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ABSTRACT: The power spectrum is the most commonly applied summary statistics to extract
cosmological information from the observed three-dimensional distribution of galaxies in
spectroscopic surveys. We present CLASS-ONELOOP, a new numerical tool, fully integrated
into the Boltzmann code CLASS, enabling the calculation of the one-loop power spectrum
of biased tracers in spectroscopic surveys. Built upon the Eulerian moment expansion
framework for redshift-space distortions, the implemented model incorporates a complete
set of nonlinear biases, counterterms, and stochastic contributions, and includes the infrared
resummation and the Alcock-Paczynski effect. The code features an evaluation of the loops
by either direct numerical integration or Fast Fourier Transform, and employs a fast-slow
parameter decomposition, which is essential for accelerating MCMC runs. After presenting
performance and validation tests, as an illustration of the capabilities of the code, we apply
it to fit the measured redshift-space halo power spectrum wedges on a ACDM subset of the
ABACUSSUMMIT simulation suite and considering scales up to kmax = 0.3 h/Mpc. We find
that the one-loop model adeptly recovers the fiducial cosmology of the simulation, while a
simplified model commonly used in the literature for sensitivity forecasts yields significantly
biased results. Furthermore, we conduct Monte Carlo Markov Chain (MCMC) forecasts for a
DESI-like survey, considering a model with a dynamical dark energy component. Our results
demonstrate the ability to independently constrain cosmological and nuisance parameters,
even in the presence of a large parameter space with twenty-nine variables
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1 Introduction

The cosmic large-scale structure (LSS) is formed under the influence of gravity from quantum
fluctuations generated in the primordial Universe. As such, the LSS contains invaluable
information about the initial conditions of the Universe, its constituents, and its evolution.
Building upon the spectacular success of latest redshift galaxy surveys, in particular Sloan



Digital Sky Surveys (BOSS & eBOSS),! in the coming years, the stage-IV wide-field spec-
troscopic surveys, namely the Dark Energy Spectroscopic Instrument (DESI) [1], Euclid [2],
Nancy Grace Roman Space Telescope [3], and SPHEREx [4] will provide highly detailed
three-dimensional maps of a large volume of the Universe. These datasets promise to deepen
our understanding of early- and late-time Universe by placing stringent constraints on the
ACDM model and potentially offering discovery space for new physics.

Extracting cosmological information from the upcoming data with unprecedented preci-
sion imposes stringent requirements on the accuracy of the theoretical model describing the
observables to match the precision of the data. Additionally, efficient numerical algorithms are
essential for computing the theoretical model and conducting likelihood analysis. Until very
recently, due to limitations in these areas, standard analyses of large-scale structure (LSS)
data focused primarily on extracting cosmological insights through Baryon Acoustic Oscilla-
tions (BAO) and redshift-space distortions (RSD) measurements, obtained by compressing
the information contained in 2-point statistics (e.g., [5, 6]).

For biased tracers of dark matter, such as galaxies and quasars, modeling three sources
of non-linearities presents a significant challenge: one needs to account for the gravitational
evolution of dark matter distribution, the biasing of tracers relative to the dark matter
distribution, and the influence of the peculiar velocities of tracers. Recent theoretical
advancements have resulted in a consistent model for the clustering statistics of dark matter
and its biased tracers within perturbation theory [7-17]. Simultaneously, the development
of efficient algorithms for computing model predictions [18-20] has enabled analyses of
existing data (from BOSS and eBOSS surveys) to constrain the ACDM model and some
of its extensions using the full shape of the redshift-space galaxy power spectrum [21-26]
and bispectrum [27-32]. These analyses have yielded robust cosmological constraints, largely
independent of the CMB data, in contrast to conventional analyses of galaxy clustering
data based on BAO and RSD measurements, which assume the overall shape of the matter
power spectrum to be fixed by CMB measurements (see e.g., [33, 34] for a discussion of
the differences between the two approaches). As such, these new analyses allow to test the
consistency of the constraints inferred from data on the high- and low-redshift Universe.

Thanks to these recent developments, several software packages are now publicly available
and have been used to analyze synthetic or real galaxy data. The list includes CLASS-
PT [35],2 PyBird [24],® and Velocileptor [36, 37].* These codes use slightly different formalisms
and are difficult to compare directly with each other. Complementing the recent works that
performed detailed comparison of PyBird and CLASS-PT codes when applied to data
from BOSS survey [38-40], having additional codes to compare with is still a useful feature.
Additionally, to perform parameter estimation, some of these codes require python wrappers
to Einstein-Boltzmann codes or external pipelines. In this paper, we use for the first time a
new implementation of the redshift-space galaxy power spectrum calculation called CLASS-
ONELOOP. This calculation is implemented in a native and flexible way within the CLASS
Boltzmann solver. The code will be publicly released together with a forthcoming code release

https://www.sdssd.org/surveys/.
https://github.com/Michalychforever/CLASS-PT/.
3https://github.com/pierrexyz/pybird/.
“https://github.com/sfschen/velocileptors.
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paper, which will present further technical details about the numerical implementation and
optimization strategies of the code [41]. The main goal of this work is to show that CLASS-
ONELOOP compares well with other existing public codes, and that it provides consistent result
when fitting data from N-body simulations or mock power spectra in sensitivity forecasts.

The rest of the paper is organized as follows; in section 2, we describe the theoretical
model implemented in CLASS-ONELOOP for the calculation of the non-linear power spectrum
of biased tracers in redshift space. We also briefly summarize the performance of CLASS-
ONELOOP and we compare its predictions to those of CLASS-PT. The proceeding sections
are dedicated to showcasing two applications of the code to infer cosmological parameters;
in section 3, we outline the relevant ingredients for performing cosmological inference, in
section 4, we present a likelihood analysis of the ABACUS N-body simulations, and in section 5,
we present an MCMC forecast for a stage-IV (DESI-like) galaxy survey. Finally, in section 6, we
draw our conclusions. In appendix A, we describe a simpler phenomenological model (SPM)
for the calculation of the galaxy power spectrum, which has been used frequently in the
previous literature and that we employ as a comparison point. In appendix B, we provide
technical details on the FFTLog method implemented in CLASS-ONELOOP. In appendix C,
we show our notations for the list of terms contributing to the one-loop galaxy power spectrum,
and in appendix D we show additional plots from our fits to ABACUS mocks and sensitivity
forecast for a stage-IV survey to further illustrate parameter degeneracies.

2 Redshift-space galaxy power spectrum: modeling non-linearities

In this section, we describe the theoretical model of the one-loop halo or galaxy clustering
power spectrum implemented in the CLASS-ONELOOP code. We don’t aim at reviewing
the large body of existing work on this topic, and focus instead on the main ingredients of
our implementation of Eulerian perturbation theory in the CLASS-ONELOOP code, which
follows closely ref. [36] by Chen, Vlah, and White.

2.1 Theoretical ingredients

We adopt the model of Chen et al. [36] for the redshift-space one-loop halo power spectrum,
based on an Eulerian moment expansion framework (also referred to as distribution function
model [42-44]) to describe the nonlinear redshift-space distortions, and using Eulerian
perturbation theory to compute the loop contributions. We include halo biases up to the third
order and account for the relevant EFT counter terms, stochastic contributions, infrared (IR)
resummation, and Alcock-Paczynski (AP). Below we summarize the main ingredients for
the model and refer the interested reader to [36] for further details.

2.1.1 Perturbative modeling of nonlinearities

The galaxy power spectrum expanded up to one-loop order in perturbation theory receives
contributions from galaxy biases up to third-order in perturbation theory. At this order,
assuming Gaussian initial conditions, the galaxy density field d, can be expanded in terms
of the matter density field J, gravitational potential ®, velocity potential ®, and stochastic



terms using the full renormalized bias expansion as [1]

5y(06) = 10(x) + b2s V20(x) + €(x) + 207(00) + bg,Galx) + es(x)0(x) + 26%(x)

+bg,G3(%) + b(g,6)G2(x)8(x) + brT's(x) + €52(x)0% (%) + €g,(x)Ga (%), (2.1)

where we omit the explicit time dependence for convenience. The G, and G3 are the second-
and third-order Galileon operators

G2(®) = (010, 0)° — (9P0)?, (2.2
Ga(®) = —(D:0,) (D,042) (OhDhD) — L (PB)° + - (:0,)2(0°®) (2.3)

while T's is the difference between density and velocity tidal tensors [45],
'3 = Go(P) — Go(Dy), (2.4)

and the fields ep refer to the stochastic contributions.

The galaxy positions measured in galaxy redshift surveys [2, 4, 46] are defined in redshift
space. This implies that the line-of-sight velocity of galaxies contributes to their observed
redshift, causing a Doppler shift in addition to the redshift caused by the cosmological
expansion. Furthermore, the position of objects in redshift space, s, is shifted with respect
to the one in real space, x, due to the peculiar velocity, v, of halos/galaxies, such that
s =x+n(v-n)/H, where 7 is the line of sight (LoS) direction, and H = aH is the conformal
Hubble parameter. This velocity-induced mapping from real- to redshift-space introduces an
anisotropy in the clustering pattern, referred to as redshift-space distortions (RSD). On the one
hand, RSD introduce an additional challenge in modeling the clustering statistics, on the other
hand, they can be used to test the theory and probe the growth of large-scale structure [47].

The galaxy densities in real and redshift spaces, denoted as d,4(x) and (5;(5) respectively,
are related to each other as

1+ 63(s) = /d% (1+6,(x)) (s — x — ),
(27)30p(K) + 05 (K) = / P (14 6,(x)) e terueo), (2.5)

where we dropped the explicit time dependence of the field and defined u = 7 (v - 1) /H.
Defining the wavevector component along the LoS as kj = ku and the coordinate shift as
a field u = u(x)n, we can write the Fourier transform of u(x) in terms of the velocity
divergence 0 as u(k) = iky/(Hk*)0(k). At linear order in PT, the velocity divergence is
related to density as (k) = — fHd(k). The power spectrum in redshift space can then be
obtained from the velocity moment-generating function as

Po) = [ dr{(L8,0e0) (14 85 (x2) ™) o (26)

where Au = u(x;) — u(x2) is the pairwise velocity. To compute the redshift-space power
spectrum at a given loop order, one needs to perform a series expansion of the exponent in
eq. (2.6). The moment expansion approach implies an expansion of the form

.2 .3 .4
Py(k,n) = B + ik + SRS + Skt + ks, (2.7)



where 1 = k.7 is the cosine of the angle with respect to the LoS, and Z( ") =((1+0)1+
d2)Auy ... Au,) are density-weighted pairwise velocity moments, which include stochastic and
EFT counter terms in addition to deterministic terms. We have only kept contributions of the
moments containing up to 4 velocities. The first moments appearing in eq. (2.6) are given by

SOk, 1) = Poo(k) + k2P (k) + P, (2.8)
S (k, ) = 2Py (k, ) — i\ fukPo(k) + ... | (2.9)
S0 (k, 1) = 2Poo (k. 1) — 2P (k. 1) — 2f2( + e ) Po(k) + P, + (2.10)
S (k, 1) = 2Pog(k, 1) = 6Pro(k, ) + 6 f* (e + i )%Po(k)+..., (2.11)
S (k, ) = —8Py3(k, 1) + 6Pag(k, 1) + 2444 “;2 Py(k) + PV, + . (2.12)

where Ps(ﬁo)t are the stochastic terms and cﬁ”) the EFT counter terms for the n-th velocity

moment Eén). The superscript (m) of the counterterms refer to the fact that terms with
different dependence on the LoS direction can have different counterterm. The F;; stand
for the cross correlations of different velocity moments,

Pij(k, 1) = ([(1 + 6g)u'](K)[(1 + 6 )u’} ()" (2.13)

The prime in {...)" denotes the expectation values without the factor of (27)38(k + k’). The
square bracket represents a convolution of two fields, and the indices i, j refer to the number
of velocity fields appearing in the cross correlation. More explicitly, we have

Poo (k) = (3,(K')3,(K))', (2.14)
Pot(k, 1) = (35 (K Yu(k)) + (3,(K') [35u] (K))', (2.15)
Poa(k, 1) = (85(K) [u2] (K)) + (3,(K') [d4u?] (K)), (2.16)
Pu(k, 1) = (u(k)u(k)) + 2(u(K') [55u] (&) + ([5u] (k') [3,u] (k) (2.17)
Pog(k, 1) = (85(K) [u*] (W)Y, (2.18)
Pus(k, 1) = (u(k)[u?)(0)) + (u(k) [8,0°] (1)) + ([dgu] ()W (K)),  (2.19)
Pig(k, 1) = (u(K) [u?] (K))', (2.20)
Pos(k, 1) = ([u?] (&) [w?] ()’ (2.21)

