12–15) and have enabled the simulation of otherwise 
intractable quantum systems like superconductors, ferromagnets, 
and quantum computers (16–24). Recently, the TN formalism has 
begun spreading beyond quantum physics (25–31).

Decades of empirical experience indicates that f  is also highly 
structured. For instance, in homogeneous turbulence, velocities U are 
often distributed normally (2), whereas mass fractions Φα have been 
observed to follow normal, exponential, and β distributions in nonre-
active flows (32). In more complicated reacting flows, the PDFs gen-
erally cannot be so simply parameterized (33), although they remain 
smoother and more predictable than the underlying flow fields (34).

This work shows that the structure contained in turbulence 
PDFs is readily exploitable through TNs: using a simple TN known 
as the “matrix product state” (MPS) ansatz to encode f  in a highly 
compressed format allows us to formulate a scheme for cheaply 
and directly solving the governing Fokker-Planck equations. 
When the PDF structure is well-matched to the MPS ansatz, the 
time-evolution costs just ∼dlogM; while standard FD schemes 
scale as ∼Md. We demonstrate the advantage by looking at the 
following turbulent flow.

f = f
(

u,φ1,… ; x, t
)

(1)
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RESULTS
Probabilistic modeling of reactive turbulence
Consider an incompressible, three-dimensional (3D) turbulent flow in 
which two chemical species are irreversibly reacting: A + B→ Products. 
In this system, two chemical species (of mass fractions Φ1,Φ2) are 
stirred by a velocity field U = U(x, t) in 3D space x across time t. For 
the sake of simplicity, we here consider only the statistics of the Φ1,Φ2 
scalar fields by assuming that the large-scale statistical features of the 
hydrodynamics are known a priori, while modeling the subgrid-scale 
(SGS), turbulent velocity fluctuations using large eddy simulation 
(LES), per current best practices (10). Doing so eliminates the ran-
domness of U and reduces the dimensionality to d = 5 + 1. Now, 
f = f

(

φ1,φ2; x, t
)

 describes the statistics of the mass fraction fluctua-
tions, which provide the mean mass fractions ⟨Φ1⟩, ⟨Φ2⟩ through

Such PDFs are known as “filtered density functions” (3, 35). 
Deriving the equation governing f  requires SGS closure modeling. 
Using popular closure models (35) gives the Fokker-Planck PDE

Here, U(x, t) is the large-scale (or, “filtered”) mean hydrodynamic 
field across x ∈

[

0, l0
]×3, t ∈

[

0, 2T0

]

, which is set to be a jet flow 
combined with a Taylor-Green vortex of amplitude u0 = l0 ∕T0 
(Materials and Methods, “Flow case definition” section).

The left hand side of Eq. 3 denotes the PDF transport in space 
and time. The first term is the rate of temporal change, and the 
second term represents convection by the mean velocity field. 
The third represents the influence of the molecular (γ) and SGS 
diffusion [γSGS(x, t)] coefficients: The former sets the Peclet num-
ber Pe = u0l0 ∕γ and the latter is modeled via the Smagorinsky 

(36) closure γSGS = Cs

Δ2

�

2

�

∑

ij

�

�Ui

�xj

+
�Uj

�xi

�2

, with Cs an empirical 

constant and Δ
�
 the LES filter width (both are specified in Materials 

and Methods, “Flow case definition” section).
The right hand side of Eq. 3 designates transport in the composi-

tion space [“composition” since the φ1,φ2 ∈ [0, 1]×2 mass fractions 
define the composition of the fluid]. The first term represents scalar 
mixing from the SGS turbulence and is modeled via the popular 
least mean square estimation (LMSE) (37) closure Ωmix = CΩ

γ+γSGS

Δ2

�

, 
with CΩ the SGS mixing rate. The final term denotes the effects of 
chemical reaction. For the binary reaction scheme considered here, 
S1 = S2 = −Crφ1φ2, where Cr denotes the reaction rate that defines 
the Damköhler number Da = Crl0 ∕u0.

To solve Eq. 3, we discretize f  at every point in time on a M=128, d=5 
Cartesian grid, but parameterize it as an MPS-network using far 
fewer variables than the 1285 gridpoints resolving it. This allows us 
to use a simple Runge-Kutta 2, FD scheme (Materials and Methods, 
“FD discretization” section) to solve Eq. 3 and time evolve the 
MPS-PDF.

