Nuclear Inst. and Methods in Physics Research, A 1003 (2021) 165306

journal homepage: www.elsevier.com/locate/nima

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

=

NUCLEAR
INSTRUMENTS
&METHODS
IN

PHYSICS
RESEARCH

Projection imaging with ultracold neutrons

K. Kuk?, C. Cude-Woods "¢, C.R. Chavez?, J.H. Choi ¢, J. Estrada®", M. Hoffbauer ",

Check for
updates

S.E. Holland ¢, M. Makela®, C.L. Morris ", E. Ramberg?, E.R. Adamek ¢, T. Bailey ¢, M. Blatnik’,
L.J. Broussard ”, M.A.-P. Brown ¢, N.B. Callahan", S.M. Clayton", S. Currie®, B.W. Filippone ',
E.M. Fries’, P. Geltenbort', F. Gonzalez", M.T. Hassan ", L. Hayen ¢, K.P. Hickerson ',

A.T. Holley/, T.M. Ito", C.-Y. Liu", P. Merkel ?, R. Musedinovic ¢, C. O’Shaughnessy °, R.W. Pattie
Jr.X, B. Plaster ¢, D.J. Salvat", A. Saunders", E.I. Sharapov!, X. Sun, Z. Tang", W. Wei,

J.W. Wexler ¢, A.R. Young ¢, Zhehui Wang >

a Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
b Los Alamos National Laboratory, Los Alamos, NM 87545, USA
¢ North Carolina State University, Raleigh, NC 27695, USA

d Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
¢ The University of Tennessee, Knoxville, TN 37996, USA

f California Institute of Technology, Pasadena, CA 91125, USA

8 University of Kentucky, Lexington, KY 40506, USA

h Indiana University, Bloomington, IN 47405, USA

i Institut Laue Langevin, 38042 Grenoble, France

I Tennessee Technological University, Cookeville, TN 38505, USA
k East Tennessee State University, Johnson City, TN 37614, USA
1 Joint Institute for Nuclear Research, 141980, Dubna, Russia

ARTICLE INFO ABSTRACT

Keywords:

Ultracold neutrons

Direct detection

108 nanometer thin film
Neutron detection efficiency
Low background

Projection imaging

Ultracold neutron (UCN) projection imaging is demonstrated using a boron-coated back-illuminated CCD
camera and the Los Alamos UCN source. Each neutron is recorded through the capture reactions with 1°B.
By direct detection at least one of the byproducts @, 7Li and y (electron recoils) derived from the neutron
capture and reduction of thermal noise of the scientific CCD camera, a signal-to-noise improvement on the
order of 10* over the indirect detection has been achieved. Sub-pixel position resolution of a few microns is
confirmed for individual UCN events. Projection imaging of test objects shows a spatial resolution less than

100 pm by an integrated UCN flux one the order of 10° cm~2. The bCCD can be used to build UCN detectors
with an area on the order of 1 m?. The combination of micrometer scale spatial resolution, low readout noise
of a few electrons, and large area makes bCCD suitable for quantum science of UCN.

1. Introduction

With a kinetic energy less than 400 neV, ultracold neutrons (UCN)
are the coldest free neutrons known in the laboratory and the universe.
UCN have been used to examine fundamental interactions in nature
through precise measurement of the neutron lifetime [1,2], determine
properties of neutron beta decay [3], and search for the neutron electric
dipole moment [4-6]. There is growing interest in using position-
sensitive measurements of UCN to study fundamental quantum states
of UCN. For example, quantum states of UCN in the Earth’s gravity
field have been reported experimentally in 2002 [7]. The de Broglie
wavelength of UCN (4,) is
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where 4, is in nm, the kinetic energy of the neutron (E,) in neV and
the velocity of the neutron (v,) in m/s. For a UCN with a kinetic energy
of 82 neV or a velocity of 3.96 m/s, 4, = 100 nm. Precise measurements
of quantum states of UCN can be used in dark energy and dark matter
search [8-10]. Gravitationally bound UCN might also be used to test
Newton’s inverse square law of gravity at short distances from 0.1-
100 pm [11-13]. Depending on the reflecting boundary and UCN
wavelength, gravity quantum states measurements require a spatial
resolution less than 10 pm, and 1 pm or less is highly desired.
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Position-sensitive measurements of UCN based on ZnS:Ag scintil-
lators or indirect detection were reported previously [14-16]. Iso-
topically purified 1°B thin films were used to capture UCN through
the reactions: 1°B (n, a0y) 7Li (6%) and 1°B (n, aly) 7Li (94%). For
UCN at 3.96 m/s, the 1/e-absorption (36.8% attenuation) thickness
of 1°B film is A4, = 7yv, = 35.6 nm. The average absorption time
7o = 9.0 ns in 9B (at solid density 2.2 g/cm?®) is independent of
neutron velocity. Position resolution was limited either by the size of
the photomultipliers [14,16] or by the light yield and optics for the
intensified imaging camera [15]. Here we describe a direct detection
scheme when a !°B thin film up to 100 nm is deposited on the back-
side of a scientific CCD camera [17,18]. Charge carriers (electron-hole
pairs) are created when the @, ’Li and y from the neutron capture
reactions are stopped or scattered in the thick silicon layer (~300 pm).
The low energy threshold (3.6 eV per pair) for charge production in
silicon, CCD cooling, and the elimination of optics have led to a signal-
to-noise improvement on the order of 10* over the indirect detection
scheme based on ZnS:Ag scintillator. In addition to the fulfillment of the
initial requirements for applications in quantum physics and quantum
information of UCN, we have also obtained results of UCN projection
imaging using several test objects.