The explicit expressions of the P;; are given in appendix C and ref. [36]. The key point
to note is that the form of the loop integrals is such that we can separate the dependence
of the loops on the LoS direction in terms of a finite series in u, and evaluate the loops
using FFTLog independent of the LoS direction.” Collecting the stochastic and counter

5As we will briefly discuss in section 2.1.2, the implementation of the IR resummation breaks the above
assumption, and thus we make the approximation in eq. (2.33) to achieve the separation of LoS dependence
and write the loop integrals in terms of integrals over the isotropic power spectrum and pull the anisotropic
suppression outside of the loop integrals.



term contributions in eq. (2.6), we have

1
Paor(k, p) = - [1 450 + 512 + 5022k + 33f4u4k4} ’ (2.22)
Poa(ly ) = {c” + [7 + 7P| fu + [ + ] £2ut + [ + i) £t k2 Po(k).
(2.23)

In writing the expression for the shot noise, we have Taylor expanded the stochastic
contribution to the real-space density field to include the leading scale-dependence, i.e.
P.(k) = so + s1k?. For stochastic contributions to higher-order velocity moments, we have
only kept the constant piece in the Taylor expansion. Regarding the counter-terms, the
impact of different terms multiplying the same power of y are fully degenerate when fitting
data. Thus, in both our fits to ABACUS simulations and forecasts, we vary a single parameter
for each power of u. Therefore, we consider

Pey(ky p) = [Co o fpt +eafut + CSfBMG} k> Py (k). (2.24)

The counter terms are in principle redshift dependent. When fitting survey data, one should
vary a set of counter terms for each redshift bin. However, in our forecasts, we neglect this
redshift dependence and vary a single parameter for each of the counter-terms across all
redshift bins, as described in section 5. We will see that even with redshift-independent counter

terms our recipe has enough freedom to extract unbiased information from simulated data.

2.1.2 IR resummation

Finally, one needs to take into account the fact that large-scale bulk flows induce large
displacements in the matter density field on comoving scales of order ~ 10 Mpc. While these
bulk flows are unobservable locally due to equivalence principle [48-50], they smooth features
(such as BAO wiggles) in the power spectrum. In standard perturbation theory, the effect of
bulk flows is treated perturbatively, which is not optimal to describe large displacements, and
thus the predicted shape of BAOs has a limited accuracy [51-53]. Instead, in Lagrangian
Perturbation Theory (LPT) [13, 54-56], the treatment of bulk flows is non-perturbative since
the contribution arising from the (linear) displacement field can be resummed. A similar
resummation can be performed in SPT [57, 58], in a hybrid LPT-SPT approach [11, 59, 60],
or within Time-Sliced Perturbation Theory [15, 61].

Given that displacements only affect the BAO wiggles, a practical approach to implement
the resummation in real space consists in splitting the linear matter power spectrum into
a wiggle and a no-wiggle (smooth) component,

PO(k) = in(k) + Pw(k) ) (2'25)

and to apply a damping factor to the wiggle part to obtain the leading-order IR-resummed

matter power spectrum,
PLo(k) = Pow(k) + e = Py (k), (2.26)

with LO standing for leading order. The damping exponent is given by

5 1 ks ([ q A
22 = s [ Pant) 1o (75) + 202 (75| (227)




where kosc is the inverse of the BAO scale, kose ~ 110Mpc/h, ks is the separation scale
controlling the modes to be resummed, and j, are the spherical Bessel function of order n.
At next-to-leading order (NLO), the matter power spectrum can be obtained by using the
expression in eq. (2.26) as an input in the expression of the one-loop matter power spectrum,

Pxpo(k) = Pag(k) 4+ ¢ ¥ Py(k) (1 + k2S2) + Poop[Po — Prol(k) (2.28)

where Ploop is considered a function of the linear power spectrum. For a biased tracer, the
computation is equivalent, with only the linear bias parameter multiplying the first two
terms, and the loop contributions due to non-linear biases computed with the LO power
spectrum as input instead of the linear power spectrum.

In principle, ks is arbitrary, and any dependence on it should be treated as a theoretical
error. However, it has been shown that the exact value of ks can affect the leading-order IR-
resummed power spectrum, while values of kg in the range of (0.05—0.2) are indistinguishable
at the level of the next-to-leading order spectrum [62]. Thus, in our approach, we keep
this parameter fixed to ks = 0.2Mpc~Lh.

Several algorithms have been used in the literature to compute the no-wiggle spectrum
Py (k) for a given linear spectrum Py(k) — a step called broadband extraction. This includes
the semi-analytic formula of refs. [63-65], a Bspline-based approach with fixed location of
the nodes of the splines [66], a fourth-order polynomial fit to the linear spectrum [67], the
Savitzky-Golay filtering [68, 69], the discrete spectral method (DST) [67, 70], smoothing with
a Gaussian filter (Gfilter), and Bspline-basis regression [58]. A summary of the last three
methods and a detailed comparison of the corresponding IR-resumed power spectra can be
found in refs. [58, 62]. Here, we use the Gfilter method as a baseline. Clearly, the splitting
of the power spectrum into wiggle and no-wiggle contributions is not unique. Nevertheless,
one expects that different splitting methods should result in consistent predictions of the
IR-resummed matter and galaxy power spectra. In section 2.2.3, we discuss the impact of the
splitting method on the IR-resummed one-loop galaxy power spectrum in real and redshift
spaces by comparing the predictions using DST and Gfilter algorithms.5

In redshift space, in addition to resumming the long-wavelength displacements, one can
also resum the long-wavelength velocity modes, both of which only affect the BAO wiggles.
At leading-order, the IR-resummed matter power spectrum is given by

Po(k, 1) = (1+ f1i2)? [ Pu (k) + e F20 R ()| (2.29)
The damping exponent now depends on the angle w.r.t. the line of sight direction,
S2(m) = [1+ F(f + 27| 22 + fAP(p? - 1)052, (2.30)

where the new redshift-space contribution 6% is given by

0X

k
S . q
= — dq Pow . 2.31
2m? 0 4 (Q) J2 (kosc) ( )

6See also ref. [62] for a comparison of the DST, Gfilter, and Bspline methods at the level of the galaxy
power spectrum in real space.



Computing the IR-resummed loops in redshift space is more intricate than in real space
because the anisotropic damping of BAOs renders the loop integrals 2-dimensional. In analogy
to real-space computation, the IR-resummed power spectrum in redshift-space is given by [15]

Pyt (k, 1) = (bi+ i) | P () + € F 50 P (k) (14 K222(1)) |+ Paoop[Po = Prol (k. 1),

(2.32)
where in the last term, the linear matter power spectra in the loop integrals, Py, are replaced
by the leading-order IR-resummed matter power spectra, Pr,o.” The fact that the exponential
suppression exp[—k2%2 ()] applied to the wiggle contribution in P is anisotropic complicates
the computation of the loops since we can not anymore separate the dependence of the loops
on the LoS as finite series of p. Neglecting the loop contributions involving two insertions
of Py, a sufficiently accurate approximation to overcome this challenge is to split the loop
contributions into smooth and wiggly parts and apply the exponential suppression on the
wiggly part. Therefore, one needs to compute the loops twice, once with two insertions of
the no-wiggle component, and the second time with one insertion of the wiggle component
and one of the no-wiggle component. Then we apply the direction-dependent damping on
the latter one [15, 35].

In practice, to ensure the accuracy of the FFTLog computation of the loops, we perform
the IR resummation by applying the suppression factor on the difference between loops
computed with the linear matter power spectrum and the no-wiggle spectrum and add it
to the loops computed with the no-wiggle spectrum. Therefore, the IR-resummed one-loop
galaxy power spectrum in redshift space is given approximately by

Py (k, 1) 22 (b1 + fu?)? | P () + e 5500 P (k) (14 K222 (w)) |
+ Pgsyloop[in](ka ﬂ) + e_kQEg(#) {P;,loop [PO](k7 :u) - Pgs,loop[in](kv M)} ) (233)

We note that this expression includes contributions with two insertions of P, in the first
term in the curly bracket that should be suppressed by two powers of the exponential
suppression, instead of one. This approximation, however, should have negligible impact on
the accuracy of the model (see section 2.2.3 for further discussion about the consequence
of this approximation).

2.1.3 Alcock-Paczynski effect

When analyzing observational data, one assumes a fiducial cosmology to convert the observed
angular position and redshift of each galaxy to comoving distances in order to compute the
3D power spectrum. If this fiducial cosmology differs from the truth, the inferred radial
and transverse distance (defined with respect to the line-of-sight) are distorted differently.
These distortions render the observed statistics anisotropic, an imprint referred to as the
Alcock-Paczynski (AP) effect [71]. The AP effect on the halo or galaxy power spectrum can
be modeled by applying an overall volume re-scaling factor to the galaxy power spectrum
computed in a given redshift bin, while remapping the Fourier wave vectors of the fiducial
cosmology, kg4, into wave vectors in the true cosmology, Kirue.

"In addition to the loop contributions, the linear power spectrum appearing in the counter terms (eq. (2.24))
is also replaced by PLo.



Therefore, including the AP effect, the theoretical predictions for the observed power
spectrum in terms of wave-vectors in the fiducial and true cosmologies are related as

Pyt (kea) = o 'a 2P (Kire (Kia)), (2.34)

where the two wave vectors have their radial and transverse parts related through kﬁ‘i =

a”,lkﬁri@, and the AP parameters, o and oy, are given by [71, 72]

HA(z D4z

2.1.4 Power spectrum wedges and multipoles

The commonly applied method to extract the cosmological information from the measured
anisotropic galaxy power spectrum is to project the dependence on the LoS direction into
Legendre multipole moments [72]. Including the AP effect, the theoretical prediction of
power spectrum multipoles is given by

20+1 1 s
Py(ksa) = —— / disa Py (ka, i) Lo(a), (2.36)

where ;:Eﬁ(kﬁd, iad) is the 2D power spectrum in terms of the wavevectors in the fiducial

cosmology and is given in eq. (2.34), and the Ly(z)’s are Legendre multipoles.
Alternatively, one can define power spectrum wedges, which correspond to the averaged
power spectrum over wide angular bins of p [73, 74]and is given by

1 fratin/2 s,IR
P(kga, pi) = A /m—Au/2 dpsa Py'xp (K, psia), (2.37)
where pu; is the center of an angular bin of width Ay, and the angular bins have lower and
higher edges of [—1, 1]. Since the 2D power spectrum is symmetric under the exchange of
u — —p, the wedges are commonly defined in the range of p € [0, 1].

The 2D power spectrum P(k, 1) is a relatively smooth function of p and its amplitude is
dominated by the monopole and quadrupole terms. Therefore, one expects that the choice
of the wedges or multipoles as observables are roughly equivalent and provide comparable
cosmological constraints. In practice, however, this choice gives rise to subtle differences [36].

The power spectrum wedges offer two advantages over multipoles; first, one can effectively
isolate the dominant contribution of the FoG effect [36, 75], and second, the contamination
of the measurements due to a number of observational systematics [76] is localized in a
subset of the wedges. The former is possible since the effect of strong FoG on wedges
are primarily limited to angular bins with |u| ~ 1. Thus, discarding these bins effectively
removes the dominant FoG effect while retaining most of the information of the anisotropic
power spectrum. The residual theoretical error of the wedges is dominated by the two-loop
corrections to the matter power spectrum [75]. In contrast, strong FoG impact all multipoles
beyond the monopole and limit the validity regime of the perturbative description of the
multipoles. Commonly, in the analysis of the multipoles, a considerably lower scale cut,



kmax, is imposed for the quadrupole, which results in an information loss for the contribution
of the lower u bins to the quadrupole.®

Regarding observational systematics, redshift errors affect the pu ~ 1 bins, while sys-
tematics such as fiber collisions predominantly affect transverse Fourier modes. Thus, their
effect is localized in p ~ 0 wedges. Therefore, removing the purely transverse and radial
modes can considerably reduce the contamination of the measured wedges by observational
systematics [76]. Like FoG effects, observational systematics affect all multipoles. However,
in this case, a possible strategy can be devised to isolate the most contaminated modes by
down-weighting their contributions to the multipoles [76].

In this work, we adopt a theoretical model of the redshift-space galaxy power spectrum
based on velocity moment expansion [36], which is an expansion in k and p. As such, it
naturally describes the power spectrum wedges with well-defined convergence properties. A
detailed comparison of the power spectrum wedges and multipoles predicted by this model
against simulated halo catalogs can be found in ref. [36]. In all the analyses presented in
this paper, we adopt the power spectrum wedges as our observables, even though CLASS-
ONELOOP can also compute power spectrum multipoles.