An initial MPS simulation (Materials and Methods, “MPS algo-
rithm” section) is performed in Fig. 1 of a purely mixing flow with-
out chemical reactions (Da = 0). The PDF is illustrated at two points 

in x along with the scalar-ratio ⟨Φ1⟩ ∕ ⟨Φ2⟩ at four different times, 
showing how the initially orderly, unmixed flow state is driven 
toward a fully-mixed ⟨Φ1⟩ ∕ ⟨Φ2⟩ ≈ 1 state by SGS and large-scale 
convective and diffusive mixing. The SGS mixing leads to the PDF 
concentrating, while the diffusion and mean-flow convection in-
duces multimodality in the PDF. The MPS simulation is highly ac-
curate (Fig. 2B), yet the number of variables parameterizing the 
PDF (NVPP) is only 

(

1∕105
)

 of an equivalent, classically imple-
mented FD scheme [Materials and Methods, Eq. 12].

MPS encoding
In our MPS encoding, the discretized, high-dimensional f

(

φ1,

φ2, x1, x2, x3

)

 is decomposed into a 1D chain of tensors, where the 
φ1,φ2, x1, x2, x3 dimensions are sequentially mapped to tensors from 
left to right, with each dimension itself decomposed into multiple 
tensors lengthscale by lengthscale {analogously to the “sequential, 
serial” ordering in [(27), Fig. 1] and [(38), Eq. 9]}. This encoding 
exploits two separate structures that characterize the solution of Eq. 
3: First, the general smoothness of turbulence PDFs; second, that 
the different dimensions of f

(

φ1,φ2; x, t
)

 are unlikely to be strongly 
coupled at low CΩ, because for CΩ = 0 the PDF is separable (Supple-
mentary Text, “Separability of Fokker-Planck equation” section).

Matching the structure of the PDF in this way allows for an MPS 
encoding that is both accurate and parsimonious. The MPS represen-
tation (like any TN) can be systematically compressed, i.e., the NVPP 
reduced, by varying a hyperparameter known as the maximum bond 
dimension χ. This hyperparameter regulates the maximal size of the 
“bonds” between the tensors, which is equivalent to the maximum 
allowed coupling between the tensors and, in turn, between the differ-
ent lengthscales and dimensions of f . For example, setting χ = 1 for-
bids any coupling between the tensors and makes the NVPP minimal, 
while picking χ sufficiently large makes the MPS representation exact 
and NVPP =M5 like in the standard representation. Setting χ to be 
small in turn leads to a low NVPP, but the MPS encoding will still re-
main accurate if it reflects the structure of f  sufficiently well.

Validation of algorithm
We now investigate how well the MPS parameterization fits the solu-
tion of Eq. 3 in practice. To determine the χ required to accurately 
simulate the dynamics of the RVs Φ1,Φ2 underlying the PDF, the com-
position space transport parameters CΩ, Da are varied, while fixing the 
hydrodynamic variables ⟨U⟩, γSGS, and Pe to those used in Fig. 1.

Increasing CΩ is expected to lead to higher coupling between the 
different dimensions of f , which reduces the efficiency of our MPS 
encoding, i.e., increasing CΩ requires an increased χ to maintain ac-
curacy. To verify, we first set Da = 0 because this allows us to accu-
rately compute ⟨Φα⟩ independently of Eq. 3 (see Materials and 
Methods, “Moment equations” section) and benchmark the accu-
racy of the computed MPS-PDF across CΩ, χ. The benchmark is 
shown in Fig. 2 (A and B). The ⟨Φ1⟩ ∕ ⟨Φ2⟩ ratios in Fig. 2A depict 
how the MPS-PDF means approach their numerically exact equiva-
lent when χ increases and CΩ decreases. All the cases, including the 
ones with lowest accuracy, correctly trend toward a fully mixed 
equilibrium state where ⟨Φ1⟩ ∕ ⟨Φ2⟩ ≈ 1. Figure 2B quantitatively 
shows that the root mean square error (RMSE) in terms of both the 
Reynolds-averaged mean mass fraction

