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Tensor networks enable the calculation of turbulence

probability distributions

Nikita Gourianov'%*, Peyman Givi', Dieter Jaksch?3, Stephen B. Pope4

Predicting the dynamics of turbulent fluids has been an elusive goal for centuries. Even with modern computers,
anything beyond the simplest turbulent flows is too chaotic and multiscaled to be directly simulatable. An alterna-
tive is to treat turbulence probabilistically, viewing flow properties as random variables distributed according to
joint probability density functions (PDFs). Such PDFs are neither chaotic nor multiscale, yet remain challenging to
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simulate due to their high dimensionality. Here, we overcome the dimensionality problem by encoding turbu-
lence PDFs as highly compressed “tensor networks” (TNs). This enables single CPU core simulations that would
otherwise be impractical even with supercomputers: for a 5 + 1dimensional PDF of a chemically reactive turbu-
lent flow, we achieve reductions in memory and computational costs by factors of ©(10°) and ©(10%), respec-
tively, compared to standard finite-difference algorithms. A future path is opened toward something heretofore
thought infeasible: directly simulating high-dimensional PDFs of both turbulent flows and other chaotic systems

that can usefully be described probabilistically.

INTRODUCTION
Despite the simple and deterministic physical laws governing it, tur-
bulence remains an inherently complex and chaotic phenomenon. It is
characterized by large numbers of eddies interacting in intricate and
nonlinear ways across wide ranges of spatial and temporal scales, lead-
ing to the emergence of chaos. Making matters worse, practically
important turbulent flows (e.g., fuel-oxidizer mixtures in combustion)
often involve multiple chemically reacting species, which introduces
additional nonlinearities and scales. The presence of chaos prohibits
predicting the exact dynamics of turbulent flow fields over long peri-
ods of time, while the multiscaled nature of the flow fields makes their
simulation immensely expensive due to the need to solve sets of cou-
pled partial differential equations (PDEs) on very fine grids.
However, for practical applications it is rarely necessary to know
the precise state of a turbulent flow field at every point in space-time.
Rather, one is typically more interested in far slower-varying statisti-
cal quantities where the fluctuations are averaged out (such as the lift
and drag of an aeroplane or the rate of product formation in a chem-
ical process). In the statistical description of turbulence, variables
like velocities U, chemical mass-fractions @, temperatures, etc., are
treated as random variables (RVs) distributed according to some
one-point, one-time joint probability density function (PDF) (I)

f=f(u,(p1,...;x,t) (1)

across space x and time #, with u, ¢, being sample-space variables
corresponding to U, ®@,. The trajectory of f completely describes the
one-point, one-time statistics of the flow dynamics (2), which are the
central quantities of interest in practical engineering calculations.
The time evolution of f is modeled by Fokker-Planck PDEs that
are straightforward to derive (3-5) but hard to solve. If f is d-
dimensional, assigning M points for each dimension results in a total
of M“ gridpoints. Given that d can be as high as ©(10?) in realistic
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flows (6, 7), direct schemes like finite differences (FDs) or volumes
were long ago dismissed as computationally infeasible (8) due to
their seemingly exponential cost in d. This spurred the creation of
indirect Monte Carlo (MC) algorithms for probabilistic turbulence
simulations (8). These schemes have proven highly successful, enabling
advanced turbulent combustion simulations involving thousands of
CPU cores (9, 10). However, the randomness and slow convergence
characterizing MC methods can be avoided by directly solving the
underlying Fokker-Planck equations.

It is not just probabilistic turbulence calculations that are hin-
dered by the curse of dimensionality: quantum many-body systems
are described by states whose sizes also grow exponentially (in the
number of particles). However, physically relevant quantum states
are known to be highly structured (11). Such structure can be ex-
ploited to compress the states into approximate, but highly accurate,
polynomially large representations known as tensor networks (TNs).
TN algorithms allow efficiently evolving these states and analyzing
their physical properties without ever leaving the compressed TN
representation (12-15) and have enabled the simulation of otherwise
intractable quantum systems like superconductors, ferromagnets,
and quantum computers (16-24). Recently, the TN formalism has
begun spreading beyond quantum physics (25-31).

Decades of empirical experience indicates that f is also highly
structured. For instance, in homogeneous turbulence, velocities U are
often distributed normally (2), whereas mass fractions @, have been
observed to follow normal, exponential, and f distributions in nonre-
active flows (32). In more complicated reacting flows, the PDFs gen-
erally cannot be so simply parameterized (33), although they remain
smoother and more predictable than the underlying flow fields (34).

This work shows that the structure contained in turbulence
PDFs is readily exploitable through TNs: using a simple TN known
as the “matrix product state” (MPS) ansatz to encode f in a highly
compressed format allows us to formulate a scheme for cheaply
and directly solving the governing Fokker-Planck equations.
When the PDF structure is well-matched to the MPS ansatz, the
time-evolution costs just ~dlogM; while standard FD schemes
scale as ~M?. We demonstrate the advantage by looking at the
following turbulent flow.
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RESULTS