2.2 Numerical evaluation with CLASS

In this section, we provide an overview of our implementation of the redshift-space galaxy
power spectrum calculation within the CLASS Boltzmann code. We anticipate making the
code publicly available in an upcoming release of the master CLASS branch once we have
completed final testing and additional optimization. The presented code is built upon earlier
implementations of the one-loop real-space EFT power spectrum in two codes: CoOsMOSIS-
GCLusT,” used in refs. [62, 77], and LIMHALOPT [78],10 used in ref. [79]. To comprehensively
validate the code, we conducted a parallel implementation in the CosMOSIS-GCLUST code.
Despite several differences at the level of the numerical implementation, particularly in
the utilization of external libraries, the two codes yield excellent agreement. The new
implementation of the galaxy power spectrum within CLASS offers several noteworthy
advantages. It is seamlessly integrated into the master branch of CLASS, which ensures
continuous maintenance and ease of accessibility within various likelihood analysis tools,
including MONTEPYTHON [80, 81],'' CoBava [82],'* and CosmoSIS [83].13 This full
integration allows to avoid redundancies, duplicate tasks and parameter mappings across
codes, interfaces and wrappers, which are a frequent source of error. The style of the CLASS-
ONELOOP module is homogeneous with the rest of the CLASS code and equally documented.
The new module can be selected with a switch that also offers alternative methods for the
calculation of the non-linear galaxy power spectrum in real space such as HALOFIT [84]

8Potentially, one can alleviate this loss by down-weighting the contribution of high x modes by constructing
appropriate scale-dependent weights for the multipoles to minimize contamination by FoG effect [36].

9The new version of this code, including the redshift-space distortions, will also become publicly available
soon.

Yhttps://github.com/amoradinejad /limHaloPT.

Yhttps://github.com/brinckmann /montepython_ public.

2https://github.com/CobayaSampler/cobaya.

Y3https://cosmosis.readthedocs.io/en/latest /.

,10,


https://github.com/amoradinejad/limHaloPT
https://github.com/brinckmann/montepython_public
https://github.com/CobayaSampler/cobaya
https://cosmosis.readthedocs.io/en/latest/

and HMCODE [85], which can be readily compared to one-loop EFT calculation. Finally, the
new code is as easy to compile as previous versions of CLASS since the C code does not rely
on any external C libraries'* and the classy python wrapper does not require additional
python modules compared to previous versions.

As a second reference for the cross-validation of CLASS-ONELOOP, we carried out
detailed comparisons with the predictions from the CLASS-PT code, the results of which
we present in this section. The theoretical models implemented in the two codes are nearly
identical, apart from the choice of some of the EFT counter terms and stochastic contributions.
Both codes use the same Eulerian bias expansion basis, which makes the comparison more
straightforward. We have also compared the CLASS-ONELOOP output with Eulerian-EFT
calculations from VELOCILEPTOR [36, 37].1> We found a good agreement between the two
codes. However, the difference in the bias expansion assumed in the two implementations
makes the direct comparison less straightforward. Therefore, we do not show the detailed
comparison here.

2.2.1 Current implementation

The code can be run in two modes that define the way in which the loop integrals are
computed: direct integration (DI) or evaluation using an FFTLog approach. To check that the
FFTLog method is implemented in a robust and accurate way, despite of several choices and
subtleties inherent to this approach [86], we use the direct integration method as a robust
reference for a term-by-term comparison of the loop integrals.

For direct integration, we employ the CUBA library [87, 88],!6 primarily using the
Cuhre routine, which utilizes the cubature rule to perform deterministic multi-dimensional
integration. Other CUBA routines could easily be used instead of Cuhre, but we have
observed the fastest convergence with Cuhre. Our FFTLog implementation follows the method
outlined in ref. [20] (and extended to redshift space in [35]). We summarize the basics of the
latter method below and then describe its practical implementation within the code.

The loop integrals summarised in section 2.1 are formally identical to those of a massless
quantum field theory. This observation inspired the approach outlined in ref. [20], which
relies on expanding each integrand in terms of powers of ¢ and |k — q| such that they reduce
to analytic expressions of the form

1
=Ry ), (2.38)
/q ¢*' |k — q|*”

where |, q = Ik %, v = 11 + v and the function I(v1,14) is given in terms of Euler
gamma functions,

1 T (% — I/1> r (% — VQ) T (l/12 — %) . (239)

I(v1,v) = ]73/2 L) (2)(3 — v12)

M This is true at least when the code is used in its default “FFTLog” mode. At the time of writing, when the
code is used in its (slow) “direct integration” mode for the purpose of comparison and validation, it still uses
one external C library, as explained in section 2.2.1.

Yhttps://github.com/sfschen/velocileptors.

Yhttps://feynarts.de/cuba,.

— 11 -


https://github.com/sfschen/velocileptors
https://feynarts.de/cuba/

To cast the calculation in this form, one needs to expand each SPT kernel (e.g., F3(q, [k — ql))
and each nonlinear bias operator in powers of wavenumbers. Furthermore, one expands the
matter power spectrum as a Fourier series in log-space. We first discretize the wavenumber
space with (Nppp + 1) values k;,, = Ekmin e"® ranging from ko = kmin to kENgpr = kmax =

Emin €VFFTA . The FFTLog expansion of the array of (Nppr + 1) values Py(ky,) reads

NrpT/2 '
Po(kn) = > cmkytm, (2.40)

’H’L:*NFFT/Q

where the parameter v is called the FFT bias, the index 7, is defined as n,, = mx 27w /(NpprA),
and the coefficients ¢, are given by the inverse transformation

Lk NFiT: ! Po(kn)
" Nepr o R

L (2.41)

n

Therefore, the linear matter power spectrum is biased by a power-law k”. This biased power
spectrum may have divergent powers in the UV and/or IR limit, depending on the choice
of v. If there is no value of the FFT bias such that the integrals converge in both limits,
divergences have to subtracted by hand from the FFTLog calculated loops.

Once the loop integrals have been recasted in the form of eq. (2.38), they reduce to
(numerically cheap) matrix or vector multiplications, where the matrices need to be computed
once and for all for a given value of the FFT parameters (NgpT, v, kmin, kmax). The cosmology
dependence of the loops is captured by the coefficients ¢,,, which account for the input linear
matter power spectrum describing a given cosmological model.

In redshift space, in addition to eq. (2.38), there are four general forms for the loop
integrals that have an explicit dependencies on the line-of-sight direction 2 [35],

A~

<9q _ 1.3-2(v141)
22 32 A (v, 1), 2.42
/q q2l’1\k . q|21/2 ( ) ( )
(- 3 o0t 9
/q W =k K> [Aa(v1, v2) + 12 Ba(v1, ) | (2.43)
— 3—2(v1+12)1.3 2
/q 2y1|k q|2u2 =k ko [A:a('/l,l/z) +p Bg(vl,Vz)] : (2.44)

/q o ‘k q|2V2 = k372(y1+u2)k4 [A4(V1, Vg) + /LzB4(V1, 1/2) + ,u4C4(I/1, 1/2)} . (2.45)
The full analytical expression of these integrals can be found in appendix B.

The FFT parameters (NgpT, V, kmin, kmax) must be chosen with particular care. The
FFTLog transformation involves a truncation of the matter power spectrum within a finite
range [kmin, kmax] and treats the truncated function as periodic in logarithmic space —
assuming periodic replications of it below kni, and above k.. These assumptions may
cause ringing and aliasing effects [86]. To limit such artefacts, one should choose values of the
bias and of the truncation interval such that the assumed periodic function does not feature
a strong discontinuity at the edges, that is, such that [Po(kmin)/k%in] = [Po(kmax)/k¥ax]-
Ideally, for each cosmology, the algorithm could search for optimal value of the numbers
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(v, kmin, kmax) ensuring the continuity condition. However, this would be sub-optimal in
the context of a parameter inference run, since the FFT matrices (that correspond to the
FFT expansion of the loop integration kernels) would need to be re-computed for each
cosmological model. It is thus more efficient to fix the FFT parameters to values such that
any cosmology with a power spectrum not too far from that of the ACDM Planck2018 best-fit
model gets only marginally affected by ringing and aliasing in the range relevant for fitting
observations. As demonstrated in the following section, we achieve this target by fixing
Vp = —0.3 for the calculation of the total matter power spectrum and v, = —1.55 for that
of the galaxy (or more generally biased tracer) power spectrum. Then, in each of these
cases, we set the expansion domain boundaries to &, € [1075,10%] h/Mpc for total matter
and k, € [107%,4 x 10%] h/Mpc for galaxies.

Note that using such a high kn.x could increase the time needed by CLASS to compute
the linear power spectrum. This increase in computation time is not really worthwhile
because, at the end, we are only interested in predictions for the matter or galaxy power
spectrum on mildly non-linear scales, that is, up to k& < O(1) h/Mpc. The calculation of
the non-linear spectrum on such scales is very weakly affected by the precise value of the
input linear spectrum at k& > O(10%) h/Mpc. This means that, on such large wavenumbers,
an approximate input for the linear power spectrum is sufficient. Thus, to speed up the
computation, we use an extrapolator of the linear matter power spectrum built within CLASS.
The extrapolation is of the form Py(k) = (a + blnk)2k™~* and is also used by the HMCODE
algorithm. We checked that, for a wide range of cosmological models, the non-linear power
spectrum at k& < 1 h/Mpc is robust against switching from an exact calculation of the linear
power spectrum up to k ~ 103 h/Mpc to using the extrapolator at k > 50 Mpc 1.

The choice of the size Nppr of the FFT grid used for the expansion of the linear matter
power spectrum affects the precision and the performance of the computation. A too small
value of Nppr would lead to spurious oscillations in the modelled power spectrum and
compromise the precision of the method. In CLASS-ONELOOP, the default value is set
to Nrppr = 256, but we will also present in the next section some accuracy and timing
estimates for higher values of Nppr.

Ultimately, the total matter or galaxy power spectra in real or redshift space are linear
combinations of loop integrals weighted by input parameters such as biases, shot noise
and counter-term coefficients, as well as powers of the angular variable y in the case of
the redshift-space power spectrum. Appendix C shows how the bias parameters b, can be
factorised; eq. (2.22) shows the same for shot noise parameters s;, (2.24) for counter-term
parameters c;, and (2.42)—(2.45) for powers of p. Thus, it is efficient to compute and store
each individual loop (independently of these parameters), and to combine them at the very
end of the calculation for each given set of (ba, s;, ¢j, ). The user can decide if the final
output of the CLASS-ONELOOP C code is a set of individual loop calculations, valid for
any parameters (bq, S;, ¢j, @), or a final power spectrum for given values of these parameters.
The individual loops are stored in a dedicated structure accessible to the python wrapper
classy and can also be assembled directly within the wrapper to form the power spectrum
for multiple sets of parameters (by, si, ¢j, i), without re-running the C code.

This strategy has a decisive impact when using CLASS-ONELOOP within a parameter
extraction pipeline like e.g., MONTEPYTHON or COBAYA. In this case, the FFTLog matrices,
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which are independent of cosmology, can be computed once and for all during the initialization
phase of the MCMC run and remain saved in memory. For each new cosmological model,
CLASS-ONELOOP computes the linear power spectrum and its FFT transform, does several
matrix multiplications to evaluate each loop integral, and stores them in a dedicated structure.
These few steps will usually dominate the total execution time of the pipeline, although
these calculations remain very fast as we shall see in the next section. Then, at the level of
the parameter extraction pipeline, a likelihood function accounting for a current or future
experiment (e.g. a spectroscopic galaxy survey like eBOSS, DESI or Fuclid) needs to evaluate
the galaxy power spectrum for a given set of bias, shot noise and counter terms (by, s;, ¢;) and
for a set of angles (if the required observable is the redshift-space power spectrum P(k, j, 2))
or multipoles (if the observable is the Legendre-expanded spectrum P;(k, z)). There is no
need to re-run CLASS-ONELOOP for this. Dedicated functions in the classy wrapper are
designed to assemble the correct power spectrum for the required parameters (by, si, ¢j) and
the required list of angles p or multipoles ¢, with a negligible evaluation time.