⟨Φα⟩(x, t)=
∫[0,1]×2

φα f
�

φ1,φ2; x, t
�

dφ1dφ2 (2)

�f

�t
+⟨Ui⟩

�f

�xi

−
�

�xi

�

�

γ+γSGS
� �f

�xi

�

=
�

�φα

�

Ωmix

�

φα−⟨Φα⟩
�

f
�

−
�

�φα

�

Sα f
�

(3)

⟨Φα⟩ =
∫[0,l0]

×3
⟨Φα ⟩dx (4)
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and ⟨Φα⟩ decrease roughly polynomially in χ for all CΩ.
Figure 2C depicts how varying the Damköhler number affects the 

accuracy of the MPS algorithm. When Da > 0, any moments 
⟨Φn

α
⟩ , n ∈ ℤ

≥0 higher than the norm  ⟨Φ0

α
⟩ = ⟨1⟩  can no longer be inde-

pendently computed. We therefore rather look at two quantities that our 
simulation must preserve: the norm, which must equal unity across 
α, x, t, and the difference in consumption between the two species 
⟨Φ1⟩−⟨Φ2⟩, which should be zero for all t due to the symmetry of Sα 
and the initial conditions. The figure indicates these two quantities 
becoming increasingly preserved when, again, CΩ decreases and χ in-
creases. Notably, the errors decrease roughly polynomially in χ. However, 
varying Da has little impact on the accuracy. This is because the chemical 
reaction largely just drives the PDF in compositional space toward the 
origin (as seen in Fig. 3), without significantly affecting its structure.

Computational complexity
The maximal bond dimension χ not only sets the accuracy of the MPS 
simulation but also determines the computational cost. Because our 

MPS algorithm (Materials and Methods, “MPS algorithm” section) 
implements a finite difference method within the MPS framework, it 
must perform the MPS equivalent of operations like element-wise, 
matrix-matrix and matrix-vector multiplications, matrix and vector 
additions and subtractions, and inner and outer products, in addition 
to MPS-specific operations like singular values and QR decompositions 
to enforce the maximal bond dimension and ensure the MPS stays in 
the numerically manageable “canonical form” (14, 15). It is straightfor-
ward to show (39) that these MPS operations all cost O

(

χqdlogM
)

 
asymptotically, with q ∈ ℤ

>0 depending on the operation.
The element-wise multiplication operation is the most expensive 

at q = 4 [(39), section 4.6], making the asymptotic complexity of our 
scheme as a whole O

(

χ4dlogM
)

 per timestep. Thus, for Mt timesteps, 
the total cost of the time evolution will approach O

(

Mtχ
4dlogM

)

 at 
very large χ; although in practice for small and intermediate χ, the 
empirical cost scales much milder (Supplementary Text, “Empirical 
computational cost” section). In comparison, standard FD schemes 
are exponentially more expensive in d, costing O

(

MtM
d
)

.

Fig. 1. High-dimensional PDF of a flow undergoing turbulent mixing revealed by TN simulation. Here, the Fokker-Planck Eq. 3 is solved for a PDF f
(

φ1,φ2; x, t
)

 
over chemical mass fractions φ1,φ2, at CΩ = 1, Da = 0 in the presence of a Pe = 103 velocity field U characterized by vortices and a jet along x1 (Materials and Methods, 

“Flow case definition” section). The 5D f
(

φ1,φ2; x, t
)

 is represented by a MPS ansatz at χ = 128, on a 128×5 grid and is visualized here for x∕ l0 =
(

1

2
, 1,

1

2

)

 and 

x∕ l0 =
(

0,
1

2
, 1

)

 at times t ∕T0 = 0,0.125,1,2 in the left and right columns, while corresponding mean mass fraction ratios ⟨Φ1
⟩ ∕ ⟨Φ

2
⟩ are shown in the center.
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There is also the question of preparing initial states and extracting 
statistics. Regarding the former, the 3D ⟨U⟩ (x), γSGS(x) and d-
dimensional f

(

φ1,φ2; x, t=0
)

 can be computed using either the pro-
longation method {see [(39), section 4.4] and (40)} or the tensor-cross 
algorithm (30, 41–44), both at O

(

χ3dlogM
)

 cost. As for the latter, 
computing expectation values boils down to doing the MPS equiva-
lent of matrix-vector multiplication and inner products, which are, 
as noted previously, inexpensive and straightforward operations. 
For instance, at any given timestep, the 3D mean ⟨Φα⟩ can be ex-
tracted from f  at O

(

M3χ2dlogM
)

 complexity, while the cost is 
O
(

χ2dlogM
)

 for the scalar ⟨Φα⟩.