Probabilistic modeling of reactive turbulence

Consider an incompressible, three-dimensional (3D) turbulent flow in
which two chemical species are irreversibly reacting: A + B — Products.
In this system, two chemical species (of mass fractions @, ®,) are
stirred by a velocity field U = U(x, t) in 3D space x across time ¢. For
the sake of simplicity, we here consider only the statistics of the ®,, ®,
scalar fields by assuming that the large-scale statistical features of the
hydrodynamics are known a priori, while modeling the subgrid-scale
(SGS), turbulent velocity fluctuations using large eddy simulation
(LES), per current best practices (10). Doing so eliminates the ran-
domness of U and reduces the dimensionality to d =5 + 1. Now,
f=f(op95x t) describes the statistics of the mass fraction fluctua-
tions, which provide the mean mass fractions (®, ), (®,) through

<<I>a>(x,t)=L ] 0o f (91, 95 x,t)dop, d, @)
0’1 X2

Such PDFs are known as “filtered density functions” (3, 35).
Deriving the equation governing f requires SGS closure modeling.
Using popular closure models (35) gives the Fokker-Planck PDE

9 9 [
L) - |10 | = 52 e @)= 22 (5) )

Here, U(x, t) is the large-scale (or, “filtered”) mean hydrodynamic
field across x € [0, lO]X3, te [0,2T0], which is set to be a jet flow
combined with a Taylor-Green vortex of amplitude u, =1,/ T,
(Materials and Methods, “Flow case definition” section).

The left hand side of Eq. 3 denotes the PDF transport in space
and time. The first term is the rate of temporal change, and the
second term represents convection by the mean velocity field.
The third represents the influence of the molecular (y) and SGS
diffusion [ygqs(x, )] coeflicients: The former sets the Peclet num-
ber Pe = uyl, /vy and the latter is modeled via the Smagorinsky

AZ
(36) closure Ysgs = Csjé

2
U, |, 3G, . o
2 o * 3, | > with C  an empirical

constant and A, the LES filter width (both are specified in Materials
and Methods, “Flow case definition” section).

The right hand side of Eq. 3 designates transport in the composi-
tion space [“composition” since the @, @, € [0, 1]** mass fractions
define the composition of the fluid]. The first term represents scalar
mixing from the SGS turbulence and is modeled via the popular

least mean square estimation (LMSE) (37) closure Q, ;. = Cq Yl#,

with Cg, the SGS mixing rate. The final term denotes the effects of
chemical reaction. For the binary reaction scheme considered here,
S, =S, = —C,9,¢,, where C, denotes the reaction rate that defines
the Damkohler number Da = C.[, / u,.

To solve Eq. 3, we discretize f ateverypointintimeona M =128, d=5
Cartesian grid, but parameterize it as an MPS-network using far
fewer variables than the 128° gridpoints resolving it. This allows us
to use a simple Runge-Kutta 2, FD scheme (Materials and Methods,
“FD discretization” section) to solve Eq. 3 and time evolve the
MPS-PDE

An initial MPS simulation (Materials and Methods, “MPS algo-
rithm” section) is performed in Fig. 1 of a purely mixing flow with-
out chemical reactions (Da = 0). The PDF is illustrated at two points
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in x along with the scalar-ratio (®,) / (®,) at four different times,
showing how the initially orderly, unmixed flow state is driven
toward a fully-mixed (®,) / (®,) ~ 1 state by SGS and large-scale
convective and diffusive mixing. The SGS mixing leads to the PDF
concentrating, while the diffusion and mean-flow convection in-
duces multimodality in the PDE. The MPS simulation is highly ac-
curate (Fig. 2B), yet the number of variables parameterizing the
PDF (NVPP) is only ©O(1/10°) of an equivalent, classically imple-
mented FD scheme [Materials and Methods, Eq. 12].

MPS encoding
In our MPS encoding, the discretized, high-dimensional f(¢,,
@, X, %y, ;) is decomposed into a 1D chain of tensors, where the
@1> P, X5 X,, X5 dimensions are sequentially mapped to tensors from
left to right, with each dimension itself decomposed into multiple
tensors lengthscale by lengthscale {analogously to the “sequential,
serial” ordering in [(27), Fig. 1] and [(38), Eq. 9]}. This encoding
exploits two separate structures that characterize the solution of Eq.
3: First, the general smoothness of turbulence PDFs; second, that
the different dimensions of f(¢,, ¢,;x, t) are unlikely to be strongly
coupled at low Cg, because for C, = 0 the PDF is separable (Supple-
mentary Text, “Separability of Fokker-Planck equation” section).
Matching the structure of the PDF in this way allows for an MPS
encoding that is both accurate and parsimonious. The MPS represen-
tation (like any TN) can be systematically compressed, i.e., the NVPP
reduced, by varying a hyperparameter known as the maximum bond
dimension . This hyperparameter regulates the maximal size of the
“bonds” between the tensors, which is equivalent to the maximum
allowed coupling between the tensors and, in turn, between the differ-
ent lengthscales and dimensions of f. For example, setting y = 1 for-
bids any coupling between the tensors and makes the NVPP minimal,
while picking y sufficiently large makes the MPS representation exact
and NVPP = M? like in the standard representation. Setting y to be
small in turn leads to alow NVPP, but the MPS encoding will still re-
main accurate if it reflects the structure of f sufficiently well.