Below we first describe the boron-coated CCD (bCCD) detector and
the experimental setup. Next, we show UCN projection imaging of
several test objects, and the analysis of detector energy and position
resolution. We conclude that bCCD would find applications in both
fundamental science of UCN and projection imaging of more complex
samples with a spatial resolution below 100 pm.

2. bCCD and the UCN detection principle

The working principle of the bCCD detector is illustrated in Fig. 1.
The scientific CCDs used in this work are scientific-grade sensors similar
to those in the Dark Energy Camera (DECam) wide field imager [18],
built by the Lawrence Berkeley National Laboratory (LBNL) [17]. The
CCD sensors have been extensively characterized at Fermilab for the
DECam project [19]. The DECam CCDs are 250 pm thick, fully depleted,
back-illuminated devices fabricated on high-resistivity silicon. Each
CCD sensor used for this study has 8 million pixels (2k x 4k) with
dimensions 15 pm x 15 pm. Fig. 1 shows the 3-phase, p-channel CCD
design. The 10 kQ-cm resistivity, allows for a fully depleted operation
at bias voltages of 25 V. The field extends essentially all the way to the
backside contact, depleting the entire volume of the CCD substrate. The
CCD readout noise has been found to be 7.6 ADU = 8.5 ¢~ for a pixel
time of 4 ps per pixel with thermal electric cooling.

When an ionizing particle such as «, “Li or y-ray penetrates the
detector, it creates electron-hole (e—p) pairs. Under the influence of the
electric field, the holes produced near the back surface (a and 7Li) will
travel the full thickness of the device to reach the potential well near
the gates. Particle identification for this detector has been discussed in
a previous work [20] with special attention paid to identifying heavily
ionizing « particles, as discussed in Ref. [21]. The a particles, such as
those expected from the neutron capture reactions 1°B (n, a0y) "Li (6%)
and 19B (n, aly) "Li (94%) are easily identified in CCD images due to
the plasma effect. These CCDs have been used previously for thermal
neutron detection using a 1 pm thick boron film in a ceramic substrate
that was positioned close to the CCD, as discussed in Ref. [22]. For this
work, the back side of the CCD was directly coated with 1°B to less
than 100 nm thick, using the same electron-beam evaporation method
described previously [14]. We show below that this boron-coated CCD
(bCCD) sensor becomes an excellent choice for detecting UCN with less
than 10-pm (sub-pixel) position resolution, good energy resolution (for
the by-products from the UCN-capture) and high efficiency.

The performance of the bCCD was tested at the Los Alamos UCN
facility [23]. The Los Alamos UCN source uses a combination of beryl-
lium, graphite moderators at ambient temperature, and solid deuterium
at 5 K, to cool spallation MeV neutrons by 13 orders of magnitude
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Fig. 1. (a) The pixel cross section of a fully-depleted back-illuminated CCD developed
at Lawrence Berkeley Laboratory [17]. (b) The CCD backside is coated with a °B top
layer up to 100 nm thick, using the electron-evaporation deposition process described
in [14]. At least one of the charged particles @ or "Li generated from the neutron
capture slows down and stops in the fully depleted layer and creates e-h pairs. The
companion y-ray (480 keV) photon is emitted isotropically into the 4z solid angle with
respect to the UCN capture location. Up to 50% of the y-rays are intercepted by the
silicon layer and generate a corresponding Compton electron (e~), which then produces
e-h pairs as signatures for the y photons.
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Fig. 2. The schematic of the experimental setup. The UCN flux to the detector chamber
is controlled by a gate valve (GV). The CCD detector faces up. Experiments are
conducted both with and without a mask on the top of the CCD back side. The readout
electronics (outside the vacuum chamber), the vacuum interface for the bCCD data
cables, and on-board electronics (inside the vacuum chamber) are not shown.

to mK temperatures. The resulting UCN move at speeds of only a few
meters per second, and can be completely confined by magnetic fields
and/or material walls such as a stainless steel tube. The bCCD was
installed inside a stainless steel vacuum vessel (the base vacuum on
the order of 10~® Torr for the data shown here), and cooled to 140 K
to suppress dark current. This vessel was then connected to the UCN
source through stainless steel neutron guides as shown in Fig. 2. The
sensor was positioned with the borated surface facing up, and directly
exposed to the UCN flux when the gate valve is open.