Integrated quantities
The satisfactory accuracy and subexponential cost of our MPS 
scheme allows us to directly compute the PDF, visualize it, and ex-
tract from it all relevant integrated quantities.

Figure 3 shows the influence of mixing and chemical reactions 
on the PDF. As expected, in the absence of chemical reaction, both 
species tend toward the fully mixed values ⟨Φα⟩ (t→∞)→ 0.5 at a 
rate governed by CΩ. Whereas in the reacting flow simulations, 

Fig. 2. Accuracy convergence of TN algorithm. The influence of χ,CΩ and Da on the accuracy of the MPS simulation is outlined here. (A) and (B) contrast numerically 
exact means against those extracted from the MPS algorithm. In (A), the ratio ⟨Φ

1
⟩∕⟨Φ

2
⟩ is visualized at x3 ∕ l0 =

1

2
  for times t ∕T0 = 0.125, 0.25, 1, and 2, top to bottom. 

The leftmost column corresponds to the exact solution (which can only be practically computed for Da = 0 through Eq. 9), while the next six columns come from 
MPS simulations at varying χ,CΩ. The differences between the exact and MPS solutions are quantified in the lower (B) plot; the upper (B) plot shows how well the total 
species amounts ⟨Φα⟩ (see Eq. 4) are preserved through the simulation. In (C), the RMSE in two basic statistics is computed: the difference in species consumption 
⟨Φ1⟩−⟨Φ2⟩, which should always equal zero, and the space-averaged norm ⟨1⟩, which should always equal one. All RMSEs are mathematically defined in Materials 
and Methods, “Error measures” section.

Fig. 3. Final PDF for various flow parameters. The PDFs at the end of the simulation 
(

t∕T
0
=2

)

 are shown here in the center of the spatial domain 
[

x∕l
0
=
(

1

2
,
1

2
,
1

2

)]

 for all 
combinations of CΩ , Da. The PDFs are computed using χ = 128 MPS simulations.
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⟨Φα⟩ (t→∞)→ 0 at a rate that increases with CΩ and Da. Visually, 
we see that increasing CΩ leads to a PDF that is more concentrated 
along φ1 = φ2 (implying a more mixed fluid), while increasing Da 
takes the PDF closer to the origin (meaning more of the reactants 
have been consumed). Multimodality is also evident in some PDFs; 
this is a result of convective and diffusive transport in x-space.

The trends of Fig. 3 are reflected in the integrated quantities plot-
ted in Fig. 4. The first row illustrates ⟨Φ1⟩ going from being con-
served at Da = 0 to being consumed at rates increasing with Da, as 
expected. The consumption also slightly increases with the SGS 
mixing rate. The following row shows the negative of the (Reynolds 
averaged) scalar covariance

which decays in t due to ⟨Φ1⟩∕⟨Φ2⟩ approaching unity as the flow be-
comes increasingly mixed. Last, the last row exhibits the covariance

At initial times, −Y12 increases due to large gradients in ⟨Φα⟩, 
followed by a decrease due to mixing (with higher mixing-rates lead-
ing to a faster decay). The ratio R12 ∕

(

R12+Y12

)

 is consistently above 
one half, implying that most of the energy of the eddies is resolved 
during the simulations. The statistical trends observed in Fig. 4 are 
consistent with those reported in turbulence literature (35).

DISCUSSION
The results imply that MPSs are able to efficiently exploit structure 
within turbulence PDFs. The PDF f

(

φ1,φ2; x, t
)

 of our 3D chemi-
cally reactive flow case [Eq. 3] is of an orderly shape, and the cou-
pling between its dimensions is limited by the SGS mixing rate CΩ. 
Exploiting these structures permits our MPS scheme to accurately 
and efficiently represent f  and evolve it through time. In the future, 
a more realistic model should be considered where the velocity field 
is also included within the PDF, turning f = f

(

u,φ1,φ2; x, t
)

 into a 
d = 8 + 1 dimensional object.