Additionally, parameter extraction pipelines like e.g., MONTEPYTHON or COBAYA make
a distinction between fast (nuisance) parameters and slow (cosmological) parameters. The
fast parameters are sampled more frequently for fixed sets of slow parameters, in order to save
calls to the Boltzmann solver. This functionality is preserved by our implementation, with
bias, shot noise and counter terms playing the role of fast (nuisance) parameters. Indeed, the
spectrum can be obtained for different sets (ba, s4, ¢;) through repeated call to the classy
wrapper, without any need to execute CLASS-ONELOOP again. This feature is essential
to perform efficient MCMC runs when there is a plethora of bias, shot noise and counter
term parameters to be marginalised over.

2.2.2 Validation of FFTLog method versus direct integration

For our default value of Ngpr = 256 and the above mentioned FFT domain and biases,
we find an excellent agreement between the computations in DI and FFTLog mode. The
individual contributions to the redshift-space galaxy spectra (given in appendix C) agree up
to better than 0.75% on large scales (k < 1072 h/Mpc), 0.1% on intermediate scales, and
0.50% on small scales (k < 0.3 h/Mpc). The total power spectrum obtained by combining
all the loop contributions, each weighted by the corresponding biases, shows an even better
agreement between the two methods.

As an example of the validation of individual loop contributions, we show in figure 1
various contributions to the first and second velocity momenta defined in (2.9) and (2.10),
computed either with the DI or FFTLog method, together with their residuals. We checked
that all other moments agree at the same level. As mentioned earlier, increasing the Nppr
reduces the oscillatory discrepancy on the small scales at the cost of slowing the computation
(see table 1).

2.2.3 Validation of CLASS-OneLoop against CLASS-PT

As a benchmark for our implementation of one-loop EFT power spectrum in CLASS-
ONELOOP, we compare the numerical evaluations of the real- and redshift-space galaxy power
spectra against the publicly available code CLASS-PT, which have many similarities and
few technical differences that we now review.
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Figure 1. Comparison of the loop integrals contributing to the first (left) and second (right) velocity
momenta defined respectively in eq. (2.9) and (2.10), computed using either direct integration (DI) or
the FFTLog approach. The top panels show individual contributions to the velocity moments. Dashed
and solid lines correspond to negative and positive values, respectively. The vertical dashed line
corresponds to k = 0.3 h/Mpc, which is the small-scale cutoff beyond which the perturbative one-loop
model is expected to be inaccurate. The bottom panels show the fractional differences between
DI and FFTLog results. On the scales most relevant for the modeling of nonlinear contributions
(0.01 < k[Mpc™'h] < 0.3) the DI and FFTLog computations agree to better than 0.1% (the spike on
the residual difference plot on the right corresponds to a change of sign in the loop contributions and
is not a point of concern).

First, both codes rely on the same Eulerian bias expansion, see eq. (2.1).17

Second, the modeling of the counter-terms and stochastic contributions slightly differs
between CLASS-PT and CLASS-ONELOOP. In the former, the counter-term parameters are
defined for each Legendre multipole, while in our implementation they are associated to each
velocity moment, see eq. (2.24). After marginalization over these parameters, CLASS-PT
and CLASS-ONELOOP cover the same range of models, but a case-by-case comparison
is difficult when the counter-terms are non-zero. Fortunately, such a comparison is not
necessary for the sake of validation, because the counter-term parameters only multiply the
linear power spectrum. Thus, for the purpose of the present comparison, we can fix all
counter-terms to zero. We can actually do the same with the shot noise terms since they
are not combined with any loop integral, see eq. (2.22). Without loss of generality, we set
the values of the bias parameters to

by =1.8, by=-05, bg, =—0.05 by, =0.08. (2.46)

These precise values are arbitrary, but ensure that the real- and redshift-space power spectrum
are positive on all scales.

"We have also performed a comparison with VELOCILEPTOR [36] and found very good overall agreement.
However, because of differences in the definition of bias parameters in VELOCILEPTOR and CLASS-ONELOOP
(or CLASS-PT), we do not present this comparison in this section.
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Figure 2. Comparison of the wiggle/no-wiggle decomposition of the linear matter power spectrum
at redshift z = 0 in CLASS-ONELOOP (blue) and CLASS-PT (red). The left panel shows the
broadband (no-wiggle) spectra and the right panel the extracted BAO features (wiggle spectra). For
the broadband spectra, we also show the residuals (black). The two methods have a maximal 10%
discrepancy around the scale of the broadband peak, but for the purpose of fitting data the differences
at smaller scales tend to be more relevant.

Third, the codes assume an Einstein-de Sitter (EdS) Universe to factorize the time and
momentum dependence of the loops (replacing the EAS growth with the one in the true
cosmology). Since the time-dependence is factorized out in a trivial way, it is sufficient to
compare the two codes at a single redshift — in this section, z = 0.

Next, both CLASS-PT and CLASS-ONELOOP perform the loop calculations using the
FFTLog algorithm introduced in ref. [20], with slightly different values of the FF'T parameters.
The goal of our comparison is to check that their predictions agree despite of these numerical
differences.

Finally, in both codes, the implementation of the IR-resummation is based on the wiggle
no-wiggle split, with a suppression of the wiggle component, as described in egs. (2.28)
and (2.32). However, while CLASS-PT uses a DST algorithm [67, 70] to split the matter
power spectrum into a wiggle and a no-wiggle component, our baseline implementation
uses the Gfilter method [58].

Overall, we find an excellent agreement between the two codes, with small differences
actually dominated by the use of different default algorithms for the wiggle/no-wiggle decom-
position. Indeed, residual differences are even smaller when enforcing the same decomposition
algorithm in both codes. Below, we describe in more detail the results of this comparison.

In figure 2, we show the wiggle/no-wiggle decomposition of the linear matter power
spectrum performed by default in CLASS-ONELOOP (red, Gfilter) and CLASS-PT (blue,
DST). The extracted broadband spectrum and BAO features are shown in the left and right
plots, respectively. The fractional difference of the broadband is shown at the bottom panel
of the left plot. We see that the DST artificially shifts the peak of the broadband spectrum
towards smaller scales, resulting in an enhanced first BAO peak, shifted to larger scales
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compared to analytical predictions [89]. Furthermore, the amplitudes of the other BAO peaks
differ in the two schemes, with higher amplitudes in the DST scheme.'® On linear scales, these
discrepancies are not directly relevant, since after splitting the linear spectrum in a wiggle and
no-wiggle term, one just adds them up again. Thus, the large discrepancies observed in figure 2
for the first oscillation(s) do not propagate to the IR-resummed one-loop power spectrum on the
same scales. However, on smaller scales at which the wiggle part gets damped, small differences
may propagate to the IR-resummed spectrum — both at tree level and at the level of one-loop
corrections, as suggested e.g., by eq. (2.32). Thus, to evaluate the impact of discrepancies
in the wiggle/no-wiggle decomposition, one needs to compare directly the one-loop spectra.

Figure 3 compares the output of the two codes at the level of the real-space power
spectrum (upper plots) and redshift-space power spectrum expanded in Legendre multipoles
¢ =0 (monopole), £ = 2 (quadrupole) and ¢ = 4 (hexadecapole). In the left plots, we stick to
the default wiggle/no-wiggle decomposition algorithm, that is, Gfilter for CLASS-ONELOOP
and DST for CLASS-PT. In the right plots, we have replaced the wiggle /no-wiggle splitting of
CLASS-PT with the output of the split power spectrum from CLASS-ONELOOP obtained
with the Gfilter method.

In real space, the output of the two codes agree at the 0.1%-level up to k = 0.1 h/Mpc.
Then, the difference increases to 0.5% in the range 0.2h/Mpc < k < 0.6 h/Mpc. This
discrepancy is however dominated by the wiggle/no-wiggle decomposition scheme since, after
switching to the same Gfilter in both codes, we recover a remarkable 0.2%-level agreement for
any k < 0.6 h/Mpc. Note that the mismatch between the two codes in real space is mainly
due to a slight difference in the predicted amplitudes of the one-loop contributions caused
by the discrepancy in the extracted broadband (no-wiggle contribution), see the left panel
of figure 2. Fortunately, when using the default wiggle/no-wiggle algorithm of each codes,
this discrepancy can, at least partially, be absorbed by the EFT counter term.

In redshift space, the discrepancy in the power spectrum multipoles is more significant
when each code sticks to its default decomposition algorithm, with a relative difference of
~ 5% for 0.1 h/Mpc < k < 0.6h/Mpc. Replacing the DST by a Gfilter in CLASS-PT
restores the agreement between the two codes to the level of 0.3% up to k = 0.3 h/Mpc and to
the level of 0.6% up to k = 0.6 h/Mpc. Here again, like in real space, the discrepancy in the
predicted amplitudes of the multipoles on small scales can be absorbed by the EFT counter
terms. Apart from the difference in the predicted amplitude of the multipoles in the two codes,
there is also a mild discrepancy in the BAO feature (most notable in the hexadecapole and to a
lesser extent in the quadrupole), which partially remains even when using the same wiggle /no-
wiggle algorithm. Two factors contribute to the mismatch on BAO scales; first, there is a
slight difference in the amplitude of the higher BAO peaks, as shown in figure 2, and second,
the two codes make slightly different approximations in the implementation of eq. (2.33).
The latter difference explains the residual discrepancy in the right lower panel of figure 3.1°

18See appendix B of [62] for the comparison of these two algorithms with yet another approach based on
fitting the broadband with a family of B-splines.

9Tn CLASS-PT, instead of applying the suppression factor on the difference of the loops computed using
the linear and no-wiggle matter power spectra (the curly bracket in the second line of eq. (2.33)), the loops are
directly computed using one insertion of wiggle and one insertion of no-wiggle power spectra, thus, discarding
the P2 contributions [15].
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Figure 3. Comparison of the one-loop, IR-resummed galaxy power spectra computed by CLASS-PT
(dotted lines) and CLASS-ONELOOP (solid lines). The top row shows the real-space power spectrum,
while the bottom row shows the first three power spectrum multipoles in redshift space in different
colors. In the left panels, we stick to the default wiggle/no-wiggle algorithm of each code, while on
the right we enforce the same Gfilter decomposition in both codes. In the upper panels of the top
row, the CLASS-PT and CLASS-ONELOOP predictions are indistinguishable by eye. The bottom
panels show the fractional difference between the two codes. All the EFT counter terms and shot
noise contributions are set to zero, while the biases are fixed to values described in the text. The
vertical dashed line corresponds to k = 0.3 h/Mpe, which is the small-scale cutoff beyond which the
perturbative one-loop model is expected to be inaccurate.

On the one hand, the above comparison confirms that the implementation of one-loop
calculations — including the FFTLog expansion — is very consistent across the two codes,
up to a level of accuracy that is sufficient to fit the next generation of surveys. On the
other hand, this comparison highlights that the predicted IR-resummed galaxy power spectra,
particularly in redshift space, has a non-negligible dependence on the approach employed
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Nppr = 128 | Nypr = 256 | Nppr = 512 | Direct integration
4 threads 0.61 £0.26 2.05 £0.15 6.98 £0.14 ~ 600
8 threads 0.40 £0.09 1.38 £ 0.12 3.51 +£0.23 -
16 threads | 0.52 £0.11 1.134+0.13 2.00 £0.22 -

Table 1. Wallclock time in seconds for a single CLASS-ONELOOP run (deducting the linear part
of the CLASS workflow) for different numbers of Fourier components Nppr and OPENMP threads.

Timings were measured on CLAIX-2018 systems averaging 150 consecutive runs.

4 threads | 0.101 +0.008 | 0.400 £ 0.003 | 1.467 & 0.085
8 threads | 0.046 £0.004 | 0.212 £ 0.018 | 0.776 £ 0.037
16 threads | 0.028 £ 0.003 | 0.105+£0.003 | 0.382+£0.0

Table 2. Wallclock time in seconds for evaluating all loop integrals using the FFTLog method
(deducting the linear part of the CLASS workflow) on cached loop matrices for different numbers of
Fourier components Nppr and OPENMP threads. Timings were measured on CLAIX-2018 systems
averaging 150 consecutive runs.

for the wiggle/no-wiggle decomposition, which must be defined with much care. At face
value, one may argue that schemes yielding minimal features in the wiggle component (like
our Gfilter) are expected to provide more accurate results than schemes enhancing these
features (like the DST). Moreover, even if we consider that none of these two schemes is better
than the other, the induced discrepancy would not necessarily play a role in the analysis of
next-generation surveys. Indeed, this difference is coming from the UV-sensitivity of the loop
integrals and can therefore be absorbed by the corresponding counter-terms.