Validation of algorithm
We now investigate how well the MPS parameterization fits the solu-
tion of Eq. 3 in practice. To determine the x required to accurately
simulate the dynamics of the RVs @, @, underlying the PDEF, the com-
position space transport parameters Cy, Da are varied, while fixing the
hydrodynamic variables ( U), y45¢ and Pe to those used in Fig. 1.
Increasing Cg, is expected to lead to higher coupling between the
different dimensions of f, which reduces the efficiency of our MPS
encoding, i.e., increasing C, requires an increased  to maintain ac-
curacy. To verify, we first set Da = 0 because this allows us to accu-
rately compute (@) independently of Eq. 3 (see Materials and
Methods, “Moment equations” section) and benchmark the accu-
racy of the computed MPS-PDF across Cg,%. The benchmark is
shown in Fig. 2 (A and B). The (®,) / (®,) ratios in Fig. 2A depict
how the MPS-PDF means approach their numerically exact equiva-
lent when y increases and C, decreases. All the cases, including the
ones with lowest accuracy, correctly trend toward a fully mixed
equilibrium state where (®,) / (®,) ~ 1. Figure 2B quantitatively
shows that the root mean square error (RMSE) in terms of both the
Reynolds-averaged mean mass fraction

J (@, )dx
[0.6]¢

(D) = (4)

20f8

5202 ‘2 Arenioe uo 610'a0us 10s" MMM/ Sd1y WoJ) papeoumod



SCIENCE ADVANCES | RESEARCH ARTICLE

x /1 ’

0.8
505

0.2

0.8
&50.5

0.2

0.8
§0.5

0.2

—=5.0

1.0

-
L
%
5

0.2 0.5 0.8
$2

(@)/{Dy)

100

T T T

T

10

T

o1, 92 %, t)

T T

T

o
—

T T T

- =0.01

Fig. 1. High-dimensional PDF of a flow undergoing turbulent mixing revealed by TN simulation. Here, the Fokker-Planck Eq. 3 is solved for a PDF f((p“(pz;x, t)
over chemical mass fractions @,, ¢,, at C, = 1,Da = 0in the presence of aPe = 10° velocity field U characterized by vortices and a jet along x, (Materials and Methods,

“Flow case definition” section). The 5D f((p1,(p2;x,t) is represented by a MPS ansatz at y = 128, on a 128"° grid and is visualized here for x/ly= (15, 1, %) and

x/ly= (0, 13, 1 ) attimest /T, = 0,0.125,1,2 in the left and right columns, while corresponding mean mass fraction ratios (®;) / (®,) are shown in the center.

and (®,) decrease roughly polynomially in y for all Cg,.

Figure 2C depicts how varying the Damkohler number affects the
accuracy of the MPS algorithm. When Da > 0, any moments
(@), n € Z,, higher than the norm (@2) = (1) can no longer be inde-
pendently computed. We therefore rather look at two quantities that our
simulation must preserve: the norm, which must equal unity across
o, X, f, and the difference in consumption between the two species
(®,)— (D,), which should be zero for all ¢ due to the symmetry of S,
and the initial conditions. The figure indicates these two quantities
becoming increasingly preserved when, again, Cq decreases and y in-
creases. Notably, the errors decrease roughly polynomially in y. However,
varying Da has little impact on the accuracy. This is because the chemical
reaction largely just drives the PDF in compositional space toward the
origin (as seen in Fig. 3), without significantly affecting its structure.

Computational complexity
The maximal bond dimension y not only sets the accuracy of the MPS
simulation but also determines the computational cost. Because our

Gourianov et al., Sci. Adv. 11, eads5990 (2025) 29 January 2025

MPS algorithm (Materials and Methods, “MPS algorithm” section)
implements a finite difference method within the MPS framework, it
must perform the MPS equivalent of operations like element-wise,
matrix-matrix and matrix-vector multiplications, matrix and vector
additions and subtractions, and inner and outer products, in addition
to MPS-specific operations like singular values and QR decompositions
to enforce the maximal bond dimension and ensure the MPS stays in
the numerically manageable “canonical form” (14, 15). It is straightfor-
ward to show (39) that these MPS operations all cost O(x‘i dlogM )
asymptotically, with g € Z_; depending on the operation.

The element-wise multiplication operation is the most expensive
at g =4[(39), section 4.6], making the asymptotic complexity of our
scheme as a whole O(x*dlogM ) per timestep. Thus, for M, timesteps,
the total cost of the time evolution will approach O (M, y*dlogM ) at
very large y; although in practice for small and intermediate y, the
empirical cost scales much milder (Supplementary Text, “Empirical
computational cost” section). In comparison, standard FD schemes
are exponentially more expensive in d, costing O(M,M?).
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Fig. 2. Accuracy convergence of TN algorithm. The influence of y, C, and Da on the accuracy of the MPS simulation is outlined here. (A) and (B) contrast numerically
exact means against those extracted from the MPS algorithm. In (A), the ratio (®,)/(®,) is visualized at x; / I, = % for timest /T, = 0.125,0.25, 1,and 2, top to bottom.
The leftmost column corresponds to the exact solution (which can only be practically computed for Da = 0 through Eq. 9), while the next six columns come from
MPS simulations at varying y, C,,. The differences between the exact and MPS solutions are quantified in the lower (B) plot; the upper (B) plot shows how well the total
species amounts () (see Eq. 4) are preserved through the simulation. In (C), the RMSE in two basic statistics is computed: the difference in species consumption
(®,)—(D,), which should always equal zero, and the space-averaged norm m, which should always equal one. All RMSEs are mathematically defined in Materials

and Methods, “Error measures” section.
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Fig. 3. Final PDF for various flow parameters. The PDFs at the end of the simulation

(t/To = 2) are shown here in the center of the spatial domain [X//o = (%, %, 1 )] forall

combinations of C,, Da. The PDFs are computed using x = 128 MPS simulations.
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There is also the question of preparing initial states and extracting
statistics. Regarding the former, the 3D (U)(x),ysqs(x) and d-
dimensional f (¢;, @,; X, =0) can be computed using either the pro-
longation method {see [(39), section 4.4] and (40)} or the tensor-cross
algorithm (30, 41-44), both at O(X3d10gM ) cost. As for the latter,
computing expectation values boils down to doing the MPS equiva-
lent of matrix-vector multiplication and inner products, which are,
as noted previously, inexpensive and straightforward operations.
For instance, at any given timestep, the 3D mean (®,) can be ex-
tracted from f at O(M>y*dlogM) complexity, while the cost is

O(x*dlogM ) for the scalar (®,).