Ensuring the MPS algorithm maintains both accuracy and effi-
ciency requires carefully selecting χ (see figs. S1 to S3). Figure 2 indi-
cates that varying the Damköhler number does not significantly affect 
the accuracy, while increasing the SGS mixing rate requires χ to in 
turn increase as χ ∼ poly

(

CΩ

)

 for accuracy to be maintained. Setting 

χ excessively high is expensive due to the O
(

χ4dlogM
)

 asymptotic 
cost of the algorithm. However, for slower mixing rates, high accuracy 
is achievable at very low χ even when the chemical reaction rates are 
high. For instance, at CΩ = 0.25, Da = 1.5, the algorithm is accurate 
with just χ = 32. This is equivalent to respective 

(

106
)

 and 
(

103
)

 
factor reductions in memory and computational costs [Materials and 
Methods, Eq. 12, and Supplementary Text, “Empirical computational 
cost” section] compared to conventional FD schemes, allowing the 
time evolution to be executed on a single CPU core in only a couple of 
hours, instead of days on a supercomputer.

The results shown here are only an early indication of what is pos-
sible: there exists great scope for improvement in both the algorithm 
and its implementation. For example, using tensor-cross or other 
algorithms (45) to perform element-wise multiplications might reduce 
the complexity of our scheme to ∼χ3 without significantly sacrificing 
accuracy. Furthermore, better optimized software running on special-
ized computing architectures will allow for much larger bond dimen-
sions and system sizes: We are currently simulating a Md = 1285 = 235 
grid at χ = 128, while the current record is a quantum physics simula-
tion on a grid equivalent of Md = 2400 at χ = 32768, performed on a 
tensor processing unit pod (46).

We decided to use an MPS ansatz because it closely matches the 
structure of the PDF for this particular flow; other flows may have dif-
ferent PDFs for which alternative ansatze could be better suited (47). 
Fortunately, there exists a rich and growing selection of TNs to pick 
from, each carrying their advantages and disadvantages. These range 
from 2D generalizations of MPSs (48), hierarchical networks (49, 50), 
and even networks that might someday leverage quantum hardware 
(51). There is also the exciting prospect of catering the TN ansatz to 
the structure of the PDF in an automated manner (52). Typically, more 
complex ansatze are able to encode solutions with higher accuracy at 
lower χ but are costlier to manipulate. Balancing such considerations 
while exploring alternative TN geometries for probabilistic turbulence 
simulations is a promising avenue of future investigation.

Turbulence is just one example of a complex system; there are 
many others, ranging from biological organisms to financial markets 
(53). These kind of systems exhibit chaotic and unpredictable dynam-
ics that ultimately require statistical descriptions (54). The most fun-
damental way of doing so is by modeling their PDFs. Yet, such PDFs 
are typically prohibitively high dimensional (as displayed here for the 
case of turbulence), which has made solving their governing Fokker-
Planck equations infeasible, until now. This work is a first demonstra-
tion in how the problem can be overcome via a simple TN. More 
advanced TN ansatze and algorithms will be developed in time, hold-
ing the promise of enabling large-scale probabilistic simulations both 
within the field of fluid dynamics and beyond.

MATERIALS AND METHODS
Flow case definition
In Eq. 3, the mean velocity field ⟨U⟩ is set a priori. To ensure adequate 
convective mixing and for the flow to be interesting, we elected to set 
the velocity field to a jet moving through a Taylor-Green vortex

R12 = ⟨Φ1⟩⟨Φ2⟩ − ⟨Φ1⟩ ⟨Φ2⟩ (5)

Y12 = ⟨Φ1⟩⟨Φ2⟩ − ⟨Φ1⟩ ⟨Φ2⟩ (6)

⟨U1⟩∕u0 = coskx1sinkx2sinkx3−e
−
(x2∕l0−1∕2)

2
+ (x3∕l0−1∕2)

2

2(1∕6)2

⟨U2⟩∕u0 = sinkx1coskx2sinkx3,

⟨U3⟩∕u0 = −2sinkx1sinkx2coskx3

(7)