2.2.4 Performance

Table 1 presents the wallclock time for computing the one-loop IR-resummed galaxy power
spectrum in redshift space with Nppr = 128,256 or 512 Fourier components in the range
k € [107°,51] Mpc ™' using the FFTLog method to compute the loop integrals. The quoted
times include the full computation of FFTLog matrices and the calculation of each loop
integral for an array of k bins. It neglects the (very small) time for summing the loops and
re-evaluating them for multiple p values. If the loop matrices are cached between consecutive
evaluations, the runtimes reduce drastically to those compiled in table 2. The reported timings
were measured on the RWTH Cluster CLAIX-2018 subtracting the runtime of CLASS for
computing the linear matter power spectrum. The computing nodes contain 2 Intel Xeon
Platinum 8160 Processors with 24 cores each and a total of 192GB of RAM. For these tests
the code was compiled with 1cc 2021.6.0 at optimization level 3.

As a reference, we also quote the timing for computing the model by performing direct
numerical integration of the loops using 4 OPENMP threads.

Multi-threading is very efficient for accelerating the evaluation of loop integrals as every
mode is independent and requires the same amount of work, while the number of entries
in each loop matrix vary between O(Nppr) and O(Ngpr).
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The final version of CLASS-ONELOOP, to be publicly released, is expected to have further
improvement in speed, and will be presented in more details in an upcoming publication [41].

3 Methodology and likelihoods

In this section, we describe the relevant ingredients for the likelihood analyses, common
to parameter inference from the power spectrum measured from N-body simulations and
to MCMC forecasts for stage-1V surveys. Further details on each of these analyses will
be presented in sections 4 and 5.

3.1 Likelihoods

We assume a Gaussian form for the likelihood of the power spectrum wedges.?’ Thus, the
log-likelihood is given by
(3.1)

mjn 9

1 1 1 det C

/L?]?m7n

where Cjjmy, is the covariance matrix of the power spectrum wedges and Ccfid  only serves

ymn
as a normalization, and

AP, = Pdata(kia Nm) - Ptheory(kia Nm)’ (32)

with Pyata and Piheory being the “measured” power spectrum wedges and their theoretical
prediction, respectively. In MCMC forecasts, Pyata refers to the fiducial spectrum generated
using a theoretical model at a reference cosmology, while in the analysis of N-body simulations,
it refers to the actual measurements of power spectrum wedges. In the latter case, to reduce
the scatter of the measurements, we use the power spectrum wedges averaged over Ng
realizations n of the simulation snapshots (see further details in section 4),

Ng
S P (ko) (3.3)

n=1

_ 1
Pdata(ku ,U') - NiR
The measured power spectrum wedges are averaged over bins of widths of Ak and Apu. To fit
the power spectrum model to N-body simulations, we also need to average the theoretical
model over the same bins. Therefore, the theoretical power spectrum in eq. (3.2) is replaced
by the bin-averaged quantity IADtheory computed from [94]

Pincory (K A R e [T e 3.4
theory (Kiy ftm) = VP(]%)A,U/I%Ak/z /umAu/2 H g,AP( Ok (3.4)

20In the limit where sufficiently many independent modes contribute to the signal, even though individual
Fourier modes have non-Gaussian distributions, the likelihood of their power spectrum approaches a Gaussian
distribution by the central limit theorem. However, we expect the Gaussian assumption to fail in low signal-
to-noise regimes. Additionally, couplings between modes caused by finite survey volume, shot noise, and
systematic effect invalidate the Gaussian assumption. Furthermore, when the covariance matrix is estimated
from simulations, the marginalization over the true covariance matrix results in a non-Gaussian likelihood.
We refer to, e.g., [90-93] for detailed discussions of various effects that render the likelihood non-Gaussian.
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where Vp(k;) = 4rk? Ak is the volume of each Fourier shell and Ay is the width of each p
bin. We remind that P;flg are given in eq. (2.34), and the integrals are evaluate over the
wavenumbers and angles of the fiducial cosmology. We perform the bin averaging numerically
using the 5-point Gauss-Lobatto rule in each p bin and the 8-point Gauss-Legendre rule
in each k bin.

In our analysis, we only include the contribution from the disconnected 4-point function,
the so-called Gaussian part, thus neglecting the off-diagonal elements that account for the
gravitationally-induced trispectrum and super-sample covariance.?! The theoretical diagonal

Gaussian covariance of the bin-averaged power spectrum wedges is given by [74]

Cov |:Ij)theory(ki, ,U'm)v ptheory(kj, Mn)}
167k} 6ij0mn /ki+Ak/2 /,um+Au/2
k

VAR (Ap)? ddk K [P, Sff»(k’#)r- (3.5)

i—Ak/2 S pm—Ap/2 g

where d;; and d,,,,, are the Kronecker deltas. Since we account for the cosmology-dependence
of the covariance in our analysis (i.e., we re-evaluate the covariance at each step in the
MCMC chain), we account for the AP effect in the right side of eq. (3.5). Therefore, P;”ipf,
and the integrals are evaluated at kgq and pgq.

3.2 Free parameters

As described in section 2, in addition to the cosmological parameters, the one-loop EFT model
of the power spectrum has a total of 12 nuisance parameters, consisting of four halo/galaxy
biases, four stochastic parameters, and four EFT counter terms;

Abias = {b1, b2, bg,, br, }, Astoch = {50, 51, 52, 53}, At = {co, c1,¢2,c3}. (3.6)

This large number of nuisance parameters may lead to parameter degeneracies, such that
the effect of varying one parameter could be mimicked by a combined variation of other
parameters. In this case, reducing the number of nuisance parameters can be beneficial in
all respects: on the one hand, if done carefully, this reduction will not change the amount
of information extracted from the data nor bias cosmological parameter inference, since the
full parameter space is redundant; on the other hand, it will speed up the convergence of
the MCMC algorithm, which can be strongly compromised by parameter degeneracies. As
explained in the next section, we will perform a number of exploratory MCMC runs to establish
which reduced parameter space ensures unbiased constraints on cosmological parameters, and
ultimately vary 10 nuisance parameters for the main results presented in the paper.

2In general, neglecting the non-Gaussian contributions due to gravitational nonlinearities, finite survey
volume and shot noise results in underestimating the error budget (see e.g., [95, 96]). The full covariance
matrix is commonly estimated from a large suite of simulations, which has the advantage of incorporating the
nonlinearities of the cosmic large-scale structure and the nontrivial survey masks. The drawback, however,
lies in the computational cost of producing thousands of realizations of mock galaxy catalogs to achieve the
required statistical uncertainty, necessitating relying on approximate simulations and neglecting the cosmology
dependence of the covariance matrices. Alternatively, in the perturbative regime, the covariance matrix can
be analytically computed, which offers the advantage of being efficiently calculable and to account for the
cosmology-dependence of the covariance matrix (see, e.g., [97-104]).
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The ABACUS simulations assume a ACDM cosmology, including massive neutrinos. To
fit the power spectrum extracted from these simulations, we assume the same model varying
five free parameters

Acosmo = {ln(loloAs)a ns, h’7 Wh, chm}a (37)

with the notation w; = Q;h2. For forecasts of stage-IV galaxy surveys, we also assume a
ACDM model as our fiducial cosmology. However, given the potential of stage-IV surveys to
constrain DE, we fit the mock spectrum with an extended model allowing for dynamical dark
energy. We consider a time-dependent equation of state, w(a), obeying to the Chevallier-
Polarski-Linder parameterization [105, 106] (w(a) = wo + we(1 — a) with a being the scale
factor), and we vary 7 cosmological parameters

Acosmo = {ln(loloAs)a N, Ny Wh, Wedm, Wo, wa}- (3'8)

3.3 Priors

Our analysis of the ABACUS simulations relies on splitting the full simulation box to small
sub-volumes of Vi, = 1573 Gpc? (see section 4). This implies a relatively large power
spectrum covariance, while limiting us to scales of kmpin > 0.02 Mpc~th. Thus, in this case,
we must impose a few informative priors on the cosmological parameters least constrained
by the mock data in order to be able to infer other parameters. The question that we will
ultimately address is: is our modelling of the galaxy power spectrum allowing us to infer
these other parameters in an unbiased way?

It is well-known that galaxy redshift surveys have limited sensitivity to the physical
energy density of baryons, parameterized with wy. This density affects the shape of the
broadband power spectrum and the details of BAO peaks by a small amount, but as long
as the error bars on the measured power spectrum are too large, these effects cannot be
separated from those of other parameters. Thus, when fitting the ABACUS power spectrum,
we impose an informative Gaussian prior wp, = 0.02233 £ 0.00036 (68%CL) corresponding
to the prediction of standard Big Bang Nucleosynthesis (BBN) [107].

Additionally, the limited volume and large covariance assumed in our fit to ABACUS
makes it difficult to distinguish the effect of the primordial parameters As and ng from that
of bias parameters. In this case, we apply some very conservative priors on In(10'°A) and
ng in the form of Gaussian distributions centered on the values measured by Planck 2018
but with a twenty times wider standard deviation. The goal of these priors is just to prevent
the run from exploring a totally excluded region of parameter space.

Having assumed such priors, it will be interesting to check whether a fit of our model
to the ABACUS power spectrum will return the corrected (fiducial) values of the remaining
cosmological parameters wegm and A for which we just assume top-hat priors in a very wide
range, see table 3.

In the case of our forecasts for a stage-IV galaxy survey, we only impose wide (uninfor-
mative) flat priors to check that the mock data allows to measure all cosmological parameters
independently of the priors.
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Parameter | ABACUS fiducial Prior
W, 0.02237 N (0.02237,0.00036)
Wedm 0.12 U(0,0.3)
h 0.6736 U(0.4,0.8)
In(1019 Ay) 3.0364 N (3.044,0.28)
N 0.9649 N(0.9649,0.084)

Table 3. Free cosmological parameters and their priors our fits to the ABACUS power spectrum. We
assume a BBN prior on wy, and some loose Planck 2018 priors with a standard deviation multiplied
by 20 on In(10'°Ay) and ns. N (m, o) denotes a normal (Gaussian) prior of mean m and standard
deviation o while U(a.b) denotes a uniform (flat) prior bounded to the range [a, b].

We always impose flat uninformative priors on nuisance parameters in all our runs.??

We set the fiducial value of small-scale cut to kp.x = 0.3 Mpcflh. For ABACUS fits,
we also run an additional MCMC chain with smaller value of kn.x = 0.25 Mpcflh to test the
dependence of the constraints on k., while for the forecasts, we show the results for three
additional values of kyax[Mpc th] = {0.15,0.2,0.25,0.3}.

4 Comparison with ABACUS N-body simulations

Sections 2.2.2 and 2.2.3 established the accuracy of theoretical predictions from CLASS-
ONELOOP for the one-loop galaxy power spectrum by comparing against an external code.
We will now validate the entire non-linear model and inference pipeline on a suite of N-body
simulations. For this purpose, we use CLASS-ONELOOP along with the Bayesian inference
package MONTE PYTHON,?? using the Metropolis-Hasting algorithm to sample the likelihood.
We constrain cosmological and nuisance parameters by fitting the halo power spectrum
wedges measured on a suite of N-body simulations. To illustrate the importance of accurately
modeling the loop contributions, we compare the parameter constraints obtained using the
one-loop model against those derived from a simplified model that has often been used in
previous forecasts for stage-IV surveys, and that we outline in appendix A.

4.1 Simulation specifications & power spectrum measurements

We make use of the halo catalogs from the ABACUSSUMMIT simulation suite [108],24 obtained
with the ABAcUs N-body code [109]. More precisely, we use the base simulations, which
evolve (6912)3 particles with particle mass of 2 x 10 h~1 M, and a force softening at 7.2 "
proper kiloparsecs in a periodic cubic box of size Lyox = 22~ Gpc. The cosmology of the
base simulations is set to the Planck 2018 best-fit ACDM model,?® which includes a single
species of massive neutrinos with ¥m, = 0.06 eV. In the ABACUS code, neutrinos are modeled

22MoNTEPYTHON has the option of running with uninformative flat prior, meaning: top-hat priors with
boundaries far enough away from the preferred region to never be reached by the sampler. While some
parameter inference engines such as MultiNest require prior edges to be passed in an explicitly, this is not the
case for the Metropolis-Hastings algorithm.

Zhttps://github.com/brinckmann /montepython_ public.

2 https://github.com/abacusorg/abacussummit.

25More specifically, the best-fit base_plikHM_TTTEEE_lowl_lowE_lensing model is used.
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as a smooth component, including their effect on the Hubble expansion rate and neglecting
their clustering. The initial conditions are set by scaling the linear matter power spectrum
(combining the cold dark matter and baryon components) predicted by CLASS at z = 1
back to the initial redshift of z = 99. The back-scaling uses the linear growth function,
including the suppression of growth induced by the smooth massive neutrino component.
The initial conditions are generated using the public Zeldovich-PLT code,?® which includes
first-order particle linear theory corrections [110].