Integrated quantities

The satisfactory accuracy and subexponential cost of our MPS
scheme allows us to directly compute the PDF, visualize it, and ex-
tract from it all relevant integrated quantities.

Figure 3 shows the influence of mixing and chemical reactions
on the PDE As expected, in the absence of chemical reaction, both
species tend toward the fully mixed values (®,) (t » o0) = 0.5at a
rate governed by C,. Whereas in the reacting flow simulations,
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(®,) (t—>00) = 0 at a rate that increases with C,, and Da. Visually,
we see that increasing Cg, leads to a PDF that is more concentrated
along @, = @, (implying a more mixed fluid), while increasing Da
takes the PDF closer to the origin (meaning more of the reactants
have been consumed). Multimodality is also evident in some PDFs;
this is a result of convective and diffusive transport in x-space.

The trends of Fig. 3 are reflected in the integrated quantities plot-
ted in Fig. 4. The first row illustrates (®,) going from being con-
served at Da = 0 to being consumed at rates increasing with Da, as
expected. The consumption also slightly increases with the SGS
mixing rate. The following row shows the negative of the (Reynolds
averaged) scalar covariance

Ry, = <¢1><q)2> - @@ (5)

which decays in t due to (®,)/(®,) approaching unity as the flow be-
comes increasingly mixed. Last, the last row exhibits the covariance

(6)

At initial times, —Y, increases due to large gradients in (®),
followed by a decrease due to mixing (with higher mixing-rates lead-
ing to a faster decay). The ratio R,, / (R12 +Y_12) is consistently above
one half, implying that most of the energy of the eddies is resolved
during the simulations. The statistical trends observed in Fig. 4 are
consistent with those reported in turbulence literature (35).

Y, = (@)(@,) — (@) (@,)

DISCUSSION

The results imply that MPSs are able to efficiently exploit structure
within turbulence PDFs. The PDF f ((pl, Py X, t) of our 3D chemi-
cally reactive flow case [Eq. 3] is of an orderly shape, and the cou-
pling between its dimensions is limited by the SGS mixing rate C,.
Exploiting these structures permits our MPS scheme to accurately
and efficiently represent f and evolve it through time. In the future,
a more realistic model should be considered where the velocity field
is also included within the PDEF, turning f = f (u, PPy X t) into a
d = 8 + 1 dimensional object.

Ensuring the MPS algorithm maintains both accuracy and effi-
ciency requires carefully selecting  (see figs. S1 to S3). Figure 2 indi-
cates that varying the Damkaohler number does not significantly affect
the accuracy, while increasing the SGS mixing rate requires y to in
turn increase as y ~ poly(CQ) for accuracy to be maintained. Setting
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Fig. 4. Statistics extracted from PDF for different flow parameters. In the first
row, the total amount of the first species is plotted. The next row is of the Reynolds-
averaged covariance R;,, while the final row quantifies the space-averaged covari-
ance Y_12 These quantities are defined in Egs. 4 to 6. The PDFs are computed at
x=128.
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x excessively high is expensive due to the O(X4dlogM ) asymptotic
cost of the algorithm. However, for slower mixing rates, high accuracy
is achievable at very low y even when the chemical reaction rates are
high. For instance, at C,, = 0.25, Da = 1.5, the algorithm is accurate
with just x = 32. This is equivalent to respective 9(10°) and O(10?)
factor reductions in memory and computational costs [Materials and
Methods, Eq. 12, and Supplementary Text, “Empirical computational
cost” section] compared to conventional FD schemes, allowing the
time evolution to be executed on a single CPU core in only a couple of
hours, instead of days on a supercomputer.

The results shown here are only an early indication of what is pos-
sible: there exists great scope for improvement in both the algorithm
and its implementation. For example, using tensor-cross or other
algorithms (45) to perform element-wise multiplications might reduce
the complexity of our scheme to ~ > without significantly sacrificing
accuracy. Furthermore, better optimized software running on special-
ized computing architectures will allow for much larger bond dimen-
sions and system sizes: We are currently simulating a M¢ = 128°= 2%
grid at y = 128, while the current record is a quantum physics simula-
tion on a grid equivalent of M? = 2400 at y = 32768, performed on a
tensor processing unit pod (46).

We decided to use an MPS ansatz because it closely matches the
structure of the PDF for this particular flow; other flows may have dif-
ferent PDFs for which alternative ansatze could be better suited (47).
Fortunately, there exists a rich and growing selection of TNs to pick
from, each carrying their advantages and disadvantages. These range
from 2D generalizations of MPSs (48), hierarchical networks (49, 50),
and even networks that might someday leverage quantum hardware
(51). There is also the exciting prospect of catering the TN ansatz to
the structure of the PDF in an automated manner (52). Typically, more
complex ansatze are able to encode solutions with higher accuracy at
lower y but are costlier to manipulate. Balancing such considerations
while exploring alternative TN geometries for probabilistic turbulence
simulations is a promising avenue of future investigation.