Fig. 4. Statistics extracted from PDF for different flow parameters. In the first 
row, the total amount of the first species is plotted. The next row is of the Reynolds-
averaged covariance R12, while the final row quantifies the space-averaged covari-
ance Y12 . These quantities are defined in Eqs. 4 to 6. The PDFs are computed at 
χ = 128.
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Here, the vortex wavenumber k is set to k = 4π∕ l0.
The initial (t = 0) PDF is chosen to be a Gaussian step function

that has undergone numerical smoothing in the x dimensions (the 
smoothing is meant to soften the step function at the x1 =

1

4
, 3
4
 

boundary sufficiently to avoid numerical instabilities during time 
evolution). The initial PDF is illustrated in the first rows of Fig. 1.

The M = 128, d = 5 grid is sufficient for the simulation to be con-
ducted with parameters that make physical sense: we set Cs = 0.11, 
Δ

�
= 3Δx = 3l0 ∕M, Pe = 103, CΩ ∈ [0.25,1], and Da ∈ [0,1.5].

Moment equations
The zeroth moment of the Fokker-Planck Eq. 3 recovers the hydro-
dynamic continuity equation ∇ ⋅ ⟨U⟩ = 0, while the first gives an 
equation for the mean mass fractions ⟨Φα⟩ (x, t)

In nonreactive flows (Da = 0), S = 0 and Eq. 9 can be cheaply and 
accurately solved using a standard FD scheme to obtain a “numeri-
cally exact” ⟨Φα⟩ solution (in the sense that there is no truncation 
error in χ, as explained in Materials and Methods, “Error measures” 
section). This is used to check the accuracy of the MPS algorithm in 
Fig. 2 (A and B). It is not possible to obtain a numerically exact ⟨Φα⟩ 
when Da > 0, because a closure model would be required for ⟨Sα⟩.

FD discretization
The simulations are performed on equidistant Cartesian grids with 
M = 128 gridpoints along each dimension. The derivatives in Eqs. 3 
and 9 are discretized in a simple manner: the temporal derivative 
with an explicit Runge-Kutta 2 scheme and a second-order-accurate 
central FDs (CFD2) discretization of the x,φ1,φ2 derivatives.

However, discretizing Eq. (3) creates the practical challenge of 
handling delta-functions. The LMSE model forces each Φα toward 
⟨Φα⟩

 at every x, t, equivalent to the PDF in composition space mov-
ing toward a delta function centered around the mean of the mass 
fractions. Resolving delta functions on discretized grids is difficult, 
as their sharp gradients reduce the accuracy and stability of any nu-
merical scheme used to compute the PDF transport. While often 
this is dealt with by using highly dissipative discretizations of de-
rivatives (e.g., upwinding), we rather choose to simply modify the 
LMSE model in Eq. 3 through the addition of an artificial dissipa-
tion term to the compositional space. Doing this while discretizing 
the Fokker-Planck PDE results in

with the artificial dissipation governed by μ. This parameter needs to 
be set to be as small as possible to minimally affect the accuracy, 
while still being large enough to ensure f  is well resolved on M. From 
trial and error, we find μ = 4 ⋅ 10−3

u0
l0

 works well for M = 128.

Particular care must be taken when defining the boundary con-
ditions for this problem. While in x-space, one may simply assume 
periodic boundaries, in compositional space, the boundary condi-
tions must be defined in a way that stops probability leaking out of 
the domain. This is achieved by making the composition space 
ghosts points for any order-n discrete derivative of f  follow

with i denoting a discretized (equidistantly distributed) lattice point. 
Equation 11 imposes f−1 = −f0 & fM = −fM−1 for the first derivative, and 
f−1 = f0 & fM = fM−1 for the second, under our CFD2 discretization.

MPS algorithm
Our MPS algorithm implements the aforementioned RK2-CFD2 
scheme on the MPS manifold (14, 55). This entails parameterizing all 
the vectors (like f , ⟨Ui ⟩, and ⟨Φα⟩) in Eq. 10 as MPSs [(39), section 
3.4], and the matrices (e.g., Δ∕Δxi) as analogous matrix product 
operators [(39), section 3.5]. Then, within the MPS format, the time-
stepping is performed in a standard manner using the arithmetic op-
erations outlined in the “Computational complexity” section.