We focus on halo catalogs at redshift z = 0.5 and use 25 realizations of base simulations
(AbacusSummit_base_c000_ph{001-0.25}), which rely on the same cosmology and only
differ through their phase. We split each simulation box into 8 sub-boxes with a volume of
Vi = 1A 73 Gpcg.27 This enables us to have Ny = 200 realizations to reduce the scattering
of the power spectrum measurements across individual simulations. The redshift-space halo
power spectrum wedges are measured with fast Fourier transforms using the N-BODYKIT
package [76].%8 The halos are interpolated on a regular mesh of 2563 nodes using Triangular
Shaped Cloud. Compensation is applied to deconvolve the effect of interpolation windows,
and interlacing is used to reduce aliasing [111]. The spectrum wedges are measured in 10
bins of p and 64 bins of k, with width equal to twice the fundamental mode of the box,
Ak = 2k = 21/ Lyox. The redshift-space power spectrum is measured along a line-of-sight
assumed to be the y direction.

4.2 Results: EFT and SPM fits of the power spectrum wedges

As briefly mentioned in section 3, for the one-loop EFT model, given the relatively large
number of nuisance parameters and the strong degeneracies among some of them, the first
question to address is whether the size of the parameter space can be reduced without biasing
the inferred cosmological parameters. We recall that the one-loop EFT model introduces
12 nuisance parameters per redshift bin. In the case of our ABACUS fits, we only consider a
single redshift slice, but even with 12 independent nuisance parameters one may observe some
strong degeneracies. Therefore, prior to doing an MCMC analysis varying all cosmological
parameters, we perform a number of exploratory MCMC runs. To expedite the tests, we fix
the four cosmological parameters (wy, Wedm, P, ns) and we focus on retrieving an unbiased
constraint on Ag only. This strategy is numerically efficient because Ag is treated as a
fast parameter within MONTEPYTHON, meaning that the linear power spectrum and the
individual loop contributions only need to be computed a single time. Moreover, this test is
sufficient to investigate all potential degeneracies and correlations among nuisance parameters.

As a matter of fact, we find that a full MCMC run with Ag plus 12 independent nuisance
parameters is very expensive to converge due to severe degeneracies (especially between the
bias parameters bg, and br, and to a lesser extent between bg, and b2) and the strongly
non-Gaussian contours (especially those involving the shot noise parameter s;), as can be
checked in figure 4.

To reduce the dimensionality of the nuisance parameter space, one has the option of fixing
some of them or assuming relations among them according to well-motivated theoretical priors.

Z6https: //github.com /abacusorg/zeldovich-PLT.
#"We thank Chang-hoon Hahn for providing us the sub-volumes.
2https://github.com /beep/N-bodykit.

— 24 —


https://github.com/abacusorg/zeldovich-PLT
https://github.com/bccp/N-bodykit

— full parameter set
—— bg,(b1): co-evolution
128 51 =0
S 10 )
o3 \ —— bg,(b1): co-evolution and s; =0
2.4
30.0575’ ’
-2.28
4.17 g
=Y
-2.98 _
82 ABACUS ko = 0.3Mpc™ ! h: EFT 1-loop model
& 0615 ‘ ‘ \
-9.43
99.9
| ® @
-74.5
279
S LBIN\ 8
-17.7
172
XY rAY Y.
-117¢° )
176 N
SLY LTI
-109
30
50
=27
200 ©
@ 100
0
LILIL A
o~ 0
w
-2e+03 ' A ‘ ' \ ‘
4e404
e AN A A KA YA A
2e+04
In (101°4,) b by bg, br, Co ¢l 1 c3 50 51 59 53

Figure 4. Marginalized 1- and 2-dimensional posterior distributions (68% and 95% confidence limits
shown in darker and lighter colors) for A; and EFT nuisance parameters inferred from the measured
power spectrum wedges on ABACUS mocks at redshift of z = 0.5. All other cosmological parameters
are fixed to the fiducial values of the simulations. The small-scale cutoff is set to kyax = 0.3 h/Mpc.
Different colors correspond to the results with different assumptions for the nuisance parameters; red:
all nuisance parameters are varied independently, blue: the relation of bg,(by) is set to co-evolution
prediction, cyan: the k? dependence of the shot noise contribution is set to zero (s; = 0), green: both
assumptions are made. The assumed prior on In(101°Ay) is shown as a dashed line in its 1d posterior.

Among the nuisance parameters of the power spectrum model, the second and third-order
tidal biases, bg, and br,, are known to be highly degenerate, rendering the MCMC analysis
very challenging. A theoretically motivated assumption is to relate both or one of these
biases to linear bias b; using the so-called co-evolution model. This model underscores that
even in the absence of initial tidal biases in Lagrangian space during formation, the late-time
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description of the galaxy/halo density field through local-in-matter biases b, is altered by
gravitational evolution, introducing tidal contributions in the bias expansion in Eulerian
space. In this case, the conservation of the total number of objects implies that the late-time
non-local bias parameters are all related to the linear bias b; through

2 1 5
bg, = *?(bl —1), bry= *6(b1 — 1) = 5bg, - (4.1)

These relations have been tested against simulations e.g. in ref. [112]. The measured biases in
halo catalogs constructed from N-body simulations were found to be in good agreement with
the above relations, especially the one between bg, and b;. We thus repeated our MCMC
run with bg, given as a function of b; by the co-evolution model rather than being varied
independently. The results are shown in blue in figure 4. In this case, as expected, the
main parameter degeneracies disappear and we obtain definite predictions for br, and bs,
while the posterior of the cosmological parameter Ag and even for the bias by remains stable.
Utilizing the co-evolution prediction for br, instead leads to a slight shift of roughly 0.4 o of
the mean of the inferred As-distribution. We conclude that for ABACUS simulations using
the relation bg,(b1) allows for a more efficient fit without altering the information extracted
from the data. This conclusion may not hold for other simulated and observational data
sets and should be verified accordingly.

We now discuss the role of the nuisance parameters describing stochastic corrections.
Eq. (2.22) provides the first terms in a Taylor expansion of the function Pyt (k, i) in powers
of ;2 and k%. At the one-loop order, it is clear that we should have stochastic corrections
of order 1°, accounting for shot noise in the density field, of order u?, accounting for shot
noise in the velocity field, and of order u*, accounting for corrections to 4th-order velocity
moments. In an expansion with respect to k2, the sy term is the leading-order term in u°;
the sy term is the leading term in p?; and the s3 term is the leading term in p*. Thus, it is
clear that these three terms play an important role in the one-loop galaxy spectrum model.
Then, at each order in the p? expansion, there can be higher-order corrections in the k2
expansion. For instance, the term containing s; is the next-to-leading p-independent term in
an expansion in powers of k2. It is thus not obvious that this term plays a significant role in
the model. There are even higher-order terms in u°, u? and u* that we did not even include
in the shot noise expansion of eq. (2.22). The question is whether considering a non-zero s;
is really necessary in order to accurately model the one-loop spectrum.

The two runs mentioned above included a marginalisation over s;. They actually show
that there is no significant correlation between s; and Ag. Additionally, they reveal subtle
degeneracies between the stochastic parameter s; and several other parameters (most notably
ba, bg,, br, and c;), leading to strongly non-elliptical 2D contours (see figure 4). This is a sign
that sq is degenerate with other parameters combinations and contains redundant information.
To check this, we performed a run with s; set to zero (but still an independent bias bg,). The
result, shown in cyan color in figure 4, confirms that the Ag posterior is unaffected by this
reduction of the nuisance parameter space. Finally, we run again with the two priors bg, (b1)
and s; = 0, that is, with 10 nuisance parameters. This leads to the green contours of figure 4,
which are now all nearly elliptic. In this case, the convergence of the MCMC run is very fast
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Figure 5. Marginalized 1- and 2-dimensional posterior distributions of cosmological parameters
inferred from the measured power spectrum wedges on the ABACUS mocks at redshift of z = 0.5.
The green colour refers to a fit of the one-loop EFT model to the mock data. The red and blue
contours show the results derived from the SPM described in appendix A, with either a single shot
noise parameter so (red) or a set of stochastic terms {sg, s2, s3} (blue). The small-scale cutoff is set
t0 kmax = 0.25 A Mpc ™! on the left and to kmax = 0.3 Mpc™! on the right. The Gaussian priors of
table 3 on wy, ng and Ay are indicated in grey. The constraint on wy, is dominated by the BBN prior
(such that the wy posterior curve is hidden behind the prior curve). For other parameters, we adopt
flat, wide and uninformative priors.

compared to the case with 12 nuisance parameters, while the posterior of Ay is unaffected.
We will thus adopt such a reduction of nuisance parameter space in the next runs.

We then proceed to MCMC runs with the full set of cosmological parameters and priors
listed in table 3. The runs reach stable posterior distributions with a convergence statistic of
|R — 1| < 0.05 after about 10% accepted points per chain.?? The results are displayed in green
color in figure 5 with two choices for the cutoff in wavenumber space: a more conservative
cut at kmax = 0.25 h/Mpc (left panel) and a more aggressive cut at kpyax = 0.3 h/Mpc (right
panel). For clarity, we only include cosmological parameters in these plots. The full triangle
plot including cosmological and nuisance parameters is shown in figure 9 of appendix D. The
most striking conclusion is that the fiducial values of cosmological parameters used in the
simulation (black dotted lines) are always perfectly recovered in the two cases. This is a
clear sign of success for the one-loop EFT model, which correctly captures the non-linear
effects present in the simulation. Due to the restricted volume of the simulation data, the
inference of wy, and ng is dominated by the priors. Instead, some information regarding Ag is
extracted from the data since the posterior is narrower than the prior. Finally, the correct
value of weqm and h is inferred entirely from the data.

We finally compare the result of parameter inference based on the one-loop EFT model
to the one of the simplified phenomenological model (SPM) described in appendix A, which

29The oversampling factor of the nuisance parameters w.r.t. the cosmology was set to 12.
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Model X? for kmax = 0.25 Mpc_1 h | x? for kmax = 0.3 Mpc_1 h
SPM with Pyt 316.9 1036.7
SPM with Pyt (k, 1) 39.2 147.6
one-loop EFT 5.1 7.4
data points 180 220

Table 4. x2-values for the ABACUS fits evaluated at the best-fitting model within MCMC chains.

has been adopted in several previous forecasts (e.g. [113, 114]). In this case, the model
parameters that are marginalised over are just the linear bias by, the velocity dispersion
Ug and the shot noise parameter sg. In figure 5, the red colour shows the result obtained
when applying the SPM model literally, with the single stochastic parameter sy accounting
for shot noise in the density field. The blue colour refers to an “enhanced SPM” in which
we adopt the same set of stochastic terms depending on {sy, s2, s3} as in the one-loop EFT

model in order to obtain more conservative results. We also tried to marginalise over the
2

v

pairwise velocity dispersion oy, instead of fixing it to the value predicted in eq. (A.2), but
this did not improve the results as we describe below.

With kpax = 0.25 h/Mpc, the failure of the SPM model is already very striking: the
posteriors and contours are very narrow and suggest totally incorrect values of cosmological
parameters. With the minimal shot noise model, the SPM prediction is 4.10 away from the
true value for the parameter weqm. The posterior of Ag and ng are also strongly biased despite
of the correctly-centered priors. Adding an additional set of stochastic parameters helps to
partially decrease the bias of the SPM posteriors, although the ng posteriors stays more than
20 away from the true values. We may also evaluate the goodness-of-fit of each model using
a x2-statistics computed at maximum likelihood using the analytical (diagonal) covariance
matrix. The minimum y? value in each case is reported in table 4. With kpyax = 0.25 h/Mpc,
the one-loop EFT model is able to achieve a minimum x? of 5.1, to be compared with a total
of 180 data points. Instead, the SPM model with a minimal shot noise model cannot achieve
better than y? = 317, or 39.2 with the enhanced shot noise prescription. We would therefore
still consider the EFT model to be successful if the same measurements had been taken in a
survey volume that is 35 times larger than the ABACUS simulation sub-boxes employed here.
The SPM on the other hand is already providing a bad fit at a survey volume of 1 Gpc® h=3.