3. Results and discussion

The spatial resolution of the UCN projection imaging was character-
ized using two different masks. The first mask was a 3D printed ‘UCN’
letter pattern (transparent to UCN) on a rectangular thermoplastic
material. The mask target was placed at ~ 3 mm away from the borated
surface of the bCCD, and covered completely the imaging sensor. The
detector was then exposed to UCN during which the neutron-capture
events were recorded. The pattern of the mask was reproduced quite
well by summing the recorded events in the CCD over a certain period
of time, as shown in Fig. 3. This initial test qualitatively demonstrates
the projection imaging capability of the bCCD in conjunction with
the Los Alamos UCN source. The data shown also clearly demonstrate
the particle identification capability of the sensor, similar to previous
results [21]. Heavily ionizing particles (¢ and Li ions) and Compton



K. Kuk, C. Cude-Woods, C.R. Chavez et al.

Fig. 3. (Left) A 3D printed rectangular mask using thermoplastic material. This mask
covered the full size of the detector (6 cm X 3 cm). The mask was positioned about
3 mm above the borated surface of the bCCD. (Center) A raw bCCD image showing
the transmission flux of UCN through the mask. (Right) Zoom into the yellow box at
the center panel, showing the hits from the different particles and different energies
from the neutron capture reactions. Inset shows a zoom into an even smaller region of
the image.

sticky-tape (80 um)
copper ring {2 mm)
| TPX (80/500 um)

Fig. 4. (Left) Schematic of the three layer mask used in front of the bCCD. Two versions
of this mask were used, with different thickness of the kapton tape (80 pm and 500
pm). (Right) Photograph of the two masks directly mounted in contact with the borated
surface of the bCCD.

scattering from ys produced are distinguishable from their different
pixel patterns derived from the individual ion or electron tracks.

A refined measurement of the position resolution was performed
with a second mask, when the distance between the mask and the
boron-coated surface is reduced to less than 100 pm (the size of a
human hair). This mask was built with 3 layers: (a) copper ring
(2 mm diameter), (b) double-sided sticky tape 80 pm thick, and (c)
Polymethylpentene film (trademark TPX) which came in two different
thicknesses of 0.5 mm and 80 pm. These layers were arranged as shown
in Fig. 4. A circular hole was punched through the complete assembly.
In this case the mask was brought into direct contact with the borated
surface of the bCCD. Two similar masks were built and installed next
to each other to cover the full imaging detector as shown in Fig. 4.
The resulting hit map (about 5 min of UCN flux) is shown in Fig. 5.
Here, only the hits consistent with the circular charge clusters produced
by heavily ionizing particles were selected. All the tracks from the
Compton electrons have been removed.

The smaller circle in the lower left in Fig. 5 is used for the estimation
of the position resolution. The centroid for the circle is calculated, and
the distribution of hits per unit area is shown for that circle in Fig. 6.
This distribution is fitted to the convolution of a gaussian resolution
with a step function, and the results of the fit are shown in Fig. 6,
indicating a gaussian resolution of 13 pixels (195 pum). It should be
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Table 1

Maximum ion ranges (R') of the charged products and their relative
detection probabilities (w') from the 1°B(n, «)”Li neutron capture process
in 1°B solid films and Si. A possible dead layer may exist in between
the 1°B layer and fully charge depleted region of Si sensor, which could
reduce the actual range and energy in the Si sensor.

Ion (w') Energy Range in 1°B Range in Si
(E), MeV) (R, pm) (R', pm)

a (47%) 1.47 3.5 5.1

a (3%) 1.78 4.4 6.4

Li (47%) 0.84 1.8 2.5

Li (3%) 1.02 2.1 2.8

noted that the mask was not cut with micron level precision for this
initial experiment, and part of this resolution can be attributed to the
mask fabrication. To demonstrate the issue of the mask imperfection, a
new fit was performed using only the upper right quadrant of the circle
giving a resolution of 4 pixels (60 pm).