Turbulence is just one example of a complex system; there are
many others, ranging from biological organisms to financial markets
(53). These kind of systems exhibit chaotic and unpredictable dynam-
ics that ultimately require statistical descriptions (54). The most fun-
damental way of doing so is by modeling their PDFs. Yet, such PDFs
are typically prohibitively high dimensional (as displayed here for the
case of turbulence), which has made solving their governing Fokker-
Planck equations infeasible, until now. This work is a first demonstra-
tion in how the problem can be overcome via a simple TN. More
advanced TN ansatze and algorithms will be developed in time, hold-
ing the promise of enabling large-scale probabilistic simulations both
within the field of fluid dynamics and beyond.

MATERIALS AND METHODS

Flow case definition

In Eq. 3, the mean velocity field (U ) is set a priori. To ensure adequate
convective mixing and for the flow to be interesting, we elected to set
the velocity field to a jet moving through a Taylor-Green vortex

_ (aflo=1/2) +(x3/lp=1/2)°
(U,)/uy = coskx;sinkx,sinkx; —e 20/67
™)

(U,)/uy = sinkx, coskx,sinkx;,

(Us)/uy = —2sinkx;sinkx,coskx;
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Here, the vortex wavenumber k is set to k = 4x /I,
The initial (¢ = 0) PDF is chosen to be a Gaussian step function

_ (01=3/4)% + (0p-1/4)°

2
e 2(1/8) R

<x <

NP
W

1
= O =
Jt=0 2n(1/8)° ®)

_ (919 + (92-3/4)

e 20/87 otherwise

that has undergone numerical smoothing in the x dimensions (the
13

boundary sufficiently to avoid numerical instabilities during tiiné:1
evolution). The initial PDF is illustrated in the first rows of Fig. 1.

The M = 128, d = 5grid is sufficient for the simulation to be con-
ducted with parameters that make physical sense: we set C, = 0.11,
Ay =3Ax =3I,/ M, Pe = 10°, C,, € [0.25,1], and Da € [0,1.5].

smoothing is meant to soften the step function at the x, =

Moment equations

The zeroth moment of the Fokker-Planck Eq. 3 recovers the hydro-
dynamic continuity equation V - (U) = 0, while the first gives an
equation for the mean mass fractions (®,) (x, t)

(D () (D
( ) (U>< w aaxi[(Y+YSGS)<a—x;>]+<S“> 9

In nonreactive flows (Da =0), S=0and Eq. 9 can be cheaply and
accurately solved using a standard FD scheme to obtain a “numeri-
cally exact” (@) solution (in the sense that there is no truncation
error in , as explained in Materials and Methods, “Error measures”
section). This is used to check the accuracy of the MPS algorithm in
Fig. 2 (A and B). It is not possible to obtain a numerically exact (®,)
when Da > 0, because a closure model would be required for (S,).

FD discretization
The simulations are performed on equidistant Cartesian grids with
M = 128 gridpoints along each dimension. The derivatives in Eqgs. 3
and 9 are discretized in a simple manner: the temporal derivative
with an explicit Runge-Kutta 2 scheme and a second-order-accurate
central FDs (CFD2) discretization of the x, @,, @, derivatives.
However, discretizing Eq. (3) creates the practical challenge of
handling delta-functions. The LMSE model forces each ®, toward
(@) at every X, t, equivalent to the PDF in composition space mov-
ing toward a delta function centered around the mean of the mass
fractions. Resolving delta functions on discretized grids is difficult,
as their sharp gradients reduce the accuracy and stability of any nu-
merical scheme used to compute the PDF transport. While often
this is dealt with by using highly dissipative discretizations of de-
rivatives (e.g., upwinding), we rather choose to simply modify the
LMSE model in Eq. 3 through the addition of an artificial dissipa-
tion term to the compositional space. Doing this while discretizing
the Fokker-Planck PDE results in

Af Af A f
E"'(Ui A_xl_A_xl[ Y+ 7¥ss A_]
A Af (10)
Ao. Qi (00— (P4 ))f"'CQHT“] Yy (Sof)

with the artificial dissipation governed by p. This parameter needs to
be set to be as small as possible to minimally affect the accuracy,
while still being large enough to ensure f is well resolved on M. From
trial and error, we findp = 4 - 1073 % works well for M = 128.

0
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Particular care must be taken when defining the boundary con-
ditions for this problem. While in x-space, one may simply assume
periodic boundaries, in compositional space, the boundary condi-
tions must be defined in a way that stops probability leaking out of
the domain. This is achieved by making the composition space
ghosts points for any order-n discrete derivative of f follow

ML png
; [A(pg]i =

with i denoting a discretized (equidistantly distributed) lattice point.
Equation 11 imposes f_; = —fy & fy; = —fy1_for the first derivative, and
fo1 =fo & fur = fu_:1 for the second, under our CFD2 discretization.

MPS algorithm

Our MPS algorithm implements the aforementioned RK2-CFD2
scheme on the MPS manifold (14, 55). This entails parameterizing all
the vectors (like f, (U;), and (®a)) in Eq. 10 as MPSs [(39), section
3.4], and the matrices (e.g., A/ Ax;) as analogous matrix product
operators [(39), section 3.5]. Then, within the MPS format, the time-
stepping is performed in a standard manner using the arithmetic op-
erations outlined in the “Computational complexity” section.