With kmax = 0.30 h/Mpc, the SPM model performs even worse, because it can never
account for the shape of the non-linear power spectrum at the smallest scales. The chains
are driven to the largest values of h compatible with our top-hat prior range (h < 0.8),
while other cosmological parameters also drift to extreme values. Table 4 shows that y?
values cannot decrease below 1036 (resp. 147) in the minimal (resp. extended) shot noise
model, while the one-loop model achieves x? = 7.44 for 220 data points. We checked that the
situation does not improve when floating one additional parameters o2 in the SPM model.
In this case, the MCMC results are even worse, with o2 and some cosmological parameters
drifting very far from their expected value. This shows that there is no straightforward
way to cure or absorb the incorrect modelling performed in the SPM case, and that this
model should not be used to fit real data.
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5 MCMC forecast for stage-IV galaxy surveys

Next, we use CLASS-ONELOOP together with the Monte Carlo code MONTEPYTHON
to perform an MCMC forecast for stage-IV galaxy surveys, considering a survey with the
specifications matching those of DESI [46]. We assume a Gaussian likelihood for the power
spectrum wedges and perform a forecast using the EFT one-loop model described in section 2.
Additionally, we augment the model to account for the redshift uncertainties, which smear the
galaxy density field along each line of sight, as an overall exponential suppression, F,(k, ) =
exp (—k?u?0?) that multiplies the one-loop power spectrum. Here, 02 = ¢(1 + 2)0¢ ./ H()
and o9 is the standard deviation of expected redshift errors, set to og. = 0.001 for a
DESI-like survey. The Markov chain sampling is performed using the Metropolis-Hastings

algorithm on fiducial data generated with the same model.

5.1 Survey specifications and forecast assumptions

DESI is a five-year ground-based survey, which completed its five-month Survey Validation in
May 2021 [115], thus, it is the first stage-IV galaxy survey to become operational. The DESI
instrument is mounted on U. Mayall 4-meter Telescope at Kitt Peak National Observatory’s
Nicholas in southern Arizona and will obtain optical spectra for stars, galaxies, and quasars
over approximately 14,000 square degrees of the sky corresponding to a sky fraction of
fsiy = 0.34. The extragalactic spectroscopic sample consists of four distinct classes of
extragalactic sources; bright galaxy sample (BGS), luminous red galaxies (LRGs), star-
forming emission line galaxies (ELGs), and quasi-stellar objects (QSOs). The samples span
the redshift-ranges of 0.05 < z < 04, 04 < 2 < 1,06 < z < 1.6, and 0.9 < z < 2.1,
respectively [46].

In the forecasts presented below, we consider BGS and ELG samples, individually
and combined. Given that the two samples do not have redshift overlap we treat them
as uncorrelated. We use the original specifications of ref. [46] for the redshift ranges, the
redshift distributions N(z), the linear biases for each redshift bin, and the redshift error.
Reference [46] assumes 5 bins for the BGs and 11 bins for the ELGs, each with a width
of Az =0.1. In our analysis, in order to lower the computational burden of varying all 10
nuisance parameters in each redshift bin, we redistribute the samples over a smaller number
of bins. We consider 2 bins for the BGs and 4 bins for the ELGs with a redshift width
between 0.25 and 0.35.30 To obtain the correct galaxy distribution in the new bins, we fit
the number of galaxies per redshift slice, provided in ref. [46], with a model function that
is a generalization of the form used in ref. [113],

dNmodel z\° b z\4
= N | — — (=) —=1], 5.1
dz dQ fima (zo) exp{ d [(zo) 1)
and integrate over the bin width and angle to obtain the total number of galaxies in the

corresponding bin. The amplitude parameter a was rescaled to keep the total number
of galaxies in each sample consistent with the original specifications. The fitted redshift

30Bins at the edges of the redshift range were chosen slightly wider in order to smoothen the galaxy number
distribution.
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Figure 6. Expected redshift distribution, linear biases, and non-linear biases in co-evolution for
the low-redshift BGS (0 < z < 0.5) and the high-redshift ELG sample (0.6 < z < 1.6) in the two
different binning schemes. The colored point markers show values for the original thin DESI bins of
Az = 0.1 while the black histograms show the 6 wider bins with 0.2 < Az < 0.35. The light colored
lines represent the analytical fit given in eq. (5.1).

Sample Nmax 20 b d
BGS 3076.63 0.152701 1.55652  1.68522
ELG 2180.16 0.955781 83.3254 0.219326

Table 5. Best-fitting parameters for the differential galaxy number of the two DESI samples using
the model function (5.1).

Zmin Zmax ‘/C(Z) [Gpcg] h=3 g (Z) [10_4 :’-\/Ipci3 h3] b1 (Z)
0.0 0.2 0.2633 219.831 1.05
0.2 0.5 2.9540 13.582 1.50

06 085 | 6680 | 5811 | 1.223

0.85 1.1 9.045 8.010 1.373
1.1 1.35 10.811 4.023 1.527
1.35 1.7 17.081 0.915 1.716

Table 6. DESI-like 6 bin survey specifications obtained from analytical fits to the differential galaxy
number and averaging it inside of these wide bins. The total number of galaxies was kept constant
during the re-binning procedure at 9.8 x 106 and 17.04 x 108 for the BGS and ELG samples respectively.
V.(z) is the comoving volume of the bin and by (z) the linear bias, which was linearly interpolated to
the bin center from the original DESI specifications.

distributions of the two samples are shown in figure 6, and the values of the fit parameter
for BGS and ELG samples are given in table 5. The new binning specifications (including
the comoving volume, the galaxy number density and the linear bias for each redshift bin)
are tabulated in table 6.

Since we consider 4 redshift bins for ELGs and 2 for BGs, with 12 nuisance parameters
in each redshift (4 biases, 4 counter terms, 4 stochastic terms) and 7 free cosmological
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Parameter | Fiducial value Parameter | Fiducial value
o 0.02237 o0 Mpc?] =T
| oo o] |2
In (1010 A,) 3,044 “ [Mpcz] 20
o 0.82307 ceMpc] | 20
s 0.9649 S0
wo —1 52 [Mpc 2]
We 0 s3 [Mpc™]

Table 7. Fiducial parameter values for the MCMC forecasts of the power spectrum wedges from
a DESI-like experiment. The fiducial time-dependence of the biases are depicted in figure 6. The
stochastic and the counter terms are assumed to be redshift independent, with fiducial values set to
the inferred values from the ABACUS mocks.

parameters, our runs should in principle feature a total of 79 free parameters. In order
to have numerically tractable forecasts, like in ABACUS likelihood analysis, we set the k2
stochastic contribution to zero (s; = 0) at all redshifts. Furthermore, we reduce the size of
the parameter space by fixing the redshift dependence of some of the nuisance parameters and
varying only overall factors for each of the two samples. More specifically, for each sample x,

X Ix Ix

we vary four parameters (b, b3, b5, , Bfg) such that the redshift-dependent biases read

b} (2) = b7 x b1 fa(2) 5 (5.2)
bi(z) = b¥ x (70.704 —0.2082 + 0.1832% — 0.0077123) : (5.3)
X Ix 2 X
G, (2) = =G, x — [bi(2) — 1] (5.4)
X Ix 23 X
15 (2) = bFy > 5 bi(2) — 1] - (5.5)

The redshift dependence of the linear bias b¥(z), shown in the middle panel of figure 6, is
based on ref. [46]. The redshift dependence of by is set according to refs. [116, 117], while for bg,
and bp, we follow the co-evolution prediction. We further assume that the redshift evolution of
the stochastic contributions s, is the same as that of the Poisson shot noise 1/n(z), and only
vary three overall factors s, for each sample. Finally, in the absence of a well-motivated assump-
tion for the redshift evolution of counter terms, we should in principle vary four independent
parameters ¢, for each redshift bin and each galaxy sample. However, in our DESI forecasts,
for computational tractability, we assume that counter terms are redshift independent and
only vary four parameters c¢,, for each of the two galaxy samples. These assumptions reduce the
total number of free parameters to 2 x 1147 = 29. It should be kept in mind that in the actual
analysis of DESI data, the assumptions we have made about the redshift-dependence of the
nuisance parameters should be re-evaluated and improved. For both counter-terms and shot
noise corrections, we consider the same fiducial values for the two samples, chosen to be of the
same order as the ones inferred from ABACUS. The fiducial values are summarised in table 7.
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Figure 7. Forecasted marginalized posterior distributions of cosmological parameters from BGS
(red) and ELG (blue) samples and their combination (green) for a DESI-like survey. The synthetic
power spectrum wedges are generated using the one-loop EFT model of the fiducial model at the
corresponding redshifts for the two samples. The small-scale cutoff is set to kpax = 0.25 Mpc~th.

5.2 Results: constraints on the wCDM model

Figure 7 shows a comparison of the marginalized posterior distributions of cosmological
parameters derived from our mock DESI-like survey using power spectrum wedges. The small-
scale cutoff is set to kpmax = 0.25 h/Mpc. The constraints from the BGS and ELG samples
and their combination are shown in red, blue, and green, respectively. For {wy, h, wp}, the
two samples provide comparable parameter uncertainties. However, the ELG sample, which
spans higher redshifts, provides significantly tighter constraints on {wedm, In(101°Ay), ng, wq }.
The combination of the two samples considerably improves the constraints on {h, wg, w, },
by about 35% for the first two parameters and about 30% for w,. The slightly rotated
degeneracy direction in the wy — w, plane plays an important role in obtaining improved
constraints on the dark energy equation of state.

Figure 8 illustrates the dependence of the constraints on the choice of small-scale cutoff.
The different colors correspond to four values of kmax [h/Mpc] = {0.15,0.2,0.25,0.3}. We
also show in figure 10 of appendix D the full contours on all cosmological and nuisance
parameters in the cases kmax [h/Mpc| = {0.15,0.25}.

The constraints on wy, are fully determined by the BBN prior, thus, we do not see any
improvement when increasing kua.x, while we do for all other parameters. Imposing a highly
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Figure 8. Forecasted marginalized posterior distributions from the full DESI-like sample for different
values of kpax-

conservative cutoff of kpax = 0.15h/Mpc results in considerably weaker constraints. Indeed,
discarding the modes with & > 0.15 h/Mpc leaves the nuisance parameters poorly constrained,
as can be checked in figure 10. These degrees of freedom are then redundant and the predictive
power of the model is reduced. Beyond kpax = 0.25h/Mpc, the constraints on wg and w,
show 10% improvements, while for other parameters, the improvement is negligible.

The full triangle plot in figure 10 of appendix D shows the level of correlation between
cosmological and nuisance parameters. Overall, compared to the ACDM fits to ABACUS
mocks, the additional cosmological parameters corresponding to the DE equation of state do
not exhibit any degeneracy with nuisance parameters. In addition to linear bias, which is
anti-correlated with Ag, the stochastic parameter sq is the most correlated nuisance parameter
with cosmological parameters, particularly with wy, Wedm, As, and ng.

Table 8 presents a final summary of our results on the sensitivity of a DESI-like survey
to cosmological parameters, using a one-loop modelling of power spectrum wedges. We
show here the 1o error bar on each parameter using each of the two galaxy samples or their
combination, always with a cutoff at kpax = 0.25h/Mpc. As described earlier, the ELG
sample provides tighter constraints on all parameters. Combining the two samples improves
the constraints, most notably on the Hubble parameter and dark energy equation of state.
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Parameter BGS ELG BGS + ELG
(z-dep fixed) (z-dep fixed) (z-dep fixed)
wp 3.7x107%  37x107* 3.6x107*
Wedm 0.0098 0.0033 0.0030
h 0.017 0.017 0.011
In (1010 4;) 0.21 0.047 0.046
ng 0.072 0.022 0.019
wo 0.14 0.14 0.094
wq — 0.36 0.27
o3 0.042 0.015 0.013

Table 8. Forecasted 1o errors on independently varied cosmological parameters, as well as og as a
derived parameter. We show the results for the BGS and ELG samples individually and combined,
assuming a fixed redshift-dependence of nuisance parameters is fixed. Here, the small-scale cutoff
is set t0 kmax = 0.25h/ Mpc_l. Since the BGS sample alone can not constrain w, within the prior
range, the corresponding cell is left empty.

6 Conclusion

The cosmic large-scale structure contains a rich trove of information about the initial conditions
of the universe, its constituents, and the laws of gravity determining its evolution. The
upcoming data from stage-IV galaxy surveys has the potential to substantially improve our
understanding of the Universe, thanks to the enhanced precision and volume of the data
compared to current surveys. Exploiting these rich datasets to their potential will require an
accurate theoretical modeling of the observables, as well as some fast and robust numerical
implementation to compute the theoretical model and perform cosmological inference. In
recent years, the modeling of LSS summary statistics and the numerical tools to analyze
the measurements, in particular at the level of the power spectrum, have made considerable
progress. Several well-tested codes have been applied to existing data and released publicly.
There are ongoing efforts in the community to enhance the precision, robustness, and
efficiency of these tools.