The position resolution in Fig. 6 is likely limited by imperfections
on the mask, and not by the intrinsic position resolution of the de-
tector. The hits produced by heavily ionizing particles are extended
over many pixels, and their centroid can be determined with sub-pixel
precision. To demonstrate this we fit the charge distribution produced
by a single highly ionizing hit reconstructed on the bCCD image. As
shown in Fig. 7, the centroid of each hit can be determined with an
uncertainty significantly smaller than a pixel. The fit shown in Fig. 7
has an uncertainty of 0.1 pixel (1.5 pm). The intrinsic resolution of the
detector will also be limited by the range of the a particles inside the
silicon [22]. Their range has been calculated using the Stopping and
Range of Ions in Matter (SRIM) code and is expected to be no more
than 6.4 um as shown in Table 1, and therefore significantly less than
the fully depleted Si layer thickness of 250 pm. The energy loss in the
10B Jayer and the dead layer on the surface of the silicon active region
will reduce the actual energy deposition and stopping ranges of the ions
in silicon.

Since the ion ranges in silicon are many times the 1B film thickness
T, < 100 nm, the charged particle energy losses in the 1°B are small,
except for the ions that move at large angles with respect to the surface
normal. The range loss due to 1°B and the dead layer is most significant
for the 0.84 MeV 7Li ions. The full ion stopping in 1°B only occurs when
the angle is greater than 6, = cos™!(T,/R’), or about 87.4 degrees for
Ty = 80 nm.

The CCD detector was calibrated using an °Fe radioactive source
producing mainly 5.9 keV X-rays [19]. This calibration was then used
to measure the energy of the events consistent with a heavily ionizing
particle resulting from the neutron capture. The energy spectrum for
the heavily ionization events observed during the UCN exposure is
shown in Fig. 8. The position of the energy peak for the « is properly re-
constructed, while the ’Li is shifted to about 0.7 MeV. A more detailed
study of the reconstruction and dead layers will have to be performed to
understand this down-shift quantitatively. However, it is clear that it is
possible to separate both types of events, allowing possible achievable
position resolution for single neutron capture events to be below the
upper limit of 6.4 pm.

The observed a and ’Li peaks can be fitted by a skewed Gaussian
function [14],

F(x) =2¢; ()P (a;x") + ¢, (2)

with

X =2X2%0 3
c

1 2

$(x) = —=e /2, )
Var

and
1 X

D(x)= = [l +erf(—)| . 5)
o)
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Fig. 5. Hit map for the observed heavily ionizing particles for the setup discussed in Fig. 4 and a UCN exposure time of 5 min. The circles produced by the different layers of
the mask are clearly reconstructed. The hit map also shows the triangular gap between the two masks.
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Fig. 6. (Left) Hit map for heavily ionizing particles reconstructed on the bCCD image for the setup in Fig. 4. This is a subsection of the hit map shown in Fig. 5, with the
horizontal and vertical scale centered at the circular feature in the bottom right of Fig. 5. (Right) The number of hits per unit area is shown as a function of distance from the
center of the circle. The red curve shows the fit to a step function with a gaussian position resolution as discussed in the text. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 7. (Left) A small region of reconstructed bCCD image with 5 heavily ionizing hits. Both axes are in pixels, and the color scale is in digital units corresponding to 40
counts/electron. (Right) Zoom in the region around column 120. The red contours correspond to a 2D gaussian fit to the hit, demonstrating the determination of the centroid with
a sub-pixel resolution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The fitting parameters for 0.84 MeV 'Li are x, = 700, ¢ = 60.5.
The model may be further used to guide us to improve the position
resolution.

4. Conclusions

In summary, UCN projection imaging is demonstrated using a back
illuminated CCD at the Los Alamos UCN facility. A thin layer (<100 nm)
of 19B was directly deposited on the CCD back surface. We show that it
is possible to separate the products of the neutron capture (« and Li)
and the Compton events produced from gamma radiation. A position
resolution of 60 pm has been demonstrated using a mask installed

directly on top of the bCCD. This is still far from the ultimate position
resolution estimated for this technique. The interpretation of the TPX
mask edge is complicated by the penumbra produced because of UCN
absorption in the edge of the plastic above the surface, which is thick
compared to the expected resolution of the detector. This effect can be
mitigated in future tests by using a reflective rather than an absorptive
material in contact with the CCD.

The bCCD detector also provides a new technique for the mea-
surement of individual UCN with high position and energy resolu-
tion. Several ongoing and planned experiments could benefit from
the performance shown here, such as real-time detector in studying
UCN quantum states in the Earth’s gravitational field. Other possible
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Fig. 8. UCN capture spectrum as measured by the calibrated bCCD (expected: a =
1.47 MeV, Li = 0.84 MeV).

applications include UCN microscopy and reflectometry for material
science [15]. Opportunities to examine the quantum properties of UCN,
building on demonstrations of quantum physics under gravity, have
also been recognized by the community report [24]. Current UCN
experiments with position measurements have been performed and
planned as a probe of dark energy models [9,25]. The greatly enhanced
UCN position resolution from the device discussed here could enhance
the capability of these experiments through for example, real-time
measurements. The high resolution in position may be converted into
high energy resolution using a proper experimental set-up.
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