It is essential to control the bond dimension during the MPS simu-
lation. The arithmetic operations that time-evolve f lead to its bond
dimension growing exponentially in time, if not truncated [(39), sec-
tion 3.5.3]. In our code, we use the singular values decomposition to
truncate the bond dimension of f such that it is always limited to . As
for the other vectors and matrices, these objects remain constant in
time and their bond dimensions are all of order (9(10).

The maximal bond dimension y defines the NVPP. For an MPS
representation of f, the number of parameters becomes

N-1
> p(ny
n=1

with N = log,M?, (M must be a power of 2) being the number of ten-
sors in the MPS, and p(n) = min(2”, 2N-n, X) being the size of the nth
bond of the MPS. The first sum gives the total number of parameters in
the MPS, while the second sum represents the intrinsic gauge degrees of
freedom of the MPS format (55). When y is maximal, i.e., y = 2IN/2] we
get NVPP = 2N = M?and that f is represented exactly on the M*¢ grid.

11)

N
NVPP =23’ p(n—1)p(n) -

n=1

(12)

Error measures

The errors in Fig. 2 (B and C) are computed using the RMSE mea-
sure across . In the first figure, the upper Error,,; and lower Error,,
are computed by averaging the spatially averaged mean quantities
across a, t and o, t, X, respectively. In Fig. 2C, the averaging is done
across just t and £,x to compute Error,,, Error, . Mathematically,
these errors can be expressed as

Error,p () = \/

Erroerl(X)=\/ Z %tx[(d) YO0, (Q,)(exact)]

D& [(@)00.1/2],

oa=1,2

W12 (13)
Error,g (0 =/ &, [(@1)00 (@20, 0],
Error,., (0= /&, [()(0 1]
60f8
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with (@) ()) being extracted from the MPS-PDF solution of Eq. 10
while (@) (exact) is the solution found by directly solving Eq. 9 with a
standard RK2-CFD2 FD scheme; this solution is “numerically exact” in
the sense that it does not suffer from any truncation error in y [although
a truncation error from the FD discretization itself remains, this error is
slight due to the smoothness of (@) (exact)]. The functions

d
E (&)= J E, [, gy)]

B
[O’ll)]x3 lO
2T,

d (14)
E,(8:8) = J Z—YEO[g(t)—go(t)]2
0

implement temporal (E,) and space-time (E, ,) averaging.

Note that since both time and space are discretized during the simu-
lations, the above integrals are both performed numerically using a
simple step quadrature. In space, the integrals are computed using all
the M = 128 gridpoints along each dimension. In time, the integral is

T, T, 3T,
L LM 2T,

computed over the 17 time samplest = 0, 28, 2, =
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Supplementary Text

Figs.S1to S3

References

REFERENCES AND NOTES

1. E. Hopf, Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal. 1,
87-123 (1952).

2. A.S.Monin, A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA) (1975).

3. S.B.Pope, Turbulent Flows (Cambridge Univ. Press, Cambridge, UK) (2012).

4. R.O.Fox, Computational Models for Turbulent Reacting Flows (Cambridge Univ. Press,
Cambridge, UK) (2009).

5. C.Dopazo, Recent Developments in PDF Methods, in Turbulent Reacting Flows, P. A. Libby,
F. A. Williams, Eds. (Academic Press, London, England), chap. 7, pp. 375-474 (1994).

6. F. A.Williams, Combustion Theory (The Benjamin/Cummings Publishing Company, Menlo
Park, CA), Ed. 2. (1985).

7. D.Livescu, A. G. Nouri, F. Battaglia, P. Givi, Eds. Modeling and Simulation of Turbulent
Mixing and Reaction: For Power, Energy and Flight (Springer, Germany) (2020).

8. S.B.Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11,
119-192 (1985).

9. V.Hiremath, S.R. Lantz, H. Wang, S. B. Pope, Computationally-efficient and scalable
parallel implementation of chemistry in simulations of turbulent combustion. Combust.
Flame 159, 3096-3109 (2012).

10. H.Zhou, P. Givi, Z. Ren, Filtered density function: A stochastic closure for coarse grained
simulation, in Coarse Graining Turbulence: Modeling and Data-Driven Approaches and their
Applications (Cambridge Univ. Press), chap. 4 (2025).

11. D.Poulin, A. Qarry, R. Somma, F. Verstraete, Quantum simulation of time-dependent
Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett. 106,

170501 (2011).

12. S.R.White, Density matrix formulation for quantum renormalization groups. Phys. Rev.
Lett. 69, 2863-2866 (1992).

13. G.Vidal, Efficient classical simulation of slightly entangled quantum computations. Phys.
Rev. Lett. 91, 147902 (2003).

14. U. Schollwéck, The density-matrix renormalization group in the age of matrix product
states. Ann. Phys. 326, 96-192 (2011).

15. R.Orus, Tensor networks for complex quantum systems. Nat. Rev. Phys. 1, 538-550 (2019).

16. S.R.Clark, D. Jaksch, Dynamics of the superfluid to Mott-insulator transition in one
dimension. Phys. Rev. A 70, 043612 (2004).

17. A.Feiguin, S.Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev, Z. Wang, M. H. Freedman,
Interacting anyons in topological quantum liquids: The golden chain. Phys. Rev. Lett. 98,
160409 (2007).

18. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. SchauB, T. Fukuhara, C. Gross, . Bloch,
C. Kollath, S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body
system. Nature 481, 484-487 (2012).

Gourianov et al., Sci. Adv. 11, eads5990 (2025) 29 January 2025

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

. S.Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwéck, J. Eisert, I. Bloch, Probing

the relaxation towards equilibrium in an isolated strongly correlated one-dimensional
Bose gas. Nat. Phys. 8, 325-330 (2012).

B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M. Noack, H. Shi, S. R. White,
S.Zhang, G. K--L. Chan, Stripe order in the underdoped region of the two-dimensional
Hubbard model. Science 358, 1155-1160 (2017).

C. Huang, F. Zhang, M. Newman, X. Ni, D. Ding, J. Cai, X. Gao, T. Wang, F. Wu, G. Zhang,
H.-S. Ku, Z.Tian, J. Wu, H. Xu, H. Yu, B. Yuan, M. Szegedy, Y. Shi, H.-H. Zhao, C. Deng, J. Chen,
Efficient parallelization of tensor network contraction for simulating quantum
computation. Nat. Comput. Sci. 1, 578-587 (2021).

Y. Zhou, E. M. Stoudenmire, X. Waintal, What limits the simulation of quantum
computers? Phys. Rev. X 10, 041038 (2020).

J.Tindall, M. Fishman, E. M. Stoudenmire, D. Sels, Efficient tensor network simulation of
IBM'’s Eagle kicked ising experiment. PRX Quantum 5, 010308 (2024).

T. Begusi¢, J. Gray, G. K.-L. Chan, Fast and converged classical simulations of evidence for
the utility of quantum computing before fault tolerance. Sci. Adv. 10, eadk4321 (2024).
N. Gourianov, M. Lubasch, S. Dolgov, Q. Y. van den Berg, H. Babaee, P. Givi, M. Kiffner,

D. Jaksch, A quantum-inspired approach to exploit turbulence structures. Nat. Comput.
Sci. 2,30-37 (2022).

E.Ye, N. F. Loureiro, Quantum-inspired method for solving the Vlasov-Poisson equations.
Phys. Rev. E 106, 035208 (2022).

E.Ye, N. F. Loureiro, Quantized tensor networks for solving the Vlasov-Maxwell equations.
arXiv:2311.07756 [physics.comp-ph] (2024).

R. D. Peddinti, S. Pisoni, A. Marini, P. Lott, H. Argentieri, E. Tiunov, L. Aolita, Quantum-
inspired framework for computational fluid dynamics. Commun. Phys. 7, 135 (2024).

L. Holscher, P. Rao, L. Muller, J. Klepsch, A. Luckow, T. Stollenwerk, F. K. Wilhelm,
Quantum-inspired fluid simulation of 2D turbulence with GPU acceleration.
arXiv:2406.17823 [physics.flu-dyn] (2024).

M. Ritter, Y. NUfez Fernandez, M. Wallerberger, J. von Delft, H. Shinaoka, X. Waintal,
Quantics tensor cross interpolation for high-resolution parsimonious representations of
multivariate functions. Phys. Rev. Lett. 132, 056501 (2024).

S. Rohshap, M. K. Ritter, H. Shinaoka, J. von Delft, M. Wallerberger, A. Kauch, Two-particle
calculations with quantics tensor trains - Solving the parquet equations.
arXiv:2410.22975 [cond-mat.str-el] (2024).

F. A. Jaberi, R. S. Miller, C. K. Madnia, P. Givi, Non-Gaussian scalar statistics in
homogeneous turbulence. J. Fluid Mech. 313, 241-282 (1996).

J. H. Chen, Petascale direct numerical simulation of turbulent combustion-Fundamental
insights toward predictive models. Proc. Combust. Inst. 33, 99-123 (2011).

A. G. Nouri, M. B. Nik, P. Givi, D. Livescu, S. B. Pope, Self-contained filtered density
function. Phys. Rev. Fluids 2,094603 (2017).

P. Givi, Filtered density function for subgrid scale modeling of turbulent combustion.
AlAA J. 44, 16-23 (2006).

J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic
experiment. Monthly Weather Rev. 91, 99-164 (1963).

E. E. O'Brien, The probability density function (PDF) approach to reacting turbulent flows,
in Turbulent Reacting Flows, P. A. Libby, F. A. Williams, Eds. (Springer-Verlag, Heidelberg),
vol. 44 of Topics in Applied Physics, chap. 5, pp. 185-218 (1980).

M. Kiffner, D. Jaksch, Tensor network reduced order models for wall-bounded flows. Phys.
Rev. Fluids 8, 124101 (2023).

N. Gourianov, Exploiting the structure of turbulence with tensor networks, Ph.D. thesis,
University of Oxford (2022).

M. Lubasch, P. Moinier, D. Jaksch, Multigrid renormalization. J. Comput. Phys. 372,
587-602 (2018).

1. Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays. Linear
Algebra Appl. 432, 70-88 (2010).

S. Dolgov, D. Savostyanov, Parallel cross interpolation for high-precision calculation of
high-dimensional integrals. Comput. Phys. Commun. 246, 106869 (2020).

B. Ghahremani, H. Babaee, A DEIM Tucker tensor cross algorithm and its application to
dynamical low-rank approximation. Comput. Methods Appl. Mech. Eng. 423, 116879
(2024).