It is essential to control the bond dimension during the MPS simu-
lation. The arithmetic operations that time-evolve f  lead to its bond 
dimension growing exponentially in time, if not truncated [(39), sec-
tion 3.5.3]. In our code, we use the singular values decomposition to 
truncate the bond dimension of f  such that it is always limited to χ. As 
for the other vectors and matrices, these objects remain constant in 
time and their bond dimensions are all of order (10).

The maximal bond dimension χ defines the NVPP. For an MPS 
representation of f , the number of parameters becomes

with N = log2M
d, (M must be a power of 2) being the number of ten-

sors in the MPS, and p(n) =min
(

2n, 2N−n, χ
)

 being the size of the nth 
bond of the MPS. The first sum gives the total number of parameters in 
the MPS, while the second sum represents the intrinsic gauge degrees of 
freedom of the MPS format (55). When χ is maximal, i.e., χ = 2⌊N∕2⌋, we 
get NVPP = 2N =Md and that f  is represented exactly on the M×d grid.

Error measures
The errors in Fig. 2 (B and C) are computed using the RMSE mea-
sure across χ. In the first figure, the upper Error2b↑ and lower Error2b↓ 
are computed by averaging the spatially averaged mean quantities 
across α, t and α, t, x, respectively. In Fig. 2C, the averaging is done 
across just t and t, x to compute Error2c↑, Error2c↓. Mathematically, 
these errors can be expressed as

f (t=0)=
1

2π(1∕8)2

⎧

⎪

⎨

⎪

⎩

e
−
(φ1−3∕4)

2
+ (φ2−1∕4)

2

2(1∕8)2 ,
1

4
≤ x1<

3

4
,

e
−
(φ1−1∕4)

2
+ (φ2−3∕4)

2

2(1∕8)2 , otherwise

(8)

�⟨Φα⟩

�t
+⟨Ui⟩

⟨Φα⟩

�xi

=
�

�xi

�

�

γ+γSGS
� �⟨Φα⟩

�xi

�

+⟨Sα⟩ (9)

Δf

Δt
+⟨Ui⟩

Δf

Δxi
−

Δ

Δxi

�

�

γ+γSGS
� Δf

Δxi

�

=

Δ

Δφα

�

Ωmix

�

φα−⟨Φα⟩
�

f +CΩμ
Δf

Δφα

�

−
Δ

Δφα

�

Sαf
�

(10)

M−1
∑

i=0

[

Δnf

Δφn
α

]

i

= 0 (11)

NVPP = 2

N
∑

n=1

p(n−1)p(n) −

N−1
∑

n=1

p(n)2 (12)

Error2b↑(χ)=

�

1

2

�

α=1,2

ℰt

�

⟨Φα⟩(χ), 1∕2
�

,

Error2b↓(χ)=

�

1

2

�

α=1,2

ℰt,x

�

⟨Φα⟩(χ), ⟨Φα⟩(exact)
�

Error2c↑(χ)=

�

ℰt

�

⟨Φ1⟩(χ)−⟨Φ2⟩(χ), 0
�

,

Error2c↓(χ)=

�

ℰt,x

�

⟨1⟩(χ), 1
�

(13)
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with ⟨Φα⟩ (χ) being extracted from the MPS-PDF solution of Eq. 10 
while ⟨Φα⟩ (exact) is the solution found by directly solving Eq. 9 with a 
standard RK2-CFD2 FD scheme; this solution is “numerically exact” in 
the sense that it does not suffer from any truncation error in χ [although 
a truncation error from the FD discretization itself remains, this error is 
slight due to the smoothness of  ⟨Φα⟩ (exact)]. The functions

implement temporal (Et) and space-time (Et,x) averaging.
Note that since both time and space are discretized during the simu-

lations, the above integrals are both performed numerically using a 
simple step quadrature. In space, the integrals are computed using all 
the M = 128 gridpoints along each dimension. In time, the integral is 
computed over the 17 time samples t = 0,

T0

8
,
T0

4
,
3T0

8
,…, 2T0.
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