In this paper, we introduced CLASS-ONELOOP, a new numerical tool fully integrated
in the widely used CLASS Boltzmann code, to compute the one-loop power spectrum of
biased tracers in redshift space. We validated our implementation by comparing the results
of the FFTLog approach versus a direct numerical integration of loop integrals. Furthermore,
we performed an explicit comparison of CLASS-ONELOOP against the publicly available
code CLASS-pT. We showed that when the same algorithm is plugged into the two codes to
split the linear matter power spectrum into broadband and BAO terms (in order to perform
the IR resummation), these two codes agree to better than 0.3% up to k = 0.3 h/Mpc.

To illustrate the potential of CLASS-ONELOOP, we used the new pipeline together
with the package MONTEPYTHON to infer cosmological parameters from the measurement
of power spectrum wedges on a ACDM subset of the ABACUSSUMMIT simulation suite. We
found that one-loop EFT predictions are capable of nearly perfectly recovering the fiducial
cosmology of the simulations. For comparison, we performed a similar exercise with a simple
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phenomenological model used in the literature for sensitivity forecasts, and found highly
biased constraints with deceptively small error bars. This shows that the one-loop model is
robust and accurate, while the simplified model should not be used to fit real data.

Next, we used our inference pipeline to perform Monte Carlo forecasts and determined
the constraining power of stage-IV spectroscopic galaxy surveys. We estimated the sensitivity
of such a survey to a cosmological model featuring dynamical dark energy, assuming the
simple wy — w, parameterization [105]. Adopting DESI-like sensitivity settings and imposing
a BBN prior on wy, we found that a DESI-like experiment can set tight constraints on
dark energy and ACDM parameters, despite of the large number of free parameters in the
one-loop EFT model. Even with 22 model parameters (describing bias, EFT counter-term
and stochastic uncertainties in each sample), our MCMC chains converge towards definite
predictions for each cosmological and model parameter, with limited correlations between
the two types of parameters.

The technical implementation of the one-loop formalism into CLASS and a more
detailed description of numerical algorithms and performance will be the topic of a work in
preparation [41]. CLASS-ONELoOP will be publicly released (as part of the main CLASS
distribution) together with that publication.
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A Simplified phenomenological model for the nonlinear power spectrum

As a comparison point for the base one-loop model described in section 2.1, we consider a
simple phenomenological model (SPM) for the nonlinear power spectrum of biased tracers.
This model has been previously used in the literature in performing Fisher or MCMC forecasts
(e.g., [113, 114]), and while it is clearly too simplistic, as we will discuss when fitting the
models to N-body simulations, it serves the purpose of highlighting the importance of various
ingredients of the one-loop model. Indeed, the failure of such simplified models, which
neglect the one-loop contributions caused by gravitational evolution, non-linear biasing and
redshift-space distortions beyond the Kaiser term is not surprising. Previous works on the
EFTofLLSS and comparable approaches [7-17] have made it clear that tree-level models or
even one-loop SPT are not sufficient for the analysis of upcoming stage-IV surveys.

The SPM consists of a clustering and a constant shot-noise components. The clustering
contribution assumes a linear biasing relation between the DM and the tracer, accounts for
linear redshift-space distortions by including the Kaiser term [118], and models the FoG effect
with a Lorentzian suppression of power [119]. Furthermore, it models the damping of the
BAOs due to large displacement fields using velocity dispersion as the damping exponent.
The shot-noise component, P;, is described as a free parameter to account for possible sub-
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or super-Poissonian corrections. Putting all this together, the redshift-space galaxy power
spectrum of the SPM reads

(b+ fu?)?

Pik,p) = | —555—

] [in(k) + 6_‘7\2/(#)]62PW(]{;)} + P, (A.1)

where, like in previous sections, we have omitted the explicit redshift dependence. The model
also includes the AP effect as described in section 2.1.3. In analyzing ABACUS data, we vary
independently o, which characterizes the FoG suppression. As in ref. [114], we assume the
dependence of g, on LoS direction to be given by

orm) = {1+ f(f +2)p} 52, (A.2)

which matches the expression of ¥2(u, 2) in eq. (2.30) if we identify 5, = ¥ and set §%2 = 0.
In fitting the ABACUS mocks, we found that if varying &, as a free parameter, the inferred
values of several cosmological parameters, most notably h, drift from their expected values.
Therefore, in the presented analysis, we fix it to be &, = .

B Anisotropic FFTLog kernels for the LoS moments

The following ansatze and end results can also be found in [35].3! To solve higher LoS
moments, we have to build recursive relationships on top of the kernel I(v1,v5) defined as [20]

1
K205 [y ) = / R (B.1)
V1|:I€

. _ (ﬂQVQ ’
with 5 5 5
1 F(§ — 1/1)1‘(5 — Z/Q)F((I/l + V2)§)
832 T(v)T(2)T(3 = (1 + v2))
To obtain terms like, for example, A;(v1,v2), we must prove that such terms are aligned

I(v1,10) = (B.2)

with the wave vector k. This follows from

; < (@ o)™
/dq 2”1k—(ﬂ2”2_/ 2u1k2u2nz::0<_k2+ L2 ) (B.3)

Due to rotational symmetry of the integrand along /3, it becomes evident that the integral

aligns itself with respect to the external wave vector, leading to the following ansatz,

[ @ qllj—cﬂ = K2l Ay (v, ) (B.4)

By contracting both sides with k!, we obtain

3—2(V1+l/2) — 3—'(7' E 1 / 3> 1 L _ _’_ 2 2 2
: M) = [ @1 o [ (R a4 a?)
1
= 5(lr(yl, ve) + I(vy — 1,19) — I(v1, 09 — 1)) k37 201+2)
1
= Al(l/l,l/g) = 5([(1/1, 1/2) —+ I(l/l — 1,1/2) — I(Vl,ljg — 1)) .

31Whe have confirmed with the authors of [35] a typo within their B2 term.
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Similar considerations lead to the following expression of the additional anisotropic FFTLog
kernels:

1
As(v1, 1) = g(ﬂ(’/l — Lo —1)+20(v1 — 1,v2) + 2I(v1,v2 — 1)
— I(l/l — 2, 1/2) — I(Vl, Vo — 2) — I(I/l,l/g)) (B5)

1
By (vi,19) = g(—GI(Vl —1Lvo—1)+2I(n —1,10) —61(v1,12 — 1)

+ 3[(1/1 — 2, VQ) + 3[(1/1, Vo — 2) + 3[(1/1, I/Q)) (BG)
3
A3(1/1,I/2) = —TG(I(Vl — 3,1/2) — 3[(1/1 — 2,79 — 1) — I(lll — Q,UQ) + 3[(1/1 — 1,19 — 2)
—2](1/1 —1,V2—1)—I(V1 —1,V2) —I(V17V2—3)+3I(V1,V2—2>
— 3[(1/1,1/2 — 1) + I(l/l, VQ)) (B7)

1
Bg(Vl,VQ) = E(5I(V1 - 3,1/2) - 15](1/1 - 2,V2 - 1) + 3I(V1 - 2,1/2) + 15[(1/1 - 1,V2 — 2)
— 18[(V1 — 1,9 — 1) —|—3I(V1 - 1,V2) — 5](1/1,1/2 — 3) + 15I(V1,V2 — 2)

— 151(vy,v2 — 1) + 51(v1, 12)) (B.8)
Ag(n,v) = %(1@1 A, ve) — AI(n — 3, vs — 1) — AI(1 — 3,13) + 61(1 — 2,1 — 2)

+4I(1n — 2,10 — 1)+ 61(r1 —2,12) —4I(v1 — 1,9 — 3) +41(v1 — 1,19 — 2)

+4I(r —1,vo — 1) —4l(v1 — Lvo) + I(v1,v0 — 4) — 41 (1,12 — 3)

+ 6](1/ vo —2) — 4l (vy,v9 — 1) + I(v1,10)) (B.9)
By(vy,10) = (5]( —4,19) —201(vy — 3,v9 — 1) — 41 (v1 — 3,1v2) + 301 (v — 2,19 — 2)

- 12[(u1— 2,9 — 1) = 2I(v1— 2,v5) — 200 (1) — 1,9 — 3) + 361 (v — 1,19 — 2)

—12I(v1 — 1,vo — 1) —4I(v1 — 1,19) + 51 (v1,v2 — 4) — 201 (v1, 12 — 3)

+ 3OI(V1, vo —2) —20I(vy,v9 — 1) + 5I(v1, 1)) (B.10)
Cy(vi,v2) = —=(351(v1 — 4,1v9) — 1401 (1) — 3,5 — 1) + 201 (v1 — 3,10)

128
+ 210[(1/1 — 2,19 — 2) — 180[(V1 — 2,19 — 1) + 18](V1 — 2, V2)

— 14OI(V1 — 1,19 — 3) + 300[(V1 — 1,19 — 2) — 180[(1/1 — 1,19 — 1)
+ 20[(V1 -1, 1/2) + 35](1/1, vy — 4) — 140](1/1, Vo — 3)
+ 210[(V1, Vo — 2) — 14OI(V1, Vo — 1) + 35I(V1, VQ)) (B.ll)

C Notation for the contributions to one-loop contributions

The numerical implementation of one-loop contributions to the redshift-space halo power
spectrum follows the notation described below. The loops corresponding to correlations of
two (density or velocity) fields are referred to as Z, while those with three and four fields
are labeled J and N, respectively. We use subscripts to refer to the number of velocity
fields. We have two types of terms, those that involve nonlinear biases, i.e. bias loops, and
those that are due to non-linearities in DM density and velocity fields. For matter loops,
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we use superscripts to refer to the perturbative orders of density/velocity fields, while for
the bias terms, we use superscripts with the name of the nonlinear bias operators. With
these conventions, the contributions to velocity moments listed in egs. (2.14) read in terms
of individual loop integrals as:

PP (k) = 263733 () + 602 Po(k)Za3 () + 2b1bT30 (k) + 4b1bg, I5¢ (k)

1 2
+ SURT00" + 203,765 % + 2babg, Too % (k) + 8by (bg2 + 5bp3) Po(k)Fg3 (k) |
(C.1)

RISy = (=i ) {2 Z820) + 300 Po0) [Z80) + T3 0] + T3 () + 2, T2 ()
+4 (bQQ + ?bm) Po(k)]-“ogf(k)} — zz'f{b%Po( ) | To2" (b, 1) + T2 (k, )|
BRI 0)+ G01ba T3 () + bab T (1)} (€2
RIS () = =P A0y Po 1) T35 b )+ 201 T (1) + 0o (O, 1)
+ 206,75 (k. ) — B Po(k)o . (©3)

2
(0]0) ILL
P = 7 (1) {22800 ) + SRR (ko) b+ BN b )

4 ( {blpo >[J121<k,u> FI 0] +0 T w0 Ca)

PP (., 1) (Z) b1 Po(k)o? (C.5)
Pl () = —2if* (1) {8 o) + 2P (0T (o)}

+if? ( :)blfh<k)a — 20 N (k) (C.6)

Plv ) =37 (1) Rukyo?. (1)

PP (k, 1) = 2f*Nag ™ (e, 1) (C.8)

There are three tree-level contributions,

Poo (k, 1) = b7 Po(k) (C.9)

Rl = (=7’ ) bPu) (C.10)
2

P (k, p) = f? (:) Py (k). (C.11)
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D Full cosmological and nuisance parameter contours

To illustrate the degeneracies among nuisance and cosmological parameters, we present in
this section the full triangle plots of 1d and 2d marginalized parameter posteriors for fits to
ABACUS mocks in figure 9 and DESI-like MCMC forecasts in figure 10.
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Figure 9. Marginalized posterior distributions for all parameters of the one-loop EFT model inferred
from the power spectrum wedges extracted from the ABACUS simulation suite at redshift of z = 0.5.
The small-scale cutoff is set to kmax = 0.25 hMpcf1 for the red and to kpax = 0.3hMp<f1 for the
blue contours.
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Figure 10. Forecasted marginalized posterior distributions of all model parameters from the
combination of BGS and ELG samples for a DESI-like survey. The synthetic power spectrum
wedges are generated using the one-loop EFT model of the fiducial model at the corresponding
redshifts for the two samples. The small-scale cutoff is set to kypax = 0.15 Mpc_1 h for the red and to
kmax = 0.25 Mpc_1 h for the blue contours.
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