Y. NUfiez Fernandez, M. K. Ritter, M. Jeannin, J.-W. Li, T. Kloss, T. Louvet, S. Terasaki,

O. Parcollet, J. von Delft, H. Shinaoka, X. Waintal, Learning tensor networks with tensor cross
interpolation: New algorithms and libraries. arXiv:2407.02454 [physics.comp-ph] (2024).

A. A. Michailidis, eC. Fenton, M. Kiffner, Tensor train multiplication. arXiv:2410.19747
[physics.comp-ph] (2024).

M. Ganahl, J. Beall, M. Hauru, A. G. M. Lewis, T. Wojno, J. H. Yoo, Y. Zou, G. Vidal, Density
matrix renormalization group with tensor processing units. PRX Quantum 4, 010317 (2023).
1. Glasser, R. Sweke, N. Pancotti, J. Eisert, J. I. Cirac, Expressive power of tensor-network
factorizations for probabilistic modeling. Adv. Neural Inf. Process. Syst. 32, 1496-1508 (2019).
F.Verstraete, M. M. Wolf, D. Perez-Garcia, J. I. Cirac, Criticality, the area law, and the
computational power of projected entangled pair states. Phys. Rev. Lett. 96,

220601 (2006).

70of 8

5202 ‘2 Arenioe uo 610'a0us 10s" MMM/ Sd1y WoJ) papeoumod



SCIENCE ADVANCES | RESEARCH ARTICLE

49. V.Murg, F.Verstraete, O. Legeza, R. M. Noack, Simulating strongly correlated quantum
systems with tree tensor networks. Phys. Rev. B 82, 205105 (2010).

50. G.Evenbly, G.Vidal, Class of highly entangled many-body states that can be efficiently
simulated. Phys. Rev. Lett. 112, 240502 (2014).

51. D.Jaksch, P. Givi, A. J. Daley, T. Rung, Variational quantum algorithms for computational
fluid dynamics. AIAA Journal 61, 1885-1894 (2023).

52. R.Peng, J. Gray, G. K--L. Chan, Arithmetic circuit tensor networks, multivariable function
representation, and high-dimensional integration. Phys. Rev. Res. 5,013156 (2023).

53. A.Favre, H. Guitton, J. Guitton, A. Lichnerowicz, Chaos and Determinism: Turbulence as a
Paradigm for Complex Systems Converging Toward Final States (Johns Hopkins Univ. Press)
(1995).

54. D.Bandak, A. A. Mailybaev, G. L. Eyink, N. Goldenfeld, Spontaneous stochasticity amplifies
even thermal noise to the largest scales of turbulence in a few eddy turnover times. Phys.
Rev. Lett. 132, 104002 (2024).

55. S.Holtz, T. Rohwedder, R. Schneider, On manifolds of tensors of fixed TT-rank. Numer.
Math. 120,701-731 (2012).

56. J.Gray, quimb: A Python library for quantum information and many-body calculations.

J. Open Source Softw. 3, 819 (2018).

Acknowledgments: We thank A. Louis at the University of Oxford for discussions and would
like to acknowledge the use of the University of Oxford Advanced Research Computing (ARC)
facility in carrying out this work (http://dx.doi.org/10.5281/zenodo.22558). For the purpose of
open access, a CC BY public copyright license is applied to this manuscript. Funding: N.G.

Gourianov et al., Sci. Adv. 11, eads5990 (2025) 29 January 2025

acknowledges support by US-AFSOR grant FA8655-22-1-7027 and the UKRI “Quantum
Computing and Simulation Hub"” grant EP/P009565/1. P.G. acknowledges support by
US-AFOSR grant FA9550-23-1-0014. D.J. acknowledges support by the European Union’s
Horizon Programme (HORIZON-CL42021-DIGITALEMERGING-02-10) grant agreement
101080085 QCFD, the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche
Forschungsgemeinschaft (DFG), EXC 2056, project ID 390715994, and the Hamburg Quantum
Computing Initiative (HQIC) project EFRE. The project is cofinanced by ERDF of the European
Union and by “Fonds of the Hamburg Ministry of Science, Research, Equalities and Districts
(BWFGB)”". Author contributions: N.G. and P.G. conceived and planned the research project.
N.G. formulated the MPS algorithm, did the analytical calculations, and wrote the software. The
numerical experiments were jointly designed by all the authors and executed by N.G. The
numerical results were analyzed and interpreted jointly by all the authors. N.G. and P.G. wrote
the manuscript, with contributions from the other authors. The project was supervised by P.G.
and S.B.P. Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All software and data accompanying this manuscript are
publicly available at https://github.com/nikitn2/tendeq and https://doi.org/10.5281/
zenodo.14223424. All data needed to evaluate the conclusions of the paper are present in the
paper and/or the Supplementary Materials.

Submitted 20 August 2024
Accepted 27 December 2024
Published 29 January 2025
10.1126/sciadv.ads5990

8of8

5202 ‘2 Arenioe uo 610'a0us 10s" MMM/ Sd1y WoJ) papeoumod



	Tensor networks enable the calculation of turbulence probability distributions
	INTRODUCTION
	RESULTS
	Probabilistic modeling of reactive turbulence
	MPS encoding
	Validation of algorithm
	Computational complexity
	Integrated quantities

	DISCUSSION
	MATERIALS AND METHODS
	Flow case definition
	Moment equations
	FD discretization
	MPS algorithm
	Error measures

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


